女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-04-0034_改 0
提出年月日	2021年2月19日

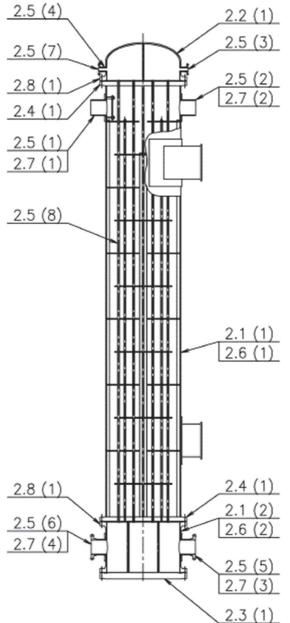
VI-3-3-3-6-2-1 高圧炉心スプレイ補機冷却水系熱交換器の強度計算書

まえがき

本計算書は、添付書類「VI-3-1-5 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」、「VI-3-2-8 重大事故等クラス2容器の強度計算方法」及び「VI-3-2-12 重大事故等クラス2支持構造物(容器)の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお,評価条件の整理に当たって使用する記号及び略語については,添付書類「VI-3-2-1 強度計算方法の概要」に定義したものを使用する。

·評価条件整理表


	нт≐л	施設時の 技術基準			クラスアップす	るか			条件》	アップする	らか		既工認に				
機器名	既設 or	に対象と する施設	カラフ	アップ	施設時機器	DB	SA	条件	DB 🗐	条件	SA 🗐	条件	おける 評価結果	施設時の 適用規格	評価区分	同等性 評価	評価 クラス
	新設	9 つ旭設 の規定が あるか		チック	旭武守機益 クラス	DB クラス	クラス	アップ の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	の有無	週用规俗		区分	778
高圧炉心ス プレイ補機	既設	+	管側	有	DB-3	DB-3	SA-2	無	0.78	50	0.78	50	-	S55 告示	設計・建設規格 又は告示	-	SA-2
冷却水系 熱交換器	玩政	有	胴側	有	DB-3	DB-3	SA-2	無	1.18	70	1.18	70	-	S55 告示	設計・建設規格 又は告示	-	SA-2

目次

1.		h算条件 ····································
1.	1	計算部位
1.2	2	設計条件
2.	弱	a度計算 ······ 2
2.	1	容器の胴の厚さの計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.2	2	容器の鏡板の厚さの計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.3	3	容器の平板の厚さの計算 ・・・・・ 5
2.	4	容器の管板の厚さの計算 ・・・・・・ 6
2.	5	容器の管台の厚さの計算 ・・・・・・ 7
2.	6	容器の補強を要しない穴の最大径の計算・・・・・・・・・・・・・・・・・・・・・・・・15
2.	7	容器の穴の補強計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.8	8	容器のフランジの計算 ・・・・・ 25
3.	支	芝持構造物の強度計算書 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

- 1. 計算条件
- 1.1 計算部位

概要図に強度計算箇所を示す。

図中の番号は次ページ以降の 計算項目番号を示す。

図 1-1 概要図

1.2 設計条件

最高使用圧力(MPa)	胴側	1.18	管側	0.78
最高使用温度(℃)	胴側	70	管側	50

2. 強度計算

2.1 容器の胴の厚さの計算

設計・建設規格 PVC-3120

胴板名称			(1) 胴側胴板
材料			SM50B(SM490B)
最高使用圧力	Р	(MPa)	1.18
最高使用温度		$(^{\circ}C)$	70
胴の内径	D _i	(mm)	1000.00
許容引張応力	S	(MPa)	123
継手効率	η		0.7
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	6.91
t ₁ , t ₂ の大きい値	t	(mm)	6.91
呼び厚さ	t _{s o}	(mm)	15.00
最小厚さ	t s	(mm)	
評価: t _s ≧t, よって十分	うである。		

枠囲みの内容は商業機密の観点から公開できません。

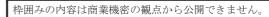
容器の胴の厚さの計算

設計・建設規格 PVC-3120

胴板名称			(2) 管側胴板
材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
胴の内径	D _i	(mm)	1000.00
許容引張応力	S	(MPa)	123
継手効率	η		0.7
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t ₁	(mm)	3.00
必要厚さ	t ₂	(mm)	4.56
t ₁ , t ₂ の大きい値	t	(mm)	4.56
呼び厚さ	t so	(mm)	15.00
最小厚さ	t s	(mm)	
評価: t _s ≧t, よって十分で	である。		

枠囲みの内容は商業機密の観点から公開できません。

- 2.2 容器の鏡板の厚さの計算
 - (1) 設計・建設規格 PVC-3210


鏡板の形状

鏡板名称	(1) 管側鏡板
鏡板の内面における長径 D _{iL} (mm)	1000.00
鏡板の内面における短径の1/2 h (mm)	250.00
長径と短径の比 D _{iL} /(2・h)	2.00
評価:D _{iL} /(2・h)≦2,よって半だ円形鏡板て	ぎある。

(2) 設計・建設規格 PVC-3220

鏡板の厚さ

鏡板名称			(1) 管側鏡板
材料			SM50B(SM490B)
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
胴の内径	D _i	(mm)	1000.00
半だ円形鏡板の形状による	係数K		1.00
許容引張応力	S	(MPa)	123
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			_
必要厚さ	t 1	(mm)	3. 19
必要厚さ	t ₂	(mm)	3. 18
t ₁ , t ₂ の大きい値	t	(mm)	3.19
呼び厚さ	t _{co}	(mm)	15.00
最小厚さ	t _c	(mm)	
評価: t c≧ t , よって十	分である。		

- 2.3 容器の平板の厚さの計算
 - (1) 告示第501号第34条第1項及び第2項

取付け方法及び穴の有無

平板名称			(1) 管側平板
平板の取付け方法			(k)
平板の穴の有無			無し
平板の径	d	(mm)	1057.00
穴の径	d h	(mm)	0
評価: $d_h \leq d/2$,	よって第2項第2号	イ (ロ)	により計算を行う。

(2) 告示第501号第34条第1項及び第2項

(JIS B 8265適用)

平板の厚さ

平板名称			(1) 管側平板
平板材料			SGV49
ボルト材料			SNB7 直径 63 mm 以下
ガスケット材料			セルフシーリングガスケット (ゴム)
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
平板の許容引張応力	S	(MPa)	120
ボルトの許 常温(ガスケット締付時) (20°C)	S _a	(MPa)	173
容引張応力 最高使用温度(使用状態)	S _b	(MPa)	173
ボルト中心円の直径	С	(mm)	1130.00
ボルト呼び			M20
ボルト本数	n		24
ボルト谷径	d _b	(mm)	17. 294
実際のボルト総有効断面積	A_{b}	(mm^2)	5. 638×10^3
ガスケット接触面の外径	G s	(mm)	1057.00
平板の径 (ガスケット有効径)	d = G	(mm)	1057.00
内圧による全荷重	W = H	(N)	6.844×10^5
使用状態での最小ボルト荷重	W_{m1}	(N)	6.844×10^5
ガスケット締付最小ボルト荷重	W_{m2}	(N)	0
ボルトの 使用状態	A_{m1}	(mm^2)	$3.956 imes 10^3$
所要総有 ガスケット締付時	A_{m2}	(mm^2)	0
効断面積 いずれか大きい値	A_{m}	(mm^2)	$3.956 imes 10^3$
ボルト 使用状態	W_0	(N)	$6.844 imes 10^5$
荷重 ガスケット締付時	Wg	(N)	8. 299×10^5
いずれか大きい値	F	(N)	8.299×10^5
モーメントアーム	h _g	(mm)	36. 50
取付け方法による係数	К		0. 3586
必要厚さ	t	(mm)	51.04
呼び厚さ	t _{po}	(mm)	88.00
最小厚さ	t _p	(mm)	
評価: $t_p \ge t$,よって十分で	ある。		

2.4 容器の管板の厚さの計算

(1) 設計・建設規格 PVC-3510(1)

管穴の中心間距離

管板名称			(1) 管板
管の外径	d t	(mm)	
必要な距離	Z	(mm)	
管穴の中心間距離	P _t	(mm)	34.00
評価: $P_t \ge z$, よって十分である。			

(2) 設計・建設規格 PVC-3510(2)

管板の厚さ

日収の子で			
管板名称			(1) 管板
材料			<mark>SGV49</mark> (SGV480)
最高使用圧力	Р	(MPa)	1.18
最高使用温度		(°C)	70
パッキンの中心円の径又は胴の内径	D	(mm)	1000.00
胴の厚さ	t s	(mm)	
管及び管板の支え方 による係数	F		1.00 (伝熱管の形式:直管)
管板の支え方		1	胴側胴と一体である。
任意の管の中心が囲む面積	А	(mm^2)	6.855×10^5
任意の管の中心が囲む面積 面積Aの周のうち穴の 径以外の部分の長さ	A L	(mm ²) (mm)	6.855×10^{5} 733.74
面積Aの周のうち穴の			
面積Aの周のうち穴の 径以外の部分の長さ	L	(mm)	733. 74
面積Aの周のうち穴の 径以外の部分の長さ 許容引張応力	L S	(mm) (MPa)	733.74 120
面積Aの周のうち穴の 径以外の部分の長さ 許容引張応力 必要厚さ	L S t ₁	(mm) (MPa) (mm)	733.74 120 49.59
面積Aの周のうち穴の 径以外の部分の長さ 許容引張応力 必要厚さ 必要厚さ	L S t ₁ t ₂	(mm) (MPa) (mm) (mm)	733.74 120 49.59 10.81
面積Aの周のうち穴の 径以外の部分の長さ 許容引張応力 必要厚さ 必要厚さ t ₁ , t ₂ , 10の大きい値	L S t 1 t 2 t	(mm) (MPa) (mm) (mm) (mm)	733.74 120 49.59 10.81 49.59

枠囲みの内容は商業機密の観点から公開できません。

2.5 容器の管台の厚さの計算

設計・建設規格 PVC-3610

管台名称			(1) 胴体入口
材料			STS42 (STS410)
最高使用圧力	Р	(MPa)	1.18
最高使用温度		(°C)	70
管台の外径	D _o	(mm)	216.30
許容引張応力	S	(MPa)	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			_
必要厚さ	t 1	(mm)	1.24
必要厚さ	t ₃	(mm)	3.80
t ₁ , t ₃ の大きい値	t	(mm)	3. 80
呼び厚さ	t no	(mm)	8.20
最小厚さ	t n	(mm)	
「評価: $t_n \ge t$, よって十分で	である。		

