資料3-1

安全研究成果報告(案)

RREP-2021-XXXX

安全研究成果報告

S/NRA/R Research Report

廃棄物埋設に影響する長期自然事象の調査 方法及びバリア特性長期変遷の評価方法に 関する研究

Study on survey methods for long-term natural phenomena influencing radioactive waste disposal and assessment methods for long-term evolution of barrier performance

山田 憲和 入江 正明 廣田 明成 河原木 千恵 YAMADA Norikazu, IRIE Masaaki, HIROTA Akinari, KAWARAGI Chie,

市耒 高彦 伊藤 一充 鏡 健太 木嶋 達也

ICHIKI Takahiko, ITO Kazumi, KAGAMI Kenta, KIJIMA Tatsuya, and

室田 健人

MUROTA Kento

核燃料廃棄物研究部門 Division of Research for Nuclear Fuel Cycle and Radioactive Waste

原子力規制庁 長官官房技術基盤グループ

Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R)

本報告は、原子力規制庁長官官房技術基盤グループが行った安全研究プロジェクトの活動内容・ 成果をとりまとめたものです。

なお、本報告の内容を規制基準、評価ガイド等として審査や検査に活用する場合には、別途原子 カ規制委員会の判断が行われることとなります。

本報告の内容に関するご質問は、下記にお問い合わせください。

原子力規制庁 長官官房 技術基盤グループ 核燃料廃棄物研究部門 〒106-8450 東京都港区六本木 1-9-9 六本木ファーストビル 電話:03-5114-2225 ファックス:03-5114-2235 廃棄物埋設に影響する長期自然事象の調査方法及び

バリア特性長期変遷の評価方法に関する研究

原子力規制庁 長官官房技術基盤グループ 核燃料廃棄物研究部門

山田 憲和 入江 正明 廣田 明成 河原木 千恵 市耒 高彦 伊藤 一充 鏡 健太 木嶋 達也 室田 健人

要 旨

現在検討されている中深度処分の廃棄物埋設地の位置に係る要件では、10万年間にわた り火山活動及び断層活動が著しい影響を及ぼすおそれのない区域に設置すること、さらに、 隆起・侵食の影響を考慮したとしても深度 70m を確保することが求められる。また、廃棄 物埋設地の設計に係る要件では、放射性物質の環境への漏えいをできる限り抑制する施設 に埋設すること、及び対象となる廃棄物が 10万年後の時点で仮に直接人と接触すること があっても大きな影響を与えない濃度まで放射性物質が減衰するものに制限することが求 められる。これらを要件とした許可基準規則及びその解釈、位置に係る審査ガイドを整備 し、さらに、審査に向けてそれらの判断基準の整備及びモニタリング等の基準整備が必要 である。本安全研究では、これらの整備に反映する廃棄物埋設に係る自然事象の長期評価、 廃棄物埋設における性能評価手法、地質環境及び水理環境モニタリングに関する研究を行 った。

廃棄物埋設に係る自然事象の長期評価に関する研究については、隆起及び侵食に関する 評価手法、断層等に関する評価手法及び地下水流動に関する評価手法の開発を行った。さ らに、岩盤の力学状態及び水理学的特性並びに岩盤の収着・移行現象について試験研究を 行った。廃棄物埋設における性能評価手法に関する研究においては、人工バリアの長期性 能評価手法、天然バリアの水理特性の評価手法についての開発を行った。また、地質環境 及び水理環境モニタリングに関する研究では、モニタリングを行う範囲を検討するために、 仮想した廃棄物埋設地建設前後の地下水の流動状態についてのシミュレーションを行った。 また、これらのモニタリング施設の閉鎖措置及びその確認に係る評価手法について検討及 び試験を行った。これらの結果を用いて、自然事象の調査手法及び廃棄物埋設における性 能評価について、一般的な状況に対する留意点を整理した。今後、中深度処分に必要とさ

i

れることが予想される極めて遅い地下水流速、長期間の天然バリア及び人工バリア機能の 安定性等の要件をより具体的に考慮して研究開発を行うことが必要である。

本研究では、廃棄物埋設に係る自然事象の長期評価に関する研究の一部で、サンプリン グ、ボーリング、試料分析、解析等を行うために、国立研究開発法人産業技術総合研究所 に試験研究を委託した。また、廃棄物埋設における性能評価手法に関する研究並びに地質 環境及び水理環境モニタリングに関する研究の一部で、バリア材料の変質試験、数値解析、 坑道を用いた試験、海外機関の情報調査等を行うために、国立研究開発法人日本原子力研 究開発機構及び公益財団法人原子力環境整備促進・資金管理センターに試験及び調査を委 託した。

また、廃棄物埋設に係る自然事象の長期評価の研究の一部は、国立大学法人埼玉大学、 国立研究開発法人産業技術総合研究所、国立研究開発法人日本原子力研究開発機構及び国 立大学法人東京大学との共同研究として実施した。 Study on Survey Methods for Long-term Natural Phenomena Influencing Radioactive Waste Disposal and Assessment Methods for Long-term Evolution of Barrier Performance

YAMADA Norikazu, IRIE Masaaki, HIROTA Akinari, KAWARAGI Chie, ICHIKI Takahiko, ITO Kazumi, KAGAMI Kenta, KIJIMA Tatsuya, and MUROTA Kento

> Division of Research for Nuclear Fuel Cycle and Radioactive Waste, Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R)

Abstract

Regulatory requirements for intermediate depth disposal, which are under consideration, require that the disposal facility should locate avoiding the place where volcanic and fault movement might have disruptive effects and maintain more than 70 m below the ground surface considering the uplift and erosion. Facility design is required to restrict the leakage of radioactive nuclides to the environment as low as reasonably achievable. Besides, the wastes must contain radioactive nuclides whose concentration will decay to a level that will not make a significant effect on human assuming direct contact with the wastes in 100 thousand years. The regulatory requirements for intermediate depth-disposal and their regulatory guides, safety review guides to the repository location, geology, design process, and safety assessment are necessary. Establishing regulation for the following stage to inspect and authorize the facility and monitoring activities is also necessary. This study conducts, survey methods for the long-term natural phenomena influencing radioactive waste disposal, assessment methods for the long-term evolution of barrier performance, and monitoring methods for geological and hydrological environments.

Regarding the survey methods for the long-term natural phenomena influencing radioactive waste disposal, studies on assessment methods for uplift/erosion, fault, groundwater flow, rock mechanics/ hydrology, sorption / migration in rock have been conducted. Regarding the assessment methods for the long-term evolution of barrier performance, studies on performance assessment of engineering barrier and hydrological characteristics analysis of natural barrier have been conducted. Regarding the studies on monitoring of barrier performance and hydrology, groundwater flow analysis was performed to estimate the extent of the monitoring area. Closure methods of monitoring hole were also investigated. $\emptyset \gtrsim it$ Important points for developing the survey methods and performance assessments in general were identified. Studies considering more

iii

specific requirements for barrier performances such as very slow groundwater flow and very longterm sustainability which is suite for intermediate depth-disposal systems are necessary in the future.

In this study some parts of "survey methods for the long-term natural phenomena influencing radioactive waste disposal" were implemented by the National Institute of Advanced Industrial Science and Technology to conduct sampling bowling and analysis. Some parts of "assessment methods for the long-term evolution of barrier performance" and "monitoring methods for the geological and hydrological environment" were implemented by the Japan Atomic Energy Agency and Radioactive Waste Management Funding and Research Center to conduct barrier degradation experiments, numerical analysis, in-situ test at an underground laboratory, and foreign intelligence collection.

Besides, some parts of the "survey methods for the long-term natural phenomena influencing radioactive waste disposal" were conducted as the joint study between Saitama University, National Institute of Advanced Industrial Science and Technology, Japan Atomic Energy Agency, University of Tokyo and NRA.

1.	序	\$論	. 1
1.1		背景	. 1
1.2		目的	. 2
1.3		全体行程	. 2
2.	本	、論	. 6
2.1		廃棄物埋設に係る自然事象の長期評価に関する研究	. 6
2	2.1.1	1 中深度処分における隆起及び侵食に関する評価手法の研究	. 6
2	2.1.2	2 中深度処分における断層等に関する評価手法の研究	12
2	2.1.3	3 中深度処分における地下水流動に関する評価手法の研究	15
2	2.1.4	4 中深度処分における岩盤の力学的状態と水理学的特性に関する研究	24
2	2.1.5	5 中深度処分における岩盤の収着・移行現象に関する研究	29
2.2		廃棄物埋設における性能評価手法に関する研究	30
2	2.2.1	1 人工バリアの長期性能評価手法の研究	30
2	2.2.2	2 天然バリアの自然事象を考慮した水理特性の評価手法の研究	39
2.3		地質環境及び水理環境モニタリングに関する研究	45
2	2.3.1	1 性能確認及び地下水モニタリングに関する諸外国の規制について	45
2	2.3.2	2 地下水モニタリングに関する研究	45
2	2.3.3	3 閉鎖措置確認に関する研究	49
3.	綻	論	53
3.1		成果の要点	53
3.2		目的の達成状況	55
3.3		成果の公表等	56
3	3.3.1	 原子力規制庁の職員が著者に含まれる公表 	56
3	3.3.2	2 委託先による公表	56
3.4		成果の活用等	58
3.5		今後の課題等	58

表 目 次

表	2.1.1	隆起・削剥評価手法の手法・対象・時間スケール・適用性のまとめ	. 8
表	2.1.2	地表からの調査段階における各種物理探査手法の適用性のまとめ	13
表	2.2-1	Da データセット	32
表	2.2-2	液相固定境界の組成	33
表	2.2-3	セメント系及びベントナイト系人工バリアの鉱物モデルで設定した鉱物	34
表	2.2-4	地球化学計算のために選定した二次鉱物	35

次

図 1.3.1 研究の全体行程(1)	3
図 1.3.2 研究の全体行程(2)	4
図 1.3.3 研究の全体行程(3)	5
図 2.1.1 青森県上北平野・下北半島における委託事業に基づく隆起速度マップ	10
図 2.1.2 青森県上北平野・下北半島における先行研究ならびに委託事業による隆	起速
度	11
図 2.1.3 反射法地震探査による断層の長さの認定フロー	14
図 2.1.4 亀裂性媒体における地下水流動モデル構築フロー	16
図 2.1.5 多孔質媒体における地下水流動モデル構築フロー	17
図 2.1.6 浅層地下水と深層地下水の Cl 濃度と海岸からの距離	18
図 2.1.7 浅層地下水と深層地下水の水素安定同位体比と酸素安定同位体比	19
図 2.1.8 水素安定同位体比と ¹⁴ C 年代値	20
図 2.1.9 ボーリング掘削地点と既存井戸から取られた浅層地下水の ¹⁴ C年代値	21
図 2.1.10 揚水試料、間隙水、小川原湖西側浅層地下水及び河川水の水素・酸素安	定同
位体比	22
図 2.1.11 ボーリング抗からの揚水試料及び浅層地下水の水素安定同位体比と希	ガス
涵養温度の関係 ¹⁰	23
図 2.1.12 300 m アクセス研究坑道における調査ポイント概略レイアウト	25
図 2.1.13 300 m アクセス研究坑道における調査ポイント状況写真	25
図 2.1.14 300 m アクセス研究坑道におけるボーリング孔のレイアウト	26
図 2.1.15 パッカー概念図	27
図 2.1.16 物理探查試験概念図	28
図 2.2-1 ベントナイト系人工バリアの劣化に係る評価モデルと解析コードの体系	. 36
図 2.2-2 解析体系(セメント系人工バリアとベントナイト系人工バリアが接した	_系)
	36
図 2.2.3 不確かさを考慮した過去~現在~将来の地形変化評価の流れ 34	40
図 2.2.4 地下水流動評価結果の一例(各時刻の流速・塩分濃度分布)	42
図 2.2.5 埋設深度 100m における流速・塩分濃度の平均値及び標準偏差	43
図 2.3.1 広域モデル(灰色枠)及びサイト周辺モデル(赤枠)の解析領域	47
図 2.3.2 サイト周辺モデルでの施設建設前の地下水水位を基準とした場合の地下	水水
位の差(上:操業時までの場合、下:閉鎖後までの場合)	48
図 2.3.3 室内試験の結果(上:粉末ベントナイト 100%の場合、中:粒状ベントナ	イト
50 %+砂 50 %の場合、下:粒状ベントナイト 15 %+砂 85 %の場合)	51
図 2.3.4 原位置透水試験の概略図	52

1. 序論

1.1 背景

原子力規制委員会は中深度処分について 2015 年から規制要求の考え方の検討を進め 2016 年 8 月に「炉内等廃棄物の埋設に係る規制の考え方について」(以下、「規制の考え 方」という。)として取りまとめ、2018 年 10 月に施行した改正原子炉等規制法では廃棄 物埋設地の掘削等の行為の制限及び坑道の閉鎖に対する規制を導入した。その後、引き続 き技術的な検討を進めている。また、ピット処分及びトレンチ処分に関連する核燃料物質 又は核燃料物質によつて汚染された物の第二種廃棄物埋設の事業に関する規則(以下、「第 二種廃棄物埋設事業規則」という)及び第二種廃棄物埋設施設の位置、構造及び設備の基 準に関する規則(以下、「第二種廃棄物埋設許可基準規則」という。)とその解釈が 2019 年に改正され、廃棄体及び埋設施設に関する技術基準の性能規定化等が行われた。

上述の規制の考え方においては、中深度処分の廃棄物埋設地の位置に係る要件として、 10万年間にわたり火山活動及び断層活動が著しい影響をおよぼすおそれのない区域に設 置すること、さらに、隆起・侵食の影響を考慮したとしても深度70mを確保することとさ れている。また、廃棄物埋設地の設計に係る要件として、放射性物質の環境への漏えいを できる限り抑制する施設に埋設する概念とし、対象となる廃棄物は、10万年後の時点で仮 に直接人と接触することがあっても大きな影響を与えない濃度まで放射性物質が減衰する ものに制限されるものとしている。これらを要件を踏まえ、中深度処分の廃棄物地に対応 する形に、第二種廃棄物埋設事業規則及び第二種廃棄物埋設許可基準規則とその解釈を改 正し、それに対応した審査ガイド等(を整備する必要がある。

平成 28 年度までに行われた福島第一原子力発電所事故による放射性廃棄物の取扱に関 する研究では、廃棄物埋設地の位置に関する基準の整備に活用可能な活断層、第四紀火山 などの地質関連の各種データベース及び 10 万年程度の地質事象を対象とした、将来予測 に活用可能な調査評価手法に関する知見の整理並びに審査に活用可能な安全評価手法の構 築を行ってきた。また、中深度処分に関連して、諸外国の基準及び国際基準、地下利用状 況等の調査を実施するとともに、安全に関連する重要事象として、基本的な地下水流動、 核種移行評価技術に加えて、ガス発生の影響、地震影響等の検討を行ってきた。

これらを背景とし、中深度処分に対応した第二種廃棄物埋設事業規則、第二種廃棄物埋 設許可基準規則とその解釈及び審査ガイド(以下、「規制基準等」という。)の策定にお いては、断層、侵食、火山活動に関する評価を整理した上で、取得可能な各種情報に基づ いて、放射性廃棄物埋設の評価期間中における、これら活動の安定性を示すための科学的・ 技術的知見の取得と考え方の整理が必要である。また、これら活動の長期の安全評価につ いては、埋設施設のバリア材料の長期性能評価の妥当性評価への知見の反映も必要である。

1.2 目的

中深度処分の規制基準等の整備、適合性審査及び後続規制の確認の際の判断に必要な知 見の収集・整備における廃棄物埋設における自然事象の長期評価、性能評価手法及びモニ タリングに係る科学的・技術的知見の蓄積を行う。

1.3 全体行程

本プロジェクトにおいては、現在進められている中深度処分の規制基準等の整備に必要 な科学的・技術的知見の整備を行う。また、審査の際の判断に必要な知見の収集・整備及 び安全評価に使用する解析コードの整備を行う。具体的には、地質環境及び水理環境の評 価手法に関する科学的・技術的知見を整理する。また、地質環境及び水理環境のモニタリ ング及び閉鎖措置又は廃止措置における性能等の確認及び地下水等モニタリング(以下「性 能確認モニタリング」という。)について基本的考え方の整理及び具体的判断指標等につ いて検討を行う。これらの科学的・技術的知見の抽出のために以下に示す項目について安 全研究を行い、規制基準等の策定において反映すべき又はそれらを審査において適用する 際に参照すべき判断指標等の整備を行う。

なお、廃棄物埋設に係る自然事象の長期評価に関する研究のうち、隆起及び侵食に関す る評価手法、断層等に関する評価手法、地下水流動に関する評価手法の整備は、国立研究 法人産業技術総合研究所に委託し実施したものである。廃棄物埋設における性能評価手法 及び地質環境及び水理環境モニタリングの手法の整備は、国立研究法人日本原子力研究開 発機構に委託し実施したものである。廃棄物埋設に係る自然事象の長期評価に関する研究 のうち、岩盤の力学的状態と水理学的特性に関する研究のうち室内試験は、国立大学法人 埼玉大学、国立研究開発法人産業技術総合研究所と、原位置試験は、国立研究開発法人日 本原子力研究開発機構と、岩盤の収着・移行現象に関する研究は、国立大学法人東京大学 とそれぞれ共同研究を行ったものである。

