| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

VI－5－42 計算機プログラム（解析コード）の概要
－SCC

自 次

1．はじめに 1
1.1 使用状況一覧 2
2．解析コードの概要 3
3．解析手法 5
3.1 一般事項 5
3.2 本解析コードの特徴 5
4．解析理論 6
5．解析フローチャート 8
6．検証（Verification）と妥当性確認（Validation） 9
6． 1 検証（Verification） 9
6.2 妥当性確認（Validation） 9
6．2．1 妥当性確認方法 9
6．2．2 解析条件 9
6．2．3 妥当性確認結果 10
6．3 まとめ 10
7．引用文献 10

1．はじめに
本資料は，添付書類において使用した計算機プログラム（解析コード）SCCについて説明するもの である。

本解析コードを使用した添付書類を示す使用状況一覧，解析コードの概要を以降に記載する。

1．1 使用状況一覧

使用添付書類		バージョン
VI－2－3－2	炉心，原子炉圧力容器及び原子炉内部構造物並びに 原子炉格納容器及び原子炉本体の基礎の地震応答計 算書	Ver．1．0

2．解析コードの概要

コード名	SCC
項目	原子炉本体の基礎のスケルト目的 の作成
鹿島建設株式会社	

	•本解析コードによる円筒鋼板で補強された円筒コンクリート部材
検証	について，「RC－N 規準」に示される基本仮定から求められる結果
（Verification）	との比較により，両者がおおむね一致することを確認している。
及び	•本工事計画で行う鋼材 + コンクリート円筒構造物の断面算定の用
妥当性確認	
（Validation）	途及び適用範囲が上述の妥当性確認の範囲内であることを確認
	している。

3．解析手法

3.1 一般事項

本解析コードは，鋼材（鉄筋又は円筒鋼板）で補強された円筒コンクリート部材（円筒柱）につ いて，「RC－N 規準」に示される基本仮定に基づき，断面算定を行うプログラムである。

本解析コードは，ひずみの平面保持の仮定及び引張域のコンクリートは耐力•剛性とも無視す る鉄筋コンクリート構造の基本仮定を適用している。

算定には，断面を微小幅にスライスしたファイバーモデルを適用している。これにより，ひず み度に応じた応力度分布をもとに断面力を算出する。外力（軸力＋曲げモーメント）に対して，収束計算により中立軸と曲率を求め，鋼材とコンクリートのひずみ度及び応力度を求めるものである。

3．2 本解析コードの特徴

本解析コードの主な特徴としては，以下のとおりである。
－荷重（軸力＋曲げモーメント）に対して，円筒部材の鋼材及びコンクリートのひずみ度•応力度の算出を行う。
－コンクリートの応力度－ひずみ度関係は線形又はパラボラ分布の非線形性状（引用文献（1）参照）が扱える。
－鋼材の応力度－ひずみ度関係は線形又はバイリニアの非線形性状が扱える。

本工事計画における本解析コードのバージョン，評価対象及び評価内容を表 3－1に示す。

表 3－1 解析概要

バージョン	評価対象	評価内容
Ver．1．0	女川2号機原子炉本体の基礎	復元力特性設定におけるスケルトンカー
		ブ（曲げモーメントー曲率関係）の各折点 を算出

4．解析理論

図 4－1 に示すリング状に円筒鋼板で補強された円筒コンクリート部材の軸力 N 及び曲げモーメン ト M は（1）式及び（2）式で表される。

コンクリートの応力度－ひずみ度関係にパラボラ分布を，鋼材の応力度－ひずみ度関係にバイリニア を適用し，軸力及び曲げモーメントの釣り合いから中立軸 x_{n} 及び曲率 ϕ を収束計算により算定する。

$$
\begin{align*}
& N=\int \sigma_{c} d A+\sum_{k} \int \sigma_{s} d a_{s} \tag{1}\\
& M=\int \sigma_{c} \cdot y d A+\sum_{k} \int \sigma_{s} \cdot y d a_{s}-N \cdot\left(x_{n}-\frac{D}{2}\right) \tag{2}
\end{align*}
$$

ここで，
N ：軸力
$M \quad$ ：曲げモーメント
σ_{c} ：コンクリートの応力度（引用文献（1）参照）

$$
\begin{align*}
& \varepsilon \leqq \varepsilon_{0} \text { の場合, } \sigma_{c}=0.85 F_{c}\left\{2 \frac{\varepsilon}{\varepsilon_{0}}-\left(\frac{\varepsilon}{\varepsilon_{0}}\right)^{2}\right\} \tag{3}\\
& \varepsilon>\varepsilon_{0} \text { の場合, } \sigma_{c}=0.85 F_{c} \tag{4}
\end{align*}
$$

