| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

弁の動的機能維持評価における最新知見の取り込み

2021年3月

東北電力株式会社

目次

1．はじめに 1
2．現行の評価手法及び適用規格 1
3．最新の研究成果による知見取り込みの検討 1
4．最新研究の実施内容及び成果の概要 2
4．1 対象弁 2
4．2 試験概要 3
4．2．1 試験設備 3
4．2．2 試験体及び試験条件 4
4．3 試験結果概要 8
4．3．1 電動弁 8
4．3．2 主蒸気隔離弁． 8
4．3．3 空気作動弁 8
4．3． 4 安全弁（主蒸気逃がし安全弁） 8
4．3．5試験成果まとめ 9
4．3．6 駆動部補強対策が必要な電動弁 9
4． 4 参考文献 11
5．今回工認（最新知見の取り込み）における弁動的機能維持評価手法 11

1．はじめに
弁の動的機能維持評価においては，J E A G 4 6 0 1－1991 の評価手順及び機能維持確認済加速度（以下 A_{T} という。）を用いた評価を実施しているが，同規格の機能維持評価の基本方針において，『今後新たな試験等によって合理的な知見が得られた場合， これらを見直すものとする』旨の記載があり（添付 -1 参照），この考え方に基づき，先行プラントにおいても，J E A G 4 6 0 1－1991 の評価手順策定後の研究成果によ る知見を取り込んで，弁の動的機能維持評価を実施している。

また，地震応答加速度の増加等に対応するため，従来の A_{T} を大きく上回る加速度に て弁の作動を確認する必要が生じており，高加速度を負荷した弁の加振試験が実施さ れている。今回工認においてそれらの最新の研究にて得られた知見を取り込んだ評価手法の適用を検討するにあたり，本資料にて弁の動的機能維持評価に係る現行の評価手法及び今回工認（最新知見の取り込み）における評価手法について説明する。概要は添付 -2 のとおり。

なお，今回工認（最新知見を取り込み）における評価の詳細については，補足説明資料「補足 600－14－1 動的機能維持の詳細評価について（新たな検討又は詳細検討が必要 な設備の機能維持評価について）」において説明する。

2．現行の評価手法及び適用規格
先行プラントの弁の動的機能維持評価においては，動的機能維持評価の適用規格で あるJEAG4601－1991の評価手順及び A_{T} を用いた評価を実施している。機能維持評価対象弁，各弁の評価ポイント及び評価手順は添付－3 のとおり。

また，先行プラントでは当該規格の評価手法に加え，既往研究の成果に基づく知見を取り込んでいる。具体的にはJ E A G 4 6 0 1－1991 の評価手法に加えて，鉛直地震動を受ける設備の耐震評価手法に関する研究による検討結果を取り込んだ評価手法を適用しており，水平•鉛直個別の A_{T} を設定し，評価を実施している。

3．最新の研究成果による知見取り込みの検討
以下の背景から，弁駆動部の機能確認済加速度に関する研究が新たに行われている。
（1）評価条件の変更に伴う応答加速度の増加
基準地震動 S s による入力の増大，高振動数領域の影響考慮等により，弁の動的機能維持評価の条件が厳しくなっており，動的機能維持評価において駆動部の応答加速度が J E A G 4 6 O 1－1991 及び既往知見による A_{T} を超過する場合が ある。その場合，J E A G 4 601－1991の評価手順では，弁最弱部の構造強度評価にて健全性を確認する手順となつているが，構造強度評価のみでは駆動部の作動性の確認ができないこと，駆動部の作動性は試験によって確認されるもので あることから， A_{T} を超過する加速度で弁の作動を確認するためには，高加速度を負荷した加振試験が必要となる。
（2）弁駆動部の動作機能維持限界の把握
弁の AT はJ E A G 4 6 O 1－1991 及び既往研究の知見に基づいて定められて いるが，当該の A_{T} の値は当時の試験等により機能維持が確認された加速度であ り，弁駆動部が機能喪失に至るまでには更に裕度を持っていると考えられる。こ のため弁駆動部の機能維持限界を把握することは，知見の拡充として有益となる。