枠囲みの内容は商業機密の観点から公開できません。

管台名称			(2) 胴体出口	
材料			STS42 (STS410)	
最高使用圧力	Р	(MPa)	1.18	
最高使用温度		(°C)	70	
管台の外径	D _o	(mm)	216.30	
許容引張応力	S	(MPa)	103	
継手効率	η		1.00	
継手の種類			継手無し	
放射線検査の有無			—	
必要厚さ	t 1	(mm)	1.24	
必要厚さ	t ₃	(mm)	3.80	
t ₁ , t ₃ の大きい値	t	(mm)	3.80	
呼び厚さ	t no	(mm)	8.20	
最小厚さ	t n	(mm)		
評価: t n≧ t , よって十分である。				

管台名称			(3) 水室ドレン	
材料			STS42 (STS410)	
最高使用圧力	Р	(MPa)	0.78	
最高使用温度		$(^{\circ}C)$	50	
管台の外径	D _o	(mm)	60.50	
許容引張応力	S	(MPa)	103	
継手効率	η		1.00	
継手の種類			継手無し	
放射線検査の有無			—	
必要厚さ	t 1	(mm)	0.23	
必要厚さ	t ₃	(mm)	2.40	
t ₁ , t ₃ の大きい値	t	(mm)	2.40	
呼び厚さ	t no	(mm)	5.50	
最小厚さ	t n	(mm)		
評価: t n≧ t , よって十分である。				

管台名称			(4) 水室空気抜
材料			STS42 (STS410)
最高使用圧力	Р	(MPa)	0.78
最高使用温度		$(^{\circ}C)$	50
管台の外径	D _o	(mm)	60.50
許容引張応力	S	(MPa)	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			_
必要厚さ	t 1	(mm)	0.23
必要厚さ	t ₃	(mm)	2.40
t ₁ , t ₃ の大きい値	t	(mm)	2.40
呼び厚さ	t no	(mm)	5.50
最小厚さ	t n	(mm)	
評価: $t_n \ge t$, よって十分で	である。		

枠囲みの内容は商業機密の観点から公開できません。

管台名称			(5) 水室入口		
材料			SFVC2B		
最高使用圧力	Р	(MPa)	0.78		
最高使用温度		(°C)	50		
管台の外径	D _o	(mm)	216.30		
許容引張応力	S	(MPa)	120		
継手効率	η		1.00		
継手の種類			継手無し		
放射線検査の有無			_		
必要厚さ	t 1	(mm)	0.71		
必要厚さ	t ₃	(mm)	—		
tı, t ₃ の大きい値	t	(mm)	0.71		
呼び厚さ	t no	(mm)	8.20		
最小厚さ	t n	(mm)			
$評価: t_n \ge t$, よって十分	評価: t n≧ t , よって十分である。				

枠囲みの内容は商業機密の観点から公開できません。

管台名称			(6) 水室出口		
材料			SFVC2B		
最高使用圧力	Р	(MPa)	0.78		
最高使用温度		(°C)	50		
管台の外径	D _o	(mm)	216.30		
許容引張応力	S	(MPa)	120		
継手効率	η		1.00		
継手の種類			継手無し		
放射線検査の有無			_		
必要厚さ	t 1	(mm)	0.71		
必要厚さ	t ₃	(mm)	—		
t ₁ , t ₃ の大きい値	t	(mm)	0.71		
呼び厚さ	t no	(mm)	8.20		
最小厚さ	t n	(mm)			
$評価: t_n \ge t$, よって十分	評価: t n≧ t , よって十分である。				

管台名称			(7) 水室逃し弁	
材料			STS42 (STS410)	
最高使用圧力	Р	(MPa)	0.78	
最高使用温度		(°C)	50	
管台の外径	D _o	(mm)	60. 50	
許容引張応力	S	(MPa)	103	
継手効率	η		1.00	
継手の種類			継手無し	
放射線検査の有無			—	
必要厚さ	t 1	(mm)	0.23	
必要厚さ	t ₃	(mm)	2.40	
t ₁ , t ₃ の大きい値	t	(mm)	2.40	
呼び厚さ	t no	(mm)	5.50	
最小厚さ	t n	(mm)		
評価: t n≧ t , よって十分である。				

枠囲みの内容は商業機密の観点から公開できません。

管台名称			(8) 伝熱管		
材料			C6870TS		
最高使用圧力	Р	(MPa)	0.78		
外面に受ける最高の圧力	P _e	(MPa)	1.18		
最高使用温度		(°C)	70		
管台の外径	D _o	(mm)			
許容引張応力	S	(MPa)	81		
継手効率	η		1.00		
継手の種類			継手無し		
放射線検査の有無			_		
必要厚さ	t 1	(mm)	0.13		
必要厚さ	t ₂	(mm)	0.69		
t 1, t 2の大きい値		(mm)	0. 69		
呼び厚さ	t _{t o}	(mm)			
最小厚さ	t t	(mm)			
評価:t _t \ge t,よって十分 ⁻	評価: $t_t \ge t$, よって十分である。				

枠囲みの内容は商業機密の観点から公開できません。

2.6 容器の補強を要しない穴の最大径の計算 設計・建設規格 PVC-3150(2)

胴板名称			(1) 胴側胴板
材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	1.18
最高使用温度		$(^{\circ}C)$	70
胴の外径	D	(mm)	1030. 00
許容引張応力	S	(MPa)	123
胴板の最小厚さ	t s	(mm)	
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			—
$d_{r1} = (D - 2 \cdot t_s) / 4$		(mm)	
61, d _{r1} の小さい値		(mm)	
К			
D•t _s		(mm^2)	
200, d _{r2} の小さい値		(mm)	160. 26
補強を要しない穴の最大径		(mm)	160. 26
評価:補強の計算を要する穴	の名称		胴体入口(2.7(1))
			胴体出口(2.7(2))

枠囲みの内容は商業機密の観点から公開できません。

容器の補強を要しない穴の最大径の計算 設計・建設規格 PVC-3150(2)

胴板名称			(2) 管側胴板
材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
胴の外径	D	(mm)	1030. 00
許容引張応力	S	(MPa)	123
胴板の最小厚さ	t s	(mm)	
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			—
$d_{r1} = (D - 2 \cdot t_s) / 4$		(mm)	
61, d _{r1} の小さい値		(mm)	
К			
D•t _s		(mm^2)	
200, d _{r2} の小さい値		(mm)	172. 19
補強を要しない穴の最大径		(mm)	172. 19
評価:補強の計算を要する	穴の名称		水室入口(2.7(3))
			水室出口(2.7(4))

