女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－B－19－0110＿改 0
提出年月日	2021 年 3 月 19 日

VI－2－5－5－1－1 高圧炉心スプレイ系ポンプの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有値解析及び構造強度評価 3
3.1 固有値解析及び構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 解析モデル及び諸元 9
3． 4 固有周期 9
3.5 設計用地震力 10
3.6 計算条件 114．機能維持評価12
4.1 基本方針 12
4.2 ポンプの動的機能維持評価 12
4． 3 原動機の動的機能維持評価 13
4．3．1 評価対象部位 13
4．3．2 評価基準値 13
4．3．3 記号の説明 14
4．3．4 評価方法 15
5．評価結果 18
5.1 設計基準対象施設としての評価結果 18
5.2 重大事故等対処設備としての評価結果 18

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及 び機能維持の設計方針に基づき，高圧炉心スプレイ系ポンプが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

高圧炉心スプレイ系ポンプは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示 す。

なお，高圧炉心スプレイ系ポンプは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載のたて軸ポンプであるため，添付書類「VI－2－1－13－5 たて軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

また，高圧炉心スプレイ系ポンプの原動機は，添付書類「VI－2－1－9 機能維持の基本方針」に記載の立形すべり軸受電動機であり，機能維持評価において機能維持評価用加速度 が機能確認済加速度を上回ることから，原子力発電所耐震設計技術指針（J E A G 4 6 0

2．一般事項
2.1 構造計画

高圧炉心スプレイ系ポンプの構造計画を表2－1に示す。

O 2 （3）VI－2－5－5－1－1 R O

表 2－1 構造計画

計画の概要		概略構造図	
基礎•支持構造	主体構造		
ポンプはポンプベー スに固定され，ポン プベースは基礎ボル トで基礎に据え付け る。	ターボ形 （ターボ形たて軸ポ ンプ）		（単位：mm）

3．固有値解析及び構造強度評価
3.1 固有値解析及び構造強度評価方法

高圧炉心スプレイ系ポンプの構造強度評価は，添付書類「VI－2－1－13－5 たて軸ポン プの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。
3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
高圧炉心スプレイ系ポンプの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 3－1 に，重大事故等対処設備の評価に用いるもの を表3－2に示す。

3．2．2 許容応力
高圧炉心スプレイ系ポンプの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 3－3及び表 3－4のとおりとする。

3．2．3 使用材料の許容応力評価条件
高圧炉心スプレイ系ポンプの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 3－5 に，重大事故等対処設備の評価に用いるものを表3－6に示す。

表 3－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却	非常用炉心冷却設備そ	高圧炉心スプレイ系 ポンプ	S	クラス 2 ポンプ＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{d}^{* * 2}$	IIIA ${ }_{\text {S }} \mathrm{S}$
系統施設	の他原子炉注水設備				$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊1：クラス 2 ポンプの支持構造物を含む。
＊2：S s と組合せ，III ${ }_{A} \mathrm{~S}$ の評価を実施する。

表 3－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：重大事故等クラス 2 ポンプの支持構造物を含む。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－3 許容応力（クラス 2， 3 ポンプ及び重大事故等クラス 2 ポンプ）

許容応力状態	許容限界＊		
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	
III ${ }_{A} \mathrm{~S}$	S_{y} と 0.6 • S_{u} の小さい方。 ただし，A S S 及びHNAにつ いては上記値と 1.2 • S との大 きい方。	左欄の 1.5 倍の値	S d 又はS s 地震動のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が $2 \cdot \mathrm{~S}$ y以下であれば疲労解析は不要。
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍の値	
$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）			S s 地震動のみによる疲労解析を行い，疲労累積係数 が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2 • S y 以下であれば疲労解析は不要。

注記＊：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－4 許容応力（クラス 2， 3 支持構造物及び重大事故等クラス 2 支持構造物）

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
バレルケーシング		最高使用温度	100	－			－
基礎ボルト		周囲環境温度	66	－			－
ポンプ取付ボルト		最高使用温度	100	－			－
原動機台取付ボルト		最高使用温度	100	－			－
原動機取付ボルト		周囲環境温度	66	－			－

表 3－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
バレルケーシング		最高使用温度	100	－			－
基礎ボルト		周囲環境温度	66	－			－
ポンプ取付ボルト		最高使用温度	100	－			－
原動機台取付ボルト		最高使用温度	100	－			－
原動機取付ボルト		周囲環境温度	66	－			－

3．3解析モデル及び諸元

固有値解析及び構造強度評価に用いる解析モデル及び諸元は，本計算書の【高圧炉心スプレイ系ポンプの耐震性についての計算結果】の機器要目及びその他の機器要目 に示す。解析コードは，「MSC NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3． 4 固有周期
固有値解析の結果を表3－7，振動モード図を図3－1 に示す。固有周期は 0.05 秒を超 えており，柔構造であることを確認した。また，鉛直方向の固有周期は 0.05 秒以下 であることを確認した。

表 3－7 固有値解析結果

モード	卓越方向	固有周期 （ s ）	水平方向刺激係数＊		鉛直方向 刺激係数＊
			NS 方向	EW 方向	
1 次	水平	0.053	3.894	3． 894	0.000
2 次	水平	0.026	－	－	－

