

柏崎刏羽原子力発電所第 7 号機（2020．9．25 版）

柏崎刈羽原子力発電所第7号機（2020．9．25 版）	東海第二発電所	女川原子力発電所第2号機	備考
		（5）質点は応力が高くなると考えられる点に設定するとともに，代表的な振動モードを十分に表現できるように，適切な間隔で設け る。 （6）配管の支持構造物は，以下の境界条件として扱うことを基本と する。 a．レストレイント：拘束方向の剛性を考慮する。 b．スナッバ：拘束方向の剛性を考慮する。 c．アンカ： 6 方向の剛性を考慮する。 d．ガイド：拘束方向及び回転拘束方向の剛性を考慮する。 （7）配管系の質量は，配管自体の質量の他に弁等の集中質量，保温材等の付加質量及び管内流体の質量を考慮するものとする。 （8）耐震計算に用いる寸法は，公称値を使用する。 5．構造強度評価 5.1 構造強度評価方法 （1）管の構造強度評価は，「4．1 固有周期の計算方法」に基づき作成した解析モデルによる地震応答解析を行い，得られたモーメン ト等から「5．4 計算方法」に記載した方法で構造強度評価を実施 する。配管系の動的解析手法としては，スペクトルモーダル解析法を用いる。評価に当たっては，以下の荷重を考慮する。 a．内圧 b．機械的荷重（自重その他の長期的荷重） c．機械的荷重（逃がし弁又は安全弁の吹出し反力及びその他の短期的荷重） d．地震荷重（基準地震動 S s ，弾性設計用地震動 $\mathrm{S} d$ 及び静的震度 による慣性力及び相対変位） （2）管に取り付く支持構造物の構造強度評価は，添付書類「VI－2－1－ 12－1 配管及び支持構造物の耐震計算について」に基づき，以下 に示す種類及び型式に区分して評価を実施する。 a．オイルスナッバ b．メカニカルスナッバ	表現の相違

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機					備考	
		5.2 荷重の組合せ及び許容応力 耐震性についての計算において考慮する荷重の組合せ及び許容応力を表 5－1～表5－3に示す。						
		表5－1 荷重の組合せ						
			管々うス	而重の細合世 ${ }^{\text {a }}$				
				$\frac{I_{L}+\mathrm{Sd}}{\mathrm{I}_{1}+\mathrm{Sd}}$	$(\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}$＊）			
		${ }_{\text {明 }}^{\text {it }}$	グ大ス管	$\mathrm{N}_{\mathrm{L}}(\mathrm{L})+\mathrm{Sd}^{* *}$	$\left(\mathrm{D}+\mathrm{P}_{L}+\mathrm{M}_{L}+\mathrm{Sd} \mathrm{d}^{\text {e }}\right.$ ）			
		${ }^{\text {基 }}$		$\frac{\mathrm{I}_{2}+\mathrm{S} \mathrm{s}}{\mathrm{I}_{1}+\mathrm{S} \text { s }}$	（ $\mathrm{D}+\mathrm{P}+\mathrm{m}+\mathrm{S}$ s）	N／S		
		村		$\mathrm{l}_{\mathrm{L}}+\mathrm{Sd}$	（ $\mathrm{D}+\mathrm{P}_{\mathrm{p}}+\mathrm{M}_{\mathrm{p}}+\mathrm{Sd} \mathrm{d}^{\text {e }}$ ）	［im		
				$\mathbb{I}_{\iota}+\mathrm{Sd}$				
				$\mathrm{V}_{4}(\mathrm{~L})+\mathrm{Sd}{ }^{* 3}$	$\left(\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{p}}+\mathrm{Sd} \mathrm{d}^{\text {（ }}\right.$ ）			
				$\mathrm{I}_{L_{L}+\mathrm{Ss}}$	（ $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Ss}$ ）			
				$\mathrm{N}_{L}(\mathrm{~L})+\mathrm{Sd}^{*}+1$	$\left(\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}^{*}\right)$			
		動		$\frac{\mathrm{I}_{4}+\mathrm{Ss}}{\mathrm{I}_{\iota}+\mathrm{S}}$	（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S}$ s）	$S^{5 *}$		
		事	（ヶラス1皆）	$V_{t}(\mathrm{~L})+\mathrm{Sd} \mathrm{d}^{4}$		v．s		
		等		$\mathrm{V}_{\mathrm{l}}(\mathrm{LL})+\mathrm{Ss} \mathrm{s}^{*}$				
		凉	動大事故第々ラス2管	$\frac{\mathrm{I}_{\mathrm{l}}+\mathrm{s} \mathrm{s}}{\mathrm{I}_{4}+\mathrm{Ss}}$	$\left(\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{p}}+\mathrm{Ss}\right.$ ）	$\mathrm{V}_{3} \mathrm{~S}^{*}$		
		設	－	$\mathrm{V}_{L}(\mathrm{~L})+\mathrm{Sd} \mathrm{d}^{* * *}$	$\left(\mathrm{D}+\mathrm{Ps}_{s, L}+\mathrm{Ms}_{s, L}+\mathrm{Sd}\right)^{*}$	$\mathrm{v}, \mathrm{s}^{\text {s }}$		
		鳃		$\frac{V_{l}(\text { LL })+S s^{* *}}{V_{l}+s^{* 8}}$		$\frac{V_{i N}, S}{N_{2}}$		
		注記 $* 1$ ：設計基準対象施設と重大事故等対処設備の兼用範囲は設計基準対象施設及び重大事故等対処設備の荷重の組合せを考慮す る。 ＊2：運転状態の添字L は荷重，（L）は荷重が長期間作用している状態，（LL）は（L）より更に長期的に荷重が作用している状態を示 す。右の（ ）付の欄は添付書類「VI－2－1－9 機能維持の基本方針」の荷重の組合せを示し，計算書では記載を省略す る。 ＊3：ECCS 等（非常用炉心冷却系及びそれに関連する系統）に対して は，許容応力状態III ${ }_{A} S$ とする。 ＊ 4 ：原子炉冷却材圧力バウンダリ範囲は重大事故等発生時の使用条件が設計条件（圧力•温度等）を超える時間が短期（ 10^{-2} 年末満）であるため，運転状態VにおいてS d 又はS s 地震力との組合せは考慮不要である。						