枠囲みの内容は商業機密の観点から公開できません。

2.7 容器の穴の補強計算

設計・建設規格 PVC-3160

参照附図 WELD-16

部材名称 (1) 胴体入口 胴板材料 SM50B (SM490B) 管台材料 STS42 (STS410) 強め板材料 SM50B (SM490B) 最高使用压力 P (MPa) 見高使用温度 (°C) 70 胴板の許容引張応力 S (MPa) 123 管台の許容引張応力 S (MPa) 123 穴の径 d (mm) 220.30 胴板の最小厚さ t n (mm) 1000 管台の最小厚さ t n (mm) 1000 層板の最手効率 7 1.00 原板の副主と必要な厚さ t n (mm) 1000.00 開板の合力算上必要な厚さ t n (mm) 1000.00 開板の自勃範囲 X 1 (mm) 4.83 管台の計算上必要な厚き t n (mm) 4.83 管台の計算上必要な厚き t n (mm) 1000.00 開板の有効範囲 X 1 (mm) 380.00 管台の計算上必要な厚き t n (mm) 121.30 捕強の有効範囲 X 2 (mm) 16.30 離後の有効範囲 X 2 (mm) 380.00 管台の外径 D 0 n (mm) 216.30 溶接す法法 L 2 (mm²) 5.80				
管台材料 STS42 (STS410) 強め板材料 SM508 (SM490B) 最高使用正力 P (MPa) 1.18 最高使用温度 (°C) 70 胴板の許容引張応力 S_n (MPa) 123 管台の許容引張応力 S_n (MPa) 103 強め板の許容引張応力 S_n (MPa) 123 穴の径 d (mn) 220.30 臍板の離手効率 7 (mn) 220.30 臍板の離手効率 7 1.00 (mn) 管台の最小厚さ t_n (mn) 220.30 開板の離手効率 7 1.00 (mn) 1000.00 原板の計算上必要な厚さ t_n (mn) 1000.00 開板の計算上必要な厚さ t_n (mn) 4.83 管台の計算上必要な厚さ t_n (mn) 4.83 管台の計算上必要な厚さ t_n (mn) 1000.00 開板の有効範囲 X_1 (mn) 1 1000 常娘の有効範囲 X_1 (mn) 1 1 補強の有効範囲 X_2 (mn) 380.	部材名称			(1) 胴体入口
強め板材料 SM50B (SM490B) 最高使用圧力 P (MPa) 1.18 最高使用温度 (°C) 70 胴板の許容引張応力 S $_{n}$ (MPa) 123 管台の許容引張応力 S $_{n}$ (MPa) 103 強め板の許容引張応力 S $_{n}$ (MPa) 123 穴の径 d (ma) 220.30 開板の最小厚さ t $_{n}$ (ma) 220.30 開板の離手効率 η 1.00 6 層台の計算上必要な厚さ t $_{n}$ (ma) 1000.00 開板の計算上必要な厚さ t $_{nr}$ (ma) 1000.00 開板の計算上必要な厚さ t $_{nr}$ (ma) 4.83 管台の計算上必要な厚さ t $_{nr}$ (ma) 4.83 管台の計算上必要な厚き t $_{nr}$ (ma) 4.83 常白の自勃範囲 X 1 (ma) 4.83 管台の計算上必要な原音 t $_{nr}$ (ma) 380.00 常確の自勃範囲 X 1 (ma) 380.00 10 確由の有効範囲 X 1 (ma) 5.80 10	胴板材料			SM50B (SM490B)
最高使用压力 P (MPa) 1.18 最高使用温度 (°C) 70 胴板の許容引張応力 S $_{\rm s}$ (MPa) 123 管台の許容引張応力 S $_{\rm n}$ (MPa) 103 強め板の許容引張応力 S $_{\rm n}$ (MPa) 103 強め板の許容引張応力 S $_{\rm e}$ (MPa) 123 穴の径 d (mm) 220.30 胴板の最小厚さ t $_{\rm s}$ (mm) 220.30 胴板の銀手効率 η 1.00 1000.00 胴板の離手効率 η 1.00 1000.00 胴板の離手効率 η 1.00 1000.00 胴板の部算上必要な厚さ t $_{\rm sr}$ (mm) 4.83 管台の計算上必要な厚さ t $_{\rm sr}$ (mm) 4.83 管台の方効範囲 X $_{\rm 1}$ (mm) 4.83 常台の有効範囲 X $_{\rm 2}$ (mm) 4.83 電台の方効範囲 X $_{\rm 1}$ (mm) 380.00 管台の外径 D $_{\rm o.n}$ (mm) 216.30 溶接寸方 L $_{\rm 2}$ (mm) 5.80	管台材料			STS42 (STS410)
最高使用温度 (°C) 70 胴板の許容引張応力 S_s (MPa) 123 管台の許容引張応力 S_n (MPa) 103 強め板の許容引張応力 S_c (MPa) 103 強め板の許容引張応力 S_c (MPa) 123 穴の径 d (mm) 123 穴の径 d (mm) 123 穴の径 d_w (mm) 123 穴の径 d_w (mm) 123 穴の径 d_w (mm) 220.30 胴板の最小厚さ t_s (mm) 220.30 胴板の総手効率 η 1.00 1000.00 胴板の計算上必要な厚さ t_{nr} (mm) 1000.00 胴板の合約範囲 X_1 (mm) 4.83 管台の引動範囲 X_2 (mm) 4.83 管台の引動範囲 X_2 (mm) 1000.00 開放の有効範囲 X_1 (mm) 380.00 管台の外径 $D_o n$ (mm) 216.30 溶接す L_1 (m	強め板材料			SM50B (SM490B)
胴板の許容引張応力 S s (MPa) 123 管台の許容引張応力 S n (MPa) 103 強め板の許容引張応力 S c (MPa) 123 穴の径 d (mm) 123 層板の最小厚さ t (mm) 220.30 胴板の維手効率 η 1.00 (mm) 層板の能手効率 η 1.00 (mm) 開板の計算上必要な厚さ t $r. (mm) 開板の行効範囲 X (mm) 4.83 (mm) 常強の行効範囲 X (mm) (mm) (mm) 増強の有効範囲 X (mm) (mm) (mm) 強強の右のの外径 B (mm) 380.00 (mm) 管台の外径 D o n (mm) 216.30 $	最高使用圧力	Р	(MPa)	1.18
管台の許容引張応力 S_n (MPa) 103 強め板の許容引張応力 S_c (MPa) 123 穴の径 d (mm) 220.30 胴板の最小厚さ t_s (mm) 220.30 胴板の最小厚さ t_n (mm) 220.30 胴板の銀小厚さ t_n (mm) 20.00 胴板の銀手効率 η 1.00 1000 原の内容 Di (mm) 1000.00 胴板の計算上必要な厚さ t_{sr} (mm) 4.83 管台の計算上必要な厚さ t_{nr} (mm) 4.83 管台の計算上必要な原さ t_{nr} (mm) 4.83 管台の対算上必要な面積 A_r (mm) 4.83 管台の対算上必要な面積 A_r (mm) 4.83 「御強の有効範囲 X_1 (mm) 4.83 「御強の有効範囲 X_1 (mm) 380.00 「強め板の身外径 B_e (mm) 380.00 380.00 管台の外径 D_on (mm) 216.30 380.00 管台の外径 D_on (mm) <td>最高使用温度</td> <td></td> <td>(°C)</td> <td>70</td>	最高使用温度		(°C)	70
強め板の許容引張応力 S $_{o}$ (MPa) 123 穴の径 d (mm) 220.30 胴板の最小厚さ t $_{o}$ (mm) 220.30 胴板の最小厚さ t $_{o}$ (mm) 220.30 胴板の銀小厚さ t $_{o}$ (mm) 20.30 胴板の銀手効率 η 1.00 係数 F 1.00 胴の内径 D $_{i}$ (mm) 胴板の計算上必要な厚さ t $_{s,r}$ (mm) 小商強に必要な面積 A $_{r}$ (mm) 補強の有効範囲 X 1 (mm) 補強の有効範囲 X 2 (mm) 補強の有効範囲 Y 1 (mm) 補強の有効範囲 Y 1 (mm) 強め板の外径 B $_{o}$ (mm) 強め板の外径 D $_{o,n}$ (mm) 強め板の外径 D $_{o,n}$ (mm) 踏砂板の介外径 D $_{o,n}$ (mm) 強め板の外径 D $_{o,n}$ (mm) 階強の状の外径 D $_{o,n}$ (mm) 方<0	胴板の許容引張応力	S _s	(MPa)	123
穴の径 d (mm) 管台が取り付く穴の径 d_w (mm) 220.30 胴板の最小厚さ t_s (mm) 220.30 簡板の最小厚さ t_n (mm) 節板の銀小厚さ t_n (mm) 開板の継手効率 η 1.00 係数 F 1.00 胴の内径 D _i (mm) 間の内径 D _i (mm) 開板の計算上必要な厚さ t_{sr} (mm) 穴の補強に必要な面積 A _r (mm) 常強の有効範囲 X ₁ (mm) 補強の有効範囲 X ₂ (mm) 補強の有効範囲 X ₁ (mm) 離始の有効範囲 X ₁ (mm) 離強的板の最小厚さ t _e (mm) 強め板の外径 B _e (mm) 強め板の外径 D _{o n} (mm) 溜強の状の L ₂ (mm) 第40 S L ₂ 開板の有効補強面積 A ₁ (m ²) 管台の外径 L ₂ (mm) 第核行法法 L ₂	管台の許容引張応力	S _n	(MPa)	103
管台が取り付く穴の径 d_w (mm) 220.30 胴板の最小厚さ t_s (mm) 管台の最小厚さ t_n (mm) 胴板の継手効率 η 1.00 「飯数の能手効率 η 1.00 「「飯の) 「「」 (mm) 1000.00 「胴板の計算上必要な厚さ t_{sr} (mm) 4.83 管台の計算上必要な厚さ t_{sr} (mm) 4.83 常台の計算上必要な厚さ t_{nr} (mm) 4.83 常白の計算上必要な厚さ t_{nr} (mm) 4.83 <	強め板の許容引張応力	S _e	(MPa)	123
胴板の最小厚さ t s (mm) 管台の最小厚さ t n (mm) 胴板の継手効率 η 1.00 係数 F 1.00 胴の内径 Di (mm) 加の内径 Di (mm) 加の方径 Di (mm) 開板の計算上必要な厚さ t sr (mm) 竹谷の計算上必要な厚き t nr (mm) 穴の補強に必要な面積 A r (mm ²) 補強の有効範囲 X 1 (mm) 補強の有効範囲 X 2 (mm) 補強の有効範囲 X 1 (mm) 補強の有効範囲 Y 1 (mm) 補強の有効範囲 Y 1 (mm) 強数板の最小厚さ t e (mm) 強め板の外径 B e (mm) 空台の外径 D o n (mm) 溶接寸法 L 1 (mm) 常接寸法 L 2 (mm) 方 80	穴の径	d	(mm)	
管白の最小厚さ t_n (mm) 胴板の継手効率 η (係数) F 川の内径 D _i (mm) 別の内径 D _i (mm) 1000.00 胴板の計算上必要な厚さ t_{sr} (mm) 空台の計算上必要な厚さ t_{nr} (mm) 穴の補強に必要な面積 A _r (mm ²) 補強の有効範囲 X ₁ (mm) 補強の有効範囲 X ₂ (mm) 補強の有効範囲 Y ₁ (mm) 補強の有効範囲 Y ₁ (mm) 強砂板の最小厚さ t _e (mm) 強砂板の外径 B _e (mm) 強砂板の外径 D _{on} (mm) 216.30 溶接寸法 L ₁ (mm) 馬板の有効補強面積 A ₁ (mm ²) 「一	管台が取り付く穴の径	d w	(mm)	220. 30
胴板の継手効率 η 1.00 係数 F 1.00 胴の内径 D _i (mm) 1000.00 胴板の計算上必要な厚さ t _{sr} (mm) 4.83 管台の計算上必要な厚さ t _{nr} (mm) 4.83 管台の計算上必要な厚さ t _{nr} (mm) 4.83 常治の有効範囲 X ₁ (mm) 4.83 補強の有効範囲 X ₂ (mm) 4.83 補強の有効範囲 X ₁ (mm) 4.83 補強の有効範囲 X ₁ (mm) 4.83 補強の有効範囲 X ₁ (mm) 4.83 構造の有効範囲 X ₁ (mm) 4.83 構造の有効範囲 X ₁ (mm) 380.00 管台の外径 B _e (mm) 216.30 溶接寸法 L ₂ (mm) 5.80 順板の有効補強面積 A ₁ (mm ²) 99.57 強数板の有効補強面積 A ₂ (mm ²) 99.57 強め板の有効補強面積 A ₂ (mm ²) 99.57 強め板の有効補強面積 A ₂ (mm ²) <td>胴板の最小厚さ</td> <td>t s</td> <td>(mm)</td> <td></td>	胴板の最小厚さ	t s	(mm)	
係数 F 1.00 胴の内径 D_i (mm) 1000.00 胴板の計算上必要な厚さ t_{sr} (mm) 4.83 管台の計算上必要な厚さ t_{nr} (mm) 4.83 管台の計算上必要な面積 A_r (mm²) 補強の有効範囲 X 1 (mm) 補強の有効範囲 X 2 (mm) 補強の有効範囲 X 2 (mm) 補強の有効範囲 Y 1 (mm) 強め板の最小厚さ t e (mm) 強め板の外径 B e (mm) 踏好寸法 L 1 (mm) 溶接寸法 L 2 (mm) 「一 K_1 (mm²) 「一 K_2 (mm²) 「一 K_2 (mm²) 第80 M_1 M_2 「音白の外径 $D_{o.n}$ (mm²) 「一 K_2 (mm²) 「一 K_1 M_2 「一 M_2 M_2 「一 K_1 M_2 「一 K_2 M_2 「一 K_1 M_2 「一 K_2 M_2 <tr< td=""><td>管台の最小厚さ</td><td>t n</td><td>(mm)</td><td></td></tr<>	管台の最小厚さ	t n	(mm)	
胴の内径 D _i (mm) 1000.00 胴板の計算上必要な厚さ t_{sr} (mm) 4.83 管台の計算上必要な厚さ t_{nr} (mm) 穴の補強に必要な面積 A _r (mm ²) 補強の有効範囲 X ₁ (mm) 補強の有効範囲 X ₂ (mm) 補強の有効範囲 X (mm) 補強の有効範囲 Y ₁ (mm) 補強の有効範囲 Y ₁ (mm) 強砂板の最小厚さ t _e (mm) 強め板の外径 B _e (mm) 踏安寸法 L ₁ (mm) 溶接寸法 L ₂ (mm) 「耐板の有効補強面積 A ₁ (mm ²) 「音台の有効補強面積 A ₂ (mm ²) 「市板の有効補強面積 A ₄ (mm ²) 「市金板市 99.57 強め板の有効補強面積 A ₄ (m ²) 補強に有効な総面積 A ₀ (m ²)	胴板の継手効率	η		1.00
胴板の計算上必要な厚さ t_{sr} (mm) 4.83 管台の計算上必要な厚さ t_{nr} (mm) 穴の補強に必要な面積 A_r (mm²) 補強の有効範囲 X_1 (mm) 補強の有効範囲 X_2 (mm) 補強の有効範囲 X_2 (mm) 補強の有効範囲 Y_1 (mm) 強め板の最小厚さ t_e (mm) 強め板の外径 B_e (mm) 第接寸法 L_1 (mm) 溶接寸法 L_2 (mm) 「腑板の有効補強面積 A_2 (mm²) 「音台の有効補強面積 A_2 (mm²) 「方み肉溶接部の有効補強面積 A_3 (mm²) 中本肉溶統面積 A_4 (mm²) 補強に有効な総面積 A_0 (mm²)	係数	F		1.00
管台の計算上必要な厚さ t_{nr} (mm)穴の補強に必要な面積 A_r (mm²)補強の有効範囲X1(mm)補強の有効範囲X2(mm)補強の有効範囲X(mm)補強の有効範囲Y1(mm)強め板の最小厚さte(mm)強め板の外径Be(mm)管台の外径Don(mm)溶接寸法L1(mm)腐接寸法L2(mm)簡板の有効補強面積A1(mm²)すみ肉溶接部の有効補強面積A3(mm²)すみ肉溶接部の有効補強面積A4(mm²)補強に有効な総面積A0(mm²)	胴の内径	D _i	(mm)	1000.00
穴の補強に必要な面積 A_r (mn^2) 補強の有効範囲 X_1 (mm) 補強の有効範囲 X_2 (mm) 補強の有効範囲 X (mm) 補強の有効範囲 Y_1 (mm) 補強の有効範囲 Y_1 (mm) 強め板の最小厚さ t_e (mm) 強め板の外径 B_e (mm) 宮若の外径 D_{on} (mm) 宮接寸法 L_1 (mm) 腐接寸法 L_2 (mm) 簡板の有効補強面積 A_2 (mn^2) 「日本内容法接部の有効補強面積 A_3 (mm^2) 第独板の有効補強面積 A_4 (mm^2) 補強に有効な総面積 A_0 (mm^2)	胴板の計算上必要な厚さ	t sr	(mm)	4.83
補強の有効範囲 X_1 (mm)補強の有効範囲 X_2 (mm)補強の有効範囲 X (mm)補強の有効範囲 Y_1 (mm)補強の有効範囲 Y_1 (mm)強め板の最小厚さ t_e (mm)強め板の外径 B_e (mm)宮台の外径 D_{on} (mm)216.30 8.12 溶接寸法 L_1 (mm)第接寸法 L_2 (mm)個板の有効補強面積 A_1 (mm²)すみ肉溶接部の有効補強面積 A_3 (mm²)有効板の有効補強面積 A_4 (mm²)補強に有効な総面積 A_0 (mm²)	管台の計算上必要な厚さ	t nr	(mm)	
補強の有効範囲 X_2 (mm)補強の有効範囲X(mm)補強の有効範囲Y1(mm)強め板の最小厚さte(mm)強め板の外径Be(mm)音台の外径Don(mm)溶接寸法L1(mm)腐接寸法L2(mm)個板の有効補強面積A1(mm²)すみ肉溶接部の有効補強面積A3(mm²)補強に有効な総面積A0(mm²)	穴の補強に必要な面積	A _r	(mm^2)	
補強の有効範囲X(mm)補強の有効範囲Y 1(mm)強め板の最小厚さt $_{\rm e}$ (mm)強め板の外径B $_{\rm e}$ (mm)窗台の外径D $_{\rm o n}$ (mm)宮台の外径L 1(mm)窓接寸法L 2(mm)阿板の有効補強面積A 1(mm²)「古み肉溶接部の有効補強面積A 3(mm²)すみ肉溶接部の有効補強面積A 4(mm²)補強に有効な総面積A 0(mm²)	補強の有効範囲	Χ 1	(mm)	
補強の有効範囲 Y_1 (mm)強め板の最小厚さ t_e (mm)強め板の外径 B_e (mm)窗台の外径 D_{on} (mm)宮台の外径 D_{on} (mm)溶接寸法 L_1 (mm)窓接寸法 L_2 (mm)阿板の有効補強面積 A_1 (mm²)管台の有効補強面積 A_2 (mm²)すみ肉溶接部の有効補強面積 A_4 (mm²)補強に有効な総面積 A_0 (mm²)	補強の有効範囲	X $_2$	(mm)	
強め板の最小厚さ t_e (mm)強め板の外径 B_e (mm)380.00管台の外径 D_{on} (mm)216.30溶接寸法 L_1 (mm)8.12溶接寸法 L_2 (mm)5.80 H_0 H_1 (mm²) H_0 H_2 (mm²) H_2 (mm²) H_0 H_2 (mm²) H_2 (mm²) H_4 (mm²) H_4 (mm²) H_4 <	補強の有効範囲	Х	(mm)	
強め板の外径B e(mm)380.00管台の外径D o n(mm)216.30溶接寸法L 1(mm)8.12溶接寸法L 2(mm)5.80Im板の有効補強面積A 1(mm²)管台の有効補強面積A 2(mm²)すみ肉溶接部の有効補強面積A 3(mm²)強め板の有効補強面積A 4(mm²)補強に有効な総面積A 0(mm²)	補強の有効範囲	Υ 1	(mm)	
管台の外径Don(mm)216.30溶接寸法L1(mm)8.12溶接寸法L2(mm)5.80(mm²) <td>強め板の最小厚さ</td> <td>t e</td> <td>(mm)</td> <td></td>	強め板の最小厚さ	t e	(mm)	
溶接寸法L(mm)8.12溶接寸法L 2 (mm) 5.80 胴板の有効補強面積A(mm²)管台の有効補強面積A(mm²)すみ肉溶接部の有効補強面積A(mm²)強め板の有効補強面積A(mm²)補強に有効な総面積A(mm²)	強め板の外径	B _e	(mm)	380.00
溶接寸法L1(mm)8.12溶接寸法L2(mm)5.80周板の有効補強面積A1(mm²)管台の有効補強面積A2(mm²)すみ肉溶接部の有効補強面積A3(mm²)強め板の有効補強面積A4(mm²)補強に有効な総面積A0(mm²)	管台の外径	D _{on}	(mm)	216.30
胴板の有効補強面積 A ₁ (mm ²) 管台の有効補強面積 A ₂ (mm ²) すみ肉溶接部の有効補強面積 A ₃ (mm ²) 強め板の有効補強面積 A ₄ (mm ²) 補強に有効な総面積 A ₀ (mm ²)	溶接寸法	L ₁	(mm)	8.12
管台の有効補強面積A2(mm²)すみ肉溶接部の有効補強面積A3(mm²)強め板の有効補強面積A4(mm²)補強に有効な総面積A0(mm²)	溶接寸法	L ₂	(mm)	5.80
管台の有効補強面積A2(mm²)すみ肉溶接部の有効補強面積A3(mm²)強め板の有効補強面積A4(mm²)補強に有効な総面積A0(mm²)				
すみ肉溶接部の有効補強面積A3(mm²)99.57強め板の有効補強面積A4(mm²)補強に有効な総面積A0(mm²)	胴板の有効補強面積	A_1	(mm^2)	
強め板の有効補強面積 A ₄ (mm ²) 補強に有効な総面積 A ₀ (mm ²)	管台の有効補強面積	A_2	(mm^2)	
補強に有効な総面積 A ₀ (mm ²)	すみ肉溶接部の有効補強面積	A 3	(mm^2)	99. 57
	強め板の有効補強面積	A_4	(mm^2)	
補強:A ₀ >A _r ,よって十分である。	補強に有効な総面積	A 0	(mm^2)	
	補強:A ₀ >A _r ,よって十分~	である。		

