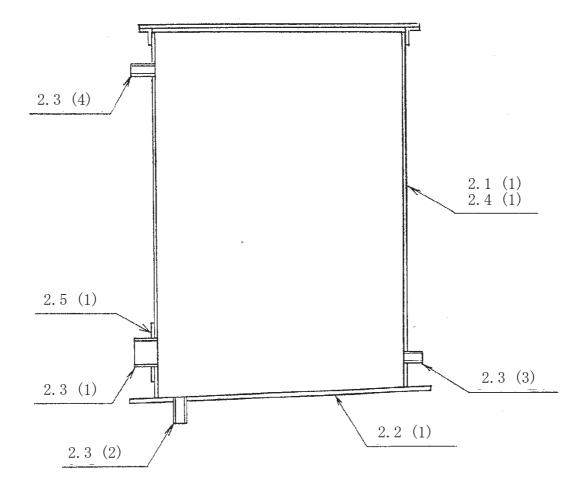
女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-04-0035_改 0
提出年月日	2021年2月19日

VI-3-3-3-6-2-4 高圧炉心スプレイ補機冷却水サージタンクの強度計算書

まえがき

本計算書は、添付書類「VI-3-1-5 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及び「VI-3-2-8 重大事故等クラス2容器の強度計算方法」に基づいて計算を行う。

なお,適用規格の選定結果について以下に示す。適用規格の選定に当たって使用する記号及び 略語については,添付書類「VI-3-2-1 強度計算方法の概要」に定義したものを使用する。


·評価条件整理表

	ant 20.	施設時の 技術基準		クラスアジ	ップするか			条件》	アップする	らか		既工認に				
機器名	既設 or	に対象と	クラス	施設時	DB	SA	条件	DB 🕯	条件	SA 🗐	条件	おける	施設時の	評価区分	同等性 評価	評価 クラス
	新設	する施設 の規定が あるか	アップ の有無	機器 クラス	DB クラス	クラス	アップ の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	評価結果 の有無	適用規格		区分	774
高圧炉心スプレイ補機冷却水 サージタンク	既設	有	有	DB-3	DB-3	SA-2	無	静水頭	70	静水頭	70	-	S55 告示	設計・建設規格 又は告示	-	SA-2

目次

1.	計算条件	. 1
1	.1 計算部位	. 1
1	.2 設計条件	. 1
2.	強度計算	. 2
2.	.1 開放タンクの胴の厚さの計算	. 2
2.	.2 開放タンクの底板の厚さの計算	. 3
2	.3 開放タンクの管台の厚さの計算	. 4
2	.4 開放タンクの補強を要しない穴の最大径の計算	. 8
2.	.5 開放タンクの穴の補強計算	. 9

- 1. 計算条件
- 1.1 計算部位
 概要図に強度計算箇所を示す。

図中の番号は次ページ以降の 計算項目番号を示す。

図1-1 概要図

1.2 設計条件

最高使用圧力 (MPa)	静水頭
最高使用温度(℃)	70

2. 強度計算

 2.1 開放タンクの胴の厚さの計算 設計・建設規格 PVC-3920

胴板名称			(1) 胴板
材料			SM400B
水頭	Н	(m)	2. 2203
最高使用温度		(°C)	70
胴の内径	D _i	(m)	1. 20
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0. 70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3. 00
必要厚さ	t ₂	(mm)	0. 19
必要厚さ	t ₃	(mm)	
t ₁ , t ₂ , t ₃ の大きい値	t	(mm)	3. 00
呼び厚さ	t so	(mm)	9.00
最小厚さ	t s	(mm)	
評価: $t_s \ge t$, よって十分で	である。		

- 2.2 開放タンクの底板の厚さの計算
 - (1) 設計・建設規格 PVC-3960
 底板の形状:平板
 - (2) 設計・建設規格 PVC-3970

底板の厚さ

底板名称			(1) 平板
材料			SM400B
必要厚さ	t	(mm)	6.00
呼び厚さ	t _{bo}	(mm)	15.00
最小厚さ	t _b	(mm)	
評価:t₀≧t,よって	十分である。		

