

図 5.4-46 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス: Se-79 (case02)

図 5.4-48 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス: Se-79 (case04)

図 5.4-50 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス: Se-79 (case06)

図 5.4-52 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス: Se-79 (case08)

図 5.4-54 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス: Se-79 (case10)

図 5.4-56 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス: Se-79 (case16)

(case17)

図 5.4-58 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス: Se-79 (case18)

- 5-127 -

図 5.4-60 ガラス固化体1本当たりの地下水移行による人工バリア出口フラックス: Cs135

(case01)

図 5.4-62 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス: Cs-135 (case02)

(case04)

- 5-131 -

(case06)

(case08)

(case10)

図 5.4-72 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス: Cs-135 (case16)

- 5-135 -

図 5.4-74 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス: Cs-135 (case18)

- 5-136 -

図 5.4-76 ガラス固化体1本当たりの地下水移行による人工バリア出口フラックス:4n+1

(case01)

図 5.4-78 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス:4n+1 (case02)

図 5.4-80 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス:4n+1 (case04)

図 5.4-82 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス:4n+1 (case06)

図 5.4-84 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス:4n+1 (case08)

図 5.4-86 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス:4n+1 (case10)

図 5.4-88 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス:4n+1 (case16)

図 5.4-90 ガラス固化体1本当たりの地下水移行による天然バリア出口フラックス:4n+1 (case18)

5.4.8 断層活動の処分システムへの影響を想定した安全評価のまとめ

- (1) 分岐断層による影響
- (a) 断層成長の有無の違い

図 5.4-92 に示すように、分岐断層が成長し、閉鎖後1万年で処分施設に交差する場合(断層 成長速度 500m/回、処分施設深度 300m)、分岐断層が成長しない場合と比較して、天然バリア 出口における移行フラックスは Se-79, Cs-135 で 30 桁以上、4n+1 系列核種である Np-237 で 15 桁程度増加し、生物圏に対して大きな影響を与える結果となった。ガラス固化体1本あたりの 河川水利用経路での年間被ばく線量は 3.4×10⁻³µSv/y となり、断層と交差し影響を受ける廃棄 体本数を 4000 本とすると 14µSv/y (4n+1 系列核種の寄与率 90%以上)となった。これは断層 交差により人工バリアの安全機能が喪失し、ガラス表面積及びガラス溶解速度が増加して、人 工バリア出口の移行フラックスが上昇することに加えて、核種移行経路が断層沿いとなり、断 層沿いの地下水流速が上昇し、帯水層下限となる地表から 40m 深さに早く到達するためである。

図 5.4-92 断層成長がない場合とある場合の比較(Case 1 と 4 の比較)

(b) 断層成長速度の違い

図 5.4-93 に示すように、断層成長速度を 500m/回、100m/回の 2 つのケースについて、解析 結果を比較する。人工バリアを交差するタイミングが異なり(1万年と4万年)、上記の理由か ら Cs-135 については 500m/回の場合 1 万年時点では人工バリア内には十分なインベントリが残 存し、断層交差時にそれ以前より 4 桁高い 10⁹ Bq/y 程度のフラックスを放出しているのに対し、 100m/回の場合断層の交差する 4 万年の時点では人工バリア出口からの放出はすでに終了して インベントリがなく、断層交差による放出フラックスの増加は生じない。したがって、100m/ 回の場合、交差後の移行経路である断層沿いを移行する Cs-135 はなく、天然バリア出口のフラ ックスは分岐断層が交差しない場合の堆積層中の移行と同様の挙動となる。また、Se-79 では 500m/回の場合 Cs-135 と同様に 1 万年時点で十分にインベントリが残存し、断層交差によりそ れ以前より 4 桁程度高い 10⁹ Bq/y 程度のフラックスを放出しているのに対し、100m/回のケー スにおいて 4 万年で人工バリアに交差する時点ではすでに人工バリア出口フラックスは 1 Bq/y 程度と 500m/回と比較して 8 桁程度低下した。さらに天然バリア中の流速増加の時間変化の違 いから、天然バリア出口移行フラックスに 8 桁程度の違いが現れている。一方、4n+1 系列核種 である Np-237 では、人工バリア内の移行が溶解度に支配されていることから、4 万年の交差時 点でも核種が十分に人工バリア内に残存しており断層交差時の放出フラックスも 500m/回、 100m/回ともに最大 10¹¹ Bq/y (Pa-233) となり、Cs-135、Se-79 よりも断層成長速度の違いを受けにくい結果となった。

分岐断層と処分施設との交差時期が1万年と4万年で100m/回の時のSe-79及びCs-135の天 然バリア出口でのフラックスには大きな違いが生じた。これは断層が交差する時点で、人工バ リア内に残存する核種インベントリの違いに起因する。本解析では、分岐断層側は塩水系の地 下水の設定で、Mg濃度による影響でガラス溶解速度が1万年以降100倍となる。降水系地下 水の設定であれば、1万年以降もガラス溶解速度が変わらず、4万年時点で人工バリア内に核種 が残存するため、Cs-135, Se-79についても影響を与える可能性があることに留意する必要があ る。

一方、(a)と同様に影響を受ける廃棄体本数を 4000 本とすると年間被ばく線量は 12µSv/y と なり、500m/回の成長速度の被ばく線量とほぼ同じ値となった。4n+1 系列核種の寄与率 99.9% 以上となり、被ばく線量は 4n+1 系列核種の挙動に支配されることが確認された。

図 5.4-93 断層成長速度(500m/回と100m/回)による比較(Case 4 と 5 の比較)

(c) 処分施設深度の違い

図 5.4-94 に示すように、処分施設深度が 300m と 500m の 2 つのケースについて比較すると、 500m の方が 300m と比較して、天然バリア出口移行フラックスは Se-79 で約 1/100、Cs-135 で 約 1/30 となり、深度による移行距離及び時間の差が現れた。一方、4n+1 系列核種で 300m と 500m でピークフラックスは 500m が 300m の約半分と(b)で述べた特徴が処分施設深度の違いに も現れている。また、深度 500m で Np-237 のフラックスの立ち上がりが Se-79 よりも早くなっ たのは、深度 500m の移行経路の一つを構成する声問層断層部(塩水系)の Np の分配係数 0.02 m³/kg が Se の 0.07 m³/kg よりも小さいことに起因する。

図 5.4-94 処分施設深度(300m と 500m)による比較(Case 4 と 6 の比較)

(2) 深部流体流入の影響

有馬型熱水(深部流体 1)が1万年に分岐断層の交差と同時に流入する場合、人工バリアからは瞬時に核種移行フラックスが全量放出され、図 5.4-95 に示すように、1.4 万年程度で天然バリア出口におけるピークフラックスを示す。(a)と同様に影響を受ける廃棄体本数を4,000 本とすると河川水利用経路における年間被ばく線量の最大値は4桁以上増加する。これは人工バリアにおいて90℃の熱水のため瞬時放出としていること、天然バリアにおいても断層沿いの地下水流速を地下水流動解析結果の10倍を与えたこと、また、90℃熱水が断層沿いを上昇するとして、断層における分配係数を0と設定した相乗効果によるものである。

一方、図 5.4-96 に示すように、40℃の地下水2(塩水系)が1万年に分岐断層と同時に流入 する場合、人工バリアからの核種移行フラックスは瞬時全量放出とはならず、また、断層にお ける分配係数も通常地質と大きな差はないため、有馬型熱水のように大きな影響は生じない。 被ばく線量も13.7µSv/yとなり、分岐断層が交差するだけの事象とほぼ変わらなかった。

また、図 5.4-97 に示すように、断層成長速度の違い(500m/回と100m/回)を深部流体1(有 馬型熱水)の場合で比較すると、4万年で交差する100m/回の場合は4万年で急速にフラック スが立ち上がるが、分岐断層が地表に到達するまでに時間遅れがあるために、500m/回と比べ てピークを示すまで緩やかに上昇する。その後、フラックスの下降も緩やかな傾きを示す。ま た、Cs-135 は図 5.4-93 と同様にすでに人工バリアからの放出を終了しており、断層沿いを移行 する Cs-135 がないため、分岐断層が交差しない場合と同様の挙動を示す。

図 5.4-95 分岐断層のみと深部流体1(有馬型熱水)流入時の比較(Case 4 と 8 の比較)

図 5.4-96 深部流体1(有馬型熱水)と深部流体2(40℃地下水2)の比較(Case 8と10の比較)

図 5.4-97 深部流体1(有馬型熱水)流入時の断層成長速度の違いの比較(Case 8 と 9 の比較)

(3)酸化性地下水流入の影響

図 5.4-98 にバックスラスト側断層成長の有無と酸化性地下水流入時の比較を示す。バックス ラストが処分施設と交差し、バックスラストが地表に到達した後に酸化性地下水が流入する場 合を、酸化性地下水が流入しない場合と比較すると、ピークフラックスの値はほぼ同じであり、 明確な差異が生じなかった。

これは酸化性地下水の流入により、化学的影響で人工バリアから核種移行フラックスが瞬時 に全量放出となるが、バックスラスト側は涵養域であり、断層沿いに地下水が下降するため、 (1)のように移行経路・時間の短縮とはならず、バックスラストが交差する以前の通常地質の移 行経路・時間とほぼ変わらないことが要因と考えられる。

図 5.4-98 バックスラスト側断層成長の有無と酸化性地下水流入時の比較(Case 3, 16, 18 の比較)

以上のように、多くの保守的な設定の下で定量的解析を行った有馬型熱水が分岐断層の交差 と同時に流入する場合で、著しい影響が現れる可能性が示唆された。

以上の結果をもとに、表 5.4-12 に示した領域別の廃棄体本数を考慮して、河川水利用経路の 被ばく線量を算出した。その結果を図 5.4-99 に示す。また、各ケースの最大被ばく線量を比較 したグラフを図 5.4-100 に示す。1万年で分岐断層が処分施設と交差し、深部流体1(有馬型熱 水)流入するケース(Case 8 と Case 12)の被ばく線量が最大で 690mSv/y となる。これは有馬 型熱水が処分施設全体に流入するか、半分程度に流入するかの違いは値に現れておらず、分岐 断層が交差する中央部のみでこの影響が構成されていることを示している。次いで、4万年で 分岐断層が交差し、、深部流体1(有馬型熱水)流入するケース(Case 9 と Case 13)の被ばく 線量が 110mSv/y と大きい値を示す。これら以外は分岐断層が交差するケース(Case 4~7)で 1~15 µSv/y となり、深部流体2(40℃地下水2)が流入するケース(Case 10, 11, 14, 15)は 14 µSv/y と、深部流体2の流入は大きな影響を与えない結果となった。バックスラストが交差するケー ス(Case 16~19)で 0.1~0.3 µSv/y となり、酸化性地下水が流入しても被ばく線量には大きな 違いが現れない。

図 5.4-100 ケース別被ばく線量(河川水利用経路)の比較

5.5 火山活動の処分システムへの影響を想定した安全評価

5.5.1 火山活動が処分システムに与える影響に関する解析的検討

第3章では火山活動が処分システムに与える影響を新規火山の発生における規模を想定して、 評価すべきシナリオについて記述した(3.3参照)。本項ではそのシナリオに基づき、新規火山 噴火によって拡散・堆積した放射性物質を含む火山灰からの被ばく線量と、小規模火砕流ある いはマグマ水蒸気爆発によって火口付近に露出する廃棄体に接近する場合の被ばく線量の2つ に対して、評価を実施した。

火山噴火に伴い火山灰が飛散・堆積する場合、火道が交差した人工バリア各部位の状態設定 を表 5.5-1 に示す。また、小規模火砕流により火口付近に廃棄体が露出する場合、火道が交差 した人工バリア各部位の状態設定を表 5.5-2 に示す。

表 5.5-1 マグマ火道が交差した人工バリア各部位の状態設定(火山灰飛散)

緩衝材	岩盤の崩壊による緩衝材形状崩壊、及び、高温マグマとの接触により、低 透水機能喪失
オーバーパック	高温マグマとの接触に伴う急激な温度勾配により熱応力破壊
ガラス	すでに流入している地下水の急激な温度上昇により内圧が上昇し、粉砕し たガラスが地下水あるいは蒸気とともにマグマ中に噴出し、混合

表 5.5-2 マグマ火道が交差した人工バリア各部位の状態設定(小規模火砕流)

緩衝材	岩盤の崩壊による緩衝材形状崩壊、及び、高温マグマとの接触により、低
	透水機能喪失
オーバーパック	緩慢な温度上昇により火道内ではオーバーパックの形状を維持するが、地
	表に露出された時に急激な冷却により熱応力により破壊して内部のガラ
	スと分離
ガラス	緩慢な温度上昇により内圧上昇は小さく、内在していた地下水のみが徐々
	に漏出し、ガラスはオーバーパック内部に保持されるが、地表に露出した
	時にオーバーパックが急冷され熱応力が生じることにより割れが生じ分
	離して、ガラス固化体むき出しの状態で地表に配置

5.5.2 火山噴火に伴う火山灰の飛散・堆積による周辺居住者への影響評価 (1) 解析条件

本評価では、火山噴火に伴い飛散・堆積した放射性物質を含む火山灰上での外部被ばく線量 及び再浮遊火山灰の吸入摂取による内部被ばく線量を評価した。表 5.5-3 に評価対象とする 2 つの火山噴火規模における火山噴火評価パラメータを示す。

また、評価対象核種は表 5.5-4 に示す閉鎖後 1000 年時点で有意な放射能量を示す核種とした。 なお、本評価では、人工バリアの閉じ込め機能が長期にわたって性能を保持することを考慮し て、人工バリアからの核種の漏出は無視し、放射性崩壊のみを減衰とした。
	火山噴火 タイプ	VEI	マグマ 噴出量 (km)	火山灰 割合	平均粒子径 (mm)	風速 (m/s)	火道径 (m)	交差廃棄 体本数
単成火山	ストロンボリ	2	0.001	0.1	1	10	20	10本
肘折火山	プリニー	4	0.1	0.1	1	10	200	500本

表 5.5-3 新規単成火山及び新規カルデラ火山噴火の火山噴火評価パラメータ

VEI: Volcanic Explosivity Index (火山爆発指数)⁽¹⁾

核種	半減期(y)	放射能量(Bq)	核種	半減期(y)	放射能量(Bq)
Se-79	6.50E4	1.64E10	U-233	1.59E5	9.75E7
Zr-93	1.53E6	7.39E10	U-234	2.45E5	8.14E8
Nb-93m	1.36E1	7.02E10	U-235	7.04E8	2.74E6
Nb-94	2.03E4	1.83E8	U-236	2.34E7	5.94E7
Tc-99	2.13E5	5.14E11	U-238	4.47E9	3.89E7
Pd-107	6.50E6	4.16E9	Np-237	2.14E6	2.31E10
Sn-126	1.00E5	2.97E10	Pu-238	8.77E1	9.79E9
Cs-135	2.3E6	1.83E10	Pu-239	2.41E4	8.79E10
Sm-151	9.00E1	4.71E9	Pu-240	6.54E3	3.59E11
Pb-210	2.23E1	2.07E6	Pu-241	1.44E1	1.13E10
Ra-226	1.60E3	2.16E6	Pu-242	3.87E5	3.82E8
Ac-227	2.18E1	8.98E5	Am-241	4.32E2	5.75E12
Th-229	7.34E3	4.52E6	Am-242m	1.52E2	5.04E9
Th-230	7.7E4	9.23E6	Am-243	7.38E3	7.18E11
Th-232	1.41E10	6.13	Cm-245	8.50E3	1.13E10
Pa-231	3.28E4	8.99E5	Cm-246	4.73E3	2.32E9

表 5.5-4 火山噴火時の周辺居住者の被ばく線量評価対象核種

(2) 解析結果

図 5.5-1 火山噴火時の火山灰拡散・堆積時の被ばく線量評価結果に火山噴火時の被ばく線量 解析結果を示す。新規単成火山の噴火を想定した VEI2 では 1000 年に噴火した場合の年間被ば く線量は 0.54mSv/y となった。新規カルデラ火山の噴火を想定した VEI4 では 1000 年に噴火し た場合の年間被ばく線量は 0.38mSv/y となった。いずれの場合も 1 万年までは Am-243、10 万 年までは Sn-126 が支配核種となった。VEI2 では 100 万年で噴火しても 0.1mSv/y を超える被ば く線量となった。なお、VEI2 での火山灰堆積厚さは 4cm、VEI4 では 24cm となった。

5.5.3 小規模火砕流等により火口付近に露出する廃棄体に接近する者への影響評価

(1) 解析条件

4.3 で整備した GSRW-PSA の廃棄体に接近する者の被ばく線量評価機能を用いて、表 5.5-5 に示す条件で処分施設閉鎖後 1,000 年以降の火山噴火発生時期について、被ばく線量の推移を評価した。

ガラス固化体条件	ガラス固化体むき出し(キャニスタは当初組成のまま残存)
	オーバーパックー部残存(当初厚さ 19cm のうち 11cm が残存)
ガラス固化体地表配置	横置き
被ばく評価点位置	ガラス固化体表面から水平方向 50cm の位置の高さ 1m の点
被ばく時間	10 時間

表 5.5-5 外部被ばく線量評価条件(火口付近露出廃棄体への接近)

評価対象核種は、閉鎖後1000年時点でガラス固化体に残存する放射性核種のうち、r線およびX線を放出する核種であり、表 5.5-6に示す。なお、本評価では、人工バリアの閉じ込め機能が長期にわたって性能を保持することを考慮して、人工バリアからの核種の漏出は無視し、放射性崩壊のみを減衰とした。

核種	半減期(y)	放射能量(Bq)	核種	半減期(y)	放射能量(Bq)
Zr-93	1.53E6	7.39E10	U-234	2.45E5	8.14E8
Nb-93m	1.36E1	7.02E10	U-235	7.04E8	2.74E6
Nb-94	2.03E4	1.83E8	U-236	2.34E7	5.94E7
Tc-99	2.13E5	5.14E11	U-238	4.47E9	3.89E7
Pd-107	6.50E6	4.16E9	Np-237	2.14E6	2.31E10
Sn-126	1.00E5	2.97E10	Pu-238	8.77E1	9.79E9
Sm-151	9.00E1	4.71E9	Pu-239	2.41E4	8.79E10
Pb-210	2.23E1	2.07E6	Pu-240	6.54E3	3.59E11
Ra-226	1.60E3	2.16E6	Pu-241	1.44E1	1.13E10
Ac-227	2.18E1	8.98E5	Pu-242	3.87E5	3.82E8
Th-229	7.34E3	4.52E6	Am-241	4.32E2	5.75E12
Th-230	7.7E4	9.23E6	Am-242m	1.52E2	5.04E9
Th-232	1.41E10	6.13	Am-243	7.38E3	7.18E11
Pa-231	3.28E4	8.99E5	Cm-245	8.50E3	1.13E10
U-233	1.59E5	9.75E7	Cm-246	4.73E3	2.32E9

表 5.5-6 廃棄体接近者の外部被ばく線量評価対象核種

(2) 解析結果

図 5.5-2 図 5.5-2 火口付近に露出する廃棄体に接近する場合の外部被ばく線量評価結果に廃 棄体接近時の被ばく線量解析結果を示す。オーバーパックが残存せず、ガラス固化体がむき出 しの状態で横置きに配置される条件において、1 回あたり 10 時間の廃棄体への接近で閉鎖後 1000 年での噴火において 59mSv の被ばく線量となった。オーバーパックが 11cm 厚さ残存して いる場合では同じく 0.2mSv となった。いずれの場合も 10 万年までの支配核種は Sn-126 である が、オーバーパックなしの場合、1 万年までは Am-243 が支配核種となる。Am-243 は放出エネ ルギーが小さく、11cm の炭素鋼では十分に遮蔽されるためである。

オーバーパックなしの場合、1回の被ばくあたり 10mSv を下回るのは 10 万年以降であり、 新規火山噴火を処分施設に直接的影響を及ぼさないようにする目安となりうる。100 万年以降 も 1mSv を上回っており、放射性崩壊による減衰を期待できないことが確認された。

5.6 まとめと今後の課題

5.6.1 重要な人工バリアの設計要件の検討

5.3 に述べたように、仮想的な結晶質岩サイトを想定して総合的な感度解析(影響解析)を行い、人工バリアに関する重要な設計要件を抽出するため、H25 年度と同様に、「有効モンモリロナイト密度(ρ mont)」と「間隙率」を緩衝材のバリア性能の劣化を示す指標として選択し、 緩衝材の設計条件を変化させた評価ケースに対するこれら指標の経時変化への影響や傾向について検討を行った。表 5.6-1 に H25 年度に実施した設定ケースを、表 5.6-2 および表 5.6-3 に本年度実施した設定ケースを示す。

ケース	温度 [℃]	地下水質特性	緩衝材厚さ [cm]	乾燥密度 [g/cm ³]	混合率 [Bnt.:Qtz.]	支保工厚さ [cm]	
1	100~47	降水系	70	1.6	7 . 3	60	
2	100.947	海水系	70	1.0	7.5	00	
3		降水3 : 海水7					
4	100~47	降水5:海水5	70	16	7 . 3	60	
5	100 47	降水7 : 海水3	/0	1.0	7.0	00	
6		降水99:海水1					
7			60				
8			50				
9	100~47	海水玄	40	16	7 · 3	60	
10	100 47	冲八术	30	1.0	7.5		
11			20				
12			10				
13				1.8			
14				1.4			
15	100~47	海水系	70	1.3	7:3	60	
16				1.2			
17				1.1			
18					10:0		
19	100~47	海水玄	70	16	5:5	60	
20	100 47	141121	70	1.0	3:7	00	
21					1:9		
22						50	
23						40	
24	100~47	海水系	70	1.6	7:3	30	
25						20	
26						10	

表 5.6-1 人工バリアの変遷のシナリオを対象とした安全評価ケース(H25年度)

ケース	温度 [℃]	地下水質特性	緩衝材厚さ [cm]	乾燥密度 [g/cm ³]	混合率 [Bnt. : Qtz.]	支保工厚さ [cm]
1	100~47	降水系	70	1.6	7:3	60
7P			60			
8P			50			
9P	100 - 17	胶北玄	40	1.0	7.0	60
10P	100~47	阿小希	30	1.0	7:3	00
11P			20			
12P			10			
13P				1.8		
14P		降水系	70	1.4	7:3	60
15P	100~47			1.3		
16P				1.2		
17P				1.1		
18P					10 : 0	
19P	100~47	隐水玄	70	16	5:5	60
20P	100 - 47	P471776	70	1.0	3:7	00
21P					1:9	
22P						50
23P						40
24P	100~47	降水系	70	1.6	7:3	30
25P						20
26P						10

表 5.6-2 人工バリアの変遷のシナリオを対象とした安全評価ケース(H26年度)①

表 5.6-3 人工バリアの変遷のシナリオを対象とした安全評価ケース(H26年度)②

ケース	温度 [℃]	地下水質特性	緩衝材厚さ [cm]	乾燥密度 [g/cm ³]	混合率 [Bnt. : Qtz.]	支保工厚さ [cm]	pHが10まで低下す るまでの期間 [年]
270							500
28C							2,500
29C		セメント溶出水1	70	1.6		0	5,000
300	100~47				7:3		10,000
310							20,000
32C							40,000
33C							80,000
30C#	100~47	セメント溶出水2	70	1.6	7:3	0	10,000

表 5.6-1 に示した平成 25 年度実施の case7~26 と、表 5.6-2 に示した平成 26 年度実施の case7P ~26P とでは、地下水質特性を海水系または降水系に設定した点だけが異なり、その他の計算 体系、計算条件等は、地下水水質特性の違いによる影響を明確にするため、全く同等の設定で 解析を実施している。これらのケースを比較、検討し、地下水質特性の違いによる緩衝材の性 能劣化に与える特徴的な相違がみられるものを抽出した。

また表 5.6-3 に示した case27C~case30C#は、本年度新たに設定したケースで、セメントの高 アルカリ影響についてセメント溶出水を高アルカリ地下水として設定して経時的に変化させる ことにより模擬した解析ケースである。これらのケースを比較、検討し高アルカリ地下水が緩

図 5.6-1 有効モンモリロナイト密度の経時変化の比較(支保工厚さを変化させたケース)

図 5.6-1 中左側の海水系地下水を設定したケースでは、支保工が厚いほどモンモリロナイトの溶解が促進されるという直感的に理解しやすい傾向がみられ、支保工厚さ 60cm のケースが 最も早い約 76,000 年でモンモリロナイトが消失する結果となっている。

それに対し図 5.6-1 中右側の降水系地下水を設定したケースでは、100,000 年後のモンモリロ ナイト量が支保工厚さ 60cm のケースにおいて最も多く残存している、上記の直感的な理解と は矛盾するような結果となった。その他の 20cm~50cm のケースの残存量の減少傾向は相対的 に近似しており、60cm のケースのみが際立つ結果となっている。

これは支保工厚さ 60cm のケースの場合のみ、支保工近傍の緩衝材領域において解析計算上 の間隙閉塞(間隙率が 0.005 まで低下)が発生し、支保工側からのアルカリ成分の流入が抑制 されたことにより、他のケースよりモンモリロナイトが残存する結果となったものと考えられ る。支保工厚さ 20cm~50cm のケースにおいても、厚いケースほど間隙率が低下し、間隙率が 低下した状態の解消により時間を要しており、支保工厚さに対するモンモリロナイトの 100,000 年後の残存量は、結果的に、海水系地下水と降水系地下水とのケース間で、支保工厚さの十二 対する性能の劣化がほぼ逆順となる結果となった。なお、図中右側の支保工厚さ 10cm のケー スは 3,000 年でアルカリ成分が枯渇しており、その後間隙率はほぼ平坦に推移したため、他と 異なる挙動となっているものと推察される。

緩衝材厚さを変化させたケースの有効モンモリロナイトの経時変化についての比較を次に示 す。

図 5.6-2 有効モンモリロナイト密度の経時変化の比較(緩衝材厚さを変化させたケース)

図 5.6-2 中左側の海水系地下水を設定したケースでは、緩衝材の厚さに応じた系統的な減少 傾向がみられ、モンモリロナイトが消失するまで期間は緩衝材厚さが 10cm のケースが最も短 く約 22,000 年、70cm のケースが最も長く約 76,000 年となっている。

一方、図 5.6-2 中右側の降水系地下水を設定したケースでは、緩衝材厚さ 10cm はわずか 300 年でモンモリロナイトが消失したのに対し、5.3.1 項に述べたように、緩衝材厚さ 70cm では支 保工近傍の緩衝材領域において間隙閉塞が発生し、100,000 年後においてもモンモリロナイトが 約 0.68 g/cm³ 残存するなど、緩衝材厚さによって多様な減少傾向がみられる結果となった。

以上のように、地下水質特性を海水系または降水系に設定したことによる有効モンモリロナ イト密度の経時変化への影響の違いと支保工近傍の間隙率変遷の解析結果との比較により、地 下水質の違いにより、間隙閉塞の発生の有無、発生する間隙率低下の度合いに大きく変化し、 モンモリロナイトの溶解挙動に大きく影響を及ぼす結果が示された。

続いて、本年度に新たに実施した高アルカリ地下水ケースの有効モンモリロナイト密度と間 隙率の経時変化を示す。

図 5.6-3 有効モンモリロナイト密度と間隙率の経時変化(高アルカリ地下水ケース)

図 5.6-3 中左上の有効モンモリロナイト密度の経時変化から、濃いアルカリ成分がより長く 継続するケースほどモンモリロナイトの溶解が促進される傾向がみられた。特に地下水が高ア ルカリである期間が 20,000 年~80,000 年のケースでは、濃いアルカリ成分の継続時間が長いた め、モンモリロナイトの溶解がより顕著に進み、それに伴う間隙率の変化も連動して大きく表 れている。

