女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －補－E－19－0600－11＿改 3
提出年月日	2021 年 3 月 25 日

補足－600－11 サプレッションチェンバの耐震評価に おける内部水質量の考え方の変更等についての補足説明資料
1．はどめに 1
2．サプレッションチェンバ及びボックスサポートについて 4
2.1 サプレッションチェンバ及びボックスサポートの構造 4
2．2 サプレッションチェンバ及びボックスサポートの耐震補強対策 8
2．2．1耐震補強対策の目的 8
2．2．2 耐震補強対策の内容 8
3．サプレッションチェンバ及びボックスサポートの耐震評価 13
3.1 評価于順 13
3.2 地震応答解析 16
3．2．1 基本方針 16
3．2．2 地震応答解析モデル 16
3.3 応力解析 19
3．3．1 基本方針 19
3．3．2 応力評価点 19
3．3．3 応力解析方法 23
3.4 既工認と今回工認における耐震評価手法の相違 24
4．地震応答解析の詳細 28
4.1 地震応答解析モデル 28
4．1．1 サプレッションチェンバ内部水の有効質量算定 28
4．1．2 地震応答解析モデルにおける有効質量の設定 31
4．1．3 サプレッションチェンバ本体のモデル化 35
4．1．4 ボックスサポート取付部のばね剛性の算定 36
4．1．5 ボックスサポートのモデル化 39
4.2 地震応答解析モデル（3次元はりモデル）の妥当性確認 45
4．2．1 妥当性の確認方針（妥当性確認の着眼点） 45
4．2．2 妥当性確認用解析モデル（ 3 次元シェルモデル） 47
4．2．3 妥当性確認結果 48
4.3 地震応答解析に係る検討 62
4.4 スロッシンクグ荷重 66
5．応力解析の詳細 68
5.1 応力評価フロー 68
5.2 応力評価点 69
5．2．1 サプレッションチェンバの応力評価点 69
5．2．2 ボックスサポートの応力評価点 71
5.3 応力解析モデル 73
5．3．1 サプレッションチェンバの応力解析モデル 73
5．3．2 フランジプレート（外側）の応力解析モデル 74
5.4 応力評価 75
5．4．1 サプレッションチェンバの応力評価 75
5．4．2 ボックスサポートの応力評価 76
6．サプレッションチェンバ等の耐震評価における不確かさの考慮及び保守性 77
7．サプレッションチェンバ及びボックスサポートの耐震評価結果． 79
8．まとめ 83

別紙1 有効質量の適用およびその妥当性検証
別紙2 サプレッションチェンバ内部水の地震応答解析モデルへの設定方法
別紙3 地震応答解析干デルに対するバルジングの影響検討
別紙4 ばね要素の設定
別紙5 妥当性確認用解析モデル（3次元シェルモデル）の設定
別紙6 スロッシング荷重の算定方法
別紙7 計算機コードの概要
別紙8 有効質量の概要
別紙9 規格類における有効質量の適用例
別紙10 サプレッションチェンバの水位条件
別紙11 地震洔におけるトーラス型容器内部水の有効質量に係る研究の概要
別紙12 有効質量比に対するスロッシング影響
別紙 13 振動試験の振動試験の有効質量比
別紙14 有効質量比に対する入力地震動の影響
別紙15 サプレッションチェンバ内部水によるスロッシンクグ荷重及び有効質量の影響訣価
別紙16規格基準における有効質量比との比較
別紙17 原子炉建屋基礎版上における地震応答を用いる妥当性
別紙18 ボックスサポートの耐震評価における応力算出方法の考え方
別紙19 サプレッションチェンバ内の耐震禣強対策等による有効性評価等への影響

1．はじめに
本書は，女川原了力発電所第2号機（以下，女川 2 号機という。）の工事計画認可申請書添付資料 「VI －2－9－2－1－2 サプレッションチェンバの耐震性についての計算書」及び「VI－2－9－2－1－5 ボックスサ ポートの耐震性についての計算書」における耐震評価手法についてまとめた資料である。
サプレッションチェンバ及びボックスサポートの耐震評価では，サプレッションチェンバ本体とそ れを支持するボックスサポートを模疑した地震応答解析モデルを用いて地震荷重を算定し，それらに基づき，各部の構造強度評価を行うことで，サプレッションチェンバ及びボックスサポートの耐震性 を評価するものである。
女川 2 号機の既工認及び今回工認における動的地震力及び静的地震力に対する耐震評価フローを図 1－1，1－2，1－3，1－4に小す。
女川 2 号機の既工認におけるサプレッションチェンバ及びボックスサポートの耐震評価は，簡便な扱いとして，サプレッションチェンバ内部水を含めたサプレッションチェンバ全体を剛と見做し， 3次元はりモデルを用いた静的解析によりサプレッションチェンバの地震応答解析を実施していた。
今回工認においては，重大事故時のサプレッションチェンバの水位上昇に伴う内部水質量の増加，基準地震動の増大等を踏まえ，より詳細な地震応答解析を実施するため，より現実に近いサプレッシ ョンチェンバの内部水の挙動を考慮して内部水質量を従来の固定質量から有効質量へ変更すること＊， サプレッションチェンバ及びボックスサポートの地震応答解析については，既工認における解析モデ ルの精䋊化及び詳細化を図り，サプレッションチェンバ本体に加えてボックスサポート等を考慮した 3 次元はりモデルによる動的解析（スペクトルモーダル解析）を適用することとした。なお，サプレ ッションチェンバ内部水質量の扱いを有効質量としたことに伴い，サプレッションチェンバ内部水に よるスロッシング荷重を流体解析にて算定することとした。
また，サプレッションチェンバ及びボックスサポートの耐震評価にあたっては，サプレッションチ ェンバとボックスサポートの取付部にばね剛性を模擬し考慮すること等に加えて，耐震性の向上を目的としたサプレッションチェンバ及びボックスサポートの耐震補強対策の内容を反映し，より詳細に評価を実施する。
なお，サブレッションチェンバ及びボックスサポートの地震応答解析に 3 次元はりモデルを適用す るにあたっては，妥当性確認用解析モデル（ 3 次元シェルモデル）による地震応答解析結果との比較検討を行い，耐震評価において考慮すべき振動モードが 3 次元はりモデルにて表現できていること等 を確認している。

注記水：女川原子力発電所第 2 号炉審査資料「女川原子力発電所 2 号炉 設言 1 基準対象施設について 4 条 地震による損傷の防止 別紙－4 サプレッションチェンバ内部水質量の考え方の変更 について」（02－NP－0272（改114）（令和2年2月7日））参照