注記 $*$ ：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリクスの積から算出 した値を示す。

図 3－1 振動モード（1次モード 水平方向 0.053 s）

3.5 設計用地震力

評価に用いる設計用地震力を表3－8 及び表 3－9に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数 は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。

表 3－8 設計用地震力（設計基準対象施設）

注記＊1：基準床レベルを示す。
＊2： 1 次固有周期について記載。
＊3：各モードの固有周期に対し，設計用床応答曲線（S d）より得られる震度を示す。 ＊4：各モードの固有周期に対し，設計用床応答曲線（S S ）より得られる震度を示す。
＊ $5: ~ \mathrm{~S} \mathrm{~s}$ 又は S d に基づく設計用最大応答加速度（1．2•ZPA）より定めた震度を示す。
＊6：静的震度（3．6•C i 及び1．2•C v）を示す。
＊7： $\mathrm{III}_{A} \mathrm{~S}$ については，基準地震動 S s で評価する。

表 3－9 設計用地震力（重大事故等対処施設）

据付場所及び 床面高さ（m）		原子炉建屋 0．P．－8．10＊1					
固有周期（s）		水平： $0.053 * 2$ 鉛直： 0.05 以下					
減衰定数（\％）		水平： 1.0 鉛直：－					
地震力		弾性設計用地震動 S d又は静的震度			基準地震動 S S		
モード	固有周期 （s）	応答水平震度		応答鉛直震度	応答水平震度＊3		応答鉛直震度＊${ }^{3}$
		NS 方向	EW 方向		NS 方向	EW 方向	
1 次	0.053	－	－	－	3.06	3.06	－
2 次	0.026	－	－	－	－	－	－
動的地震力＊4		－	－	－	0.99	0.99	0.69
静的地震力		－	－	－	－	－	－

注記 $* 1$ ：基準床レベルを示す。
＊2： 1 次固有周期について記載。
＊3：各モードの固有周期に対し，設計用床応答曲線（S S ）より得られる震度を示す。
＊ $4: S \mathrm{~s}$ 又は S d に基づく設計用最大応答加速度（1．2•ZPA）より定めた震度を示す。
3.6 計算条件

応力計算に用いる計算条件は，本計算書の【高圧炉心スプレイ系ポンプの耐震性につ いての計算結果】の設計条件及び機器要目に示す。

4．機能維持評価

4.1 基本方針

高圧炉心スプレイ系ポンプの原動機は，添付書類「VI－2－1－9 機能維持の基本方針」 に記載の立形すべり軸受電動機であり，機能維持評価において機能維持評価用加速度 が機能確認済加速度を上回ることから，JEAG4601に定められた評価部位の健全性を詳細評価することで動的機能維持の確認を行う。

詳細評価に用いる機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線 の作成方針」に基づき，基準地震動 S s により定まる設計用最大応答加速度（1．0ZPA） を設定する。
（1）高圧炉心スプレイ系ポンプはピットバレル形ポンプであるため，添付書類「VI－2－ 1－9 機能維持の基本方針」に記載されているピットバレル形ポンプの機能確認済加速度を適用する。

4．2 ポンプの動的機能維持評価

高圧炉心スプレイ系ポンプは地震時動的機能維持が確認された機種と類似の構造及 び振動特性であるため，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能確認済加速度を適用する。機能確認済加速度を表4－1に示す。

表 4－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	形式	方向	機能確認済加速度
立型ポンプ	ピットバレル形 ポンプ	水平方向	10.0
		鉛直方向	1.0

4． 3 原動機の動的機能維持評価

4．3．1 評価対象部位
J EAG4601の電動機の動的機能維持評価に従い，以下の部位について評価 を実施する。
a．取付ボルト
b．固定子
c．軸（回転子）
d．端子箱
e．軸受
f．固定子と回転子のクリアランス
g．モータフレーム
h．軸継手
このうち「a．取付ボルト」については，「3．構造強度評価」に従い評価を行 った「5．評価結果」にて設計用地震力に対して十分な構造強度を有していること を確認している。

以上より，本計算書においては，固定子，軸（回転子），端子箱，軸受，固定子と回転子のクリアランス，モータフレームを評価対象部位とする。なお，軸継手はポ ンプ軸とモータ軸をリジットに接続するタイプであり，相対変位が発生しないこと， および地震荷重については軸受で負担するため軸継手部には有意な応力が発生し ないことから，計算書の評価対象外とする。

4．3．2 評価基準値

軸（回転子）及びモータフレームの許容応力は，クラス 2 ポンプの許容応力状態 III $_{A} \mathrm{~S}$ に準拠し設定する。固定子の許容応力はクラス 2 支持構造物の許容応力状態III ${ }_{A} \mathrm{~S}$ に準拠し設定する。端子箱の許容応力はクラス 2 支持構造物の許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に準拠し設定する。また軸受については，メーカ規定の軸受の定格荷重を，固定子 と回転子間のクリアランスは，変位可能寸法を評価基準値として設定する。