地下水が高アルカリである期間が 10,000 年のケースと、同じ 10,000 年ではあるが初期により 高 pH の地下水を与えたケースとの比較(図 5.6-3 中の 10,000 年と 10,000 年(H))から、初期段 階に、比較的短期間であったも非常に高いアルカリ成分が流入するかどうかにより、後の緩衝 材性能の劣化に大きく影響を及ぼすことが示されている。例えば、仮に 0.4 g/cm³を緩衝材があ る一定以上の性能を保つ有効モンモリロナイト密度の基準値とした場合、図 5.6-3 中の 10,000 年のケースでは、有効モンモリロナイト密度が基準値以下になるのに約 60,000 年かかるのに対 し、図 5.6-3 中の 10,000 年(H)のケースでは、半分以下の約 25,000 年で基準値以下になること に表れる。このように有効モンモリロナイト密度にある基準値を設定する必要が求められるよ うな場合には、これら 2 ケースの性能差は非常に大きいものとなり得る可能性がある。

以上の検討内容から、地下水の水質(海水系地下水と降水系地下水)、支保工厚さ、緩衝材厚 さ、高アルカリ地下水(緩衝材中のモンモリロナイト量に対するアルカリ、カルシウム成分な どの割合)などの条件の組み合わせにより、緩衝材の性能劣化に対して多様な影響が存在する ことが示唆された。これらのケース設定について、5.3.1 で述べた緩衝材内部の間隙率の時間 的・空間的分布を踏まえ、特に支保工付近における緩衝材の間隙率の時間変化について、支保 工厚さを変化させたケース、緩衝材厚さを変化させたケース、高アルカリ地下水ケースについ てまとめたものを表 5.6-4~表 5.6-6 にそれぞれ示す。

表 5.6-4 支保工厚さを変化させたケースにおける緩衝材内部の間隙率の時間的・空間的分布 の傾向

	ケース	地下水質 特性	緩衝材 厚さ [cm]	支保工 厚さ [cm]	緩衝材内部の間隙率の空間的・時間的変化の傾向	
	2			60	支保工近辺の緩価材領域において、局所的な間隙閉塞が起きる。 (600年後~1,000年後程度で局所的に間隙は低下するが、6,000年後には間隙率0.1まで解消)	
H	22			50		
25 5	23	海水系	70	40		
中康	24			30	緩衝材領域内で間隙低下はみられなかった。	
皮	² 25			20		
	26			10		
	1	1		60	支保工近辺の緩価材領域で局所的に起きる間隙閉塞が100,000年後まで続く。 (間隙率は300年後には0.03まで低下。そのまま低下し続け10,000年後には、同領域においてCSH およびLmtにより間隙閉塞(解析上の閉塞:間隙率=0.005)。60,000年後より間隙率上昇がみられる が、100,000年後においても解消されなかった)	
Н 26 5	22P	降水系	70	50	ー時的に支保工近辺の緩価材領域で間隙低下がみられるが、その後解消される。 (支保工厚さ20~50cmのいずれにおいても一時的に間隙率が低下するものの、その後は初期間	
年度	23P			40	隙率(≒0.4)を上回るまで上昇。緩衝材領域で間隙率低下が生じたことにより、支保工からのアル カリ成分が抑制され、モンモリロナイトの溶解が促進されず、100,000年間残存)	
	24P			30		
	25P			20	緩衝材領域内で間隙低下はみられなかった。	
	26P			10		

表 5.6-5 緩衝材厚さを変化させたケースにおける緩衝材内部の間隙率の時間的・空間的分布 の傾向

			1 mm mm / -		
	ケース	地下水質 特性	緩衝材 厚さ [cm]	支保工 厚さ [cm]	緩衝材内部の間隙率の空間的・時間的変化の傾向
	2		70		支保工近辺の緩衝材領域において、局所的な間隙低下が起きる。 (200年後~1,000年後程度で局所的に間隙は低下するが、6,000年後には間隙率0.1まで解消)
l	7		60		
H	8		50		
20	9	海水系	40	60	緩衝材領域内で間隙低下はみられなかった。
牛	10		30		
度	11		20		
	12	2 10		支保工近辺の緩衝材領域において、局所的な間隙低下が起きる。 (200年後~1,000年後程度で局所的に間隙は低下するが、6,000年後には間隙率0.1まで解消)	
	1		70		支保工近辺の緩衝材領域で局所的に起きる間隙閉塞が100,000年後まで続く。 (間隙率は300年後には0.03まで低下。そのまま低下し続け10,000年後には、同領域においてCSH およびLmtにより間隙閉塞(解析上の閉塞:間隙率=0.005)。60,000年後より間隙率上昇がみられる が、100,000年後においても解消されなかった)
l	7P		60		明い古後に十月二につみ何年世をはっ明いにておったとれておってみ後少。2016年3月
100	8P		50		開始直接に文保工近辺の裁判が領域で间隙低下かみられるか、ての後ゆつくりと解消に
Z0 左	9P	降水系	40	60	回かつ。 (問脳率低下後にゆっくはと解消に向からが、初期問題率(一0.4)までけて見せず、経衛材領域で
中	10P		30		(間隙率低下が生)、たことにとり、支保工からのアルカリ成分が抑制、モンモリロナイト突解も抑制)
艮	11P		20		こうない ちょう いいいいい アンドレン ひょう アンズンズ 三字 アントレン ひょうしょう こうしょう
	12P		10		支保工近辺の緩価材領域で局所的に起きる間隙閉塞が100,000年後まで続く。 (8,000年後~70,000年後の間に間隙閉塞(解析上の閉塞:間隙率=0.005)。その後間隙率上昇が みられるが、100,000年後においても解消されなかった。ただしこのケースにおいては300年後にモ ンモリロナイトが消失し、安全機能は喪失している状態)

	ケース	地下水質 特性	緩衝材 厚さ [cm]	支保工 厚さ [cm]	pHが10まで 低下するまで の期間 [年]	緩衝材内部の間隙率の空間的・時間的変化の傾向							
	270						500	緩衝材領域内で間隙低下はみられなかった。					
	28C							2,500 一時的にEDZ	一時的にEDZ近辺の緩衝材領域で間隙低下がみられるが、その後解消される。				
н	29C	セメント		0 0	5,000 下するものの、その後は初期間隙率(≒0.4)を.	でするものの、その後は初期間隙率(≒0.4)を上回るまで上昇)							
26	300	溶出水1	70		10,000								
年	310											20,000	一時的にEDZ近辺の緩衝材領域において、局所的な間隙閉塞が起きる。 (問題などののないので、現象に思いまで、ほかに問いまで、例をしていまで、問いる。
度	320				40,000	(间線率は2,000年~10,000年の)期间内で一時的に间隙闭塞(脾机工の闭塞:间線率 =0.005)に至るがのちに解消され、その後は初期間隙率(=0.4)を上回るまで上昇、)							
	330				80,000								
	30C#	セメント 溶出水2	70	0	10,000	一時的にEDZ近辺の緩衝材領域で間隙低下がみられるが、その後解消される。							

表 5.6-6 高アルカリ地下水ケースにおける緩衝材内部の間隙率の時間的・空間的分布の傾向

それぞれの表中に赤字で示した部分のうち、降水系地下水を設定したケースおいては、支保 工付近の緩衝材領域で、局所的に間隙閉塞(解析上の下限設定値である間隙率=0.005 まで低下 すること)が生じ、それがその後も解消されることなく 100,000 年の計算期間全域で継続して いることが分かった。一方で、海水系地下水を設定したケースにおいても局所的な間隙閉塞が 起きるケースがみられたが、海水系地下水のケースでは、100,000 年の計算期間全域で継続する ことはなく、ある期間で間隙閉塞は解消していた。また、高アルカリ地下水としてセメント溶 出水を設定したケースでは、濃いアルカリ成分の継続時間が長い 10,000 年~80,000 年のケース において、一時的に局所的な間隙閉塞が発生したが、その後解消していた。

このように地下水質特性の違いによって緩衝材領域における間隙率の低下(間隙閉塞の有無) が発生し、解析結果に顕著な傾向の違いがみられたことを踏まえると、緩衝材内の有効モンモ リロナイト密度や間隙率などのパラメータを設定する際の妥当性を判断するための観点として、 以下が抽出されるものと考えられる。

- ✓ 我が国に存在する種々の地下水、また、処分場の構造体等の影響を受けたそれらの地下 水など、様々な地下水環境下におけるバリア材性能への影響の程度、仕方を考慮した因 子の絞り込みの検討が重要。
 - ✓ 結晶質岩サイトで想定される、緩衝材が直接 EDZ 地下水の影響を受ける処分体系においては、閉鎖初期段階の高アルカリ地下水が有効モンモリロナイト密度を大きく低下させる可能性があるため、高アルカリ成分の抑制等の設計の考慮が重要。

一方、5.3.6の核種移行解析では、26 ケースから選択した14 ケースに対する核種移行解析を 行った。本解析では、ガラス固化体の溶解速度が全ケースでStage II となったこと、全ケース で緩衝材中の核種移行は拡散支配であった。Se-79 に対してはガラス固化体の溶解速度のよう に感度の大きいパラメータは抽出されなかったが、人工バリアからの核種移行フラックスの挙 動に分配係数がわずかに影響していることが確認された。また、Cs-135 については昨年度と同 様に分配係数が挙げられる。

これらのパラメータは、重要な人工バリアの設計要因の検討において、緩衝材のバリア性能の指標として選択した有効モンモリロナイト密度と間隙率との相関が非常に

高いパラメータであり、重要パラメータをブレークダウンした観点で人工バリアシス テムの性能評価の妥当性を判断する際に重要な影響因子となること示している。

5.6.2 天然バリアの調査要件

天然バリア領域を対象とした安全評価手法の整備では、地質・気候関連事象を起因事象とし て、天然バリア領域を含む処分システムにおける地質環境の THMC 特性変化を受けた場合の 核種移行の評価手法の整備を進めてきた。本年度は、現在我が国で想定しうる地質・気候関連 事象(177 事象)のうち、処分システムへ直接的な影響を及ぼす事象(23 事象)のうち、影響 が大きく、また、核種移行への影響評価の必要性が高い「断層活動」及び「火山活動」を対象 に、核種移行に繋がる評価体系の構築を進めた。

「断層活動」では、図 5.6-3 に示すように、伏在する分岐断層が成長して、処分施設と交差 することを想定し、さらに深部流体の流入、あるいは、酸化性地下水の流入が生じた場合に対 しても評価を行えるよう、平成 25 年度までに隆起・侵食を対象に整備してきた天然バリア領域、 人工バリア領域のリンケージ解析を温度などについて拡張し、分岐断層の成長を想定したリン ケージ体系を整備した。また、断層が処分施設に交差した後の人工バリア及び天然バリアにお ける核種移行パラメータを第3章で検討した事例データ等に基づき設定し、リンケージ解析結 果を反映して GSRW-PSA コードによって核種移行・被ばく線量評価を実施した。

調査で見落とした伏在断層

(1) 断層活動

評価結果のまとめ

分岐断層が成長し、閉鎖後1万年で処分施設に交差する場合(断層成長速度 500m/回のケース)、分岐断層が成長しない場合と比較して、天然バリア出口における移行フラックスは Se-79, Cs-135 で 30 桁以上、4n+1 系列核種である Np-237 で 15 桁程度増加し、生物圏に対して大きな影響を与える結果となった。ガラス固化体1本あたりの河川水利用経路での年間被ばく線量は 3.4×10⁻³µSv/y となり、断層と交差し影響を受ける廃棄体本数を 4000 本とすると 14µSv/y (4n+1 系列核種の寄与率 90%以上)となった。これは断層交差により人工バリアの安全機能が喪失し、ガラス表面積及びガラス溶解速度が増加して、人工バリア出口の移行フラックスが上昇することに加えて、核種移行経路が断層沿いとなり、断層沿いの地下水流速が上昇し、帯水層下限となる地表から 40m 深さに早く到達するためである。

断層成長速度を 500m/回、100m/回の2 つのケースを比較すると、人工バリアを交差するタイ ミングが異なり(1万年と4万年)、上記の理由から Cs-135 については 500m/回の場合1万年時 点では人工バリア内には十分なインベントリが残存し、断層交差時にそれ以前より4桁高い 10⁹ Bq/y 程度のフラックスを放出しているのに対し、100m/回の場合断層の交差する4万年の時点

図 5.6-4 派生断層の成長による天然バリア内の特性変化を想定した核種移行評価イメージ

では人工バリア出口からの放出はすでに終了してインベントリがなく、断層交差による放出フ ラックスの増加は生じない。したがって、100m/回の場合、交差後の移行経路である断層沿い を移行する Cs-135 はなく、天然バリア出口のフラックスは分岐断層が交差しない場合の堆積層 中の移行と同様の挙動となる。また、Se-79 では 500m/回の場合 Cs-135 と同様に 1 万年時点で 十分にインベントリが残存し、断層交差によりそれ以前より 4 桁程度高い 10⁹ Bq/y 程度のフラ ックスを放出しているのに対し、100m/回のケースにおいて 4 万年で人工バリアに交差する時 点ではすでに人工バリア出口フラックスのピークは過ぎており残存する Se-79 インベントリは 少なく、断層交差による放出フラックスは 1 Bq/y 程度と 500m/回と比較して 8 桁程度低下した。 さらに天然バリア中の流速増加の時間変化の違いから、天然バリア出口移行フラックスに 8 桁 程度の違いが現れている。一方、4n+1 系列核種である Np-237 では、人工バリア内の移行が溶 解度に支配されていることから、4 万年の交差時点でも核種が十分に人工バリア内に残存して おり断層交差時の放出フラックスも 500m/回、100m/回ともに最大 10¹¹ Bq/y (Pa-233) となり、 Cs-135、Se-79 よりも断層成長速度の違いを受けにくい結果となった。

処分施設深度が 300m と 500m の 2 つのケースについて比較すると、500m は 300m に対して、 天然バリア出口移行フラックスは Se-79 で約 1/100、Cs-135 で約 1/30 となり、深度による移行 距離及び時間の差が現れた。また、深度 500m で Np-237 のフラックスの立ち上がりが Se-79 よ りも早くなったのは、深度 500m の移行経路の一つを構成する地質 4 断層(塩水系、移行距離 約 300m)の Np の分配係数が Se よりも小さいことに起因する。

有馬型熱水(深部流体 1)が1万年に分岐断層の交差と同時に流入する場合、人工バリアからは瞬時に核種移行フラックスが全量放出され、1.4万年程度で天然バリア出口におけるピークフラックスを示す。影響を受ける廃棄体本数を4,000本とすると河川水利用経路における年間被ばく線量は単に分岐断層が交差するケースと比較して4桁以上増加し、著しい影響を与える可能性があることが示された。これは現状、信頼性のある有馬型熱水の条件における核種移行パラメータを設定できないため、複数の極めて保守的なパラメータ設定を行っていること(人工バリアにおいて90℃の熱水のため瞬時放出、断層沿いの地下水流速を地下水流動解析結果の10倍を与えたこと、及び90℃熱水が断層沿いを上昇するとし断層における分配係数をすべての元素について0と設定した相乗効果)によるものである。一方、40℃の地下水2(塩水系)が1万年に分岐断層と同時に流入する場合、人工バリアからの核種移行フラックスは瞬時全量放出とはならず、また、断層における分配係数も通常地質と大きな差はないため、有馬型熱水のように著しい影響は生じない。年間被ばく線量についても、分岐断層が交差する場合と大きな違いは見られなかった。

バックスラストが処分施設と交差し、バックスラストが地表に到達した後に酸化性地下水が 流入する場合を、酸化性地下水が流入しない場合と比較すると、ピークフラックスの値はほぼ 同じであり、明確な差異が生じなかった。これは酸化性地下水の流入により、化学的影響で人 エバリアから核種移行フラックスが瞬時に全量放出となるが、バックスラスト側は涵養域であ り、断層沿いに地下水が下降するため、移行経路・時間の短縮とはならず、バックスラストが 交差する以前の通常地質の移行経路・時間とほぼ変わらないことが要因と考えられる。

以上のように、多くの保守的な設定の下で定量的解析を行った有馬型熱水が分岐断層の交差 と同時に流入する場合で、著しい影響が現れる可能性が示唆された。

「火山活動」においては、第3章で検討した新規火山噴火の噴火規模から、火山爆発指数 VEI 2と4について火山灰の大気中拡散・堆積評価手法を GSRW-PSA に導入し(4.3章参照)、周辺 居住者の被ばく線量を評価した。また、火山噴火規模によらず、小規模火砕流やマグマ水蒸気 爆発によって、火口付近に露出する廃棄体に接近する場合の被ばくについても評価を行った。 その結果、処分施設の閉鎖後1000年で小規模火砕流が発生し、露出する廃棄体に接近する者の 被ばく線量(地表横置きガラス固化体表面から50cm、高さ1mの評価点で10時間被ばく)は 59mSv、1万年においても36mSv、10万年においても12mSvとSn-126の減衰に支配され、時 間経過の効果はあまり期待できないことが示された。一方、火山噴火に伴う火山灰の拡散・堆 積の評価では、噴火規模の小さいVEI2の方が被ばく線量はやや高く、0.52mSv/yとなり、1mSv/y を下回る結果となった。

評価シナリオ及びパラメータ設定における不確実性の把握

処分施設に直接的な影響を与え、回避しきれない起因事象は前述のとおり6事象(表 3.2-1) である。事象によっては火山のように地域性があるものと露呈やマスムーブメントのように地 域性というよりは時間とともにリスクが大きくなる事象とがある。しかし、一旦これらの事象 が発生した場合、処分施設に多大な影響を及ぼす可能性がある。6 事象のうち、隆起・侵食に よる対地深度の変化や火山噴火のように廃棄体自体が相対的に移動するもの以外は、すべて起 因事象発生による力学的影響による地形・地質構造の変化や応力変化を経てさまざまな派生事 象を引き起こす(表 3.2-1)。その影響の程度を特定するため、3.2~3.4 において対象とした起 因事象である6事象とそれに伴う派生事象の具体化のための調査、整理を行ってきた。影響の 程度の特定に際しては、既往文献に記載のあるものについてはそれを引用し、影響の程度が具 体化できない事象については、仮想的なサイトについて現実的な境界条件を設定し、既往の文 献のパラメータを用いて事象発生に伴う時間的・空間的な THMC の変化を定量的に類推してい る。このため、採用した既往文献のデータ自体の持つ不確実性や影響量の類推法に関する不確 実性が残る。ここでは特に仮想的サイトを対象としてシナリオ記述を行った地震活動、火山活 動について不確実性について整理した。なお、今回、過去数10万年以降に新たに発生した事象 と同タイプの事象が、将来、数10万年間に回避しきれなかった地域で発生する可能性が高いと しており、このこと自体に不確実性があるが、これを定量的に評価することは不可能であるた め、対象外とした。

表 5.6-7 及び表 5.6-8 に断層活動に関する起因事象の具体化、状態設定に伴う不確実性について整理した結果を示す。表中、起因事象と派生事象の影響評価にかかわる不確実性とに区別した。地震活動のうち分岐断層、バックスラストの形成および断層成長に関しては、断層伝搬褶曲の発達プロセス、断層の活動開始年代、断層の活動間隔など既存の地質学的知見をもとに独自に状態設定したものである。一方、設定に用いたパラメータについても地域的なバラツキ、観測誤差があり、推定法とパラメータとを区別して不確実性の整理を行った。

地震活動の派生事象のうち、熱水の上昇あるいは酸化性の地下水の流入時期については、時 間予測の観点からコサイスミックか否かの判断があり、これに関しては推定法に関わる不確実 性の範疇とした。また、有馬型の熱水の場合、被圧帯水層の位置や分布形状に関する情報は全 くなく、ジオプレッシャー型と同じ深度に帯水層が存在すると仮定している。このため、地震 前後の有馬型熱水の供給源となっている深部の被圧帯水層の位置および被圧状態の推定法に不 確実性がある。また、有馬型の熱水の湧出が現在観測されているのは、西南日本の主断層沿い と中央構造線のような横ずれを伴うような大規模な活断層周辺であり、既存の分岐断層やバッ クスラスト周辺では観測されていない。これらの断層はいずれも横ずれ成分を持つのに対して、 分岐断層、バックスラストのような水平短縮によって形成された逆断層の場合も断層の透水性 が変化し、深部の被圧帯水層から熱水が上昇するか否かは不明であり、不確実性な設定となっ ている。

表 5.6-7 起因事象に伴う影響の具体化、状態設定に伴う不確実性(断層活動(1/2))

($32 \sim 34$	の調査結果に基づく)	1
	J.4 J.I		

重象	百日	推定注	パラメータ
	-AH	(モデルの妥当性、推定法伴う不確実性)	(採用したパラメータの代表性、観測誤差)
地震活動 (起因事 象)	分岐断層 の活動時 期	調査で見落とされた伏在分岐断層の最初の成長が 5,000 年後に活動 →これは調査で主断層の活動間隔から、次期活動 がせまっているものはすでに回避という前提。」	
		かし、必ずしも断層の活動間隔は一定しておらず、 分岐断層の次期の活動の設定に不確実性が残る。	
	分岐断層		分岐断層の活動間隔は、事例から3,500~5,000年
	の 古動間		→ここでは全国の沽断層の沽動間隔の平均がおお わち000 年であることから、土曲断層た約5000
	149		年間隔であることからこの値を採用しており、年 作のバラッキに不確実性もり
	分岐断層		へのパランスに不確美圧のり。 分岐断層の傾斜は 国内の堆積岩地域に見られる
	の傾斜		逆断層の傾斜から30~45°と推定。
			~これは地下保部 IKII 程度まで調査され、ホーリング等で断層形状が確認されているものであり、
			信頼のおけるデータは数例しかない。これを代表
	公岵断	・断層上般側の褶曲の活動開始時期な上び上般側	値とするところに个唯美性が残る。
	万 岐 岡 層、バッ	の変形帯の厚さから断層成長速度(1回の断層の成	断層の成長量)の算定に用いた断層の活動開始年
	クスラス	長量)を推定	代および変形帯の厚さについては、過去数10万年
	トの成長	→成長速度を平均化し、断層変位が起こった時期	以内に発生したものとしては全国で数例しかな
	速度(1 回の断属	のみ断層が一定重成長としたという推定(判断)	く、代表性に个確実性が残る。 ・ ・ 活動開始年代の指標となるイベント推着物の年
	の成長	・バックスラストについては秋田県の千屋断層の	代の同定、変形帯の厚さの見積もり誤差に不確実
	量)	活動開始年代と反射法地震探査によって確認されている断層長から推定される変形帯の厚さのデー	性あり。
		タしかなく、これをもとに推定しており、算定結	
		果がバックスラストの成長速度を代表しているか 否かについては不確実性が残る。	
	バックス		バックスラストの傾斜は、国内の堆積岩地域に見
	ラストの		られる逆断層の傾斜から40~65°と推定。
	() () () () () () () () () () () () () (→これは地下深部 lkm 程度まで調査され、ボーリ
	C		シッキの調査 こめ層ル状が確認されているものを 参照しており、信頼のおけるデータは数例しかな
			い。これを代表値とするところに不確実性が残る
	バックス	バックスラストは、分岐断層が地表に到達して以	
	ラストの	降に発生。	
	宠生时别	→地員子的兄地から、 万岐間層よりもハックヘノ ストのほうが活動開始時期が遅い点、断層模型実	
		験においてバックスラストは分岐断層の形成後に	
		しか発生しないことから推定した。	
		たたし、実際、バックスフストの地ト 300m 以深の構造や形成在代け不明であり。 実用増のバック	
		スラストが数 100m 以上の深さから地表に向かっ	
		て成長するかは不確実性が残る。	

表 5.6-8 起因事象に伴う影響の具体化、状態設定に伴う不確実性(断層活動(2/2))

事象	項目	推定法	パラメータ		
		(推定法の妥当性、算定に伴う不確実性)	(採用したパラメータの代表性、観測誤差)		
地震活動	地震に伴う		・分岐断層やバックスラストの地震に伴う透水性		
(派生事	分岐断層・バ		変化に関するデータはない。このため、国内の主		
象)	ックスラス		断層が活動時の透水性変化量を代用。地震後1桁		
	トの透水性		~2 桁増加。また、地震後、地震前の透水係数に		
	変化		低下・回復するか否かも主断層の事例を参照して		

(3.2~3.4の調査結果に基づく)

	Ν	いえ 唐重帝 時間の短期上上もに唐幸子の任む
		いる。地震後、時间の経過とともに地震前の透水 性に回復する傾向あり。国内の活断層の透水係数 はおおむね1桁~2桁周囲の母岩に比べて高く、
		この幅に収まることから、地震のたびに断層の透
		水性が増加しつづけるのではなく、透水性が上
		昇・低下を繰り返すと考えられるか、その変動幅 は↓ k= 2 に k m =
		は1桁~2桁と推足。 →地震時の主断層の透水係数の変化け 地震後05
		~1 か月以降の透水係数の経時変化あるいは水位
		変化から推定したものであり、地震直前直後の活
		断層の透水係数を比較したものではない。このた
		め、地震に伴う断層の透水係数の変化データに不
		確実性が残る。
		また、ここで想定している分岐断層、バックス
		ラストはすべて圧縮応力場で形成された逆断層で
		めり、傾すれ成分を持つ土所増とは所増の水理特
		住に運いがめる可能性がめり、向し扱いをして良いか不確実性が残る
地震に伴っ	・分岐断層・バックスラスト形成に伴って深	 ・キャップロック底部の被圧の大きさけ幌延お上
て分岐断層	部から熱水流体が上昇する。設定ではキャッ	び新潟堆積盆のデータ(それ以外の観測データな
沿いを深部	プロックの深度を約1,100mとし、キャップロ	し)に基づいており、代表性の観点から不確実性
熱水が流入	ックよりも以深を被圧状態にあるとし、地震	が残る。
	時に分岐断層がキャップロックと交差した	・深部の熱水の化学組成は全国の非火山性の熱水
	際、被圧帯水層の圧力が消散するとしている。	および地下水データを対象に主成分分析によって
	→有馬型の熱水の場合、被圧帯水層の深度や	起源水を推定したものであり、100%起源水である
	彼圧の大ささに関する情報はなく、キャック ロックは深度1100m よりす深い位置になる可	という保証はなく、个催美性か残る。
	ロックは保度 1,100m よりも保い位直にめるり 能性がある。このため、独国豊水層の位置	・ 有局空熱水のデータは、四南日本の中央構造様 や主断層巡いのデータであり、公岐断層、バック
	他日本のもの。このため、仮日市水層の世間、 被圧の大きさの設定に不確実性があろ	スラスト周辺でけ観測されておらず これらの値
	・深部から熱水の処分施設への到達時期は、	を代用している点で不確実性が残る。その観点か
	実際は断層に沿った上向きの流速の増加した	ら、もし、分岐断層、バックスラスト沿いに有馬
	時点から被圧帯水層から塩水の移動が進むた	型の熱水が供給されたとしても、起源水に近い
	め、時間の遅れが生じる。また、熱水が移動	90℃前後、高塩分濃度地下水が希釈されずに供給
	途中で浅部の地下水と混合するため、実際の	されるかどうかは不明であり、不確実性が残る。
	起源水よりも希釈される可能性がある。ただ	
	し、希釈の桯皮、時間の遅れについては予測	
	か困難でめるため、設定上は、コッイスミックに 100% 起源水が加入協設に到達するとし	
	ていろ ここに不確実性があろ	
地震に伴い	・バックスラストの形成に伴って酸化性地下	
バックスラ	水が流入したという観測事実はないが、主断	
スト沿いに	層深部に酸化性地下水の流入の痕跡があるこ	
酸化性地下	とから、地震時に母岩に比べて透水性の高い	
水が流入	バックスラストが形成し、地表から酸化性地	
	ト水が流入すると設定	
	→ハックスフストにおいても土町層回様酸化 歴地下水が泣入するか不かけて確実 また	
	性超十小小小八 9 3 7 6 小は小唯天。よに、 推積岩の堪合 酸化性地下水が地下に流入	
	ても化学的緩衝作用によりすぐ還元雰囲気に	
	なる。例え、バックスラストの形成により下	
	向きの流れが発生したとしても、溶存酸素の	
	消費が進む前に地下深部の処分施設に酸化性	
	地下水が到達するかどうかについても不確	
	実。	