図 1－1 既工認におけるサプレッションチェンバの動的地震力による耐震評価フロー

図 1－2 今回丁認におけるサプレッションチェンバの動的地震力による耐震評価フロー

図1－3 既工認におけるサプレッションチェンバの静的地震力による而震評価フロー

図1－4 今回工認におけるサプレッションチェンバの静的地震力による耐震評価フロー

2．サプレッションチェンバ及びボックスサポートについて
2.1 サプレッションチェンバ及びボックスサポートの構造

女川 2 号機のサプレッションチェンバ及びボックスサポート構造概要図を図2．1－1 に，ボックスサ ポート構造詳細図を図2．1－2に，サプレッションチェンバ断面概要図を図2．1－3に，サプレッション チェンバ諸元を表2．1－1に示す。

サプレッションチェンバは，大円が直径 $\square \mathrm{mm}$ ，小円が直径 $\square \mathrm{mm}$ ，板厚 $\square \mathrm{mm}$ ， 16 セグ メントの円筒を繋ぎ合わせた円環形状（トーラス状）の構造物である。また，各セグメントの継ぎ目部（以下，「胴エビ継手部」という）には箱状の支持構造物であるボックスサポートが大円の内側及び外側それぞれに 16 箇所の計 32 箇所に取り付けられており，それらが基礎ボルトを介して原子炉建屋基儊版上（ $0 . \mathrm{P} .-8,100 \mathrm{~mm}$ ）に自立している。ボックスサポートは，サプレッションチェンバ（大山） の半径方向の熱膨張を吸収する目的で可動し，周方向に地震荷重を原子炉建屋基礎版に伝達させる構造となっている。サプレッションチェンバは，ドライウェルとベント管を介して接続されているが， ベント管のベント管ベローズにより振動が伝達しない構造としており，地震による揺れは，原子建屋基碮版上からボックスサポートを介しサプレッションチェンバに入ノされしる（別紙 17）。

\square
図2．1－1 サプレッションチェンバ及びボックスサポート構造概要図

図2．1－2 ボックスサポート構造詳細図

図2．1－3 サプレッションチェンバ断面概要図

表2．1－1 サプレッションチェンバ諸元

項 目		内 容	備 考
耐震クラス		S クラス	設計基準対象施設
設備分類		常設耐震重要重大事故防止設備常設重要重大事故緩和設備	重大事故等対処設備
設置建屋		原子炉建屋	
設置高さ		0．P．$-8,100$	原子炉建屋基礎版上
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	D		記号は図 2．1－1 に示す
	λ		
	t		
	θ		
サブレッション チェンバ質量 （内部水及びボックス サポート含むs）		約4，200 ton	通常運転水位における質量
		約6，770 ton	耐震解析用重大事故等時水位＊ における質量
内部水質量		約 2,900 ton	通常運転水位における質量
		約 5，470 ton	耐震解析用重大事故等時水位＊ における質量

注記＊重大事故等時水位よりも高い水位（真空破壊装置下端位置）

2.2 サプレッションチェンバ及びボックスサポートの耐震補強対策

2．2．1耐震禣強対策の目的

今回工認においては，重大事故等時のサプレッションチェンバの水位上昇に伴う内部水質量の増加，基準地震動の増大等を踏まえ，女川 2 号機のサプレッションチェンバ及びボックスサポートの耐震性 を向上させるための補強対策として，サプレッションチェンバの強め輪及びボックスサポート取付部， ボックスサポートの脚部及び基礎部に補強部材を追加する。

2． 2.2 而震補強対策の内容

（1）サプレッションチェンバ及びボックスサポート取付部 サプレッションチェンバ及びボックスサポート取付部の响震補強対策前後の比較表を表 2．2－1 及び表2．2－2，耐震補強対策後の詳細構造図を図 2．2－1 に示す。
サプレッションチェンバの小円については，建設時より，断面変形を抑制する設計のためサプレッ ションチェンバ内部に強め輪が設置されているが，強め輪を拡張する補強部材及び強め輪間の連結板 を追加－する耐震補強对策を実施し，強め輪の剛性を向上させることによって小円の断面変形を更に抑制する。【強め輪 64 枚中の 32 枚（胴エビ継手部）】なお，耐震補強対策の範囲は，サプレッションチ ェンバ内の設備（サプレッションチェンバスプレイ管，主蒸気逃がし安全弁排気配管）との干渉及び サプレッションチェンバ下部の強め輪補強が応力に与える影響が小さいことを踏まえて設定している （図2．2－2参照）。
サプレッションチェンバの内側及び外側ボックスサポート取付部（P9，P10）に対する応力低減を目的として，ボックスサポート取付部周辺にパッド及び補強リブを追加する。【ボックスサポート取付部： 32 ヶ所】
サプレッションチェンバ内の耐震補強対策等による部材の追加によってサプレッションチェンバ空間部体積及び水量が変化するため，有効性評価等に与える影響について確認し，有効性評価等で用い られている評価条件が確保されることを確認した。併せて，耐震補強対策等による部材の追加によっ てLOCA時等の水温や内部水の流動に与える影響について考察し，影響がほとんどないことを確認 した。（別紙 19）。
（2）ボックスサポート
ボックスサポートの耐震補強対策前後の比較表を表 2．2－3，耐震補強対策後の詳細構造図を図 2．2－ 3 に示す。
ボックスサポートのシヤラグ取付部（P4）及びシヤコネクタ取付部（P8）に対する応力低減を目的 として，ベースプレート外側（周方向）に新設ベースプレート，新設シヤコネクタ及び新設シヤラグ を追加する。また，ボックスサポートのフランジプレート（ P 6 ）及びベースプレート（ P 7 ）に対する応力低減を目的として，ボックスサポートのボックスプレートに追加リブを追加する。【ボックスサポ ート： 32 ヶ所

表2．2－1 サプレッションチェンバの耐震補強対策前後比較表

| | 補強前（小円断面） | 補強後（小円断面） |
| :--- | :---: | :---: | :---: |

表 2．2－2 ボックスサポート取付部の耐震補強対策前後比較表

| | 補強前（ボックスサポート取付部） | 補強後（ボックスサポート取付部） |
| :--- | :---: | :---: | :---: |
| | ＊P1～P10 は既工認における応力評価点 | |

