女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-22-0079_改0
提出年月日	2021年2月25日

VI-5-72 計算機プログラム(解析コード)の概要

• Fluent

2021年2月

東北電力株式会社

1.	は	じめに	1
1	. 1	使用状況一覧	2
		析コードの概要	
2	. 1	Fluent Ver. 14.5.7	3
2	. 2	Fluent Ver. 16.0.0	4

1. はじめに

本資料は、添付書類において使用した計算機プログラム(解析コード)Fluentについて説明するものである。

本解析コードを使用した添付書類を示す使用状況一覧、解析コードの概要を以降に記載する。

1.1 使用状況一覧

使用添付書類		バージョン
VI-1-1-8-3	溢水評価条件の設定	Ver. 14. 5. 7
VI-1-1-8-4	溢水影響に関する評価	Ver. 16. 0. 0

2. 解析コードの概要

2.1 Fluent Ver. 14.5.7

コード名	
項目	Fluent
使用目的	流体解析(プールスロッシング)
開発機関	ANSYS Inc. (アメリカ)
開発時期	2012年(初版開発時期 1983年)
使用したバージョン	Ver. 14. 5. 7
コードの概要	ANSYS Fluent(以下「本解析コード」という。)は、CFD 解析の初心者 からエキスパートまで、幅広い要求に応える使いやすさと多くの機能を 備える。有限体積法をベースとした非構造格子に対応するソルバを搭載 しており、化学反応、燃焼、混相流等が取り扱える。
検証 (Verification) 及び 妥当性確認 (Validation)	【検証(Verification)】 本解析コードの検証の内容は、以下のとおりである。 ・本解析コードは有限体積法を用いた汎用流体解析プログラムであ り、数多くの研究機関や企業において、様々な分野の流体解析に広 く利用されていることを確認している。 ・矩形水槽を用いて正弦波加振によるスロッシング試験を実施し、溢 水量と液面変動の試験結果と解析結果がよく一致することを確認 している。 ・本解析コードの製品開発、テスト、メンテナンス、サポートの各プ ロセスは、United States Nuclear Regulatory Commission(アメリ カ合衆国原子力規制委員会)の品質要件を満たしている。
	【妥当性確認(Validation)】 本解析コードの妥当性確認の内容は、以下のとおりである。 ・本解析コードは、航空宇宙、自動車、化学等の様々な分野における 使用実績を有しており、妥当性は十分に確認されている。

2.2 Fluent V	er. 16. 0. 0
--------------	--------------

コード名 項目	Fluent
使用目的	流体解析(敷地溢水評価)
開発機関	ANSYS Inc. (アメリカ)
開発時期	2015年(初版開発時期 1983年)
使用したバージョン	Ver. 16. 0. 0
コードの概要	ANSYS Fluent(以下「本解析コード」という。)は、CFD 解析の初心者 からエキスパートまで、幅広い要求に応える使いやすさと多くの機能を 備える。有限体積法をベースとした非構造格子に対応するソルバを搭載 しており、化学反応、燃焼、混相流等が取り扱える。
検証 (Verification) 及び 妥当性確認 (Validation)	【検証(Verification)】 本解析コードの検証の内容は,以下のとおりである。 ・本解析コードは有限体積法を用いた汎用流体解析プログラムであ り,数多くの研究機関や企業において,様々な分野の流体解析に広 く利用されていることを確認している。 ・2 次元ダムブレイク問題の解析結果と他の数値解法による結果を比 較し,よく一致することを確認している。 ・本解析コードの製品開発,テスト,メンテナンス,サポートの各プ ロセスは,United States Nuclear Regulatory Commission(アメリ カ合衆国原子力規制委員会)の品質要件を満たしている。
	本解析コードの妥当性確認の内容は,以下のとおりである。 ・本解析コードは,航空宇宙,自動車,化学等の様々な分野における 使用実績を有しており,妥当性は十分に確認されている。