```
本資料のうち, 枠囲みの内容
は商業機密の観点から公開で
きません。
```

女川原子力発電所第 2 号機	
工事計画審査資料	
資料番号	02 －工－B－19－0107＿改 0
提出年月日	2021年3月19日

VI－2－3－3－2－4 炉心シュラウド支持ロッドの耐震性についての計算書

目次

1．一般事項 1
1．1 記号の説明 1
1．2 形状•寸法•材料 1
1．3 解析範囲 1
1．4 計算結果の概要 1
2．計算条件 9
2．1 設計条件 9
2.2 運転条件 9
2．3 材料 9
2． 4 荷重の組合せ及び許容応力状態 9
2.5 荷重の組合せ及び応力評価 9
2.6 許容応力 9
2.7 応力の記号と方向 9
3．外荷重の条件 10
3.1 計算方法 10
3.2 解析モデル 10
3.3 計算結果 10
3．3．1 固有周期 10
3．3．2 設計用地震力 10
3．3．3 地震荷重 10
4．応力計算 11
4． 1 応力評価点 11
4.2 上部サポートの外荷重による応力 11
4．2．1 荷重条件 11
4．2．2 計算方法 11
4．3上部タイロッド（P05～P08）の外荷重による応力 12
4．3．1 荷重条件 12
4．3．2 計算方法 12
4.4 上部タイロッド（P13～P16），下部タイロッド及びトグルクレビスの外荷重による 応力 13
4．4．1 荷重条件 13
4．4．2 計算方法 13
4.5 応力の評価 14
5．応力強さの評価 15
5.1 一次一般膜応力強さの評価 15
5.2 一次一般膜＋一次曲げ応力強さの評価 15
6．特別な応力の評価 16
6.1 せん断応力の評価 16
6．1．1 せん断面積 16
6．1．2 純せん断荷重 16
6．1．3 平均せん断応力 16
6．1．4 せん断応力の評価 16

図表目次

図 1－1 形状•寸法•材料•応力評価点 2
図 3－1 解析モデル 17
図 3－2 振動モード図 18
図 3－3 時刻歴加速度波形 20
表 1－1 計算結果の概要 7
表 3－1 解析モデルのデータ諸元 27
表 3－2 解析モデルの物性値 29
表 3－3 ばね定数 29
表 3－4 固有周期 30
表 3－5 時刻歴加速度波形の最大値（水平方向） 31
表 4－1 断面性状 32
表 5－1 一次一般膜応力強さの評価のまとめ 33
表 5－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 34
表 6－1 せん断応力の評価 35

1．一般事項
本計算書は，炉心シュラウド支持ロッドの応力計算について示すものである。炉心シュラウド支持ロッドは，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価す る。

炉心シュラウド支持ロッドは，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1．1 記号の説明
記号の説明を「応力解析の方針」の 2.4 節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	断面積	mm^{2}
D。	外径	mm
I	断面二次モーメント	mm^{4}
L	荷重作用点と応力評価断面との距離	mm
t	板厚	mm
b	六角断面の対面距離	mm
τ	平均せん断応力	MPa

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．3 解析範囲
解析範囲を図1－1に示す。

1．4 計算結果の概要
計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図1－1（1）形状•寸法•材料•応力評価点（単位：mm）

