東通原子力発電所1号炉審査資料				
資料番号 A1-CA-0089(改1)				
提出年月日 2021年4月8日				

東通原子力発電所 基準地震動の策定のうち 海洋プレート内地震の地震動評価について (コメント回答) (補足説明資料)

2021年4月8日 東北電力株式会社

All rights reserved. Copyrights © 2021, Tohoku Electric Power Co., Inc.

審査会合におけるコメント

No.	コメント時期	コメント内容	今回ご説明資料の掲載箇所
S180	2020年10月23日 第913回審査会合	海洋プレート内地震の検討用地震の選定で6タイプの地震を検討しているが,検討条件・方法,不確かさの設定 及びそれらの考え方について,検討フロー図等を用い詳細に整理すること。	本資料 p.59~98, 101, 102
S181	2020年10月23日 第913回審査会合	海洋プレート内地震の検討用地震の選定で,断層モデルの平均応答スペクトル等を用いた検討を行っているが, その選定の考え方について,各地震の周期毎の大小関係も踏まえたうえで選定していることが分かるように記 載すること。	本資料 p.99
S182	2020年10月23日 第913回審査会合	海洋プレート内地震の検討用地震の選定で, 平均応答スペクトルによる検討を行っているが, 相対的な関係を 確認するため距離減衰式等による検討も行うこと。	本資料 p.99 補足説明資料 p.12~20
S183	2020年10月23日 第913回審査会合	海洋プレート内地震のうち、参考検討としている「SMGAが海洋プレート地殻に位置する地震」については、検討 用地震の不確かさケースとして扱うことについて検討すること。	本資料 p.101~104, 107, 109, 110, 113, 114, 123 ~126
S184	2020年10月23日 第913回審査会合	海洋プレート内地震の応答スペクトルに基づく地震動評価における, Noda et al.(2002)の補正係数の検討では, 大きな残差を示す地震も含まれていることから, 採用した地震の適切性も検討したうえで補正係数の妥当性につ いて説明すること。	補足説明資料 p.30
S189	2021年2月5日 第934回審査会合	検討用地震の断層モデルの地震動評価においては、加速度波形に加え、速度波形も示すこと。	本資料 p.117, 118, 121, 122, 125, 126

目次

1. 海洋	プレート内地震の検討用地震の選定		3
1.1	世界の主な海洋プレート内地震		4
1. 2	1968年5月16日十勝沖地震の最大余震		7
1. 3	沖合いのやや浅い地震(東北)の短周期レベル		9
1.4	検討対象地震と申請時の基準地震動Ssの比較		10
1. 5	検討対象地震(断層モデル波)の応答スペクトル		11
1.6	検討対象地震の距離減衰式による評価		12
2. 海洋	プレート内地震(検討用地震)の地震動評価		21
2. 1	敷地下方DC型地震の断層面を海洋地殻まで近づけた場合の対	地震動評価	22
2. 2	検討用地震付近で発生した観測地震(要素地震の検討)		29
2. 3	Noda et al.(2002)に対するサイト補正係数の検討に用いた観測	地震	30
参考文	献		31

1. 海洋プレート内地震の検討用地震の選定

- 1.1 世界の主な海洋プレート内地震
- 1.2 1968年5月16日十勝沖地震の最大余震
- 1.3 沖合いのやや浅い地震(東北)の短周期レベル
- 1.4 検討対象地震と申請時の基準地震動Ssの比較
- 1.5 検討対象地震(断層モデル波)の応答スペクトル
- 1.6 検討対象地震の距離減衰式による評価

第913回審査会合(R2.10.23)

資料1-2 p.3 再掲

1.1 世界の主な海洋プレート内地震 (1)世界の沈み込み帯の特徴

【宇津(1999)】

▶ 海洋性プレートの沈み込む角度(δ). 地震発生の深 さの最大(hmax), 収束速度(Vc)等は, 沈み込み帯によ り異なり多様である。

▶ 東通原子力発電所が位置する「東北日本」と北海道 の「千島-Kamchatka」は、同じ太平洋プレートの沈 み込み帯に属し、 h_{max}とV_cが比較的類似しているもの の. 地震面の傾角(δ)及びカップリングの強さ(χ)に 違いが見られる。

る:地震面の傾角 *h_{max}:* 震源深さの最大(+dは,深さ600km前後にも分離した活動がある) V。: 収束速度 *χ*:カップリングの強さ(F:強, 70~100%, M:中, 10~70%, W:弱, 0~10%) 最大地震:1997年末までの最大地震のMと発生年

#: 背弧海盆の拡大あり

【木村(2002)】

エなルの	ኮሥምከ		[1999)]_	마까丰	<u>1</u>	
サブダクション帯	δ (°)	h _{max} (km)	V _c (cm/y)	x	最大地震	注
千島-Kamchatka	45~55	620	8~9	F-M	<i>M</i> _w 9.0 (1952)	
東北日本(日本海溝)	25~30	600	10	M-W	<i>M</i> _w 8.5 (1933)	
伊豆-小笠原	45~65	560	6~7	W	<i>M</i> _s 7.6 (1909)	#
Marianas(主に米領)	70~90	650	$4 \sim 5$	W	M _w 7.8 (1993)	#
					mв7.9(1914,やや深発)	
西南日本(南海トラフ)		70	3~5	F	<i>M</i> _s 8.2 (1946)	
琉 球	45~50	250	5~7	M-W	<i>т</i> в 8.1 (1911)	#
Aleutian	40~65	280	7~8	F-M	M _w 9.1 (1957)	
Alaska	20~45	200	5~6	F	M _w 9.2 (1964)	
メキシコ	25~50	210	$5 \sim 7$	Μ	M _s 8.2 (1932)	
中 米	30~70	280	7~9	M-W	M _s 7.9 (1942)	
Caribbian (カリブ諸国)	50~75	250	0.2~2		M _s 8.1 (1946)	
コロンビア-エクアドル	30~40	210	7~8	M-F	M _s 8.5 (1906)	
ペルー	25~30	200 + d	7~10	M-W	M _s 7.8 (1913)	
					Mw 8.2 (1994, 深発)	
チリ北部	10~30	300 + d	8	Μ	$M_{\rm s} 8.5$ (1922)	
チリ南部	25~35	170	11	F	M _w 9.5 (1960)	
南 Sandwich (Scotia) (英領)	70	250	5~7	W	M _s 7.7 (1929)	#
ニュージーランド	50~60	270+d	5~8		M _s 7.8 (1931)	
Kermadec (ニュージーランド領)	60~70	600	6~7*	M-W	M _s 7.9 (1917, 76)	#
Tonga (トンガ/フィジー)	50~60	660	5~9*	М	M _s 8.4 (1917)	#
New Hebrides (バヌアツ)	65~70	300 + d	8~10*	M-W	M _s 8.1 (1940)	#?
Solomon (ソロモン)	50~85	520	10	M-W	M _s 8.0 (1939)	
New Ireland (パプアニューギニア)	75	550	10		M _s 7.9 (1919)	
New Britten (同上)	40~60	290+d		M-W	M _s 7.7 (1945)	#
New Guinea(同上/インドネシア)	55	200	3~4		M _w 8.2 (1996)	
Sunda (Sumatra) (インドネシア)	30~50	180	7	W	M _s 7.7 (1935)	
Sunda (Java-Banda 海) (同上)	50~70	690	7~8	W	M _w 8.5 (1938)	
Andaman (インド領)	20	140	2	w	M _s 7.7 (1941)	#
フィリピン	40~60	660	7~8		M _s 8.3 (1924)	
北 Sulawasi-Sangihe(インドネシア)	55	670			M _s 8.0 (1932)	
インド-Hindu Kush(アフガニスタン)		300	6		M _w 8.6 (1950)	
Agean (Hellenic) (ギリシア)	30~45	260			M _s 7.7 (1956)	#
					тв7.7 (1926, やや深発)	