\square
図2．2－1 サプレッションチェンバ及びボックスサポート取付部の耐震補強対策後詳細構造図

図2．2－2 強め輪の補強範囲とサプレッションチェンバ内の設備との関係

表 2．2－3 ボックスサポート耐震補強対策前後比較表

枠囲みの内容は商業機密の観点から公開できません。

図 2．2－3 ボックスサポートの耐震補強対策後詳細構造図

3．サプレッションチェンバ及びボックスサポートの耐震評価

3.1 評価手順

サプレッションチェンバ及びボックスサポートの耐震評価に係る評価手順は，表3．1－1 のとおり，地震応答解析及び応力解析に大別される。
地震応答解析では，サプレッションチェンバ及びボックスサポートの構造特性，サプレッションチ ェンバ内部水の流体特性等を考慮し，サプレッションチェンバ及びボックスサポートの地震応答解析 モデル（3次元はりモデル）を設定し，周有値解析及で地震応答解析（スペクトルモーダル解析）を実施し，地震時における荷重等を算定する。なお，スロッシング荷重については，地震時のサプレッシ ョンチェンバ内部水の挙動を考慮し，流体解析にて算定する。
応力解析では，地震応答解析にて算定した地震時における荷重等を用いて，サプレッションチェン バ及びボックスサポートのシェルモデルを用いた FEM 解析による応力解析，評価断面の形状から公式等による手計算等によって各応力評価点の応力を算定する。
なお，表3．1－1には，設置許可審査にて詳細設計段階で説明することとした項目（設置許可からの申送り事項）及び詳細設計の進捗を踏まえた説明する項目を示す。
$\square:$ 詳細設計段皆で説明することとした項目（設置許可からの申送り事項）

$\square:$ 詳細設計の進渉を踏まえた説明項目 | 今回工認における補足説明の内容 |
| :---: | :---: |表3．1－1 評価手順（1／2）

3.2 地震応答解析

3．2．1 基本方猃 +

既工認では，簡便な扱いとして，サプレッションチェンバ内部水を含めたサプレッションチェンバ全体を剛と見做し，静的に地震応答解析を実施していたが，今回工認におけるサプレッションチェン バ及びボックスサポートの地震応答解析では，重大事故時のサプレッションチェンバの水位上昇に伴 う内部水質量の増加，基準地震動の増大等を踏まえ，より詳細に地震応答を把握するため，より現実 に近いサプレッションチェンバの内部水の挙動を考慮して内部水質量を従来の固定質量から有効質量 へ変更すること，サプレッションチェンバ及びボックスサポートの地震応答解析として，女川 2 号機 と同型炉で既工認実績のある動的解析（3 次元はりモデルを用いたスペクトルモーダル解析）を適用 し，地震時における荷重を算出する。なお，スロッシング荷重については，地震時のサプレッション チェンバ内部水の挙動を考慮し，流体解析にて算定する。

また，地震応答解析モデルの設定にあたっては，サプレッションチェンバとボックスサポートの取付部に剛性を模擬したばね要素を考慮すること等に加えて，耐震性の向上を目的としたサプレッショ ンチェンバ及びボックスサポートの耐震補強対策の内容を反映し，より詳細にサプレッションチェン バとボックスサポートの耐震評価を実施する。

なお，地震応答解析に適用する 3 次元はりモデルの妥当性確認として， 3 次元シェルモデルを用い た地震応答解析との比較検討を行い，耐震評価において考慮すべき振動モードが 3 次元はりモデルに て表現できていること等を確認する。

3．2．2 地震応答解析モデル

サプレッションチェンバ及びボックスサポートの地震応答解析に適用する 3 次元はりモデルについ て，図3．2－1 に示す。

設置許可からの申送り事項，詳細設計段階における進捗等を踏まえ，サプレッションチェンバ及びボ ックスサポートの 3 次元はりモデルの設定にあたっての主な考慮事項を以下に示す。なお，詳細検討内容については，4項に示す。
（1）サプレッションチェンバ内部水に対する有効質量
サプレッションチェンバ内部水に対する有効質量は，NASTRAN の仮想質量法を用いて，サプレッ ションチェンバの内面圧力（水平及び鉛直方向の圧力）から各方向の有効質量を算出する。また，算出された有効質量の 3 次元はりモデルへの設定は，NASTRAN の機能（Guyan 縮約法）を用いて，サ プレッションチェンバの名質点に縮約し，付加する。

なお，サプレッションチェンバ内部水の有効質量の妥当性検証として，実機を縮小した試験体を用いた振動試験及び流体解析により算出した有効質量と比較•検証を行う。
（2）サプレッションチェンバ本体のバルジングに対する影響 サプレッションチェンバ及でボックスサポートを構成する各部材の剛性，質量，サプレッション

チェンバ内部水等を適切に考慮し，はり要素でモデル化する。
一方，内部水を有する薄肉门筒容器（たて置门筒容器）の门筒壁面が変形振動（バルジング）す ることの既往知見に対して，既工認におけるサプレッションチェンバ本体（小円）の耐震設計では，強め輪によりサプレッションチェンバ本体（小円）の断面変形を抑制する設計としている。ただし，今回工認では，重大事故等時のサプレッションチェンバの水位上昇に伴う内部水質量の増加，基準地震動の増大等を踏まえ，強め輪の剛性を更に向上させる耐震補強対策を実施することによって， サプレッションチェンバ本体（小円）の断面変形を更に抑制する設計とする。
また，サプレッションチェンバ及びボックスサポートの地震応答解析モデルの設定にあたっては， より詳細に地震応答を把握するため，ボックスサポート取付部のばね剛性（並進，回転）を考慮し たばね要素を 3 次元はりモデルに付加する。
（3）ボックスサポート取付部の影響
既工認におけるボックスサポート取付部の而震設計では，当該部における局部変形を防止するた め，サプレッションチェンバ内部に強め輪を設置するとともに，ボックスサポートは当 く板を介し てサプレッションチェンバに取り付けられていることから，ボックスサポート取付部の剛性を簡便 に剛として扱っていた。今回工認では，重大事故等時のサプレッションチェンバの水位上昇に伴う内部水質量の増加，基準地震動の増大等を踏まえ，ボックスサポート取付部の影響を含め，より詳細な地震応答を把握するため，シェルモデルとはりモデルを用いた解析からボックスサポート取付部のばね剛性を各々算定し，そのばね剛性の差をばね要素として地震応答解析モデル（3 次元はり モデル）に設定することで，はりモデルで考慮されないボックスサポート取付部のはね剛性（並進，回転）を考慮する。
（4）ボックスサポートの剛性の詳細化及び基礎ボルト等の扱い
既工認におけるサプレッションチェンバのモデル化では，十分に剛性が高いことから固定状況を境界条件として考慮していた。今回工認では，より詳細な地震応答を把握するため，シェルモデル を用いた解析からボックスサポートの剛性を算定し，地震応答解析モデルに考慮する。