今回工認においては，基準地震動 S s による入力の増大，高振動数領域の影響考慮等 により弁駆動部の応答加速度が増加し，J E A G 4 6 O 1－1991 及び既往研究の知見 による A_{T} を超過する弁があることから，最新の研究成果を踏まえて，現状の評価手法 に対して新たな知見の取り込みを検討する。

J EAG4601－1991 において，駆動部の応答加速度が機能確認済加速度を超え た場合は，駆動装置単体の機能確認済加速度を許容値とした評価を行う考え方が記載 されていること（添付 -3 参照），入力あるいは応答のレベルが機能確認済のレベルを大 きく上回る場合には，機器本体あるいは動的機能の評価の対象となる要素について，試験による確認を行う必要があるとの記載がされていること（添付－1 参照）から，試験に よって弁駆動部の作動を確認した加速度を許容値とする評価手法の適用は，J E A G 4601－1991の考え方と比較しても問題ないと考えられる。

4．最新研究の実施内容及び成果の概要
J E A G 4 6 O 1－1991 及び既往知見による弁の A_{T} を上回る高加速度を負荷できる振動台（共振振動台）を用いた弁の加振試験により，高加速度負荷時の駆動部の動作機能を確認する研究が実施されている。（4．4 参考文献参照）

当該の研究概要を以下に示す。

4． 1 対象弁

最新の研究にて加振試験の対象としているBWR の弁を表1に示す。

表1 最新研究におけるBWRの加振試験対象弁

No	弁種類 （試験の分類）	弁種類 （J EAG4601－1991上の分類）
1	電動弁	一般弁 (グローブ, ゲート, バタフライ)
2	主蒸気隔離弁	主蒸気隔離弁
3	空気作動弁	一般弁 （グローブ，バタフライ）
4	安全弁 （主蒸気逃がし安全弁）	安全弁 （BWR 主蒸気逃がし安全弁）

4． 2 試験概要

弁の加振試験において適用した試験設備，試験体等の概要を以下に示す。

4．2． 1 試験設備

加振試験に使用した試験設備（共振振動台）の概略仕様を表 2 に示す。ま た，試験設備の写真を図 1 に示す。共振振動台は大型振動台に接続されてお り，加振源である大型振動台からの振動を共振現象により増幅することによ り，最大 $20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ の加速度を発生させる設備である。

表2		試験設備概略仕様
	大型振動台	共振振動台
項目	$5 \mathrm{~m} \times 5 \mathrm{~m}$	$2 \mathrm{~m} \times 2 \mathrm{~m}$
振動台サイズ	1 方向	1 方向
加振方向	$2 \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$	$20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$
最大加速度	$0.5-30 \mathrm{~Hz}$	10 Hz
振動数範囲		

図1 試験設備

4．2．2 試験体及び試験条件

（1）電動弁
電動弁の試験体の例及び加振方向を図 2 に示す。また，電動弁の試験条件を表3に示す。

なお，実際のプラントにおいては，様々な型式の電動弁を用いていることか ら，加振試験においても型式の異なる複数の試験体を用意し，試験を実施して いる。

表3 電動弁の試験条件

項目	内容
加振方向	水平 2 方向（ X, Y ），鉛直方向（ Z ） （1方向ずつ）
$\begin{gathered} \text { 目標加速度 } \\ (\text { (駆動部応答) } \end{gathered}$	水平／鉛直： $3,15,20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$
目標振動数	約 10 Hz
加振波	正弦波
弁機能維持確認	加振中，加振後の弁作動を実施作動時間の測定
加振時間	各 15 秒以上

（2）主蒸気隔離弁
主蒸気隔離弁の試験体及び加振方向を図 3 に示す。また，主蒸気隔離弁の試験条件を表4に示す。

図 3 主蒸気隔離弁の試験体及び加振方向（参考文献 4）

表4 主蒸気隔離弁の試験条件

項目	内容
加振方向	水平 2 方向 (X, Y) ，鉛直方向 (Z) $(1$ 方向ずつ）
目標加速度 （駆動部応答）	水平 $(\mathrm{X}): 3, \quad 10,13, \quad 15 \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ 水平 $(\mathrm{Y}) /$ 鋁直 $: 3,10, \quad 15 \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$
目標振動数	約 10 Hz
加振波	正弦波
弁機能維持碓認	加振時閉作動 $:$ 作動時間の測定 加振後漏えい試験：漏えい率の測定
加振時間	各 15 秒以上