1.1 世界の主な海洋プレート内地震

(2)アウターライズ地震① 主なアウターライズ地震

[Alvarez-Gomez et al.(2012)]

- ▶ 20世紀以降に大津波をもたらしたアウターライズ地震(6地震)を下表のように整理している。
- ▶ これによれば、1933年三陸沖の地震(M8.1[※])が最大規模である。 ※:気象庁マグニチュード

Id.	Date	Place	M_W	Length	Width	Bottom	Dip	Slip	Rigidity	Reference
	dd/mm/yyyy			km	km	km	ø	m	Nm ⁻²	
а	03/02/1933	Sanriku	8.4	185	100	70	45	3.3	2	Kanamori (1971)
b	03/02/1933	Sanriku	8.4	220	35	25	45	8	7.0×10 ¹⁰	Kirby et al. (2008)
с	30/03/1965	Rat Island	7.2	50	80	60	50	1.2	7.0×1010	Abe (1972)
d	30/03/1965	Rat Island	7.2	50	40	30	50	6	5.0×1010	Beck and Christensen (1991)
e	19/08/1977	Sunda	8.2	200	70	40	45	3	6.4×10 ¹⁰	Gusman et al. (2009)
f	19/08/1977	Sunda	8.2	200	25	29	45	9	4.0×10 ¹⁰	Spence (1986), Lynnes and Lay (1988)
g	04/05/1990	Mariana	7.3	40	25	29	48	3.4	4.0×10 ¹⁰	Satake et al. (1992)
h	04/05/1990	Mariana	7.3	70	40	40	48	1.5	4.0×1010	Satake et al. (1992)
i	04/05/1990	Mariana	7.3	70	40	-	48	-	2000000000	Yoshida et al. (1992)
i	04/09/2001	Juan Fernandez Ridge	6.7	70	26	30	51	1	4.0×10 ¹⁰	Fromm et al. (2006)
k	13/01/2007	Kuril	7.9	120	40	35	45	1.9	5.0×1010	Fujii and Satake (2008)
1	13/01/2007	Kuril	8.0	130	30	-	37	6.4	4.0×1010	Tanioka et al. (2008)

アウターライズの巨大地震の断層パラメータ[Alvarez-Gomez et al.(2012)一部加筆]

【その他の地震】

なお、海溝軸外側では以下の地震が発生しているが、海洋プレートが沈み込む際の正断層とはメカニズムが異なる。

〔気象庁 平成24年4月地震・火山月報(防災編)〕

- 2012 年4月11 日17 時38 分(日本時間), インドネシアのスマトラ北部西方沖でMw8.6 の地 震が発生。
- 発震機構(気象庁のCMT 解)は横ずれ断層型で、ユーラシアプレートの下に沈み込む前の インド・オーストラリアプレートの内部で発生した地震である。

1.1 世界の主な海洋プレート内地震

(2)アウターライズ地震② 1933年三陸沖の地震

【地震調査研究推進本部(2019)】

- ▶ 海溝軸外側の地震としては、1933年の昭和三陸地震が知られている。瀬野(1995)によると、このタイプの地震は沈み込む前のプレートが曲げられることで発生する正断層型の浅い地震と考えられている。
- 地震による被害は少なく、三陸地方で壁の亀裂、崖崩れ、石垣・堤防の決壊があった程度。地震後約30分~1時間の間に津波が北 海道・三陸の沿岸を襲い大きな被害が出た。

地震の発生日時	震央地名	緯度	経度	深さ	М	最大震度
1933/03/03 02:30	三陸沖	39°07.7′N	145°07.0′E	0km	M8.1	5

1.2 1968年5月16日十勝沖地震の最大余震

(1) 地震調査研究推進本部(2019)の知見

【地震調査研究推進本部(2019)】

- ▶ 1968年5月16日19時39分頃の地震は青森県東方沖及び岩手県沖北部で発生したM7.5の地震で,津波を伴った。 1968年十勝沖地震の余震と考えられている。
- 沈み込んだプレート内で発生した地震であり、浦河と広尾で震度5を観測したほか、北海道から東北にかけての広い範囲で震度4を観測した。
- ▶ この地震のメカニズムはKanamori(1971)によると、正断層型の地震であった。

1.2 1968年5月16日十勝沖地震の最大余震
 (2) Izutani(2011)の知見

[Izutani(2011)]

- 強震動継続時間の方位依存性から、最大余震の断層面を推定した。
- 本震の滑り方向は太平洋プレートと同じ向きだが、最大余震はほぼ反対の滑り方向を持つ。
- ▶ 強震記録の分析から、最大余震の断層位置は本震の20km下方に位置し、本震とほぼ平行である。
- ⇒ 1968年十勝沖地震の最大余震(M7.5)は、震源メカニズムからアウターライズの正断層の再活動とはタイプが異なると考えられる。その影響は、本震を上回るものとはなっていない。