部材名称			(1) 胴体入口
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	500.00
評価:d≦dj,よって大き	い穴の補強	計算は必	要ない。
溶接部にかかる荷重	W_1	(N)	
溶接部にかかる荷重	W_2	(N)	
溶接部の負うべき荷重	W	(N)	
評価:W<0,よって溶接部	の強度計算	は必要ない	
以上より十分である。			

枠囲みの内容は商業機密の観点から公開できません。

容器の穴の補強計算

設計・建設規格 PVC-3160

参照附図 WELD-16

部材名称			(2) 胴体出口
			SM50B (SM490B)
管台材料			STS42 (STS410)
強め板材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	1. 18
最高使用温度		(°C)	70
胴板の許容引張応力	S _s	(MPa)	123
管台の許容引張応力	S _n	(MPa)	103
強め板の許容引張応力	S _e	(MPa)	123
穴の径	d	(mm)	
管台が取り付く穴の径	d w	(mm)	220.30
胴板の最小厚さ	t s	(mm)	
管台の最小厚さ	t n	(mm)	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D _i	(mm)	1000.00
胴板の計算上必要な厚さ	t sr	(mm)	4.83
管台の計算上必要な厚さ	t nr	(mm)	
穴の補強に必要な面積	A _r	(mm^2)	
補強の有効範囲	X 1	(mm)	
補強の有効範囲	X $_2$	(mm)	
補強の有効範囲	Х	(mm)	
補強の有効範囲	Υ 1	(mm)	
強め板の最小厚さ	t e	(mm)	
強め板の外径	B _e	(mm)	380.00
管台の外径	D _{on}	(mm)	216.30
溶接寸法	L ₁	(mm)	8.12
溶接寸法	L ₂	(mm)	5.80
胴板の有効補強面積	A_1	(mm^2)	
管台の有効補強面積	A_2	(mm^2)	
すみ肉溶接部の有効補強面積	A_3	(mm^2)	99. 57
強め板の有効補強面積	A_4	(mm^2)	
補強に有効な総面積	A_0	(mm^2)	
補強:A ₀ >A _r , よって十分 [~]	である。		

枠囲みの内容は商業機密の観点から公開できません。

部材名称			(2) 胴体出口
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	500.00
評価:d≦dj,よって大き	い穴の補強	計算は必要	要ない。
溶接部にかかる荷重	W_1	(N)	
溶接部にかかる荷重	W_2	(N)	
溶接部の負うべき荷重	W	(N)	
評価:W<0,よって溶接部	の強度計算	は必要ない) ₀
以上より十分である。			