また，ボックスサポートの基礎ボルトに負荷される地震荷重をより詳細に評価するため，基礎ボ ルトを剛ばね要素として，地震応答解析モデルに考慮する。
また，ボックスサポートは，サプレッションチェンバ本体（大円）の半径方向に対する熱锫張を吸収する可動構造であることから，地震応答解析モデルにおけるボックスサポート下端の境界条件 は，サプレッションチェンバ本体（大円）の周方向に固定，半径方向に自由とする。
\square
図 3．2－1 サプレッションチェンバ及びボックスサポートの地震応答解析モデル（3 次元はりモデル）

3.3 応力解析

3．3．1 基本方針

今回工認のサプレッションチェンバ及びボックスサポートの耐震評価における応力評価では，重大事故等時のサプレッションチェンバの水位上昇に伴う内部水質量の増加，基準地震動の増大等に加え て，耐震性の向上を目的としたサプレッションチェンバ及びボックスサポートの耐震補強対策の内容 も踏まえ，構成部材の形状，断面性能及び荷重伝達等を考慮して応力評価点及び応力解析方法を設定 し，応力評価を行う。なお，詳細検討内容については，5．項に示す。

3．3．2 応力評価点

サプレッションチェンバみびボックスサポートの応力評他点を表 3．3－1，図 3．3－1，表3．3－2，図 3．3－2 に示す。

表 3．3－1 サプレッションチェンバの応力評価点

評価設備	応力評価点番号	応力評価点	既工認	今回工認
サプレッション チェンバ	P1	胴中央部外側	\bigcirc	\bigcirc
	P2	胴中央部底部	\bigcirc	\bigcirc
	P3	胴中央部内側	\bigcirc	\bigcirc
	P4	胴中央部頂部	\bigcirc	\bigcirc
	P5	胴エビ継手部外側	\bigcirc	\bigcirc
	P6	胴エビ継手部底部	\bigcirc	\bigcirc
	P7	同エビ継手部内側	\bigcirc	\bigcirc
	P8	胴エビ継手部頂部	\bigcirc	\bigcirc
	P9	内側ボックスサポート取付部	\bigcirc	－＊
	P10	外側ボックスサポート取付部	\bigcirc	－＊

注記＊：耐震補強対策を考慮して評価断面位置を変更する

図 3．3－1 サプレッションチェンバの応力評価点

表3．3－2 ボックスサポートの応力評価点

評価設備	応力評亚点番号	応力評価点	既工認	今回工認
ボックス サポート	P1	ボックスプレート	\bigcirc	\bigcirc
	P2	ボックスプレート取付部	\bigcirc	\bigcirc
	P2＇	ボックスプレート（上側）取付部	－	\bigcirc
	P3	フランジプレートとシヤラグ接触部	\bigcirc	\bigcirc
	P4	シヤラグ取付部	\bigcirc	\bigcirc
	P5	基䊁ボルト	\bigcirc	\bigcirc
	P6	フランジプレート	\bigcirc	\bigcirc
	P6＇	フランジプレート（外側）	－	\bigcirc
	P7	ベースプレート	\bigcirc	○＊
	P8	シヤコネクタ（外側）取付部	\bigcirc	O＊
	P9	コンクリート（ベースプレート下面）	\bigcirc	\bigcirc
	P10	コンクリート（シヤコネクタ（外側）側面）	\bigcirc	－＊
	P11	コンクリート（シヤプレート上面）	\bigcirc	\bigcirc
	P12	パッド取付部	－	\bigcirc

注記＊：耐震補強対策を考慮して評価断面位置を変更する

図3．3－2 ボックスサポートの応力評価点

3．3．3 応力解析方法

（1）公式等による手計算を用いた応力評価
既工認におけるサプレッションチェンバ（ボックスサポート取付部除く）の応力評価は，サプ レッションチェンバをはり要素でモデル化し，サプレッションチェンバ設置床の最大応答加速度に対する静的解析によって得られた地震荷重及び評価断面の形状等から，公式等による手計算によって応力を算出していた。また，ボックスサポートは，手計算により算出したボックスサ ポート 1 個当たりの地震荷重及で評侕断面等の形状から公式等による手計算によって応力を算出していた。
今回工認におけるサプレッションチェンバの応力評価は，動的解析（3 次元はりモデルによる スペクトルモーダル解析）から算出された地震荷重等を用いて，応力解析モデルを用いた応力評価を行い，ボックスサポートの応力評価は，動的解析（3 次元はりモデルによるスペクトルモー ダル解析）から算出された地震荷重等を用いて，既工認同様，公式等による手計算によって応力 を算出する。ただし，フランジプレートについては，応力解析モデルを用いた応力評価を行う。
（2）応力解析モデルを用いたFEM解析による応力評価
既工認におけるボックスサポート取付部の応力評価は，内側と外側のボックスサポート（ 1 組） とその両側にあるサプレッションチェンバ（胴部）をシェル要素でモデル化し，ボックスサポー ト下端位置等に静的解析で算出された地震荷重等を入力し，FEM 解析による応力解析を行ってい た。

今回工認では，重大事故等時のサプレッションチェンバの水位上昇に伴う内部水質量の増加，基準地震動の増大等を踏まえ，サプレッションチェンバ及びボックスサポートに負荷される局部的な応力をより詳細に評価するため，シェル要素でモデル化し，ボックスサポート取付部に加 えて，サプレッションチェンバについても FEM 解析による応力解析を行う。
応力解析モデルは，ボックスサポート取付部のばね剛性の算定に用いたモデルと同等の解析 モデルを適用する。また，地震応答解析で算出された地震荷重等の応力解析モデルへの入力は，応力評価点の変形を適切に模擬するように地震応答変位を用いて設定する。
また，ボックスサポートのらち，フランジプレートの応力評価については，ボックスサポート の耐震補強対策として設置した追加リブによる拘束効果を考慮し，より詳細に応力を評価する ため，フランジプレート周りをシェル要素でモデル化し，FEM解析による応力解析を行う。

3.4 既工認と今回工認における耐震評価手法の相違

既工認と今回工認におけるサプレッションチェンバ及びボックスサポートの耐震評価手法につい て比較•整理した結果を表 3．4－1 に示す。また，既工認におけるサプレッションチェンバの地震応答解析モデルを図3．4－1 に，ボックスサポートの荷重算定方法について図3．4－2 に示す。

図 3．4－1 既工認におけるサプレッションチェンバの地震応答解析モデル
\square
図3．4－2 ボックスサポートの荷重算定方法
表 3．4－1 既工認と今回工認こおける耐震評価手法の相違（ $1 / 2$ ）