4．3．3 記号の説明

高圧炉心スプレイ系ポンプ用原動機の動的機能維持評価に使用する記号を表4－ 2 に示す。

表4－2 記号の説明

記号	記号の説明	単位
$\mathrm{A}_{\mathrm{b}} \mathrm{t}$	端子箱取付ボルトの断面積	mm^{2}
A_{f}	モータフレームの断面積	mm^{2}
A ${ }_{\text {s }}$	軸の断面積	mm^{2}
C_{P}	ポンプ振動による震度	－
C_{v}	鉛直方向設計震度	－
D	固定子の外径	mm
d s	軸の径	mm
F_{k}	固定子に生じる組合せ荷重	N
$\mathrm{F}_{\mathrm{b}} \mathrm{t}$	端子箱取付ボルトに作用するせん断力	N
$\mathrm{F}_{\mathrm{kg}} \mathrm{g}$	自重及び地震力により固定子に生じる荷重	N
$\mathrm{F}_{\mathrm{k} ~}^{\text {t }}$	電動機の回転による荷重	N
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
L	固定子の溶接長さ	mm
M_{f}	モータフレームに作用する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\text {s }}$	軸に作用する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
N	電動機の回転速度	min^{-1}
n p	固定子の溶接数	－
n t	端子箱取付ボルトの本数	－
P	電動機出力	kW
p	固定子の溶接部の開先寸法	mm
Q b t	端子箱に作用するせん断力	N
S	固定子のすみ肉脚長	mm
Tm	電動機の回転による発生トルク	$\mathrm{N} \cdot \mathrm{m}$
Tma	電動機最大トルク	\％
T s	ポンプ運転による発生トルク	$\mathrm{N} \cdot \mathrm{mm}$
W c	固定子コイル及びコア質量	kg
W f	モータフレーム質量	kg
W	軸の質量	kg
W ${ }_{\text {t }}$	端子箱質量	kg
Z_{f}	モータフレームの断面係数	mm^{3}
Z s	軸の断面係数	mm^{3}
σ m	モータフレームに生じる組合せ応力	MPa
σ s	軸に生じる組合せ応力	MPa
$\sigma \mathrm{b}$ t	端子箱取付ボルトに生じる引張応力	MPa
$\sigma \mathrm{fm}$	モータフレームに生じる曲げ応力	MPa

記号	記号の説明	単位
$\sigma \mathrm{fw}$	自重及び鉛直方向地震力によりモータフレームに生じる応力	MPa
$\sigma \mathrm{sm}$	軸に生じる曲げ応力	MPa
$\sigma \mathrm{sw}$	自重及び鉛直方向地震力により軸に生じる応力	MPa
τ_{k}	固定子に生じるせん断応力	MPa
τ_{s}	ポンプ運転によるねじり応力	MPa
$\tau_{\mathrm{b} \mathrm{t}}$	端子箱取付ボルトに生じるせん断応力	MPa

4．3．4 評価方法
（1）固定子
電動機の最大荷重（トルク）は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=\frac{974 \cdot \mathrm{P} \cdot \mathrm{~g}}{\mathrm{~N}} \cdot \frac{\mathrm{~T}_{\mathrm{m} \mathrm{a}}}{100} \tag{4.3.4.1}
\end{equation*}
$$

電動機の回転による荷重は次式で求める。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{kt}}=\frac{\mathrm{T}_{\mathrm{m}}}{1 / 2 \cdot \mathrm{D}} \tag{4.3.4.2}
\end{equation*}
$$

自重及び鉛直方向地震力により発生する荷重は次式で求める。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{kg}}=\mathrm{W}_{\mathrm{c}} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{v}}+\mathrm{C}_{\mathrm{p}}+1\right) \tag{4.3.4.3}
\end{equation*}
$$

せん断応力は次式で求める。

$$
\begin{align*}
& \mathrm{F}_{\mathrm{k}}=\sqrt{\mathrm{F}_{\mathrm{kg}}{ }^{2}+\mathrm{F}_{\mathrm{kg}}^{2}} \tag{4.3.4.4}\\
& \tau_{\mathrm{k}}=\frac{\mathrm{F}_{\mathrm{k}}}{(\mathrm{p}+\mathrm{s}) \cdot \mathrm{L} \cdot \mathrm{n}_{\mathrm{p}}} \tag{4.3.4.5}
\end{align*}
$$

（2）軸
a．曲げ応力
多質点はりモデルを用いて応答計算を行い，得られたモーメントにより，曲 げ応力は以下のようになる。

$$
\begin{equation*}
\sigma_{\mathrm{sm}}=\frac{\mathrm{M}_{\mathrm{s}}}{\mathrm{Z}_{\mathrm{s}}} \tag{4.3.4.6}
\end{equation*}
$$

b．自重及び鉛直方向地震力による応力

$$
\begin{equation*}
\sigma_{\mathrm{sw}}=\frac{\left(1+\mathrm{C}_{\mathrm{v}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{W}_{\mathrm{s}} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \tag{4.3.4.7}
\end{equation*}
$$

c．ねじり応力

$$
\begin{align*}
& \mathrm{T}_{\mathrm{s}}=\frac{\mathrm{P}}{2 \pi / 60 \cdot \mathrm{~N}} \cdot 10^{6} \tag{4.3.4.8}\\
& \tau_{\mathrm{s}}=\frac{16 \cdot \mathrm{~T}_{\mathrm{s}}}{\pi \cdot \mathrm{~d}_{\mathrm{s}}{ }^{3}} \cdot \tag{4.3.4.9}
\end{align*}
$$