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考
		＊ $5: \mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の評価を設計基準対象施設の計算書に記載する場合，又は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の評価が $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ の評価に包絡される場合，重大事故等対処設備の計算書では $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の評価の記載を省略する。 ＊6：荷重の組合せ $\mathrm{V}_{\mathrm{L}}(\mathrm{L})+\mathrm{Sd}$ は $\mathrm{V}_{\mathrm{L}}(\mathrm{LL})+\mathrm{S} \mathrm{s}$ に包絡される場合，評価を省略する。 ＊7：原子炉格納容器バウンダリを構成する設備のみにおいて考慮 し，重大事故等発生後の最高圧力及び最高温度を考慮する。な お， $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ に包絡して評価してもよい。 ＊ 8 ：原子炉格納容器バウンダリを構成する設備以外において考慮す る。 $* 9$ ：重大事故等後の最高圧力，最高温度（最高圧力時の飽和温度） との組合せを考慮する。 表 5－2 許容応力（クラス 1 管及び重大事故等クラス 2 管であってク ラス 1 管） 	設計の差異による。（女川 2 号機では，原子炉格納容器バウンダリを構成する設備について荷重の組合せを考慮し た設計としている。）

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考
		5.3 設計用地震力 設計用地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定した設計用床応答曲線を用いる。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。 設計用床応答曲線は，配管系が設置されている位置を包絡する設計用床応答曲線を適用する。また，異なる建物•構築物を渡る配管系に ついては，配管系が設置されている位置を包絡する設計用床応答曲線 を適用する。ただし，設計用床応答曲線の運用において合理性が示さ れる場合には，その方法を採用できるものとする。 5.4 計算方法 （1）クラス 1 管及び重大事故等クラス 2 管であってクラス 1 管 a．一次応力 （a）管台及び突合せ溶接式ティー $\mathrm{S}_{\mathrm{prm}}=\mathrm{B}_{1} \cdot \mathrm{P} \cdot \mathrm{D}_{0} /(2 \cdot \mathrm{t})+\mathrm{B}_{2 \mathrm{~b}} \cdot \mathrm{M}_{\mathrm{b} \mathrm{p}} / \mathrm{Z}_{\mathrm{b}}+\mathrm{B}_{2 \mathrm{r}} \cdot \mathrm{M}_{\mathrm{r} \mathrm{p}}$ $/ Z_{r}$ （b）（a）以外の管 $\mathrm{S}_{\mathrm{prm}}=\mathrm{B}_{1} \cdot \mathrm{P} \cdot \mathrm{D}_{0} /(2 \cdot \mathrm{t})+\mathrm{B}_{2} \cdot \mathrm{M}_{\mathrm{ip}} / \mathrm{Z}_{\mathrm{i}}$ b．