枠囲みの内容は商業機密の観点から公開できません。

容器の穴の補強計算

設計・建設規格 PVC-3160

参照附図 WELD-16

部材名称			(3) 水室入口
胴板材料			SM50B (SM490B)
管台材料			SFVC2B
強め板材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	0. 78
最高使用温度		(°C)	50
胴板の許容引張応力	S _s	(MPa)	123
管台の許容引張応力	S _n	(MPa)	120
強め板の許容引張応力	S _e	(MPa)	123
穴の径	d	(mm)	
管台が取り付く穴の径	d w	(mm)	220.30
胴板の最小厚さ	t s	(mm)	
管台の最小厚さ	t n	(mm)	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D _i	(mm)	1000.00
胴板の計算上必要な厚さ	t sr	(mm)	3. 19
管台の計算上必要な厚さ	t nr	(mm)	
穴の補強に必要な面積	A _r	(mm^2)	
補強の有効範囲	X $_1$	(mm)	
補強の有効範囲	X $_2$	(mm)	
補強の有効範囲	Х	(mm)	
補強の有効範囲	Y 1	(mm)	
強め板の最小厚さ	t e	(mm)	
強め板の外径	B _e	(mm)	380.00
管台の外径	D _{on}	(mm)	216.30
溶接寸法	L ₁	(mm)	8.12
溶接寸法	L $_2$	(mm)	5.80
胴板の有効補強面積	A_1	(mm^2)	
管台の有効補強面積	A_2	(mm^2)	
すみ肉溶接部の有効補強面積	A $_3$	(mm^2)	99. 57
強め板の有効補強面積	A_4	(mm^2)	
補強に有効な総面積	A_0	(mm^2)	
補強:A ₀ >A _r ,よって十分~	である。		

部材名称			(3) 水室入口
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	500.00
「評価:d \leq d _j ,よって大き	い穴の補強	計算は必	要ない。
溶接部にかかる荷重	W_1	(N)	
溶接部にかかる荷重	${ m W}_2$	(N)	
溶接部の負うべき荷重	W	(N)	
「評価:W<0,よって溶接部	の強度計算	は必要ない	() ₀
以上より十分である。			

枠囲みの内容は商業機密の観点から公開できません。

容器の穴の補強計算

設計・建設規格 PVC-3160

参照附図 WELD-16

部材名称			(4) 水室出口
胴板材料			SM50B(SM490B)
管台材料			SFVC2B
強め板材料			SM50B(SM490B)
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
胴板の許容引張応力	S _s	(MPa)	123
管台の許容引張応力	S _n	(MPa)	120
強め板の許容引張応力	S _e	(MPa)	123
穴の径	d	(mm)	
管台が取り付く穴の径	d w	(mm)	220. 30
胴板の最小厚さ	t s	(mm)	
管台の最小厚さ	t n	(mm)	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D _i	(mm)	1000.00
胴板の計算上必要な厚さ	t sr	(mm)	3. 19
管台の計算上必要な厚さ	t nr	(mm)	
穴の補強に必要な面積	A _r	(mm^2)	643. 9
補強の有効範囲	Χ 1	(mm)	201. 50
補強の有効範囲	X $_2$	(mm)	201.50
補強の有効範囲	Х	(mm)	403.00
補強の有効範囲	Υ 1	(mm)	
強め板の最小厚さ	t e	(mm)	
強め板の外径	B _e	(mm)	380.00
管台の外径	D _{on}	(mm)	216.30
溶接寸法	L ₁	(mm)	8.12
溶接寸法	L ₂	(mm)	5.80
胴板の有効補強面積	A_1	(mm^2)	
管台の有効補強面積	A_2	(mm^2)	
すみ肉溶接部の有効補強面積	A_3	(mm^2)	99.57
強め板の有効補強面積	A_4	(mm^2)	
補強に有効な総面積	A_0	(mm^2)	
補強: $A_0 > A_r$, よって十分	である。		

部材名称			(4) 水室出口
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	500.00
評価:d \leq d _j , よって大き	い穴の補強	計算は必	要ない。
溶接部にかかる荷重	W $_{1}$	(N)	
溶接部にかかる荷重	${ m W}_2$	(N)	
溶接部の負うべき荷重	W	(N)	
評価:W<0,よって溶接部	の強度計算	は必要ない	() ₀
以上より十分である。			

枠囲みの内容は商業機密の観点から公開できません。

2.8 容器のフランジの計算

設計・建設規格 PVC-3710

(JIS B 8265 附属書3適用)

(内圧を受けるフランジ)