研究項目	H29 年度	H30年度	H31 年度	H32 年度	
放射性廃棄物埋 設の規制の考え 方及び規制基準 等の整備	 ・ 中深度処分 (H28 年度中に規 ・ 許可基準規則) ・ 事業規則(廃勇 ・ 位置に係る審査 ・ レンチ処分、 (H28 年度中に廃野 ・ 許可基準規則及 ・ 事業規則(廃棄 ○研究施設等廃棄執 (H28 年度中に廃野 ・ 安全確保に係る ・ 許可基準規則及 	制の考え方、放射線 及びその解釈の整備 医ガイド、設計プロー ・地質地盤調査ガイ ・地質地盤調査ガイ ・地質地盤調査がイ ・地質地盤調査がれ と でその解釈の改訂 体、埋設施設の技術 物 棄物性状調査及び論 技術的検討 びその解釈の整備	水丁酸の考え方を整備 水基準(性能規定化) ド、性能確認モニタ 制に資する科学的・ 術基準の整備(性能 小基準(性能規定化) 点整理)	 第)の整備 ド等の整備 リングガイド等の整 技術的知見の整備 規定化)) の整備 	25.6

図 1.3.1 研究の全体行程(1)

Figure 1.3.1 Overall schedule of this study (1)

	・隆起・侵食量評	・隆起・侵食評価	・隆起・侵食評価	・隆起・侵食評価
	価手法の適用	手法の面的評	手法の適用要	手法の構築
	性検討	価の適用性検	件の整理	・断層等の評価
	・断層等の評価手	討	・断層等の評価手	手法の構築
(1)廃棄物埋設	法の適用性検	・断層等の評価手	法の適用要件	 地下水流動評価
に係る自然事象	討	法の広域場へ	の整理	手法の構築
の長期評価に関	·地下水流動場評	の適用性検討	·地下水流動場評	・海底地すべり面
する研究 (産業技	価手法の沿岸	·地下水流動場評	価手法の適用	の滑動可能性
術総合研究所へ	域への適用性	価手法の地形	要件の検討	評価手法の構
の委託事業、日本	検討	変化域への適	・海底地すべり面	築
原子力研究開発		用性検討	の滑動可能性	・掘削影響領域に
機構との共同研		・海底地すべり面	評価の適用要	関する研究
究、東京大学との		の滑動可能性	件の整理	
共同研究および		評価手法の検	・掘削影響領域に	
埼玉大学-産業		討	関する研究	
技術研究所との				
三者共同研究)				
			随時	反映
	 中深度処分位置に	係る審査ガイド等		
	の整備			
		山巡车加八地桥圳	いままれ、シンのあり	
		中保度処分地貨地 地に次よる1000000000000000000000000000000000000		及い唯認寺俊続規
		刑に貸りる科子的	・ 这 你 的 知 見 の 整 你	

Figure 1.3.2 Overall schedule of this study (2)

 (2)廃棄物埋設 における性能評 価手法に関する 研究(日本原子力 研究開発機構への委託事業) 	人工バリア変質 挙動に関する室 内実験と天然バ リアの核種移行 評価のための課 題整理 中深度処分位置に	人工バリア変質 挙動に関するコ ード構築と天然 バリアの核種移 行に関する文献 調査 *	人工バリアの変 質挙動評価手法 の構築と天然バ リアの核種移行 モデル整備 随時反	成果の取りまと め、評価手法の構 築、ガイド改訂の ための論点整理
	の整備 	中深度処分地質地な制に資する科学的	22調査ガイドの整備 ・技術的知見の整備	及び確認等後続規
	性能確認及びモ ニタリングに関 する諸外国の規	モニタリング手 法に関する既往 の知見の調査分	フィールド試験 による地下水流 動場の検証技術	性能確認及びモ ニタリング手法 の評価
 (3)地質環境及 び水理環境モニ タリングに関す る研究(日本原子 力研究開発機構 	制制度の調査分 析	析 人工バリアの長 期性能確認及び 性能評価に関す る既往の知見の 調査分析	の検討 人工バリアの長 期性能確認の評 価手法の検討	人工バリアの長 期性能確認の評 価手法の整備
への委託事業及 び産業技術総合 研究所への委託 事業)	提 中深度処分位置に の整備	供 係る審査ガイド等 中深度処分地質地類	随時)	又 映 及び確認等後続規

2. 本論

2.1 廃棄物埋設に係る自然事象の長期評価に関する研究

中深度処分における廃棄物埋設地では、対象となる廃棄物の特性にあった評価期間が設 定され、それに基づいて埋設施設が設計される。現在検討されている中深度処分の廃棄物 埋設地の位置に係る要件としては、隆起侵食、火山活動、断層活動の自然事象に関して少 なくとも 10 万年にわたる評価が求められていることから、以下に示す項目についての知 見を取得し、成果の内容を取りまとめた。この研究は産業技術総合研究所の委託事業にお いて実施した¹。

2.1.1 中深度処分における隆起及び侵食に関する評価手法の研究

(1) はじめに

中深度処分における隆起及び侵食量の評価については、侵食基準指標面の標高とその隆 起・侵食開始からの現在までの期間(年代)に基づく手法により、過去数十万年前までカ バーできるとされる。本課題では、その評価手法を確立するため、適用される時間スケー ルが異なる複数の評価手法を用いて適用性を確認した。また、加えて、時間スケールに適 用可能性が高い隆起量評価手法の適用可能な空間スケールについても検討を行った。また、 隆起速度を侵食速度の指標とする考え方は、廃棄物埋設分野において保守的な扱いとされ 一般に用いられる一方で、現在までの地形変化が長期的に継続することを仮定しているた め、その継続性を過去数十万年間の複数回の海水準変動サイクルの中で検証する必要があ る。したがって、長期的な埋設深度の変動を評価するためには、過去長期間にわたる隆起 速度と侵食速度の評価を複数手法により検討することが重要である。現在、侵食速度につ いては地球化学指標として宇宙線生成核種を用いた評価手法の適用が進められているが、 主としてボーリング孔を用いたものであるため、点での評価が中心であること、また、適 用事例が十分得られていないという課題がある。そのため、面的な侵食を評価するために、 同一地域における変動地形学的手法による隆起評価との比較検討を行い、深度の減少評価 に用いられている隆起評価の適切性を判断し、廃棄物埋設地における深度変化の評価手法 を構築した。

(2) 時間スケールの異なる隆起及び侵食量評価手法について

本事業では、時間スケールの異なる複数の隆起評価手法(測地、段丘面高度、侵食小起 (大面)と侵食(削剥)評価手法(ダム堆砂量、堆積盆の堆積物量、宇宙線生成核種年代、 熱年代)に関連して、各評価手法の基礎となる地形・地質・地質構造の情報をまとめた¹(表 2.1.1)。表 2.1.1 では地域的な適用性について4段階で評価している。隆起速度評価手法 のうち測地学的手法としては GPS 測量(測位)と水準測量があり、それらの時間スケール は10²年オーダー以下とされ、10³~10⁵年以上の長期間を対象とした他の手法とは整合的な 値が得られていない。多くの場合、隆起速度は一定ではなく、通常の隆起速度とは異なる

6

隆起が大地震などのイベントによって引き起こされる例は、1946年の南海地震で観測され ている²。段丘面高度に基づく手法の時間スケールは 10³~10⁵ 年オーダーであり放射性廃棄 物の埋設処分の105年オーダーと合致しており、沿岸域においては過去約10万年ごとに形 成された海成段丘の分布が小池・町田3にまとめられている。また近年では、隆起量の指標 となる旧汀線付近で堆積した堆積物である前浜・後浜堆積物を堆積相解析により認定しな い限り正確には隆起量を見積もることはできないことから、堆積相解析とルミネッセンス 年代測定法を組み合わせた評価手法も用いられてきている「。この手法では、火山灰層序 に依存しないことから適用性が高いことが推測される一方で、旧汀線から離れた露頭では 隆起量を過小評価するといった課題があり注意が必要である。内陸部においては中部地方 以北では河成段丘がよく発達することから 105 年オーダーでの評価が可能とされる。この 手法では、特に、同一河成段丘面内の形成時期の差異や風成層の一部欠損の可能性を考慮 した河成段丘面の対比、堆積段丘を削る同時代の侵食段丘の誤認による隆起量の過大・過 小評価の可能性、隆起量と河川の下刻量との相対的関係を考慮した隆起量評価の考え方が 田力4、幡谷5, 6, 7、吉山・柳田8等によって取りまとめられている。侵食小起伏面高度に基 づく手法の時間スケールは 10⁶年オーダー以上の長期であり第四紀全体の平均的な隆起量 は評価できるが、105年オーダーの評価は、その適用性を別の手法で検証する必要がある。 一方で、侵食速度評価手法の適用可能性に関して、ダム堆砂量を用いた手法では、時間ス ケールが 10²年オーダー以下と放射性廃棄物の埋設処分の評価に用いるのは適当ではない。 堆積盆の堆積物量を用いた手法は、その物理量を正確に推定することや適当な火山灰層が ある場合を除いては堆積年代を推定することが難しいことから、信頼度が高いデータを取 得することが一般的には困難であるとされる。宇宙線生成核種を用いた手法は、原理的に は、異なる2点以上の深度でその濃度を求めることによって適用することができるものの、 5 点以上の深度で濃度を求めることが望ましいとされるため、適切なサンプリングが必要 である%。時間スケールは102~106年オーダーであり、放射性廃棄物の埋設処分に対して用 いることができる可能性がある。熱年代法は、時間スケールが 106 年オーダー以上の長期 であり、また現状のアパタイトやジルコンを用いたフィッショントラック法やウラン-トリ ウム法などでは、比較的険しい山岳地域のみが適用可能な地域となる。以上のことから、 隆起速度評価手法においては適用性が高い手法も見られるものの、侵食速度評価手法では 適用性があることにとどまり、今後も継続して研究する必要性が示された。

侵食過程の中でも沿岸域における河川下刻については、氷期における最大下刻量の見積 もりに関して、従来の最大海水準低下量に基づく手法では過大評価されることについて、 沖積層基底礫層(BG層)に基づく手法ではそれを避けられることが示された^{10,11}。また、 完新世堆積物の記載が詳しく行われている八戸地域においては、その削剥耐性を検討し、 海退に伴う侵食基準面の低下が起こった際には容易に削剥されるとした。海退により陸化 する可能性がある埋没谷・海底谷に関しては、下北半島東部においてその表層地層や流路 位置を検討し、中山崎以北の北部地域と以南の南部地域では、沖積層や洪積層で構成される表層地質と追跡できる海底谷の連続性に、ともに大きな違いがあることが確認された。

隆起量評価手法及び侵食量評価手法において、それぞれ、中深度処分に適用可能性が高い手法が明らかになったことから、今後はこれらの手法に対して、審査に適用するときの 課題について、検討・整理する必要がある。

表 2.1.1 隆起・削剥評価手法の手法・対象・時間スケール・適用性のまとめ Table 2.1.1 The summary of target landscape, usable time-scale and applicability about each evaluation method of uplift and incision rates

			5			適	用]	性*2	2
	手法·指標		対象時間スケー	時間スケール*1	沿岸域			N.1	内陸部	
				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	低地	台地	丘陵	山地	盆地	山地
	Bilth	GPS測位	插 古 古	≦10 ¹ 年	Ø	Ø	0	Ø	Ø	O
	州地	水準測量	1示同	≦10 ² 年	O	O	0	O	Ø	0
	段丘面高度		海成段丘	10 ³ ~10 ⁵ 年	0	O	0	×	ľ	_
咳 扫			河成段丘*3	10 ³ ~10 ⁵ 年	0	Ø	0	0	Ø	0
胜起	侵食小起伏面高度		侵食小起伏面	≧10 ⁶ 年	—	-	i.	0	Ţ	0
	堆積深度十年代		海成堆積物(露頭)	10 ⁶ ~10 ⁸ 年	∆~0	0	0	0	0	0
	埋没深度+年代		海成堆積物(コア)	10 ⁶ ~10 ⁸ 年	0	0	0	×	0	×
	固化深度十年代		火成岩(露頭)	10 ⁶ ~10 ⁸ 年	×	×	×	0	×	0
	ダム堆砂量		ダム集水域	10 ¹ ~10 ² 年	×	\bigtriangleup	\bigtriangleup	0	\bigtriangleup	0
	堆積物量		扇状地	≧10 ⁴ 年	—	\bigtriangleup	∆~0	∆~0	∆~0	∆~0
削剥			三角州	≧10 ⁴ 年	∆~0			2	Ţ	-
			堆積盆	≧10 ⁴ ~10 ⁶ 年	∆~0	×	×	2	∆~0	-
	空中線	生成核辅	集水域	10 ² ~10 ⁴ 年	∆~0	△~○	0	0	∆~0	0
	于田林工风核性		侵食面	10 ³ ~10 ⁶ 年	Δ	Δ	0	0	Δ	0
	熱年代		露頭orコアの削剥史	10 ⁶ ~10 ⁸ 年	×	×	×	0	×	0

*1 時間スケールは10[×]年オーダーで表示する.

*2 適用性の区分 ◎=適用性高い, ○=適用性あり, △=適用性低いor一定条件下で適用可,

×=適用性極めて低いor適用不可, ー=存在しない

*3 河成段丘による隆起評価手法の適用地域は中部地方以北に限られる.

出展) 産業技術総合研究所(2019)1

(3) 隆起量の空間スケールについて

中深度処分の時間スケールに適用可能性が高い段丘面を使った隆起量評価手法の中で も、海成段丘を使った評価手法は沿岸域において適用性が高い。そこで、海成段丘に基づ く評価手法を用いて、どの程度の範囲までを同じ隆起量として良いか、隆起量の空間スケ ールの検討を行った。

これまで、隆起量評価については、小池・町田³の研究成果が主に利用されてきた¹²。 この研究において、堆積年代は主に火山灰層序に基づき決定され、隆起量に関しては、間 氷期の海面高度の指標から評価している。しかし、適切な火山灰層がない場合は段丘面の 形成順で堆積年代を推定するしかなく、また、陸成層の層厚を一定とすると段丘崖近傍で は隆起量を過大評価するなどの問題点もあった。そこで、ルミネッセンス年代測定法によ る堆積年代の決定と、詳細な堆積相解析による海面指標の認定とを組み合わせた手法を確 立し、広範囲に海成段丘が発達している青森県の太平洋側(上北平野・下北半島)をモデ ルフィールドとした隆起量評価を適用した(産業技術総合研究所^{1,10,13})。委託事業によ る露頭調査から得られた隆起速度と同地域における先行研究(宮内¹⁴;田中ほか¹⁵;小 池・町田³; Matsu'ura et al.¹⁶;宮崎・石村¹⁷)を合わせてみてみると、地域によって隆起 速度が異なる傾向が確認できた(図 2.1.1)。なお、委託事業では、旧汀線付近に限らず 露頭のある位置での隆起量を示したため、どの場所でも隆起速度を過小評価しており(図 2.1.2)、一方で、先行研究間では上北平野南端の八戸から下北半島北部の稲崎までおおむ ね一致する傾向が確認できた(図中の本課題と書かれた点が委託事業による隆起速度。三 角は推定される上限値で、丸点と星点が太平洋側と陸奥湾側の露頭で見積もられた値。)。

以上のことから、広範囲に連続的に段丘面が発達している地域においても、隆起量を正 確に見積もると地域によって隆起量が異なる可能性があり、可能な限り埋設地とその近傍 において隆起量を評価することが望ましいと考えられる。

また、産業技術総合研究所^{1,10,13}は、隆起速度評価手法の中でも、特に海成段丘の浅海堆 積物へのルミネッセンス年代測定法の適用性についても検討を行った。異なる地質環境の カリ長石を用いてもモデルフィールドと同様にルミネッセンス年代測定法が適用可能かを 信号の減衰特性を比較することで検討した結果、地域間では違いが見られなかったことか ら、いかなる地域でも手法が適用できる可能性が示唆された。また、単粒子法の適用によ り測定時間を短縮し、より多くのデータを得ることで年代の誤差を小さくできるか検討し た結果、発光しない粒子が多く存在することで、測定時間の短縮効果が得られないことが 分かった。確立した隆起速度評価手法の中でも個々の項目について改善を試み、より精度 の高い手法にしていくことが重要である。

図 2.1.1 青森県上北平野・下北半島における委託事業に基づく隆起速度マップ Figure 2.1.1 Map of uplift rates based on contract research of Kamikita Coastal Plain and Shimokita Peninsula, Aomori Prefecture