2.3 開放タンクの管台の厚さの計算

設計・建設規格 PVC-3980

管台名称			(1) 液出口
材料			STS42 (STS410)
水頭	Н	(m)	2. 2203
最高使用温度		(°C)	70
管台の内径	D _i	(m)	0. 1023
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0.02
必要厚さ	t 2	(mm)	3. 50
t 1, t 2の大きい値	t	(mm)	3. 50
呼び厚さ	t no	(mm)	6.00
最小厚さ	t n	(mm)	
評価: $t_n \ge t$, よって十	分である。		

開放タンクの管台の厚さの計算

設計・建設規格 PVC-3980

管台名称			(2) ドレン
材料			STS410
水頭	Η	(m)	2. 2203
最高使用温度		(°C)	70
管台の内径	D _i	(m)	0.0495
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0.01
必要厚さ	t ₂	(mm)	2.40
t ₁ , t ₂ の大きい値	t	(mm)	2.40
呼び厚さ	t no	(mm)	5. 50
最小厚さ	t n	(mm)	
評価: t _n ≧t, よって十分	分である。		

開放タンクの管台の厚さの計算

設計・建設規格 PVC-3980

管台名称			(3) 液位計
材料			STS410
水頭	Н	(m)	2. 2203
最高使用温度		(°C)	70
管台の内径	D _i	(m)	0.0495
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0.01
必要厚さ	t 2	(mm)	2.40
t ₁ , t ₂ の大きい値	t	(mm)	2.40
呼び厚さ	t _{no}	(mm)	5.50
最小厚さ	t n	(mm)	
評価: t n≧ t, よって十分	うである。		

開放タンクの管台の厚さの計算

設計・建設規格 PVC-3980

管台名称			(4) オーバーフロー
材料			STS410
水頭	Н	(m)	2. 2203
最高使用温度		(°C)	70
管台の内径	D _i	(m)	0.0495
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0.01
必要厚さ	t 2	(mm)	2.40
t ₁ , t ₂ の大きい値	t	(mm)	2.40
呼び厚さ	t no	(mm)	5.50
最小厚さ	t n	(mm)	
評価: $t_n \ge t$,よって十分	分である。		

2.4 開放タンクの補強を要しない穴の最大径の計算
 設計・建設規格 PVC-3940

胴板名称	(1) 胴板
評価:補強の計算を要する 85mm を超える穴の名 称	液出口

2.5 開放タンクの穴の補強計算

設計・建設規格 PVC-3950

参照附図 WELD-15

			参照附図 WELD-15
部材名称			(1) 液出口
胴板材料			SM400B
管台材料			STS42 (STS410)
強め板材料			SM400B
最高使用圧力	Р	(MPa)	0.02
最高使用温度		(°C)	70
胴板の許容引張応力	S _s	(MPa)	100
管台の許容引張応力	S _n	(MPa)	103
強め板の許容引張応力	S _e	(MPa)	100
穴の径	d	(mm)	
管台が取り付く穴の径	d w	(mm)	
胴板の最小厚さ	t s	(mm)	
管台の最小厚さ	t n	(mm)	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D _i	(m)	1.20
胴板の計算上必要な厚さ	t _{s r}	(mm)	0.14
管台の計算上必要な厚さ	t nr	(mm)	
穴の補強に必要な面積	A _r	(mm^2)	
補強の有効範囲	X 1	(mm)	
補強の有効範囲	X $_2$	(mm)	
補強の有効範囲	Х	(mm)	
補強の有効範囲	Y 1	(mm)	
強め板の最小厚さ	t _e	(mm)	
強め板の外径	B _e	(mm)	280.00
管台の外径	D _{on}	(mm)	114. 30
溶接寸法	L ₁	(mm)	6.00
溶接寸法	L ₂	(mm)	5.00
胴板の有効補強面積	A_1	(mm^2)	
管台の有効補強面積	A_2	(mm^2)	

すみ肉溶接部の有効補強面積	t A ₃	(mm^2)	_	61.0	
強め板の有効補強面積	A $_4$	(mm^2)			
補強に有効な総面積	A ₀	(mm^2)	1.659×10^{3}		
評価:A₀>Aェ,よって十分である。					

部材名称			(1) 液出口		
大きい穴の補強					
補強を要する穴の限界径	d j	(mm)	500		
評価: d ≦ d j, よって大きい穴の補強計算は必要ない。					
溶接部にかかる荷重	W_1	(N)			
溶接部にかかる荷重	W_2	(N)			
溶接部の負うべき荷重	W	(N)			
····································					
以上より十分である。					