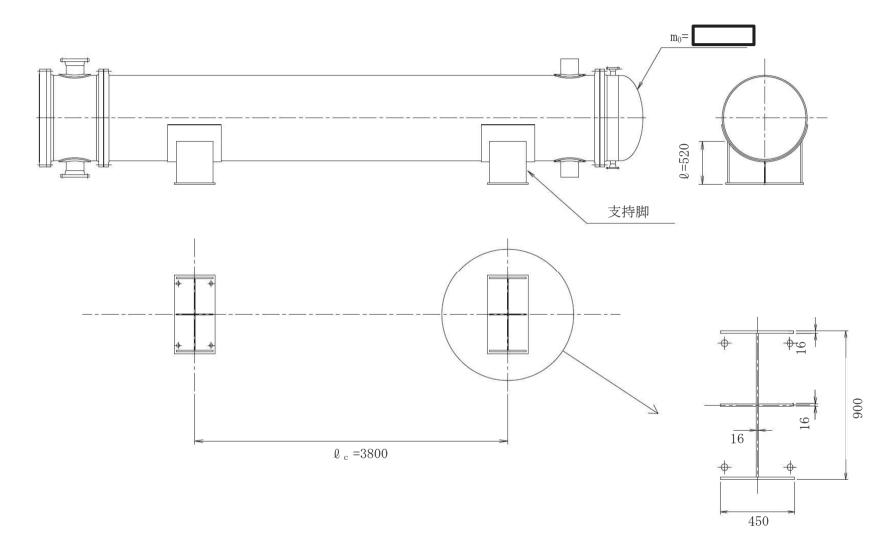
参照附図 FLANGE-2 一体形フランジ

マランジ名称 (1) 水室フランジ フランジ材料 SFVC2B 開又は管台材料 SM506 (SM400B) ボルト材料 マレフシーリングガスケット(ゴム) ガスケット厚き (mm) ガスケット厚画の形状 - 最高使用圧力 P (MPa) 「ボルト (MPa) 0.78 「ボルト (MPa) (JA ケット縮一時) 「ブランジ (MPa) (JA ケット海(市)) 「ブランジ (MPa) (JA ケット海(市)) フランジの外径 (MPa) (JA ケット海(市)) フランジの外径 (MPa) (JA ケット海(市)) フランジの外径 (MPa) (JA + = 173) フランジの内径 (MPa) (JA + = 173) フランジの内径 (MPa) (JA + = 120) フランジの内径 (MPa) (JA + = 123) フランジの内径 (MPa) (JA + = 123) フランジの内径 (MPa) (JA + = 123) アニー (MPa) (JA + = 123) フランジの内径 (MPa) (JA + = 123) フランジの内径 (MPa) (JA + = 123) フランジの方の方 (MPa) (MPa)		· / • • ·		2 M		III O D	2 (平川シン	/ • •		
胴又は管台材料 SM50B (SM490B) ボルト材料 SN87 (直径 63mu 以下) ガスケット厚玉 $t \nu \tau \nu \tau \nu - \eta \nu \nu \sigma \pi \lambda \tau \phi \gamma h$ (ゴム) ガスケット原志 (mm) ボルト P 最高使用圧力 P 振客引張応力 「ホルト (MPa) $\sigma_{b} = 173$ $\sigma_{a} = 173$ $\sigma_{a} = 120$ 「ボルト (MPa) $\sigma_{a} = 123$ $\sigma_{a} = 13$	フランジ名称									
ボルト材料 SNB7 (直径 63mm 以下) ガスケット材料 セルフシーリングガスケット (ゴム) ガスケット座面の形状 - 最高使用圧力 P (MPa) 0.78 満水ク・加速 - 最高使用正力 P (MPa) 0.78 「ボルト (MPa) $\sigma_{b} = 173$ $\sigma_{a} = 173$ フランジ (MPa) $\sigma_{1} = 120$ $\sigma_{1a} = 120$ 「ボルト (MPa) $\sigma_{1} = 120$ $\sigma_{1a} = 123$ フランジの外径 A (mn) 1180.00 0 フランジの内径 B (mn) 1000.00 0 ボルト中心円の直径 C (mn) 1130.00 0 マランジの内径 B (mn) 1057.00 0 ハブ先端の厚さ g 0 (mn) 1057.00 0 ハブが及うットの外径 D (mn) 1057.00 0 ハブの長さ h (mn) 30.00 15.00 ブシッシット呼び M20 17.294 17.294 ガスケット接触面の外径 G (mn) 1057.00 17.45 ガスケット接触面の外径 G (mn) 10.57.00 17.57.00 ガスケット接触面の外径 <	フランジ材料		SFVC2B							
ガスケット材料 セルフシーリングガスケット(ゴム) ガスケット厚さ (mm) 5 ガスケット座面の形状 - - 最高使用圧力 P (MPa) 0.78 環席使用活皮 「ボルト (WPa) $\sigma_{1} = 120$ (ガスケット綿付時) ボルト (MPa) $\sigma_{1} = 120$ $\sigma_{1} = 120$ $\sigma_{1} = 120$ ボルト (MPa) $\sigma_{1} = 120$ $\sigma_{1} = 120$ $\sigma_{1} = 123$ フランジの外径 A (mm) 1180.00 0 フランジの内径 B (mm) 1000.00 0 ボルト中心日の直径 C (mm) 1057.00 0 ハブの厚さ g_1 (mm) 30.00 ボルト甲公 ボルト M20 M24 10 ボルト 谷径 h (mm) 30.00 1057.00 ボルト容極 n 24 10 1057.00 ボルト容極 n 0 1057.00 10 ガスケット接触面の外径 G_s (mm) - 1	胴又は管台材料		SM50B (SM490B)							
ガスケット厚さ (mn) 5 ガスケット座面の形状 - - 最高使用圧力 P (MPa) 0.78 最高使用温度 (使用状態) ($j \chi / \gamma / \gamma / k \hat{m} / t \bar{m}$) ($j \chi / \gamma / \gamma / k \hat{m} / t \bar{m}$) アランジ (MPa) $\sigma_{b} = 173$ $\sigma_{a} = 173$ フランジ (MPa) $\sigma_{t} = 120$ $\sigma_{ta} = 123$ フランジの外径 A (mn) 1180.00 フランジの内径 B (mn) 1000.00 ボルト中心円の直径 C (mn) 1057.00 ハブ先端の厚き g_0 (mn) 1057.00 ハブグ見端の厚き g_0 (mn) 30.00 ボルトや弦 M20 パント 容数 n 24 ボルト 容整 n 1057.00 ハブ気影 n 24 ボルト 容数 n 24 ボルト 容数 n 0 ガスケット接触面の外径 G_a (mn) 1057.00 ガスケット接触面の場 n <	ボルト材料				SI	vB7(直	径63mm以下)			
ガスケット座面の形状 - 最高使用圧力 P (MPa) 0.78 最高使用圧力 P (MPa) 0.78 満た 温度条件 (°C) (G供用状態) (50) (\mathcal{I} スケット総付時) (20) ボルト (MPa) $\sigma_{1} = 120$ $\sigma_{a} = 173$ $\sigma_{a} = 123$ フランジ (MPa) $\sigma_{1} = 120$ $\sigma_{a} = 123$ $\sigma_{na} = 123$ フランジの内径 B (mm) 11000.00 0 ボルト中心円の直径 C (mm) 1130.00 セルフシールガスケットの外径 D _a (mm) 1000.00 バルト中心円の直径 C (mm) 1057.00 ハブの長き h (mm) 30.00 ボルト呼び M20 ボルト容径 d _b (mm) 1057.00 ガスケット接触面の外径 G (mm) 1057.00 ガスケット接触面の外径 G (mm) 17.294 ガスケット接触面の外径 G (mm) 1057.00 ガスケット接触面の外径 G (mm) ガスケット接触面の場 (mm)	ガスケット材料				セルフシ	ーリング	ガガスケット(ゴム)		
最高使用圧力 P (MPa) 0.78 市容引張応力 温度条件 (°C) 最高使用温度 (使用状態) (50) ($\mathcal{J} \land \mathcal{F} \lor \mathcal{F}$ 縮付時) (20) ボルト (MPa) $\sigma_{b} =$ 173 $\sigma_{a} =$ 173 フランジ (MPa) $\sigma_{f} =$ 120 $\sigma_{i,a} =$ 123 フランジの外径 A (mn) 1180.00 0 フランジの内径 B (mn) 1130.00 ゼルマシールガスケットの外径 D _a (mn) 1057.00 ハブ先端の厚き g ₀ (mn) 1057.00 ハブの長さ h (mn) 30.00 ボルト浴径 G _a (mn) 1057.00 パブの長さ h (mn) 1057.00 パブの長さ h (mn) 1057.00 パブルト茶数 n 24 10.47.294 ガスケット接触面の外径 G _a (mn) 1057.00 ガスケット接触面の外径 G _a (mn) - 10.47.94 ガスケット接触面の外径 G _a (mn) - 10.57.00 ガスケット接触面の外径	ガスケット厚さ			(mm)			5			
許容引張応力 温度条件 (℃) 最高使用温度 (使用状態) (50) 常温 (ガスケット締付時) (20) ボルト (MPa) $\sigma_{b} = 173$ $\sigma_{a} = 173$ $\sigma_{a} = 173$ フランジの内径 $\sigma_{1} = 120$ $\sigma_{1s} = 123$ $\sigma_{ns} = 123$ フランジの内径 B (mn) 1180.00 フランジの内径 B (mn) 1000.00 ボルト中心円の直径 C (mn) 1057.00 バブ先端の厚さ g 0 (mn) 1057.00 ハブ先端の厚さ g 1 (mn) 25.00 ハブの長さ h (mn) 1057.00 ハブの長さ h (mn) 1057.00 バルト呼び M20 ボルト教委 17.294 ガスケット接触面の外径 G (mn) 1057.00 ガスケット接触面の外径 G (mn) 1057.00 ガスケット接数 n 0 ポルト谷径 d b (mn) 17.294 ガスケット接数 m 0 ガスケット接動面の幅 N (mn) ガスケット陸の支援輸 b (mn) - ウオントウ医の素雪 H (N)	ガスケット座面	iの形状					_			
許容引張応力 温度条件 (℃) (使用状態) (50) (\mathcal{J} スケット締付時) (20) ボルト (MPa) $\sigma_{b} = 173$ $\sigma_{a} = 173$ $\sigma_{a} = 120$ フランジ (MPa) $\sigma_{f} = 120$ $\sigma_{fa} = 120$ $\sigma_{fa} = 120$ フランジの外径 A (mm) 1180.00 $\sigma_{na} = 123$ $\sigma_{na} = 123$ フランジの内径 B (mm) 1000.00 $\sigma_{na} = 123$ $\sigma_{na} = 123$ フランジの内径 B (mm) 1000.00 $\sigma_{na} = 123$ $\sigma_{na} = 123$ フランジの内径 B (mm) 1000.00 $\sigma_{na} = 123$ $\sigma_{na} = 123$ フランジでの内径 B (mm) 1000.00 $\sigma_{na} = 123$ $\sigma_{na} = 123$ アランジでの内径 B (mm) 1057.00 $\sigma_{na} = 123$ $\sigma_{na} = 123$ アクシン常者面のハブの厚き g_1 (mm) 25.00 $\sigma_{na} = 123$ $\sigma_{na} = 123$ パルトやび M20 ボルトな数 n 1057.00 17.294 30.00 ボルト谷径 d_b (mm) 17.294 0 $37.479.163$ $37.479.163$ <td>最高使用圧力</td> <td></td> <td>Р</td> <td>(MPa)</td> <td></td> <td></td> <td>0.78</td> <td></td>	最高使用圧力		Р	(MPa)			0.78			
許容引張応力 (50) (20) ボルト (MPa) $\sigma_b =$ 173 $\sigma_a =$ 173 フランジ (MPa) $\sigma_t =$ 120 $\sigma_{1a} =$ 120 開又は管台 (MPa) $\sigma_n =$ 123 $\sigma_{na} =$ 123 フランジの外径 A (mm) 1180.00 0 フランジの内径 B (mm) 11000.00 0 ボルト中心円の直径 C (mm) 1130.00 0 セルフシールガスケットの外径 Dg (mm) 1057.00 0 ハブ先端の厚さ go (mm) 15.00 0 フランジ背面のハブの厚さ go (mm) 25.00 0 ハブの長さ h (mm) 30.00 30.00 ボルト谷径 n 24 30.00 30.00 ボルト谷弦 n 1057.00 30.00 30.00 ガスケット接触面の外径 G。(mm) 1057.00 30.00 ガスケット接触面の幅 N (mm) 1057.00 30.00 ガスケット接触面の場 N (mm) - 30.00 30.00 ガスケット接触面の場 N					最高使用	温度	常温			
評答引張応力 ボルト (MPa) σ_{b} = 173 σ_{a} = 173 フランジ (MPa) σ_{f} = 120 σ_{fa} = 120 加又は管台 (MPa) σ_{n} = 123 σ_{na} = 123 フランジの内径 A (mm) 1180.00 フランジの内径 B (mm) 11000.00 ボルト中心円の直径 C (mm) 1130.00 セルフシールガスケットの外径 D _a (mm) 1057.00 ハブ先端の厚さ g_0 (mm) 1057.00 ハブケシールガスケットの外径 D _a (mm) 25.00 ハブの長さ h (mm) 30.00 ボルト本数 n 24 ボルトな経 G _s (mm) 1057.00 ガスケット接触面の外径 G _s (mm) 1057.00 ガスケット接触面の外径 G _s (mm) 1057.00 ガスケット接触面の幅 N (mm) 1057.00 ガスケット接触面の幅 N (mm) 1057.00 ガスケット接触面の幅 N (mm) 1057.00 ガスケット接触面の M m 0 ガスケット接触面の		温度条件		(°C)	(使用状)	態)	(ガスケット	締付時)		
ボルト (MPa) $\sigma_{b}=$ 173 $\sigma_{a}=$ 173 フランジ (MPa) $\sigma_{i}=$ 120 $\sigma_{ia}=$ 120 加又は管台 (MPa) $\sigma_{n}=$ 123 $\sigma_{na}=$ 123 フランジの外径 A (mm) 1180.00 0 ブランジの内径 B (mm) 1000.00 ボルト中心円の直径 C (mm) 1057.00 ハブ先端の厚さ g_0 (mm) 1057.00 ハブ先端の厚さ g_1 (mm) 30.00 バルト中心Pの (mm) 1057.00 15.00 フランジ背面のハブの厚き g_1 (mm) 30.00 バルト呼び M20 17.294 ボルト降び M20 1057.00 ガスケット接触面の外径 G_6 (mm) 1057.00 ガスケット接触面の幅 N (mn) 1057.00 ガスケット接触面の幅 N (mn) 1057.00 ガスケット接触面の幅 N (mn) 1057.00 ガスケット接触面の幅 N (mn) 10					(50)		(20)			
胴又は管台 (MPa) $\sigma_n =$ 123 $\sigma_{na} =$ 123 フランジの外径 A (mm) 1180.00 フランジの内径 B (mm) 1000.00 ボルト中心円の直径 C (nm) 1130.00 セルフシールガスケットの外径 Dg (nm) 1057.00 ハブ先端の厚さ go (nm) 1057.00 ハブの先さ h (nm) 25.00 ハブの長さ h (nm) 30.00 ボルト呼び M20 ボルト本数 M20 ボルト谷径 dь (nm) 1057.00 ガスケット接触面の外径 Gs (nm) 1057.00 ガスケット接触面の幅 N (nm) 1057.00 ガスケット接数 m 0 0 ガスケット接数 m 0 0 ガスケット座の 基本幅 b。 (nm) - ガスケット座の有効幅 b (nm) - - ガスケット空の有効幅 b (nm) - - ガスケット応力素車 H (N)	计谷归饭心刀	ボルト		(MPa)	$\sigma_{\rm b} =$	173	$\sigma_a =$	173		