図 2.1.2 青森県上北平野・下北半島における先行研究ならびに委託事業による隆起速度 Figure 2.1.2 The uplift rates based on previous researches and contract research of Kamikita Coastal Plain and Shimokita Peninsula, Aomori Prefecture

(4) 宇宙線生成核種を用いた面的侵食速度の評価手法

本事業では、流域の面的侵食速度の評価手法について、松四ほか¹⁸などに基づき、宇宙線 生成核種を用いた手法を概説している¹³。流域内の斜面において、宇宙線が核種を顕著に 生成させる深度(地表から2m程度)までの斜面物質が削剥によって除去されるのに要す る時間が、核種の平均寿命(¹⁰Beや²⁶Alであれば~10⁶年)よりも大幅に短く、放射壊変が 無視できるとき、流域斜面の空間平均的な削剥速度 \overline{D} (gm⁻²y⁻¹)は、流域出口で採取した 鉱物粒子中の宇宙線生成核種の平均濃度 \overline{C} (atoms g⁻¹)により以下の式で近似される。

$$\overline{D} = \frac{\overline{P} \times \Lambda}{\overline{C}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot (2.1.1)$$

ここで、**P** (atoms g⁻¹ y⁻¹) は流域内地表面の核種生成率の平均値、A (gm⁻²) は宇宙線の 平均減衰長である。なお、ここでの削剥は、ソイルクリープやガリー侵食、表層崩壊とい った地表面における宇宙線の平均減衰長の範囲内の削剥作用までであり、豪雨や地震によ って発生する深層斜面崩壊は、より深い領域までの土砂を供給することになるため原理的 に評価できない。得られた削剥速度は、流域出口に後氷期に形成された扇状地の体積から 見積もられる流域の削剥速度と整合的であるとの報告がある¹⁹。産業技術総合研究所¹³で は、上流域に小規模な表層崩壊しか存在しない花崗岩地域の土石流堆積物中の宇宙線生成 核種濃度を測定した結果、花崗岩れき中に含まれる宇宙線生成核種量がれき以外のマトリ ックス(粗砂)よりも優位に多いことが分かり、その新鮮で堅硬な花崗岩が斜面上で長時 間露光する間に宇宙線生成核種を多く蓄積した可能性が示唆された。また、山地斜面の原 位置から低位段丘までの運搬過程において移動距離の短い運搬と停止(堆積)を繰り返し、 その間に核種の蓄積量が増加した可能性も考慮する必要がある。従来、流域の平均削剥量 の推定は、地表面付近での土砂移動を中心にモデル化されているため、比較的新鮮堅硬で 宇宙線生成核種量の多い花崗岩れきの存在など、評価対象の流域の実態に即した削剥と土 砂運搬のモデルを再構築することが必要と考えられる。 本事業において、日本のように侵食速度が速い地域では、測定に足る宇宙線生成核種濃度を得るためには 30~60 g以上の大量の石英を必要とすることから、その抽出・純化するための前処理作業の検討も行った。特に石英と他の鉱物との物性の差を利用した物理的精製法(遠心バレル研削)について検討を行った結果、遠心バレル研削のみですべての残存鉱物を除去することは難しいものの、長時間処理することで石英表面の清浄度が上がる可能性が示唆され、その処理を含めた石英の純化方法が示された¹³。

以上の検討により、宇宙線生成核種による侵食速度評価手法は、分析対象となる石英の 純化方法や、侵食耐性が異なる岩石に基づく一様でない削剥過程や削剥物の運搬過程を含 めてどのようにモデル化するかなど、今後検討する必要がある項目はあるが、大規模な深 層斜面崩壊が発生しない流域の侵食速度評価に有用な方法であると考えられる。

2.1.2 中深度処分における断層等に関する評価手法の研究

(1) はじめに

中深度処分における廃棄物埋設地の位置は、廃棄物埋設地の人工バリアに著しい損傷を 生じるおそれがある断層運動等が発生するおそれが無い場所であることされている。また、 現行の浅地中処分の第二種廃棄物埋設許可基準規則の解釈では、後期更新世以降(約12~ 13万年前以降)の活動が否定できない場合中期更新世以降(約40万年前以降)まで遡っ て地形、地質・地質構造、応力場等を総合的に検討した上で断層の評価を行うことが必要 であるが、中深度処分施設は、地下70mを超える深部に設置されこの深度の断層について 直接観察による評価ができないことから、特に物理探査による評価手法及びその妥当性に ついて科学的・技術的知見の蓄積が必要である。この研究は産業技術総合研究所の委託事 業において実施した^{1,10}。

(2) 物理探査を使った断層の長さの評価手法

本事業では、地表から断層を探査するために用いられる各種物理探査法の特徴や、広域 空中探査・広域地表探査・精密地表探査の各探査段階別に適用可能な物理探査手法の有効 度について取りまとめた(表 2.1.2)¹。その中でも、反射法地震探査が断層や地下構造の 評価に最も有効度が高く、これを主とした物理探査の実施が考えられる。また、廃棄物埋 設候補地周辺に断層が存在する場合に、どのようにその長さを判定するかを認定フローに まとめた(図 2.1.3)。反射法地震探査を行う上で問題点となりうる受振点の設置に関して は、既存構造物の存在による制約があるが、地形的な要因は大きな問題にはならない。一 方で、分解能は探査仕様や現地状況に依存し、その探査測線の設定と探査仕様の決定には 極めて高度な専門的知識を要するため、その妥当性について判断指標という形で整理する ことは困難であると考えられる。そのため、断層の長さを判断するための反射法探査の探 査測線・探査仕様の妥当性については、有識者や専門家による検討を含めた評価の在り方 の検討が必要である。 表 2.1.2 地表からの調査段階における各種物理探査手法の適用性のまとめ

Table 2.1.2 The summary of applicability of Geophysical exploration methods from the surface of

land

地 下の 比 抵 た の 地下の 比抵抗構造 ヘリコプター	
電磁法探査 O ^{地下の比 抵抗} 2D の境界による断層 な空中電磁 構造・状態 (3D)の推定 されている	-を用いた 楜密 探査が実用化
広域 磁気探査 ・ <t< td=""><td>引いた稠密な磁 用化されている</td></t<>	引いた稠密な磁 用化されている
重力探査 ブーゲー異常値 (勾配)の平面 分布 2D (3D) 断層・岩相境界の 有無を推定するた めの事前検討 ヘリコプター な空中重力	ーを用いた稠密 偏差法探査が ている
反射法地震 弾性速度境界 探査測線上の断層 陸上におい 探査(2D) (地層境界)の 2D 探査測線上の断層 S波地震探 構造 の存在の有無 好な方を選択	てはP波および 査の記録が良 R
音波探査 (2D) 弾性速度境界 (地層境界)の 構造 探査測線上の断層 海域における の存在の有無 海域における 震探査	るP波反射法地
三次元反射 弾性速度境界 広域(面的)の断層 広域 (地層境界)の 3D の存在の有無を調 地表 横造 べる概査	ひみ適用可
調査 屈折法地震 探査 △ 地下の弾性波 速度構造・分布 2D 弾性波速度の境界 による断層存在の 推定 探査深度の思 長が必要	5~10倍の測線
電気探査・ 電磁法探査 △ 地下の比抵抗 2D 地下の比抵抗構造 構造・状態 2D の境界による断層 の境界による断層 の境界による断層	と断層位置が 場合がある
精密重カ探 査 ガーゲー異常値 (勾配)の面的・ 1D 指密重カ探 線上の断層存在の 進を推定する 20	常から地下構 る
三次元反射 法地震探査弾性速度境界 (地層境界)の 構造断層の有無・連続 ・P波反射法 性を確認するため の精査・P波反射法 ・海域におし 能3Dの手法	のみ適用可 いては超高分解 あり
地中レー 表層付近の 地下の断層が表層 ダー 〇 レーダー波によ 2D まで達しているかど る ろ反射構造 うかの判断	情報に限られ
三次元電気 の 地下の比抵抗 電磁気的特性の境 比抵抗構造 探査 かった状態 3D 常磁気的特性の境 比抵抗構造 界による断層存在 の推定	と断層位置が 場合がある
地容 三次元電磁 地下の比抵抗 地下の比抵抗 ペリコプター 法探査 O 地下の比抵抗 3D の境界による断層 な空中電磁 の推定 されている	-を用いた稠密 探査が実用化
磁気探査 (磁力探査) 〇 地下の磁性体 分布・構造 2D (3D) 地下の磁性体分布 の境界による断層・気探査が実	引いた稠密な磁 用化されている
精密重力探 ブーゲー異常値 (勾配)の平面 分布 2D 沢査位置or探査測 ・重力値の異 途を推定する ・絶対重力語	≹常から地下構 る ├の使用を推奨

出展) 産業技術総合研究所(2019)1

図 2.1.3 反射法地震探査による断層の長さの認定フロー

Figure 2.1.3 The certification flow of the length of fault using seismic reflection survey

(3) 海底地すべり面の再滑動性の評価について

本事業において、既存文献に基づき海底地すべりの発生要因や大規模化する要因につい て取りまとめたほか、陸上地すべりの分類や調査法を参考に過去の地層堆積時又は堆積後 の未固結~半固結時に発生した海底地すべりに起因する地すべり面が再滑動する要因と中 深度処分の埋設地に与える影響について検討した¹。その結果、海底地すべり面が中深度 処分の埋設地を直接的に破壊するような滑動を引き起こす可能性は低く、将来 10 万年に わたって保持しなければならない離隔距離 70 m を低減させるような可能性を検討すべき と結論付けた。一方で、海底地すべりブロックの再滑動性自体は、一般的な斜面の安定解 析によって評価可能であり、すべり面そのものについてはすべり面の粘着力(c)とせん断 抵抗角(q)により評価されるため、海底地すべりの露頭から得た試料による一面せん断試 験を実施する必要があることが示唆された。間隙水圧を制御した一面せん断試験の実施可 能性の検討のため、既存の大型真三軸試験装置を用いた一面せん断試験用冶具の設計を行 った。また、千葉県房総半島の黄和田層中に存在する海底地すべり露頭から試料を採取し、 基礎物性値の測定及び、力学一透水試験を行った結果、海底地すべり面の上位の火山灰層 と下位のシルト岩層の間に、一軸圧縮強度と透水性において大きな差異があったことから、 海底地すべり面及びその近傍において力学的・水理学的に不連続性が存在し、斜面の安定 性が損なわれれば再滑動しやすい状態にあると示唆された。

2.1.3 中深度処分における地下水流動に関する評価手法の研究

(1) はじめに

約 10 万年周期で起きる海水準変動は、淡水及び塩水が複雑な分布で存在する沿岸域に おいて地下水流動系の変動に影響することから、地下水流動系の長期的な変動を評価する ためには、過去の海水準変動等に伴う地下水流動と水質の変動等の評価手法の整備が必要 である。そこで、淡水及び塩水の混合した状況での同位体水文学的評価手法の整備とそれ らの結果からの地下水流動系変動の評価手法の整備、長期的な水質履歴の指標となる地球 化学的評価手法の整備を行うとともに、塩水 – 淡水混合系において、海水準変動や隆起・ 侵食の影響による地下水流動系の評価を原位置ボーリング等のデータを含めて地下水流道 の傾向を明らかにし、長期地下水流動系の評価手法に関する科学的・技術的知見を蓄積し た。

(2) 地下水流動系の評価手法整備における考え方

地下水流動系の考え方の策定については、産業技術総合研究所への委託事業において実施した^{1,10}。地下水流動を考える上で、その天然バリアの形態から主に花崗岩等の亀裂性媒体と堆積岩等の多孔質媒体との二種類に区分される。しかし、堆積岩においても、固結度が高い場合等では亀裂を水が流れる例もあり、例えば、日本原子力研究開発機構幌延深地層研究センターでの研究成果によると、深度200m程度の多孔質な岩盤において、亀裂が主要な透水経路であることが示されている²⁰。

地下水流動モデルの構築のためのフロー図を亀裂性媒体の場合は図 2.1.4 に、多孔質媒体の場合は図 2.1.5 に示す¹⁰。

図 2.1.4 亀裂性媒体における地下水流動モデル構築フロー

Figure 2.1.4 The flowchart for under groundwater-flow conceptual model of fractured media

亀裂性媒体において、亀裂の連続性によって水理的に分離されたコンパートメント構造 が存在することが、釜石鉱山における圧力干渉試験などで示されている²¹。亀裂ネットワ ークをモデル化するときは、亀裂の三次元ネットワークモデルを統計的に構築する手順が 含まれるため、亀裂の幾何学情報(走向、傾斜、密度、長さ及びそれらの空間分布)が必 要となる。またモデル化の手法としては、個別の亀裂を直接モデル化する方法、クラック テンソル等によって異方性等価多孔質媒体としてモデル化する方法等が考えられる。この 中で、亀裂を直接モデル化する手法は計算負荷が大きいために、対象領域が広い場合は現 実的な手法ではないと考えられることから、等価多孔質媒体モデルと組み合わせて用いる ことが適当と考えられる。等価多孔質媒体モデルを構築する際の留意点としては、一定の 長さ以上の亀裂をモデルに組み込むための基準を設定すること等が必要となる。なお、等 価多孔質媒体モデルにおいても、大規模な高透水ゾーンや断層コア等の低透水ゾーンは地 下水流動に大きな影響を与えることから、個別にモデル化する必要がある¹⁰。

出展) 產業技術総合研究所(2020)¹⁰

図 2.1.5 多孔質媒体における地下水流動モデル構築フロー

Figure 2.1.5 Flowchart for under groundwater-flow conceptual model of porous media

亀裂性媒体の支配的な流動経路は岩盤中の亀裂に限られるのに対し、多孔質媒体におい ては多くの場合、支配的な流動経路は岩盤中の空隙全体となる。しかし、岩相ごとに亀裂 が卓越流動経路になっている可能性を検討した上で、亀裂が卓説流動経路となる場合にお いては、亀裂性媒体と同様のモデル化手順をとる必要がある。

空隙が卓越流動経路と判断される場合の注意点としては、原位置試験等において、透水 係数等の水理特性のばらつきを把握し、同一岩相ないにおいて、水理特性のばらつきが均 ーなのか、それとも同一岩相内においても水理特性の異なる部分が存在するのかについて、 判断する必要がある。

亀裂性媒体と多孔質媒体におけるフロー図を示したが、堆積岩においては、固結度によ って多孔質媒体的な性格と亀裂性媒体的な性格を両方併せ持つケースも存在する。実際の 天然バリアの考察においては、その岩盤の性質を把握した上で適切な手法を採用するよう 十分注意する必要がある。

(3) 地下水流動履歴の指標となる地球化学的評価手法の整備(瀬戸内海沿岸地域)

廃棄物埋設地は周辺の地下水の流動が緩慢である、もしくは地下水が滞留している位置 に設置することが、核種移行の観点から重要となってくる。亀裂性媒体である花崗岩が主 である瀬戸内海沿岸地域において、既存坑井等の地下水を対象として、地球化学的データ を指標として地下水の流動履歴を調査し、その滞留性等について研究を行った。この研究 は産業技術総合研究所の委託事業において実施した業務内容である。 本調査で対象とした瀬戸内中部沿岸域において、既存井戸を使って、浅層地下水(井戸 の孔底深度150 m以浅)と深層地下水(井戸の孔底深度150 m以深)の地球化学的調査を行 った。地下水試料の深度、海岸からの距離及びCl濃度を図 2.1.6に示す。沿岸部に広くCl 濃 度の高い深層地下水(以下「塩水」という。Cl>200 mg/L)が分布しており、Cl 濃度が10,000 mg/L 以上の地点も少なくない。海岸から5 km 以上の比較的内陸部まで塩水が確認できる。 このエリアは縄文海進時の浸水域に相当することから、この時期に涵養した海水と考えら れる。

一方、沿岸部であっても、Cl 濃度の低い深層地下水(以下「淡水」という。Cl <200 mg/L) が存在する地点もあり、特に1,000 m 以深の深層でも小豆島では淡水が存在している^{22, 23}。 また、浅層地下水については、Cl 濃度は最大でも60 mg/L 以下であった。

図 2.1.6 浅層地下水と深層地下水の Cl 濃度と海岸からの距離 Figure 2.1.6 Distance from the coast and Cl concentrations

瀬戸内海沿岸地下水の水素安定同位体比(以下「δD」という。)及び酸素安定同位体比(以下「δO」という。)を図 2.1.7(a)に示す。深層地下水(塩水と淡水)と浅層地下水(淡水) をプロットした図 2.1.7(a)図は基本的に天水線に沿うようにデータがプロットされている ことから、天水起源であることを示している。しかし、深層地下水の塩水は、同位体比が 高くなるに従って、僅かに天水の範囲から海水の組成にそれていることが確認できた。こ のことから、起源として天水と海水の混合によって形成されていると判断できる。