設備		応力価点		既工認		今回工認		変更理由
	種別			解析手法	解析モデル	解析手法	解析モデル	
サプレッシ ョンチェン バ	$\begin{aligned} & \text { 地震 } \\ & \text { 応答析 } \end{aligned}$		全応力部価点	設置床の最大応答加速度 による静的解析	3次元はりモデル （サプレッションチェンノ゙全体 を考慮	$\begin{gathered} \text { 動的解析 } \\ \text { (スペクトルモーダル解析) } \end{gathered}$	3 次元はりモデレ＊ （サプレッションチェン）全体 を考慮）	重大事故等時のサプレッションチェンパの水位上昇に伴う内部水質量の増加，基漼地震動の增大等を踏ま え，より詳細に地震応答を把握するため，解析手法及 ひ解析モデルを詳羏化した。
	$\begin{aligned} & \text { 応力 } \\ & \text { 解析 } \end{aligned}$	$\begin{aligned} & \text { P1 } \\ & \text { P2 } \\ & \text { P3 } \\ & \text { P4 } \end{aligned}$	胴中央部外側胴中央部底部胴中央部内側胴中央部頂部	公式等による評価	－	FEX 解析	3 次元シェルモデル （サプレッションチェン体体 とボックスサポート（ \square を考慮 \square	朋エビ継手部と合わせて，より詳細な応力を考慮する こととした。
		$\begin{aligned} & \text { P5 } \\ & \text { P6 } \\ & \text { P7 } \\ & \text { P8 } \end{aligned}$	胴エビ繙手部外側䏤エビ繙手部底部胴エビ組手部内側胴エビ䋃手部頂部	公式等による評価	－	FEX 解析	3 次元シェルモデル （サプレッションチェンバ本体 とボックスサポート（ \square を考慮） \square	䏤工ビ継手部近傍にはボックスサポートが取り付けら れているため，より詳細に局部的な応力を考慮するこ ととした。
		$\begin{aligned} & \text { P9 } \\ & \text { P10 } \end{aligned}$	内側ボックス サポート取付部 外側ボックス サポート取付部	FFM 解析	$\begin{aligned} & \text { 3次元シェルニモデル } \\ & \text { (サプレッションチェンバ本体 } \\ & \text { とボックスサボート } \\ & \text { を考虜) } \end{aligned}$	FEM 解析	3 次元シェルモデル （サプレッションチェンバ本体 とボックスサポート（ \square を考慮）	地震艮答解析モデルに考慮したボックスサポート取付 とした。 \square \square とした。）

注記＊：（1）サプレッションチェンバ内部水に対する有効質量の適用，（2）ボックスサポート取付部にばね剛性を考慮，（3）ボックスサポートの岡性の詳細化及び基
礎ボルトのモデル化
表3．4－1 既工認と今回工認における耐震評価手法の相違（2／2）

設備	解析種別	応力誰点		既工認		今回工認		変更理由
				解析手法	解析モデル	解析手法	解析モデル	
$\begin{aligned} & \text { ボックス } \\ & \text { サポート } \end{aligned}$	$\begin{aligned} & \text { 地霅 } \\ & \text { 応䇶析 } \end{aligned}$		全応力評価点	設置床の最大応答加速度 による静的解析	－	動的解析 （スペントルモーダル解析）	$\begin{gathered} \text { 3次元はシりモデル* } \\ \text { (サプレッションチェンク全体 } \\ \text { を考濾) } \end{gathered}$	重大事故等時のサプレッションチェンバの水位上昇に伴う内部水質量の増加，基準地震動の增大等を踏ま え，より詳細に地震応答を把握するため，解析手法及 ひ解析モデルを詳細化した
	応力解析	$\begin{aligned} & \text { P1 } \\ & \text { P2 } \\ & \text { P4 } \\ & \text { P6 } \end{aligned}$	$\begin{gathered} \text { ホックスプレート } \\ \text { ボックスプレート } \\ \text { 取付部 } \\ \text { シャラグ耿部 } \\ \text { フランジプレート } \end{gathered}$	公式等による評価	－	公式等による評価	－	
		P2＇	ボックスプレート （上側）取付部	－＊	－＊	公式等による評価	－	応力評価点として，P2（ボックスプレート取付部；下側）に加えて，P2（（上側を新たに設定した。
		$\begin{aligned} & \hline \text { P3 } \\ & \text { P9 } \end{aligned}$	$\begin{aligned} & \text { フランジプレート } \\ & \text { とシヤラク接触部 } \\ & \text { コンクリリート (ベ } \\ & \text { ースプレート下 } \end{aligned}$ 面）	公式等による評価	－	公式等による評価	－	－
		P5	基䃌ボルト	公式等による評価	－	公式等による評価	－	－
		P6＇	$\begin{aligned} & \text { フランジプレート } \\ & \text { (外側) } \end{aligned}$	－＊	－＊	公式等による評価又は FEM 解析	3次元シェルモデル （3辺拘束範囲をモデル化）	
		P7	$\begin{gathered} \text { ベースプレート } \\ \text { (外㑡) } \end{gathered}$	公式等による評価	－	公式等による評価	－	補強対策として追設した追加リブを考慮し，フランジ プレート緛部位置のベースプレートを応力評価点とし た。
		$\begin{aligned} & \hline \text { P8 } \\ & \text { P10 } \end{aligned}$	$\begin{aligned} & \text { シャコネクタ (外 } \\ & \text { 唰) 取付部 } \\ & \text { コングート (シ } \\ & \text { ヤコネクタ"(外 } \\ & \text { 側) 圙) } \end{aligned}$	公式等による評価	－	公式等による評価 （評価断面の変更）	－	$\begin{aligned} & \text { 補弦対策として追設した } \\ & \text { 点とした, } \end{aligned}$
		P11	$\begin{aligned} & \text { コンクリート (シ } \\ & \text { ヤプレート上面) } \end{aligned}$	公式等による評価	－	公式等による評価	－	－
		P12	パット取付部	－＊2	－＊	公式等による評価	－	P2（ボックスプレート取付部）を代表応力評価点とし ていたが，新たにP12 を応力評価点に設定した。

注記 $* 1$ ：（1）サプレッションチェンバ内部水に対する有効質量の適用，（2）ボックスサポート取付部にばね剛性を考慮，（3）ボックスサポートの剛性の詳細化及び基碟ボルトのモデル化
＊2：既工認では，圧力評価点としていない。

4．地震応答解析の詳細

4.1 地震応答解析モデル

4．1．1 サプレッションチェンバ内部水の有効質量算定
（1）有効質量算定の考え方
有効質量については，他産業の球形タンクや円筒タンク等の容器の耐震設計に一般的に用いられ ている考え方である。また，有効質量は，容器の内部水が自由表面を有する場合，水平方向の摇れ による動液圧分布を考慮して，地震荷重として付加される容器の内部水の質量として設定される。 この有効質量は，容器の形状と水位が既知であれば，汎用構造解析プログラム NASTRAN の仮想質量法を用いて算出することができる。