フランジの外径 A (nm) 1180.00 フランジの内径 B (nm) 1000.00 ボルト中心円の直径 C (nm) 1130.00 セルフシールガスケットの外径 Dg (nm) 1057.00 ハブ先端の厚さ go (nm) 1057.00 ハブ先端の厚さ go (nm) 15.00 フランジ背面のハブの厚さ g1 (nm) 25.00 ハブの長さ h (nm) 30.00 ボルト呼び M20 ボルト本数 n 24 ボルト本数 n 1057.00 ガスケット接触面の外径 Gs (nm) 1057.00 ガスケット接触面の幅 N (nm) - ガスケット接触面の幅 N (nm) - ガスケット接触面の幅 N (nm) - ガスケット接動「 y (N/m²) 0 ガスケット座の有効幅 b (nm) - ウト酸丁素幅 b (nm) - ウト酸丁素幅 b (nm) -		フランジ		(MPa)	$\sigma_{\rm f} =$	120	$\sigma_{fa} =$	120		
フランジの内径 B (nm) 1000.00 ボルト中心円の直径 C (nm) 1130.00 セルフシールガスケットの外径 D _s (nm) 1057.00 ハプ先端の厚さ g ₀ (nm) 1057.00 フランジ背面のハブの厚さ g ₁ (nm) 25.00 ハブの長さ h (nm) 30.00 ボルト呼び M20 ボルト本数 n 24 ボルト体数 n 24 ボルト体数 m 0 ガスケット接触面の外径 G _s (nm) ガスケット接触面の幅 N (nm) ガスケット陸の 本幅 b (nm) ガスケット陸の 本幅 b (nm) ガスケット座の 大幅 b (nm) ウ ケ (N 6.844×10 ⁵ ガスケット陸の有動 - - 内		胴又は管台		(MPa)	$\sigma_n =$	123	$\sigma_{na} =$	123		
ボルト中心円の直径 C (mm) 1130.00 セルフシールガスケットの外径 D _s (mm) 1057.00 ハブ先端の厚さ go (mm) 15.00 フランジ背面のハブの厚さ g1 (mm) 25.00 ハブの長さ h (mm) 30.00 ボルト呼び M20 ボルト本数 n 24 ボルト本数 n 24 ガルトな径 db (mm) 1057.00 ガスケット接触面の外径 Gs (mm) 1057.00 ガスケット接触面の幅 N (mm) - ガスケット座の右動幅 b。 (mm) - ガスケット座の有動幅 b。 (mm) - ウトビ加える圧縮力 H _p (N) 6.844×10 ⁵ ガスケット縮付最小ボルト荷重 W _{m1} (N) 6.844×10 ⁵ ガスケット総付最小ボルト荷重 M _{m2} (N)	フランジの外径		А	(mm)		1	180.00			
セルフシールガスケットの外径 D _s (nm) 1057.00 ハブ先端の厚さ g o (nm) 15.00 フランジ背面のハブの厚さ g 1 (nm) 25.00 ハブの長さ h (nm) 30.00 ボルト呼び M20 ボルト本数 n 24 ボルトな径 d b (nm) 17.294 ガスケット接触面の外径 G s (nm) 1057.00 ガスケット接触面の幅 N (nm) - ガスケット接触面の幅 N (nm) - ガスケット接触面の幅 N (nm) - ガスケット接触面の相 N (nm) - ガスケット接動面の幅 N (nm) - ガスケット接動面の幅 N (nm) - ガスケット接動面の幅 N (nm) - ガスケット座の基本幅 b o (nm) - ウムケット座の方動幅 b (nm) - ウムケット応加える圧縮力 H _p (N) - ウムケット統一量 W _{m1} (N) 6.844×10 ⁵ ガスケット統付量 W _{m1} (N) 6.844×10 ⁵ ガスケット統付量 M _{m2} (nm ²) 3.956×10 ³ ボルトの所要 使用状態 A _{m1} (nm ²) 3.956×10 ³ <	フランジの内径		В	(mm)		1000.00				
ハブ先端の厚さ g o (mm) 15.00 フランジ背面のハブの厚さ g 1 (mm) 25.00 ハブの長さ h (mm) 30.00 ボルト呼び M20 ボルト本数 n 24 ボルト茶餐 d b (mm) 17.294 ガスケット接触面の外径 G (mm) 1057.00 ガスケット接触面の幅 N (mm) 1057.00 ガスケット接数 m 0 0 ガスケット係数 m 0 1057.00 ガスケット係数 m 0 0 ガスケット感の基本幅 b (mm) - 100 ガスケット座の石動幅 b (mm) - 100 ウ圧による全荷重 H (N) 6.844×10 ⁵ ガスケットが加える圧縮力 H _p (N) 0 ボルトの所要 (m1 (mm ²) 3.956×10 ³ ボルトの所要 (m ²) 0 <t< td=""><td colspan="3">ボルト中心円の直径</td><td>(mm)</td><td colspan="4">1130.00</td></t<>	ボルト中心円の直径			(mm)	1130.00					
フランジ背面のハブの厚さ g 1 (mm) 25.00 ハブの長さ h (mm) 30.00 ボルト呼び M20 ボルト本数 n 24 ボルト谷径 d b (mm) 17.294 ガスケット接触面の外径 G (mm) 1057.00 ガスケット接触面の幅 N (mm) - ガスケット接動の幅 N (mm) - ガスケット接動の幅 N (mm) - ガスケット座の基本幅 b 。 (mm) - ウ圧による全荷重 H (N) - ヴ用状態での最小ボルト荷重 Wm1 (N) - ブスケット総付最小ボルト荷重 Wm2 (N) 0 ボスケット総付最小ボルト荷重 Wm2 (N) 0 ボルトの所要 縦右効断面積 Am (mm²) 3.956×10 ³ 実際のボルト総有効断面積 <td>セルフシールカ</td> <td><mark>バスケットの外径</mark></td> <td>D g</td> <td>(mm)</td> <td colspan="4">1057.00</td>	セルフシールカ	<mark>バスケットの外径</mark>	D g	(mm)	1057.00					
ハブの長さ h (mm) 30.00 ボルト呼び M20 ボルト本数 n 24 ボルト谷径 d b (mm) 17.294 ガスケット接触面の外径 G s (mm) 1057.00 ガスケット接触面の幅 N (mm) - ガスケット接触面の幅 N (mm) - ガスケット接動 m 0 - ガスケット接動 m 0 - ガスケット接動 m 0 - ガスケット係数 m 0 - ガスケット座の基本幅 b o (mm) - ウトビーン ジェクリーン - - ガスケット座の有効幅 b (mm) - ウトビーン ジェクリーン - - ウトビーン ウェクリーン - - ヴェクリーン ・ - - ウトビーン ・ - - ヴェクリーン ・ - - ヴェクリーン ・ - - ボルトの所要 ・ - - - ボルトの市重 Wm1	ハブ先端の厚さ		g ₀	(mm)		15.00				
ボルト呼びM20ボルト本数n24ボルト谷径d b (mm)17.294ガスケット接触面の外径G s (mm)1057.00ガスケット接触面の幅N (mm)-ガスケット接触面の幅N (mm)-ガスケット接触面の幅N (mm)-ガスケット係数m0最小設計締付圧力y (N/mm²)0ガスケット座の基本幅b o (mm)-ガスケット座の有効幅b (mm)-ウト座の有効幅b (mm)-ウト座による全荷重H (N)6.844×10 ⁵ ガスケットに加える圧縮力H _p (N)-使用状態での最小ボルト荷重Wm1 (N)6.844×10 ⁵ ガスケット縮付最小ボルト荷重Wm2 (N)0ボルトの所要 総有効断面積 $\frac{(mn²)}{(nm²)}$ 3.956×10 ³ 実際のボルト総有効断面積A _b (mm²)5.638×10 ³	フランジ背面の)ハブの厚さ	g 1	(mm)	25.00					
ボルト本数 n 24 ボルト谷径 d b (mm) 17.294 ガスケット接触面の外径 G s (mm) 1057.00 ガスケット接触面の幅 N (mm) - ガスケット接触面の幅 N (mm) - ガスケット接触面の幅 N (mm) - ガスケット係数 m 0 最小設計締付圧力 y (N/mm²) 0 ガスケット座の基本幅 b o (mm) - ガスケット座の有効幅 b (mm) - ウトビースる全荷重 H (N) 6.844×10 ⁵ ガスケットに加える圧縮力 H _p (N) - 使用状態での最小ボルト荷重 Wm1 (N) 6.844×10 ⁵ ガスケット総付最小ボルト荷重 Wm2 (N) 0 ボルトの所要 検用状態 Am1 (mm²) 3.956×10 ³ 総有効断面積 Am (mm²) 3.956×10 ³ 5.638×10 ³	ハブの長さ		h	(mm)		30.00				
ボルト谷径 d b (mm) 17.294 ガスケット接触面の外径 G s (mm) 1057.00 ガスケット接触面の幅 N (mm) - ガスケット接触面の幅 N (mm) - ガスケット係数 m 0 最小設計締付圧力 y (N/mm²) 0 ガスケット座の基本幅 b o (mm) - ガスケット座の有効幅 b (mm) - ガスケット座の有効幅 b (mm) - ウェイントン アン - ガスケット座の有効幅 b (mm) - ウェイン - - ウェイン - - ウェイン - - ウェイン - - ウェー - - ウェー <td>ボルト呼び</td> <td></td> <td></td> <td></td> <td></td> <td colspan="4">M20</td>	ボルト呼び					M20				
ガスケット接触面の外径G s (mm)1057.00ガスケット接触面の幅N (mm)-ガスケット接触面の幅N (mm)-ガスケット係数m0最小設計締付圧力y (N/mm²)0ガスケット座の基本幅b o (mm)-ガスケット座の有効幅b (mm)-ウ圧による全荷重H (N) 6.844×10^5 ガスケットに加える圧縮力H p (N)-使用状態での最小ボルト荷重Wm1 (N) 6.844×10^5 ガスケット綿付最小ボルト荷重Wm2 (N)0ボルトの所要 総有効断面積使用状態 A_{m1} (mm²)実際のボルト総有効断面積A b (mm²) 3.956×10^3	ボルト本数		n		24					
ガスケット接触面の幅N(mm)-ガスケット係数m0最小設計締付圧力y(N/mm²)0ガスケット座の基本幅b。(mm)-ガスケット座の有効幅b(mm)-ヴスケット座の有効幅b(mm)-ウトビによる全荷重H(N)6.844×10 ⁵ ガスケットに加える圧縮力Hp(N)-使用状態での最小ボルト荷重 W_{m1} (N)6.844×10 ⁵ ガスケット締付最小ボルト荷重 W_{m2} (N)0ボルトの所要使用状態 A_{m1} (mm²)総有効断面積 A_m $(mm²)$ 3.956×10³実際のボルト総有効断面積 A_b $(mm²)$ 5.638×10³	ボルト谷径		d _b	(mm)	17. 294					
ガスケット係数m0最小設計締付圧力y (N/mn²)0ガスケット座の基本幅b 。 (mm)-ガスケット座の有効幅b (mm)-ガスケット座の有効幅b (mm)-内圧による全荷重H (N) 6.844×10^5 ガスケットに加える圧縮力H p (N)-使用状態での最小ボルト荷重Wm1 (N) 6.844×10^5 ガスケット総付最小ボルト荷重Wm2 (N)0ボルトの所要使用状態 A_{m1} (mm²) 3.956×10^3 ジスケット総付時 A_{m2} (mm²)0シボルト総有効断面積 A_b (mm²) 5.638×10^3	ガスケット接触	国の外径	G s	(mm)		1	057.00			
最小設計締付圧力y(N/mm²)0ガスケット座の基本幅b。(mm)-ガスケット座の有効幅b(mm)-ウ圧による全荷重H(N) 6.844×10^5 ガスケットに加える圧縮力Hp(N)-使用状態での最小ボルト荷重Wm1(N) 6.844×10^5 ガスケット締付最小ボルト荷重Wm2(N)0ボルトの所要使用状態Am1(mm²)総有効断面積ガスケット締付時Am2(mm²)実際のボルト総有効断面積Ab(mm²) 3.956×10^3	ガスケット接触	面の幅	Ν	(mm)						
ガスケット座の基本幅b。(mm)-ガスケット座の有効幅b (mm)-内圧による全荷重H (N) 6.844×10^5 ガスケットに加える圧縮力H _p (N)-使用状態での最小ボルト荷重Wm1 (N) 6.844×10^5 ガスケット締付最小ボルト荷重Wm2 (N)0ボルトの所要 総有効断面積使用状態 A_{m1} (mm²)実際のボルト総有効断面積A _m (mm²) 3.956×10^3 実際のボルト総有効断面積A _b (mm²) 5.638×10^3	ガスケット係数	ζ	m				0			
ガスケット座の有効幅b(mm)-内圧による全荷重H(N) 6.844×10^5 ガスケットに加える圧縮力Hp(N)-使用状態での最小ボルト荷重Wm1(N) 6.844×10^5 ガスケット締付最小ボルト荷重Wm2(N)0ボルトの所要 総有効断面積使用状態 A_{m1} (mm²) 3.956×10^3 実際のボルト総有効断面積A _m (mm²) 3.956×10^3	最小設計締付圧	力	У	(N/mm^2)			0			
内圧による全荷重H(N) 6.844×10^5 ガスケットに加える圧縮力Hp(N)使用状態での最小ボルト荷重 W_{m1} (N)ガスケット締付最小ボルト荷重 W_{m2} (N)ガスケット締付最小ボルト荷重 W_{m2} (N)ボルトの所要 総有効断面積使用状態 A_{m1} オスケット締付時 A_{m2} (mm²)ステット総有効断面積 A_{m} (mm²)実際のボルト総有効断面積 A_{b} (mm²)	ガスケット座の	基本幅	b o	(mm)			_			
ガスケットに加える圧縮力 H_p (N) 使用状態での最小ボルト荷重 W_{m1} (N) ガスケット締付最小ボルト荷重 W_{m2} (N) ガスケット締付最小ボルト荷重 W_{m2} (N) ボルトの所要 総有効断面積 (mn^2) 3.956×10^3 ブスケット締付時 A_{m2} (mm^2) いずれか大きい値 A_m (mm^2) 実際のボルト総有効断面積 A_b (mm^2)	ガスケット座の	有効幅	b	(mm)			_			
使用状態での最小ボルト荷重 W_{m1} (N) 6.844×10^5 ガスケット締付最小ボルト荷重 W_{m2} (N)0ボルトの所要 総有効断面積使用状態 A_{m1} (mm²) 3.956×10^3 ガスケット締付時 A_{m2} (mm²)0ジボルト参下ット締付時 A_m (mm²) 3.956×10^3 実際のボルト総有効断面積 A_b (mm²) 5.638×10^3			Н			6.844×10^{5}				
ガスケット締付最小ボルト荷重 W_{m2} (N)0ボルトの所要 総有効断面積使用状態 A_{m1} (mm²) 3.956×10^3 ガスケット締付時 A_{m2} (mm²)0ジボルトシい値 A_m (mm²) 3.956×10^3 実際のボルト総有効断面積 A_b (mm²) 5.638×10^3	ガスケットに加					-				
ガスケット締付最小ボルト荷重 W_{m2} (N)0ボルトの所要 総有効断面積使用状態 A_{m1} (mm²) 3.956×10^3 ガスケット締付時 A_{m2} (mm²)0いずれか大きい値 A_m (mm²) 3.956×10^3 実際のボルト総有効断面積 A_b (mm²) 5.638×10^3	使用状態での最	マルボルト荷重	W_{m1}	(N)			6.844 $\times 10^{5}$			
ボルトの所要 総有効断面積使用状態 A_{m1} (mm²) 3.956×10^3 ガスケット締付時 A_{m2} (mm²)0いずれか大きい値 A_m (mm²) 3.956×10^3 実際のボルト総有効断面積 A_b (mm²) 5.638×10^3	ガスケット締付最小ボルト荷重			(N)			0			
総有効断面積カスケット綿付時 A_{m2} (mm²)0いずれか大きい値 A_m (mm²) 3.956×10^3 実際のボルト総有効断面積 A_b (mm²) 5.638×10^3	ギルトの正声			(mm^2)			3.956 $\times 10^{3}$			
総有効断面積いずれか大きい値 A_m (mm²) 3.956×10^3 実際のボルト総有効断面積 A_b (mm²) 5.638×10^3		ガスケット締付時		(mm^2)			0			
実際のボルト総有効断面積 A_b (mm ²) 5.638×10^3	芯有効断面積	いずれか大きい値		(mm^2)			3. 956×10^3			
	実際のボルト総	有効断面積		(mm^2)			5.638 $\times 10^{3}$			
	評価:A _b >A _b	m, よって十分である。		I						