（3）空気作動弁
空気作動弁の試験体の例及び加振方向を図 4 に示す。また，空気作動弁の試験条件を表5に示す。

なお，実際のプラントにおいては，様々な型式の空気作動弁を用いているこ とから，加振試験においても型式の異なる複数の試験体を用意し，試験を実施 している。

図4 空気作動弁の試験体の例及び加振方向（参考文献5）

表5 空気作動弁の試験条件

項目	内容
加振方向	水平 2 方向（X，Y），鉛直方向 (Z)
$(1$ 方向ずつ）	

（4）安全弁（主蒸気逃がし安全弁）
安全弁（主蒸気逃がし安全弁）の試験体及び加振方向を図 5 に示す。また，試験条件を表6に示す。

図5 安全弁（主蒸気逃がし安全弁）の試験体及び加振方向（参考文献 1）

表6 安全弁（主蒸気逃がし安全弁）の試験条件

項目	内容
加振方向	水平 2 方向 (X, Y) ，鉛直方向 (Z) （1方向ずつ）
$\begin{gathered} \text { 目標加速度 } \\ \text { (駆動部応答) } \end{gathered}$	水平： $3,15,20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ 鉛直： $3,10,20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$
目標振動数	約 10 Hz
加振波	正弦波
弁機能維持確認	加振中，加振後の弁作動を確認安全弁機能：吹き出し圧力の測定 逃し弁機能：作動時間の測定
加振時間	各 15 秒以上

4． 3 試験結果概要

4．3．1 電動弁

電動弁の加振試験において，目標の加速度での加振中及び加振後に弁の作動確認を行い，要求される動作機能が維持されるかを確認した。電動弁においては，一部の型式を除いて最大の目標加速度である $20 G\left(1 G=9.8 m / s^{2}\right)$ にて動作機能を確認した。

20G での動作機能維持が確認できなかった一部型式の駆動部を持つ電動弁に ついては，駆動部の補強改造を行うことにより最大の目標加速度 20G において も動作機能が維持されることを確認した。

4．3．2 主蒸気隔離弁

主蒸気隔離弁の加振試験において，目標の加速度での加振時に弁の作動確認 を行い，要求される動作機能が維持されるかを確認した。主蒸気隔離弁において は，最大の目標加速度である 15G にて動作機能を確認した。

4． 3.3 空気作動弁

空気作動弁の加振試験において，目標の加速度での加振中及び加振後に弁の作動確認を行い，要求される動作機能が維持されるかを確認した。空気作動弁に おいては，駆動部型式によって動作機能を確認した最大加速度に相違があり，水平方向で $15 G \sim 20 G$ ，鉛直方向で $19 G \sim 20 G$ にて動作機能を確認した。

4．3．4 安全弁（主蒸気逃がし安全弁）

主蒸気逃がし安全弁の加振試験において，目標の加速度での加振中及び加振後に弁の作動確認を行い，要求される動作機能が維持されるかを確認した。主蒸気逃がし安全弁においては，最大の目標加速度である 20G にて動作機能を確認 した。

4．3．5 試験成果まとめ

加振試験により得られた駆動部の動作機能を確認した最大加速度を表 7 に示 す。なお，表 7 では駆動部の動作機能を確認した最大加速度を水平•鉛直個別に記載しているが，評価の判定は水平•鉛直の加速度を合成した値で行う。評価例 を以下に示す。

【評価例 電動弁の場合】

$$
\sqrt{(\text { 水平応答加速度 })^{2}+(\text { 鋁直応答加速度 })^{2}} \leqq 20 G
$$

表 7 加振試験により得られた駆動部の動作機能を確認した最大加速度

No	弁種類 （試験の分類）	駆動部の動作機能を 確認した最大加速度		備考
	水平	鉛直		

4．3．6 駆動部補強対策が必要な電動弁

上記試験結果の中で，電動弁のうち一部型式については従来の駆動部構造で は高加速度負荷時に駆動部締結ボルトが損傷し，動作機能を喪失する結果が確認された。

当該型式の弁に対しても，基準地震動 S s に対する機能維持が求められるこ とから，駆動部の強度向上を目的として補強部材を追加する案を検討し，対策を反映した駆動部に対する加振試験を実施した。補強対策を実施した電動弁の駆動部において，加振試験により確認された駆動部補強対策反映前後の動作機能 を確認した最大加速度を表 8 に示す。また，対策反映前後の駆動部の概略構造を図 6 に示す。図 6 に示す耐震ブラケットを追加することにより，駆動部の強度が改善されることを確認した。