深層の塩水を除いた拡大図(図 2.1.7 (b))を使って淡水系の地下水について詳しく考察 した。深層地下水は浅層地下水よりも低い同位体比を示す傾向があることが分かる。現在、 広島県東部から岡山県の範囲において、瀬戸内海側へ流下する渓流水で最も低いδD は- 56 ‰程度である²⁴。図 2.1.7 (b) の浅層地下水のδD は-55 ‰~-45 ‰の範囲にあり、現代の 天水起源であると判断できる。一方、深層地下水の一部は浅層地下水の範囲に重なるが、 大半の試料はδD で-64 ‰~-56 ‰の範囲を示している。低い同位体比の天水が形成される 原因としては、海から遠い内陸で降る天水(内陸効果)、標高の高い地域で降る天水(高度 効果)、低い気温で形成される天水(気温効果)等が考えられており、本地域においては、 高度効果及び内陸効果では説明できないことから低い気温で形成された天水と考えられ、 現在よりも寒冷な氷期に涵養された天水起源と解釈できる。

寒冷期に相当する可能性のあるδD が-56 ‰以下の地下水試料について、¹⁴C年代とδD と の関係を図 2.1.8 に示す。浅層地下水については、ほとんどが千年以下の若い年代を示し ている。深層地下水はそれよりも古い年代を示しており、全体としてδD が低いほど¹⁴C年 代は古くなっていることが分かる。δD が-60 ‰~-56 ‰程度の試料の年代は数千~6 千年 で氷期とはずれがある。しかしながら、δD が-60 ‰よりも低い深層地下水に関しては、縄 文海進よりも古い、おおよそ1 万2 千年よりも前の最終氷期に相当する年代を示している ことが確認できる。

図 2.1.8 水素安定同位体比と¹⁴C年代値

Figure 2.1.8 Stable isotope of water molecule and Carbon 14 age

以上のことから、同一地域においても、縄文海進時に涵養した塩水が賦存する場所や最 終氷期以前に涵養した古い淡水が賦存する場所が存在することを示しており、地球化学的 指標が、地下水の履歴、滞留性等の評価に有益であることを示している。

(4) 既存井戸及びボーリング坑調査を用いた地下水流動評価に関する研究

広域地下水流動の評価は一般的に既存孔井から採水された地下水試料のデータを基に 行われる。既存孔井の採水深度は、浅層から深度1,000m程度の深部まで孔井によって異な っており、基本的には多量の地下水が採取可能な帯水層から採水されている。したがって、 その採水深度は広域の地下水流動の評価を行うのに適切な深度に設定されているわけでは ない。また、採水のために設定されたスクリーンは数百メートルに及ぶこともあり、採取 される地下水はその長いスクリーンの全深度に賦存していた地下水の混合水となる。以上 のことから、既存孔井から得られた地下水においては、広域の地下水流動を評価するに当 たって、適切な深度及び採水方法であるとは必ずしもいえない。そこで、実際に地下水流 動評価を目的としたボーリング調査を実施し、地下水流動評価を行うことで、既存孔井を 使った評価手法との差異を比較した。 ボーリングは小河原湖西側で実施し、三種類の深度(27.3 - 30.1 m, 39.8 - 45.0 m, 71.0 - 75.9 m)から揚水試料を採取し、それとは別にコアの間隙水も各深度で採取した。既存井戸を使った調査においては、小河原湖周辺の複数の位置で実施した。掘削地点周辺の既存井戸から得られた水試料の放射性炭素同位体比(¹⁴C)の較正年代値(cal BP)は10,000-14,000 cal BPと氷期の値を示していた(図 2.1.9)。しかし、小河原湖東側の地下水の¹⁴C年代値は約4,000 cal BPと、小河原湖西側とは異なる傾向を示したことから、同一の地下水流動系ではない可能性が考えられる。小河原湖西側のボーリングの揚水試料からは深度27.3 - 30.1 mにおいて9,900 - 10,200 cal BP、深度39.8 - 45.0 mにおいて16,100 - 16,400 cal BP、深度深度71.0 - 75.9 m において10,600 - 10,800 cal BPの年代値を示し、これは氷期に涵養した地下水であることを示している。このデータは周辺の既存井戸の多くのデータと整合的であった。

出展) 産業技術総合研究所(2020)¹⁰
 図 2.1.9 ボーリング掘削地点と既存井戸から取られた浅層地下水の¹⁴C 年代値
 Figure 2.1.9 Map of borehole point and Carbon 14 groundwater age

水素安定同位体比に関して、ボーリング坑からの揚水試料の水素安定同位体比は最も浅 い深度、27.3 – 30.1 m、において-64 ‰以下であり、周辺の河川(-63 ‰以上)よりも低い 値を示した。全ての深度の揚水試料及び間隙水試料の水素安定同位体比及び酸素安定同位 体比を図 2.1.10に示す。水の水素安定同位体比及び酸素安定同位体比は涵養時期の気候に よって変化することが知られており、全ての揚水試料の水素安定同位体比が -64 ‰以下の 値であることから、現在よりも寒冷な時期に涵養した水であることを示している。ボーリ ングコア試料から抽出した間隙水試料の水素安定同位体比は、浅部では水素安定同位体比 が -55 ‰前後の高い値が得られたが、深度20 m 以深では安定同位体比は -65 ‰前後でお おむね一定の分布を示し、河川水より低い値となった。上記の結果は、深度20 m以深にお いては、最終氷期よりも新しい水の影響が乏しいことを示しており、この結果は¹⁴C年代の 値とも整合的な結果である。

地下水中のトリチウム濃度を測定したが、いずれも検出限界以下であった。トリチウム は半減期が12.3年で、天水に一定濃度以上含まれているため、涵養時期が比較的新しい場 合は検出され、年代を測定することができる。今回、未検出であったことは、ある程度古 い地下水であることを示しており、¹⁴C年代値及び水素安定同位体比の結果と整合的である。

Figure 2.1.10 Stable isotope of water molecule, groundwater, pore-water, shallow groundwater and river water

加えて、既存井戸からの水試料、ボーリング抗からの揚水試料(緑プロット)、既存井戸 からの水試料(灰色、小川原湖東部及び記載無しは小川原湖西部)、及び河川からの水試料 (灰色、高瀬川)の希ガス濃度を分析し、涵養温度を計算し、6Dと比較した(図 2.1.11)。 希ガス涵養温度は、一般に涵養地点の年平均気温を反映しているといわれている²⁵。希ガ ス涵養温度と水素安定同位体との関係性は、おおむね正の相関関係が確認できた。詳細を 確認すると、水素安定同位体比が-65‰付近において、温度がばらついている。既存井戸の データは井戸の幅広い深度から取られた地下水の混合水であるため、複数起源の水が混合 していることによる影響の可能性がある。しかし、ボーリング抗からの揚水試料も若干ば らついていることから、希ガス濃度分析の精度の問題も懸念される。今後、ボーリング坑 からの水試料の分析が進むことで詳細が判明する可能性がある。

図 2.1.11 ボーリング抗からの揚水試料及び浅層地下水の水素安定同位体比と希ガス涵養 温度の関係¹⁰

Figure 2.1.11 Stable isotope of water molecule, groundwater, pore-water, shallow groundwater and river water

ボーリングの揚水試料の¹⁴C年代、水素酸素安定同位体比、トリチウム濃度及び希ガス涵 養温度がいずれも氷期に涵養した地下水であることを示していた。最も浅い揚水試料(27.3 – 30.1 m)においても間氷期に涵養した新しい地下水の影響が確認できなかったことから、 この地域においては地上水の地下水への影響が中深度処分の埋設地深度よりも十分浅いと ころまででとどまっていることが確認できた。また、間隙水試料は揚水試料よりも多くの 深度で採取可能し、その水素・酸素安定同位体比から、深度20m以深では氷期に涵養した 地下水に支配されているが、20m以上では間氷期に涵養した地下水の影響が確認できた。 間隙水のトリチウム濃度及び¹⁴C年代値はサンプル量が少ないため取得できていない。仮に、 これらのデータが取得できるような大規模な調査が実施できれば、今回と整合的な結果が 得られる可能性がある。ボーリングによって得られた揚水試料及び間隙水試料から、間氷 期に涵養した新しい地下水の影響が浅いところでとどまっていることが確認できた。

平成29年と30年に本プロジェクトによって調査してきた既存井戸の水試料は深度50 m以 深でスクリーンの幅は100 m以上であった。そのため、その結果を踏まえた地下水流動概念 モデルには深度100 m 程度以浅の情報はあまり反映できておらず、地形・地質構造からの 想定のみであった。また、間氷期以後に涵養した地下水の影響が深度20 m程度でとどまっ ていることも分からなかった。平成31年度以後のボーリングを使った調査及び地下水の地 球化学的指標の調査において、寒冷期の特徴を示す地下水の流動する領域は、予想以上に 浅層まで及んでいることが明らかとなった。以上のことから、地下水流動の評価手法とし てボーリングを使った調査と地球化学的指標を使った調査の有効性が高い事が示された。

2.1.4 中深度処分における岩盤の力学的状態と水理学的特性に関する研究

放射性廃棄物を埋設する岩盤は、自然事象及び処分場の坑道掘削等の人為事象により 様々な作用を受けている。この作用により岩盤が損傷又は破壊し、その結果、地下水の流 動や放射性核種の移行(以下「物質移行」という。)経路となることが懸念される。特に、 放射性廃棄物を処分するための掘削によって岩盤応力が解放された場合、物質移行経路と なり得る掘削影響領域(Excavation disturbed zone; 以下「EDZ」という。)が形成されるこ とが考えられる。こうした岩盤中における物質移行を評価し、また EDZ を含めて、坑道が 適切に閉鎖されていることを確認するためには、岩盤の力学的状態とそれに伴う岩盤損傷 等による水理学的特性の関係性を適切に把握することが必要である。そこで、岩盤の力学 的状態とそれに伴う岩盤の状態を原位置試験により把握するとともに水理学的特性を実験 的に取得して、放射性核種の移行挙動が適切に評価されていることの妥当性を確認するた めに必要な科学的・技術的知見を取得した。なお、この研究は日本原子力研究開発機構と の共同研究において実施した26。また、岩盤の力学的状態とそれに伴う岩盤損傷等による 水理学的特性の関係性を室内試験より明らかにするため、岩盤損傷を模擬した三軸の力学 的試験及び水理学的式試験を同時に実施することのできる連成試験装置の設計・製作を行 い、今後の実験の準備を開始した。なお、この研究は埼玉大学及び産業技術総合研究所と の共同研究にて開始した。

(1) はじめに

岐阜県瑞浪市にある日本原子力研究開発機構の瑞浪超深地層研究所の 300 m 坑道東側壁 面において、花崗岩を対象として、ボーリング孔を用いた閉鎖確認の妥当性判断のための 試験を行った。具体的には、300 m 研究アクセス坑道(以下「坑道」という。)東側壁面に 水平から 10°下向きに深度約 2 m の試験孔 2 本をコアカッター(φ66 mm)により掘削し、原 位置透水試験、ボアホールテレビ(BTV)による試験、屈折法弾性波探査による試験及び 比抵抗二次元探査測定による試験を行った。

実際の試験位置として、瑞浪超深地層研究所研究坑道の壁面調査データ集²⁷の亀裂マッ プを使って亀裂の少ない地点を選定した。二本のボーリング孔(No.1 孔と No.2 孔)の間 隔は2mとり、その左右に弾性波探査試験の受信・発信及び比抵抗二次元探査試験の電極 を設置するために10mの幅で吹付コンクリートを除去し、岩盤を露出させた。イメージ図 を図 2.1.12 に、吹付コンクリート除去後の写真を図 2.1.13 に示す。

図 2.1.12 300 m アクセス研究坑道における調査ポイント概略レイアウト

Figure 2.1.12 Layout of survey point on 300 m A/R-Gllery

図 2.1.13 300 m アクセス研究坑道における調査ポイント状況写真 Figure 2.1.13 Picture of survey point on 300 m A/R-Gallery

吹付コンクリートを除去後に、水平から 10 度下向きに 2 m のボーリングコアを 2 本掘 削した。坑道とボーリング孔の位置関係を図 2.1.14 に示す。ボーリングコアは可能な限り 回収を行い観察した結果、岩相は黒雲母花崗岩で構成されていた。1 本目のコアの 0.9-1.35 m までの間は、暗色部が確認された。

図 2.1.14 300 m アクセス研究坑道におけるボーリング孔のレイアウト Figure 2.1.14 Layout of borehole point on 300 m A/R-Gallery

(2) ボアホールテレビによる孔観察

ボーリング孔表面観察のため、ボアホールテレビ(以下「BTV」という。)を使い孔表 面の観察を行った。また、Borehole Image Processing System(ボーリング孔壁の 360 度全周 画像を定方位かつ連続的にデジタル記録し、この画像データを元に地質情報を取得する一 連のハードウェア及びソフトウェアのことをいう。以下「BIP システム」という。)を使 い、割れ目の走行、傾斜及び開口幅の解析を行った。No.1 孔に関して、幅 0.2 mm 以上の 開口割れ目は坑道壁面近傍に多く分布していた。コア観察で確認された暗色部は BTV で も確認できた。No.2 孔に関しては、開口割れ目が坑道壁面から1m以上の深部に2本確認 できた。掘削影響によって形成される割れ目は坑道近くにできやすいことから、EDZ の割 れ目ではない可能性が高い。特に、1.75 m 付近にある開口割れ目の周辺に赤い変色が確認 できたことから、長期にわたって地下水が流れることで周辺岩盤が変質したと考えられ、 掘削時にできた割れ目とは考えにくく、元々岩盤に存在した割れ目と考えられる。

(3) 透水試験

シングルパッカーの透水試験装置を用いて透水試験を行った。装置の概念図を図 2.1.15 に示す。パッカーの拡張によって区切られたシングルエンドの区間が試験区間となる。透 水試験はまず、注水パルス法で実施し透水係数が 1×10⁻¹⁰ m/s 以下の場合はその値を採用し た。岩盤の透水性が高く、1×10⁻¹⁰ m/s 以上だった場合は定量注水法による透水試験を実施 した。

No.1 孔においては 0.34 m (吹付コンクリート厚さ 0.14 m を含む)より坑道側、No.2 孔 においては、0.27 m (吹付コンクリート厚さ 0.23 m を含む)より坑道側では、水圧が上が らず水理試験が成立しなった。坑道と直結した透水性の高い割れ目が存在していると考え られる。そのため、透水試験はそれらよりも岩盤側で実施した。試験はパッカーの位置を ずらしながら、2 m のボーリング孔内の複数の位置で実施した。

図 2.1.15 パッカー概念図 Figure 2.1.15 Conceptual diagram of packer system

No.1 孔については、坑壁から 0.34m より深い全ての深度において、おおむね 1×10⁻¹⁰ m/s オーダー以下の透水係数が得られた。試験区間に開口割れ目を含む場合においても、 1.29×10⁻⁹ m/s と低い透水係数を示した。No.2 孔は深度 0.8 m(吹付コンクリート厚さ 0.23 mを含む)より浅部を含む試験では 3.98×10⁻⁷ m/s と比較的高い透水係数を示した。0.8 m よ りも深い区間では 1×10⁻¹⁰ m/s オーダー以下の透水係数を示した。以上のことから、No.2 孔 の BTV の試験で確認された深部の開口割れ目はあまり透水係数に影響を与えていない可 能性がある。また、浅部においては、BTV の試験で開口割れ目が確認されていないにもか かわらず、高い透水係数を示したことから、BTV では確認できない割れ目が EDZ として 形成され、透水係数に影響を与えている可能性が示唆された。

(4) 弹性波探查試験

屈折法弾性波探査は、一般的に、地表付近でハンマー等により人工的に弾性波を発生させ、屈折して戻ってくる屈折波を、地表に設置した測定装置で観測し、各速度層の層厚や地下の弾性波速度構造を求める探査法である。

屈折法弾性波探査は、坑道壁面発信 - 坑道壁面受信、ボーリング孔底発信 - 坑道壁面受 信、坑道壁面発信 - ボーリング孔内受信、ボーリング孔内発信、ボーリング孔内受信で実 施した。それぞれのイメージ図を図 2.1.16 (a 坑道壁面発信-坑道壁面受信、b ボーリング孔 底発信-坑道壁面受信、c 坑道壁面発信-ボーリング孔内受信、d ボーリング孔内発信-ボーリ ング孔内受信) に示す。

Figure 2.1.16 Conceptual diagram of geophysical survey

坑道壁面発振-坑道壁面受振の試験結果だけでは、探査深度が1m以下となっていたが、 発信及び受信にボーリング孔を使った試験を加えたことで、ボーリング孔底2m付近まで の探査を実施できた。試験結果を解析したところ、坑道壁面から20~30cm(吹きつけコン クリートを含まない)のところで弾性波速度が遅く、深部においては弾性波速度が速いこ とが確認できた。弾性波速度が遅い区間は空隙が多いことを示している可能性がありEDZ と関係している可能性がある。