女川 2 号機の今回工認において，サプレッションチェンバ及びボックスサポートの地震応答解析 に用いるサプレッションチェンバ内部水の有効質量算定フローを図4．1－1 に示す。

地震応答解析に用いる有効質量は，実機のサプレッションチェンバに対してシェル要素で有効質量算定用解析モデルを作成し，サプレッションチェンバ内部水の水位を設定（流体部分と構造の接水面設定）した上で，応答解析（仮想質量法）にて，サプレッションチェンバ（各要素）の内面圧力（水平方向の圧力及び鉛直方向の圧力）から各方向の有効質量を算定する。

また，NASTRANによる有効質量の算定手法については，サプレッションチェンバが円環形状容器 であることを考慮し，実機を縮小した試験体を用いた振動試験及び流体解析により算出した有効質量と比較•検証によりその妥当性を確認している。

有効質量の適用及びその妥当性に係る検討結果の詳細については，別紙 1 に示す。

図4．1－1 有効質量算定フロー
（2）有効質量の解析モデル
サプレッションチェンバ内部水の有効質量を算定するための解析モデルを図4．12に示す。
解析モデルは，サプレッションチェンバ（強め輪を含を）の寸法，剛性を模擬したシェル要素と し，サプレッションチェンバ内部水の水位を設定する。なお，サプレッションチェンバ内部水の有効質量を算定するための解析モデルの作成にあたっては，有効質量が解析対象の容器形状及び水位 に係る情報のみがあれば算定可能であることから，有効質量算定に関係のないボックスサポートを模擬していない。

サプレッションチェンバ内部水の水位は，図4．1－3に示すとおり，通常運転水位及び而震解析用重大事故等時水位を考慮して 2 ケースを設定する。なお，耐震解析用重大事故等時水位は，重大事故後の状態で弾性設計用地震動 S d 及び基準地震動 S s による地震力と組み合わせる水位である （別衹10）。

図 4．1－2 有効質量算定用解析モデル

図4．1－3 サプレッションチェンバ内部水の設定水位
（3）有効質量の解析結果
仮想質量法によるサプレッションチェンバ内部水の有効質量の算定結果を表4．1－1に示す。ここ で，算出結果として示している有効質量比の値は，内部水全質量に対する水平方向の有效質量の割合を表す。なお，実際の地震応答解析モデルにおける有效質量は，仮想質量法を用いて設定する。詳細な設定方法については，4．1．2項に示す。

また，有効質量を算定する解析プログラムによる比較として，汎用流体解析コード OpenFOAM（流体解析）による算定結果も」示す。各水位において仮想質量法と流体解析により算出した有効質量比 は概ね一致しているが，仮想質量法により算出した方がやや大きい傾向があり，有効質量としては保守側の値となっている。

表 4．1－1 サプレッションチェンバ内部水の有効質量比算定結果

水位	解析手法	
	仮想質量法	流体解析＊
通常連転水位（H．W．L）	0.24	0.22
耐震解析用重大事故等時水位	0.33	0.32

注記＊：スロッシングの卓越周期帯で応答加速度が大きいS s－D 1 を用いた算定結果

4．1．2 地震応答解析モデルにおける有効質量の設定

仮想質量法で算定したサプレッションチェンバ内部水の有効質量について，サプレッションチェ ンバ及びボックスサポートの地震応答解析モデルへの設定フローを図4．1－4に示す。

仮想質量法により算定したサプレッションチェンバ内部水の有効質量は，NASTRAN の機能である Guyan縮約法を用いてサプレッションチェンバ（3 次元はりモデル）の各質点に縮約し，付加する。 なお，NASTRAN の機能である縮約とは，一般に膨大な数のデータを扱う有限要素法などの解析にお いて，行列の大きさ（次元）を小さくする解杆上のテクニックとして用いられるものである。有効質量算定用解析モデル（シェル要素）で算出されたサプレッションチェンバ各要素の有効質量は，その有効質量及び位置（高さ）を考慮し，地震応答解析モデル（はり要素）のサプレッショ ンチェンバ各質点に対する有効質量（並進質量及び回転質量）として設定される。

今回工認におけるサプレッションチェンバ及びボックスサポートの地震応答解析モデルを図 4．1－5に示す。また，地震応答解析モデルの各質点に設定される有効質量について，耐震解析用重大事故時水位を代表として，水平（X 方向）方向及び鉛直（Z 方向）方向の有効質量（並進質量及び回転質量）を表4．1－2 及び表4．1－3に示す。

水平（X 方向）のうち並進（X 方向）の質量の総和が有効質量であり，鉛直（Z 方向）方向の並進 （Z 方向）の質量の総和が全質量を表し，その有効質量比は $0.33 \square$ と表4．1－1 と一致しており，適切に縮約されていることを磪認した。なお，サプレッションチェンバの強め輪補強対策に係る詳細設計段階の検討結果の反映により，内部水から容器に加わる荷重が増加すること で，設置許可時よりも有効質量比が増加している。
サプレッションチェンバ内部水の地震応答解析モデルへの設定方法に係る詳細及び NASTRAN の機能である Guyan 縮約法の妥当性については，別紙 2 に示す。

図 4．1－4 有効質量の地震応答解析モデルへの設定フロー
\square

図 4．1－5 サプレッションチェンバ及びボックスサポートの地震応答解析モデル

表4．1－2 有効質量の設定（而震解析用重大事故等時水位， X 方向）

質点番号	並進質量			回転質量		
	$\begin{gathered} \mathrm{m}_{\mathrm{x}} \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	$\begin{gathered} \mathrm{m}_{\mathrm{y}} \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	$\begin{gathered} \mathrm{m}_{8} \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	$\begin{gathered} \mathrm{Rm}_{\mathrm{x}} \\ \left(\times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}\right) \end{gathered}$	$\begin{gathered} \mathrm{Rm}_{\mathrm{y}} \\ \left(\times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}\right) \end{gathered}$	$\begin{gathered} \mathrm{Rm}_{\mathrm{z}} \\ \left(\times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}\right) \end{gathered}$
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
合計						