強震記録

1968年十勝沖地震(プレート間地震)と最大余震(海洋プレート内地震)[Izutani(2011)一部加筆]

第913回審査会合(R2.10.23) 資料1-2 p.8 再掲

1.3 沖合いのやや浅い地震(東北)の短周期レベル (1)2011年7月10日三陸沖の地震(M7.3)の短周期レベル

【2011年7月10日三陸沖の地震(M7.3)の短周期レベル】

▶ 佐藤・巽(2002)が東日本の震源深さ60km以下の海溝型地震の観測記録からスペクトルインバージョンにより推定したQ値, 経験的地盤増幅率及び2011年7月10日三陸沖の地震のK-NET 強震記録を用いて震源スペクトルを算出し,短周期レベルを推 定した。

2011年7月10日三陸沖の地震の観測加速度スペクトルとω⁻²モデルの比較 (短周期レベルの推定には4Hz以下を用いた)

1.4 検討対象地震と申請時の基準地震動Ssの比較

検討対象地震の地震動評価では、平均応答スペクトル※や一部簡易的な手法も採用しており、地震動評価精度が多少劣るケースがあるが、それが基準地震動Ss策定に与える影響は小さいことを確認するために、検討対象地震の応答スペクトルと基準地震動Ss(申請時)の比較を示す。

※平均応答スペクトル:断層モデルを用いた地震動評価では、各小領域の破壊伝播の揺らぎを考慮した複数ケースを算定しており、平 均応答スペクトルは複数の算定結果を平均化したもの。

検討対象地震の平均応答スペクトルと申請時の基準地震動Ss

1.5 検討対象地震(断層モデル波)の応答スペクトル

検討対象地震の検討では、目的が敷地に最も影響の大きい地震の選定であることから、断層モデルを用いた 手法によって算定された平均応答スペクトルで大小関係を比較したが、参考に、合わせて算定された敷地への 影響が大きいケースの断層モデル波[※]の応答スペクトルを示す(前頁との整合性も考慮し基準地震動Ss(申請 時)についても記載している)。

※:断層モデル波は,平均応答スペクトルに最も近い応答スペクトルの一波を選定

検討対象地震(断層モデル波)の応答スペクトル

(1)検討の概要

- 海洋プレート内地震の場合, 地震規模に加え短周期レベルの大小が地震動評価結果に与える影響が大きいが, 内陸地殻内地震等の地震動評価に使用されるNoda et al.(2002)では, 短周期レベルの値は算定のパラメータとしては扱われていない。また, 短周期レベルの値をパラメータとして採用した距離減衰式でも, 海洋プレート内地震に対する適用性が十分に確認された手法は確立されていない。そのため, 検討対象地震の地震動評価は, 断層モデル手法等に基づき実施している。
- ここでは、検討対象地震を対象に、信頼性は低いが短周期レベルの値をパラメータとして採用した距離減衰式に基づく地震動評価を 実施し、その場合でも、検討用地震として選定している〔敷地下方DC型地震〕が相対的に大きい評価結果となるかを確認する。
- ▶ 検討は、以下の2種類の距離減衰式を用いて実施する。
 - ① Noda et al.(2002)の応答スペクトルに短周期レベルの大小を考慮し一律嵩上げする手法(手法A)
 - ②岩盤でのプレート間地震の記録に対し, 地震規模, 震源距離に加え短周期レベルの値も考慮し近似した距離減衰式(手法B)
- 手法A, 手法Bとも信頼性に課題があるため(下表参照), あらかじめ敷地における2008年岩手県沿岸北部の地震(M6.8の海洋プレート内地震)の観測記録との比較を行う。

	手法の概要	長所	短 所	
【手法A】	Noda et al.(2002)のデータにはプレート間 地震が多く含まれることから, Noda et al.(2002)の短周期レベルはプレート間地震 の平均に概ね相当すると考えられる。	 Noda et al.(2002)自体は多くの地震観測 記録によってその妥当性が検証されており, 信頼性が高い。 	 短周期レベルの補正倍率を長周期にまで一律に適用するため、長周期側が過 大な評価となる。 	
Noda et al.(2002)の応答ス ペクトルに短周期レベルの 大小を考慮し一律嵩上げ	プレート間地震の短周期レベル**1に対す る海洋プレート内地震の短周期レベル**2 の平均的な比率, さらに検討対象地震の 短周期レベルの比率(本資料参照)を Noda et al.(2002)のスペクトルに一律に乗 じる。			
【手法B】 岩盤でのプレート間地震の 記録に対し, 地震規模, 震 源距離に加え短周期レベ ルの値も考慮し近似した距 離減衰式(RSPL式)	女川原子力発電所の岩盤で得られたプレート間地震の記録を用いて、硬質岩盤サイトにおける短周期レベルを考慮した Noda et al.(2002)に対するサイト補正係数の評価式を策定。	 短周期レベルを考慮した補正係数は、応答スペクトルの周期ごとに算定しているため、短周期レベルの大小がスペクトルの各周期に与える影響が評価される。 短周期レベルと地震モーメントから、敷地における補正係数を直接算定することが可能。 	 女川原子力発電所の敷地で得られたプレート間地震のデータを対象としており、また、地震数も多くない(10地震)ため、信頼性は低い。 	

海洋プレート内地震の短周期レベルが卓越する特徴を考慮した応答スペクトルに基づく評価手法の概要

※1:佐藤(2010)による太平洋側で発生したプレート間地震のM₀-A関係式 ※2:地震調査研究推進本部(2020) 強震動予測レシピ

12

(2)【手法A】Noda et al.(2002)による評価 ①短周期レベルの補正倍率

▶各検討対象地震(本資料4章)について, Noda et al.(2002)を用いた評価を行った。

➢ Noda et al.(2002)のデータには太平側で発生したプレート間地震が多く用いられていることから,評価にあたっては,検討対象地震と海洋プレート内地震の短周期レベルの補正倍率を全周期帯に乗じた。