(5) まとめ

瑞浪超深地層研究所の坑道を使って EDZ を調査するための試験を行った。BIP システム を用いて割れ目の走行、傾斜及び開口幅の解析を行い、開口割れ目を確認できた。また、 透水試験を行ったところ、透水係数は坑道壁面に近いところで上がる傾向が確認できたが、 これは BIP システムで確認できた開口割れ目の位置とは必ずしも整合的ではなかった。ボ ーリング孔を使った弾性波探査試験では、ボーリング孔底付近までの弾性波速度を確認す ることができた。坑道壁面に近いところで弾性波速度が低い区間を確認できたことから、 これは透水試験結果と整合的である。以上の結果は、中深度処分の埋設地を建設しときに、 EDZの形成の有無を確認するための手法として活用できる可能性がある。

2.1.5 中深度処分における岩盤の収着・移行現象に関する研究

岩盤中の放射性核種の移行を考える際、微小な空隙中での放射性核種の物質輸送とその 過程での鉱物への収着は移行を遅延させる重要な機構である。この機構評価では、分散系 での核種の収着反応評価、金属酸化物の集合体の評価など水分子の移動や空隙内の分布、 表面の凹凸、電気二重層の影響等様々な評価がされているが、微小空間での収着に寄与す る特異的な現象を統一的に考慮することで、岩石中の微小な空隙での特異的な収着反応の メカニズムを明らかにし、そのような特異的な収着反応が放射性核種の移行に与える影響 を検討した。岩石中の放射性核種の拡散及び収着には、岩石の固相及び液相の様々な条件 が影響を与えるため、各試験の目的に合わせて空隙中の液相の化学状態、空隙のサイズを 制御した試料を用いた試験を行った。

具体的には、数 nm 径の円筒状の空隙がハニカム状に並んだヘキサゴナル構造を持つメ ソポーラスシリカである MCM-41 や SBA-15 を対象としたバッチ吸着試験を行った。吸着 イオンとして、吸着に与える価数及び水和エネルギーの影響を調べるため、主要核種であ るセシウムとストロンチウムを用いた。また、水酸化ナトリウム及び硝酸ナトリウムの濃 度を変化させることで pH 及びイオン強度依存性を調べた。さらに、空隙径の異なる SBA-15 を用いて吸着量の変化を調べた。得られた実験結果を吸着モデルと比較した。吸着モデ ルは、シリカを含む溶液に対する水酸化ナトリウム溶液の滴定試験によって得られたシリ カの表面電荷量を用い、従来の表面錯体モデルに異なる仮定を置いた空隙中の電位分布を 適用することで計算した。その結果、電荷が多く水和エネルギーの強いストロンチウムで 吸着量が大きく、また、イオン強度が吸着量や吸着が増加する pH の値に大きく影響する ことが分かった。なお、この研究は東京大学との共同研究において実施した。

29

2.2 廃棄物埋設における性能評価手法に関する研究

廃棄物埋設地における多重バリアシステムとしての人工バリア及び天然バリアの長期 性能を評価するための評価手法の妥当性について科学的・技術的知見の蓄積が必要である。 そこで、以下に示す項目について知見を取得し、成果の内容を取りまとめた。

2.2.1 人工バリアの長期性能評価手法の研究

(1) ベントナイト系人工バリアの長期性能評価手法の研究

ベントナイト系人工バリアの長期変質挙動に関しては、現在まで主に淡水系地下水環境 下を想定した室内実験及び解析コードの整備が実施されている。しかしながら、淡水-塩 水混合系地下水環境に廃棄物埋設地が位置することも想定されることから、これらの環境 における評価手法の妥当性について科学的・技術的知見の蓄積が必要である。そこで、淡 水-塩水混合系地下水環境下における室内実験とモデル解析を中心として、ベントナイト 系人工バリアの変質挙動に関する評価手法の構築を行った(図 2.2-1)。具体的には、物質 移行に関連する事項として、拡散現象の取扱いについて検討を行った。本検討は日本原子 力研究開発機構の委託事業において実施した成果を取りまとめたものである 32。拡散現象 については、これまで有効拡散係数(De)の概念を用いた整理が既往の研究にて行われて きた^{28、29、30}。この「有効拡散係数(De)」はベントナイト系人工バリア中のイオン強度に よって変化することが知られている。一方、収着等を含めた様々な要因の影響を受ける拡 散フラックスと単位体積当たりの収着を含めた濃度勾配との間の比例係数である「見かけ の拡散係数(Da)」は、イオン強度によらず一定であった^{29,30}。このため、見かけの拡散 係数(Da)をベースとしたシンプルで科学的に合理的なベントナイト系人工バリア中の拡 散モデルを整備することを目的に調査を行った³¹。文献調査及び室内試験により、陽イオ ン種、陰イオン種及び中性種に対するベントナイト系人工バリア中の見かけの拡散係数 (Da)を整理し、見かけの拡散係数(Da)データセットの作成を行った(表 2.2-1)。ま た、セメント系材料からの溶脱が想定され、ベントナイト系人工バリアとの反応として、

陽イオン交換反応や二次鉱物の生成が生じることから重要と考えられるカリウムイオンに ついて、室内試験を行い、見かけの拡散係数(Da)を取得した^{31,32}。収着バッチ試験によ り、イオン強度の異なる溶液(NaClで調整)に分散した粉末モンモリロナイト(ベントナ イトの主要鉱物)への分配係数を取得した。また、透過拡散試験及びIn-diffusion試験(飽 和させた固相試料の中央断面に測定の対象のイオンを含む溶液を塗布し、所定時間静置後 の固相試料内の濃度分布を測定する試験)により、見かけの拡散係数(Da)を取得した³²。

得られた見かけの拡散係数(Da)のデータセットを用いた物質移行-変質連成解析の 試計算を実施した^{31,32}。計算は図 2.2-2 に示したセメント系人工バリアとベントナイト系 人工バリアが接した状況を想定した一次元の体系とした。また、セメント系人工バリアの 端部は液相との固定境界を想定し、その境界部の溶液組成を表 2.2-2 に示す。セメント系 人工バリア及びベントナイト系人工バリアの初期鉱物及び反応により生成が想定される二 次鉱物を表 2.2-3 に示す。見かけの拡散係数(Da)を用いた試計算では、元素それぞれ について見かけの拡散係数(Da)及び保持因子を設定しているが、物質移行後の溶液中 の電荷バランスが崩れてしまい、計算が収束しない結果となった³²。見かけの拡散係数 (Da)を用いた計算を収束させるためには、Appelo and Wersin (2007)³³で取り入れられた ネルンストープランク式を用いることにより、鉱物表面の電荷と液相中の電荷の合計がゼ ロになるような関係式を組み込む予定である。

地下水に溶存したアルカリ等によりベントナイト系人工バリアの溶解に伴い生成する 二次的鉱物については、その生成により物質移行性能に影響を及ぼすことから、二次鉱物 が生成することによる物質移行性能に対する科学的・技術的知見の取得のため、文献調査 及び試計算を行った。本検討は日本原子力研究開発機構の委託事業において実施した成果 を基に、原子力規制庁が考察を行ったものである34。文献調査では、国内外の研究機関等 で整理されている粘土-セメント系材料の相互作用を対象とした地球化学計算において設 定されている鉱物リストの調査、室内実験等を対象とし、ベントナイト系人工バリアの溶 解に伴い生成する可能性のある二次鉱物の抽出を行った(表 2.2-4) 35。調査によって抽 出した二次鉱物は、室内試験及び天然事例での生成の有無や想定される中深度処分の温度 条件を踏まえ、地球化学計算において「設定する鉱物」又は「設定しない鉱物」に分類し た。ただし、「設定する鉱物」のうち、類似した構造や組成を持つ鉱物群である Mg ケイ 酸塩、C-(A-)S-H型鉱物及びゼオライトに分類した鉱物については、熱力学的に不安定な 鉱物が短期間で安定な鉱物に変遷するのか、又は長期にわたって存在するかは不明なた め、熱力学的な平衡計算のみによって一意に生成種を決定できないと考えられる。そこ で、これらの鉱物設定の差異がベントナイト系人工バリアの透水性に及ぼす影響の程度を 確認する必要があると判断し、当該鉱物群を「影響検討鉱物」に分類した。「影響検討鉱 物」のうち、C-(A-)S-H 型鉱物については、熱力学的な安定性が大きい結晶性の鉱物であ るトバモライトが生成する場合よりも、熱力学的に不安定であると考えられる C-A-S-H ゲルが生成する場合において、ベントナイト間隙水中の Si 濃度は高くなるものの、Al 濃 度の低減と pH の上昇がみられ、ベントナイト間隙水のモンモリロナイトに対する不飽和 度が大きくなったため、モンモリロナイトの溶解量が大きくなることが示された。また、 ベントナイト系人工バリアとセメント系人工バリアの相互作用では、ゼオライトのヒュー ランダイトとチャバサイト及び C-(A-)S-H 型鉱物(トバモライト又は C-A-S-H ゲル)の3 鉱物がベントナイト中の間隙水組成をコントロールしていることが示唆された。

31

表 2.2-1 Da データセット

Table 2.2-1 Dataset of Da

元素	Da [m ² /s]	イオン種	$D_0 \left[m^2/s\right]$	分類
Cl	1.5×10 ⁻¹⁰	Cl-	2.0×10-9	
F	7.2×10 ⁻¹¹	F-	1.5×10-9	
В	7.2×10 ⁻¹¹ *	BO ₂ -	1.5×10-9	
	—	HBO ₂	—	
S	4.0×10 ⁻¹¹ *	SO4 ²⁻	1.3×10-9	/
	3.2×10 ⁻¹¹	HSO_4^-	1.1×10 ⁻⁹	
С	2.4×10 ⁻¹¹ *	CO3 ²⁻	9.2×10 ⁻¹⁰	仔
	4.0×10 ⁻¹¹	HCO ₃ -	1.2×10 ⁻⁹	行生
D	1.2×10 ⁻¹¹ *	HPO4 ²⁻	7.7×10 ⁻¹⁰	们
r	2.2×10 ⁻¹¹	$H_2PO_4^-$	9.6×10 ⁻¹⁰	
Na	7.4×10 ⁻¹¹	Na^+	1.3×10 ⁻⁹	
Ca	1.7×10 ⁻¹¹	Ca ²⁺	7.9×10 ⁻¹⁰	
Mg	1.4×10 ⁻¹¹	Mg^{2+}	7.1×10 ⁻¹⁰	
K	3.0×10 ⁻¹¹	\mathbf{K}^+	2.0×10 ⁻⁹	高収
Ν	3.0×10 ⁻¹¹	$\mathrm{NH_4^+}$	2.0×10-9	着性
Si	6.0×10 ⁻¹³	Si(OH)5 ⁻	_	
		Si(OH) ₄	—	
Fe		Fe(OH) ₃ -	_	OH-
	2.0×10 ⁻¹³	Fe(OH) ₂	—	錯体
		FeOH^+	—	
Al	2.0×10 ⁻¹³	Al(OH)4 ⁻	1.1×10 ⁻⁹	

※オキソ酸イオンについては、「※」のついた Da を当該元素の代表値とする。 出典) 日本原子力研究開発機構(2019)³²

表 2.2-2 液相固定境界の組成

塩水系地下水				
pН	8.0			
元素	濃度	二半	濃度	
	mol/L	儿糸	mol/L	
Na	6.7×10 ⁻¹	S	3.0×10 ⁻²	
Κ	1.1×10 ⁻²	Cl	5.9×10 ⁻¹	
Ca	3.3×10 ⁻⁴	Al	3.2×10 ⁻⁹	
Mg	2.5×10 ⁻⁴	Si	3.0×10 ⁻⁴	
С	3.5×10 ⁻²			

Table 2.2-2 Water composition of fixed boundary condition

出典) 日本原子力研究開発機構(2019) 32

表 2.2-3 セメント系及びベントナイト系人工バリアの鉱物モデルで設定した鉱物

鉱物	初期 wt%	初期 wt%	谷长市	初期 wt%	初期 wt%
	(cement)	(bentonite)	夏 5 120	(cement)	(bentonite)
Ca(OH) ₂	15.33	0	CSH(1.5), CSH(1.3)	0	0
CSH(1.8)	60.30	0	CSH(1.1), CSH(0.9)		
Monosulfate	0.01	0	CSH(0.833)	0	
(AFm)	9.91		CSH(0.6), CSH(0.4)		
Hydrogarnet	12.45	0	E. 1.1 C.1	0	0
(C_3AH_6)	12.43		Friedel Sait	0	
Brucite	1.78	0	Gibbsite	0	0
K ₂ O	0.16	0	Goerthite	0	0
Na ₂ O	0.08	0	Greenalite	0	0
Na-Mont	0	49.0	Gypsum	0	0
Quartz	0	38.0	Hydrotalcite	0	0
Analcime	0	3.0	Kaolinite	0	0
Calcite	0	2.5	Lomontite	0	0
Ettringite (Aft)	0	0	Mangetite	0	0
AS ₂ H ₂	0	0	Melanterite	0	0
AS ₄ H	0	0	Sepiolite	0	0
Berthierine	0	0	Siderite	0	0
C ₃ ASH ₄	0	0	SiO ₂ (a)	0	0
Chukanovite	0	0			

Table 2.2-3 Minerals setting of modeling for engineered cementitious and bentonite barrier

出典) 日本原子力研究開発機構(2019) 32

表 2.2-4 地球化学計算のために選定した二次鉱物

(青字:設定しない鉱物、赤字:設定する鉱物、緑字:影響検討鉱物)

Table 2.2-4 Selected secondary minerals for geochemical modeling

(blue: not set for modeling, red: set for modeling, green: examine the effect on setting)

分類	鉱物名	分類	鉱物名	分類	鉱物名	分類	鉱物名
ケイ酸塩	Illite	C-A-S-H型	Katoite	ゼオライト	Phillipsite	水和物	C4AH13
	Kaolinite		Stratlingite		Heulandite		C4AH19
	Pyrophyllite		C-A-S-Hゲル		Clinoptilolite		Ettringite
長石	K-feldspar	C-S-H型	C-S-Hゲル		Analcime		Hydrotalcite
水酸化物	Brucite		Tobermorite		Laumontite		Friedel's salt
	Gibbsite		Jennite		Chabazite		Monocarboaluminate
炭酸塩	Dolomite		Afwillite		Merlinoite		Hydrogarnet
Mgケイ酸塩	Clinochlore		Gyrolite	硫酸塩	Gypsum		Monosulfate
	Sepiolite						
	M-S-H						

出典) 笹川剛ら(2020)³⁵

出展) 日本原子力研究開発機構(2018)³¹

図 2.2-1 ベントナイト系人工バリアの劣化に係る評価モデルと解析コードの体系 Figure 2.2-1 Evaluation model for degradation of engineered bentonite barrier and system of analysis code

図 2.2-2 解析体系 (セメント系人工バリアとベントナイト系人工バリアが接した系) Figure 2.2-2 Schematic diagram of simulation (system for contact between engineered cementitious and bentonite barriers)

(2) セメント系人工バリアの長期性能評価手法の研究

中深度処分の廃棄物埋設地の設計におけるセメント系人工バリアについて、300 年を超 える長期の漏出抑制性能を評価するために必要な科学的・技術的知見を整備することを目 的とした研究を行った。具体的には、現在国内で広く使用されているセメント系材料を中 心にセメント硬化体の長期安定性に関係する結晶構造や物質移行特性、さらに、これらに 関係する鉱物組成を考慮した材料設計、養生方法及び維持管理方法並びに評価モデルに関 連し既往の研究の調査及び試験を実施し、300 年を超えるセメント硬化体の長期性能評価 を行う上での課題の整理を行った。また、これらセメント硬化体の長期安定性に関する既 往の研究成果等のコンクリートの長期性能評価への適用性について検討し、人工バリアと して使用することを想定した場合の長期性能に関する課題として整理した。さらに、セメ ント系人工バリアについて、体積変化によるひび割れ等の発生が物質移行特性へ及ぼす影 響について科学的・技術的知見の取得を行った。なお、この研究は日本原子力研究開発機 構の委託事業 ^{32,34}において実施した。

中深度処分における工学バリアのうち、セメント系人工バリアは、主に放射性核種¹⁴C 及び¹²⁹I等を閉じ込める機能が求められ、セメント硬化体により構成されている³⁶。

社会基盤におけるセメント硬化体は、基本的には体積の 7~8 割を占める天然の細骨材 及び粗骨材を密実に配置し、骨材間の空間をセメントで充填し骨材を包むように結合接着 させることで構造強度等の構造性能及び物質移行に伴う水密性(以下「物質遮断性能」と いう。)を確保する構造体である³⁷。したがって、セメント硬化体の圧縮強度はおおむね骨 材の強度等で決まり、引張強度はセメントマトリックスの接着力で決まる。一方、物質移 行性能は水和反応により形成されたセメントマトリックスの緻密性により決まることが明 らかとなっている³⁷。こうした背景から、社会基盤分野におけるセメント研究は、国等の 構造物設計基準による要求性能が構造性能であることを踏まえ構造性能に関する研究が主 たる研究であり、物質移行性能に関する研究は、水密コンクリート等の特殊構造物の設計 において拡散性等を実験等で計測して品質確認する程度で、メカニズム解明等の研究は行 われていないことが既往の研究調査から判明した。