評価結果とその不確実性の検討から得られる断層活動に対する調査要件

断層活動による影響評価では、断層成長の有無、断層成長速度の違い、処分施設深度の違い から分岐断層が交差した影響について天然バリア、人工バリアのリンケージによる核種移行解 析を行った結果、伏在する分岐断層が成長して処分施設と交差することにより、断層が成長し ない場合と比較して生物圏への核種移行フラックスは大きく増加する。さらに、断層成長速度 の違いによる断層交差時期が4万年に遅れると、Cs-135はすでに人工バリアからの放出が終了 しており、断層交差によって断層沿いを移行することはなく堆積層中を移行するため、Cs-135 の半減期 230 万年の約 80 倍である約 2 億年の天然バリア出口でのピーク出現となり、移行フラ ックスは 30 桁程度減少した。Se-79 についても4 万年では人工バリアからの核種の放出はほぼ 終了しており、天然バリア出口では 10 桁程度減少した。一方、4n+1 系列核種については、溶 解度制限によって人工バリアからのフラックスは断層が交差した後、高い値を維持して 50 万年 程度まで放出を継続するため、断層交差時期が 1 万年と4 万年でも天然バリア出口フラックス のピーク値には大きな影響を及ぼさない結果となった。また、処分深度の違いは、深度 500m では 300m に対して Se-79、Cs-135 では 1~2 桁程度の天然バリア出口でのフラックスが減少す るが、4n+1 系列核種のフラックスはほぼ変わらない結果となった。

上述した断層活動に伴う分岐断層による影響評価の結果と既往文献による不確実性の検討 結果を踏まえ、規制の観点から重要な調査要件を検討した。分岐断層が処分施設を交差するシ ナリオが生じた場合、核種移行フラックスのピーク出現が通常の核種移行に比べて早く、数オ ーダー以上の増加の可能性があるため、最新の調査技術と知見をもって分岐断層が存在しない サイト選定をすることが望ましい。また、解析より分岐断層の処分施設の交差時期が約5万年 以降であれば断層交差が生じたとしても、核種移行フラックスの増加を生じさせない可能性が 示唆されたことから、特に深さ方向への分岐断層の存在の可能性に配慮した調査に基づき処分 施設のレイアウトが行われる必要がある。しかしながら、既往文献による不確実性の検討で述 べたように、分岐断層の推定や影響評価に必要となるパラメータには不確実性があり、分岐断 層に対するレイアウトの妥当性判断やその存在の可能性が否定できない場合の影響解析のため に、我が国における断層成長速度及び断層活動間隔等に関する知見及びデータの蓄積は重要と 考えられる。

一方、有馬型熱水(深部流体1)が1万年に分岐断層の交差と同時に流入する場合、人工バ リアからは瞬時に核種移行フラックスが全量放出され、時間遅れも少なく1.4万年程度で天然 バリア出口におけるピーク値を示す。影響を受ける廃棄体本数を4,000本とすると河川水利用 経路における年間被ばく線量は単に分岐断層が交差する場合と比較して4桁以上増加し、著し い影響が現れる可能性が示唆された。これは90℃という条件で信頼性のあるデータが取得され ておらず、人工バリアにおいて瞬時放出としていること、天然バリアにおいても断層沿いの地 下水流速を地下水流動解析結果の10倍を与えたこと、また、90℃熱水が断層沿いを上昇すると して、断層における分配係数をすべての元素について0と設定した相乗効果によるものであり、 上述したように多くの不確実性が残されている。

以上より、分岐断層に加えて深部流体が流入する場合には、その生物圏への影響は有馬型熱 水が流入する場合に特に影響が著しい結果となり、サイト選定においてマントル起源水である 有馬型熱水が存在しうる場所を排除するための調査が必要である。また、例えば、西南日本の ように、地表に有馬型熱水の兆候が無い場所においても地下深部に有馬型熱水を発生させる能 力を持つ帯水層が広がっている可能性があり、必ずしも有馬型熱水の存在を否定できないサイ ト条件においては、そのようなサイト条件におけるより現実的な核種移行への影響評価のため に、有馬型熱水の深部からの上昇プロセスや水質変化、地下深部の帯水層等に関する知見及び 核種移行パラメータを含めたデータの蓄積は重要と考えられる。 (2)火山活動

評価結果のまとめ

火山活動による影響評価では、新規火山噴火の噴火様式であるストロンボリ式噴火(単成火山・中国地方の例)及びプリニー式噴火(新規カルデラ・肘折火山の例)の2つの噴火による 火山灰拡散・堆積評価に基づく被ばく線量と、小規模火砕流やマグマ水蒸気爆発などで火口付 近に廃棄体が露出し、火山調査者などが廃棄体に接近した場合の被ばく線量の2つについて、 評価を実施した。その結果、噴火による火山灰拡散・堆積による年間被ばく線量0.54mSv/y(1000 年で単成火山の噴火で火口中心から2km地点)よりも、火口付近に露出する廃棄体に接近する 場合の被ばく線量が1回あたり59mSv(廃棄体表面から50cmで10時間被ばく)と影響が大き くなることが確認された。また、1万年まではAm-243が10万年まではSn-126が支配核種とな り、10mSvを下回るのに10万年以上要することが確認された。

評価シナリオ及びパラメータ設定における不確実性の把握

表 5.6-9 に火山活動に関する起因事象の具体化、状態設定に伴う不確実性について整理した 結果を示す。火山活動(噴火、貫入)については、すべてパラメータに関する不確実性に該当 し、特に複成火山に関しては過去数 10 万年以内に発生し、かつ火道、噴出物に関する詳細な情 報があるのは肘折火山の例しかなく、噴火規模の観点から参照した事例の代表性に課題が残り、 不確実性の一つと考えられる。

事象	項目	推定法	パラメータ
		(推定法の妥当性、算定に伴う不確実性)	(採用したパラメータの代表性、観測誤差)
火山活動	活動時期(活		単成火山の場合、第四紀に入って数万年~10数万
(新規噴	動間隔)		年間間隔で活動、肘折火山は 1.2 万年間に 4 回噴火
火)			していることから将来もこの活動が続くとした。
			→特に噴火の規模が大きい肘折火山のような複成
			火山が過去数 10 万年以内に活動を開始した例は
			少なく、代表性の観点で不確実性がある。
	噴火規模(火		単成火山、肘折火山の場合、火道の大きさは数
	道の大きさ)		100m、将来も同規模のものが活動。
			→この値は地表付近の火道の大きさであり、深部
			では火道の幅はさらに小さく、不確実性あり。
	噴火の位置		火道不安定型である単成火山の場合、活動範囲は
	(火道位置)		10 数 km、肘折火山のような複成火山は数 km
			→特に噴火の規模が大きい肘折火山のような複成
			火山が過去数 10 万年以内に活動を開始した例は
			少なく、代表性の観点で不確実性がある。
	噴出物の分		単成火山の場合はストロンボリ式が主であり、噴
	布、噴出物の		火規模も複成火山に比べると小さく、噴出物の分
	種類		布範囲も数 km 程度。一方、複成火山は肘折火山
			のようなプルニー式の場合、東西 40-60km の範囲
			まで噴出物が広がっている。異質岩片の含有率が
			50-70%であることから、火道周辺の岩盤を取り込
			みながら噴出しており、その爆発力の高さが推定
			される。
			→複成火山の場合、過去数10万年以内に活動を開
			始した例は少なく、代表性の観点で不確実性があ
			る。
	火道周辺の		火道周辺の温度については現在活動中の火山ある
	温度		いは過去数 10 万年以内に活動した火山に関して

表 5.6-9 火山活動に関する起因事象発生に伴う影響の具体化、状態設定に伴う不確実性 (3.2~3.4の調査結果に基づく)

		は情報はない。このため、ここでは過去に地下深 部において形成された火道が、その後の隆起・侵 食によって地表に露頭として存在しているものを 参考事例とした。これから仮に同規模の火道が形 成された場合の周辺母岩の熱的影響を推定。 →事例では火道を通過したマグマは花崗岩質であ り、肘折火山や単成火山と同じような冷却史をた どる保障はなく、不確実性が残る。
火山活動 (新相貫	貫入の範囲、 深度 - 梔	既存の三宅島や伊豆大島火山の噴火に伴って地下
入)	(木/文、 『钿	以上の長さを持っている。このことから将来、既
		存火山が回避されても 15km の範囲を超えて岩脈
		の影響があると推定
		→平行岩脈の間隔は1~数km間隔であり、その間
		隔に関する情報は伊豆大島しかなく、また、岩脈
		の上端の深度も 0.5~1.5km とバラツキが大きい点
		で不確実性が残る。

評価結果とその不確実性の検討から得られる火山活動に対する調査要件

火山活動による影響評価では、新規火山噴火の噴火様式であるストロンボリ式噴火(単成火山・中国地方の例)及びプリニー式噴火(新規カルデラ・肘折火山の例)の2つの噴火による火山灰拡散・堆積評価に基づく被ばく線量と、小規模火砕流やマグマ水蒸気爆発などで火口付近に廃棄体が露出し、火山調査者などが廃棄体に接近した場合の被ばく線量の2つについて、評価を実施した。その結果、噴火による火山灰拡散・堆積による年間被ばく線量0.54mSv/y(1,000年で単成火山の噴火で火口中心から2km地点)よりも、火口付近に露出する廃棄体に接近する場合の被ばく線量が1回あたり59mSv(廃棄体表面から50cmで10時間被ばく)と影響が大きくなることが確認された。また、1万年まではAm-243が、10万年まではSn-126が支配核種となり、10mSvを下回るのに10万年以上要することが確認された。

したがって、最新の調査技術及び知見をもって、火山活動が処分施設に影響を及ぼすことの ない、新規に火山噴火を生じる可能性のないエリアを選定することが望ましい。また、新規火 山噴火の可能性を否定できないエリアに対しては、当該エリアで新規に発生しうる火山噴火の 様式について理解を深め、万一発生した場合の評価を行うために、パラメータの取得を含めて、 活動可能性のあるエリアの研究を進める必要がある。本検討では、十分な情報がなく、火道中 をマグマとともに廃棄体が上昇する保守的なシナリオ記述としたが、ストロンボリ式噴火のよ うに粘性の小さいマグマ中で廃棄体が上昇するのか、メラピ式小規模火砕流において廃棄体が 溶岩ドームの一部を構成した後崩壊時に火口付近に露出するのか、などの点について、確認を 進めることも不確かさの低減につながる。

なお、プリニー式を上回るような大規模噴火は、新規火山噴火の様式としては発生の可能性 は小さいと考えられるが、万一発生した場合は、周辺居住者に対して、放射性物質及び放射線 による影響よりも、噴石、大規模火砕流などの物理的影響や気候変化などの間接的影響が多大 と考えられ、そういったリスクの中で考慮されるものと考えられる。

今後の課題

今年度は、仮想的な堆積岩サイトについて、一つの地形・地質モデルを対象として評価を行った。地形・地質モデルが変わった場合に今年度得られた結果にどの程度の影響を与えるかについては、今後確認する必要がある。また、花崗岩サイトについても評価し、堆積岩サイトとの相違を明らかにする必要がある。

また、火山活動の繰り返し(活動間隔)やマグマ貫入、さらに、第3章で検討した隆起・侵 食による廃棄体の地表への露呈、マスムーブメントによる影響評価などについても、定量的な 評価手法の整備を進める必要がある。

第5章の参考文献

5.3 の参考文献

- (1) 日本原子力研究開発機構, 平成 23 年度地層処分の安全審査に向けた評価手法等の整備報告書, 平成 24 年 3 月, 2012.
- (2) 日本原子力研究開発機構, 平成 24 年度地層処分の安全審査に向けた評価手法等の整備報告書, 平成 25 年 3 月, 2013.
- (3) 日本原子力研究開発機構, 平成 25 年度地層処分の安全審査に向けた評価手法等の整備報告書, 平成 26 年 3 月, 2014.
- (4) 核燃料サイクル開発機構,わが国における高レベル放射性廃棄物地層処分の技術的信頼性 -地層処分研究開発第2次取りまとめ- 分冊3 地層処分システムの安全評価,JNC TN1400 99-023, 1999.
- (5) 電気事業連合会・核燃料サイクル開発機構,「TRU 廃棄物処分技術検討書-第2次TRU 廃 棄物処分研究開発取りまとめー」, JNC TY1400 2005-013, 2005.
- (6) 日本原子力研究開発機構, 平成 19 年度放射性廃棄物処分の長期的評価手法の調査研究報告書, 平成 20 年 3 月, 2008.
- (7) 日本原子力研究開発機構, 平成 21 年度放射性廃棄物処分の長期的評価手法の調査報告書, 平成 22 年 3 月, 2010.
- (8) Arthur, R.C., Sasamoto, H., Shibata, M., Yui, M. And Neyama, A., Development of Thermodynamic Databases for Geochemical Calculations, JNC Technical Report, JNC TN8400 99-079, 1999.
- (9) A. Atkinson et al., : Aqueous chemistry and thermodynamic modelling of CaO-SiO2-H2O gels at 80 °C, DoE, DoE-HMIP-RR-91-045, 1991.
- (10) 大塚伊知郎・瀧洋・山口徹治・飯田芳久・山田文香・稲田大介・田中忠夫, 処分場の緩衝 材間隙水の酸化還元電位へのオーバーパック腐食の影響-重要パラメータの取得及び Eh の予備解析-(受託研究), JAEA-Research 2008-043, 2008.
- (11) 谷口直樹、本田明、川崎学、森田光男、森本昌孝、油井三和、"炭素鋼オーバーパックに おける腐食の局在化の検討(研究報告)"、JNC TN8400 99-067, 1999.
- (12) 核燃料サイクル開発機構,わが国における高レベル放射性廃棄物地層処分の技術的信頼性 -地層処分研究開発第2次取りまとめー, JNC-TN1400, 1999.
- (13) Kimura H. Takahashi T. Shima S. Matsuzuru H, "A Generic Safety Assessment Code For Geological Disposal of Radioactive Waste: GSRW Computer Code User's Manual", JAERI-M 92-161, 1992.
- (14) 武田聖司・木村英雄, 確率論的評価手法 GSRW-PSA による地層処分システムの不確かさ解析:パラメータ不確かさおよび天然バリアの概念モデル不確かさの検討, JAREI-Research 2002-014, 2002.
- (15) 日本原子力研究開発機構, 平成 23 年度 地層処分の安全審査に向けた評価手法等の整備 報告書 [添付資料編], 2012.

5.4 の参考文献

(1) T.H.Smith and W.A.Ross, Impact testing of vitreous simulated high-level waste in canisters. BNWL-1903. Richland, Wahington: Pacific Northwest Laboratories. 238925, 1975.

- (2) Y. Inagaki, H. Makigaki, K. Idemitsu, T. Arima, S. Mitsui and K. Noshita, Initial dissolution rate of a Japanese simulated highlevel waste glass P0798 as a function of pH and temperature measured by using micro-channel flowthrough test method, J. Nucl. Sci and Technol. Vol.49 (4), pp. 428-449, April, 2012.
- (3) Parkhurst, D. L., Appelo, C. A. J., User's Guide to PHREEQC (Version 2)--A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water-Resources Investigations Report 99-4259, U.S. Geological Survey, Denver, Colorado, (1999).
- (4) Kitamura, A., Fujiwara, K., Doi, R., Yoshida, Y.: Update of JAEA-TDB: Additional Selection of Thermodynamic Data for Solid and Gaseous Phases on Nickel, Selenium, Zirconium, Technetium, Thorium, Uranium, Neptunium, Plutonium and Americium, Update of Thermodynamic Data on Iodine, and some Modifications, JAEA-Data/Code 2012-006, Japan Atomic Energy Agency (2012).
- (5) T. Yamaguchi, S. Takeda, Y. Nishimura, Y. Iida, T. Tanaka: U An attempt to select thermodynamic data and to evaluate the solubility of radioelements with uncertainty under HLW disposal conditions, (In press).
- (6) 核燃料サイクル開発機構,わが国における高レベル放射性廃棄物地層処分の技術的信頼性 -地層処分研究開発第2次取りまとめ- 分冊3 地層処分システムの安全評価,JNC TN1400 99-023, 1999.
- (7)日本原子力研究開発機構,平成24年度地層処分の安全審査に向けた評価手法等の整備報告書,平成25年3月,2013.

(8)日本原子力研究開発機構、平成25年度地層処分の安全審査に向けた評価手法等の整備(核 種移行データベースの整備)報告書、2014.

- (9) Kimura, H., The MIG2DF Computer Code User's Manual, JAERI-M 92-115, 1992.
- (10) 棚井憲治、岩佐健吾、長谷川宏、郷家光男、堀田政國、納多勝, 地層処分場のレイアウト に関する検討, JNC TN8400 99-044, 1999.

5.5 の参考文献

 Simkin, T. & Siebert, L., Volcanoes of the World, 2nd ed. Tucson:Geoscience Press for the Smithsonian Institution. ISBN 0 945005 12 1.1994

6. 総括とりまとめ

- 6. 受託事業の総括(平成22年度から平成26年度までの5年間の事業の取りまとめ)
- 6.1 全体概要

高レベル放射性廃棄物等の地層処分の事業許可申請に際しては、核原料物質、核燃料物質 及び原子炉の規制に関する法律(原子炉等規制法)に基づき、原子力規制委員会が安全審査 を行う際には、事業者が行う安全評価の妥当性について判断しなければならない。地層処分 の事業許可申請に対する安全審査時に、地質環境、人工バリア、廃棄体を組み合わせた処分 システムの安全評価を行うことから、平成22年度から平成26年度までの本受託事業では、 地層処分のサイトを特定しないものの我が国において想定される代表的な地質、水理、熱及 び化学的環境を踏まえた、放射性核種の移行や人への被ばくに与える影響を評価することの できる体系的な安全評価手法(シナリオ、モデル、解析コード及びパラメータ評価手法)を 整備した。本受託事業において実施した研究の全体概要を図 6.1-1に示す。第6章では、受託 研究の内容を以下の項目に大別し、平成22年度から平成26年度までの主要な研究成果と今 後の課題を取りまとめた。

- ✓ 廃棄体・人工バリアの性能評価モデルの整備(図中の実施項目①)
- ✓ 安全評価シナリオ設定手法の整備(図中の実施項目②)
- ✓ 総合的安全評価手法の整備 (図中の実施項目③と④)

なお、これらの研究成果は、高レベル放射性廃棄物等の地層処分のみならず、福島第一原 子力発電所事故によって発生した燃料デブリ等を処分する際の安全評価においても活用され るものである。

事業者が行う安全評価の妥当性判断のために、地質環境、人工バリア及び廃棄体を組み合わせた 処分システムに対する安全評価手法を整備

図 6.1-1 本受託事業における研究の全体概要

6.2 廃棄体・人工バリア材の性能評価モデルの整備

「廃棄体・人工バリア材の性能評価モデルの整備」では、人工バリアの長期的な変遷を評価するために、これまで開発・整備してきたガラス固化体の溶解モデル、放射化金属の腐食、オーバーパックの腐食影響評価モデル、セメント系材料の変質特性に係るモデル(セメント鉱物モデル、セメント間隙変遷モデル)、ベントナイト(アルカリ)拡散モデル、モンモリロナイト溶解速度モデル、ベントナイト鉱物モデル、透水係数評価モデルに対して、地下環境を考慮した適用性確認(適用範囲や適用条件の提示)、当該モデルの改良、および今後の整備に係る課題の抽出を実施するとともに、これらモデルを物質移行-変質連成解析コード(MC-BUFFER)に組み込み、10万年間の人工バリアの変遷を解析することを可能とした。また、当該コードの妥当性確認、および信頼性付与のため、実験室での変質試験、15年程度の人工類似物の変質、320万年にわたる天然類似物の変質等、短期から長期に渡る種々のデータに対する検証計算を実施した(ただし、ガラス固化体の溶解モデルに係る検証は未実施)。TRU廃棄物に分類されるハル・エンドピースからの長期的な放射性核種の溶出の評価に関しては、ジルカロイの腐食速度モデルを作成した。

なお、熱、水、応力、化学の中の複数の因子が相互に作用する事象の抽出と必要な連成モデルの構築を平成 22~24 年度に実施した(Appendix I-B 参照)。

6.2.1 ガラス固化体溶解速度モデルの作成

(1) これまでのガラス固化体溶解速度設定の考え方

平成 22 年度までの実験的検討により、Mg イオンが共存するとガラス固化体の溶解が促進 されることが分かったため、平成 23 年度は、ガラス固化体外側(OP 領域)の間隙水中 Mg イ オン濃度[Mg]が 10⁻³ mol/l を超える場合は Stage I の溶解速度、[Mg]が 10⁻³ mol/l 以下の場合は Stage II の溶解速度でガラス固化体が溶解するものとした。具体的には、Stage I の溶解速度と して、Mg イオンが共存する条件下での浸出試験で得られた 0.013 g/m²/d を設定した。Stage II の溶解速度としては、Mg イオンが枯渇した時の試験データ用いて、0.0016 g/m²/d を設定し た。

また、Ca イオンについても Mg イオンと同様の効果があるものと仮定し、[Ca]が 10⁻³ mol/l を超える条件では、Stage I でガラス固化体が溶解することとした。

加えて、ゼオライト系鉱物の一種である analcime が生成する条件では、ガラス固化体が速 い速度で溶解することが知られており、analcime はアルカリ性条件において、ガラス固化体 に含まれる Na や Al、Si によって生成する可能性が示唆されている。このため、ガラス固化 体外側の間隙水中の pH が 11.5 を超える場合についても Stage I でガラス固化体が溶解するこ ととした。

平成24年度に実施した実験的検討によって、Caイオンが共存する条件では、Mgイオンの 影響とは逆に、ガラス固化体の溶解が抑制されることを確認した。これは、ガラス固化体表 面にCaが取り込まれることで、変質層の保護的な働きが増している可能性が示唆されたため でである。このことから、ガラス固化体外側間隙水中にCaが共存し、Caイオン濃度が高い 場合は、速い溶解に達しないガラスの溶解速度を設定した(Stage Iの溶解速度を設定しない)。

平成 25 年度は、シリカの一次溶解反応速度式に基づくモデルの適用性の確認を行った。具体的には、ガラス固化体の溶解に及ぼす Mg イオンの影響に関するこれまでの検討結果をふまえると、析出した Mg ケイ酸塩がガラス固化体を覆うことによって保護的な効果をもたら

す可能性はあるものの、保護的な効果を有する Mg ケイ酸塩の生成条件や、保護的な効果が 長期的に維持されるかどうかについての知見は得られていない。従って、現時点においては、 Mg イオンが共存する条件では、Mg ケイ酸塩生成を伴う Si 消費によるガラス固化体の溶解促 進が生じるものとして評価すべきと考える。この Mg ケイ酸塩生成を伴う現象は、ガラス固 化体表面に接触している溶液中の Si が消費され、シリカの一次溶解反応速度式を基にした

(6.2-1)式(Grambow モデル)における Q が K に比べて低く維持されることによるものと仮 定すると、(6.2-1)式に基づいたガラス固化体の溶解速度モデル⁽¹⁾によって、Mg イオン共存 影響を考慮することが可能であると考えた。

$$k = k^{+} \cdot (1 - \frac{Q}{K}) \cong k^{+} \cdot (1 - \frac{[H_{4}SiO_{4}]}{[H_{4}SiO_{4}]_{sat}})$$
(6.2-1)

ここで、k⁺はガラス固化体の組成や溶液のpH、温度に依存する速度定数であり、K とQは それぞれ固体の溶解度積(平衡定数)とその積を溶液中のイオンの活量を掛け合わせて算出 した値、[H4SiO4]と[H4SiO4]satはそれぞれ溶液中および飽和におけるケイ酸の活量である。

図 6.2-1 は、粉末状ガラス固化体を浸漬した 90[°]Cの初期 Mg 濃度 0.041 mol/l の MgCl₂溶液 中における NL_Bと NL_{Si}および Mg イオン濃度の時間変化⁽²⁾、ならびに Grambow モデルで計算 した NL_Bを示している。ここで、Grambow モデルでの計算に用いた(6.2-1)式の溶液中にお けるケイ酸の活量[H₄SiO₄]としては浸出液中 Si 濃度を用い、ガラス固化体の溶解速度定数 k⁺ と飽和におけるケイ酸の活量[H₄SiO₄]sat については、それぞれ既往研究で得られた値として 0.65 g/m²/d⁽³⁾および 110 ppm⁽⁴⁾の値を用いた。

図 6.2-1 より、試験開始から 36 日目までの Stage I が観察された期間における NL_Bの時間変化、すなわちガラス固化体の溶解/変質速度については、Grambow モデルでよく再現できていることが分る。

図 6.2-1 粉末状ガラスを浸漬した 90℃の初期 Mg 濃度 0.041 mol/l の MgCl₂溶液中における NL_B と NL_{Si}および Mg イオン濃度⁽²⁾、 ならびに Grambow モデルで計算した NL_Bと時間の関係

一方、試験開始から 36 日目以降については、浸出液中 Si 濃度は低く維持されているにも

かかわらず、ガラス固化体の溶解/変質速度が低下し Stage II が観察されており、Grambow モ デルによる計算結果とは一致していない。そこで平成 26 年度に Mg 共存系でのガラスの溶解 挙動のデータを追加取得し、検討を深めることとした。

(2) ガラス固化体溶解速度モデルの検証

平成 26 年度に Mg 共存系で 17 ケースの試験を行い、合計 31 個の溶解変質速度 k (g/m²/d) を取得した。その最大値は 0.906、最小値は 0.002、平均値は 0.180 であった。このデータを用 いて、平成 24 年度に推奨された、シリカの一次溶解速度式を基にした(2.2-1)式で表される Grambow モデルの検証を行った。

具体的には、Mg 共存系で行った本研究のデータを、Mg_aSi_{1-a}O_{2-a}という組成の仮想的な 固相との相平衡で考え、上述した溶解変質速度 k を Si 濃度ではなく、[Si 濃度]^{1-a}×[Mg 濃度]^a に対してプロットし、最も相関が高くなる a を求めた。その結果は a =0.01 が最もガラスの溶 解変質速度との相関が高くなっていた。これは Mg 共存系において、ガラスは Si_{0.99}Mg_{0.01}O_{1.99} (書き直せば Si_{0.995}Mg_{0.01}O₂)として溶解変質していることを示しており、ガラスを SiO₂(am) と見なして差し支えないということを示しているに他ならない。そこで、Mg イオン共存系で も Grambow モデルを用いて、ガラスを SiO₂(am)とみなすモデルで、ガラス固化体の溶解速度 を評価するのが適切であるの結論に達した。

(3) 今後の課題

平成 25 年度から継続した Mg 共存系の試験においては、浸出液中のガラス固化体表面に Mg ケイ酸塩鉱物である Talc や Sepiolite あるいは、ガラス固化体構成元素である Mo と Ca で 形成されたと見られる Mo-Ca 鉱物である Powellite の生成を確認した。これらの鉱物の生成を 伴う場合は、ガラス固化体の溶解は促進される方向にある。一方で、Mg ケイ酸塩鉱物である サーペンタイン (Serpentine) やスメクタイト (Smectite, Al ケイ酸塩の一種)が生成する場合 は、ガラス固化体の溶解は抑制される方向にあると言われている。様々な処分環境条件下で ガラス固化体表面近傍にどのような鉱物が析出するかについては、MC-BUFFER による解析 結果を参照することも考えられるが、同じ種類の析出鉱物であっても微妙な結晶系の違いや モホロジー (形態)の違いでガラス固化体の溶解に及ぼす影響が全く異なる可能性がある。 このため、今後は立地調査地点の地下水特性等も考慮して、Mg 共存系のように特にガラス固 化体の溶解を促進させる条件と溶解に伴い析出する鉱物、ならびにその機構を明らかにする ためのデータや知見を拡充していくことが必要と考える。