N
d．組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{s}}=\frac{1}{2} \cdot\left(\sigma_{\mathrm{sm}}+\sigma_{\mathrm{sw}}\right)+\frac{1}{2} \cdot \sqrt{\left(\sigma_{\mathrm{sm}}+\sigma_{\mathrm{sw}}\right)^{2}+4 \tau_{\mathrm{s}}^{2}} \tag{4.3.4.10}
\end{equation*}
$$

（3）端子箱
a．取付ボルトのせん断応力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{bt}}=\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{W}_{\mathrm{t}} \cdot \mathrm{~g} \tag{4.3.4.11}\\
& \tau_{\mathrm{b} t}=\frac{\mathrm{F}_{\mathrm{b} t}}{\mathrm{n}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{b} t}} \quad \cdot \cdot \cdot \cdot \cdot \tag{4.3.4.12}
\end{align*}
$$

b．取付ボルトの引張応力

$$
\begin{equation*}
\sigma_{\mathrm{bt}}=\frac{\mathrm{Q}_{\mathrm{b} \mathrm{t}}}{\mathrm{n}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{b} \mathrm{t}}} \tag{4.3.4.13}
\end{equation*}
$$

（4）軸受
多質点はりモデルによる高圧炉心スプレイ系ポンプの応答解析結果を用い，軸受の発生荷重を評価する。
（5）固定子と回転子のクリアランス
多質点はりモデルによる高圧炉心スプレイ系ポンプの応答解析結果を用い，固定子 一 軸（回転子）の相対変位が固定子一軸（回転子）間空隙寸法を下回ること を確認する。
（6）モータフレーム
a．曲げ応力
多質点はりモデルを用いて応答計算を行い，得られたモーメントにより，曲 げ応力は以下のようになる。

$$
\sigma_{\mathrm{fm}}=\frac{\mathrm{M}_{\mathrm{f}}}{\mathrm{Z}_{\mathrm{f}}}
$$

b．自重及び鉛直方向地震力による応力

$$
\begin{equation*}
\sigma_{\mathrm{fw}}=\frac{\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{W}_{\mathrm{f}} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{f}}} \tag{4.3.4.15}
\end{equation*}
$$

c．組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{m}}=\sigma_{\mathrm{fm}}+\sigma_{\mathrm{fw}} \tag{4.3.4.16}
\end{equation*}
$$

5．評価結果
5.1 設計基準対象施設としての評価結果

高圧炉心スプレイ系ポンプの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 $\mathrm{S} d$ 及び静的震度は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 S d 又は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

高圧炉心スプレイ系ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

【高圧梕心スプレイ系ポンプの耐震性についての計算結果】

1．設計基準対象施設
1．1 構造強度評価
1．1．1 設計条件

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基準地震動S s		ポンブ振動 による震度	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）	最高使用圧力 （ MPa ）	
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度				吸込側	吐出側
高圧炉心スプレイ系ポンプ	S	原子炉建屋 0．P．$-8.10^{* 1}$	0． 053	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－＊	－＊	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$		100	66	1.37	10.79

注記＊1：基準床レベルを示す。
＊2：$\Pi_{4} S$ については，基準地震動 S s で評価する。
1．1．2 機器要目

部 材	$\begin{aligned} & \mathrm{m}_{\mathrm{i}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n_{i}	n_{fi}	$\begin{gathered} \mathrm{M}_{\mathrm{p}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{array}{r} \mathrm{S}_{\mathrm{y} i} \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{array}{r} \mathrm{S}_{\mathrm{ui}} \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{*} \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$
基礎ボルト $(\mathrm{i}=1)$					24	24	－				
$\begin{gathered} \text { ポンプ取付ボルト } \\ \quad(\mathrm{i}=2) \end{gathered}$					40	40	$\begin{gathered} 1.210 \times \\ 10^{7} \end{gathered}$				
原動機台取付ボルト $(\mathrm{i}=3)$					20	20	$\begin{gathered} 1.210 \times \\ 10^{7} \end{gathered}$				
原動機取付ボルト $(i=4)$					12	12	$\begin{gathered} 1.210 \times \\ 10^{7} \end{gathered}$				

（2）バレルケーシング

注記＊：最高使用温度で算出

注記 $* 1$ ：最高使用温度で算出
＊2：周囲環境温度で算出

1．1．3 計算数値
（1）ボルトに作用する力

部 材	$\mathrm{M}_{\mathrm{i}}(\mathrm{N} \cdot \mathrm{mm})$		$\mathrm{F}_{\mathrm{bi}}(\mathrm{N})$		$\mathrm{Q}_{\mathrm{bi}}(\mathrm{N})$	
	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動S d又は静的震度	基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$						
$\begin{gathered} \text { ポンプ取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$						
原動機台取付ボルト $(\mathrm{i}=3)$						
原動機取付ボルト $(\mathrm{i}=4)$						

1．1．4 結論
®

1．1．4．1 （単位： 有周期	
モード	固有周期
水平 1 次	$\mathrm{T}_{\mathrm{H} 1}=0.053$
鉛直 1 次	$\mathrm{T}_{\mathrm{V} 1}=0.05$ 以下

すべて許容応力以下である。
注記 $*: f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
（2）バレルケーシングに作用する力