検討対象地震		①プレート間地震の短周期レベル ^{※1} に対する海洋プレート内地震の短 周期レベル ^{※2} の平均値の倍率	②海洋プレート内地震の平均的な短周期 レベル ^{※2} に対する検討対象地震の短 周期レベルの倍率 (本資料4章再掲)	③Noda et al.(2002)に乗じる海洋 プレート内地震の補正倍率 (= ①×②)
	ケース1, ケース3		1.0	2.5
敷地下方DC型地震	ケース2, 影響評価ケース		1.5	3.8
	ケース1, ケース3		1.0	2.5
敷地下方DE型地震	ケース2, 影響評価ケース	2.5 (9.84/4.02 = 2.5)	1.6	4.0
沖合いのやや浅い地震	ケース1, ケース2		0.6	1.5
(東北)	影響評価ケース		1.0	2.5
ᅶᆇᄷᇬᇊᆋᄮᆕᆕ	ケース1		1.0	2.5
北海道DE型地震	ケース2		2.1	5.3
沖合いのやや浅い地震 (北海道)	ケース1		1.0	2.5
	ケース2		2.0	5.0
アウターライズ地震	ケース1, 影響評価ケース		0.7	1.8

Noda et al.(2002)に乗じる海洋プレート内地震の短周期レベルの補正倍率

※1:佐藤(2010)による太平洋プレートで発生したプレート間地震の短周期レベル。A=4.02×10¹⁰×(M₀×10⁷)^{1/3} (Nm/s²)。M₀は[Nm] ※2:強震動予測レシピ。A=9.84×10¹⁰×(M₀×10⁷)^{1/3} (Nm/s²)。M₀は[Nm]

13

- 1.6 検討対象地震の距離減衰式による評価
 - (2)【手法A】Noda et al.(2002)による評価 ②観測記録による確認

▶ 海洋プレート内地震の短周期レベルの補正倍率を全周期帯に乗じたNoda et al.(2002)は、長周期側が過大な評価となるものの、 2008年岩手県沿岸北部の地震の観測記録(はぎとり波、PN基準)の全体的な傾向を捉えている。

Noda et al.(2002)に乗じる海洋プレート内地震の短周期レベルの補正倍率

観測地震	①プレート間地震の短周期レベル ^{※1} に対する海 洋プレート内地震の短周期レベル ^{※2} の平均 値の倍率	②海洋プレート内地震の平均的な短周期 レベル ^{※2} に対する対象地震の短周期 レベルの倍率	③Noda et al.(2002)に乗じる海洋プレー ト内地震の補正倍率(=①×②)
2008年岩手県沿岸北部の地震	2.5(= 9.84/4.02)	1.6	4.0

※1:佐藤(2010)による太平洋プレートで発生したプレート間地震の短周期レベル。A=4.02×10¹⁰×(M₀×10⁷)^{1/3} (Nm/s²)。M₀は[Nm] ※2:強震動予測レシピ。A=9.84×10¹⁰×(M₀×10⁷)^{1/3} (Nm/s²)。M₀は[Nm]

14

(2)【手法A】Noda et al.(2002)による評価 ③補正倍率を考慮した検討対象地震の評価

- ▶ 各検討対象地震(本資料4章)について,相対的な大小関係を確認するため,短周期レベルの補正倍率を考慮したNoda et al.(2002)による評価を行った。
- 信頼性の低い長周期側で敷地下方DC型地震を上回る地震タイプがあるものの、特に海洋プレート内地震の影響が顕著となる短周期では敷地下方DC型地震が他の地震タイプを上回る。

15

(3)【手法B】短周期レベルを考慮した距離減衰式 ①短周期レベルを考慮したサイト補正係数の概要

▶ 検討対象地震(本資料4章)について、短周期レベルを考慮したサイト補正係数を用いた距離減衰式(RSPL式)による評価を行った。
 ▶ サイト補正係数は、硬質岩盤サイト(女川原子力発電所)で得られた観測記録について、RSPL値(短周期レベルをM₀^{1/3}で基準化)をパラメータとして算定し、Noda et al.(2002)に乗じた。算定にあたっては、女川と東通のVs及びVpの違いを考慮した。

16

(3)【手法B】短周期レベルを考慮した距離減衰式 ②女川原子力発電所における適用例

【女川原子力発電所における短周期レベルを考慮した距離減衰式による2011年東北地方太平洋沖地震の評価と観測記録の比較】

- ▶ 2011年東北地方太平洋沖地震(3.11地震)について、女川原子力発電所の 観測記録(はぎとり波, PN基準)と短周期レベルを考慮した距離減衰式との 比較を実施している。
- ▶ 本地震のシミュレーションモデルは幾つか提案されているが、Asano and Iwata(2012)の短周期レベルを用いることにより、距離減衰式は概ね観測記 録と整合することを確認している。

【算定諸元】

- ・地震規模は、神田ほか(2012)における3.11地震の第2波群のマグニチュードを参照 し、M8.1を採用。
- ・短周期レベルは3.11地震の断層モデルのうち、第二波群に対応するSMGAのRSPL (=A/M₀^{1/3})が最大のAsano and Iwata(2012)を参照して設定。

Asano and Iwata (2012)の3.11地震の震源モデル

D°		L (km)	W (km)	M ₀ (Nm)	A (N∙m∕s²)
9°	SMGA2	36	36	5.33 × 10 ²⁰	1.41 × 10 ²⁰

ドを参照 200 100

500

:短周期レベルを考慮した距離減衰式[M8.1, Xeg=76.3km^{※1},

RSPLはAsano and Iwata(2012)から算出]

※1:Xegは神田ほか(2012)に基づき算出

:Noda et al.(2002)による評価[M8.1, Xeq=76.3km^{※1}] :観測記録(NS), -----:観測記録(EW)

女川原子力発電所における3.11地震の観測記録^{※2}と短 周期レベルを考慮した距離減衰式の比較(水平)

※2:敷地岩盤上部(O.P.- 8.6m)のはぎとり波。 O.P.は女川原子力発電所工事用基準面で, O.P.±0m = T.P.(東 京湾平均海面) - 0.74m。

17

S182

(h=0.05)

- 1.6 検討対象地震の距離減衰式による評価
 - (3) 【手法B】短周期レベルを考慮した距離減衰式 ③短周期レベルの影響
- 短周期レベルを考慮した距離減衰式(RSPL式)は、短周期レベルが大きくなるにしたがって短周期領域の応答が大きくなるものの、長周期領域への影響は小さい。(下記は、仮想の地震について短周期レベルを1.0~2.0倍とした計算例。)