6.2.2 放射化金属の腐食モデルの作成

TRU 廃棄物のうち、ハル・エンドピース(以下、「ハル等」)は地層処分対象の金属廃棄物 であり、その内部には放射化によって生成された高濃度の C-14 などの核種を含む。処分後、 ハル等に地下水が接触しても、金属内部に含まれる核種は直ちに溶出することはなく、母材 であるジルコニウム系金属(ジルカロイ)等の腐食・溶解とともに溶出すると考えられるこ とから、ハル等には核種の溶出抑制機能が期待されている。ハル等について、溶出抑制機能 をふまえた核種溶出の評価を行うためには、炉内での放射化によって生じた核種のインベン トリ評価に加えて、処分環境におけるジルカロイ等の腐食速度を評価する必要がある。

平成22年度は、処分環境で想定される条件に着目し、ジルカロイ-4の腐食速度データに関する既往情報を調査・整理し、いずれの条件においても、ジルカロイ-4の腐食速度は時間とともに減少する傾向が認められるが、こうした現象について機構論的に言及した腐食速度モデルは得られていないことが分かった。

平成23年度は、主に原子炉の炉水条件を対象とした300℃程度の高温域について提唱されている既往の経験則モデルを処分場で想定される低温域に適用することについての妥当性を検討するため、水素ガス発生量測定法による腐食試験と表面分析を行うことによって80℃~120℃までの低温域でのジルカロイの腐食データを取得した。その結果、いずれの温度においても3乗則に沿って腐食が進行しており、得られた腐食速度定数の温度依存性から、遷移前における高温域での経験則モデルを低温域にも適用できる可能性が示唆された(図6.2-2)。

平成 24 年度は、1970 年代までのジルカロイの腐食データに基づく高温域の経験則モデル を低温域に外挿するにあたり、その信頼性を確認するために、平成 23 年度に実施した腐食試 験に供したジルカロイ-4 試料と同じ組成の試料を用いて、やや高めの 180℃での腐食速度デ ータを水素発生測定法及び腐食増量測定法によって取得し、180℃の腐食速度定数は高温域で の腐食速度定数のほぼ外挿直線上に位置していたことから、高温域に比べてより低温域に近 い温度である 180℃の条件においても、ジルカロイ-4 の腐食メカニズムは高温域と同じであ る可能性が示唆された。また、低温域と高温域の試験で用いている水素ガス発生量測定法と 腐食増量測定法を用いて腐食試験を行い、2 つの方法で腐食量 (腐食深さ)に大きな差がなく (図 6.2-3)、水素ガス発生量測定法に基づく低温域の腐食速度データの信頼性を確認するこ とができた。

平成 25 年度の試験では、PWR の燃料被覆管の母材であるジルカロイ-4 を用いて、酸化皮 膜中の酸素イオン伝播支配の説と、酸化皮膜中の水拡散支配の説を作業仮説とし、二つの作 業仮説における水素発生過程の同位体効果が異なることを利用した 100℃以下の低温域の温 度条件で腐食メカニズムの解明を行った。その結果、酸素イオン伝搬メカニズムで想定した 水素同位体比(D/H 比)を示したが、中間的な値を示したデータもあるため(図 6.2-4)、二つ の腐食メカニズムが共存していることも考えられた。

図 6.2-2 80℃~120℃及び高温域における腐食速度定数の温度依存性

図 6.2-3 水素発生量測定と腐食増量測定の腐食深さの比較

図 6.2-4 低温域(100℃)におけるジルカロイ-4 金属中の水素同位体比

平成 26 年度は、腐食メカニズムが知られているジルカロイ-4 以外の金属で同様の試験を 行い、メカニズム解明の信頼性を向上させ、その上で昨年度に得られた結果から再度ジルカ ロイ-4 の腐食メカニズムについて考察した。

腐食メカニズム解明手法で炭素鋼およびジルコニウムの腐食試験を行い、気相へ放出された水素のD/H比が炭素鋼とジルカロイ-4とで同程度であったことから、ジルカロイ-4の腐食メカニズムは酸素イオン伝播メカニズムが支配的であると考えられた。また、ジルカロイ-4の腐食で金属中へ吸収された水素のD/H比が、気相中へ放出された水素のD/H比よりも弱い同位体効果を示さないことから、水拡散メカニズムの共存を考えるべきではなく、酸素イオン伝播メカニズム単独と考えられた。

酸素イオン伝播メカニズムに加えて、表面瞬時腐食を考慮することで、試験結果が三乗則 で整理される理由を説明するとともに、長期における腐食モデルを二乗則で表すことが妥当 であることを示した。

6.2.3 炭素鋼オーバーパック腐食モデルの作成

オーバーパックに期待される安全機能の一つとして閉じ込め機能があり、その性能を評価 するためには、処分環境下での腐食進展量評価が必要である。オーバーパックの候補材料で ある炭素鋼の腐食進展速度は腐食形態によって大きく異なり、腐食形態は溶液組成や pH、溶 存酸素濃度等に依存することが知られている。したがって、オーバーパックの性能評価にあ たっては、オーバーパック近傍における地下水環境条件の変遷を適切に評価するとともに、 環境条件に応じた腐食形態や各腐食形態における腐食進展速度を設定する必要がある。

平成 21 年度までにオーバーパックの腐食寿命を評価するためのモデルおよびコードの整備を実施した。整備したオーバーパック腐食寿命評価フローを図 6.2-5 に示す。

図 6.2-5 炭素鋼オーバーパック腐食寿命評価のフロー

オーバーパック腐食寿命評価では、オーバーパック近傍の地下水組成および温度条件に依存した活性態-不動態遷移 pH (以下、pH_d)に基づいた局部腐食判定モデルにより、オーバーパック近傍の地下水 pH が pH_dよりもアルカリ側になった場合には、局部腐食の進展量を算出し、一方 pH_dよりも酸性側となった場合には、全面腐食および応力腐食割れ (SCC)の進展量の算出を時間ステップ Δ t 毎に行う。判定された各腐食形態に対する合計の腐食進展量が破損判定基準に到達する時間をオーバーパックの破損時間とする。

全面腐食に関しては、処分場閉鎖直後の酸化性雰囲気、溶存酸素濃度が低下後の還元性雰 囲気、それぞれにおける腐食進展量を算出するモデルを作成した。具体的には、酸化性雰囲 気においては、放物線則に従って腐食速度が低下するとして腐食進展量を算出し、還元性雰 囲気においては、時間に依存しない一定腐食速度の条件で腐食進展量を算出する。

SCC に関しては、酸化性環境かつ中性から弱アルカリ性環境中において、SCC が発生する 電位に上限値と下限値が存在するとした既往の知見に基づき、溶液中で測定された腐食電位 との比較から SCC 発生を判定し、SCC 先端部の応力拡大係数に依存する経験式により進展量 を算出する。また、局部腐食は、時間に依らない一定速度を設定して局部腐食による進展量 を算出する。

平成 22 年度以降は、平成 21 年度までに整備した上記モデルの適応性を確認するための試験を実施し、結果を踏まえてモデル改良を実施した。

局部腐食判定モデルに関しては、平成17年度に既往の知見に基づいて作成した pHa 算出式 に対する適用性確認として、平成23年度および平成24年度に実際の処分環境で想定される 条件下で室内実験を実施し、その結果を踏まえた適用範囲の改良(下記、下線部分の追記) を行った。改良後の pHa 算出式は以下のように表される。

局部腐食の判定における pH_d(*t*)の影響因子は、炭酸イオン+炭酸水素イオン濃度(C(t))、塩 化物イオン濃度(Cl(t))、溶存酸素拡散限界電流密度($i_{o2}(t)$)および温度(T(t))である。時刻 t(y)に おける pH_d(*t*)は、下式で算出する。

 $pH_{d}(t) = -0.88 \cdot \log_{10}(C(t)) + 0.55 \cdot \log_{10}(Cl(t)) - 1.8 \cdot \log_{10}(i_{O2}(t)) + \frac{1100}{T(t)} + 3.9$

なお、当該式の適用範囲は、

$$1 \times 10^{-4} \le C(t), \ 3 \times 10^{-4} \le Cl(t) \le 3 \times 10^{-1}, \ 1 \times 10^{-6} \le i_{o2}(t) \le 2.5 \times 10^{-5}, \ 293.15 \le T(t)$$

である。ただし、無酸素条件の場合は全面腐食が進行するものとする。一方、酸素濃度の条件が大気平衡相当の 1/100 以上かつ pH≧9.8 の場合は地下水条件に依らず必ず局部腐食が進行するものとする。

全面腐食に関しては、還元性雰囲気においては腐食皮膜中の水の拡散が腐食速度を律速す るとした仮説に基づき、腐食速度算出式の検討を平成24年度に実施した。さらに、平成25 年度には、腐食進展量評価において、還元性雰囲気下で時間に依存しない腐食速度を設定す るため、既往知見のレビューを行い、腐食速度として10µm/yを設定した。また、平成22年 度から実施した炭素鋼の腐食に及ぼす温度影響に関する実験的検討では、長期的な腐食進展 量は低温の条件の方がより大きくなる可能性が実験的に示されつつある。皮膜の影響が小さ い場合には、温度依存性を考慮した腐食モデルがアレニウス型の式で表現できる可能性が示 された。

SCC については、平成 22 年度から平成 24 年度に高 pH 環境下での炭素鋼の SCC 発生可能 性確認を実施した。定ひずみ速度試験から高 pH 条件下では粒界割れが発生するのは 2 mol/l を超える OHイオン濃度でかつ約 50 ℃ 以上の場合と推定され、実際の処分環境で想定され る高 pH 環境下では炭素鋼に粒界割れが生起することは考えにくいことが示唆された。

今後の課題としては、安全規制の観点から、全面腐食が進展する環境条件が確認された場合は、本事業で検討したような低温の条件における長期的な腐食進展量データの拡充および皮膜の保護性に関する機構論的な検討が必要であると考えられる。さらに本事業で構築した応力腐食割れ発生モデルの適用範囲外と考えられる低酸素条件下における応力腐食割れの発生、進展に関する知見も本事業において得られている。このようなことを認識しつつ、現段階においては、安全評価においては平成25年度までに整備したオーバーパック腐食寿命評価

に係る一連のモデルを使用することとした。

6.2.4 緩衝材の劣化に係るモデルおよび評価コードの整備

処分場の支保工等に使用されるセメント系材料を起因とする高アルカリ性地下水により、 ベントナイト系緩衝材が変質・劣化し、その止水性が低下することが懸念されている。過去 の原子力安全・保安院の委託事業である「放射性廃棄物処分の長期的評価手法の調査」にお いては、緩衝材の長期的な止水性の変化を評価するため、平成21年度までに、処分場での使 用が想定されるベントナイトー砂混合土圧縮成型体を用いて、ベントナイトの変質に係る諸 現象や変質にともなう止水性(透水係数が指標)の変化を実験的に定量化し、評価モデル(ベ ントナイト拡散モデル、モンモリロナイト溶解速度モデル、ベントナイト鉱物モデル、透水 係数評価モデル)として整備するとともに、これらの評価モデルから構成される物質移行-変 質連成解析コード "MC-BENT"を整備した。また、アルカリの放出源であるセメント系材料 の変質にともなう固相および液相成分の変化等を評価するためのモデル(セメント鉱物モデ ル、セメント間隙変遷モデル)とこれらモデルから構成されるコード "MC-CEMENT"も整備 した。

平成 22 年度からは、我が国の地下環境(淡水、海水、酸化性条件、還元性条件など)を考慮した緩衝材劣化に係る試験を実施するとともに、その試験結果とこれまでに整備してきた 緩衝材劣化に係る評価モデルが導入された解析コード等による計算結果との比較を行い、当 該モデルの地下環境への適用性に係る検討を実施した。また、複合的な人工バリア内で起こ る現象を評価するため MC-BENT と MC-CEMENT の統合、および炭素鋼腐食影響評価モデル やガラス固化体溶解モデルの導入、熱解析機能やリスタート計算機能の追加等を行い、MC-BUFFER として整備した(図 6.2-6 参照)。

以下に、本事業において平成 22~26 年度に実施した各モデル、およびコードに対する検討 概要を記す。

図 6.2-6 緩衝材の劣化に係る評価モデルと解析コードの体系

(1) 各モデルに対する検討概要

セメント系材料の変質特性に係るモデルに係る検討

当該モデルは、セメント鉱物モデルとセメント間隙変遷モデルから成るモデルである。前 者は、粉体状の普通ポルトランドセメント(OPC)とフライアッシュセメント(FAC)試料を 人工海水、および脱イオン水に浸漬し、水和セメント鉱物、および浸出液の組成を、様々な 液固比に対して実験的に取得し、その試験結果と地球化学計算コードによる計算結果を照合・ 妥当性確認することにより、セメント水和鉱物相の変質、および浸出液組成を計算するため のモデル(初期鉱物・二次鉱物の設定)である。また、後者は、セメント硬化体中の間隙を 成因や物質移行特性、化学反応場としての機能に基づいて4種類に分類し、セメント系材料 の変質にともなう有効拡散係数の変化を評価するモデルである。なお、トリチウム(HTO) を用いた拡散試験結果から、有効拡散係数は物質の移動に寄与する間隙の割合(物質移動毛 細管間隙率)の1乗に比例する形で定式化されている。

セメント鉱物モデルの淡水/海水環境における適用性を確認するため、粉体状の普通ポル トランドセメント(OPC)とフライアッシュセメント(FAC)試料を用い、人工淡水、および 人工海水への浸漬試験を実施するとともに、同試験を模擬した地球化学計算を行い、主要鉱 物であるポルトランダイトや C-S-H 等の溶解、液相 pH や浸出元素濃度の変遷等、多くの部 分で試験結果と計算結果が整合していることから、当該モデルが淡水系、海水系地下水でも 適用可能であることを確認した(平成 22 年度)。また、セメント系材料からのアルカリ成分 溶出に係る総合的な評価手法の適用性を確認するため、セメントディスクの浸漬試験 (W/C=0.6、0.75 の OPC 硬化体をそれぞれ人工淡水・人工海水に浸漬、~365 日まで)を実施し、液相、固相の長期的、定量的な変遷データの取得を行うとともに、物質移行-変質連成解析コード(MC-BUFFER)を用いて同試験を模擬した物質移行-変質連成計算を行い、試験結果と計算結果の比較を実施した。その結果、人工海水系において一部不整合が見られたものの、固相、液相で起こった現象について、定性的、定量的に計算結果は試験結果を良く再現できていたこと、評価体系(メッシュ幅、タイムステップ)の設定の違いによる影響の程度は小さいことが確認され、当該評価手法が淡水系、海水系地下水にも適用できる可能性を示した(平成 22~24 年度)。

ベントナイト(アルカリ)拡散モデルに係る検討

ベントナイト系緩衝材中のアルカリ成分(水酸化物イオン、OH)の移行性や移行量を定量 的に求めるため、OH-の透過拡散実験結果から当該モデルが作成された。また、その様々な影 響因子に着目した適用範囲、および処分場条件への適用性に係る検討については、「放射性廃 棄物処分の長期的評価手法の調査」において既に実施されており、地下環境下でも適用可能 であることが示されている。

しかしながら、物質移行-変質連成解析コード(MC-BUFFER)を用いた化学環境解析にお けるベントナイト系緩衝材中の拡散評価では、OH 以外のイオン種についても当該モデルを使 用しており、現実的ではない。今後 MC-BUFFER を用いて各バリア材(ガラス固化体-オー バーパックーベントナイト系緩衝材-セメント系材料)各バリア材の性能評価を行うことが 想定されるが、そのためには OH 以外のイオン種の移行も適切に評価する必要があり、今後 は全てのイオン種を対象とした機構論に基づいた拡散モデルを新たに構築し、MC-BUFFER に組み込むことが重要であるとした(平成 25 年度)。

上記を受け、新拡散評価手法の整備に係る検討を平成26年度に実施し、見かけの拡散係数 Da をベースとしたシンプルで科学的に合理的なベントナイト内拡散モデルを作成し、MC-BUFFER に取り込むこととした。また、当該モデルの原案を提示するとともに、その検証に 資するため、非放射性のイオン種を用いた Na 型モンモリロナイト中の透過拡散試験を実施 した。その結果、収着分配係数 Kd が小さい場合における Ca²⁺イオンの拡散挙動に関しては、 当該モデル原案を用いた計算結果で試験結果を良く再現することができ、評価手法として成 立する可能性が示唆された。しかしながら、収着分配係数 Kd が大きい場合の Ca²⁺イオン、お よび Cl イオンの拡散挙動に関しては、計算結果と試験結果に整合性が見られず、モデルの改 良が必要であるとした。今後は、より長期な試験データおよびモンモリロナイト試料中のイ オン種の濃度分布データを用いた検証、緩衝材の化学環境解析で対象になる全てのイオン種 に対するパラメータ設定、および当該モデルに対応するための MC-BUFFER の改良も行う必 要があるとした。

モンモリロナイト溶解速度モデルに係る検討

モンモリロナイト溶解速度モデルは、ベントナイト-砂混合圧縮成型体(混合圧縮体)を高 アルカリ性溶液(NaOH 濃度 0.1~1.0 M、イオン強度 1 M)に浸漬させ、高温環境(50~170 °C) に静置して変質させる試験を実施し、混合圧縮体中のモンモリロナイトの溶解速度を OH 活 量 a_{OH} と温度 Tの関数として定式化したモデルである。

当該モデルの地下環境条件(淡水、塩水、酸化状態、還元状態)への適用性を確認するため、ベントナイト粉末を用いたアルカリ変質試験を実施した。その結果、海水系地下水を模擬したベントナイトのアルカリ変質試験では、生成する二次鉱物が淡水系、脱イオン水系と

異なることが確認されたが、雰囲気条件、溶存イオン種の違いによるモンモリロナイト溶解 速度への顕著な影響は認められず、処分場環境条件においても適用できる可能性を示した (平成 22 年度)。

また、処分場環境で Na と共存しうる元素やイオン強度の当該モデルへの影響の可能性に ついて考察を行った結果、二次鉱物生成の観点から Ca、Si、Al の影響について、飽和度の観 点から Si、Al の影響について、静電気的な効果の観点からイオン強度の影響について今後検 討する必要性を示した。また、K の影響についてはほとんどないこと、Mg の影響について は処分場レイアウトの観点から当該モデルを用いた評価への影響は少なく、また影響がある にしてもモンモリロナイトの溶解を抑制する方向であることを示した(平成 23 年度)。

アルカリ変質を伴う鉱物モデルに係る検討

MC-BUFFER には、一般的な地球化学計算に多くの適用実績があるコード PHREEQC を組 み込んで利用している。計算に必要となる鉱物モデル(地球化学計算を行う際に考慮する鉱 物のリスト、速度論 or 平衡論、速度論モデル)については、既往の研究で報告された情報を ベースに、ベントナイトをアルカリ溶液中で変質させた実験結果等を再現するように決定し、 これまで整備してきた。当該モデルに関しては、引き続き他の実験結果や観察結果を再現す ることによる検証事例の蓄積を図るとともに、必要に応じて改良することとした(平成 23 年 度)。

ベントナイト透水係数評価モデルに係る検討

当該モデルは、イオン強度、有効モンモリロナイト密度、Ca型化率を調整して実施した透水試験結果から砂-ベントナイト混合圧縮成型体の透水係数評価式を整備し、温度補正をかけたモデルである。

当該モデルの淡水/海水環境における適用性、および実際にアルカリ変質した試料への適 用性を確認するため、1 M の NaOH 溶液に 90℃で短期~長期間浸漬させたベントナイト試料 に対して、イオン強度の異なる通水液を用いた透水試験を 40℃で実施した結果、①モンモリ ロナイトの溶解が進むにつれて透水係数のイオン強度依存性が小さくなること、②100 日以 上変質操作を行い、モンモリロナイトがほとんどなくなるほど過度に変質させた試料に対し ては、透水係数は 3×10⁻⁸ m s⁻¹程度までしか上昇しないこと、③イオン強度 0.01 mol dm⁻³ と 0.1 mol dm⁻³の溶液を通水させたときの透水係数に大きな差異が見られないことが確認された (平成 22~25 年度)。

また、これら結果およびモデル作成時の条件を踏まえ、当該モデルの改良案として、①当該 モデル式の適用範囲については有効モンモリロナイト密度 900 kg m⁻³未満、イオン強度 0.1~ 1.0 M の範囲とし、その上限値を $1.9 \times 10^8 \cdot (7.9 \times 10^5 \text{ T}^2 - 1.9 \times 10^2 \text{ T} - 0.21) \text{ m s}^{-1}$ すること、② イオン強度 0.1 未満の領域については当該モデル式のイオン強度を 0.1 mol dm⁻³としたときの 値を設定値とすることを提示した (平成 25 年度)。当該モデルの改良案に係る概念図を図 6.2-7 に示す。

- ※1 過度に変質させた透水試験により得られた透水係数を基に決定(有効モンモリロナイト密度: ほぼ0kg m⁻³、イオン強度: 0.01~1.0 mol dm⁻³)
- ※2 当該モデルを作成時に使用した試料の有効モンモリロナイト密度の上限値

図 6.2-7 ベントナイト透水係数評価モデルの改良案に係る概念図(40℃)

さらに、透水試験における動水勾配の影響の把握および当該モデルへの影響について検討 するため。低動水勾配条件下における透水試験を実施した。その結果、透水係数 $4 \times 10^{-11} \text{ m s}^{-1}$ 以上となる試験条件下では、流速と動水勾配の関係からダルシー則の成立が確認されたが、 透水係数 $3 \times 10^{-12} \text{ m s}^{-1}$ 程度となる試験条件下では、ダルシー則が成立しているかの判断は難 しく、非ダルシー的な挙動が起こる可能性が示唆された。しかしながら、ペクレ数を用いた 検討からは、透水係数が $4 \times 10^{-11} \text{ m s}^{-1}$ 未満となる場合は、物質移行は拡散支配になると想定 されることから、移流と拡散の両方を考慮した安全解析を行う場合には、(ダルシー則の成立 を前提として作成された)当該モデル式を使用しても問題ないことを示した(平成 24、25 年 度)。

一連の緩衝材劣化に係るモデルの現状の課題、適用性および今後の整備の方向性

ー連の緩衝材劣化モデル、およびコードの適用性、課題については、ベントナイト圧縮体中 における陽イオン交換現象に係るモデル化が未整備であること、経験則であるため科学的根 拠が不足していること、OH 以外のイオン種についてもアルカリ拡散モデルを使用しているこ と等、まだ多くの課題が残っているが、検証計算では概ね実現象が再現できていること等か らこれらの課題があることを認識しつつ、現段階では安全評価において緩衝材劣化に係る一 連のモデルを使用することとした(平成25年度)。

今後は、平成26年度に検討を実施した新拡散評価手法のように、機構論に基づいたモデル を開発して置き換えることが重要である。

(2)物質移行-変質連成解析コード(MC-BUFFER)に対する検討概要 MC-BUFFERの機能拡充 上述したとおり、平成22年度からは、複合的な人工バリア内で起こる現象を評価するため MC-BENTとMC-CEMENTの統合、および炭素鋼腐食影響評価モデルやガラス固化体溶解モ デルの導入、熱解析機能やリスタート計算機能の追加等を行い、MC-BUFFERとして再整備 した。

炭素鋼腐食影響評価モデルの導入については、オーバーパックの腐食速度について pH との 関係で表される炭素鋼腐食反応速度モデルを導入した。このモデルにおいて、腐食速度は最 大 1.5 μ m/y である。また、鉱物モデルおよび熱力学データベースに鉄鉱物として、Pyrite、 Siderite、Wustite、Magnetite、Hematite の追加を行った(平成 23 年度)。

さらに鉄ケイ酸塩鉱物などを考慮するため、鉄鉱物について再検討を行い、Hematite、Wustite を除外し、新たに Goethite、Fe(OH)₂(s)、Chukanovite、Melanterite、Berthierine、Greenalite を鉱 物モデルおよび熱力学データベースに設定した。これにより、ベントナイトの初期鉱物組成 に Pyrite を設定することがでるようになり、さらにオーバーパック腐食によって緩衝材に与 える酸化還元電位等の鉄の影響を考慮できるようになったことから、人工バリア解析におけ るオーバーパックー緩衝材-支保工の複合的な相互作用を評価できるようになった(平成 25 年度)。

ガラス固化体溶解モデルの導入については、ガラス固化体を含む複合体系を考慮できるよう、MC-BUFFER にガラス溶解速度を伴うガラス固化体溶解モデルの整備を行った(平成 25 年度)。

平成 26 年度は速度定数 k⁺の温度依存性・pH 依存性の考慮や Grambow モデルに係わる [H4SiO4]に与える濃度の見直し、ガラス固化体から溶出するガラス成分の見直しを図り、人工 バリアにおけるオーバーパック破損後のガラス固化体溶解を考慮した人工バリア変遷挙動解 析が可能となった。今後は、モデル検証や計算手法の最適化などモデル適用に係わる検討を 深める必要があるとした。

熱解析機能の追加に関しては、人工バリアの性能評価や核種移行評価において重要なパラ メータの一つである温度について、これまで MC-BUFFER では境界条件に一定温度としての パラメータ設定しかできなかったことから、温度境界条件の時間的変化を考慮できる熱解析 機能の拡充を行った。これにより、人工バリア体系での解析において熱源となるオーバーパ ック領域の経時的な温度変化を再現できるようになった(平成 24 年度)。

リスタート計算機能の追加に関しては、10万年以上の解析を行うにあたって、評価時間の 延長や解析途中での条件設定変更が可能となるように、当該機能を整備した。これにより、 隆起・侵食等を考慮した人工バリア評価における時間変化による地下水質の変更が再現可能 となるとともに、透水試験における試験条件の変更などにも容易に対応できるようになった (平成 24 年度)。

MC-BUFFER の検証

ー連のモデルを含む MC-BUFFER を用いたベントナイト系緩衝材やセメント系材料の長期 変質挙動による評価手法の妥当性を確認するため、種々の検討を実施してきた。

上述したセメントディスクの浸漬試験や実際に変質させたベントナイト試料を用いた透水 試験等、1年程度の実験室における試験結果に対して、当該コードを用いた再現計算結果は良 い整合性を示すことが確認されてきた(平成22~24年度)。

また、十数年程度の試験データを用いた検証としては、仏国 Tournemire の地下施設において、Argillite と呼ばれる粘土層とセメント系材料(コンクリート)が15年間接触した試料の 観察データに対して、当該コードを用いた解析計算による再現を試みた。その結果、Argillite
領域における一部鉱物の溶解や生成は再現できなかったものの、Argillite 領域における Calcite や C-S-H の生成および Quartz の溶解、ならびに変質厚さが 1cm 以内といった観察データは良 く再現することができた。加えて、Argillite 領域での間隙率低下や、コンクリート領域での間 隙率増加の傾向についても再現することができた(平成 24 年度)。

さらに、平成26年度はより長期のデータを用いた検証として、サールズレイクの320万年 に及ぶアルカリ条件下の粘土変質に係るナチュラルアナログデータを用いて当該コードの検 証を行った。その結果、湖水の異なる各層において、サールズレイクの粘土溶解および二次 鉱物への変遷挙動を概ね再現することができた。

以上、これらの結果から、粘土系材料とセメント系材料が共存する実環境での相互作用現 象については概ね再現でき、実験室規模、1年程度の実験に基づくモデルが、より長い時間に 適用できる可能性が示唆された。

なお、ガラス固化体の溶解モデルについては、MC-BUFFER に組み込んだものの、その妥 当性の検証までは至らなかった。

(3) 今後の課題

人工バリアの長期的な変遷を評価するために MC-BUFFER に導入されたモデルのうちいく つかは実験式であるため、緩衝材に係る新拡散評価手法のように、機構論に基づいたモデル を開発して置き換えていくこと、ガラス固化体の溶解モデルも含めて妥当性検証事例を蓄積 し、信頼性を確保することが今後重要だと考えられる。また、福島第一原子力発電所事故に よって発生した燃料デブリを処分する際の人工バリアとしてベントナイトが適用される場合、 本事業で整備した評価手法の一部は、当該デブリ処分に係る評価にも反映可能であると考え られる。