1．1．4．3 バレルケーシングの応力
（単位： MPa ）

部 材	材 料		一次一般膜応力	
			算出応力	許容応力
バレルケーシング		弾性設計用地震動S d又は静的震度	$\sigma=49$	$\mathrm{S} \mathrm{a}=201$
		基淮地震動S s	$\sigma=49$	$\mathrm{S} \mathrm{a}=223$

すべて許容応力以下である。
1.2 動的機能維持評価

1．2．1 設計条件

機器名称	形式	定格容量 （m³ h）	据付場所及び床面高さ （m）	固有周期（s）		基準地震動S s		ポンブ振動 による震度	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）
				水平方向	鉛直方向	水平方向設計震度	鋁直方向設計震度			
高圧灲心スプレイ系 ポンプ	ピットバレル形ポンプ	325／1074	原子炉建屋 0．P．－8． 10^{*}	0.053	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=0.82$	$\mathrm{C}_{\mathrm{V}}=0.57$		100	66

注記 $*$ ：基準床レベルを示す。

機器名称	形式	出力 （kW）	据付場所及び床面高さ （m）	固有周期（s）		基淮地震動S s		ポンブ振動 による震度	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）
				水平方向	鈖直方向	水平方向設計震度	鉛直方向設計震度			
高圧炬心スプレイ系 ポンプ用原動機	立形すべり軸受電動機	1900	原子炉建屋 $\text { 0. P. -8. } 10^{*}$	0.053	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=0.82$	$\mathrm{C}_{\mathrm{v}}=0.57$		－	66

注記＊：基準床レベルを示す。

1．2．2 機器要目

部 材	N $\left(\mathrm{min}^{-1}\right)$	T_{ma} $(\%)$	D (mm)	L (mm)	p (mm)	s (mm)	W_{c} (kg)	n_{p}
固定子	1500	175	1180	100	5	10	2394	8

部 材	M_{s} $(\mathrm{N} \cdot \mathrm{mm})$	Z_{s} $\left(\mathrm{mm}^{3}\right)$	W_{s} (kg)	A_{s} $\left(\mathrm{mm}^{2}\right)$	N $\left(\mathrm{min}^{-1}\right)$	d_{s} (mm)
軸	$3.030 \times$ 10^{7}	$6.734 \times$ 10^{5}	2825	$2.835 \times$ 10^{4}	1500	190

（3）端子箱

部 材	W_{t} (kg)	n_{t}	$\mathrm{A}_{\mathrm{b} t}$ $\left(\mathrm{~mm}^{2}\right)$	Q_{b} (N)
端子箱	70	10	113.1	$1.976 \times$ 10^{5}

（4）モータフレーム

部 材	M_{f} $(\mathrm{N} \cdot \mathrm{mm})$	Z_{f} $\left(\mathrm{mm}^{3}\right)$	W_{f} (kg)	A_{f} $\left(\mathrm{mm}^{2}\right)$
モータフレーム	$7.051 \times$ 10^{8}	$3.323 \times$ 10^{7}	11319	$8.213 \times$ 10^{4}

1．2．3 結論
1．2．3．1 機能権認済加速度との比較（ $\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

		機能維持評価用加速度＊	機能確㪊済加速度
ポンプ	水平方向	0.82	10.0
	鉛直方向	0.57	1.0
原動機	水平方向	4.70	2.5
	鉛直方向	0.57	1.0

注記＊：基準地震動S s により定まる応答加速度とする。
ポンプは，機能維持評価用加速度が全て機能確認済加速度以下である。
原動機は，水平方向の機能維持評価用加速度が穖能碓認済加速度を超えるため，以下の項目について評価する。

1．2．3．2 立形すべり軸受電動機の動的機能維持詊価

1．2．3．2．1 代表評価項目の評価
原動機取付ボルトについては，構造強度評価にて設計用地震力に対して十分な構造強度を有しているため，計算は省略する。
1．2．3．2．2 上記以外の基本評価項目の評価

| 1．2．3．2．2．1 固定子の評価 |
| :---: | :---: | :---: | :---: |
| （単位：MPa）
 評価部位 応力 発生応力 許容応力
 固定子 せん断 5 53 |

すべて許容応力以下である。

1．2．3．2．2．2 軸（回転子）の評価	（ MPa ）	
評価部位	発生応力	許容応力
軸（回転子）	49	354

$\stackrel{N}{0}$
1．2．3．2．2．3 端子箱の評価

評価部位	応力	単位： MPa ）	
端子生応力	箱	許容応力	
	引張り	175	185
	せん断	1	142

すべて許容応力以下である。

すべて許容荷重以下である。

1．2．3．2．2．5 固定子と回転子のクリアランスの評価	（単位： mm ）	
評価部位	回転子のたわみ	許容変位量
固定子と回転子のクリアランス	0.83	3

すべて許容変位量以下である。

| 1．2．3．2．2．6 モータフレームの評価 | （単位： MPa ） |
| :---: | :---: | :---: |
| 評価部位 発生応力 許容応力
 モータフレーム 25 309 | |

すべて許容応力以下である。

1.3 その他の機器要目

（1）節点データ

節点番号	節点座標（mm）		
	x	y	z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

（続き）節点番号				
		節点座標（mm）		
		X	y	z
	41			
	42			
	43			
	44			
	45			
	46			
	47			
	48			
	61			
	62			
	63			
	64			
	65			
	66			
	67			
\square	68			
	69			
\checkmark	70			
¢	71			
$\stackrel{1}{\sim}$	72			
$\stackrel{1}{5}$	73			
	74			
（2）	75			
\sim	76			
\bigcirc	77			
	78			
	79			
	80			
	81			
	82			
	83			
	84			
	85			
	86			