図 1－1（2）形状•寸法•材料•応力評価点（単位：mm）

図 1－1（3）形状•寸法•材料•応力評価点（単位：mm）

C 部詳細

図 1－1（4）形状•寸法•材料•応力評価点（単位：mm）

［ ］：材 料

図 1－1（5）形状•寸法•材料•応力評価点（単位：mm）
表1－1（1）計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
$\begin{gathered} \text { 上部サポート } \\ \text { (タイプ 1) } \\ \text { NCF750 相当 } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	140	483	P01－P02	246	724	P01－P02
	IV ${ }_{\text {A }} \mathrm{S}$	237	585	P01－P02	415	878	P01－P02
$\begin{gathered} \text { 上部サポート } \\ \text { (タイプ2) } \\ \text { NCF750 相当 } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	151	483	P03－P04	262	724	P03－P04
	IV ${ }_{\text {A }} \mathrm{S}$	254	585	P03－P04	443	878	P03－P04
$\begin{gathered} \text { 上部タイロッド } \\ \text { (タイプ 1) } \\ \text { GXM1 相当 } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	169	303	P05－P06	242	454	P05－P06
	IV ${ }_{\text {A }} \mathrm{S}$	285	368	P05－P06	390	553	P05－P06
$\begin{gathered} \hline \text { 上部タイロッド } \\ \text { (タイプ2) } \\ \text { GXM1 相当 } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	169	303	P07－P08	242	454	P07－P08
	IV ${ }_{\text {A }} \mathrm{S}$	285	368	P07－P08	390	553	P07－P08
下部タイロッド NCF750 相当	$\mathrm{III}_{\text {A }} \mathrm{S}$	198	483	P09－P10	284	724	P09－P10
	IV ${ }_{\text {A }} \mathrm{S}$	335	585	P09－P10	417	878	P09－P10
トグルクレビス NCF750 相当	$\mathrm{III}_{\text {A }} \mathrm{S}$	304	483	P11－P12	304	724	P11－P12
	IV ${ }_{\text {A }} \mathrm{S}$	515	585	P11－P12	515	878	P11－P12
$\begin{gathered} \hline \text { 上部タイロッド } \\ (\text { タイプ 1) } \\ \text { GXM1 相当 } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	137	303	P13－P14	190	454	P13－P14
	IV ${ }_{\text {A }} \mathrm{S}$	231	368	P13－P14	405	553	P13－P14
$\begin{gathered} \text { 上部タイロッド } \\ \text { (タイプ 2) } \\ \text { GXM1 相当 } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	86	303	P15－P16	113	454	P15－P16
	IV ${ }_{\text {A }} \mathrm{S}$	146	368	P15－P16	234	553	P15－P16

表 1－1（2）計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	せん断応力	
		平均せん断応力	許容応力
トグルピン NCF750 相当	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	190	289
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	322	386

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。
2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4.4 節に示す。
2.6 許容応力

許容応力を「応力解析の方針」の 3.4 節に示す。
2.7 応力の記号と方向

応力の記号とその方向は，以下のとおりとする。

上部サポート

上部サポート以外

3．外荷重の条件

3.1 計算方法

固有周期，地震荷重は「3．2 解析モデル」に示す解析モデルにより求める。
解析コードは，「T D A P III」を使用し，解析コードの検証及び妥当性確認等の概要 については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3.2 解析モデル

解析モデルを図3－1に示す。また，各質点，部材のデータ諸元，部材の物性値及び ばね定数を表3－1～表3－3に示す。

本解析モデルは，図 3－1に示すように
1 次元多質点系モデルとする。
支持条件は，
両端単純支持とする。

3.3 計算結果

3．3．1 固有周期
固有周期を表3－4に，振動モード図を図3－2に示す。固有周期は，0．05秒を超 えていたため，動的解析を実施した。

3．3．2 設計用地震力
動的解析は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」で得られるタ イロッドと取り合う炉心シュラウドの質点 O．P．\square の の時刻歴加速度を入力と する。基準地震動 S s 及び弾性設計用地震動 S d の時刻歴加速度の最大値を表3－ 5 に示す。また，入力とする時刻歴加速度のうち基準地震動 S s に対する代表波 の波形図を図3－3に示す。

3．3．3 地震荷重

解析により求めた地震荷重を「応力解析の方針」の表4－1（3）に示す。

4．応力計算
4． 1 応力評価点
応力評価点の位置を図 $1-1$ に示す。
なお，各応力評価点の断面性状は，表4－1に示すとおりである。

4．2 上部サポートの外荷重による応力
4．2．1 荷重条件（L02，L04，L14 及び L16）
炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」の表 4－1（3） に示す。