$\varepsilon \quad:$ ひずみ（＝y • ϕ ）
$\varepsilon_{0} \quad$ ：応力度が最大に到達するひずみ $(=0.002)$
$\sigma_{s}:$ 鋼材の応力度（バイリニア）
x_{n} ：中立軸位置
y ：中立軸からの距離
$\phi \quad$ ：曲率
A ：圧縮を受けるコンクリートの断面積
a_{s} ：鋼材の断面積
\sum_{k} ：円筒鋼板の枚数分の総和
D ：円筒の直径（外径）
（a）コンクリート

図 4－1 円筒断面のひずみ度と応力度

5．解析フローチャート
本解析コードの解析フローチャートを図 5－1 に示す。

図 5－1 解析フローチャート

6．検証（Verification）と妥当性確認（Validation）
本解析コードは，「4．解析理論」に示した一般性のある理論に基づき構築された解析コードであ り，「5．解析フローチャート」に示したプログラム構造を持っている。

そこで，本解析コードによる円筒鋼板により補強された円筒コンクリート部材の解析結果と手計算 による結果との比較により，解析解の適切さを確認している。
6.1 検証（Verification）

本解析コードの計算機能が適正であることは，後述する妥当性確認の中で確認している。

6． 2 妥当性確認（Validation）
6．2．1 妥当性確認方法
円筒鋼板＋円筒コンクリート部材について，本解析コードにより得られた中立軸位置 x_{n} 及 び曲率 ϕ をもとに，別途手計算で応力度から求められる内力（軸力と曲げモーメント）を算出し，加えた外力（軸力と曲げモーメント）と一致することの確認をもつて行う。

6．2．2 解析条件

検証を行う円筒部材の断面諸元を表6－1，荷重条件を表6－2 に示す。
表6－1 円筒部材の断面諸元

	コンクリート		円筒鋼板	
断面諸元	外径（m）	14.0	鋼板中心半径（m）	6.15
	内径（m）	10.6	鋼板厚さ（m）	0.06
	躯体厚さ（m）	1.7	－	－
材料定数	設計基準強度 Fc （ MPa ）	29.4	F 値（MPa）	245
	0． 85 Fc （ MPa ）	24.99	縦弾性係数 Es（MPa）	192， 000

表 6－2 荷重条件

	荷重条件
軸力（kN）（圧縮を正）	83,640
曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$	$2,030,220$

6．2．3 妥当性確認結果

本解析コードによる中立軸 x_{n} 及び曲率 ϕ（表6－3）から求められるひずみ度及び応力度を用いて，手計算により求めた軸力及び曲げモーメントと入力した外力と比較して表6－4に示 す。

表 6－4 より，両者は十分な精度で一致しており，本解析コードが応力度・ひずみ度を正し く評価していることとなる。

表 6－3 荷重条件と本解析コードによる中立軸と曲率

本解析コードによる中立軸と曲率	
中立軸 $\mathrm{x}_{\mathrm{n}}(\mathrm{m})$	5.0
曲率 $\phi(1 / \mathrm{m})$	1.20337×10^{-4}

表 6－4 入力外力と手計算による断面力の比較

	項 目	（1）入力値	（2）手計算による算定結果	（1）－（2）／（1）
断面力	軸力（kN）（圧縮を正）	83， 640	83， 623	0.0002
	曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$	2，030， 220	2，029， 987	0.0001

6．3 まとめ
以上のとおり，本解析コードの円筒鋼板＋円筒コンクリート部材の断面算定機能について，本解析コードによる中立軸と曲率をもとに算出したひずみ度及び応力度から手計算によって断面力 を算定し，これが与条件である外力と比較し一致することを確認した。したがって，本解析コー ドによる各部のひずみ度及び応力度が十分な精度で算出されていることとなる。以上より本解析 コードによる断面算定が適切に行われていることを確認した。

また，上記に加えて，使用マニュアルにより，本工事計画で使用する鋼板＋コンクリート円筒構造物のスケルトンカーブの算定に，本解析コードが適用できることを確認している。

したがって，本解析コードを，鋼板＋コンクリート円筒構造物のスケルトンカーブの算定に使用することは，妥当である。

7．引用文献
Comite Euro－International du Beton ：CEB－FIP MODEL CODE 1990 （DESIGN CODE）， 1993