フランジ名称				(1)	水室フランジ			
出っし出去	使用状態	Wo	(N)		6. 844×10^5			
ボルト荷重	ガスケット締付時	Wg	(N)	8.299×10^{5}				
距離		R	(mm)		40.00			
				$H_{D} =$	6. 126×10^5			
荷重			(N)	$H_{G} =$	0			
				$H_{T} =$	7. 183×10^4			
				$h_{\rm D} =$	52.50			
モーメントアーム			(mm)	$h_{G} =$	36.50			
- , , , , , , , ,			()	$h_{\rm T} =$	50.75			
				M _D =	3.216×10^{7}			
モーメント			(N•mm)	$M_{G} =$	0			
				$M_{\rm T} =$	3.645×10^{6}			
フランジに作用	使用状態		(N•mm)	$M_{o} =$	3.581×10^{7}			
するモーメント	ガスケット締付時		$(N \cdot mm)$	$M_g =$	3.029×10^7			
形状係数	シンシン シー 地口時	h 。	(mm)	1 v1 g —	122.47			
係数		h/h.	(11111)		0. 2450			
係数					1. 6667			
休数 ハブ応力修正係数		g ₁ /g ₀ f)		1.6412			
<u>八)応力修正保</u> 数		F			0.8843			
係数		г V						
(ボダ) フランジの内外径の比 K				0.3673				
<u>- アノンンの内外径の比 K</u> 係数 T					1. 1800			
				1.8470				
係数 U				12. 9832				
係数		Y		11. 8147				
係数		Ζ			6.0968			
係数		d	(mm^3)		9. 741×10^5			
係数		е	(mm^{-1})		7.220 $\times 10^{-3}$			
フランジの厚さ		t	(mm)		51.50			
係数		L			0.88297			
		使用状態にお	けるフランジ	ジの強さ				
応力		区川小岛(243	(MPa)	計算値	許容引張応	ħ		
			(mi a)	口开吧	$1.5 \cdot \sigma_{\rm f} =$	180		
ハブの軸方向応力		σ _H		107	$\frac{1.0 \cdot \sigma_{\rm f}}{2.5 \cdot \sigma_{\rm n}} =$	307		
フランジの半径方	向広力	G -		23	$\sigma_{\rm f} =$	120		
<u>- フランジの</u> 早産の フランジの周方向		σ _R		23	$\sigma_{\rm f} =$	120		
	$(\sigma_{\rm H} + \sigma_{\rm R})/2$	σ _T		65	$\sigma_{\rm f} = \sigma_{\rm f}$	120		
組合せ応力	$\frac{(0_{\mathrm{H}} + 0_{\mathrm{R}})/2}{(0_{\mathrm{H}} + 0_{\mathrm{T}})/2}$			64	$\sigma_{\rm f} = \sigma_{\rm f}$	120		
		「スケット締付	オ時のフラン			140		
応力	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ランマン ノードが印合	(MPa)	→の風さ 計算値	許容引張応知	力 力		
ハブの軸方向応力		6	/	91	$1.5 \cdot \sigma_{fa} =$	180		
		σ _H			2.5 $\cdot \sigma_{n a} =$	307		
フランジの半径方		σ _R		20	$\sigma_{fa} =$	120		
フランジの周方向		στ		18	$\sigma_{fa} =$	120		
組合せ応力	$(\sigma_{\rm H} + \sigma_{\rm R})/2$			55 54	$\sigma_{fa} =$	120		
応力の評価:	$\frac{(\sigma_{\rm H} + \sigma_{\rm T})/2}{\sigma_{\rm m} \leq {\rm Min} (1.5 + \sigma_{\rm m})}$	25.0)			$\sigma_{fa} =$	120		
ルいフリックお牛1四:	$\sigma_{\rm H} \leq Min(1.5 \cdot \sigma_{\rm f}),$	2. θ • σ _n)		$\sigma_{\rm H} \leq {\rm Min}(1.5 \cdot \sigma)$	fa, ∠. Ͽ • σ _{na})			
	$\sigma_{\rm R} \leq \sigma_{\rm f}$			$\sigma_{R} \leq \sigma_{fa}$				
	$\sigma_{\rm T} \leq \sigma_{\rm f}$			$\sigma_{\rm T} \leq \sigma_{\rm fa}$				
	$(\sigma_{\rm H} + \sigma_{\rm R}) / 2 \leq \sigma_{\rm f}$			$(\sigma_{\rm H} + \sigma_{\rm R}) / 2 \leq \sigma$				
	$(\sigma_{\rm H} + \sigma_{\rm T}) / 2 \leq \sigma_{\rm f}$			$(\sigma_{\rm H} + \sigma_{\rm T}) / 2 \leq \sigma$	fa			
	以上より十分である) ₀						

3 支持構造物の強度計算書

(1) 一次圧縮応力及び一次曲げ応力による組合せ評価


種類	脚本数	材料	最高使用温度 (℃)	F値 (MPa)	鉛直荷重 F _c (N)	断面積 A (mm ²)	曲げモーメント M(N・mm)	断面係数 Z (mm ³)
横置円筒形容器	2	SS400	70		7.818×10^4	3.523×10^4		

	<mark>154</mark>		<mark>155</mark>	с б 0. 62	算出値は,許
一次圧縮応力 σ _c (MPa)	許容圧縮応力 f _c (MPa)	一次曲げ応力 σ _b (MPa)	許容曲げ応力 f _b (MPa)	組合せ評価 $\frac{\sigma_{c}}{f} + \frac{\sigma_{b}}{f} \leq 1$	

評価

許容値以下であるので強度は十分である。

(単位:mm)

高圧炉心スプレイ補機冷却水系熱交換器 支持構造物の強度計算説明図