検討ケース	地震規模(モーメントマグニチュート)	等価震源距離	地震モーメント*1	短周期レベル(As ^{※2} に対する倍率)
ケースA	M7.5(Mw7.4)	70km	1.58 × 10 ²⁰ (Nm)	1.15×10 ²⁰ (Nm/s²) (=1.0As)
ケースB	M7.5(Mw7.4)	70km	1.58 × 10 ²⁰ (Nm)	1.72 × 10 ²⁰ (Nm/s²) (=1.5As)
ケースC	M7.5(Mw7.4)	70km	1.58 × 10 ²⁰ (Nm)	2.29 × 10 ²⁰ (Nm/s²) (=2.0As)

短周期レベルの違いによる影響確認に用いた諸元(仮想の地震)

※1:Kanamori(1977)に基づき算定 ※2:地震調査研究推進本部(2020)による短周期レベルを1.0Asとする。

18

- 1.6 検討対象地震の距離減衰式による評価
 - (3) 【手法B】短周期レベルを考慮した距離減衰式 ④観測記録による確認
- 短周期レベルを考慮した距離減衰式(RSPL式)は,硬質岩盤サイトである女川原子力発電所で得られたプレート間地震の観測記録に基づくことから,海洋プレート内地震に対する適用性を確認した。
- 東通原子力発電所で観測された海洋プレート内地震のうち,地震規模が大きく,短周期レベルが大きな2008年岩手県沿岸北部の地震の観測記録(はぎとり波, PN基準)と短周期レベルを考慮した距離減衰式(RSPL式)の応答スペクトルの比較を示す。距離減衰式(RSPL式)を用いた評価は,全体的な傾向を捉えている。

敷地における観測記録(T.P.+2.0mはぎとり波)と短周期レベルを考慮した距離減衰式(RSPL式)の比較

観測記録	地震規模	等価震源距離	地震モーメント(F-net)	短周期レベル〔佐藤(2013)〕
2008年岩手県沿岸北部の地震	M6.8	196km	1.72×10 ¹⁹ (Nm)	$8.96 \times 10^{19} (Nm/s^2)$

S182

(h=0.05)

- 1.6 検討対象地震の距離減衰式による評価
 - (3) 【手法B】短周期レベルを考慮した距離減衰式 ⑤検討対象地震の評価
- 各検討対象地震(本資料4章)について,相対的な大小関係を確認するため,短周期レベルを考慮した距離減衰式(RSPL式)を適用した評価を行った。
- 長周期側で敷地下方DC型地震を上回る地震タイプがあるものの、特に海洋プレート内地震の影響が顕著となる 短周期では敷地下方DC型地震が他の地震タイプを上回る。

短周期レベルを考慮した距離減衰式(RSPL式)を適用した検討対象地震の評価

20

2. 海洋プレート内地震(検討用地震)の地震動評価

- 2.1 敷地下方DC型地震の断層面を海洋地殻まで近づけた場合の地震動評価
- 2.2 検討用地震付近で発生した観測地震(要素地震の検討)
- 2.3 Noda et al.(2002)に対するサイト補正係数の検討に用いた観測地震

2.1 敷地下方DC型地震の断層面を海洋地殻まで近づけた場合の地震動評価

(1)二重深発地震上面の地震 断層位置の影響

- ▶ 東北地方で発生したDC型地震である2011年4月7日宮城県沖の地震(4.7地震)(M7.2)は、海洋性マントルの最上部で発生した地震であった。
- ▶ 検討用地震である敷地下方DC型地震は, 4.7地震の知見を踏まえ海洋性マントルに断層面を想定している。
- この断層面を敷地により近づけるために、断層面を海洋地殻まで近づけた場合の地震動評価を行う。

4.7地震震源域の鉛直分布図[Nakajima et al.(2011)一部加筆]

白丸は再決定した余震

第913回審査会合(R2.10.23) 資料1-2 p.12 再掲

2.1 敷地下方DC型地震の断層面を海洋地殻まで近づけた場合の地震動評価 (2)海洋地殻と海洋性マントルの物性の違い①

[Kita and Katsumata(2015)]

▶ 北海道下の海洋プレート内地震を分析すると、海洋地殻で発生する地震の応力降下量は、海洋性マントル内で発生する地震の応力 降下量よりも小さい傾向がある。

【北(2016)】

- ▶ 東北地方でも北海道と同じ傾向がみられた。
- ▶ 剛性の違いなどが応力降下量の違いを誘発すると考えられる。

⇒海洋地殻で発生する地震の応力降下量は、海洋性マントルの地震の1/1.9倍(0.53倍)~1/2.8倍(0.36倍)程度となっている。

2.1 敷地下方DC型地震の断層面を海洋地殻まで近づけた場合の地震動評価 (2)海洋地殻と海洋性マントルの物性の違い②

[Kita and Katsumata(2015)]

- ▶ 海洋地殻と海洋性マントルの応力降下量の違いは、それぞれの領域の剛性率及びD/rの違いで説明できる可能性がある※。
- ▶ 剛性率の違いは,海洋地殻と海洋性マントルを構成する岩石の違いによる。(海洋地殻/海洋性マントル:60~71%)
- ▶ D/rの違いは、海洋地殻と海洋性マントルで発生する地震の破壊メカニズムの違いを示唆。(海洋地殻/海洋性マントル:74~86%)

⇒海洋性マントル及び海洋地殻で発生する地震の応力降下量の違いには、D/rに比べて剛性率の寄与が比較的大きいことから、剛性率に着目した検討を行う。

※: $\Delta \sigma = \frac{7}{16} \cdot \pi \cdot \mu \cdot \frac{D}{r}$, $\Delta \sigma$:応力降下量, r:等価半径, μ :剛性率, D:すべり量 \Rightarrow $\Delta \sigma$ は, μ 及びD/rに比例する。

第913回審査会合(R2.10.23) 資料1-2 p.14 再掲

2.1 敷地下方DC型地震の断層面を海洋地殻まで近づけた場合の地震動評価 (2)海洋地殻と海洋性マントルの物性の違い③

【Kita and Katsumata.(2015)による知見】
 •Christensen(1996)は、封圧1.0GPaにおける岩石の密度及びVsを示しており、上部マントルの剛性率は67~75GPa、
 地殻(深さ70~120km)の剛性率は45~48GPaとなる。
 この知見かご、海洋地部くた部プンは世の副性変の比比して、60~2106が道かれる