一次十二次応力 （a）管台及び突合せ溶接式ティー $\mathrm{S}_{\mathrm{n}}=\mathrm{C}_{2 \mathrm{~b}} \cdot \mathrm{M}_{\mathrm{bs}} / \mathrm{Z}_{\mathrm{b}}+\mathrm{C}_{2 \mathrm{r}} \cdot \mathrm{M}_{\mathrm{rs}} / \mathrm{Z}_{\mathrm{r}}$ （b）（a）以外の管 $\mathrm{S}_{\mathrm{n}}=\mathrm{C}_{2} \cdot \mathrm{M}_{\mathrm{is}} / \mathrm{Z}_{\mathrm{i}}$ c．ピーク応力 （a）管台及び突合せ溶接式ティー $\mathrm{S}_{\mathrm{p}}=\mathrm{K}_{2 \mathrm{~b}} \cdot \mathrm{C}_{2 \mathrm{~b}} \cdot \mathrm{M}_{\mathrm{bs}} / \mathrm{Z}_{\mathrm{b}}+\mathrm{K}_{2 \mathrm{r}} \cdot \mathrm{C}_{2 \mathrm{r}} \cdot \mathrm{M}_{\mathrm{r}} / \mathrm{Z}_{\mathrm{r}}$ （b）（a）以外の管 $\mathrm{S}_{\mathrm{p}}=\mathrm{K}_{2} \cdot \mathrm{C}_{2} \cdot \mathrm{M}_{\mathrm{is}} / \mathrm{Z}_{\mathrm{i}}$ d．繰返しピーク応力強さ $\mathrm{S}_{\ell}=\mathrm{K}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{p}} / 2$ K_{e} ：次の計算式により計算した値 イ． $\mathrm{S}_{\mathrm{n}}<3 \cdot \mathrm{~S}_{\mathrm{m}}$ の場合	表現の相違 表現の相違

柏崎刈羽原子力発電所第7号機（2020．9．25版）	東海第二発電所	女川原子力発電所第2号機	備考
		7．耐震計算書のフォーマット 耐震計算書は，設計基準対象施設の耐震計算書と重大事故等対処設備の耐震計算書とに分けて作成し，それぞれ以下の項目を記載する。 （1）概要 本基本方針及び添付書類「VI－2－1－12－1 配管及び支持構造物の耐震計算について」に基づき，○○系の管，支持構造物及び弁の耐震性 についての計算を実施した結果を示す旨を記載する。なお，支持構造物は強度計算及び耐震性についての計算の基本式が同一であること から，強度計算を耐震性についての計算に含めて実施している旨を記載する。 また，評価結果の記載方法は以下とする旨を記載する。 a．管 工事計画記載範囲の管のうち，各応力区分における最大応力評価点 の評価結果を解析モデル単位に記載する。また，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小とな る解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載す る。各応力区分における代表モデルの選定結果及び全モデルの評価結果についても記載する。 b．支持構造物 工事計画記載範囲の支持点のうち，種類及び型式単位に支持点荷重 が最大となる支持点の評価結果を代表として記載する。 c．弁 評価結果を記載する対象弁は，工認主要弁かつ動的機能維持要求弁 とし，機能確認済加速度の機能維持評価用加速度に対する裕度が最小 となる動的機能維持要求弁を代表として，弁型式別に評価結果を記載 する。 （2）概略系統図及び鳥瞰図 a．概略系統図 工事計画記載範囲の系統の概略を示した図面を添付する。 b．鳥㒈図 評価結果記載の解析モデルの解析モデル図を添付する。鳥㒈図に示 す記号例を下表に示す。	表現の相違

柏崎刈羽原子力発電所第 7 号機（2020．9．25 版）