6.3 安全評価シナリオ設定手法の整備

本事業では、処分システムへの影響の要因を3タイプに分類し、それぞれの要因に対する シナリオ設定手法の整備を行った。それは、「建設・操業・閉鎖段階の事故・人的要因等に係 るシナリオ(平成22年度~平成25年度に実施)」、「人工バリア変遷に係るシナリオ(平成22 年度~平成25年度に実施)」、「地質・気候関連事象に係るシナリオ(平成22年度~平成26 年度に実施)」である。これらのシナリオは、人工バリアの安全機能や処分サイトの地質環境、 処分事業の適用される工学技術に関する様々な条件や起こりうる現象を考慮して、構築され なければならない。それらの条件や現象、処分場閉鎖後の長期安全性に関係すると考えられ る要因は、多岐に亘るため、情報を体系的に整理し、シナリオ整備を進める必要がある。そ の方法として、原子力機構では、経済協力開発機構/原子力機関(以下、「OECD/NEA」とい う)の国際 FEP(Feature:特性、Event:事象、Process:プロセス、以下 FEP)リスト⁽¹⁾に基 づき、我が国の処分概念に適合する FEPをリストアップし、それらに関する科学的知見に基 づいて、シナリオを整備していくことを基本方針として、上述した3タイプのシナリオ設定 手法の整備を実施した。以下に、整備した各シナリオ設定手法に関する研究成果と今後の課 題について述べる。

6.3.1 建設・操業・閉鎖段階の事故・人的要因等に係るシナリオ設定手法

高レベル放射性廃棄物等の地層処分の安全評価では、処分場のサイト調査・建設・操業・ 閉鎖段階で用いられる工学技術の適用により生じるバリア特性への影響を考慮したシナリオ を構築する必要がある。安全規制の観点から工学技術の適用に関連したシナリオを構築する ためには、地層処分事業に用いられる可能性のある工学技術の情報を把握し、それらの技術 の適用に関連した事故または人的要因とそれらが閉鎖後の人工バリア・天然バリアの安全機 能に与える影響との関係を整理しておくことが重要と考えられる。

そこで、本研究では、まず、地層処分事業で採用される可能性のある工学技術を、処分場 のサイト調査・建設・操業・閉鎖の段階ごとにリスト化し、リスト化した工学技術の特徴、地 下施設の製作・施工の作業手順や工学技術適用上の留意点についての技術情報を収集した。 これらのうち、工学技術適用上の留意点には、対象とする工学技術に期待される人工バリア・ 天然バリアを設計上想定する状態にするための役割、および、その役割を発揮するために注 意すべき事項について記載した。それらの情報から、各工学技術に起因して生じえる人工バ リア・天然バリアの設計上想定される状態から逸脱した状態(以下、逸脱事象)を特定し、そ の逸脱事象が顕在化した場合のバリア特性の変化、さらに安全機能の喪失・低下につながる 影響の連鎖を作成した。さらに、逸脱事象に進展する可能性のある工学技術に関連した事故・ 人的要因を工学技術の施工手順の情報から特定した。これらの結果を基に、工学技術適用に 関連した事故・人的要因によって生じる可能性が考えられる処分場閉鎖後の長期安全性に与 える影響の連鎖をシナリオとして提示した。そして一連の整理の結果を、地層処分工学技術 の適用に関連したシナリオ構築のためのデータベースとして整備した(平成 22 年度~平成 23 年度)。

平成 24 年度は、地層処分場の建設・操業・閉鎖段階で地震が発生した場合を想定したシナ リオ作成のために、地震による地下施設の被害事例を収集し、各被害をもたらした条件の分 析をした。その被害事例の分析結果、処分工学技術の事故・人的要因を起因事象とした安全 機能の喪失・低下につながる影響の連鎖の情報、および地震によるサイトの熱、水理、力学 及び化学(以下、THMC)への影響に関する FEP 情報を踏まえ、地震により人工バリアおよ び天然バリアに被害を及ぼし、さらに閉鎖後の長期安全性に影響を及ぼす可能性のある事象 (地震による考慮すべき事象)を抽出した。さらに、その地震による考慮すべき事象と処分 場閉鎖後の安全機能との関係について整理したシナリオを作成した。

平成25年度は、平成22年度~平成23年度に整理した事故・人的要因および逸脱事象(計 35事象)ごとに、発生防止対策、検知手段、影響防止対策について情報収集を行った(図6.3-1参照)。さらに、逸脱事象に対応する工学的対策技術の適用実績や地層処分に特有な工学技 術の開発状況の情報を整理・分析し、規制側が着目すべき逸脱事象(シナリオ)と着目すべ き逸脱事象から除外した事象を区分した。

図 6.3-1 事故・人的要因に起因した影響の連鎖

上記の整理の結果、規制側が着目すべき逸脱事象として、計28事象(ガラス固化体3事象、 オーバーパック4事象、緩衝材6事象、粘土プラグ5事象、埋め戻し材4事象、母岩掘削影 響領域6事象)を抽出した。抽出した着目すべき逸脱事象(シナリオ)を表6.3-1~表6.3-6 に、また規制側が着目すべき逸脱事象から除外した事象を表6.3-7示す。

今後の課題として、建設・操業・閉鎖段階における様々な工学技術の新規知見や新技術の 情報、NUMOの進める品質管理に関する情報等を適宜収集・分析し、最新かつ精度を高めた 建設・操業・閉鎖段階の事故・人的要因等に係るシナリオ設定手法として整備を進める必要 がある。さらに、規制の観点から工学技術の具体的な適用の際に懸念される影響の連鎖(シ ナリオ)を対象とした影響評価手法の整備が課題として考えられる。

逸脱事象	選定理由
核種の混合が不均質な	核種の不均質なガラス固化体の発生を抑制するためには、運転条件と固化体特性の関係
ガラス固化体の発生	を明らかにする技術情報を検討する必要があることが指摘されている。現状では対策技
	術の有効性が確認されていない。このことから、着目すべき逸脱事象に含めることとし
	te.
ガラス固化体の表面積	ガラス固化体の地上施設でのハンドリング技術は、JNFL により実用化されている。ま
の増加	た、基本的な火災への発生防止対策は、他産業において実用化されている。一方、地上
	施設で用いられるハンドリング技術の坑道内での適用性の確認、および、地層処分の技
	術・作業段階に応じた火災に対する個別の対策技術の有効性の確認などが課題として残
	っている。このことから、着目すべき逸脱事象に含めることとした。
火災に伴ったガラス固	基本的な火災の発生防止対策は他産業で実用化されているものの、地層処分の技術・作
化体の変質	業段階に応じた火災に対する個別の対策技術の有効性の確認などが課題として残って
	いる。このことから、着目すべき逸脱事象に含めることとした。

表 6.3-1 着目すべき逸脱事象(ガラス固化体)

表 6.3-2 着目すべき逸脱事象(オーバーパック)

逸脱事象	選定理由
オーバーパック溶接部	現在、RWMC により、オーバーパック溶接技術の実用化に向けて技術開発が行われて
に過大な残留応力の発	おり、過大な残留応力の発生防止対策の有効性についての検討が行われている段階であ
生	る。今後、残留応力除去を目的とした新技術の有効性について確認する必要がある。こ
	のことから、着目すべき逸脱事象に含めることとした。
オーバーパック溶接部	現在、RWMC により、オーバーパック溶接技術の実用化に向けて技術開発が行われて
に微少キズ発生	おり、微細キズの発生防止対策の有効性についての検討が行われている段階である。今
	後、金属腐食に対して許容される溶接部の微少キズに対する検知手段の適用性を確認す
	る必要がある。このことから、着目すべき逸脱事象に含めることとした。
オーバーパック表面へ	移動物に対する落下・転倒防止対策は他産業においても広く実用化されている。さらに、
の初期キズ形成と変形	JNFL により実用化されているガラス固化体の遠隔操作によるハンドリング技術は、基
	本的にオーバーパックのハンドリングにも応用可能と考えられる。一方、許容されるキ
	ズと変形に対する検知手段の適用性やオーバーパックのハンドリングの坑道内での適
	用性の確認などが課題として残る。このことから、着目すべき逸脱事象に含めることと
	した。
火災に伴ったオーバー	基本的な火災の発生防止対策は他産業で実用化されているものの、地層処分の技術・作
パックの溶融、過大な	業段階に応じた火災に対する個別の対策技術の有効性の確認などが課題として残って
熱応力の発生	いる。このことから、着目すべき逸脱事象に含めることとした。

表 6.3-3 着目すべき逸脱事象(緩衝材)

逸脱事象	選定理由
緩衝材ブロックのひび	緩衝材ブロック製作作業については、実証試験により、製造された緩衝材ブロックの品
割れ・剥離	質のばらつきが小さいことが確認されており、製作作業を要因とした逸脱事象の発生確
	率は低いものと考えられる。一方、搬送・定置作業については、現在、緩衝材ブロック
	のハンドリングに必要な真空吸引把持技術の開発が行われているところであり、今後ハ
	ンドリング技術の坑道内での適用性を確認することが課題である。このことから、着目
	すべき逸脱事象に含めることとした。
緩衝材の初期含水比不	緩衝材ブロック製作作業については、実証試験により、製造された緩衝材ブロックの品
良	質のばらつきが小さいことが確認されており、製作作業を要因とした逸脱事象の発生確
	率は低いものと考えられる。
	一方、湧水処理および湿度管理は、他産業で実用化されているものの、坑道内で発生す
	る湧水や坑道内の高湿度を完全に防ぐことは難しい。そのため、湧水および湿度に対す
	る発生防止対策として、「無孔 PEM 容器」により緩衝材を保護する対応と、「緩衝材
	製作時に密度と含水比を調整すること」により緩衝材自体の機能を高度化することでの
	対応について、現在検討が進められている。今後、これら対策についての有効性につい
	て検討することが課題として残る。このことから、着目すべき逸脱事象に含めることと
	した。
緩衝材の原位置締固め	原位置締固め方式の実規模試験が行われており、現在開発中である。また、今後坑道内
時の締固め不足	での適用性を確認する必要がある。このことから、着目すべき逸脱事象に含めることと
	した。
緩衝材の浸食・流出	湧水処理対策、浸食防止対策が他産業で実用化されている。一方、湧水処理対策の緩衝
	材初期含水比に対する適用性確認、緩衝材浸食防止対策の有効性確認が課題として残
	る。このことから、着目すべき逸脱事象に含めることとした。
処分孔/処分坑道の過	緩衝材ペレットを用いた隙間充填作業などの実証試験が実施されている。しかし、緩衝
剰な掘削ズリと空洞の	材密度のばらつきに対する発生防止対策の有効性確認が今後の課題として残っている。
残存による緩衝材密度	このことから、着目すべき逸脱事象に含めることとした。
への影響	
火災発生に伴った緩衝	基本的な火災の発生防止対策は他産業で実用化されているものの、地層処分の技術・作
材の化学特性、熱応力	業段階に応じた火災に対する個別の対策技術の有効性の確認などが課題として残って
による緩衝材の密度へ	いる。このことから、着目すべき逸脱事象に含めることとした。
の影響	

表 6.3-4 着目すべき逸脱事象(粘土プラグ)

逸脱事象	選定理由
粘土ブロックのひび割	現在、緩衝材ブロックのハンドリングに必要な真空吸引把持技術の開発が行われている
れ・剥離	ところであり、粘土ブロックについても同様の工学技術が採用されるものと考えられ
	る。そのハンドリング技術の坑道内での適用性を確認することが課題である。このこと
	から、着目すべき逸脱事象に含めることとした。
粘土ブロックの初期含	湧水処理技術については、他産業で実用化されているが、湧水処理対策の適用性を確認
水比不良	する必要がある。このことから、着目すべき逸脱事象に含めることとした。
粘土ブロックの浸食・	湧水処理対策、浸食防止対策が他産業で実用化されている。一方、湧水処理対策の粘土
流出	プラグ浸食防止対策の有効性確認が課題として残る。このことから、着目すべき逸脱事
	象に含めることとした。
粘土プラグ切り欠き部	ペレットを用いた隙間充填作業などの実証試験が実施されている。しかし、粘土プラグ
における過剰な掘削ズ	密度のばらつきに対する発生防止対策の有効性確認が今後の課題として残っている。こ
リと空洞の残存による	のことから、着目すべき逸脱事象に含めることとした。
粘土プラグ密度への影	
響	
火災発生に伴った粘土	基本的な火災の発生防止対策は他産業で実用化されているものの、地層処分の技術・作
プラグの化学特性、熱	業段階に応じた火災に対する個別の対策技術の有効性の確認などが課題として残って
応力による粘土プラグ	いる。のことから、着目すべき逸脱事象に含めることとした。
の密度への影響	

逸脱事象	選定理由
埋め戻し材の初期含水	緩衝材ブロック製作作業については、実証試験により、製造された緩衝材ブロックの品
比不良	質のばらつきが小さいことが確認されている。埋め戻し材製作は、緩衝材ブロックの製
	作技術を応用することができるが、緩衝材と埋め戻し材では、使用する材料が異なるこ
	とが考えられることから、実際に使用する材料を用いた材料品質の確認が今後必要とな
	る。このことから、着目すべき逸脱事象に含めることとした。
埋め戻し材の転圧不足	緩衝材について原位置締固め方式の実規模試験が行われており、現在開発中である。埋
	め戻し材についてもこの技術が応用されることが考えられる。緩衝材と埋め戻し材で
	は、使用する材料が異なることが考えられることから、実際に使用する材料を用いた材
	料品質の確認が必要となる。このことから、着目すべき逸脱事象に含めることとした。
火災発生に伴った埋め	基本的な火災の発生防止対策は他産業で実用化されているものの、地層処分の技術・作
戻し材の化学特性、熱	業段階に応じた火災に対する個別の対策技術の有効性の確認などが課題として残って
応力による埋め戻し材	いる。このことから、着目すべき逸脱事象に含めることとした。
の密度への影響	
処分坑道の覆工コンク	空洞形成の対策技術について他産業で実用化されている。しかし、これは坑道の力学的
リート背面の空洞形成	安定性確保を目的とした対策であり、遮水性に関する有効性について、今後確認してい
	く必要がある。このことから、着目すべき逸脱事象に含めることとした。

表 6.3-5 着目すべき逸脱事象(埋め戻し材)

表 6.3-6 着目すべき逸脱事象(母岩掘削影響領域)

逸脱事象	選定理由					
調査ボーリング孔自体	ボーリング孔閉塞作業時の目詰まりに対する発生防止対策は、他産業で実用化されてい					
の選択的な流路形成	るが、1,000m級のボーリング孔の埋め戻しについては、全長にわたって適切に充填でき					
	る技術の確認などが必要であるとされている。このことから、着目すべき逸脱事象に					
	めることとした。					
坑道周辺の掘削ズリや	グラウト作業の事故・人的要因に起因した空洞形成については発生防止対策が他産業で					
空洞の残存	実施されているものの発生防止対策の有効性については確認されていない。また、力学					
	プラグ設置面の空洞やズリの残存に対する発生防止対策は現在のところ示されていな					
	い。このことから、着目すべき逸脱事象に含めることとした。					
ボーリング孔周辺母岩	具体的な発生防止対策が示されていないことから、着目すべき逸脱事象に含めることと					
の選択的な流路形成	した。					
坑道周辺の掘削影響領	事故・人的要因に応じて様々な対策が他産業で実用化されているものと、対策が示され					
域の拡大	ていないものがある。逸脱事象が坑道周辺岩盤の水理特性に与える影響と発生防止対策					
	の有効性について今後検討する必要がある。このことから、着目すべき逸脱事象に含め					
	ることとした。					
処分孔周辺の掘削影響	事故・人的要因に応じて様々な対策が他産業で実用化されているものと、対策が示され					
領域の拡大	ていないものがある。逸脱事象が処分孔周辺岩盤の水理特性に与える影響と発生防止対					
	策の有効性について今後検討する必要がある。このことから、着目すべき逸脱事象に含					
	めることとした。					
火災発生に伴った熱応	基本的な火災の発生防止対策は他産業で実用化されているものの、地層処分の技術・作					
力による坑道周辺の掘	業段階に応じた火災に対する個別の対策技術の有効性の確認などが課題として残って					
削影響領域の拡大	いる。このことから、着目すべき逸脱事象に含めることとした。					

表 6.3-7 着目すべき逸脱事象から除外した事象

逸脱事象		除外理由			
ガラス	イエローフェーズガラ	イエローフェーズ発生防止対策を実施したアクティブ試験においては、イエ			
	ス固化体の発生	ローフェーズの発生は確認されておらず、発生防止対策の有効性が確認され			
		たとの報告がある。このことから除外することとした。			
オーバ	炭素鋼の延性不足	炭素鋼の製造は製鉄業で実用化されており、日本工業規格の適用により、製			
ーパッ		品品質のばらつきを小さくすることが可能であり、炭素鋼の延性不足は低い			
ク		発生確率となることが考えられる。このことから、除外することとした。			
緩衝材	スメクタイト含有量の	他産業では安定的な品質のベントナイトが提供されており、製品品質のばら			
	不足	つきを許容範囲に抑えることが可能である。このことから、除外することと			
		した。			
	緩衝材の粒度分布不良	他産業で安定的な品質のベントナイトが供給されており、さらに、緩衝材ブ			
		ロック製作試験の結果から、製造された緩衝材の品質のばらつきが小さいこ			
		とが確認されている。このことから、除外することとした。			
	緩衝材の不均質な施工	吹き付け方式による緩衝材の施工試験が実施されており、ベントナイト単体			
		でも高密度の緩衝材の施工が可能であること、品質のばらつきが小さいこと			
		が確認されている。このことから、除外することとした。			
	力学プラグ・処分孔上部	他産業でコンクリートの強度・耐久性を確保するための対策が実用化されて			
	キャップの破損に伴っ	おり、一定品質のコンクリート構造物の施工が行われている。このことから、			
	た緩衝材の過剰な空間	除外することとした。			
	側への膨潤				
埋め戻	力学プラグの破損に伴	他産業でコンクリートの強度・耐久性を確保するための対策が実用化されて			
し材	った埋め戻し材の過剰	おり、一定品質のコンクリート構造物の施工が行われている。このことから、			
	な空間側への膨潤	除外することとした。			

6.3.2 人工バリア変遷に係るシナリオ設定手法

人工バリアの長期変遷事象に係るリスク論的考え方に基づく安全評価シナリオ設定手法の 整備は、平成21年度までの成果をベースに、平成22年度から平成25年度に実施した。

我が国の地層処分に係る法的整備状況や処分技術に関する進展により、今後想定される地 層処分の事業許可申請を実施するためには、核原料物質・核燃料物質及び原子炉の規制に関 する法律等に基づき、国が実施する安全審査を通して、事業者が行う安全評価の妥当性につ いて判断してゆく必要がある⁽²⁾⁽³⁾。安全評価の妥当性を判断するためには、安全評価手法及び 安全評価データを整備すると共に、安全審査に向けた基本的な考え方の整備、シナリオ設定 手法の整備や判断指標を策定してゆくことが課題となっている。

また、事業者は安全評価を実施する際に、地層処分システムの処分場閉鎖後の状態を基に して、人工バリア、天然バリアの状態を長期間にわたり変化させる可能性がある一連の事象 を想定し、これらを組み合わせた地層処分システムにおける放射性核種の長期挙動を描いた シナリオを使用することで、地層処分システムからの放射性核種移行に対する安全性の評価 を行うものと考えられる。これに対応し、安全評価の妥当性を判断するためには、事業者が 提示する地層処分システムの安全性に関して確認する必要があるポイント(以下、判断指標) を安全規制の実施の観点から提示することが必要と考えられる。この判断指標は、規制側で 必要となるシナリオ設定やデータ評価の方法論、モデル・コードの整備といった体系的な安 全評価手法との関連性を見据えて構築しておくことが肝要である。

図 6.3-2 FEP データベースの構成

上記に対応するため、平成 21 年度までに、処分場の構成要素である人工バリア、天然バリ アそれぞれについて、処分場で発生する事象の流れを網羅的に表現している HLW 地層処分 FEP (Feature:特性、Event:事象、Process:プロセス、以下 FEP) データベースの整理を実 施してきた(図 6.3-2)。HLW の FEP データベースは、①FEP リスト、②相関関係図(関連 性のある FEP 間の因果関係を図化したもの)、③FEP シート(当該 FEP に関する既往の実験 的・解析的な研究から得られる知見情報、他の FEP との関係、参考文献などを収録したもの) 及び④安全性への影響の可能性・理解の現状・相関の判定、の4項目から構成される。「安全 性への影響の可能性」とは、ある起因事象とそれらを受けて発生する派生事象の連鎖(シー クエンス)を成文化したものであり、「安全性への影響の可能性」に関する現状の知見の集約 として「理解の現状」が整理され、「理解の現状」の情報を基に影響の有無を判定した「相関 の判定」を整備している⁽⁴⁾⁽⁵⁾。

網羅的な観点の一方で、地層処分の安全評価では、処分場の人工バリア、天然バリアについて、放射性核種の閉じ込め機能や移行抑制機能などを適切に評価することが必要と考えられ、こうした「安全機能」を整備中のシナリオ評価手法に導入することはもう一方の観点で

重要と考えられる。放射性核種の閉じ込め機能や移行抑制機能などを示す「安全機能」は、 人工バリアや天然バリアの性質や特性により実現されると考えられるため、処分場での人工 バリアや天然バリアの長期変遷によって、その性質や特性が影響を受け変化し、期待される 「安全機能」が喪失または低下する可能性がある。安全規制としては、このような「安全機 能」の喪失または低下を引き起こす要因を把握しておくことで、事業者が実施する安全評価 の内容に対して、重要な安全機能にフォーカスした検討がなされているかを適切に判断する ことが可能となる。

これに対応するため、平成 22 年度には、諸外国及び我が国における安全機能の活用状況に 関する調査とともに、地層処分の人工バリアの長期変遷事象などに関して、それまでに整備 した FEP データベースに含まれる「安全性への影響の可能性」と我が国において想定されて いる「安全機能」との関係の整理を実施した。具体的には、人工バリアの「オーバーパック」、 「緩衝材」を対象として、「安全性への影響の可能性」に記載されている派生事象から、それ ぞれの人工バリアの「安全機能」の喪失・低下に直接的な要因となり得る事象を抽出すると ともに、その直接的な要因となる事象に影響を与える起因事象に遡り「安全機能」に至るま

での影響の連鎖の全体フローを作成した⁽⁶⁾⁽⁷⁾。平成 23 年度には引き続き、地下水移行に関する FEP データベース整備として、最新知見の取り込みによる FEP の更新を実施した⁽⁸⁾⁽⁹⁾。 平成 24 年度は、HLW および TRU 廃棄物の地層処分における人工バリア領域の FEP に関 して、最新知見の拡充を行い、FEP データベースを更新するとともに、シナリオ設定のため

して、最新知見の拡充を行い、FEP データベースを更新するとともに、シナリオ設定のため に必要な各バリア材の安全機能と FEP との関係を整理した。また、安全評価上重要となる長 期変遷事象(オーバーパックの早期破損、緩衝材の地下水流動抑制機能の喪失、緩衝材の核 種移行遅延機能の変化)に対する具体的なリスク論的取り扱いについての方法論について、 諸外国の安全評価事例(米国:DOE, DOE/RW-0573, 2008⁽¹⁰⁾、英国:NDA, NDA/RWMD/021, 2010⁽¹¹⁾、スウェーデン:SKB, SR-Site, TR-11-01, 2011⁽¹²⁾、スイス:NAGRA, NTB02-05, 2002⁽¹³⁾、フィンランド:POSIVA, POSIVA 2010-02, 2010⁽¹⁴⁾、フランス:ANDRA, Dossier 2005, 2005⁽¹⁵⁾および、それぞれに付随するサブレポート)を収集・分析した⁽¹⁶⁾⁽¹⁷⁾。

平成 25 年度は、これらの全体的な取りまとめとして、人工バリアの安全機能に着目した 諸外国の安全評価のレビューを行い、安全機能の位置づけ、設定の考え方、安全機能から設 計への展開などに着目した調査を行った。そして、この結果と、これまでの FEP データベー ス整備からの知見、リンケージ解析のパラメータ設定等を総合的に検討し、考慮すべき安全 機能について、安全機能を具体化したバリア性能として定量化するための影響因子への展開 とともにまとめた。これらの結果に基づいて、これまで整備してきた「安全機能と安全性へ の影響の可能性」の内容を、ガラス固化体、オーバーパック、緩衝材について拡張・更新す るとともに、FEP データベースに、最新の知見を反映させた。さらに、シナリオ設定手法と してのリンケージ解析への展開と今後の課題についてまとめた。

(1)諸外国の安全評価のレビュー

平成24年度には、安全評価上重要となる長期変遷事象として、オーバーパックの早期破 損、緩衝材の地下水流動抑制機能の喪失、緩衝材の核種移行遅延機能の変化に着目し、これ らに対する具体的なリスク論的取り扱いについての方法論について、諸外国の安全評価事例 について調査を実施した。オーバーパックの早期破損および緩衝材の地下水流動抑制機能の 喪失のリスク論的な評価方法をまとめると以下のようになる。

「オーバーパックの早期破損」

・ 早期破損の発生確率または影響の程度を定量的に算出し、基準と比較することで性能

評価に含める事象と含めない事象に区分する方法(米国)

- 廃棄体容器が破損する時期を変化させた感度解析により、それぞれの影響の大きさについて比較する方法(英国、スイス、フィンランド)
- 廃棄体容器の安全機能が喪失するケースとして腐食、等圧負荷、せん断を取り上げ、 各ケースによる廃棄体容器の破損に影響する因子を列挙する。等圧負荷およびせん断 については、各ケースの判断指標と、処分環境で想定される極端な条件を比較するこ とで、安全機能が喪失する可能性を判断する方法。一方、腐食については緩衝材が移 流状態になることが前提条件であるため、様々な移流状態での廃棄体容器の寿命評価 を行い腐食による廃棄体容器の早期破損(主要シナリオでは最初の10万年間は廃棄体 容器損傷の発生はないと想定している)の発生確率を求める方法(スウェーデン)
- ・ 廃棄体容器が製造段階で欠陥が発生する確率、欠陥のない廃棄体容器の寿命について 定量的に評価し、その結果を用いて線量の評価を行う方法(フランス)

「緩衝材の地下水流動抑制機能の喪失」

- 緩衝材が移流状態となった場合を想定した感度解析により、それぞれの影響の大きさ
 について比較する方法(英国、フィンランド、フランス)
- 緩衝材の安全機能が喪失するケースとして、緩衝材の移流、凍結、変質を取り上げ、 各ケースによる緩衝材の安全機能喪失に影響する因子を列挙する。変質、凍結につい ては、各ケースの判断指標(pH、温度など)と処分環境で想定される極端な条件を比 較することで、安全機能が喪失する可能性を判断する方法。一方、移流については、 移流状態となる緩衝材の流出量を既往知見から求め、緩衝材の流出量に対する感度解 析から緩衝材が移流状態となる定置孔の発生確率を求める方法(スウェーデン)

本事業においては、オーバーパックの早期破損について、腐食寿命の評価モデルにより破 損時期の頻度を算出する手法の開発を進めており、米国、フランスの方法論に近いものであ る。緩衝材の地下水流動抑制機能の喪失に対しては、本事業では緩衝材の変質現象をモデル 化し、機能低下を定量的に取り扱った評価手法を整備しているが、各国とも現象論の評価に 基づいた高度化された手法ではなかった。一方、オーバーパックの早期破損や緩衝材の地下 水流動抑制機能の喪失に至る要因を包括的に検討する場合には、スウェーデンが行っている 「安全機能に影響する因子を列挙し、判断指標と処分環境で想定される極端な条件を比較す ることで安全機能が喪失する可能性を判断すること」の方法の検討も必要と考えられた。