・この知見から、海洋地殻/上部マントルの剛性率の比として、60~71%が導かれる。

	Name Specimens (s)		ρ,	200	MPa	400	MPa	600	MPa	800	MPa	1000	MPa
	Rocks (r)		kg/m ³	V_p	V_s	V_p	V _x	V_p	V _s	V_p	V,	Vp	V_{i}
とそれもの様子もて	Basalt (BAS)												
海洋地殻の傾成石石	s=252	Average	2882	5.914	3.217	5.992	3.246	6.044	3.264	6.084	3.279	6.118	3.291
幺武宕	r=145	S.D.	139	0.546	0.302	0.544	0.293	0.543	0.291	0.542	0.288	0.542	0.288
	Amphibolite (A	MP)											
海洋地殻の構成岩石	s=78	Average	2996	6.866	3.909	6.939	3.941	6.983	3.959	7.018	3.974	7.046	3.987
角閃岩	r=26	S.D.	85	0.224	0.151	0.199	0.136	0.197	0.133	0.197	0.131	0.197	0.130
マントルの構成岩石	Dunite (DUN)		2210	8 200	4 921	0 252	1 750	0 27/	4 9 9 1	0 200	1 220	0 200	4 700
かんらん岩	s=36	Average	3310	8.299	4./31	8.352	4./39	8.3/0	4.//1	8.390	4.//8	8.399	4./83
	r=12	S.D.	14	0.091	0.118	0.083	0.116	0.083	0.116	0.084	0.116	0.085	0.116
マントルの構	成岩石(かんら	ん岩)は. 3	毎洋地殻の	構成岩	石(玄武	(岩等)	こ比べて	(密度・	S波速度	₹•P波词	東度が大	きい。	

封圧下における物性値【Christensen(1996)より抜粋・一部加筆】

第913回審査会合(R2.10.23) 資料1-2 p.15 再掲

2.1 敷地下方DC型地震の断層面を海洋地殻まで近づけた場合の地震動評価 (2)海洋地殻と海洋性マントルの物性の違い④

- ▶ 地震調査研究推進本部(2012)の評価に用いている地下構造モデルにおいて、北海道地方から東北地方にかけての太平洋プレートは同じ構造(S波速度、密度等)のモデルが用いられている。
- この地下構造モデルの海洋地殻と海洋性マントルの物性の違い(μ = ρ β², ρ:密度, β:S波速度)から算定される応力降下量の比は 約2.10倍である。これは、Kita and Katsumata(2015)における海洋地殻と海洋性マントルの応力降下量の関係(海洋性マントル/海洋地殻 =約1.9倍程度)と対応している。

全国1次地下構造モデル(暫定版)の物性値 〔地震調査研究推進本部(2012)〕

Layer	Vp(km/s)	Vs(km/s)	$\rho(g/cm^3)$	Qp	Qs	
1	1.7	0.35	1.80	119	70	
2	1.8	0.5	1.95	170	100	
3	2.0	0.6	2.00	204	120	
4	2.1	0.7	2.05	238	140	
5	2.2	0.8	2.07	272	160	
6	2.3	0.9	2.10	306	180	
7	2.4	1.0	2.15	340	200	付加体を含む
8	2.7	1.3	2.20	442	260	
9	3.0	1.5	2.25	510	300	
10	3.2	1.7	2.30	578	340	
11	3.5	2.0	2.35	680	400	
12	4.2	2.4	2.45	680	400	
13	5.0	2.9	2.60	680	400	地震基盤(近畿圈)
14	5.5	3.2	2.65	680	400	地震基盤(上部地殼第1層)
15	5.8	3.4	2.70	680	400	上部地殼第2層
16	6.4	3.8	2.80	680	400	下部地殼
17	7.5	4.5	3.20	850	500	マントル
18	5.0	2.9	2.40	340	200	海洋性地殻第2層(フィリピン海プレート)
19	6.8	4.0	2.90	510	300	海洋性地殻第3層(フィリピン海プレート)
20	8.0	4.7	3.20	850	500	海洋性マントル(フィリピン海プレート)
21	5.4	2.8	2.60	340	200	海洋性地殻第2層(太平洋プレート)
22	6.5	3.5	2.80	510	300	海洋性地殻第3層(太平洋プレート)
23	8.1	4.6	3.40	850	500	海洋性マントル(太平洋プレート)

地震本部などによる地下構造モデル Ludwig et al. (1970) 長周期地震動予測地図2009年試作版(宮城県沖地震) Yamada and Iwata (2005) H17年度大大特広域モデル(田中・他, 2006) Qs=1000*Vs/5 Qp=1.7*Qs Qsが400を超える場合は400とする (Kawabe and Kamae, 2008 を参考)

海洋地殻と海洋性マントルの剛性率の比(応力降下量※の比)

	S波速度	密度	剛性率	剛性率の比		
	β	ρ	$\mu = \rho \beta^2$	マントル/地殻		
	(km/s)	(g/cm³)	(N/m^2)	(地殻/マントル)		
海洋地殻 (第22層)	3.5	2.8	3.4E+10	2.10		
海洋性マントル (第23層)	4.6	3.4	7.2E+10	(0.47)		

$$\Delta \sigma = \frac{7}{16} \cdot \pi \cdot \mu \cdot \frac{D}{r}$$

Χ:

,Δσ:応力降下量, r:等価半径, μ:剛性率, D:すべり量

第913回審査会合(R2.10.23) 資料1-2 p.16 再掲

2.1 敷地下方DC型地震の断層面を海洋地殻まで近づけた場合の地震動評価 (2)海洋地殻と海洋性マントルの物性の違い(5)

 応力降下量と剛性率は比例関係にある[※]。
 一方, 地震調査研究推進本部(2005)では, 宮城県沖地震を想定した強震動予測に用いるため, 東北地方の上部 マントルから地震基盤までの大構造を設定しているが, 海洋地殻と海洋性マントルの物性の違い(μ = ρ β², ρ: 密度, β:S波速度)から算定される応力降下量の比は, 約1.42倍となる。