こうした既往の研究の実態から廃棄物埋設におけるセメント系人工バリアの物質移行 に関する研究においては、セメントマトリックス中の物質移行特性を評価することに主眼 がおかれているが、セメントマトリックスは様々な細孔構造を有していることに加え、粉 体を水和反応により硬化させる物質の特徴である収縮膨張等の体積変化による影響を加味 した物質移行特性に関する研究が必要と考えられる。なお、実際のセメント硬化体は、一 般には体積変化を少なくするために収縮に大きく寄与する単位セメント量及び水量を最低 限にするとともに骨材の最大骨材寸法をできる限り大きくするなどの配合設計が行われて いる。さらに、収縮等の弱点である引張抵抗性向上のため鉄筋の配置又は長短繊維等を混 入するなどコンクリート構造物の古典的基本理論が考慮されている。なお、コンクリート 構造物は地震力及び土圧等が作用しせん断破壊等の損傷を受けた場合、物質遮断性が失わ

37

れることも考慮した対策が求められる。また、セメント硬化体の長期性能を評価するには、 設置される環境として地下水中の湿潤環境や水質中の塩等の存在がある場合は、緻密性を 構築しているセメントマトリックスの結晶形態や結晶重合度等の結合性(以下「結晶安定 性」という。)が損傷されるため物質移行空間が拡大し核種移行性能の低下を生じること から、立地される環境雰囲気を考慮した結晶安定性等について評価することが求められる。 廃棄物埋設におけるセメント系人工バリアには、こうしたセメント及びセメント硬化体の 特性及び特徴を鑑みたセメント研究が必要である。

そこで、廃棄物埋設での安全研究では、①細孔構造の変遷と物質移行性、②セメント結 晶(非晶質含む)の変遷による物質移行性、③体積変化による物質移行性、さらに、空隙 や材料特性に寄与する④収着性と物質移行性、の四視点に着目して行うことが求められる。 なお、これらの四視点での機構解明等のうち、平成 30-31 年度において①②について予備 的研究を行ったので、以下に報告する。

① 細孔構造の変遷と物質移行性

セメント硬化体中には、エントラップドエアー及びエントレインドエアーの独立空隙と 毛細管空隙及び層間空隙(ゲル空隙含む)の連行空隙の四つに分類される空隙が存在する。 これらの空隙の大きさ及び形状(以下「細孔構造」という。)のうち、物質移行に寄与す る細孔構造は連行空隙である。この連行空隙は、水和前の材料の充実度による物理的空隙 に加え、水和過程で形成される化学的空隙に分けられ、特に化学的空隙の量及び形状等の 形態が水和終了する約100年間に渡り継続的に変化し続くことはセメント工学分野では自 明である。また、水和進行によるセメント結晶の生成とともに外部環境による劣化により 空隙構造が変化することも自明である。つまり、セメント硬化体における形成時の細孔構 造は単位セメント量や混和材量並びに化学混和剤の添加等の調合、締固め及び養生によっ て形成され、その後の細孔構造は、降雨等の自然環境における水分の存在により生成した セメント結晶(非晶質も含むセメント結晶を以下「CSH ゲル」という。)の生成に影響を 与える pH、温度、水質等の外部環境によって変化すると考えることができる。

そこで、材料に起因し社会基盤分野ではほとんど研究が進んでいない CSH ゲルの層間 空隙及びゲル空隙に着目した。計測方法としては、水銀圧入ポロシメーター及び水蒸気吸 着装置の2つを選定し比較検討した。その結果、水銀圧入ポロシメーターは、セメントマ トリックスの強度に依存することから、空隙を破壊することで空隙径を換算する手法であ ることがわかり、かつ、層間空隙等の微小な空隙は計測できないことが明らかとなった。 一方、水蒸気吸着装置は、層間空隙及びゲル空隙の測定には十分に適していることと吸着 特性も同時に計測できることから廃棄物処分での空隙等の計測に適していることが分かっ た。ただし、セメント硬化体に水蒸気を投入することから未水和鉱物等があると水和が進 行することもあり、注意が必要である。

今後は、水蒸気吸着装置を基に、さまざまな調合による CSH ゲルの層間空隙及びゲル空隙について、形態及び変化等を加味した評価法の取得が必要である。

② セメント結晶(非晶質含む)の変遷による物質移行性

セメント硬化体における CSH ゲルの層間空隙及びゲル空隙は、セメント結晶の形態に よってその構造が異なることから、水和及び外部環境による結晶形態の変遷にしたがって、 層間空隙及びゲル空隙の構造も変化することが懸念される。また、CSH ゲルは、カルシウ ムシリカモル比により結晶形態も異なる。

そこで、CSH ゲルの結晶安定性に関する機構解明を行うため、トリメチルシリル誘導体 化法(以下「TMS法」という。)によるケイ酸鎖長構造の測定及び核磁気共鳴装置(以下 「NMR法」という。)によるケイ素及びアルミニウム等の化学結合形態の変化(化学シフ ト)を用いて同一試料による測定を行い、CSH ゲルの結晶形態の評価を行った。

その結果、それぞれの手法は、直接的に測定しているものが異なるものの、単独又は組 み合わせることで CSH ゲルの結晶安定性を評価するに十分な情報が得られることが確認 された。今後は、引き続き、様々な材料調合に基づく計測を行って、結晶安定性の一般化 評価手法の取得を行う。

2.2.2 天然バリアの自然事象を考慮した水理特性の評価手法の研究

(1) はじめに

天然バリアとして機能する低透水性岩盤の透水特性、拡散特性等の核種移行の遅延効果 に関する評価は、海水準変動及び隆起・侵食によって地形及び動水勾配が大きく変化し得 る地域においてはこれらを考慮する必要があるため、海水準変動や地形変化等の長期的な 自然事象を考慮した天然バリアの性能評価に必要な科学的・技術的知見を取得した。

中深度処分の廃棄物埋設地に関しては、水理地質構造、地球化学環境等を踏まえて廃棄 物埋設地から生活環境への主要な放射性物質の移行を抑制する性能について評価がなされ る。中深度処分においては、我が国で想定される自然現象である隆起・侵食及び海水準変 動による地形変化が、地下水流動・地下環境の変化や埋設深度の減少を引き起こし、処分 システムにおける機能の喪失や核種移行抑制等の性能を低下させることが懸念されるため、 隆起・侵食及び海水準変動に伴う将来の地形変化を適切に評価すること等が必要と考えら れる。また、被ばく線量評価につながる地下水流動・核種移行評価を行うに当たっては、 将来の地形変化の変動幅を評価することが重要であり、これら評価の妥当性判断における 留意点を抽出・整理した。この研究は日本原子力研究開発機構の委託事業^{31,28,34}において 実施した。

(2) 地形変化評価

隆起・侵食及び海水準変動は緩慢かつ広域的な現象であり、過去におけるその変動を外 挿することで、将来10万年程度の推論を行うことが可能であると考えられるが、隆起・侵 食は時間的、空間的に一様な変化ではなく種々のサイト特性に大きく依存する。したがっ て、これら長期的な自然事象を考慮した地形変化を評価するに当たっては、そのサイトの 特性に応じた評価を行うことが必要であり、地形変化の営力を数式化した地形変化シミュ レーションが有効であると考える。一方、地形変化のプロセスとしては、侵食(河川域又 は斜面域)、側刻・蛇行、洪水、気候変動、地殻変動、海域での変化等の複数の現象が考え られ、また、処分サイトが沿岸域周辺であれば海水準変動に伴う汀線の移動によって侵食 の挙動が大きく変動することが考えられるため、地形変化シミュレーションの評価モデル 及び各パラメータの適用性の検証が重要である。

このため、本研究では、まず変動が比較的小さく安定な地域を対象とし、過去から現在 までの地形・地質のデータを活用して過去から現在の地形変化を説明しつつ、将来への外 挿における不確かさ(将来の隆起量、海水準変動等)を考慮した地形変化評価の方法論を 整理した(図 2.2.3)。

出展)日本原子力研究開発機構(2020)³⁴(一部編集)

図 2.2.3 不確かさを考慮した過去~現在~将来の地形変化評価の流れ 34

Figure 2.2.3 Flow of past-present-future topographical change evaluation considering uncertainties

また、整理した方法論に基づき、我が国の典型的な集水域を対象に不確かさを考慮した 過去~現在~将来の地形変化の評価を行った。ここにおいて、対象地域では古地形・沖積 層分布に対し取得可能な情報が不十分なため入力パラメータである隆起量及び地質係数の 不確かさを考慮し、拘束条件においては、領域全体に影響を与える平均侵食速度に対して、 不確かさを考慮した。また、将来の海水準変動についてもその不確かさを考慮し、複数の ケースについて評価を実施した。

これらの評価結果の比較から、対象地域において隆起量、地質係数及び侵食速度並びに

海水準変動の不確かさが将来の地形変化に与える影響を整理するとともに、対象地域に類 似した山地・河川・平野・海域から構成される集水域を対象に、地形変化評価の妥当性判 断における留意点を以下のように整理した。

- 将来の地形変化を評価するためには、サイト固有の入力条件(古地形、隆起速度、沖 積層厚さ及び地質係数)及び過去~現在の地形変化に対する拘束条件(平均侵食速度、 埋没谷深度、河床縦断形及び谷底侵食低地の範囲)を調査し、過去~現在に至る解釈 の整合性を確認する必要がある。
- サイト特有の拘束条件を満足し、現在の地形の再現性を示すことは、地形変化評価に おける不確かさの低減、更に将来への外挿への信頼性を向上させるものであるため、 信頼のある地形変化の評価のためには、この評価プロセスは重要である。
- 海水準が変動すると海域・下流域では侵食基準面の低下により河川の下刻が進むため、現在埋没谷が形成されている海域・下流域周辺では、海水準の変動に伴い地形勾配が有意に変動する。このエリア周辺が埋設地の候補の場合、埋設深度の減少及び将来の地形変化が地下水流動に与える影響を確認する必要がある。
- 気候が変動し寒冷化が進むと、斜面域では周氷河作用(凍結・融解に伴う侵食)の影響が大きくなるため、海水準変動の不確かさに伴う影響は上流域でも見られるが、不確かさに伴う中・上流域での地形勾配の変動幅は海域・下流域に比べて小さい。
- ・ 今回の評価対象地域において想定した隆起速度、侵食速度、地質係数の不確かさが地 形変化に与える影響は、海水準変動の不確かさよりも小さい傾向がみられた。ただし、 中流域より標高の高い内陸での地形変化では、これらパラメータの影響はより顕著 に現れる傾向があるため、埋設地の位置に応じて影響を見極める必要がある。

また、将来の地形変化の不確かさを考慮した評価結果を基に、離隔距離の空間的・時間 的な変動量や汀線位置の変動範囲を統計的に分析することで、離隔距離の確保が難しい領 域、汀線位置の変動による影響を受ける領域、地形変化の影響を受けにくい領域等を抽出 することができ、これらの結果は埋設地の位置の選定の妥当性判断のための1つの技術情 報として利用可能であることを確認した。

(3) 地下水流動·核種移行評価

2.2.2 (2)における現在~将来の地形変化の評価結果に基づき、地形変化・海水準変動の不確かさを考慮した非定常な三次元地下水流動評価を実施し、これらの解析結果を踏まえ、対象地域における不確実性が将来の地下水流動に与える影響について整理した。評価結果の一例として、現在(0年)及び海退時(10.8万年後(A-1:過去と同じ海水準変動ケース及び A-4:海水準変動小ケース))の評価結果を図 2.2.4 に示す。

41

出展)日本原子力研究開発機構(2020)³⁴

図 2.2.4 地下水流動評価結果の一例(各時刻の流速・塩分濃度分布)

Figure 2.2.4 Example of groundwater flow evaluation results (flow velocity / salinity)

現在(0年)においては、陸域では標高差に応じた陸から海に向かう流れ、海域では密 度差による潜り込む流れが生じ、流出点は汀線位置にほぼ一致する。海退時(10.8万年後) には海水圧の減少により海底面で湧出が生じている。A-4のケースでは間氷期が継続し海 水準変動が小さいため、河口付近に厚く沖積層が分布する影響で、10.8万年後において河 口付近の広範囲で流速が A-1のケースより大きい。このような流れの変化は既往研究³⁸で も指摘されているが、今回の設定では沖積層に対し一様に高い透水性を想定しており、海 水準変動に伴う地下水流動の変化については、泥質の低透水性の堆積層の影響を考慮した 上で、実際の状況に則した検証も進める必要があると考える。

また、処分場の配置を検討するに当たっては、将来にわたって地形変化・地下水流動に よる水理学的影響が小さい領域が望ましいと考えられ、このような範囲を抽出するため、 上記の解析結果を用いて埋設深度100mにおける流速・塩分濃度を、1万年ごとに各ケー スに対し求めた(図 2.2.5)。これより、沿岸域、河川域及び勾配の大きな斜面域では、地 形変化・海水準変動の不確かさによる変動が大きいこと、処分場の埋設位置における地質 分布と流速の絶対値との相関性があること並びに河川域及び勾配が大きな斜面域を除く領 域では流速の絶対値及び変化の両方が小さいことが確認された。

出展)日本原子力研究開発機構(2020)³⁴

図 2.2.5 埋設深度 100m における流速・塩分濃度の平均値及び標準偏差

Figure 2.2.5 Mean and standard deviation of flow velocity and salinity at a disposal depth of 100 m

以上の結果から、対象地域に類似した山地・河川・平野・海域から構成される集水域を 対象に、地下水流動評価の妥当性判断における留意点を以下のように整理した。

- 沿岸域では、海水準変動の不確かさが地形勾配及び 100 m 程度の埋設深度における 流速に大きく影響を与える。海域では海水準変動による汀線の移動に伴い流速が変 化するが、陸域でも海水準変動による侵食基準面の移動に伴い地形勾配が変化する 影響で流速が変化する領域が存在することが分かった。そのため、河口周辺の海域・ 下流域が廃棄物埋設地の候補である場合、将来の海水準変動の不確かさを考慮して 地形変化が地下水流動に与える影響を確認する必要がある。
- 沿岸域では、埋設深度における流速の変化は海水準変動及び地形勾配の変化と連動 する傾向にあり、また、流速は海水準の低下の程度が大きいほど増加する傾向にあっ た。そのため、廃棄物埋設地が現在の汀線に近い場合、寒冷化が起こる時期や低下の 程度を考慮し、早い段階で放出される核種に対し影響がないかを確認することは重 要である。
- 内陸部(中・上流域)では、地形変化評価のパラメータ及び拘束条件の不確かさに伴う地下水流動の変動は海域・下流域に比べて小さい傾向にあった。上流域における気候変動の不確かさに伴う地形勾配の違い(周氷河作用)は、埋設深度の流速に対して影響は小さかった。
- 流速と塩分濃度の絶対値とその変動性を指標にした解析結果の解釈から、埋設深度 において将来長期にわたって水理学的影響の小さい領域を把握することは可能であ り、流速の絶対値及び時間変化は透水性が低い地質の分布域のうち河川域及び勾配 が大きな斜面域を除く領域で相対的に小さい傾向にあった。

また、同集水域を対象に核種移行評価を実施し、核種移行評価の妥当性判断における留 意点を以下のように整理した。

- ・異なる岩種(地質係数が異なる岩)が近傍に存在する場合、地質係数が変動すると将 来の地形勾配が変化し地下水流動が変化することによって、核種の移行経路が時間 経過とともに移動する。
- ・ 核種の移行経路は複数の地質区分を通過することとなるが、移行経路が移動し通過 する各地質区分の距離が変化すると、核種移行への影響が大きくなり得るため、地質 の受食性とその不確かさの検討が十分になされているかを確認するとともに、それ が地下水流動場、特に移行経路の時間変化に与える影響と被ばく線量への影響を地 質の調査データとともに適切に評価されているかを確認する必要がある。

2.3 地質環境及び水理環境モニタリングに関する研究

中深度処分における安全確保のために、廃止措置期間中までにおいて放射性物質の異常 な漏えいがないこと、及び規制期間終了以降の移行抑制機能に関する見通しを示すことが 求められる。見通しを示すための手段としては、人工バリア及び天然バリアが設計通りの 性能を発揮していることを確認する性能確認モニタリング及び地下水の状態等を把握する ための地下水モニタリング(以下「地下水等モニタリング」という。)が有効と考えられ ている。また、閉鎖確認では、埋め戻し等において処分坑道、地質ボーリングサンプリン グ孔、地下水モニタリング孔等(以下「ボーリング孔等」という。)が地下水の短絡経路 とならないこと等の施設確認も必要である。さらに、許可後に設定される掘削制限区域の 範囲設定の妥当性の評価でも地下水モニタリングは有効な手段である。