表8 駆動部補強を要する電動弁における駆動部の動作機能を確認した最大加速度（対策反映前後）

	駆動部の動作機能を確認した最大加速度	
加振方向	対策反映前	対策反映後
$X($ 水平 $)$	8.5 G	20 G
Y （水平）	20 G	20 G
Z （鉛直）	6.8 G	20 G

図 6 駆動部補強前後の構造（参考文献 3）

4． 4 参考文献

1．Nishino et al．，＂Seismic test results of the main steam safety relief valve for Japanese boiling water reactor nuclear power plants＂， PVP2017－65602 2017． 7

2．Kojima et al．，＂Seismic test result of motor－operated valve actuators for nuclear power plant＂，PVP2017－65600 2017．7
3．堤他，＂原子力発電所の電動バタフライ弁駆動部の耐震性向上確証試験＂日本保全学会第14回学術講演会，2017．8
4．Itabashi et al．，＂Seismic test results of the main steam isolation valve for Japanese boiling water reactor nuclear power plants＂， PVP2020－21362 2020．7

5．Matsubara et al．，＂Seismic test results of air－operated valve actuators for nuclear power plants（Air－operated butterfly valve（Direct－coupled type））＂，PVP2019－93194 2019．7

5．今回工認（最新知見の取り込み）における弁動的機能維持評価手法
以上より，J E A G 4 6 0 1－1991 の機能維持評価の基本方針に基づいて実施した試験により得られた最新知見を取り込むことによって，弁駆動部の機能維持限界を踏 まえた評価が可能となることから，今回工認の弁動的機能維持評価においては，J E A G4601－1991 及び既往知見による評価手法に加え，最新知見に基づく駆動部の動作機能を確認した最大加速度を用いた弁の動的機能維持評価手法を適用する。

なお，今回工認の弁の動的機能維持評価はJ E A G 4 6 O 1－1991 及び既往知見に よる評価手順に基づくことを基本とし，駆動部の応答加速度が J E A G 4 6 0 1－ 1991 及び既往知見の A_{T} を超過した場合の詳細評価において，最新知見を取り込んだ評価を適用するものである。

表 9 にJEAG4601－1991と既往知見による評価手法及び今回工認（最新知見取り込み）における評価手法について整理した。 A_{T} 超過時は，詳細評価として弁最弱部 の構造強度評価を実施するとともに，駆動部の応答加速度が加振試験より得られた駆動部の動作機能を確認した最大加速度以下であることを確認する。
表9 J EAG4601－1991，既往知見及び今回工認（最新知見取り込み）における弁動的機能維持評価手法の整理

弁種類		J EAG4601－1991と既往知見取り込み （先行プラント許認可実績）		今回工認の評価 （最新知見取り込み）
$\begin{gathered} \text { J E A G } 4601- \\ 1991 \text { の分類 } \end{gathered}$	試験の分類	$\mathrm{A}_{\text {T }}$	A_{T} 超過時の詳細評価	A_{T} 超過時の詳細評価
一般弁 $\begin{gathered} \text { (グローブ, ゲート, } \\ \text { バタフライ) } \end{gathered}$	電動弁空気作動弁	水平 6.0 G 鉛直 6.0 G	－最弱部の構造強度評価	- 最弱部の構造強度評価 - 加振試験にて駆動部の動作機能を確認した最大加速度を適用
一般弁 （逆止弁）	（試験対象外）	$\begin{array}{ll} \text { 水平 } & 6.0 \mathrm{G} \\ \text { 鉛直 } & 6.0 \mathrm{G} \end{array}$	- 開閉状態維持評価 - 構造強度評価	- 開閉状態維持評価 - 構造強度評価 （最新知見取り込みなし）
主蒸気隔離升	主蒸気隔離升	水平 10.0 G鉛直 6.2 G	－最弱部の構造強度評価	- 最弱部の構造強度評価 - 加振試験にて駆動部の動作機能を確認した最大加速度を適用
安全弁 （BWR 主蒸気逃がし安全弁）	安全弁 （主蒸気逃がし安全弁）	水平 9.6 G 鉛直 6.1 G	－最弱部の構造強度評価	－最弱部の構造強度評価 （最新知見取り込みなし）※