※: $\Delta \sigma = \frac{7}{16} \cdot \pi \cdot \mu \cdot \frac{D}{r}$, $\Delta \sigma$:応力降下量, r:等価半径, μ :剛性率, D:すべり量

海溝軸に直交断面

海洋地殻と海洋性マントルの剛性率の比(応力降下量の比)

	S波速度	密度	剛性率	剛性率の比 マントル/地殻		
	β	ρ	$\mu = \rho \beta^2$			
	(km/s)	(g/cm³)	(N/m^2)	(地殻/マントル)		
海洋地殻	3.93	3.0	4.6E+10	1.42		
海洋性 マントル	4.5	3.25	6.6E+10	(0.70)		

理論的評価法を用いる場合の伝播経路のモデル (VsとVpの単位はkm/s、 ρ の単位 lsg/cm^3)

上部マントルから地震基盤までの大構造 〔地震調査研究推進本部(2005)〕

第913回審査会合(R2.10.23) 資料1-2 p.17 再掲

28

2.1 敷地下方DC型地震の断層面を海洋地殻まで近づけた場合の地震動評価 (2) 海洋地殻と海洋性マントルの物性の違い⑥

■海洋地殻及び海洋性マントルの地震の応力降下量(短周期レベル) 【地震記録等による検討】 > Kita and Katsumata(2015) での応力降下量(短周期レベル) 海洋地殻:海洋性マントル=約0.53:1(1:1.9) ➢ Christensen(1996)の岩石試験を基にした応力降下量(短周期レベル) 北海道下の太平洋プレートでは、 海洋地殻:海洋性マントル=約0.60:1(1:1.7)) 海洋性マントルの応力降下量は 海洋地殻より大きく 東北日本下 【地盤構造モデルに基づく検討】 の太平洋プレートでも同様の傾 ▶ 地震調査研究推進本部(2012)速度構造での応力降下量(短周期レベル) 向がある[Kita and 海洋地殻:海洋性マントル=約0.47:1(1:2.10) Katsumata(2015), 北(2016)]。 ▶ 地震調査研究推進本部(2005)速度構造での応力降下量(短周期レベル) 海洋地設:海洋性マントル=約0.70:1(1:1.42) 海洋性マントルの応力降下量に対し海洋地殻の応力降下量(短周期レベ ル)は0.47倍~0.70倍程度の値と評価される。

SMGAを海洋性マントル内に設定した場合は、4.7地震の知見から地震調査研究推進本部(2020)の短周期レベルの1.5 倍を考慮している。したがって、SMGAを海洋地殻内の場合は、4.7地震の0.47倍~0.70倍(地震調査研究推進本部 (2020)の短周期レベルの約0.7 (=1.5×0.47) ~1.05倍(=1.5×0.70))程度と考えられる。

断層面を海洋地殻まで近づけた場合のSMGAの短周期レベルは、海洋地殻と海洋性マントルの物性の違いを考慮し、保守的に4.7地震の0.8倍(地震調査研究推進本部(2020)の短周期レベルの1.2倍)を考慮する。

2.2 検討用地震付近で発生した観測地震(要素地震の検討)

▶ 検討用地震(M7.3:基本ケース)の経験的グリーン関数法を用いた地震動評価にあたっては、以下の条件を満たす敷地の観測記録を用いることが望ましい。

- ①検討の目標とする地震の断層面付近で発生している。
- ② 検討の目標とする地震と観測地震のMの差が2程度である。
- ③地震メカニズムが検討の目標とする地震に類似している。
- ④ 観測地震の地震モーメント等の震源パラメータが知られている。

▶ 検討用地震である敷地下方DC型地震の想定位置付近で発生した地震のうち,条件に適合する敷地の観測記録は得られていない。

敷地付近で発生した観測地震(海洋プレート内地震)の条件への適合状況

	発生年月日	地震 規模	震央 距離 (km)	震源 深さ (km)	条件① 発生 場所	条件② 地震 規模	条件③ 震源 メカニズム	条件④ 震源 パラメータ	条件へ の 適合
1	1995.1.31	M4.1	52	60	0	×	不明	不明	×
2	1997.2.6	M4.0	54	65	0	×	不明	不明	×
3	2003.1.13	M4.2	55	71	×	×	×	0	×
4	2003.12.16	M4.0	44	77	×	×	×	0	×
5	2005.9.3	M4.9	59	64	×	0	×	0	×
6	2012.4.27	M5.0	60	65	×	0	×	0	×
7	2017.3.8	M5.2	60	65	×	0	×	0	×
8	2017.6.10	M4.2	48	72	×	×	×	0	×

敷地付近で発生した観測地震の震央分布 (海洋プレート内地震)

ļ	【漂	『央分布の検索条件】
i.	۶	40km ≦ 震央距離 ≦ 60km
ł	۶	60km ≦ 震源深さ ≦ 80km
ł	۶	地震規模 4.0 ≦ M

- 2.3 Noda et al.(2002)のサイト補正係数の検討に用いた観測地震
 (1)敷地で観測された海洋プレート内地震の短周期レベル
- Noda et al.(2002)に対するサイト補正係数の検討(本資料5章)に用いた海洋プレート内地震のうち,比較的乖離の大きい地震は, 地震モーメント(M₀)に対して短周期レベル(A)が大きいかあるいは小さい地震であることを確認した。

海洋プレート内地震のNoda et al.(2002)に対するサイト補正係数(本資料p.112に一部加筆)

No.	年	月	B	時	分	м	地震モーメント ^{※1} M ₀ (Nm)	短周期レベル ^{※2} A(Nm/s ²)
1	2001	4	3	4	54	5.6	1.72 × 10 ¹⁷	8.76 × 10 ¹⁸
2	2001	12	2	22	1	6.4	5.34 × 10 ¹⁸	4.21 × 10 ¹⁹
3	2005	2	26	21	37	5.7	3.74 × 10 ¹⁷	9.89 × 10 ¹⁸
4	2007	4	19	0	7	5.6	1.86 × 10 ¹⁷	5.96 × 10 ¹⁹
(5)	2008	7	24	0	26	6.8	1.72 × 10 ¹⁹	8.96 × 10 ¹⁹
6	2014	6	15	2	31	5.5	2.44 × 10 ¹⁷	3.02 × 10 ¹⁸
7	2015	7	10	3	32	5.7	2.58 × 10 ¹⁷	6.11 × 10 ¹⁸
(8)	2017	12	16	2	58	5.5	3.97 × 10 ¹⁶	2.29 × 10 ¹⁸