4．2．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。
$\tau_{\mathrm{t}} \boldsymbol{e}=\frac{\mathrm{V}}{\mathrm{A}}$
（2）一次一般膜＋一次曲げ応力
外荷重による一次一般膜＋一次曲げ応力は，次式で求める。
$\sigma_{\ell}=\frac{\mathrm{V} \cdot \mathrm{L}}{2 \cdot \mathrm{I}} \cdot \frac{\mathrm{t}}{2}$
$\tau_{\mathrm{t}} \mathrm{e}=\frac{\mathrm{V}}{\mathrm{A}}$
4.3 上部タイロッド（P05～P08）の外荷重による応力

4．3．1 荷重条件（L02，L04，L14 及び L16）
炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」の表 4－1（3） に示す。

4．3．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。

$$
\begin{aligned}
& \sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{~A}} \\
& \tau_{\mathrm{t} \ell}=\frac{\mathrm{H}}{\mathrm{~A}}
\end{aligned}
$$

（2）一次一般膜 + 一次曲げ応力外荷重による一次一般膜 + 一次曲げ応力は，次式で求める。

$$
\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{~A}}+\frac{\mathrm{M}}{\mathrm{I}} \cdot \frac{\mathrm{~b}}{2 \cdot \cos \square}
$$

$\tau_{\mathrm{t}} \boldsymbol{e}=\frac{\mathrm{H}}{\mathrm{A}}$
4.4 上部タイロッド（P13～P16），下部タイロッド及びトグルクレビスの外荷重による応力
4．4．1 荷重条件（L02，L04，L14及び L16）
炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」の表4－1（3） に示す。

4．4．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。
$\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{A}}$
$\tau_{t}=\frac{\mathrm{H}}{\mathrm{A}}$
（2）一次一般膜＋一次曲げ応力
外荷重による一次一般膜十一次曲げ応力は，次式で求める。なおトグルクレ ビスについては，外荷重による一次一般膜＋一次曲げ応力は，一次一般膜応力 と同じである。
$\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{A}}+\frac{\mathrm{M}}{\mathrm{I}} \cdot \frac{\mathrm{D} \text { o }}{2}$
（a）
$\stackrel{\sim}{0}$ $\tau_{\mathrm{t} \ell}=\frac{\mathrm{H}}{\mathrm{A}}$

4．5 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

5．応力強さの評価
5.1 一次一般膜応力強さの評価各許容応力状態における評価を表5－1 に示す。

表 5－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4 節 に示す許容応力を満足する。
5.2 一次一般膜＋一次曲げ応力強さの評価各許容応力状態における評価を表5－2 に示す。

表 5－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節に示す許容応力を満足する。

6．特別な応力の評価
炉心シュラウド支持ロッドの軸力により，トグルピンにはせん断応力が生じる。こ れについて，せん断応力の評価を行う。
6.1 せん断応力の評価

6．1．1 せん断面積
（1）トグルピン（図 $1-1$（5）参照）
トグルピンが鉛直荷重を受けるせん断面積は次のようになる。

6．1．2 純せん断荷重
各許容応力状態におけるトグルピンに作用する鉛直力を「応力解析の方針」の表 4－1（3）に示す。

6．1．3 平均せん断応力
平均せん断応力 τ は，次式によって求める。

$$
\tau=\frac{\mathrm{H}}{\mathrm{~A}}
$$

6．1．4 せん断応力の評価
各許容応力状態における評価を表6－1に示す。
表 6－1 より，各許容応力状態の平均せん断応力は，「応力解析の方針」の 3.4 節 に示す許容応力を満足する。

図3－1 解析モデル

図3－2（1）
振動モード図（タイプ1，水平方向，1次）

表3－1（1）解析モデルのデータ諸元（タイプ1）

表3－1（2）解析モデルのデータ諸元（タイプ2）

	質点番号	$\begin{gathered} \text { 質量 } \\ \times 10^{3}(\mathrm{~kg}) \\ \hline \end{gathered}$	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント }\left(\mathrm{m}^{4}\right) \\ \hline \end{gathered}$	有効せん断断面積（ m^{2} ）
	T1				
	T2				
	T3				
	T4				
	T5				
	T6				
	T7				
$\stackrel{\rightharpoonup}{2}$	T8				
＋	T9				
p	T10				
5	T11				
	T12				
\bigcirc	T13				
	T14				
	T15				
	T16				
	T17				
	T18				
	T19				
	T20				
	T21				
	T22				