（2）要素の断面性状

断面特性番号 （要素番号）	要素両端の節点番号	材料番号	$\begin{gathered} \text { 断面積 } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
1	1－2	91		1.915×10^{10}
2	2－3	91		1.915×10^{10}
3	3－4	91		1.915×10^{10}
4	4－5	91		1.915×10^{10}
5	5－6	91		1.915×10^{10}
6	6－7	91		1.915×10^{10}
7	7－8	91		1.915×10^{10}
8	8－9	91		1.915×10^{10}
9	9－10	91		1.915×10^{10}
10	10－11	91		1.915×10^{10}
11	11－12	91		1.915×10^{10}
12	12－13	91		1.915×10^{10}
13	13－14	91		5.395×10^{10}
14	14－15	91		1.724×10^{12}
15	15－16	91		4.480×10^{11}
16	16－17	91		5.412×10^{10}
17	17－18	91		5.412×10^{10}
18	18－19	91		5.412×10^{10}
19	19－20	91		2.770×10^{11}
20	20－21	91		7.553×10^{10}
21	21－22	91		7.553×10^{10}
22	22－23	91		7.553×10^{10}
23	23－24	94		3.590×10^{9}
24	24－25	94		7.720×10^{9}
25	25－26	94		4.280×10^{9}
26	26－27	94		6.400×10^{9}
27	27－28	94		7.350×10^{9}
28	28－29	94		2.640×10^{9}
29	29－30	94		3.640×10^{8}
31	31－32	91		8.161×10^{7}
32	32－33	91		6.230×10^{10}
33	33－34	91		2.398×10^{9}
34	34－35	91		7.918×10^{9}
35	35－36	91		1.969×10^{10}
36	36－37	91		3.315×10^{10}
37	37－38	91		1.969×10^{10}
38	38－39	91		4.234×10^{10}
39	39－40	91		1． 969×10^{10}
40	40－41	91		4． 234×10^{10}

（続き）

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	$\begin{gathered} \text { 断面積 } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
41	41－42	91		1.969×10^{10}
42	42－43	91		7.476×10^{9}
43	43－44	91		1． 860×10^{9}
44	44－45	91		1.860×10^{9}
45	45－46	91		1． 860×10^{9}
46	46－47	91		3.169×10^{9}
47	47－48	91		3.169×10^{9}
61	61－62	93		4． 492×10^{5}
62	62－63	93		8.762×10^{5}
63	63－64	93		8.762×10^{5}
64	64－65	93		1． 277×10^{7}
65	65－66	93		9.517×10^{6}
66	66－67	93		9.844×10^{6}
67	67－68	93		1.018×10^{7}
68	68－69	93		1.052×10^{7}
69	69－70	93		1． 087×10^{7}
70	70－71	93		1． 124×10^{7}
71	71－72	93		1.161×10^{7}
72	72－73	93		1.583×10^{7}
73	73－74	93		2． 170×10^{7}
74	74－75	93		2． 170×10^{7}
75	75－76	93		2． 170×10^{7}
76	76－77	93		2． 170×10^{7}
77	77－78	93		2.053×10^{7}
78	78－79	93		2.053×10^{7}
79	79－80	93		9． 198×10^{6}
80	80－81	93		1． 636×10^{8}
81	81－82	94		3.830×10^{7}
82	82－83	94		1.640×10^{8}
83	83－84	94		3.570×10^{8}
84	84－85	94		1.460×10^{8}
85	85－86	94		7.730×10^{7}

（3）ばね結合部の指定

ばねの両端の節点番号		ばね定数
31	61	
34	64	
36	66	
37	67	
38	68	
39	69	
40	70	
41	71	
42	72	
47	77	
4	33	
7	36	
16	45	
19	48	
24	82	
29	85	
6	-	
15	-	
15	-	

（4）節点の質量

節点番号	質量（kg）
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

	（続き）	
	節点番号	質量（kg）
	41	
	42	
	43	
	44	
	45	
	46	
	47	
	48	
	61	
	62	
	63	
	64	
	65	
	66	
	67	
	68	
$\xrightarrow{\circ}$	69	
	70	
$\stackrel{1}{1}$	71	
1	72	
$\stackrel{1}{\sim}$	73	
5	74	
－	75	
（2）	76	
\sim	77	
\bigcirc	78	
	79	
	80	
	81	
	82	
	83	
	84	
	85	
	86	

（5）材料物性値

材料番号	温度 $\left({ }^{\circ} \mathrm{C}\right)$	緃弹性係数 （MPa）	質量密度 （ $\mathrm{kg} / \mathrm{mm}^{3}$ ）	$\begin{gathered} \text { ポアソン比 } \\ (-) \end{gathered}$	材質	部位
91	100			0.3		ポンプ
93	100			0.3		ポンプ
94	66			0． 3		原動機