※今回工認における安全弁（主蒸気逃がし安全弁）の評価は，J E A G 4 6 0 1－1991 及び既往知見の手法にて行らが，弁の動作機能維持限界の把握のため，加振試験により高加速度負荷時の動作機能の確認を行っている。
（2）地震時の異常要因仿析を考慮し，動的機能の維持に必要な評亚のポイントを明確に
する。
（3）適用範囲内の機種は，剛か否かを判断するため固有値解析を行う。
剛かか否かの判断は，原則として機器の固有周期かそれしていい機器が設置されている
剧か否かの判断は，原則として機器の固有周期がそれぞれしく機器が設置されている
建屋等の 1 次固有周期から十分離れているかどうかによる。
（4）剛な場合は，静的応答解析により，また剛でない場合には動的応答解析（原則とし てスペクトルモーダル応答解析）により機器の応答を求め，許容値あるいは試験によ り礁墅济の灾答加速度，荷重等と比較する。
 （5）剛な場合の静的応答解析は床加速度の1．0倍を用いる。
（6）応答値が，許容値あるいはは機能確認済加速度，荷重等
（7）解析に用いる機器系の減衰定数については，第6章「1，機器•配管系の設計用減衰定数！表1．2－1 設計用減衰定数に示される値を使用するものとする。

評価ポイントについて
（8）動的機能の維持に必要な静的な機能（例えば，取付ボルト，基礎ボルト）について は，これらを評価の対象とする。
（9）地震荷重と他の荷重との組合せにおいて，地䨩荷重の占める割合が十分小さいこと が明らかな場合（例えば，同㗏軸の応力）には，原則として地震荷重の評侕は必要て はない。
ただし，

ただし，設計思想や他の荷重条件等が大きく異なり，地震荷重が無視し得ない場合
は，地霞荷重を組合せた評価を行う必要がある。
3．4．2 解析（一部詿験を含む）により機能維持評価を行う方法
地震入力
機器への地
機器への地震入力は，各々のプラントの設計条件に従い，当該機器が据付られる建屋
床の設計用応答スペクトルとすることを原則とし，必要に応じ当該床の時刻歴床応答波
を用いるものとする。
（2）動的解析モデル化基本方針
（a）対象機種ごとに，その機種の構造，振動性状，動的機能維持評価のポイント等を考
（b）適用範进内の機種については，上に述べたモデルにより機能維持の評侕を行うもの
注1）地祳時に発生する可能性のある異常現象を抽出し，その要因分析を行うものである。これは，地臹時

注 2 ）強度設計では刪な場合の地震力として洙加速度の 1.2 倍を用いて支持部の榣度計算等を行っている。

| J EAG 4601 － 1991 （抜粋）機能維持評価の基本方針 |
| :--- | :--- | :--- |

3． 4 動的機能維持評価の基本的考え方
3．4．1 機能維持評価の基本方針
一本這補版では，既往研究の成果をもとに合理的な範囲で・般化した解析手法による評価を行うことを源則とする。ただし，㙰折による評価の適用範困を外れる場合には，試験による評偳が望ましい。

なお，以降に述べる解析による評伍の考え方，適用機㮔，あるいは機能確認済加速度 レベル，荷重レベル等については，今後新たな試験等によって合理的な知見が得られた （2）解析による評価の基本事項

対象譏種によって異なる部分もあるが，既往研究の成果をもとに解析による評価を行 う際の基本的な事項をまとめると次のとおりである。評価のフローについて
（1）対象機種ごとに，その構造，振動性状を考慮のうえ必要に応じて機器の構成要素
係も考慮して機器全体としての機能維持を評価する。なお，弁の応答を算出する場合 には配管系の一部として評価する。
雄なな場合には，少なくとも対象機器の主要な固有周期が存在する䫀域について設部用床尤答スペケトルと等偳な入力波を棎定する必要がある。 1 つの特刻蒝波でこれらを実現
器，あるいはす弁のような 1 次周期が卓越する機歱については正弦波による試淒を行って もよい。