平成25年度は、これらを踏まえ、安全規制の観点からシナリオ設定手法の妥当性を判断 する上で、安全機能とその影響因子との関係を整理し、人工バリアの変遷に応じた安全機能 の喪失・低下の体系的な評価手法を整備しておくことは重要であるとし、以下の調査を実施 した。

スウェーデン⁽¹²⁾⁽¹⁸⁾及びフィンランド⁽¹⁹⁾⁽²⁰⁾⁽²¹⁾⁽²²⁾⁽²³⁾の既往の安全評価では、安全機能の喪 失・低下を評価・判断するための定性的、定量的な指標が設定され、その指標の評価がシナ リオ設定に活用されている。こうした情報は、本事業におけるシナリオ設定の手法にも有効 であると考え、スウェーデン及びフィンランドの既往の安全評価の中で行われている安全機 能の喪失・低下の評価手法ならびにシナリオ設定に至る方法について精査した。表 6.3-8 に スウェーデンおよびフィンランドの安全機能を踏まえたシナリオ設定手法の比較を示す。

シナリオ設定方法については、スウェーデンでは、合理的に予想される変遷(基本的変 遷)を記述することを目的として、FEP処理により解析に必要のある全ての要因として特定 された①人工バリアの初期状態、②地圏と生物圏の初期状態、③人工バリア・天然バリアの プロセス、および、④将来の気候の変遷を前提条件とした解析が行われ、4つの事項(気候 関連、生物圏関連、地圏のTHMC、人工バリアのTHMC)が時間スケール毎(掘削/操業 期、閉鎖後1,000年及び初期の基本的な氷河サイクルの温暖気候期、基本的な氷河サイクル の残り、100万年後までの氷河サイクル)に示される。それらの解析の結果から、提示され た人工バリア・天然バリアのTHMCについての不確実性が分析され、合理的に予想される 変遷(基本的変遷)が特定されている。その際には、解析から得られた人工バリア・天然バ リアのTHMCの特性変化が、安全機能に対して有意な影響を及ぼすか否かについて、安全 機能指標基準を用いて判断されるとともに、安全機能の喪失・低下につながる見込みに対す る見積もりが行われている。これらを踏まえ、シナリオの分類が行われている。

一方、フィンランドでは、FEPにより処分システムの変遷に影響を及ぼし、放射性核種の 移行にとって関連性が高いと判断された①処分システムへの外的な負荷(主として気候の変 遷に起因するもの)、②内的な負荷(掘削作業、使用済み核燃料の定置および人工バリアの 設置の効果によるもの)、③処分場システムおよび地表環境の変遷、および、④変遷の道筋 の不確実性を考慮した性能評価が行われ、その評価結果から、性能目標と目標特性からの逸 脱につながる条件(特に放射性核種の放出につながる条件および事象)と、逸脱が発生する 見込みとその効果が見積もられる。これらの偶発的な逸脱及び発生の見込みの低い事象を踏 まえて放射性核種放出シナリオが作成される。

このように、フィンランド、スウェーデンともに、FEPによりシナリオ作成上必要と判断 された処分サイトの地圏及び生物圏の初期状態、採用される人工バリアの初期状態を前提と し、想定される将来の気候の変遷等の外的な負荷、および、それら要因を踏まえた人工バリ ア及び天然バリアの特性やプロセスの変遷を考慮に入れた安全機能への影響を評価するため に、性能評価(フィンランド)や基本的変遷の解析(スウェーデン)が行われている。これ ら性能評価や解析の結果からシナリオを作成するために、スウェーデンでは定量的な基準で ある安全機能指標基準が用いられているのに対し、フィンランドでは定性的な性能目標と目 標特性が用いられていることが異なる特徴である。

指標の導入については、スウェーデン、フィンランドともに長期的な安全機能の評価を目 指して、安全機能が満たされているか否かを示す指標が用いられている。スウェーデンで は、その指標に相当するものが安全機能指標であり、その指標をクリアする条件が安全機能 指標基準である。この安全機能指標基準を用いて、長期的に変化していく人工バリア・天然 バリアの THMC に関する値との比較を行うことで、安全機能に有意な影響を及ぼす可能性 のある変遷を導き出している。安全機能指標基準は、安全機能が喪失・低下に直接寄与する 指標を設定し、処分システムに予想される THMC の特性変化および不確実性を踏まえ、実 験的・解析的理解に基づき導出されている。なお、安全機能指標基準は 100 万年の評価期間 を通じて維持すべき定量的な基準であるのに対して、人工バリアの初期状態の基準である設 計条件と呼ばれる定量的な基準がもうけられている。設計条件は安全機能指標基準および評 価期間中の長期的な変遷に伴う人工バリアの劣化を踏まえ、余裕をもって設定されている。

一方、フィンランドでは、安全機能を長期的に満足させるための目標が「性能目標」(人 エバリア)及び「目標特性」(母岩)として表現されている。この性能目標と目標特性から の逸脱につがる条件の特定、および、逸脱が発生する見込みとその効果の見積もりによって シナリオの分類化がなされている。また、人工バリアの性能目標を観察や測定を通じて検証 できるように定性的に表現したものが設計要件である。さらに、性能目標および設計要件を 長期にわたって満たすために必要な、設計、建設および製造に使用される詳細な仕様が設計 仕様である。設計要件および設計仕様は、処分システムに予想される THMC 特性変化およびその不確実性を踏まえ、科学的理解に基づき導出される。

フィンランドの設計仕様とスウェーデンの設計条件はともに人工バリアの設計、建設およ び製造に必要な初期状態の仕様であるが、フィンランドは長期的に設定された長期的な目標 を満たす数値として決められているのに対して、スウェーデンは安全機能を直接評価する安 全機能指標基準を設定し、人工バリアの劣化を踏まえ余裕を持って設定されていることが特 徴である。

表	6.3-8	スウェーデン	/およびフ /	ィンランド	り安全機能を聞	踏まえたシナ	リオ設定手法の比
---	-------	--------	---------	-------	---------	--------	----------

較

	スウェーデン ⁽¹²⁾⁽¹⁸⁾	フィンランド ⁽¹⁹⁾⁻⁽²³⁾
シナリ	基本的変遷の解析により、閉じ込めに関する安	設計基準の定義から、設計基準に従う処分場シ
才設定	全機能に影響を及ぼす様々なプロセスの影響を評	ステム(性能目標及び目標特性を満たすように設
手法	価し、処分場で合理的に予想される変遷を記述す	計要件及び設計仕様に従って設計され建設された
	る。この合理的に予想される変遷は主要シナリオ	システム)が、将来の状況が合理的に見込まれる
	を明確化する上で重要な根拠となる。本解析で	変遷の道筋(設計基準シナリオ)をたどった場
	は、閉じ込めに関する安全機能に対する影響につ	合、安全機能は長期的に満たされる。このこと
	いて焦点を当てた解析を行っている。解析の前提	は、性能評価により示される。
	条件としては、FEP を考慮した①人工バリアの初	ポシヴァ社では、性能評価を 100 万年の評価期
	期状態、②地圏と生物圏の初期状態、③処分場の	間を3つの時間スケール(1. 閉鎖までの掘削及
	変遷において支配的な役割を果たす一連の人工バ	び操業期間、2. 閉鎖後の1万年間、3.1万年以降
	リア・天然バリアのプロセス、④将来生じ得る気	の氷期サイクルが繰り返し起こる期間)に分けて
	候の変遷、を踏まえている。また、評価期間は、	行っている。評価は、FEP を考慮した処分場シス
	1.掘削/操業期、2.閉鎖後の最初の 1,000 年間およ	テム及び地表環境の変遷及び変遷の道筋の不確実
	び基本的な氷期サイクルの初期にあたる温暖気候	性を考慮に入れた上で、報告書及び文献に示され
	期、3.基本的な氷期サイクルの残りの期間、4.そ	た既存のデータ及び利用可能な科学的な知見に基
	の後に続く、閉鎖後の 100 万年後までの氷期サイ	づいて行われ、可能な場合は常に定量的な評価が
	クルの4つの期間に分けている。	実施される。処分場システムにかかる負荷として
	解析の結果、a.気候関連の事項、b.生物圏関連	は、外的な負荷(主として気候の変遷に起因する
	の事項、c.地圏に関連する熱的、力学的、水理学	もの)及び内的な負荷(掘削作業、使用済み核燃
	的、化学的な事項、d.人工バリア(キャニスタ、	料の定置及び人工バリアの設置の効果によるも
	緩衝材、埋め戻し材)に関連する熱的、力学的、	の)の両方が考慮される。
	水理学的、化学的な事項を提示している。基本的	また、性能評価によって性能目標と目標特性から
	変遷の解析結果から得られた、それぞれの期間お	の逸脱につながる条件が特定され、逸脱が発生す
	よび上記4つの事項ごとの不確実性について分析	る見込みとその効果が見積もられる。特に、放射
	し、合理的に予想される変遷(基本的変遷)を記	性核種の放出につながり得る条件及び事象(偶発
	述し、さらに、安全機能に及ぼす影響の面で有意	的な逸脱)が特定される。これに加え、処分場を破
	なものか否かの判断を行う。これらを踏まえ、シ	壊し得るきわめて発生の見込みの低い事象及びプ
	ナリオの分類が行われる。	ロセスがいくつか存在する。これらの偶発的な逸
		脱及び発生の見込みの低い事象を踏まえて、放射
		性核種放出シナリオが作成される。
指標の	スウェーデンではシナリオ選定を行うための中	フィンランドでは、要件管理システムにより、
導入	核となる指標として、安全機能(処分場の各構成	一連の安全機能 (safety functions) 、性能要件
	要素が持つ役割)(Safety function)、安全機能指標	(performance requirements) 、設計要件 (design
	(安全機能を計るための指標) (safety function	requirements) 及び設計仕様 (design specifications)
	indicators)、安全機能指標基準(その指標がクリ	を設定している。安全機能は処分場構成要素の役
	アすべき条件) safety function indicator criteria) を	割として定義されている。安全機能は、それぞれ
	用いている。安全機能、安全機能指標および安全	の構成要素に対して設定されている性能要件(性
	機能指標基準は、処分場構成要素の特性と長期的	龍目標 (performance targets) (人上バリア)、目標
	期回の埋解に基づき設定している。	特性 (target properties) (母岩)) を満たすことで
	ここで、安全機能は安全性の評価の一助となる	夫現される。人上バリアに期待される性能目標を
	ものであるか、全ての安全機能指標基準が履行さ	探美段階において検知できるように定性的に表現
	れていること目体が、安全性の実現に関する根拠	したものが設計要件である。設計仕様は、性能目

スウェーデン ⁽¹²⁾⁽¹⁸⁾	フィンランド ⁽¹⁹⁾⁻⁽²³⁾
を示す上で必要なわけでも、十分なわけでもない としている。一方、人工バリアの安全性の実現に 関係する根拠として、人工バリアの設計条件 (design premises)が提示されている。安全機能指 標基準が100万年の評価期間を通じて維持すべき 基準であるのに対して、設計条件は処分場の初期 状態に関する基準であり、評価期間中の人工バリ アの劣化を踏まえ、余裕を持って設定されてい る。設計条件は、安全機能と設計検討事項(人工 バリアの製造、定置、検査の実現可能性、コス ト、スピード、環境影響および法規)に基づいて 設定される。	標および設計要件を長期にわたって満足させるた めの詳細な仕様である。設計要件および設計仕様 は、処分システムに予想される THMC 特性変化 およびその不確実性を踏まえ、科学的理解に基づ き導出される。

(2) 安全機能に着目したシナリオ設定手法

体系的な安全評価手法としての人工バリアの変遷に関するシナリオ設定手法を整備するこ とにより、地層処分の事業者が提示する安全評価におけるシナリオ設定が妥当であるかどう かを判断することができるようになることを目指し、①人工バリアの新たな安全機能の提示、 ②新規知見の FEP への反映、③安全機能につながる影響の連鎖を実施した(図 6.3-3)。これ らの設定手法の安全評価への適用については、(3) リンケージ解析への展開の現状と課題に 示す。

図 6.3-3 安全機能に着目したシナリオ設定手法

①人工バリアの新たな安全機能の提示

地層処分の安全戦略(概念)の基本的な考え方である閉じ込めと隔離に対応するため、人

エバリアに期待すべき安全機能を適切に設定することは、処分システムの性能評価をする上 で重要な着目点となる。人工バリアシステムは、ひとたび放射性廃棄物が定置・埋設された 後は、受動的な環境にさらされつつ安全機能が発揮されることから、人工バリアシステムに おける安全機能には独立性の観点とともに、相互関係性の観点での記述を行うことが重要に なってくる。この考え方に基づき、これまでのFEPデータベースによる知見や、海外調査事 例等から、本事業において、我が国における地層処分の人工バリアシステムにおいて考慮す べき安全機能と、各安全機能を発揮させるための具体的な性能(バリア性能)およびその方 向の設定について整理した(表 6.3-9)。

	人エバリア材の安全機能とその性能を評価するため重要と考えられるパラメータおよび モデル・データベースにより重要パラメータの値を決める際の影響因子との関係性					
人エバリア材	個々の安全機能	安全機能を発揮させるた めの具体的性能(パリア 性能)と望ましい方向	機能・性能を評価する ために定量可能なパラ メータで重要なもの(重 要パラメータ)	モデル・データベースにより重要パラメータの値を決める際の影響因子		
ガラス固化体	放射性核種の浸出抑制	(低い)溶解性	ガラス固化体溶解速度	Na、Al、Mg、Fe、FeAl等の珪酸塩鉱物の溶解沈 殿速度、反応量、物理化学的的特性、初期溶 解速度(k0)、間隙水中のSi濃度(Q)、ガラスの 疑似的な溶解度(K)、表面積、温度		
		(高い)全面腐食耐性	腐食速度	pH、炭酸イオン+炭酸水素イオン濃度、溶存酸 素濃度、腐食電位、腐食生成物の種類、温度		
		(高い)局部腐食耐性	活性態−不動態遷移pH (pHd)	pH、炭酸イオン+炭酸水素イオン濃度、塩化物 イオン濃度、溶存酸素濃度、腐食電位、温度		
	放射性核種の浸出抑制 (ガラス固化体と地下水と の物理的な接触防止)	(高い)水素脆化割れ、水素 誘起割れ耐性	水素脆化割れ、水素誘起 割れ発生電位の上・下限 値、水素脆化割れ、水素 誘起割れ発生下限界応力	pH、溶存水素ガス濃度、表面、溶接部の欠陥 量、温度、残留応カ		
オーバーパック 	עדר (ארע או אין אין איר ארע גע	(高い)応力腐食割れ耐性	応力腐食割れ発生電位の 上・下限値、応力腐食割 れ発生下限界応力	pH、炭酸イオン+炭酸水素イオン濃度、溶存酸 素濃度、腐食電位、表面、溶接部の欠陥量、温 度、残留応力		
		(高い)平衡荷重耐性	材質、形状	強度、厚さ、自重、傾き		
		(高い)剪断荷重耐性	材質、形状	強度、厚さ、自重、定置角度からの傾きによる 応力		
	間隙水の還元性維持(オー バーパック近傍の還元性の 維持・確保)	(好ましい)還元状態維持性	全面腐食速度	pH、溶存酸素濃度、腐食電位、腐食生成物の 種類、温度		
	オーバーパックの安全機能 を阻害する化学的、物理 (力学)的外部プロセスから の保護	(好ましい)オーバーパック腐 食環境性	間隙水組成	鉱物組成、乾燥密度、緩衝材厚、pH、Cl濃度、 Na、K、Ca、Mg、Feのイオン交換の設定状態、 支保工組成、支保工厚、飽和度、温度		
		(好ましい)弾性・塑性	乾燥密度、膨潤力	モンモリロナイト含有率、含水率、Ca型化率、イ オン強度、温度		
	オーバーパック位置の保持	(好ましい)弾性・塑性	乾燥密度、膨潤力	モンモリロナイト含有率、含水率、イオン強度、 Ca型化率、温度		
		(低い)透水性	透水係数	有効モンモリロナイト密度、イオン強度、Ca型化 率、温度		
		(低い)コロイド透過性	間隙径(分布)	有効モンモリロナイト密度、イオン強度		
緩衝材	放射性核種の移行抑制	(高い)核種収着性	分配係数	有効モンモリロナイト密度、イオン強度、Ca型化 率、温度		
		(低い)核種拡散性	拡散係数	有効モンモリロナイト密度、間隙率、イオン強 度、Ca型化率、温度		
	放射性核種の移行抑制機 能を阻害する物理(力学) プ的プロセスからの保護 (亀裂生成、ガス移行経路 生成など)	(高い)自己シール性	膨潤力(膨潤率)	モンモリロナイト含有率、乾燥密度、含水率、イ オン強度、Ca型化率、温度、外圧		
	微生物の除去	(高い)侵入阻止性・排除性	膨潤圧	モンモリロナイト含有率、乾燥密度、含水率、イ オン強度、Ca型化率、温度		

表 6.3-9 新たに提示する安全機能、バリア性能、重要パラメータ、影響因子の関係

・ 人工バリアシステムにおいて考慮すべき安全機能については、バリアの相互関係性に関 連する安全機能の観点から、早い段階から記載されることは少なかったが、「他のバリ アの保護」機能を代表として、海外事例の調査結果により示された安全機能に着目した 機能を整理して提示した。また、各安全機能を発揮させるための具体的な性能(バリア 性能)およびその方向の設定について、オーバーパックおよび緩衝材に必要となるバリ ア性能について、腐食形態ごとへの細分化、還元性環境維持、核種移行抑制機能の阻害 プロセスからの保護などの観点により、その内容について検討した。

- 概念としての安全機能と、指標としての定量可能なパラメータとを結びつけることを可 能とするため、重要パラメータを各バリア性能に対して設定した。重要パラメータは、 海外事例の調査結果において、「性能指標」、「安全機能指標」、「性能目標」等の表現で 示されているものに相当すると考えられる。特に、前述した腐食形態ごとに設定したバ リア性能では、腐食耐性や割れ耐性といったバリア性能に対し、全面腐食とそれ以外の 腐食形態で重要と考えられるパラメータについて詳細に検討し、腐食速度とその形態の 発生要因とに分割する考え方を示した。また、バリア性能の定量化を図る際には、その 重要パラメータが、バリア性能間で共通するケースがあり、重要パラメータの変化がバ リア性能の向上に一律かつ一方的に望ましくならないことを考慮せざるを得ないことも 示した。このような場合には、バリア性能の方向性として「好ましい」と表現し、その 例として、還元環境の維持に対する「全面腐食速度」、オーバーパックの腐食耐性や割 れ耐性に対する「間隙水組成」を示した。
- これらの整理の内容を踏まえ、人工バリアをシステムとして機能させた場合のそれぞれ の人工バリアの安全機能の喪失や低下の定量化の評価へと結びつけるため、重要パラメ ータを導出するために用いられるモデルやデータベースに入力される影響因子(導出手 法が提示されている場合はその入力変数、未確定の場合には影響すると考えられる変 数)を明確化した。これらの影響因子は、海外事例の調査結果において、「安全機能指 標基準」、「設計仕様」等の表現で示されている値や範囲を、実験的、解析的な手法によ る結果から反映させるために用いられるものに相当すると考えられる。そして、影響因 子についても、上述の内容と同様に、それぞれのバリア性能に対する影響因子が一方的 かつ一律にそれぞれの重要パラメータに影響を与えるわけではないため、重要パラメー タごとにそれぞれの因子の影響の方向と程度を評価することが必要になってくる。

②新規知見の FEP への反映

安全規制の観点からのシナリオ設定手法の妥当性の判断を目的として、HLW および TRU 廃棄物を対象に、平成 22 年度より FEP データベースの整備を行ってきている。FEP データベースは「FEP リスト」、「相関関係図」、「FEP シート」および「安全性への影響の可能性」から 構成される。地層処分場での物理化学的特性や現象に関する知見を基に、ある起因事象とそ れらを受けて発生する派生事象の関係を可能な限り網羅的に「安全性への影響の可能性」と して整理している。さらに、シナリオとして取り込む必要性や影響の有無を「相関の判定」 として判断している。一方、我が国や諸外国の研究機関による地層処分に関する知見の拡充 に伴い、処分場内における現象や特性の理解が進み、これら理解の進展に合わせて FEP デー タベースを更新していくことが重要である。平成 23 年度には、2008 年までの知見で使用さ れている文献のうち、ジャーナルや学会の議事録集(Proceedings) など、2009 年以降も定期 的・継続的に発行されているもの、地層処分を検討している諸外国から 2009 年以降に公開さ れている安全評価書、INIS 検索で上記の HLW、TRU 廃棄物の人工バリア材が対象となって いるものを新規知見の対象とし、FEP データベースを更新した。 平成 25 年度には、安全研究センター内部の専門家に対して、「安全性への影響の可能性」 に対応する新規知見に関する情報の収集、および、「相関の判定」の妥当性についての意見を 収集し、これらを分析することで、FEP データベースの更新を行った。その成果の概要を以 下に示す。

- 専門家の意見や新規知見により、現状の「相関の判定」が妥当であると判断された事例 がほとんどであった。新規知見は、そのほとんどが、「安全性への影響の可能性」に示 された起因事象とそれを受けて発生する派生事象の関係に対して、新たな条件下で実験 や解析を行った内容であり、現状の「相関の判定」が妥当であると判断された。
- 現状の「相関の判定」を変更する必要があると判断された事例は、7 事例確認された。 そのほとんどが、現状の相関の判定における"場合分け"が適切でないものであった。 「安全性への影響の可能性」に記載された影響の連鎖が、複数の異なる前提条件によっ ては、「相関の判定」が異なる場合に、相関の判定における"場合分け"が用いられて いる。
 - 「安全性への影響の可能性」の影響の連鎖の記述内容が、実際に処分場内で発生すると 考えられる現象と解離していたり、記述内容が分かり難い事例が確認されたりした。こ れらについては、専門家の意見に従い、修正を行った。

③安全機能につながる影響の連鎖

人工バリアの変遷に応じた安全機能の喪失・低下の体系的な評価を行うためには、安全機 能につながる影響の連鎖を図化し、明確化することが有効である。そこで、平成25年度には、 ①で整理した「人工バリアの安全機能とその影響因子の関連性」と②で整理した「安全性へ の影響の可能性に記載されている起因事象と派生事象の連鎖」に関する情報を基に、「安全機 能の喪失・低下に至るフロー図」を作成した。

ガラス固化体では低い溶解性の低下に至るフロー図を1つ、オーバーパックでは応力腐食 割れ耐性、局部腐食耐性、水素脆化割れ・誘起割れ耐性、平衡荷重耐性、せん断荷重耐性、お よび、間隙水の還元性維持に関するフロー図を計7つ、緩衝材では化学的・物理的外部プロ セスからの保護に関する好ましいオーバーパック腐食環境性と好ましい弾性・塑性、オーバ ーパックの保持に関する好ましい弾性・塑性、低い透水性、低いコロイド透過性、高い核種 収着性、低い核種拡散性、高い自己シール性、高い微生物の侵入阻止性のフロー図を計9つ 作成した。一例として、ガラス固化体の安全機能「放射性核種の浸出抑制」について図 6.3-4 に示す。ガラス固化体の放射性核種の浸出抑制は、溶解特性が変化することで低下する。ガ ラス固化体の溶解特性には、地下水組成、ガラス固化体の化学特性、ガラス固化体のひび割 れの進展の影響を受ける。さらに、ガラス固化体の崩壊熱によって、地下水組成、ガラス固 化体の化学特性、ガラス固化体のひび割れの進展が変化する。

図 6.3-4 ガラス固化体の放射性核種の浸出抑制「(低い)溶解性」の低下に至るまでの フロー図

(3) リンケージ解析への展開の現状と課題

安全評価は、処分施設の性能の評価ならびに人の健康と環境に対する放射線影響の可能性 の定量化であり、施設およびその構成要素(人工および天然バリア)の劣化を生じさせる閉 鎖後の漸進的プロセス、また、廃棄物の隔離に影響を及ぼし得る非定常に生じる擾乱事象(例 えば、地震、断層運動および偶発的な人間侵入)から生じる影響を評価する。

処分施設の性能の評価においては、処分システムの記述を基にして評価が進められる。処 分システムの記述は、システムの構成要素、安全機能、システムの初期状態から予想される 変遷(以下「内的要因」)と、どのタイミングでどの程度の規模が起こるのか予測しにくい境 界条件としての事象(以下「外的要因」)の両方に対してシステムの構成要素がどのように割 り当てられた安全機能を果たし続けられるのかについて行われる。

このためには、処分システムに影響を与えるかもしれない THMC(放射線学的、生物学的 プロセスも含む)、システムの構成要素間で生じるかもしれない相互作用、システム構成要素 およびそれらのインターフェースの特性および挙動の時間とともに起こる可能性のある変化、 さらには、どのように要素の劣化、環境の変化が起こるか、そしてそれが処分システムの構 成要素に対して及ぼす影響について記述する必要がある⁽²⁴⁾。

シナリオは、処分システムにおいて起こり得る様々な変化に関する記述であるため、「評価 ケース」を評価の目的と背景に沿って特定し定義することが重要である。評価ケースは、処 分システムにおいて合理的に起こり得る変遷を包絡するものである必要があり、シナリオの 選択およびそれに基づく適切な評価ケースの選択の論理的根拠が非常に重要となる⁽²⁴⁾。

図 6.3-5 リンケージ解析に対するシナリオ設定の展開

人工バリアの長期変遷事象に関するシナリオは、網羅性を重視した視点でこれまで蓄積さ れてきた FEP データベースの中から、発生の頻度や影響の度合いを勘案し、対象となるシー クエンスの中から標準的なシナリオと核種移行フラックスに影響しそうなシナリオを選択す る設定手法と、リンケージ解析の結果から、ある初期条件を起点として時間的・空間的に変 化する人工バリア領域の状態を設定し、その状態設定に対応させることで、パラメータ間に 矛盾の少ないシナリオ設定手法の2つの手法を適用した核種移行解析(安全評価)を、これ までは特に連携させることをそれほど意識せずに、比較的独立した評価ケースを設定して進 めてきた。しかしながら、今後はこれら2つの手法を適切に連携させてシナリオを設定する ことが重要であることと考え、エラー!参照元が見つかりません。に現状のリンケージ解析 を含む包括的なシナリオ設定手法をフロー図として表した。

ここで、内的要因には、緩衝材の変質、オーバーパックの腐食、ガラス固化体の溶解など 時間の経過とともに通常生じ得る事象であり、処分システムが置かれた地化学環境や人工バ リアの構造・構成などの設計、施工の状態を出発点として受動的に変遷していく象が含まれ る。これらの事象は、初期の処分システムのあり方、つまり、初期条件に起因する要因に基 づくものと理解できる。

一方、外的要因には、再冠水時の緩衝材流出、地下水水質の変化、地表に到達する断層生成など時間の経過にかかわらず、徐々に変化するのではなく(あくまでも長期の時間スケールに対し)、あるタイミングで突発的に発生する事象であり、処分システムの置かれた地化学環境や人工バリアの構造・構成を能動的に変遷させて行く事象が含まれる。これらの事象は、初期の処分システムのあり方に係わらず、あり方そのものに影響を与えることから、境界条件に起因する要因に基づくものと理解できる。

これら2つの要因に対し、リンケージ解析では、内的要因に関するシナリオ設定により科 学的合理性を付与することを寄与することを目指して開発してきている。それは、リンケー ジ解析においては、より現実的な評価にする必要から多数のパラメータを伴う連成現象を含 む計算を取り扱っており、また、使われるデータとモデルについても、できるだけ処分シス テムの性能の現実的な描写に実際につながるような条件設定の実験、あるいはデータベース からのフィードバックを裏付けとして持っているからである。しかしながら、現状のリンケ ージ解析で取り扱える事象は、内的要因のうちでも、力学などの要因を除いた一部に過ぎな い。さらに、**エラー!参照元が見つかりません。**に示したように、外的要因の一部の事象(例 えば、地下水水質があるタイミングで変化するような状況)に対応できるように改良を進め ているものの⁽¹⁶⁾⁽¹⁷⁾、多くの外的要因をリンケージ解析に直接取り込むことは実現できていな いし、また現実的ではない。これらの外的要因事象については、FEP や本章で整理した安全 機能への影響をシナリオ化して適用するのが現実的である。ただし、シナリオ化に当たって は、シナリオ設定について、各事象の時空間分布、タイミングや位置、状況の設定方法や設 定値に対し、十分な合理性を付与することが必要になるものと考えられる。