【高圧灲心スプレイ系ポンプの耐震性についての計算結果】

2．重大事故等対処設備
2． 1 構造強度評価
2．1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（ s ）		弾生設計用地震動 Sd又は静的震度		基準地震動S s		ポンブ振動 による震度	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）	最高使用圧力 （ MPa ）	
			水平方向	鈖直方向	水平方向設計震度	鋁直方向設計震度	水平方向設計震度	鉛直方向設計震度				吸込側	吐出側
高圧炬心スプレイ系ポンプ	常設／防止 （DB 拡張）	原子炉建屋 $\text { 0. P. }-8.10^{*}$	0． 053	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{v}}=0.69$		100	66	1.37	10.79

注記 $*$ ：基淮床レベルを示す。

2．1． 2 機器要目

注記＊：最高使用温度で算出

2．1． 3 計算数值
（1）ボルトに作用する力
（2）バレルケーシングに作用する力

（単位： $\mathrm{N} \cdot \mathrm{mm}$ ）		
	M	
部 材	弾性設計用地震動 Sd又は静的震度	$\begin{gathered} \hline \text { 基淮地震動 } \\ \mathrm{S} \text { 號 } \end{gathered}$
バレルケーシング		

$\stackrel{c}{\stackrel{\omega}{\oplus}}$| 2.1 .4 .1 固有周期 | （単位： s ） |
| :---: | :---: |
| モード | 固有周期 |
| 水平 1 次 | $\mathrm{T}_{\mathrm{H} 1}=0.053$ |
| 鉛直 1 次 | $\mathrm{T}_{\mathrm{V} 1}=0.05$ 以下 |

すべて許容応力以下である。
注記 $*: f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出

2.2 動的機能維持評価

2．2．1 設計条件

機器名称	形式	定格容量 （m3／h）	据付場所及び床面高さ （m）	固有周期（s）		基淮地震動S s		ポンブ振動 による震度	最高使用 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
				水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度			
高圧烼心スプレイ系 ポンプ	ピットバレル形 ポンプ	325／1074	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0. P. -8. } 10^{*} \end{aligned}$	0． 053	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=0.82$	$\mathrm{C}_{\mathrm{V}}=0.57$		100	66

注記＊：基淮床レベルを示す。

๗

機器名称	形式	出力 （kW）	据付場所及び床面高さ （m）	固有周期（s）		基漼地震動S s		ポンブ振動 による震度	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）
				水平方向	鈖直方向	水平方向設計震度	鉛直方向設計震度			
高圧炉心スプレイ系 ポンプ用原動機	立形すべり軸受電動機	1900	原子炉建屋 0．P．-8.10^{*}	0． 053	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=0.82$	$\mathrm{C}_{\mathrm{V}}=0.57$		－	66

2．2．2 機器要目

部 材	N $\left(\mathrm{min}^{-1}\right)$	T_{ma} $(\%)$	D (mm)	L (mm)	p (mm)	s (mm)	W_{c} (kg)	n_{p}
固定子	1500	175	1180	100	5	10	2394	8

部 材	M_{s} $(\mathrm{N} \cdot \mathrm{mm})$	Z_{s} $\left(\mathrm{mm}^{3}\right)$	W_{s} (kg)	A_{s} $\left(\mathrm{mm}^{2}\right)$	N $\left(\mathrm{min}^{-1}\right)$	d_{s} (mm)
軸	$3.030 \times$ 10^{7}	$6.734 \times$ 10^{5}	2825	$2.835 \times$ 10^{4}	1500	190

（3）端子箱

部 材	W_{t} (kg)	n_{t}	A_{bt} $\left(\mathrm{mm}^{2}\right)$	Q_{bt} (N)
端子箱	70	10	113.1	$1.976 \times$ 10^{5}

（4）モータフレーム

部 材	M_{f} $(\mathrm{N} \cdot \mathrm{mm})$	Z_{f} $\left(\mathrm{mm}^{3}\right)$	W_{f} (kg)	A_{f} $\left(\mathrm{mm}^{2}\right)$
モータフレーム	$7.051 \times$ 10^{8}	$3.323 \times$ 10^{7}	11319	$8.213 \times$ 10^{4}

2．2．3 結論
2．2．3．1 機能確認済加速度との比較
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確忍済加速度
ポンプ	水平方向	0.82	10.0
	鉛直方向	0.57	1.0
原動機	水平方向	4.70	2.5
	鉛直方向	0.57	1.0

注記＊：基準地震動S s により定まる応答加速度とする。
ポンプは，機能維持評価用加速度が全て機能確認済加速度以下である。
原動機は，水平方向の機能維持評価用加速度が穖能碓認済加速度を超えるため，以下の項目について評価する。

2．2．3．2 立形すべり軸受電動機の動的機能維持詊価

2．2．3．2．1 代表評価項目の評価
原動機取付ボルトについては，構造強度評価にて設計用地震力に対して十分な構造強度を有しているため，計算は省略する。
2．2．3．2．2 上記以外の基本評価項目の評価