い。後にも）これを碓認し，地䨖後に機能維持が必要となる機雅については，加援式験後に おいて機能か溪持できることを碓認する。

なお，詩験計画に当たっては执抜による供截体の累積㤢労について注意を要する。 （3）評侕办法

 う場合には併行してシミュレーションン解折を行い，試駼に基づく解折手法の孚当性の

 いる。上部には，ディスチャージケーシングがある，その上に電瀮機フレームを仆して
 ている。バレルケーシングとディスチャージケーシングは基礎にボルんにより固定され

とする。
（c）既往研究で本体部分が十分剛であることが確認されているものは，支持構造物部分 の剛性のみを考意してモデル化すればよい。
（d）モデル諸兀の計算方法については，できるだけ，「3．5 機器の評価万法」に記轕さ
れた手法を用いるものとする。
（e）モデル諸元のうち，解折による
（e）モデル諸元のうち，解析による評価が困難な部分の諸元については，試験で得られ
たデータをもとにモデル諸元を算定する。
固有値解析の結果，剛なものについては，床加速度を応答加速度とする静的応答解析 により，剛でないものについては，動的応答解析（原則としてスペクトルモーダル応答解析）により応答を求めることを原則とする。
なわ，詊細解析等において必要な場合には，時刻歴応答解析を行ってもよい。
（4）評価方法
上記の解析から得られた地震心答値より動的機能維持評価点の加速度，荷重，応力あ るいは変位を求め，許容值あるいは，機能碓認済加速度，荷重，変位と比校し，動的機
能を評価する。）
算定された応答値が，許容値あるいは機能碓認済加速度等を超えた場合には，更に詳
細な解析を行うか，あるいは設計の見直し等を行う。合には，当面，通常運転荷重に対する許容値を地震荷重を含めた荷重に対して用いても よい。
3．4．3 試験により機能椎持評侕を行う方法
能碓然済のレベルを大きく上回る場合には，機器本体あるいは動的機能の評価の対象とな
る要素について，試験による碓認を行ち必要がある。
本項では，このような場合の試験及び評俩の方法について基本的な考え方を示す。
（1）入力波の選定
対象とする機器の設計用床応答スペクトルと等亚な時刻朋波を選定することが望
対象とする機器の設計用床応答スペクトルと等価な時刻麻波を選定することが望まし

升箱形犾，シート方式及び駆動装置が現状のものより著るしく変更された場合は，評価

－－ 323 －

| J E A G $4601-1991$（抜粋）\quad 弁機能維持評価 |
| :--- | :--- | :--- | :--- | :--- |

（iii）（iii）項て入力加速度の礁認を满足したものについては，静的応答解析（応答倍率 1．0）によって各取付ボルト及び甚䘖ボルトの応力を算定し，許容値と比輇して機能維持を硫認する。
動的機能に関し，次の項目をポンプ本体及び減速機采の代表値として評侕する。 （i）ポンプ本体及び娍速機各㩆動部の健全倠磪認として，
－ポンプーの入力加速度比比皎評揀
（ii）ポンプ本体及び減速蟣の支持機能碓認として，
－各取付ボルトの強度評価

（3）人力地震動
静的応答計算には，原則として往復䡃式ポンナ毁備袂置床の最大加速度を用いる。
4）モデル化
往復䡃式

ポンプ本体及び減速機の取付ボルトや共通架台の基硠ボルトの発生応力は，原則とし
て静的応答钲析（応答倍率1，0）にて算定する。

可能である。この入力加速度は下記の值である。

（1）通用楼㮔
現在，原子力発䉓所で用いられている動的機能力要求される我は，表3．5．10－1に示す とおりである。各弁の代表的構造に関し，電動機歇動のグロープ并，ゲート弁，バタフ ライ升，空気作動のグローブ弁，バタフライ弁，また逆止升等の各系統に一般的に用い られている一般弁の例を図3．5．10－1に，空気作動ゴムダイヤフラム亣，主蒸気嵓離弁，

（2）評価の基本的考え方
弁機能評価に当たっては，作動特性，耐漏えい性，耐氏機能並びにこれらに係る構造強度についての検討が原則として必要となる。ただし，機能確認済加速度の範囲内にお いては，各機能に対する健全性が確認されている。したかっって，これらのものについて は，升駆動部の応答加速度を代表値として評価することを基本とする。

