```
本資料のらち，枠囲みの内容 は商業機密の観点から公開で
きません。
```

女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－B－04－0031＿改 0
提出年月日	2021年2月19日

VI－3－3－3－6－1－1 原子灲補機冷却水系熱交換器の強度計算書

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」，「VI－3－2－8 重大事故等クラス 2 容器の強度計算方法」及び「VI－3－ 2－12 重大事故等クラス 2 支持構造物（容器）の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

機器名	$\begin{gathered} \text { 既設 } \\ \text { or } \\ \text { 新設 } \end{gathered}$	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか					条件アップするか					既工認に おける 評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$	
			$\begin{gathered} \text { クラスアップ } \\ \text { の有無 } \end{gathered}$		施設時機器クラス	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{aligned} & \text { SA } \\ & \text { クラス } \end{aligned}$	$\begin{aligned} & \text { 条件 } \\ & \text { アップ } \end{aligned}$の有無	DB 条件		SA 条件							
					圧力 （MPa）				温度 $\left({ }^{\circ} \mathrm{C}\right)$	圧力 （MPa）	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$							
原子炉補機泠却水系	既設	有	管側	有		DB－3	DB－3	SA－2	無	0． 78	50	0.78	50	－	S55 告示	設計•建設規格又は告示	－	SA－2
熱交換器		有	胴側	有	DB－3	DB－3	SA－2	無	1．18	70	1.18	70	－	S55 告示	設計•建設規格又は告示	－	SA－2	

1．計算条件 1
1.1 計算部位 1
1．2 設計条件 1
2．強度計算 2
2.1 容器の胴の厚さの計算 2
2.2 容器の鏡板の厚さの計算 4
2.3 容器の平板の厚さの計算 5
2.4 容器の管板の厚さの計算 8
2.5 容器の管台の厚さの計算 － 9
2.6 容器の補強を要しない穴の最大径の計算 18
2.7 容器の穴の補強計算 21
2.8 容器のフランジの計算 31
3．支持構造物の強度計算書 33

1．計算条件

1.1 計算部位

概要図に強度計算箇所を示す。

図 1－1 概要図

図中の番号は次ページ以降の計算項目番号を示す。
1.2 設計条件

最高使用圧力 (MPa)	胴側	1.18	管側	0.78
最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	胴側	70	管側	50

2．強度計算
2.1 容器の胴の厚さの計算

設計•建設規格 PVC－3120

胴板名称			（1）胴側胴板
材料			SM50B（SM490B）
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
胴の内径	D_{i}	（mm）	1800.00
許容引張応力	S	（MPa）	123
継手効率	η		1.00
継手の種類			突合せ両側溶接
放射線検査の有無			有り
必要厚さ	t_{1}	（mm）	3.00
必要厚さ	t_{2}	（mm）	8.69
t_{1} ， t_{2} の大きい値	t	（mm）	8.69
呼び厚さ	t so	（mm）	15.00
最小厚さ	t s	（mm）	
評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}$ ，よって十分である。			

容器の胴の厚さの計算
設計•建設規格 PVC－3120

胴板名称			（2）管側胴板
材料			SM50B（SM490B）
最高使用圧力	P	（MPa）	0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	50
胴の内径	D_{i}	（mm）	1800.00
許容引張応力	S	（MPa）	123
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	（mm）	3.00
必要厚さ	t_{2}	（mm）	8． 20
t_{1} ， t_{2} の大きい値	t	（mm）	8.20
呼び厚さ	t s o	（mm）	15.00
最小厚さ	t s	（mm）	
評価： t s \geqq t，よって十分である。			

2．2 容器の鏡板の厚さの計算

（1）設計•建設規格 PVC－3210
鏡板の形状

鏡板名称	（1）管側鏡板
	1800.00
鏡板の内面における短径の $1 / 2 \mathrm{~h}$（mm）	450.00
長径と短径の比 $\mathrm{D}_{\mathrm{i}} \mathrm{L} /$／ $\left.2 \cdot \mathrm{~h}\right)$	2.00
評価： $\mathrm{D}_{\mathrm{i} \mathrm{L}} /(2 \cdot \mathrm{~h}) \leqq 2$ ，よって半だ円形鏡板である。	

（2）設計•建設規格 PVC－3220
鏡板の厚さ

鏡板名称			（1）管側鏡板
材料			SM50B（SM490B）
最高使用圧力	P	（MPa）	0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	50
胴の内径	D_{i}	（mm）	1800.00
半だ円形鏡板の形状に			1.00
許容引張応力	S	（MPa）	123
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	5.73
必要厚さ	t_{2}	（mm）	5.72
t_{1} ， t_{2} の大きい値	t	（mm）	5.73
呼び厚さ	t co	（mm）	15.00
最小厚さ	t ${ }_{\text {c }}$	（mm）	
評価： $\mathrm{t}_{\mathrm{c}} \geqq \mathrm{t}$ ，よって十分である。			