表 4．1－3 有効質量の設定（而震解析用重大事故等時水位，Z 方向）

	並進質量			回転質量		
$\begin{aligned} & \text { 買点 } \\ & \text { 番 } \end{aligned}$	$\begin{gathered} \mathrm{m}_{\mathrm{x}} \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	$\begin{gathered} \mathrm{m}_{y} \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	$\begin{gathered} \mathrm{m}_{z} \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	$\begin{gathered} \mathrm{Rm}_{\mathrm{x}} \\ \left(\times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}\right) \end{gathered}$	$\begin{gathered} \mathrm{Rm}_{\mathrm{y}} \\ \left(\times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}\right) \end{gathered}$	$\begin{gathered} \mathrm{Rm}_{\mathrm{z}} \\ \left(\times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}\right) \end{gathered}$
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
合計						

4．1．3 サプレッションチェンバ本体のモデル化

サプレッションチェンバ及びボックスサポートの地震応答解析に適用する解析モデル設定にあ たつては，サプレッションチェンバ及びボックスサポートを構成する各部材の剛性及び質量，サプ レッションチェンバ内部水等を適切に考慮することしている。

サプレッションチェンバ本体（小円）については，建設時にサプレッションチェンバ内部に設置 した強め輪（64 枚）によって断面変形を抑制する設計としているため，はり要素でモデル化して いるが，バルジングに係る既往知見を踏まえ，サプレッションチェンバに対するバルジングの影響検討を行い，地震応答解析にあたつてサプレッションチェンバ本体をはり要素でモデル化すること の適用性を検討した。

影響検討の結果，サプレッションチェンバ内部に設置された強め輪の効果によって，サプレッシ ョンチェンバ本体（小円）の剛性が向上し，振動特性が改善されるため，地震による発生応力が低減されることを確認した。また，強め輪の効果によって，サプレッションチェンバのオーバル振動 （花びら状の変形等の小円の複雑な断面変形を伴う振動モード）の影響を十分に抑制できることを確認したことから，サプレッションチェンバ本体をはり要素でモデル化することの適用性があると判断した。

よって，サプレッションチェンバ本体のモデル化は，サプレッションチェンバ本体の小円断面中心位置に円筒断面の理論式により算定した剛性を考慮したはり要素でモデル化し，その剛性は既工認と同様とする（表 4．1－4 参照）。

ただし，今回工認では，重大事故時のサプレッションチェンバの水位上昇に伴う内部水質量の増加，基準地震動の増大等を踏まえ，サプレッションチェンバ本体小円の断面変形を更に抑制するた め，強め輪（32 枚）の補強対策を実施する。

また，サプレッションチェンバ及びボックスサポートの地震応答解析モデルの設定にあたつて は，より詳細に地震応答を把握するため，ボックスサポート取付部のばね剛性（並進，回転）を考慮したばね要素を 3 次元はりモデルに付加する。

なお，強め輪の補強対策については，サプレッションチェンバ本体のはり要素（曲げせん断はり要素）ではなく，ボックスサボート取付部のばね剛性（並進，回転）算定に用いる 3 次元シェルモ デルに考慮しているため，そのばね要素に補強の効果が考慮される。

地震応答解析モデルに対するバルジングの影響検討結果の詳細については，別紙3に示す。

表 4．1－4 サプレッションチェンバ本体のモデル化諸元

部材	材質	部材長 (mm)	質量 $\left(10^{-3} \mathrm{~kg}\right)$	断面積 $\left(\mathrm{mm}^{2}\right)$	断面二次 モーメント $\left(\mathrm{mm}^{4}\right)$	有効せん 断断面積 $\left(\mathrm{mm}^{2}\right)$	䋡弾性 係数 (MPa)	ポアソン 比 $(-)$
サプレッ ションチ ェンバ	SGV49							

4．1．4 ボックスサポート取付部のばね剛性の算定

サプレッションチェンバ及びボックスサポートの地震応答解析モデルについては，サプレッショ ンチェンバとボックスサポートをはり要素でモデル化し，サプレッションチェンバのボックスサポ ート取付部については，より詳細な地震応答を把握するため，ボックスサポート取付部のばね剛性 （並進，回転）を考慮したばね要素でモデル化する。 サプレッションチェンバのボックスサポート取付部のばね剛性算定フローを図4．1－6に示す。 サプレッションチェンバのボックスサポート取付部のばね剛吽算定に当たつては，その複雑な変形様態に対応するため，実機のサプレッションチェンバ及びボックスサポートを模擬したシェルモ デルを用いるとともに，はりモデルで表現している剛性との重複を排除するため，はりモデルも用 いてばね剛性（並進，回転の各 3 方向）を算定し，算定されたばね剛性（並進，回転の各 3 方向） をサプレッションチェンバ及びボックスサポートの地震応答解析モデルに考慮する。 ばね剛性算定方法の詳細については，別紙4に示す。

図 4．1－6 ばね剛性算定フロー
（1）ばね剛性算定用解析モデル（シェルモデル）
サプレッションチェンバには， 16 セグメントの门筒の継ぎ目部（胴エビ継手部）にボックスサ ポートガサプレッションチェンバ大円の内側と外側に 1 組配置されている対称構造であることか ら，ばね剛性算定用解析モデルのモデル化範井は，
 ら， シェル要素でモデル化する。ばね剛性算定用解析モデルを図4．1－7に示す。

図4．1－7 ばねね剛性算定用解析モデル（シェルモデル）
（2）ばね剛性算定用解析モデル（はりモデル）
シェルモデルと同様の篚囲について，はり要素によるばね剛性算定用解析モデルを図4．1－8に示 す。

図 4．1－8 ばね剛性算定用解析モデル（はりモデル）
（3）地震応答解析モデルに考慮するばね剛性
サプレッションチェンバ及びボックスサポートの地震応答解析に考慮するボックスサポート取付部のばね剛性を表 4．1－5，地震応答解析モデルを図4．1－9に示す。ボックスサポート取付部のば ね剛性については，地震応答解析モデル（3 次元はりモデル）のボックスサポート上端位置に並進 3 方向，回転 3 方向を設定する。

表 4．1－5 ボックスサポート取付部のばねね岡性

考慮する方向		ばね剛性	
		内側	外側
錐	大円半径方向（ N / mm ）		
	大円周方向（ N / mm ）		
	上下方向（ N / mm ）		
転	大円半径軸回り（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	大円円周軸回り（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	上下軸回り $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		

注記＊： \square

図 4．1－9 地震応答解析モデル（ばねね剛性考慮）

4．1．5 ボックスサポートのモデル化

（1）ボックスサポート本体のモデル化の考え方
既工認におけるサプレッションチェンバのモデル化では，

ていた。
今回工認では，

してモデル化を行った。

算定用の 3 次元シェルモデル図を図 4．1－10 及 びボックスサポートのモデル化諸元を表 4．1－6に，フランジプレートのばね剛性を表 4．1－7 にホ す。