そこで、こうした地質環境及び水理環境モニタリングに関する科学的・技術的知見を取 得するために、以下に示す検討を行った。

2.3.1 性能確認及び地下水モニタリングに関する諸外国の規制について

国内における廃棄物埋設の安全確保のために、地下水等モニタリングが人工バリア・天 然バリアの性能確認、水質確認や異常な漏えい等に有効とされている。そこで、諸外国に おける埋設施設の地下水等モニタリングに関する考え方や規制制度について、フィンラン ド、米国、仏国及び英国の規制機関及び国際機関について整理するとともに、併せて事業 者の対応についても整理した。この調査は公益財団法人原子力環境整備促進・資金管理セ ンターの委託事業において実施した業務内容である³⁹。

調査結果から、事業開始前の廃棄物埋設地のベースラインモニタリングや事業中の定期 的なモニタリング計画の見直しを事業者に求めている国がほとんどである。なお、我が国 でも既に定期的なモニタリング計画の見直しは第二種廃棄物埋設事業規則に盛り込まれて いる。

2.3.2 地下水モニタリングに関する研究

中深度処分においては、天然バリアの地下水流動等の評価及び埋設地設置後の状態変化 等をモニタリングすることが有効である。特に、水理環境状態を建設前の段階から把握し、 管理期間終了までの 300~400 年間にわたり地下水モニタリングにより評価する必要があ る。

そこで、以下に示すモニタリングに関する科学的・技術的知見の取得を行った。なお、 この研究は産業技術総合研究所¹⁰の委託事業において実施した。

(1) 地下水モニタリング技術に関する既往事例

天然バリアの地質構造を考慮した地下水流動や水質の変動を把握するための効率的な モニタリング装置及びその配置や必要とされるモニタリング項目・期間といった適切なモ ニタリング計画を設定するための関連事項及び掘削制限範囲の設定のための知見の整理の ため、既存の大規模地下空間利用の事例として、国家石油地下備蓄基地(久慈、菊間及び 串木野)、国家石油ガス備蓄基地(波方及び倉敷)及び日本原子力研究開発機構地下実験 施設(瑞浪及び幌延)に関して、既往公表文献から地下水モニタリングに関する情報を抽 出し、以下のように取りまとめた³⁵。

中深度処分等の放射性廃棄物処分の地下水モニタリングに関して、廃棄物埋設地周辺と 地表との短絡を回避するために、廃棄物埋設地周辺を対象とした地表からのモニタリング 孔掘削には制限が存在するため、廃棄物埋設地を含む地下構造物建設範囲の外側を中心と した地表からのモニタリングと地下構造物からの間隙水圧測定が必要である。ただし、想 定されるモニタリング期間が長いため、モニタリング装置の選択等の課題があることが示 唆された。

さらに、国内の大規模地下空間利用の実績は長くても 30 年程度であるため、300 年以 上の期間が要求される中深度処分の地下水モニタリングに適用する際には、測定装置及び モニタリング孔そのものの耐久性や交換可能性を検討すべきこと、また、モニタリング孔 の配置はサイト特性を考慮した計画が必要となるため、一般的に議論することは困難では あるが、現在、水文学的調査によって地下水流動概念モデルを構築している地域を対象と して、数値モデルを活用したモニタリング計画の策定や実際のボーリング調査や後続のモ ニタリング試験等を用いた検証を行うべきことが課題であることが分かった。

(2) 掘削制限区域設定に関する地下水モニタリング

平成 29 年 4 月の原子炉等規制法の改正によって、指定廃棄物埋設区域においては、原 子力規制委員会の許可を受けなければ、土地を掘削せいてはならないことされた。この区 域を掘削制限区域とする。中深度処分の廃棄物埋設地において、掘削制限区域の設定に係 る地下水モニタリングの評価を行うために、上北平野をモデル地区に選定し掘削調査及び 既往調査で取得される水理特性を利用した広域の解析領域で地下水流動シミュレーション (以下「広域モデル」という。広域モデルは南北 13.2 km、東西 30 km の領域で、水平的に 400 m のメッシュで分割。図 2.3.1 の灰色枠部分。)を実施した。また、狭い領域で詳細な 離散化をしたモデル(以下「サイト周辺モデル」という。サイト周辺モデルは南北 9 km、 東西 19.8 km の領域。図 2.3.1 の赤枠部分。)を作成し、仮想した廃棄物埋設地(海抜-105 mに 500 m 四方高さ 10 m の領域を想定。図 2.3.1 の白枠。)の建設前と建設後の地下水 の状態変化について比較検討した¹⁰。

出展)産業技術総合研究所(2020)¹⁰ 図 2.3.1 広域モデル(灰色枠)及びサイト周辺モデル(赤枠)の解析領域 Figure 2.3.1 Analysis field of regional scale model (gray frame) and site scale model (red frame)

図 2.3.2 サイト周辺モデルでの施設建設前の地下水水位を基準とした場合の地下水水位の 差(上:操業時までの場合、下:閉鎖後までの場合)

解析結果より、地下水の水位の影響範囲は、仮想した廃棄物埋設地(図 2.3.2 の白枠部 分。)の直上を中心とする半径約 2 km の同心円状の領域で、埋設後は完全には元の水位 に戻らず、幾分低め(-1 m から-2 m まで)の値で落ち着くことが分かった(図 2.3.2)。今 回の地下水モデルでは、格子の切り方やパラメータの設定による擾乱の評価への影響が認 められた。これは初期状態のモデル化が影響していると考えられた。このことは擾乱の場 となり得る地下水系の初期状態の把握の重要性すなわちベースライン状態の把握という国 際的な共通認識を踏まえたモニタリング計画の必要性を示唆するものと考えられる。

また、掘削制限区域の設定において、廃棄物埋設地周辺に掘削された井戸の汲み上げやトンネル等の地下空間建設が地下水流動に与える影響範囲を考慮した範囲を含め設定する

場合には、立地調査段階で把握された地下水流動場や水理地質構造に基づく周辺のモニタ リング孔配置の設計、坑道掘削時の水位及び水圧への影響把握によるモニタリング孔の追 加や掘削制限範囲設定へのフィードバック等が必要であることを示唆した。

2.3.3 閉鎖措置確認に関する研究

処分坑道、地質ボーリングサンプリング孔及び計測等モニタリング孔(以下「モニタリ ング孔」という。)は、適切に閉鎖により地下水の短絡経路等でないことを施設確認するこ とが求められる。しかし、モニタリング孔の周辺岩盤、閉塞材及びストレーナー等の界面 等が水経となり得ることが懸念されていることから、これらのモニタリング孔の閉鎖確認 に資する科学的・技術的視点の取得が求められる。この研究は日本原子力研究開発機構の 委託事業³²において実施した。

(1) モニタリング孔の閉塞材に関する研究

ここでは、モニタリング孔の閉塞に係る閉塞材について、中深度処分で想定される深度 におけるモニタリング技術やモニタリング機器の撤去及び観測孔の閉鎖方法に関する既往 の技術的情報を取得した。それらを以下に示す。

調査ボーリング及びそれを利用したモニタリング孔の設置においては、ボーリング孔掘 削時の掘削水の逸水に伴う水質汚染の管理が非常に重要であり、特に孔掘削時に水頭の異 なる複数の地下水帯水層を孔が貫通した場合、高水頭の帯水層の地下水が低水頭の帯水層 へ流入することにより、水質が乱されて長期にその影響が残留する場合がある。

また、複数の深度をモニタリング対象とする場合は、モニタリング区間が各帯水層を包 含するように配置されていなければならない。また、複数の観測区間が割れ目などを介し て岩盤中で連結しているとモニタリングのための採水によりお互いの区間の水圧・水質に 影響を及ぼし得ることから、水圧応答データなどに基づきそれらの連結性の有無が確認さ れていることが必要である。

さらに、モニタリング設備の抜管・再設置に際しては、孔の安定性が問題となり、モニ タリング孔の孔内の一部が崩れていた場合、モニタリングシステムの抜管は容易ではなく モニタリング孔より一回り大きい孔径でモニタリング孔をオーバーコアリングして、処分 システムを損傷させながら回収することになることになるため、それらに対する対策が採 られていることが必要である。

(2) モニタリング孔等の閉鎖時に係る技術的知見の整理

モニタリング孔等の閉塞・埋戻しの技術的成立性に係る妥当性判断に必要な知見及び閉 鎖確認に係る技術的知見を整備する観点から、室内透水試験を実施し、水が移行しやすい 経路が生じないようモニタリング孔の埋戻しを行う際の閉塞材料の選定、止水性確認方法 及び閉鎖方法の妥当性確認並びに次年度以降に計画する閉鎖確認の妥当性判断に資する試 験の実施に必要な知見を取得した。また、ボーリング孔を用いた閉鎖確認の妥当性判断に 資する試験を行うための試験装置の設計を行い、閉塞・埋戻しの技術的成立性に係る妥当 性判断に必要な知見及び閉鎖確認に係る技術的知見を整理した。(1)で収集した情報及び得 られたデータを踏まえて、適切に閉鎖されたことを確認する際の判断指標を整理した。

① ボーリング閉塞材に関する室内試験

閉塞材料の選定に関する知見を取得するため、室内試験を実施した。室内試験では、異なる材料で成形された閉塞材の膨潤過程の把握と閉塞材の選定を主な目的とした。試験手順としては、小型のアクリルセル内に円柱状に成形した閉塞材(以下「供試体」という。)を設置した後、セル内に注水し供試体の膨潤過程を目視観察した³²。供試体は、a. 粉末ベントナイトのクニゲル V1(以下「粉末ベントナイト」という。)100%、b. 粒状ベントナイトのクニゲル GX(以下「粒状ベントナイト」という。)50%+珪砂5号(以下「砂」という。)50%の混合土、c. 粒状ベントナイト15%+砂85%の混合土、d. 粉末ベントナイト50%+砂50%の混合土及び e. 粉末ベントナイト15%+砂85%の混合土を用いた。

目視観察の結果(図 2.3.3)から、試験開始直後に閉塞材とセルとの間にあった空間をベントナイトが膨潤することにより閉塞できることを確認した。

開始直後

7時間後

3日後

出典)日本原子力研究開発機構(2019)²⁸

図 2.3.3 室内試験の結果(上:粉末ベントナイト 100%の場合、中:粒状ベントナイト 50%+砂50%の場合、下: 粒状ベントナイト15%+砂85%の場合)

Figure 2.3.3 Results of laboratory test (up: sample case of 100 wt% bentonite, middle: sample case of bentonite:sand=1:1, down: sample case of bentonite:sand=0.15:0.85)

② ボーリング孔閉塞に関する原位置試験

ボーリング孔の経路閉鎖手法の妥当性確認に必要な科学的・技術的知見を取得するため に、諸外国の先行事例及び①の室内試験による知見に基づき、ベントナイトと砂でボーリ ング孔を埋め戻す方法(以下「サンドイッチ工法」という。)による原位置試験を行い、 ボーリング孔の閉鎖前後での注水量、水圧等を計測した。なお、原位置試験は、瑞浪超深 地層研究所の深度 300 m 研究坑道内の 11 m 計測横坑内に掘削された 10MI25 号孔(掘削 長:約35 m、掘削角度:水平下向き約30°、孔径: ϕ 86 mm) で行った(図 2.3.4)³²。

原位置試験による注水圧、水圧等の計測結果から、今回行ったボーリング孔の経路閉鎖 手法ではサンドイッチ工法を施したボーリング孔空洞以外のボーリング孔周辺のゆるみ域 等が影響していることが分かり、このようなボーリング孔周辺のゆるみ域等を通じた透水 の影響を確認する方法を検討するという課題が示された。

ただし、原位置試験での注水量、水圧等の計測結果は、特定サイトにおける岩盤の状態 設定におけるものであることから、今後は、一般化に向けた検討が必要である。

出典)日本原子力研究開発機構(2019)²⁸ 図 2.3.4 原位置透水試験の概略図

Figure 2.3.4 Layout of water injection permeability test in-situ

3. 結論

3.1 成果の要点

本研究では、中深度処分の基準作りに活用する科学的・技術的知見のみならず、中深度 処分、ピット処分及びトレンチ処分の認可申請の審査において妥当性を判断するための科 学的・技術的知見を取得し、以下のような成果を得た。

・3.1.1 廃棄物埋設地の位置に係る自然事象の長期評価に関する研究

隆起量及び侵食量に関して、時間スケールの異なる複数の隆起・侵食速度評価手法をま とめ、放射性廃棄物の埋設処分等の 10⁵ 年オーダーに適した手法として、隆起では段丘面 高度に基づく手法、侵食では宇宙線生成核種を用いた手法などを示した¹。過年度に確立 したルミネッセンス年代測定法による堆積年代の決定と詳細な堆積相解析による海面指標 の認定法を組み合わせた隆起速度評価手法や既存文献のデータを比較することで、どの程 度の範囲までを同じ隆起量として良いかという隆起量の空間スケールについて検討し、可 能な限り埋設地とその近傍において隆起量を評価することが望ましいことが示された¹⁰。

断層等の調査に関して、地表から断層を探査するための各種物理探査法の特徴をまとめ、 反射法地震探査が断層や地下構造の評価に最も有効度が高いことを示した¹。断層の長さ の判定については認定フローにまとめた一方で、探査測線の設定等には極めて高度な専門 的知識を要することから評価の在り方の検討が必要であるとした¹。また、過去の海底地 すべり面が中深度処分の埋設地に与える影響においては、地すべり面が中深度処分の埋設 地を直接的に破壊するような滑動を引き起こす可能性がある場合はこのような場所は避け て埋設地が設置されることから、深度の確保に係わる離隔距離 70m を低減させるような可 能性を検討すべきと整理された。

地下水流動に関して、青森県の上北地域において、既存井戸の水試料とボーリングから 揚水試料と間隙水試料を分析し、放射性炭素年代、酸素水素同位体比、トリチウム濃度、 希ガス涵養温度を計算し、氷期に涵養した地下水(おおむね 10,000 年以上前)が支配的で あることが分かった¹⁰。既存井戸の水試料による調査では、深度 100 m 程度以浅の情報は 不明確であったが、ボーリング調査によって寒冷期の特徴を示す地下水の流動する領域は 想定以上に浅層まで及んでおり、その後の温暖期に地表から涵養した地下水の影響は限定 的(深度 20 m 程度)であることが明らかとなった^{1,10}。瀬戸内地方においては、水の水素 安定同位体比、酸素安定同位体比及び¹⁴C 年代値等の地球化学的指標を使って、沿岸域で の氷期の淡水の地下深部への涵養及び内陸部での海進時の海水の涵養が確認できた¹⁰。地 下水分析によって、滞留している地下水の年代を把握する手法が複数あり、これらの地下 水年代が放射性廃棄物埋設地の適地を評価する手法として有効であることが示唆された¹⁰。

岩盤の力学・水理特性に関して、瑞浪超深地層研究所の坑道を使って、結晶質岩のEDZ を調査した。BIPシステムを使い、割れ目の走行、傾斜及び開口幅の解析を行い、開口割れ 目の位置を確認した。また、パッカーを使った水理試験を行い、透水係数を計測した。し かし、BIPシステムで確認できた開口割れ目の位置と、透水係数の高い区間は必ずしも一致 しなかった。弾性波探査試験を実施したところ、坑道壁面に近いところで弾性波速度が低 い区間を確認できた²⁶。これは透水試験によって確認できた透水係数の高い場所と整合的 である。以上の手法は、結晶質岩地域に中深度処分の埋設地を建設したときに、EDZの形 成の有無を確認するための手法として活用できる可能性がある。

・3.1.2 廃棄物埋設における性能評価手法に関する研究

ベントナイト系人工バリアの長期性能評価に関して、ベントナイトに対するイオン種の 見かけの拡散係数について調査及び取りまとめを行い、処分場環境で重要と考えられるカ リウムに関するデータが不足していることから、室内試験により見かけの拡散係数を取得 した³²。また、ベントナイトとセメント系材料の相互作用により生成する二次鉱物の種類 について調査を行い³⁴、ヒューランダイト、チャバサイト及びC-(A-)S-H型鉱物(トバモラ イト及びC-(A-)S-Hゲル)の3鉱物がベントナイト中の間隙水組成をコントロールしている ことが示唆された。これらの知見は、セメント系材料-ベントナイトの接触界面付近にお ける物質移行-変質連成解析に取り込むことが可能と考えられる。