観測地震の地震モーメント及び短周期レベル

※1:No.1, 2, 3, 5は佐藤(2013)による。その他はF-netによる。 ※2:No.1, 2, 3, 5は佐藤(2013)による。その他は震源スペクトルから求めた。

No.5地震及びNo.8地震の観測記録については, 第943回適合性審査会合(2021 年2月5日)資料1-2-3 p.227, 228及びp.311, 312を参照。

地震モーメントMoと短周期レベルAとの関係

30

参考文献

- 1. 海洋プレート内地震の検討用地震の選定
- 1. 宇津徳治(1999):地震活動総説,東京大学出版会,1999
- 2. 木村学(2002):プレート収束帯のテクトニクス学,東京大学出版会,2002
- 3. Jose A. Alvarez-Gomez, Omar Q. Gutierrez Gutierrez, Inigo Aniel-Quiroga, M. Gonzalez (2012) : Tsunamigenic potential of outer-rise normal faults at the Middle America trench in Central America, Tectonophysics 574-575, 133-143
- 4. 気象庁, 平成24年4月 地震·火山月報(防災編)
- 5. 地震調査研究推進本部(2019):日本海溝沿いの地震活動の長期評価
- 6. 瀬野徹三(1995):プレートテクトニクスの基礎,朝倉書店
- 7. Kanamaori, H. (1971): Focal mechanism of the Tokachi-Oki earthquake of May 15, 1968 : Contortion of the lithosphere at a junction of two trenches, Techtomophysics, 12, 1-13
- 8. Izutani, Y. (2011): Fault extent of the largest aftershock of the 1968 Tokachi-Oki, Japan, earthquake and an interpretation of the normal faulting focal mechanism, Earth Planets Space, 63, 2011
- 9. 佐藤智美, 巽誉樹(2002): 全国の強震記録に基づく内陸地震と海溝性地震の震源・伝播・サイト特性, 日本建築学会構造系論文集, 第556号
- 10. 佐藤智美(2012):経験的グリーン関数法に基づく2011年東北地方太平洋沖地震の震源モデループレート境界地震の短周期レベルに着目して―,日本建築学会構造系論文集 第77号,2012年5月
- 11. Noda,S., K. Yashiro, K. Takahashi, M. Takemura, S. Ohno, M.Tohdo and T. Watanabe (2002) : RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES, OECD-NEA Workshop on the Relations Between Seismological Data and Seismic Engineering Analysis. Oct. 16–18, Istanbul
- 12. 佐藤智美(2010):逆断層と横ずれ断層の違いを考慮した日本の地殻内地震の短周期レベルのスケーリング則,日本建築学会構造系論文集,第651号
- 13. 地震調査研究推進本部(2020):震源断層を特定した地震の強震動予測手法(「レシピ」),令和2年(2020年)年5月1日修正版
- 14. Kiyoshi Hirotani, Yoshihiro Ogata, Hiroshi Sawabe, Toru Sasaki (2013) : A comparison between seismic hazard and The 2011 off the Pacific coast of Tohoku Earthquake, Transactions, SMiRT-22, SanFrancisco, California, USA, Aug. 18-23, 2013
- 15. 神田克久, 武村雅之, 広谷浄, 石川和也(2012): 震度分布に基づく2011年東北地方太平洋沖地震の短周期地震波発生域, 地震 第2輯, 第65巻
- 16. Asano, K. and T. Iwata (2012): Source model for strong ground motion generation in the frequency range 0.1-10Hz during the 2011 Tohoku earthquake, Earth Planets Space, Vol. 64(No. 12), pp. 1111-1123
- 17. 壇一男,渡辺基史,佐藤俊明,石井透(2001):断層の非一様すべり破壊モデルから算定される短周期レベルと半経験的波形合成法による強震動予測手法のための震源モデル化,日本建築学会構造系論文集,第545号
- 18. Kanamori H.(1977) : The Energy Release in Great Earthquakes, Journal of Geophysical Research Vol.82 No.20
- 19. 佐藤智美(2013):東北地方のアウターライズ地震,スラブ内地震,プレート境界地震の短周期レベルとfmax及び距離減衰特性,日本建築学会構造系論文集,第 689号

参考文献

2. 海洋プレート内地震の検討用地震の地震動評価

- 1. Nakajima J., A. Hasegawa, S. Kita (2011): Seismic evidence for reactivation of a buried hydrated fault on the Pacific slab by the 2011 M9.0 Tohoku earthquake, Geophysical Research Letters, Vol.38
- 2. S. Kita and K. Katsumata (2015): Stress drops for intermediate-depth intraslab earthquakes beneath Hokkaido, northern Japan: Differences between the subducting oceanic crust and mantle events, Geochemistry, Geophysics, Geosystems (G-Cubed), 16, 552-562, 2015
- 3. 北佐枝子(2016):東北日本下におけるスラブ内地震の応力降下量の深さ変化の特徴,日本地震学会講演予稿集,S08
- 4. Nikolas I. Christensen (1996): Poisson's ratio and crustal seismology, J. Geophys. Res., 101(B2), 3139-3156
- 5. Nikolas I. Christensen, Walter D. Mooney (1995): Seismic velocity structure and composition of the continental crust ; A global view , J. Geophys. Res., 100(B7), 9761–9788
- 6. 地震調査研究推進本部(2012):「長周期地震動予測地図」2012年試作版
- 7. 地震調査研究推進本部(2005):宮城県沖地震を想定した強震動評価(一部修正版)
- 8. 地震調査研究推進本部(2020):震源断層を特定した地震の強震動予測手法(「レシピ」),令和2年(2020年)年5月1日修正版
- 9. 釜江克宏,入倉孝次郎,福知保長(1991):地震のスケーリング則に基づいた大地震時の強震動予測:統計的波形合成法による予測,日本建築学会構造系論文 報告集,第430号,1-9
- 10. 入倉孝次郎, 香川敬生, 関口春子(1997):経験的グリーン関数法を用いた強震動予測方法の改良, 日本地震学会講演予稿集, No.2, B25