今後は、(2)の③で整理した網羅性を背景とした安全機能に繋がる影響の連鎖において、 リンケージ解析がどの範囲をカバーしているのかを十分把握した上で、今後カバーすべき事 象を、モデル化の可否、困難度、バリア性能への影響度、を考慮しつつ進めていくことが重 要になると考えられる。

6.3.3 地質・気候関連事象に係るシナリオ設定手法

高レベル放射性廃棄物等の地層処分地層処分では、地震、火山等の地質・気候関連事象に よる処分施設の破壊や著しい特性の変化の影響はサイト選定により回避され、あるいは、処 分場レイアウトの検討や適切な施設設計により、このような地質・気候関連事象による処分 システム(天然バリア及び人工バリア)内の特性変化の影響を極力抑えなければならない。 そのため、地層処分の安全評価では、地質・気候関連事象の発生が処分システム領域におけ る地質環境のTHMC特性に与える影響を評価する必要がある。

平成 21 年度までに原子力機構では、サイトを特定しないジェネリックな条件のもと、我が 国で想定される地質・気候関連事象の発生が THMC 特性に与える影響の伝搬プロセスの具体 化及び細分化、FEP 相関関係図の作成、及び既往文献の知見からシナリオに取り込む事象抽 出のための定性的な判断を成文化した"安全性への影響の可能性と相関の判定"にかかわる FEP データベースの整備を進めた。その結果、処分システム領域の THMC 特性に影響を与え る可能性が考えられる事象の組み合わせが 177 存在することを示した。

平成 22 年度は、原子力機構が作成した FEP データベースの技術的信頼性を向上させるた め、データベース中の事象の細分化方法、FEP 相関関係図の作成方法の妥当性、「安全性への 影響の可能性と相関の判定」の根拠となる知見・データの代表性と適切性に関して外部専門 家にアンケート調査を実施し、調査結果を集約した。平成 23 年度から平成 24 年度において は、FEP データベースへの新規情報及び知見の拡充を図るため、地震に関しては前年度に発 生した東北地方太平洋沖地震、火山に関しては新燃岳の噴火等に関連する最新情報・知見を 収集した。

1) さらに、平成 22 年度から平成 23 年度においては、地質・気候関連事象の発生が THMC 特性に影響を与える可能性が考えられる 177 事象を対象に、既存モデル(モデル式、入出力 データ等)を調査し、その情報をもとに各 THMC の特性変化を評価するための既存モデルの 組み合わせによる入出力データの関係性や計算の成立性を分析・整理し、177 事象全体を概 観した計算構造として取りまとめた(図 6.3-6 参照)。

図 6.3-6 地質・気候関連事象による THMC 特性変化の計算構造例(力学-水理計算構造の例)

平成 25 年度~平成 26 年度は、これまで原子力機構が整備してきた地質・気候関連事象に 関わる 177 の事象のうち、処分施設へ直接的な影響を及ぼす事象(直撃により廃棄体が直接 破損に至る事象)に該当するものについてシナリオの整理と影響の評価手法の整備を行った。 処分施設への直接的な影響には地震活動や火山活動、泥火山やマスムーブメントなど隔離機 能への影響が懸念されるものとして 23 事象が存在する。これらについては文献調査・概要調 査によって事前に回避されることとされているが、事象によっては、将来、活動規模や活動 範囲が変化するため、回避しきれない不確実性が残されている。このため、回避しきれない 事象の影響にかかわる評価シナリオを図 6.3-7 の手順に従って検討・設定した。

図 6.3-7 回避しきれない事象が発生した場合の評価シナリオの設定方法

図 6.3-7 に示すように、まず処分施設に直接的な影響を及ぼす 23 事象のうち、回避しきれ ない可能性のある事象について既往の研究事例をもとに起因事象発生の規模・発生領域の時 間変化等について具体化を行った。そしてこの新規に発生する事象についてその発生規模を 明確にしたうえで、想定規模の事例・データに基づき、処分システム(処分施設及び移行経 路)への影響について影響の連鎖を含めてシナリオの記述を行った。このうち、処分施設へ の影響を定量的に評価することが可能な事象については、仮想的なサイトに対して境界条件 を設定し、地下水流動解析を実施することとし、状態設定が困難なものについては、事例デ ータに基づき影響量の設定を行い、核種移行評価に必要なシナリオを設定することとした。

平成25年度は、これらの事象のうち、隆起・侵食に伴って処分施設の対地深度が変化した 場合の処分施設への影響シナリオを設定し、地下水流動解析を行うとともに核種移行評価を 実施した。解析ケースとしては、一様隆起・侵食有り/無しの場合と傾動隆起・侵食有り/無し の場合を想定した。その結果、傾動隆起および一様隆起ともに、移行距離に与える影響は小 さいものの平均流速に関しては、地表接近に伴う処分施設周辺の透水係数が増加するため、 いずれのケースも大きくなる結果となった。ただし、傾動隆起の場合、侵食有りの場合、侵 食無しの場合に比べると時間の経過とともに地形勾配の変化幅が小さいため、一様隆起の場 合に比べると侵食有り/無しによる平均流速への影響は小さい結果となった。

平成26年度は、これらの事象のうち、地震活動については派生断層の発生・成長に伴う処 分施設への直接的影響シナリオ、火山活動については火山噴火に伴う処分施設の廃棄体の地 上への放出とそれに伴う核種移行評価シナリオを検討した。なお、その他の事象については 仮想的なサイトを対象とした THMC に関する状態設定が困難であることから、事例に基づく シナリオ整理を行った。地震活動については、将来、主断層から回避されたはずの処分施設 を地下に伏在していた分岐断層が成長・直撃し、さらにバックスラストの形成により地表か ら酸化性地下水の流入の可能性を想定し、処分施設への影響解析・評価を行った。解析では、 分岐断層が処分施設を直撃した際、深部から被圧されていた熱水がコサイスミックに流入す る可能性についても影響シナリオとして設定した。地下水流動解析の結果、分岐断層が処分 施設を直撃した場合、断層中央部と断層上流部の処分施設において平均流速が増加しすると ともに断層が直撃っしない場合と比べて核種移行経路に変化が現れる結果となった。また、 バックスラストが形成され、地表に到達した場合、地表から地下深部に向かう地下水流速が 生じることが確認され、酸化性地下水が地下深部へ流入する可能性が示唆された。

今後の課題として、地質・気候関連事象に係るシナリオ設定手法を構成する FEP データベ ースにおいては、地質・気候関連事象に関する最新の知見や事例データを拡充するとともに、 地域性などを踏まえた地質・気候関連事象の発生とそれに起因した THMC 特性への影響の連 鎖に関する精査が必要である。また、平成 26 年度までに隆起・侵食や地震活動の発生による 地質環境内の地下水流動や水質等の変化を対象とした影響評価手法を整備したものの、それ らの各種モデル・コードの精緻化や多様な地質・気候関連事象や地質環境の条件下での感度 解析は今後も必要である。さらに、未対応である地質・気候関連事象の発生による THMC 特 性の影響評価手法の整備も今後の課題である。

6.4 総合的安全評価手法の整備

6.4.1 安全評価手法の体系化

地層処分の安全評価においては、処分サイトの違いや地質・気候関連事象を考慮した地下 水環境条件を設定した上で、廃棄体から人工バリア、天然バリアを経由して放出される放射 性核種のフラックス(核種移行解析)及びそれに基づく生物圏における被ばく量をひとつな がりで評価する必要がある。つまり、既存の研究やこれまでの検討の結果を考慮し、「人工バ リアの各評価モデルの適切なリンケージの方法」、「リスク論的考え方に基づく安全評価シナ リオとそれらの長期評価における不確実性への対応」を総合的に検討し、我が国で想定され る地層処分地下環境へ適用可能な総合的な安全評価手法としての方法論の全体とりまとめ (体系的な安全評価手法の整備)及び、閉鎖後の安全評価を対象に、我が国における地層処 分システムの基本構成(天然バリアと人工バリアの組み合わせ)と多重安全機能としてのバ リアシステムのあり方(安全を担保するための特性や構造)についての検討を行うことが求 められる。

平成22年度以前では、人工バリア領域の状態変遷や核種移行パラメータの設定は、サイト が未確定であることもことが大きく影響してはいるものの、各人工バリア材の変遷やその変 遷と他のバリア材に与える影響とを関連させることなく、少なからずシナリオの設定に頼り、 現実的であることよりも保守的な設定とすることが多かった。本事業においても、特に、こ の前事業に相当する受託調査では、人工バリアの変遷を評価するモデル間のみならず、人工 バリア評価のモデル群と安全評価コードとの入出力が整理できていないこともあり、条件設 定を定性的、半定量的に設定した部分が多かった。

平成 22 年度より、こうした点を踏まえ、人工バリアの変遷を評価するモデル間の関係を、 それらモデルに必要な入出力データや共通的に使用される条件データに着目して整理を行い、 安全評価手法の体系化に取り組んできた。また、これら人工バリアに関するモデル群から出 力されるデータと安全評価コードとの関係についても、より詳細に整理を行った。これらの 整理により、どの評価モデルにどのような条件データや入力データが具体的に必要かが明確 化されるとともに、各モデルや評価手法がどのような相互関係で全体の評価手法が構成され ているかも整理することができた。このような整理を行うことにより、ある評価を行おうと したときの初期の条件設定が、どのように人工バリアの状態変化や核種移行パラメータ、核 種移行フラックスに波及してゆくのかを、十分な追跡性を持って把握できるようにすること が可能になった。さらに、感度解析による重要度分析などによって、ある評価における重要 因子が抽出された場合、その因子の重要性(感度)がどのような条件の要因(例えば、間隙水 中における Mg²⁺イオン)に基づいているのかというような遡及的な検討を可能としたことも 非常に重要な成果である。平成23年度では、以上のようなリンケージの考え方に基づき、比 較的想定しやすい現実的な初期条件の設定による試計算を行い、課題の抽出を行った。以上 の検討を反映して平成24年度に人工バリア内の各要素間のリンケージを図6.4-1に示すよう に体系化した。

また、平成24年度からは図6.4-2に示すように、地質・気候関連事象に対して、地下水流 動解析から人工バリア変遷解析を経て核種移行及び被ばく線量評価を行う一連のリンケージ 体系を構築した。これにより天然バリア領域においては、仮想的な堆積岩サイトの地質環境 条件(2次元の水理、地質・地質構造、隆起・侵食条件、化学環境等)を設定し、隆起・侵食 による地表面の削剥によって処分場の対地深度が変化した場合の核種移行経路、移行経路中 の地下水流速、化学環境(塩水/降水境界)の変化を地下水流動解析、塩分濃度解析およびト ラジェクトリー解析から求めた。さらに、塩水/降水境界の位置と処分場の対地深度の関係か ら、処分場内の水質条件(塩水系及び降水系)を決め、その解析結果と、ガラス固化体やオー バーパック及びベントナイト系緩衝材の性能評価、ならびに核種移行パラメータの評価との リンケージを図り、人工バリア及び天然バリアにおける核種移行解析を行った。平成26年度 には断層活動による影響に対しても評価が行えるよう、天然バリアの温度、水質の条件を人 工バリア変遷及び移行経路上の核種移行パラメータに反映できるよう整備を進めた。

平成26年度までに、我が国において想定される代表的な地質、水理、熱及び化学的環境を 踏まえた人工バリア及び地質媒体における長期的な核種移行や被ばくに与える影響を評価で きる体系的な安全評価手法の整備を行った。しかしながら、多様な人工バリア変遷に係る内 的要因のシナリオに対応した安全評価手法ではなく、また、地質・気候関連事象についても、 隆起・侵食や地震活動の一部のシナリオに対応した安全評価手法の整備に限定されている。 そのため、今後の課題として、多様な内的及び外的要因のシナリオに対応したモデル/パラメ ータの整備とそれらの適切なリンケージ方法の構築(総合的な安全評価手法の高度化)が挙 げられる。さらに、整備した安全評価手法による各シナリオの安全解析を行い、その結果に 基づいた重要な規制要件の抽出を行う必要がある。

図 6.4-2 隆起・侵食を対象とした安全評価の体系化

6.4.2 安全設計及び安全評価の基本的考え方の整理

(1) 安全評価の基本的考え方の整理

平成 22 年度においては、旧原子力安全委員会「放射性廃棄物処分の安全規制における共通 的な重要事項」⁽¹⁾において提案された線量/確率分解アプローチに着目し、余裕深度処分の安 全評価の考え方で採用されている自然過程に係る 3 つのシナリオ分類(基本シナリオ、変動 シナリオ、稀頻度事象シナリオ)を我が国の地層処分に導入する際に必要となるシナリオ設 定の基本的考え方について、地層処分と余裕深度処分の安全戦略の違いもふまえて検討した。

地層処分で考慮/排除すべきシナリオ設定の考え方

地層処分で考慮すべき評価シナリオは、基本的に余裕深度処分の評価シナリオと同様のも のであると考えられる。余裕深度処分と同様に地層処分においても、自然過程による公衆の 被ばく経路としては、地形変動等による廃棄体と人との接近(接近シナリオ)と、地下水を 介した放射性核種の移行(地下水移行シナリオ)が考えられる。このうち接近シナリオは、 火山・断層活動等の急激な作用により埋設施設が破壊され廃棄体と人との接近を引き起こす ものと、隆起・侵食等の緩慢な作用により廃棄体と人との接近を引き起こすものとに分類で きる。地下水移行シナリオについては、余裕深度処分と同様に地層処分においても必ず想定 される事象であり、安全評価を行うことが求められる。ただし、比較的短い時間スケールに おける埋設施設の破壊など、放射性物質の著しい放出を伴う地下水移行シナリオについては、 排除すべきシナリオに分類されることも考えられる。

一方、地層処分は「隔離」を行う処分であることから、接近シナリオについては基本的に 埋設施設の立地によって排除されるべきと考える。接近シナリオを排除すべき時間スケール としては、隔離の対象となる HLW 等の放射能あるいは放射性核種濃度が、人との接近の観点 からリスク源として許容されるレベルに低減するまでの期間であり、この「レベル」につい ては今後議論が必要である。今後は、排除すべき接近シナリオ等の範囲、すなわち自然事象 とその事象発生による処分システムに与える影響のシークエンスの範囲を特定し、その評価 のために採用する方法論を明示することが重要である。

また、余裕深度処分の安全評価におけるシナリオ分類は、a)基本シナリオ、b)変動シナリオ 及び c)稀頻度事象シナリオは、それぞれ以下のように定義されている。

- a) 基本シナリオ:発生の可能性が高く通常考えられるシナリオ
- b) 変動シナリオ:発生の可能性は低いが、安全評価上重要な変動要因を考慮したシナ リオ

c) 稀頻度事象シナリオ:発生の可能性が著しく低い自然事象

余裕深度処分と同様に、地層処分においても安全評価が求められる地下水移行シナリオについては、a)とb)の考え方に基づきシナリオ設定を行うことが適当と考える。

一方、接近シナリオに関しては、火山・断層活動や隆起・侵食作用に関して比較的信頼性 の高い評価が可能な時間スケールについては立地で排除し、評価の不確実性が高くなる、よ り長期の時間スケールについては稀頻度シナリオとして安全評価を行うことが適当と考える。 こうした接近シナリオの起因事象についての発生可能性等の評価は、サイトにおける過去の 履歴データに基づいて行われることから、評価の不確実性は時間スケールによって異なる上 にサイトにも依存するものの、一般的には、数万年の将来の時間スケールであれば比較的に 信頼性の高い評価が可能とされている。

以上をふまえた3分類シナリオ設定の考え方の一案を表6.4-1に示す。

被ばくシナリオ	地層処分		余裕深度処分	
	数万年まで	数万年以降	数万年まで	数万年以降
火山・断層活動等の急激な作	立步之	稀頻度事象	立专业	稀頻度事象
用による廃棄体と人との接近	卫地飞孙际	シナリオ	卫地(孙际	シナリオ
隆起・侵食等の緩慢な作用に	立步之	稀頻度事象	基本/変動	稀頻度事象
よる廃棄体と人との接近	卫地飞孙际	シナリオ	シナリオ	シナリオ
地下水を介した放射性核種の	甘大/亦動い上川よ		甘大(亦乱い上川上	
移行による人の被ばく		リンノリス	本平/ 変男	カンノリス

表 6.4-1 自然過程による被ばくシナリオとその対応

安全設計要件へのフィードバックの観点での提案

IAEA 基本安全原則(SF-1)⁽²⁾において「安全評価は、ハザードを制御するために必要な安 全措置を対象に含み、設計と工学的安全設備がそれぞれに要求される安全機能を満たすこと を立証(demonstrate)しているかが評価される」と示されているように、安全評価は、施設の 設計等にどのような、またどの程度の安全機能が求められているかといった安全設計の要件 とも深く関係する。地層処分の安全設計の要件は、立地に求められる要件と上記の工学的安 全設備に求められる要件とに大別される。このうち前者については、適切な地質環境や深度 などを選ぶことによって、火山・断層活動等の急激な作用による埋設施設の破壊や、隆起・ 侵食等の緩慢な作用による廃棄体と人との接近を将来にわたって排除すること等が求められ、 現在我が国の規制機関において、それらを判定するための判断指標策定に向けた検討が行わ れている。

一方、後者の工学的安全設備に関する要件については、処分技術に関する新たな技術や知

見を設計や工事に反映できるよう現時点で詳細化・具体化することは必ずしも適切ではない ものの、例えば「数十万年後の線量」といった評価指標のみではなく、将来の技術進展にも 柔軟に対応できるよう留意しつつ、時間スケールに応じた工学的安全設備に求める基本的な 要件を検討することは重要と考える。その際、設計可能性に加えて、合理的な目標設定のた めには、その時点でどこまで信頼性のある性能評価・安全評価が可能であるか、といった安 全評価側からのフィードバックも考慮されるべきと考える。

我が国における地層処分の対象廃棄物は、HLW(ガラス固化体)と長半減期低発熱廃棄物 (TRU 廃棄物)の一部であり、前者に対する閉じ込め機能は、主として人工バリアとして想 定されている炭素鋼オーバーパック(OP)やベントナイト系緩衝材が担保することとなる。 このうち炭素鋼 OP については、"第2次取りまとめ(1999)⁽³⁾"において、少なくとも千年 間にわたって閉じ込め機能を維持することは技術的に達成可能とされている。また、同報告 書では、さらに長い時間スケールにおいて、緩衝材による止水機能が維持されることを期待 している。

一方、昨年度までに実施した OP や緩衝材の性能評価に係る規制支援研究で得られた科学 的知見をふまえると、千年程度の時間スケールにおける炭素鋼やベントナイト系材料による 閉じ込め機能を維持することについては、品質管理によって初期欠陥を低減することに加え、 著しい局部腐食やベントナイトの溶解による早期破損や早期の移流場への変遷が生じるよう な処分環境を避けることによって、成立させることは可能であると考えられる。

また、余裕深度処分の安全評価の考え方では、埋設施設および周辺の地質環境の状態変化 が安定的な状態に移行するまでのいわゆる「過渡的な期間」についての状態設定の考え方と して、「不均一な過渡的変化を勘案しつつ、人工バリアの損傷劣化が抑制されるように配慮す ること」と示されている。このように、閉鎖後の比較的短い時間スケールではあるものの、 廃棄体や人工バリアとその周囲で生じる熱-水理-応力-化学現象の変化が著しいと推察される 過渡的な期間においては、より長期の時間スケールにおける核種移行評価の不確実性を低減 する観点から、特に発熱性の高い HLW については、核種をほとんど漏えいさせないような閉 じ込めを求めることは有意義であると考える。

過渡的な期間の時間スケールについては、立地点の地質環境や廃棄体、人工バリア等のレ イアウトに依存することから、現状では具体的に規定することは必ずしも適当ではないが、 上述の技術的成立性もふまえて、少なくとも千年といった時間スケールを目安とすべきと考 える。さらに、(2) で示した安全評価のシナリオ設定の基本的考え方もふまえて、時間スケ ールに応じた安全設計要件の一案を図 6.4-3 に示す。

図 6.4-3 時間スケールに応じた安全設計要件の一案

安全評価の妥当性を判断するための判断指標の整理

平成 23 年度及び平成 24 年度は、これまでに実施してきた人工バリに係る性能評価モデル 及び総合的な安全評価手法の整備の成果を基に、安全評価上重要な廃棄体や人工バリア材の 特性や構成等の基本的要件(安全機能)の観点から、安全評価の妥当性を判断するための判 断指標の案を整理した。「ガラス固化体の溶出抑制機能」、「オーバーパックの閉じ込め機能」、 及び「緩衝材等の核種浸出抑制・核種移行抑制機能」に係る安全評価の妥当性を判断するた めの判断指標をそれぞれ表 6.4-2、6.4-3、6.4-4 に示す。

	判断指標	具体的内容	設定と根拠	課題
初期条件	【ガラス固化体中の核種 インベントリの設定が 適切であること】	 ・高レベル放射性廃液中の核種インベント リは適切に評価されているか ・揮発性核種の残存率は適切に評価され ているか 	リファレンス組成	・実ガラスの特 性をふまえる
	【ガラス固化体の表面積 の設定が適切であるこ と】	 ・冷間時の割れによるガラス固化体表面積の増加量の設定が確からしい、あるいは少なくとも保守的であることが経験則データによって裏付けされているか 	幾何学表面積の10 倍	・実ガラスの特 性をふまえる
	【ガラス固化体の不均質 性等をふまえた組成の 設定が適切であるこ と】	・目標組成に対する変動範囲やイエローフ ェイズの量など十分な経験則データに 基づいた組成設定がなされているか	均質、イエローフェ イズ無し	・実ガラスの特 性をふまえる
モデル設定	【ガラス固化体組成や処 分環境条件をふまえ て、時間スケールに応 じた、溶解ステージが 適切に設定されている こと】 ・ガラス固化体の組成 の変動範距と想定 される処分すイ酸酸 の生成によるSi消 の手能が評価され ているか ・Siの溶解度制限固相 が評価されているか ・緩衝材を介したシリ カの拡散による散 逸速度が正価され ているか	(マトリクス溶解が卓越するStage Iにおけ る溶解速度設定) ・溶解速度パラメータの設定が確からし い、あるいは少なくとも保守側であるか	[Mg]>10 ⁻³ Mもしくは pH>11.5 :0.013 g/m ² /day ・60°CのMg溶液中 での溶解速度)	 ・Mg ケイ酸塩 ・ 鉄ケイ酸酸 ・ 実ガラスの特 ・ 実をふまえる
		 (マトリクス溶解が抑制されたStage IIにお ける溶解速度設定) ・溶解速度モデルが確からしい、あるいは 少なくとも保守側であることが科学的に 裏付けされているか ・特に時間とともに溶解速度が低下する設 定を行う場合は、溶解速度の律速反応 が把握されているか ・溶解速度モデルをふまえて、溶解速度パ ラメータの設定が確からしい、あるいは 少なくとも保守側であるか 	[Mg]<10 ⁻³ M かつ pH<11.5 :0.0016 g/m ² /day •60°Cの脱イオン水 中での飽和後の 溶解速度 ・速度は時間ととも に減少するが、 一定速度と設定	・長期的な律速 プロセスの解 明 ・実ガラスの特 性をふまえる
	【時間スケールに応じて ガラス固化体に生じる 可能性のある割れによ る溶解/変質量への 影響が適切に評価さ れていること】	・OP 腐食膨張に起因する割れによるガラ ス固化体表面積の増加量の設定は、少 なくとも保守的であることが機構論的に 裏付けされているか(応力発生の想定 は適切か(応力と割れの発生との関係 は時間に対して独立か)	_	・現時点では知 見が不十分
		・各溶解ステージにおけるガラス固化体の 溶解/変質量と割れによる表面積増加 量との関係が示されているか	_	・現時点では知 見が不十分
	【地下水が接触し浸出が 開始する時間スケール が適切に設定されてい ること】	・全面腐食の場合は腐食深さと構造強度 が保てる厚さ、局部腐食や SCC の場合 は腐食深さを考慮しているか	4000 年 ・炭素鋼の全面腐 食速度で 110mm 腐食するまでの 期間	(OP 腐食形態 判定 & 腐食 速度評価)
	【浸出抑制機能が著しく 損なわれる時間スケー ルが適切に設定されて いること】	・OPの破壊や腐食膨張により、ガラス固化 体の著しい破損が生じる時期が評価さ れているか	_	・現時点では知 見が不十分

表 6.4-2 ガラス固化体の溶出抑制機能に係る安全評価の判断指標

	判断指標	具体的内容	設定と根拠	課題	
初期条件	オーバーパックの厚さ の設定が適切であること	 ・高レベル放射性廃液中の核種インベント リは適切に評価され、それに基づいた オーバーパック表面の線量率が適切に 評価されているか (安全評価の前提として必要) ・オーバーパックの耐圧厚さが適切に評価 されているか。 (安全評価の前提として必要) 	第2次取りまとめの 設定		
	蓋部の溶接が適切に 行われていること	 ・溶接の初期欠陥の存在 ・蓋溶接部における残留応力が適切に評価されているか。 	 ・炭酸塩応力腐食 割れは、初期欠陥 の存在を前提とし た評価。 ・蓋溶接部の残留 応力は、既往知見 に基づいた設定 		
モデル設定	処分環境条件を踏まえた 腐食形態が適切に設定 されていること	・早期破損に繋がる可能性のある腐食形 態が適切に設定されているか。	 ・局部腐食 ・応力腐食割れ(炭酸塩環境) 		
	オーバーパック近傍 の地下水組成が適切に 設定されているか	 ・オーバーパックの腐食形態を左右する間隙地下水中の化学種(炭酸塩濃度、塩化物イオン濃度等)の濃度が適切に評価されているか。 	物質移行-変質連 成解析結果を用い る。		
	オーバーパックの腐 食寿命が適切に評価さ れているか	・オーバーパック早期破損に繋がると考え られる局部腐食の発生条件が適切に評 価されているか。	 ・局部腐食判定モ デルにより、 pH ≧ pH_dの場合に 局部腐食が発生、 進展する。無酸素 の場合には局部腐 食は発生しない。 		
		・オーバーパック早期破損に繋がると考え られる応力腐食割れの発生条件が適切 に評価されているか。	 ある電位領域で SCCが発生しやすく なる知見を踏まえ、 オーバーパックの 腐食電位がSCC発 生電位の上限値、 下限値の内部にあ る場合に発生す る。 	・水素の影響及 び低溶存酸素 濃度下におけ るSCCの発生 条件、進展速度 評価の検討	
		・酸化性雰囲気における腐食速度が適切 に設定されているか	・酸化性雰囲気に おける腐食速度及 び腐食進展量は既 往の知見に基づい て算出。		

表 6.4-3 オーバーパックの閉じ込め機能に係る安全評価の判断指標

		・還元性雰囲気における腐食速度が適切 に設定されていること ・腐食速度の律速プロセスについて把握さ れていること。	既往の知見に基づ いた腐食速度(10μ mm/y)を時間に依 存しない一定速度 として設定。	 ・腐条精動 ・腐条精動 ・定の生の ないので、必 ・注つ生の ・ないので、 ・注つ生の ・方に ・注つ ・注の ・注の ・注の ・注の ・注の ・注の ・注の ・ ・ ・ ・ (本) ・ (本) ・ (本) (*) (*)<	
--	--	--	--	---	--