セメント系人工バリアの長期性能評価に関しては、物質移行の評価の観点から①細孔構 造の変遷と物質移行性、②セメント結晶(非晶質を含む)の変遷による物質移行性、③体 積変化による物質移行性、さらに、空隙や材料特性に寄与する④収着性と物質移行性、の 四視点に着目する必要と考えるが、本研究では①及び②について予備的研究を行った。そ の結果、①細孔構造の変遷と物質移行性については、細孔構造の特定について、従来土木 建築分野で用いられている水銀圧入ポロシメーターは、セメントマトリックス中の空隙を 破壊することに加え物質移行を評価すべき層間空隙及びゲル空隙の微小空隙は計測できな いことが明らかとなった ^{32,34}。一方、水蒸気吸着装置は、層間空隙及びゲル空隙の測定に 適していることに加え吸着特性も同時に計測できることから廃棄物処分での物質移行を評 価する微小空隙等の計測に適していることが分かった^{32,34}。一方、②セメント結晶(非晶 質含む)の変遷による物質移行性については、CSH ゲルの結晶安定性に関する機構解明を 行うため、TMS 法によるケイ酸鎖長構造の測定及び NMR 法によるケイ素及びアルミニウ ム等の化学結合形態の変化(化学シフト)を同一試料による測定を行い、CSH ゲルの結晶 形態の評価を行った^{32,34}。その結果、それぞれの手法は、直接的に測定しているものが異 なるものの、単独又は組み合わせることで CSH ゲルの結晶変化を評価するに十分な情報 が得られることが確認されたため ^{32,34}、今後は、様々な材料調合に基づく計測を行い、結 晶安定性の一般化評価手法を取得する。

天然バリアの自然事象を考慮した水理特性の評価に関して、過去から現在までの地形・ 地質のデータを活用して過去から現在の地形変化を説明しつつ、将来への外挿における不 確かさ(将来の隆起量、海水準変動等)を考慮した地形変化評価の方法論を整理した^{31,28,} ³⁴。また、この方法論に基づき我が国の典型的な集水域を対象に不確かさを考慮した過去 ~現在~将来の地形変化の評価を行った結果、現在埋没谷が形成されている海域・下流域 周辺では海水準変動に伴い地形勾配が有意に変動するため、埋設地がこの周辺に計画され ている場合、埋設深度の減少及び将来の地形変化が地下水流動に与える影響を確認するこ とが重要となること等を確認し、地形変化評価の妥当性判断における留意点を抽出・整理 した³⁴。さらに、これら地形変化の評価結果に基づき、非定常の三次元地下水流動・核種 移行評価を行った結果、海域では海水準変動による汀線の移動に伴い流速が変化するが、 陸域でも海水準変動による侵食基準面の移動に伴い地形勾配が変化する影響により流速が 変化する領域が存在すること等を確認し、地形変化を考慮した地下水流動・核種移行評価 の妥当性判断における留意点を抽出・整理した³⁴。

・3.1.3 地質環境及び水理環境モニタリングに関する研究

地質環境及び水理環境モニタリングに関する研究は、中深度処分では廃止措置期間中ま でにおいて放射性物質の異常な漏えいがないこと、及び規制期間終了以降の移行抑制機能 に関する見通しを示すこととして、地下水等モニタリングが必要である。また、閉鎖確認 では埋め戻し等においてボーリング孔等が地下水の短絡経路とならないこと等の施設確認 も必要である。さらに、許可後に設定される掘削制限区域の範囲設定の妥当性の評価でも 地下水モニタリングが求められる。そこで、こうした地質環境及び水理環境モニタリング に関する科学的・技術的知見を取得した^{10,31,39}。

3.2 目的の達成状況

廃棄物埋設地の位置に係る自然事象の長期評価に関する研究については、隆起及び侵食、 断層、地下水流動、岩盤の力学・水理特性、岩盤の収着・移行現象における評価の視点に 関する科学的・技術的知見を抽出し、当初の目的を達成した。

廃棄物埋設における性能評価手法に関する研究については、ベントナイト系人工バリア の長期性能評価手法の研究では、長期変質挙動に関しては、淡水一塩水混合系地下水環境 の廃棄物埋設地が位置する環境における評価手法の妥当性について科学的・技術的知見の 取得を行い、当初の目的を達成した。また、セメント系人工バリアの長期性能評価手法の 研究では、物質移行に寄与するセメント硬化体の特徴を4つの分類に整理し、なかでも長 期性能評価に必要な CSH ゲルに着目して細孔構造の計測法及び結晶安定性評価の手法に 関する科学的・技術的妥当性を抽出し、当初の目的を達成した。

地質環境及び水理環境モニタリングに関する研究では、諸外国の規制機関でのモニタリ ング手法及び制度について調査した。また、国内における地下水モニタリング技術の現状 及び問題点を明確にした。一方、閉鎖確認に関する研究では、ボーリング孔について、原 位置試験において漏えい確認試験、室内試験においてはベントナイト閉塞材における漏え い等の試験により漏えい等の確認における問題点の抽出を行い、当初の目的を達成した。

3.3 成果の公表等

3.3.1 原子力規制庁の職員が著者に含まれる公表

(1) NRA 技術報告

なし

(2) 論文(査読付)

なし

- (3) 国際会議のプロシーディング(査読付) なし
- (4) 表彰·受賞

なし

3.3.2 委託先による公表

- (1) 論文(査読付)
- M. Takada, M. Manaka, K. Ito, A Method for Estimating Geologic Pressure in Argillaceous Formations Based on the State of Dynamic Equilibrium between Chemical Osmosis and Advection, Journal of Hydrology, Vol. 579, (2019)
- ② 村上裕晃、岩月輝希、竹内竜史、西山成哲、放射性廃棄物の処分分野における地下水モ ニタリングの方法、原子力バックエンド研究、27、1、pp.22-33、令和2年
- (2) 国際会議のプロシーディング(査読付) なし
- (3) その他
- ① 村上裕晃、岩月輝希、竹内竜史、前田敏克、放射性廃棄物の中深度処分におけるボーリング孔の閉鎖に関する現状と課題、日本原子力学会バックエンド部会夏期セミナー、平成30年8月
- 戸崎裕貴、森川徳敏、風早康平、塚本斉、佐藤努、高橋浩、高橋正明、稲村明彦、青森 県上北平野における地下水の水質・同位体組成と地下水流動系、日本地球化学会第65 回年会、平成30年9月
- ③ 島田太郎、打越絵美子、高井静霞、武田聖司、核種移行へ影響を及ぼす隆起・侵食・海水準変動による地形変化評価の検討、日本原子力学会バックエンド部会夏期セミナー、 令和元年8月

- ④ 村上裕晃、西山成哲、岩月輝希、竹内竜史、ボーリング孔の閉塞材としてのベントナイトの膨潤挙動と透水性、日本地下水学会 2019 年秋季講演会、令和元年 10 月
- ⑤ 伊藤一充、田村亨、山口県宇部市周辺の段丘堆積物の pIRIR 年代測定、ESR 応用計測 研究会・ルミネッセンス年代測定研究会・フィッショントラック研究会 2019 年度合同 研究会、令和元年 11 月
- ⑥ K. Ito, Strategies and problems of groundwater monitoring in radioactive waste disposals, International Symposium on Earth Science and Technology 2019, 令和元年 12 月
- ⑦ S. Maeda, T. Matsuzawa, T. Okada, T. Yoshida, H. Kosuga, H. Katao, M. Otsubo, Stress field estimated from microseisemicity in the northeastern edge of the Honshu around the junction between the northeastern Japan arc and the Kurile arc, JpGU-AGU Joint Meeting 2020, 令和 2 年 5 月
- ⑧ 高井静霞、島田太郎、打越絵美子、武田聖司、将来の海水準変動の不確かさを考慮した 長期的な地形変化評価、日本原子力学会 2020 秋の大会、令和2年9月
- ⑨ 笹川剛、木嶋達也、澤口拓磨、飯田芳久、ベントナイトーセメント界面で生成する二次 鉱物の設定に係る検討(1)二次鉱物設定についての考え方の整理、日本原子力学会 2020 秋の大会、令和2年9月
- ① 木嶋達也、笹川剛、澤口拓磨、飯田芳久、ベントナイトーセメント界面で生成する二次 鉱物の設定に係る検討(2)ベントナイト透水性に対する二次鉱物設定の感度解析、日本 原子力学会 2020 秋の大会、令和2年9月
- 高井静霞、島田太郎、打越絵美子、武田聖司、将来長期の地形変化・海水準変動に伴う 地下水流動への影響の解析的検討、日本地下水学会 2020 年秋季講演会、令和2年11月

3.4 成果の活用等

本研究で得られた知見は、中深度処分に係る規制基準等作成のための検討、並びに中深度処分、ピット処分及びトレンチ処分の認可申請の審査に活用されることが想定される。

3.5 今後の課題等

本研究は、中深度処分の規制基準等の整備、適合性審査及び後続規制での確認の際の判 断に必要な知見の収集・整備における人工バリアの長期性能評価手法及び天然バリアとな る地質環境の長期安定性評価手法の整備に係る科学的・技術的知見の蓄積を行うための研 究を行った。中深度処分は、埋設される廃棄物の特性、廃棄物埋設地が設置される環境条 件及び廃棄物埋設地の設計によるが、極めて地下水流速が小さく安定した地質水理環境条 件の位置で廃棄物からの放射性物質の漏出及び移行を長期間抑制されるようことが求めら れる。今後、このような条件をより具体的に設定し、審査における基準適合性の判断に適 用できる知見を得るための検討を進める必要がある。特に、極めて遅い地下水流動の場で あることを証明する手法に関する検討は、引き続き重要である。また、高透水性の経路を 形成してこうした処分システムの性能を低下させる可能性のある坑道のゆるみ域、ボーリ ング孔等についての特性把握、適切な閉鎖及びその確認に関する検討は重要であり、岩盤 の力学的状態と水理学的特性に関する研究等を進める必要がある。

参考文献一覧

- 1 産業技術総合研究所、平成 30 年度原子力規制庁委託成果報告書 自然事象等の評価手 法に関する調査、405p、2019 年
- 2 地震調査研究推進本部、南海トラフの地震活動の長期評価(第二版)、2013年
- 3 小池一之・町田 洋、日本の海成段丘アトラス。東京大学出版会、122p、2001 年
- 4 田力正好、河成段丘を用いて推定される内陸部の広域的な地殻変動-現状と課題。地 理科学、60、143-148、2005 年
- 5 幡谷竜太、河成段丘を用いた第四紀後期の隆起量評価手法の検討(1)-段丘対比の考 え方の提案と河成段丘の編年に関わるケーススタディー、電力中央研究所報告、 N05005、28p、2005 年
- 6 幡谷竜太、河成段丘を用いた第四紀後期の隆起量評価手法の検討 (2) 那珂川沿いに 分布する河成段丘の層序-、電力中央研究所報告、N05016、29p、2006 年
- 7 幡谷竜太、河成段丘を用いた第四紀後期の隆起量評価手法の検討 (3) 一過去 10 万年間の隆起量分布により明らかにされた内陸部の地殻変動-、電力中央研究所報告、 N05017、21p、2006年
- 8 吉山 明・柳田 誠、河成地形面の比高分布からみた地殻変動、地学雑誌、104、809-826、1995 年
- 9 Siame, L., Bellier, O., Braucher, R., Sebrier, M., Cushing, M., Bourles, D., Hamelin, B., Baroux, E., de Voogd, B., Raisbeck, G., and Yiou, F., Local erosion rates versus activetectonics: cosmic ray exposure modelling in Provence (south-east France), Earth and Planetary Science Letters, v. 220, no. 3-4, p. 345-364, 2004
- 10 産業技術総合研究所、平成 31 年度原子力規制庁委託成果報告書 廃棄物埋設における 自然事象等を考慮した地盤の性能評価に関する調査、2020 年
- 11 幡谷竜太・柳田 誠・鳥越祐司・佐藤 賢、後期更新世以降の現海岸線での下刻、応用 地質、57、15-26、2016 年
- 12 日本原燃株式会社、日本原燃株式会社濃縮・埋設事業所における第二種廃棄物埋設事業 許可申請書、2018 年
- 13 産業技術総合研究所、平成 29 年度原子力規制庁委託成果報告書 自然事象等の評価手 法に関する調査、231p、2018 年
- 14 宮内崇裕、上北平野の段丘と第四紀地殻変動。地理学評論、58、492-515、1985年
- 15 田中和広・遠田晋次・上田圭一・千木良雅弘、わが国の地質環境の長期的変動特性評価(その2) —隆起・沈降特性評価手法の提案と適用性検討—、電力中央研究所報告、 U96028、25p、1997 年
- 16 Matsu'ura T., Kimura H., Komatsubara J., Goto N., Yanagida M., Ichikawa K. and Furusawa A., Late Quaternary uplift rate inferred from marine terraces, Shimokita Peninsula,

northeastern Japan: A preliminary investigation of the buried shoreline angle. Geomorphology, 209, 1-17, 2014

- 17 宮崎真由美・石村大輔、テフロクロノロジーに基づく三陸海岸北部における最終間氷
 期海成段丘の形成年代と最終間氷期以降の地殻変動の再検討、地学雑誌 127、735-757、2018 年
- 18 松四雄騎・松崎浩之・千木良雅弘、宇宙線生成核種による山地流域からの長期的土砂 生産量の推定、応用地質、54、272-280、2014 年
- 19 Granger, D.E., Kirchner, J.W. and Finkel, R., Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment, Journal of Geology, 104, 249-25, 1996
- 20 Ishii E, Funaki H, Tokiwa T, Ota K, Relationship between fault growth mechanism and permeability variations with depth of siliceous mudstones in northern Hokkaido, Japan. Journal of Structural Geology.32(11):1792-1805, 2010
- 21 Sawada A, Uchida M, Shimo M, Yamamoto H, Takahara H, Doe TW, Non-sorbing tracer migration experiments in fractured rock at the Kamaishi Mine, Northeast Japan. Eng Geol.56(1-2):75-96, 2000
- 22 産業技術総合研究所深部地質環境研究コア、地質処分に係る地質情報データの整備、 平成22 年度事業報告書、2011年
- 23 産業技術総合研究所深部地質環境研究コア、地質処分に係る地質情報データの整備、 平成23 年度事業報告書、2012 年
- 24 Katsuyama, M., Yoshioka, T. and Konohira, E. , Spatial distribution of oxygen-18 and deuterium in stream waters across the Japanese archipelago, Hydrol. Earth Syst. Sci., 19, 1577-1588, 2015
- 25 Aeschbach-Hertig, W., Peeters, F., Beyerle, U., and Kipfer, R., Interpretation of dissolved noble gases in natural waters, Water Resources Research, 35, 2779-2792, 1999
- 26 日本原子力研究開発機構・原子力規制庁、廃棄物埋設の坑道閉鎖措置確認に係る研究、2022 年公表予定
- 27 川本康司・村上裕晃・石橋正祐紀・笹尾英嗣・渡辺和彦・見掛信一郎・池田幸喜、超深 地層研究所計画 瑞浪超深地層研究所 研究坑道の壁面調査一タ集、JAEA-Data/Code 2012-014, 2014 年
- 28 日本原子力研究開発機構、平成 26 年度地層処分の安全審査に向けた評価手法等の整備(核種移行データベースの整備)、2015 年
- 29 日本原子力研究開発機構、平成 27 年度燃料デブリの処理・処分に関する予察的調 査、2016 年
- 30 日本原子力研究開発機構、平成 28 年度燃料デブリの処理・処分に関する予察的調 査、2017 年
- 31 日本原子力研究開発機構、平成29年度原子力規制庁委託成果報告書 廃棄物埋設地の 安全評価に関する調査、2018年

- 32 日本原子力研究開発機構、平成 30 年度原子力規制庁委託成果報告書 廃棄物埋設にお ける性能評価手法に関する調査、2019 年
- 33 Appelo, C. A. J., Wersin, P., Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in Opalinus clay: Environmental Science and Technology, v. 41, no. 14, p. 5002-5007, 2007
- 34 日本原子力研究開発機構、平成 31 年度原子力規制庁委託成果報告書 廃棄物埋設にお ける核種移行に係る性能評価に関する研究、2020 年
- 35 笹川剛・木嶋達也・澤口拓磨・飯田芳久、ベントナイトーセメント界面で生成する二 次鉱物の設定に係る検討(1)二次鉱物設定についての考え方の整理、2020年
- 36 原子力規制委員会:廃炉等に伴う放射性廃棄物に関する検討チーム(第二回会合)、 資料2-1頁16
- 37 土木学会コンクリート(3種)委員会、混和材料を使用したコンクリートの物性評価 技術と性能規定型材料設計に関する研究小委員会(353)報告書、2018年7月
- 38 登坂博行 (2002) 地質時間にわたる淡塩漸移帯の形成過程と形態変化に関する数値解析 的検討 (その2) –動的境界条件下における検討—、応用地質 43(5)、pp. 306–315、 2002 年
- 39 原子力環境整備促進・資金管理センター、平成 29 年度原子力規制庁委託成果報告書 安全規制及び安全基準に係る内外の動向調査、2018 年
執筆者一覧

原子力規制庁 長官官房 技術基盤グループ 核燃料廃棄物研究部門

- 山田 憲和 首席技術研究調查官
- 入江 正明 技術研究調查官
- 廣田 明成 技術研究調查官
- 河原木千恵 技術研究調查官
- 市耒 高彦 技術研究調查官
- 伊藤 一充 技術研究調查官
- 鏡 健太 技術研究調查官
- 木嶋 達也 技術研究調查官
- 室田 健人 技術研究調查官