ボックスサポートの剛性は，

図 4．1－10

表 4．1－6 ボックスサポートのモデル化諸元

部材	材質	部材長 （mm）	$\begin{gathered} \text { 質量 } \\ \left(10^{-3} \mathrm{~kg}\right) \end{gathered}$	断面積 （ mm^{2} ）	$\begin{gathered} \hline \text { 断面一次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \\ \hline \end{gathered}$		有効せん断断面積 （ mm^{2} ）		縦弾性 係数 （MPa）	$\begin{gathered} \text { ポア } \\ \text { ソン比 } \\ (-) \end{gathered}$
					大円半 径方向	大円円 周方向	大円半 径方向	大円円 周方向		
ボックス サポート	SM41B									

注記＊：サプレッションチェンバ本体側に考慮。

表4．1－7 フランジプレートのモデル化諸元

部材	ばねね剛性 $(\mathrm{N} / \mathrm{mm})$
フランジプレート	

（2）基碍ボルトのモデル化の考え方
既工認におうけるボックスサポートの基礎ボルトの地震荷重は，サプレッションチェンバの静的評価により求めたボックスサポートの反力を用いて，公式等による簡便な評価としてボックスサポー ト1 か所あたりの力のつり合い（圧縮及び引張）から算出している。
一方，より現実に近いボックスサポートの基礎ボルトの荷重状態としては，サプレッションチェ ンバに取り付けられるボックスサポートの全ての基整ボルトがつり合っているものと考えられる。 ここで，図 4．1－11 に示す振動モードを想定し允場合，ボックスサポートの位置（図中の（1）及で（2）） によって，各ボックスサポートの荷重状態が異なるため，各ボックスサポートにおける各基礎ボル トの荷重分配割合も異なると考えられることから，今回工認においては，より現実に近い挙動を詳細に考慮するため，図4．1－12 のとおりボックスサポート 1 か所につき 8 本の基檚ボルトを剛ばね要素としてモデル化する。

図 4．1－12 ボックスサポートの解析モデル
（3）ボックスサポート（基礎ボルト含む）モデル化 ボックスサポート周りのモデル化に当たっては，

と結合している。 また，

結合していわ。
なお，ボックスサポートの基礎ボルトをモデル化したことによる地震応答解析モデルへの影響に ついては，基礎ボルトのモデル化の有無による固有周期を確認した結果，表4．1－8のとおり振動性状に与える影響がないことを確認している。

ボックスサポートの解析モデルの境界条件及び解析モデル図を表 4．1－9 及び図4．1－13に示す。

表 4．1－8 基礎ボルトのモデル化有無による固有周期比較

耐震評価として 考慮すべき振動モード＊	固有周期 (s)	
	基礎ボルトモデル無し	
3 次		
4 次		
5 次		
6 次		
7 次		
10 次		

注記＊：4．2．3における「耐震評価として考慮すべき振動モード」と対応。

表 4．1－9 ボックスサポートの解析モデルの境界条件

\square
図 4．1－13 ボックスサポートの解析モデル

4.2 地震応答解析モデル（3 次元はりモデル）の妥当性確認

4．2．1 妥当性の確認方針（妥当性確認の着眼点）

4.1 項では，今回工認におけるサプレッションチェンバ及びボックスサポートの地震応答解析に

適用する3次元はりモデルの設定について，サプレッションチェンバ内部水を有効質量として扱う こと，サプレッションチェンバ本体のモデル化及びサプレッションチェンバとボックスサポートの取付部にばね剛性を考慮すること等の考え方を示した。本項では，上記を踏まえて設定したサプレッションチェンバ及びボックスサポートの3次元はり モデルを地震応答解析に適用することの妥当性について確認する。妥当性確認にあたつては，サプ レッションチェンバ（強め輪を含む）及びボックスサポートをシェル要素でモデル化した妥当性確認用解析モデル（3 次元シェルモデル）による地震応答解析を実施し，3次元はりモデルを用いた地震応答解析結果との比較を行う。図4．2－1 にサプレッションチェンバ及びボックスポートの地震応答解析モデル（ 3 次元はりモデル）に対する妥当性確認フローを示すとともに，妥当性確認にお ける着眼点を以下に示す。

着眼点（1）固有値解析による振動モード，それらの固有値，刺激係数を比較し，妥当性確認用解析モデル（3 次元シェルモデル）の解析結果から耐震評価として考慮すべきと確認され た振動モード（変形方向）が 3 次元はりモデルにて表現できていること。ここで，耐震評価として考慮す心゙き振動モードとは，各応力評価点における発生応力に有意に影響す る振動モード。また，それらの固有値の違いについては，工学的な判断目安として設計用床応答曲線として設定される 10% 抗幅を考慮し， 10% 以内であることとした。

着眼点（2）地震応答解析（スペクトルモーダル解析）による応力評価部位における発生応力の傾向がシェルモデルと 3 次元はりモデルで概ね一致していること。

－\downarrow
【サプレッションチェンバ及びボックスサポートの3次元はりモデルの設定】

地霉応答解析
（振動モード每の桼生応力への影響）

【 3 次元はりモデルの妥当性確認】
位における発生

\downarrow
着眼点 $((1)$ 及び（2）を满足することで 3 次元はりモデルの妥当性を磪認
図4．2－1 3 次元はりモデル設定及び妥当性検証フロー

4．2．2 妥当性確認用解析モデル（3 次元シェルモデル）

妥当性確認用解析モデル（3次元シェルモモデル）として，サプレッションチェンバ本体（強め輪 を含を）及びボックスサポートをシェル要素としてモデル化し，サプレッションチェンバ本体のシ ェル要素に，4．1．1項と同様に NASTRAN の仮想質量法により算定した有効質量を各シェル要素に考慮する。有効質量算定における水位条件は，耐震解析用重大事故等時水位を代表とした。妥当性確認用解析モデル（3 次元シェルモデル）のモデル諸元及び解析モデル図を表 4．2－1 及び図 4．2－2 に示す。なお，解析モデルの設定に係るの詳細については，別紙5に示す。

表 4．2－1 妥当性確認用解析モデル（3次元シェルモデル）のモデル諸元

項目		内容
モデル要素数		
モデル化	鋼製部	シェル要素：サプレッションチェンバ本体，強め輪 （耐震補強対策含む），ボックスサポー 卜（耐震補強対策含む） 剛ばね要素：基礎ボルト
	内部水	- 而震解析用重大事故等時水位（0．P．－ 1514 mm ） - NASTRAN の仮想質量法を適用

図 4．2－2 妥当性確認用解析モデル（3 次元シェルモデル）図

枿囲みの内容は商業機密の観点かから公開できません。