	判断指標	判断指標の具体的な内容	現時点での設定	根拠や限界、課題など	
初期条件の設定	緩衝材の組成、乾燥密 度、含水比及びそれらの 分布の設定が適切であ ること。 (安全評価の前提として 必要)	 ・低透水性、低拡散性、膨潤 性、熱伝導性を発揮できる組 成の設定となっているか。 ・上記性能を損なわない不均 一性を考慮した分布の設定と なっているか。 	 クニゲル V1: 70%+珪砂:30% の混合圧縮体 膨潤後の乾燥 密度: 1.6g/cm3、均質 含水比:100%、 均質 	・ HLW2 次取りまとめ、第 二次 TRU レポートのリフ ァレンス。	
	緩衝材の厚さの設定が 適切であること。 (安全評価の前提として 必要)	 OP 腐食生成物等による応力の緩衝性を考慮した厚さ設定になっているか。 施工上生じる隙間を閉塞する膨潤能を考慮した厚さ設定となっているか。 	・ 70cm(リファレン スケースとして)	・ HLW2 次取りまとめ、第 二次 TRU レポートのリフ ァレンス。	
	緩衝材の温度の設定が 適切であること。 (安全評価の前提として 必要)	 ・地下環境を考慮した温度設定となっているか。 ・ガラス固化体の発熱、人エバリア材内の熱の伝導を考慮した設定になっているか。 	 25℃(リファレンスケースとして) 90℃ 100~47℃(1次元での温度変遷) 	 HLW2 次取りまとめ、第 二次 TRU レポートのリフ ァレンス。 25°C以外の熱力学データ の設定については検討 が必要。 	
	緩衝材設置から定常状 態に至る環境変遷に伴う 影響の設定が適切であ ること。 (安全評価の前提として 必要)	 下記を考慮した初期条件設定となっているか。 温度及びその変遷の影響 地下水水質及びその変遷の影響 乾燥密度及びその変遷の影響 宮水比分布及びその変遷の影響 含水比分布及びその変遷の影響 処分場建設時の止水剤や構造物との相互作用を受けた地下水による化学的影響 OPの溶解の影響 再冠水時の地下水流動による流出の影響 	 初期条件として ではないが、閉 鎖後の地下水 組成として、処 分場構造物との 相互作用を受け た地下水組成と して高アルカリ 化した降水系地 下水を設定した (H24)。 	 H24 の総合的評価では OP 早期破損となったケ ースがあるため、過渡期 における処分構造による 影響に十分な配慮が必 要である。 リファレンスケースになら ない場合は変動シナリオ や初期欠陥シナリオとし て設定する必要がある。 THMC 連成現象になるた め別途影響を評価する必 要がある。 	
	粘土プラグの組成、乾燥 密度、含水率及びそれら の分布、設置から定常状 態に至る環境変遷に伴う 影響の設定が適切であ ること。 (安全評価の前提として 必要)	 ふが山田の影響 下記を考慮した初期条件設定となっているか。 温度及びその変遷の影響 牧下水水質及びその変遷の影響 乾燥密度及びその変遷の影響 啓水比分布及びその変遷の影響 ペンパーの変遷の影響 タ水比分布及びその変遷の影響 ペンパーの変遷の影響 タ水比分布及びその変遷の影響 ペンパーの変遷の影響 タットはないなどの変遷の影響 のの分場建設時の止水剤や構造物との相互作用を受けた や下水による化学的影響 再冠水時の地下水流動による流出の影響 	・現状では粘土プ ラグを含めた評 価は実施してい ない。	 リファレンスケースにならない場合は変動シナリオや初期欠陥シナリオとして設定する必要がある。 THMC 連成現象になるため別途影響を評価する必要がある。 	

表 6.4-4 緩衝材等の核種浸出抑制・核種移行抑制機能に係る安全評価の判断指標(初期条件の設定)

(2) 安全評価手法の試適用に基づく人工バリアの設計要件の抽出

仮想的なサイト(平成25年度については堆積岩サイト、平成26年度については結晶質岩サイト)を想定し、整備した安全評価手法を試適用した総合的な感度解析(影響解析)を行い、 人工バリアに関する重要な設計要件を抽出するため、以下の内容・手順で検討を進めた。

①これまでの知見やリンケージ解析から、判断指標となりそうなパラメータを絞り込む。

②影響解析(ケース解析)を仮想的な処分環境や設計条件を想定して実施する。

③バリア性能の劣化や人工バリアからの核種フラックスへの影響の仕方を検討する。

④各パラメータの設定の妥当性を判断するために重要な観点を抽出する。

①~④の詳細な内容については、平成 25 年度成果報告書^{(4),(5)}および 5.2、5.6 を参照いただきたい。

これまで、「人工バリア性能の劣化」の対象として、主に緩衝材に着目した影響解析を実施し てきた。これは、緩衝材に期待される安全機能、安全性能が、外部からの影響の緩衝とともに、 内部(ガラス固化体、OP)からの核種移行抑制と多岐にわたるとともに、内外からの熱的、化 学的、水理的影響も多岐にわたることから、その設計要件への影響を抽出することは有意義で あると考えたからである。

さらに、緩衝材のバリア性能の劣化として、「有効モンモリロナイト密度(ρmont)」と「間 隙率」を代表的な指標として選択した。有効モンモリロナイト密度は、緩衝材中の透水係数評 価モデルの重要なパラメータであるとともに、ガラス固化体から溶出した放射性核種の分配係 数や拡散係数(イオン交換サイト、錯形成サイト、陰イオン排除効果などに対して)を評価す る際に、結果への影響が大きな因子である。また、間隙率は、核種の拡散係数を細孔拡散モデ ルで評価する際の主要パラメータである。透水係数と拡散係数は、緩衝材の安全機能である核 種移行抑制機能を評価し、定量化するための指標となるため、これら2つの指標を「緩衝材の バリア性能の劣化を示す指標」とし、緩衝材の設計条件に関するパラメータを変化させた評価 ケースに対するこれらの指標の経時変化を調べることにより、設計に関するパラメータの影響 の傾向や程度について検討を行った。

平成 25 年度の仮想的な堆積岩サイトに対する 26 ケース、平成 26 年度の仮想的な結晶質岩 サイトに対する 28 ケースを比較、検討した結果、有効モンモリロナイト密度や間隙率の経時変 化には、緩衝材厚さや支保工厚さといった入力パラメータの変化が計算結果に対して、「パラメ ータの範囲によって計算結果の傾向が変わるケース」と「パラメータの範囲にわたって一定の 変化を示すケース」とに大別さることが分かり、支保工付近の緩衝材領域で、局所的に間隙閉 塞(解析上の下限設定値である 0.005 に達すること)と密接な関係があることが分かった。ま た、平成 26 年度の結果より、これらの傾向が、降水系地下水と海水系地下水とで大きく変化し うること、地下水が高アルカリ化した地下水が直接緩衝材と接する処分体系では、初期段階に 高アルカリ成分がどれだけ流入するかにより、のちの緩衝材性能に大きく影響を及ぼすことが 示された。

これらのことを踏まえ、緩衝材内の有効モンモリロナイト密度や間隙率などの性能の指標となるパラメータを設定する際の妥当性を判断するために重要な設計要件に関する観点として、

✓ 緩衝材領域における間隙閉塞の発生の有無、継続時間、その影響について、合理的な手 法に基づく判断がされているか。

が挙げられる。また、加えて、

- ✓ 設定値の変化に対し一定の傾向がある緩衝材の厚さの設定などでは、例えば「10cm 増加 させることで有効モンモリロナイト密度がゼロになる時間がおよそ 9000 年ずつ増加す る傾向がある」といった定量的な観点が妥当性判断では重要。
- ✓ ベントナイト混合率の低いケース、緩衝材乾燥密度の低いケースでは、評価初期時点で 有効モンモリロナイト密度が低いため、止水性、核種収着性、膨潤性などの性能が低い。 この傾向は閉鎖後も推移すると考えられるため、処分場閉鎖時点でどの程度の性能の確 保を求めるのか、また確保確認あるいは保守的に満足されていることの確認が重要。
- ✓ 緩衝材乾燥密度の低いケースでは、評価初期時点で間隙率が高くなっており、低い核種 拡散性、自己シール性などの性能が低下した状態で閉鎖後の状態へと推移することにな る。このため、特に、再冠水時の地下水上昇流が速い時期において、処分孔内に亀裂な どが存在し、緩衝材の流出により低下する可能性を排除できるような観点が重要。
- ✓ 海外の処分概念では、クニゲル V1 よりもモンモリロナイト含有率が高いベントナイト を使用したり、コロイドの移行抑制に対応するため、乾燥密度を 1.8g/cm³ としたりする 事例もある。地下水水質、支保工厚に応じ、緩衝材性能が劣化するまでの時間を延長す る効果があるこれらの対策に配慮されているかの判断も重要。

も抽出されると考えられる。さらに平成26年度の解析結果から、

- ✓ 我が国に存在する種々の地下水、また、処分場の構造体等の影響を受けたそれらの地下 水など、様々な地下水環境下におけるバリア材性能への影響の程度、仕方を考慮した因 子の絞り込みの検討が重要。
- ✓ 結晶質岩サイトで想定される、緩衝材が直接 EDZ 地下水の影響を受ける処分体系においては、閉鎖初期段階の高アルカリ地下水が有効モンモリロナイト密度を大きく低下させる可能性があるため、高アルカリ成分の抑制等の設計の考慮が重要。

が挙げられる。

(3) 安全評価手法の試適用に基づく天然バリアの調査要件の抽出

平成24年度から平成25年度において、仮想的な堆積岩サイトに対し、隆起・侵食、地質環 境等の条件を設定し、隆起・侵食の進行が核種移行に与える影響を把握し重要な天然バリアの 規制要件を抽出することを目的とした感度解析を行った。本感度解析では、6.4.1において示し た総合的な安全評価手法を使用し、隆起の様式(一様/傾動の違い)、侵食、透水異方性、対地深 度変化に伴う透水性変化(以上は条件の有無)、氷期-間氷期の涵養量(氷期、間氷期の涵養量 の設定値、涵養量の経時変化モデルの違い)に関する条件について、違いを組み合わせた解析 ケースを想定した。本解析の結果を基に、規制の観点から隆起・侵食に関係のある天然バリア の重要な着目すべき調査要件を検討した。着目すべき調査要件は、以下のようにまとめられる。

- ✓ 隆起: 移行距離・流速に与える影響が小さい一様隆起よりも、特に動水勾配の 増加による移行経路上の流速の増加に関係する傾動隆起が評価上重要であり、サ イトでは長期的な傾動隆起の発生の可能性、発生する場合にはその様式設定の妥 当性に着目すべきである。
- ✓ 侵食: 処分場の相対的な対地深度の変化により、特に流速の増加傾向が見られたことから、サイトの空間的・時間的な侵食の様式設定の妥当性に着目すべきである。その際、サイトにおける堆積現象とあわせた様式の理解がなされているか

どうかは、対地深度の変化を抑えた処分場位置の選定という視点で重要と考えられる。

✓ 透水異方性: 透水係数の異方性については、鉛直方向の透水性が大きい場合、 隆起・侵食の進行に伴い懸念される移行経路の短絡、流速の増加があらわれることから、サイトにおける透水異方性は重要な調査要件の1つである。

また、処分場位置(水平・鉛直)の違いにより、移行距離、流速が大きく異なる結果となった。この結果は、上記の要件の他に、サイト本来の水理地質構造条件や流出域・涵養域に依存 したものであり、処分場位置の選定の妥当性検討の際には、こうした要件も大切である。

さらに、平成26年度は、仮想的な堆積岩サイトに対し、伏在する派生断層の成長等の条件を 設定し、成長する断層が処分施設と交差した場合に核種移行に与える影響を把握し、重要な天 然バリアの規制要件を抽出することを目的としたケース解析を行った。伏在する分岐断層が成 長して、処分施設と交差することを想定し、さらに深部流体の流入、あるいは、酸化性地下水 の流入が生じた場合に対しても評価を行えるよう、平成25年度までに隆起・侵食を対象に整備 してきた天然バリア領域、人工バリア領域のリンケージ解析を温度などについて拡張し、分岐 断層の成長を想定したリンケージ体系を整備した。また、断層が処分施設に交差した後の人工 バリア及び天然バリアにおける核種移行パラメータを第3章で検討した事例データ等に基づき 設定し、リンケージ解析結果を反映してGSRW-PSAコードによって核種移行・被ばく線量評価 を実施した。本解析の結果を基に、規制の観点から断層活動に関係のある天然バリアの重要な 着目すべき調査要件を検討した。主要な結果から導かれる着目すべき調査要件は、以下のよう にまとめられる。

- ✓ 断層: 分岐断層が処分施設を交差するシナリオが生じた場合、核種移行フラックスのピーク出現が通常の核種移行に比べて早く、数オーダー以上の増加の可能性があるため、最新の調査技術と知見をもって分岐断層が存在しないサイト選定をすることが望ましい。また、解析より分岐断層の処分施設の交差時期が約5万年以降であれば断層交差が生じたとしても、核種移行フラックスの増加を生じさせない可能性が示唆されたことから、特に深さ方向への分岐断層の存在の可能性に配慮した調査に基づき処分施設のレイアウトが行われる必要がある。しかしながら、既往文献による不確実性の検討で述べたように、分岐断層の推定や影響評価に必要となるパラメータには不確実性があり、分岐断層に対するレイアウトの妥当性判断やその存在の可能性が否定できない場合の影響解析のために、我が国における断層成長速度及び断層活動間隔等に関する知見及びデータの蓄積は重要と考えられる。
- ✓ 深部流体の存在: 分岐断層に加えて深部流体が流入する場合には、その生物圏への影響は有馬型熱水が流入する場合に特に影響が著しい結果となり、サイト選定においてマントル起源水である有馬型熱水が存在しうる場所を排除するための調査が必要である。また、必ずしも有馬型熱水の存在を否定できないサイト条件が存在するため、そのようなサイト条件におけるより現実的な核種移行への影響評価のために、有馬型熱水の深部からの上昇プロセスや水質変化等に関する知見及びデータの蓄積は重要と考えられる。

また、マグマ火道が処分施設と交差し火山噴火する事象について、噴火に伴い放射性核種を 含む火山灰が拡散・堆積する場合の周辺居住者の被ばく線量と、小規模火砕流やマグマ水蒸気 などにより火口付近に露出した廃棄体に接近する場合の火山調査者などの被ばく線量を評価し た。本解析の結果を基に、規制の観点から火山活動に関係のある天然バリアの重要な着目すべき調査要件を検討した。主要な結果から導かれる着目すべき調査要件は、以下のようにまとめられる。

✓ 火山(マグマ): 最新の調査技術及び知見をもって、火山活動が処分施設に影響を及ぼすことのない、新規に火山噴火を生じる可能性のないエリアを選定することが望ましい。また、新規火山噴火の可能性を否定できないエリアに対しては、当該エリアで新規に発生しうる火山噴火の様式について理解を深め、万一発生した場合の評価を行うために、パラメータの取得を含めて、活動可能性のあるエリアの研究を進める必要がある。本検討では、十分な情報がなく、火道中をマグマとともに廃棄体が上昇する保守的なシナリオ記述としたが、ストロンボリ式噴火のように粘性の小さいマグマ中で廃棄体が上昇するのか、メラピ式小規模火砕流において廃棄体が溶岩ドームの一部を構成した後崩壊時に火口付近に露出するのか、などの点について、確認を進めることも不確かさの低減につながる。

6.4.3 今後の課題

平成26年度までに、我が国において想定される代表的な地質、水理、熱及び化学的環境を踏まえた人工バリア及び地質媒体における長期的な核種移行や被ばくに与える影響を評価できる体系的な安全評価手法の整備を行った。しかしながら、多様な人工バリア変遷に係る内的要因のシナリオに対応した安全評価手法ではなく、また、地質・気候関連事象についても、隆起・ 侵食や地震活動の一部のシナリオに対応した安全評価手法の整備に限定されている。そのため、 今後の課題として、多様な内的及び外的要因のシナリオに対応したモデル/パラメータの整備と それらの適切なリンケージ方法の構築(総合的な安全評価手法の高度化)が挙げられる。さら に、整備した安全評価手法による各シナリオの安全解析を行い、その結果に基づいた重要な規 制要件の抽出を行う必要がある。
6.5 成果の概要と今後の課題

平成22年度から平成26年度までの本受託事業では、地層処分のサイトを特定しないものの 我が国において想定される代表的な地質、水理、熱及び化学的環境を踏まえた、放射性核種の 移行や人への被ばくに与える影響を評価することのできる体系的な安全評価手法(シナリオ、 モデル、解析コード及びパラメータ評価手法)を整備した。受託研究の内容を以下の項目に大 別し、平成22年度から平成26年度までの主要な研究成果と今後の課題を取りまとめた。

- ・ 廃棄体・人工バリアの性能評価モデルの整備
- ・ 安全評価シナリオ設定手法の整備
- 総合的安全評価手法の整備

6.5.1 廃棄体・人工バリア材の性能評価モデルの整備 <u>成果の概要</u>

人工バリアの長期的な変遷を評価するために、これまで開発・整備してきたモンモリロナイ ト溶解速度モデル、透水係数評価モデル、OP 腐食影響評価モデル、アルカリ拡散モデル、鉱物 モデル、OPC 内拡散モデル、OPC 間隙変遷モデルに対して、地下環境を考慮した適用性確認、 および改良を実施するとともに、これらを物質移行-変質連成解析コード(MCBUFFER)に組 み込み、10万年間の人工バリアの変遷を解析することを可能とした。このコードについて、実 験室での変質試験、15年程度の人工類似物の変質、320万年にわたる天然類似物の変質を再現 してみることでその妥当性を示す根拠を蓄積した。ガラス固化体の溶解モデルも MC-BUFFER に組み込んだが、その妥当性の検証は未了である。ジルカロイの腐食モデルを作成し、ハル・ エンドピースからの長期的な放射性核種の溶出速度の評価が可能となった。

今後の課題

人工バリアの長期的な変遷を評価するためのモデルのうちいくつかは実験式であり、機構 論に基づいたモデルを開発して置き換える(例:新拡散評価手法)。ガラス固化体の溶解モ デルも含めて妥当性検証事例を蓄積し、信頼性を確保する。個別課題として、生成する二次鉱 物の種類に応じたガラス溶解評価、高温水中におけるジルカロイの腐食モデルの低温域への適 用可否の整理、Ca型化を伴う緩衝材劣化のモデル化、地球化学解析における適切なタイムステ ップの選択などがある。

6.5.2 安全評価シナリオ設定手法の整備

(1)建設・操業・閉鎖段階の事故・人的要因等に係るシナリオ設定手法 成果の概要

建設・操業・閉鎖段階における事故・人的要因または地震の発生を起因事象とした処分場閉 鎖後の長期安全性に与える影響の連鎖を体系的に作成した。さらに、工学的対策技術の有無、 技術の適用実績、地層処分に特有な工学技術の開発状況の情報を整理し、規制側が現状におい て着目すべきシナリオを提示した。

今後の課題

今後の課題として、建設・操業・閉鎖段階における様々な工学技術の新規知見や新技術の情報、NUMOの進める品質管理に関する情報等を適宜収集・分析し、最新かつ精度を高めた建設・ 操業・閉鎖段階の事故・人的要因等に係るシナリオ設定手法として整備を進める必要がある。 さらに、規制の観点から工学技術の具体的な適用の際に懸念される影響の連鎖(シナリオ)を 対象とした影響評価手法の整備が課題として考えられる。 (2)人工バリア変遷に係るシナリオ設定手法

成果の概要

「FEP データベースの整備」、「着目すべき安全機能とその機能への影響の連鎖の具体化」、 「人工バリア内の各性能評価モデル・コードによるリンケージ解析手法の整備」を進め、それ らを体系的に関連づけた人工バリア変遷に係るシナリオ設定手法を整備した。

今後の課題

力学的要因等に関する性能評価方法の検討及び外的事象に対応した人工バリア内のシナリ オ設定手法の整備が必要である。

(3) 地質・気候関連事象に係るシナリオ設定手法

成果の概要

サイトを特定しないジェネリックな条件のもと、我が国で想定される地質・気候関連事象の 発生から地質環境(母岩)へのTHMCに関する影響の連鎖を体系的に作成した。そのうち、回 避しきれない可能性のある事象(隆起・侵食、分岐断層の発生など)について、地質環境内の THMCの特性の影響評価手法を整備した。

今後の課題

今後の課題として、地質・気候関連事象に係るシナリオ設定手法を構成する FEP データベー スにおいては、地質・気候関連事象に関する最新の知見や事例データを拡充するとともに、地 域性などを踏まえた地質・気候関連事象の発生とそれに起因した THMC 特性への影響の連鎖に 関する精査が必要である。また、平成26 年度までに隆起・侵食や地震活動の発生による地質環 境内の地下水流動や水質等の変化を対象とした影響評価手法を整備したものの、それらの各種 モデル・コードの精緻化や多様な地質・気候関連事象や地質環境の条件下での感度解析は今後 も必要である。さらに、未対応である地質・気候関連事象の発生による THMC 特性の影響評価 手法の整備も今後の課題である。

6.5.3 総合的安全評価手法の整備

成果の概要

各人工バリア(ガラス固化体、オーバーパック、緩衝材)の長期的な特性変化や安全機能の 低下・喪失を評価するための各性能評価モデル/パラメータに対し、適切なリンケージ方法の整 備を進めた。さらに地質・気候関連事象による地質環境中の水理、化学等の特性変化の評価手 法と、核種移行パラメータの設定手法とのリンケージ方法についても検討を進め、以上のモデ ル/パラメータと核種移行・線量評価コード GSRW-PSA を統合させた総合的安全評価手法を整 備した。

総合的安全評価手法を用いて、仮想的な処分サイト(堆積岩系、結晶質岩系)に対し、人工 バリアの変遷やいくつかの地質関連事象(隆起・侵食、派生断層の成長、火山噴火など)を想 定した処分システムへの影響解析を行い、重要な人工バリアに関する設計要件や天然バリアの 調査要件を提示した。また、地質・気候関連事象が発生した場合について被ばく線量を評価し、 天然事象を回避すべき期間を検討するために必要な知見として提示した。

今後の課題

平成26年度までに、我が国において想定される代表的な地質、水理、熱及び化学的環境を踏まえた人工バリア及び地質媒体における長期的な核種移行や被ばくに与える影響を評価できる

体系的な安全評価手法の整備を行った。しかしながら、多様な人工バリア変遷に係る内的要因 のシナリオに対応した安全評価手法ではなく、また、地質・気候関連事象についても、隆起・ 侵食や地震活動の一部のシナリオに対応した安全評価手法の整備に限定されている。そのため、 今後の課題として、多様な内的及び外的要因のシナリオに対応したモデル/パラメータの整備と それらの適切なリンケージ方法の構築(総合的な安全評価手法の高度化)が挙げられる。さら に、整備した安全評価手法による各シナリオの安全解析を行い、その結果に基づいた重要な規 制要件の抽出を行う必要がある。

第6章の参考文献

6.2 の参考文献

- B.Grambow, A general rate equation for nuclear waste glass corrosion, Mat.Res.Soc.Symp.Proc., Vol.44, pp.15-27, 1985.
- (2) T. Maeda, H. Ohmori, S. Mitsui and T. Banba, Corrosion behavior of simulated HLW glass in the presence of magnesium ion, International Journal of Corrosion, 2011, 796457, 2011.
- (3) Y.Inagaki, H.Makigaki, K.Idemitsu, T.Arima, S.Mitsui, K.Noshita, Initial dissolution rate of a Japanese simulated high-level waste glass P0798 as a function of pH and temperature measured using micro-channel flow-through test method, Journal of Nuclear Science and Technology, 49, pp.438-449, 2012.
- (4) S.Mitsui, H.Sasamoto, G. Kamei, and M.Kubota, Comparison of dissolution behavior between nuclear waste glass and natural volcanic glass - Laboratory support experiments for natural analogue study -, Radioactive Waste Research, 2, pp.105-119, 1996.

6.3 の参考文献

- (1) OECD/NEA, Features, events and processes (FEPs) for geological disposal of radioactive waste An International Database -, 2002
- (2) 総合資源エネルギー調査会 原子力安全・保安部会廃棄物安全小委員会,放射性廃棄物処 理・処分に係る規制支援研究(平成22年度~平成26年度)について,2009.
- (3) 総合資源エネルギー調査会 原子力安全・保安部会廃棄物安全小委員会,「放射性廃棄物 処理・処分に係る規制支援研究計画(平成22年度~平成26年度)」について,2009.
- (4) 日本原子力研究開発機構,平成 21 年度 放射性廃棄物処分の長期的評価手法の調査 報告書,2010.
- (5) 日本原子力研究開発機構,平成21年度 放射性廃棄物処分の長期的評価手法の調査 報告書[添付資料編],2010.
- (6) 日本原子力研究開発機構,平成22 年度 地層処分の安全審査に向けた評価手法等の整備 報告書,2011.
- (7) 日本原子力研究開発機構,平成22 年度 地層処分の安全審査に向けた評価手法等の整備 報告書[添付資料編],2011.
- (8) 日本原子力研究開発機構,平成23 年度 地層処分の安全審査に向けた評価手法等の整備 報告書,2012.

- (9) 日本原子力研究開発機構,平成23年度 地層処分の安全審査に向けた評価手法等の整備 報告書[添付資料編],2012.
- (10) DOE, Yucca Mountain Repository License Application SAFETY ANALYSIS REPORT -, DOE/RW-0573, Rev.0, 2008.
- (11) NDA, Geological Disposal- Generic Post-closure Safety Assessment, NDA/RWMD/021, 2010.
- (12) SKB, Long-term safety for the final repository for spent nuclear fuel at Forsmark, Main report of the SR-Site project, TR-11-01, 2011.
- (13) NAGRA, Project Opalinus Clay: Safety Report. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste, NTB 02-05, 2002.
- (14) POSIVA, Interim Summary Report of the Safety Case 2009. POSIVA 2010-02, 2010.
- (15) ANDRA, Dossier 2005 Argille, Safety evaluation of a geological repository, 2005.
- (16) 日本原子力研究開発機構,平成24年度 地層処分の安全審査に向けた評価手法等の整備 報告書,2013
- (17)日本原子力研究開発機構,平成24年度 地層処分の安全審査に向けた評価手法等の整備 報告書[添付資料編],2013
- (18) SKB, Design, production and initial state of the buffer, TR-10-15, 2010
- (19) POSIVA, Safety Case for the Disposal of Spent Nuclear Fuel at Olukiluoto –Design Basis 2012, POSIVA 2012-03, Posiva Oy, Olkiluoto, 2012
- (20) POSIVA, Safety Case for the Disposal of Spent Nuclear Fuel at Olukiluoto –Performance Assessment 2012, POSIVA 2012-04, Posiva Oy, Olkiluoto, 2012
- (21) POSIVA, Safety Case for the Disposal of Spent Nuclear Fuel at Olukiluoto –Synthesis 2012, POSIVA 2012-12, Posiva Oy, Olkiluoto, 2012
- (22) POSIVA, Buffer Production Line 2012 –Design, Production and Initial State of the Buffer, POSIVA 2012-17, Posiva Oy, Olkiluoto, 2012
- (23) POSIVA, Buffer Design 2012, POSIVA 2012-14, Markku Juvankoski, Olkiluoto, 2012
- (24) IAEA, The Safety Case and Safety Assessment for the Disposal of Radioactive Waste, Specific Safety Guide, SAFETY STANDARDS SERIES No. SSG-23, 2012.
- 6.4 の参考文献
- (1) 原子力安全委員会:放射性廃棄物処理の安全規制における共通的な重要事項について, 2004
- (2) IAEA, "Safety Standards No. SF-1: Fundamental Safety Principles", 2006
- (3) 核燃料サイクル開発機構:我が国における高レベル放射性廃棄物地層処分の技術的信頼性 -地層処分研究開発第2次取りまとめ-分冊3地層処分システムの安全評価, JNC TN1400 99-023, 1999
- (4) 日本原子力研究開発機構,平成 25 年度 放射性廃棄物処分の長期的評価手法の調査 報告書,2014
- (5) 日本原子力研究開発機構,平成 25 年度 放射性廃棄物処分の長期的評価手法の調査 報告書[添付資料編],2014