（a）一般并（グローブ弁，ダート弁，バタフライ弁）

（i）評価手順
（1）図3．5．10－3に一般弁の機能維持評価作業の基本的な流れを示す。
配管系もデルに一般升の簡易モブルを組み込み，地震応答解析を実施する。こ
の解析結果より得られる弁駆動部応答加速度を，機能確認済加速度と比較検討す の鮮析結果より得られる弁駆動部応䈶加速度を，機能碓認济加速度と比較検討す
ることにより評価を行う。ここで，弁駆動部応答加速度は，配管系のサポート変更等による応答の低減を考慮することが可能であるが，本対策を踏まえても応答

が大となる場合には，弁の構造上の最弱部に着目して強度検討を行う。
（2）配管反力に関しては，「告示 501 知」「に規定される配管側の評侕を満足するこ とを確認する。

は，基本的には構造上の最弱部に着目して検討を行う必要が
よれば，一般弁の最弱部は升構造による違いはあるものの， ある。既往研究によれば部及びボンネット下部のいずれかであることが確認さ
 ク下部，ボンネット上部及びボンネット下部のいずれかの発生応力を代表値とし て評価を行えばよい。

しかし，既往研究においては，機能確認済加速度の簐囲内であればう強度上問題
ないことが確認されしくおり，この範囲においては升駆動部応答加速度を代表値と
して評価することができる。
また，配管反力に対する弁の強度についても，既往研究により升箱の発生応力 が十分小さいことが確認されている。したがって，配管系の解析により配䇫反力 が許容値以下であることを確認すればよい。

注） $\begin{aligned} & \text { O 関連あり } \\ & \times \text { 関連なし }\end{aligned}$

[^0]漏えい
（2）漏えい本表に示される地震との関連が考えられる事象のうち，并体の衝突による弁座の変形からの弁座漏えい及び弁ふたの変形，フランジボルトのゆるみからの弁ふたフラ ンジ漏えいは，既往研究より十分小さく無視できることが判明している。したがっ て，一般弁の漏えいに対しては以下の評価を行えばよい。
（a）弁座漏えいのうち，并箱等の変形による弁座の変形は弁箱の強度に関連して評
（b）グランド部からの漏えいは，弁ふたグランド部の変形に関連するため，弁の最弱部の強度評価により磼認する。
しかし，既往研究において一般升の機能碓認済加速度の範囲内であれば，漏えい に対する問題はないことか確認されている。そのため，この加速度の範囲内であれ ぱ，弁駆動部応答加速度を代表値として評価することができる。
作動に関する機能䨤失としては，弁駆䡃装置の作動不良あるいはグランドパッキ
ンの替動抵抗の增大に対する弁駆動装置の駆動力量不足が考えられ，これらについ
ての評価が必要である。
升駆動装惪は強度のあによる評佂はできないが，機能確認斎加速度の範囲では正常に作動することが確認されている。グランドパッキンの啪動抵抗の増大に対する駆動力量の評価については，グランド部の歪に関連することからグランド部の発生応力を指標として評価できる。しかしなから，機能確認済加速度の䈉囲内では健全性か碓認されている。したがって作動機能に関しては，この加速度の範囲内では弁駆動部応答加速度を代表値として評価を行うことができる。
$-329-$
（ii）評価ポイント
逆止升に要求きれる機能としては，地震時においても要求される開忋態あるいはは閉状態を維持すること，及びそれらに至る作動か阻害されないことがあげられる。た
 め，地震時機能は以下により評価できる。
（開状態の維持）
内部流体の動王によりディスクに作用する開モーメントが，ディスク自重によ
る閉モーメント及び地震加速度による閒モーメントの和に比べ大であることを
礁認する。
（開状態の維持）
内部流体の貲圧によりブイスグをンートに押しつける正力（背压による閉力上地震加速度によりディスクを開こうとする力の差をシート面覲で除した値） が，シートの流体をシールするのに必要な最小面圧より大であることを碓認す
またテスタフルル逆止并については，構造上の最弱部である操作部本体の取付ボル の強度評侕を実施し，健全性を碓慗する。
代素値として神俇を行うことができる。