2．2．3．2．2．1 固定子の評価					（単位： MPa ）
評価部位 応力 発生応力 許容応力 固定子 せん断 5 53					

すべて許容応力以下である。

2．2．3．2．2．2 軸（回転子）の評価	（位：MPa）	
評価部位	発生応力	許容応力
軸（回転子）	49	354

－
2．2．3．2．2．3 端子箱の評価

評価部位	応力	（単位 ： MPa ）	
端子箱	引応力	許容応力	
	せん張り	175	185
	せん断	1	142

すべて許容応力以下である。

すべて許容荷重以下である。

2．2．3．2．2．5	固定子と回転子のクリアランスの評価	mm）
評価部位	回転子のたわみ	許容変位量
固定子と回転子のクリアランス	0.83	3

すべて許容変位量以下である。

2．2．3．2．2．6 モータフレームの評価	（単位 ：MPa）	
評価部位	発生応力	許容応力
モータフレーム	25	309

すべて許容応力以下である。

2.3 その他の機器要目

（1）節点データ

節点番号	節点座標（mm）		
	x	y	z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

（2）要素の断面性状

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 $\left(\mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
1	1－2	91		1.915×10^{10}
2	2－3	91		1.915×10^{10}
3	3－4	91		1.915×10^{10}
4	4－5	91		1.915×10^{10}
5	5－6	91		1.915×10^{10}
6	6－7	91		1.915×10^{10}
7	7－8	91		1.915×10^{10}
8	8－9	91		1． 915×10^{10}
9	9－10	91		1.915×10^{10}
10	10－11	91		1.915×10^{10}
11	11－12	91		1.915×10^{10}
12	12－13	91		1.915×10^{10}
13	13－14	91		5.395×10^{10}
14	14－15	91		1． 724×10^{12}
15	15－16	91		4． 480×10^{11}
16	16－17	91		5.412×10^{10}
17	17－18	91		5.412×10^{10}
18	18－19	91		5． 412×10^{10}
19	19－20	91		2． 770×10^{11}
20	20－21	91		7.553×10^{10}
21	21－22	91		7.553×10^{10}
22	22－23	91		7.553×10^{10}
23	23－24	94		3.590×10^{9}
24	24－25	94		7.720×10^{9}
25	25－26	94		4.280×10^{9}
26	26－27	94		6． 400×10^{9}
27	27－28	94		7． 350×10^{9}
28	28－29	94		2.640×10^{9}
29	29－30	94		3.640×10^{8}
31	31－32	91		8.161×10^{7}
32	32－33	91		6.230×10^{10}
33	33－34	91		2． 398×10^{9}
34	34－35	91		7.918×10^{9}
35	35－36	91		1.969×10^{10}
36	36－37	91		3.315×10^{10}
37	37－38	91		1． 969×10^{10}
38	38－39	91		4.234×10^{10}
39	39－40	91		1． 969×10^{10}
40	40－41	91		4.234×10^{10}

（続き）

断面特性番号 （要素番号）	要素両端の節点番号	材料番号	断面積 （mm ${ }^{2}$ ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
41	41－42	91		1.969×10^{10}
42	42－43	91		7.476×10^{9}
43	43－44	91		1． 860×10^{9}
44	44－45	91		1.860×10^{9}
45	45－46	91		1． 860×10^{9}
46	46－47	91		3.169×10^{9}
47	47－48	91		3.169×10^{9}
61	61－62	93		4． 492×10^{5}
62	62－63	93		8.762×10^{5}
63	63－64	93		8.762×10^{5}
64	64－65	93		1． 277×10^{7}
65	65－66	93		9.517×10^{6}
66	66－67	93		9.844×10^{6}
67	67－68	93		1.018×10^{7}
68	68－69	93		1.052×10^{7}
69	69－70	93		1.087×10^{7}
70	70－71	93		1． 124×10^{7}
71	71－72	93		1． 161×10^{7}
72	72－73	93		1.583×10^{7}
73	73－74	93		2． 170×10^{7}
74	74－75	93		2． 170×10^{7}
75	75－76	93		2． 170×10^{7}
76	76－77	93		2． 170×10^{7}
77	77－78	93		2． 053×10^{7}
78	78－79	93		2.053×10^{7}
79	79－80	93		9． 198×10^{6}
80	80－81	93		1.636×10^{8}
81	81－82	94		3.830×10^{7}
82	82－83	94		1.640×10^{8}
83	83－84	94		3.570×10^{8}
84	84－85	94		1.460×10^{8}
85	85－86	94		7． 730×10^{7}

（3）ばね結合部の指定

ばねの両端の節点番号		ばね定数	
31	61		
34	64		
36	66		
37	67		
38	68		
39	69		
40	70		
41	71		
42	72		
47	77		
4	33		
7	36		
16	45		
19	48		
24	82		
29	85		
6	-		
15	-		
15	-		

（4）節点の質量

節点番号	質量（kg）
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

	（続き）	
	節点番号	質量（kg）
	41	
	42	
	43	
	44	
	45	
	46	
	47	
	48	
	61	
	62	
	63	
	64	
	65	
	66	
	67	
	68	
1	69	
	70	
\checkmark	71	
\bigcirc	72	
\sim	73	
5	74	
	75	
（2）	76	
N	77	
\bigcirc	78	
	79	
	80	
	81	
	82	
	83	
	84	
	85	
	86	

（5）材料物性値

材料番号	温度 $\left({ }^{\circ} \mathrm{C}\right)$	縦弹性係数 （MPa）	質量密度 （kg／mm ${ }^{3}$ ）	$\begin{gathered} \text { ポアソン比 } \\ (-) \end{gathered}$	材質	部位
91	100			0.3		ポンプ
93	100			0.3		ポンプ
94	66			0.3		原動機

枠囲みの内容は商業機密の観点から公開できません