表3－2 解析モデルの物性値
\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline \text { 名称 } & \begin{array}{c}\text { 部材端の } \\
\text { 質点番号 }\end{array} & \begin{array}{c}\text { 縦弾性係数 } \mathrm{E} \\
(\mathrm{MPa})\end{array} & \text { ポアソン比 }\end{array}
$$ \begin{array}{c}減衰定数

(\%)\end{array}\right]\)| 1.0 |
| :--- |
| 上部タイロッド |

注：～は連続した質点を示す。

表3－3 ばね定数

No．	名称	ばね定数 $(\mathrm{kN} / \mathrm{m})$	減衰定数 $(\%)$
K	下部スタビライザ 水平ばね	（1．0	

表3－4（1）固有周期（タイプ 1 ，水平方向）

モード	固有周期（s）	刺激係数＊
1 次	0.080	0.733
2 次	0.034	-1.94

注記＊：刺激係数は，固有ベクトルを正規化
し，質量マトリックスとの積から算出
した値を示す。

表3－5 時刻歴加速度波形の最大値（水平方向）

設置場所 床面高さ (m)	弾性設計用地震動 S d	基準地震動 S s
原子炉圧力容器内部 O．P． $10.324 \sim 17.533$	1.69	2.74

表 4－1 断面性状

応力評価点	$\begin{aligned} & \mathrm{D}_{\circ} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \mathrm{L} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{b} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{I} \\ \left(\mathrm{~mm}^{4}\right) \end{gathered}$
P01，P02						
P03，P04						
P05，P06						
P07，P08						
P09，P10						
P11，P12						
P13，P14						
P15，P16						

表 5－1 一次一般膜応力強さの評価のまとめ

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-3-3-2-4 \quad \mathrm{R} 1
$$

応力評価面	許容応力状態 $\mathrm{III}_{\text {A }} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$ S	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	140	483	237	585
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	124	483	221	585
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	151	483	254	585
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	131	483	234	585
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	169	303	285	368
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	149	303	265	368
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	169	303	285	368
$\begin{aligned} & \text { P07' } \\ & \text { P08 } \end{aligned}$	149	303	265	368
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	198	483	335	585
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	176	483	313	585
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	304	483	515	585
$\begin{aligned} & \hline \text { P11' } \\ & \text { P12 } \end{aligned}$	268	483	479	585
$\begin{aligned} & \hline \text { P13 } \\ & \text { P14 } \end{aligned}$	137	303	231	368
$\begin{aligned} & \text { P13' } \\ & \text { P14 } \end{aligned}$	120	303	215	368
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	86	303	146	368
$\begin{aligned} & \text { P15 } \\ & \text { P16, } \end{aligned}$	76	303	136	368

表5－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-3-3-2-4 \quad \mathrm{R} 1
$$

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	246	724	415	878
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	217	724	386	878
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	262	724	443	878
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	229	724	410	878
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	242	454	390	553
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	222	454	370	553
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	242	454	390	553
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	222	454	370	553
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \end{aligned}$	284	724	417	878
$\begin{aligned} & \text { P09' } \\ & \text { P10, } \end{aligned}$	262	724	395	878
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	304	724	515	878
$\begin{aligned} & \text { P11' } \\ & \text { P12 } \end{aligned}$	268	724	479	878
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	190	454	405	553
$\begin{aligned} & \text { P13' } \\ & \text { P14 } \end{aligned}$	174	454	389	553
$\begin{aligned} & \hline \text { P15 } \\ & \text { P16 } \end{aligned}$	113	454	234	553
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	103	454	223	553

表6－1 せん断応力の評価
（単位：MPa）

応力評価面	許容応力状態	平均せん断応力	許容応力
トグルピン	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	190	289
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	322	386