MS IV 評価平順
$-833-$
（c）ゴムダイヤフラム升

 （ii）と評础ボ認すント。
強度評㑑においては，既往矿究により碓認された本体の最弱部であるヨータ ロット付根のアンターカット部の発生化力を指標として評価を行う。しかし，機

配管反力に対する強度についても，既往研究成果により并箱の発生応力が十分小
 ことを碓暏すればよい。
本項目に関しては，一般并と同栚な機能力か要求されるため，弁箱及びグランド部の発生応力を指標として評価を行えばよい。しかし，機能能駺済加速度の符囲
 おいては并徝動部応答加速度を代表値として評価することができる。

（e）主蒸気，廨離分操作夙電磁弁
評砶手順
目3．5．10－

表3．5．10－9					配管反力に対する許容値
荷	重	䛨容値			

注：（1）「告示501号」に規定される値
 ることの確羿をもって，地䈨時の機能維持を満足するものとする。なお，卉の応答は配管系のサポート変更等による低減が可能であり，これらを踏きえて評侕を実施する
（b）駆動部応答加速度が，前項の機能矿照済加速度を超える場合について，現状の知見
による対処方法の一案を以下に示す。
（i）弁の要求機能のうち強度，漏えいに関しては，（2）項に述べたごとく升最弱部の強度評亚に含めて検討できる。したがって，ヨーク，ボンネット等の応力評価が必要 ことが望まれる。 な部分を考慮した詳細モデルを作成し，配管系の応答解析により発生応力を算出す る。この際の詳細モデルO）作成に関する考え方を解説 3 に示す。本解析より得られ る発生応力に対する許容量は，一次応力について，許容応力状龍师ASにおいて S_{y} ，許容応力状態 INASにおいて $1.5 S_{y}$ を目安として評価する。
（ii）作動機能に関し，弁駆動装置は解析的な評価が困難であるため，
（ii）作動機能に関し，弁駆動装置は解析的な評価が困難であるため，駆動装置単体の
また，グランドパッキンの摺動抵抗の增大に対する滒動力量の評価は，静荷重に よる試験を実施し，作動特珄に対して有意差が生じないことを確認する等により行 うことができる。この際の試験の内容と構成及び試験のブロックチャートの例を解説4に示す。

MS IV弁箱の剛性評価
はり并箱部を図3．5．10－13に示すように断面が一様なはりでもデル化し，弁箱の上部に，流れ方向（ X 方向），上下方向（ Y 方向）及び，流れ直角方向（ Z 方向）の三方向に単位荷重を加えて，各方向の変位と剛性値を，はり理論を用いて導くと下記の式となる。 （a）流れ方向（ X 方向）に荷重を加えた場合の変位と剛性は，

$$
w_{x}=\frac{P c^{3}}{6 E I}\left(1+\frac{3 a}{c}\left(1-4 \frac{a}{l}+6 \frac{a^{2}}{l^{2}}-3 \frac{a^{3}}{l^{3}}\right)\right)+\frac{P l}{2 A E}\left(1+\frac{2 a b}{l^{2}}\right)
$$

配管系の固有値が剛と判断される場合は，静的応答解析を行うが，この場合弁に加わ る玑速度は設計用床応答スペクトルのZPA（ゼロ周期加速度）であり，これを升駆動部応答加速度と見なして評侕を行う。また，剛の範囲にない場合には，原則として解析を行 い，算出された弁駆動部応答加速度を用いて弁の評価を実施する。更に，弁の詳裀評価 が必要となる場合には，分各部の強度俨価に必要な応管荷重を算出する。 るものとする。
なお，減衰定数については現在配管系の解析に使用されている0．5～2．5\％の値を用い
（6）評侕基準
かの機能評価にまいては，（3）項に示すごとく強度，漏えい，作動の各機能は，嘰能礁認済加速度の範囲内では弁駆動部応管加速度を代表値として評価するこさができる。こ の機能確認済の升駆動部の応答加速度を表3．5．10－8に示す。

配管反力に対する強度評個については，升箱の発生応力が十分小さいことが確認され ていることより，配管側の許容値を満足すればよい。この許容値を表3．5．10－9に示す。弁座漏えいに関しては，（2），（a），（ii），（2）項に示す考え方に基づき評価を行う。

表3．5．10－8 弁駆動部の機能碓認済加速度

346 －

[^0]: （b）一般弁（逆止弁）