2.3 容器の平板の厚さの計算

（1）告示第 501 号第 34 条第 1 項取付け方法及び穴の有無

平板名称	（1）水室マンホール平板
平板の取付け方法	（ a ）
平板の穴の有無	無し

（2）告示第501号第34条第1項
平板の厚さ

平板名称			（1）	水室マンホール平板
材料				SM50B
最高使用圧力	P	（MPa）		0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$		50
許容引張応力	S	（MPa）		123
取付け方法による係数	K			0． 20
平板の径	d	（mm）		620.00
必要厚さ	t	（mm）		22.08
呼び厚さ	t_{p} o	（mm）		35.00
最小厚さ	t_{p}	（mm）		
評価： $\mathrm{t}_{\mathrm{p}} \geqq \mathrm{t}$ ，よって十分である。				

容器の平板の厚さの計算
（1）告示第501号第34条第1項
取付け方法及び穴の有無

平板名称	（2）
水室ハンドホール平板	
平板の取付け方法	（a）
平板の穴の有無	無し

（2）告示第 501 号第 34 条第 1 項
平板の厚さ

平板名称			（2）	水室ハンドホール平板
材料				SM50B
最高使用圧力	P	（MPa）		0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$		50
許容引張応力	S	（MPa）		123
取付け方法による係数	K			0.20
平板の径	d	（mm）		290.00
必要厚さ	t	（mm）		10.33
呼び厚さ	t_{p} 。	（mm）		15． 00
最小厚さ	t_{p}	（mm）		
評価： $\mathrm{t}_{\mathrm{p}} \geqq \mathrm{t}$ ，よって十分である。				

容器の平板の厚さの計算
（1）告示第 5 0 1 号第 34 条第 1 項及び第 2 項取付け方法及び穴の有無

平板名称			（3）	管側平板
平板の取付け方法				（k）
平板の穴の有無				有り
平板の径	d	（mm）		897． 00
穴の径	d_{h}	（mm）		199．90
評価： $\mathrm{d}_{\mathrm{h}} \leqq \mathrm{d} / 2$ ，よって第 2 項第 2 号イ（ロ）				

（2）告示第 5 0 1 号第 34 条第 1 項及び第 2 項

（J I S B 8 26 5適用）

平板の厚さ

平板名称				（3）管側平板
平板材料				SGV49
ボルト材料				SNB7 直径 63 mm 以下
ガスケット材料				セルフシーリングガスケット（ゴム）
最高使用圧力		P	（MPa）	0.78
最高使用温度			$\left({ }^{\circ} \mathrm{C}\right)$	50
平板の許容引張応力		S	（MPa）	120
ボルトの許容引張応力	常温（ガスケット絞付時）（200C）	S	（MPa）	173
	最高使用温度（使用状態）	S_{b}	（MPa）	173
ボルト中心円の直径		C	（mm）	1974.00
ボルト呼び				M24
ボルト本数		n		52
ボルト谷径		d_{b}	（mm）	20.752
実際のボルト総有効断面積		A_{b}	$\left(\mathrm{mm}^{2}\right)$	1． 759×10^{4}
ガスケット接触面の外径		$\mathrm{G}_{\text {s }}$	（mm）	1897.00
平板の径（ガスケット有効径）		$\mathrm{d}=\mathrm{G}$	（mm）	1897.00
内圧による全荷重		$\mathrm{W}=\mathrm{H}$	（N）	2． 205×10^{6}
使用状態での最小ボルト荷重		$\mathrm{W}_{\mathrm{m} 1}$	（N）	2． 205×10^{6}
ガスケット締付最小ボルト荷重		$\mathrm{W}_{\mathrm{m} 2}$	（N）	0
ボルトの所要総有効断面積	使用状態	$\mathrm{A}_{\mathrm{m} 1}$	$\left(\mathrm{mm}^{2}\right)$	1． 274×10^{4}
	ガスケット締付時	$\mathrm{A}_{\mathrm{m} 2}$	$\left(\mathrm{mm}^{2}\right)$	0
	いずれか大きい値	A_{m}	$\left(\mathrm{mm}^{2}\right)$	1． 274×10^{4}
ボルト 荷重	使用状態	W_{0}	（N）	2． 205×10^{6}
	ガスケット締付時	W_{g}	（N）	2． 624×10^{6}
	いずれか大きい値	F	（N）	2． 624×10^{6}
モーメントアーム		h_{g}	（mm）	38.50
取付け方法による係数		K		0． 3338
必要厚さ		t	（mm）	124.97
呼び厚さ		t_{p} 。	（mm）	143.00
最小厚さ		t_{p}	（mm）	
評価： $\mathrm{t}_{\mathrm{p}} \geqq \mathrm{t}$ ，よって十分である。				

2.4 容器の管板の厚さの計算

（1）設計•建設規格 PVC－3510（1）
管穴の中心間距離

管板名称			（1）	管板
管の外径	d_{t}	(mm)		
必要な距離	z	(mm)		
管穴の中中心間距離	P_{t}	(mm)		
評価 $: \mathrm{P}_{\mathrm{t}} \geqq \mathrm{z}$, よって十分である。		34.00		

（2）設計•建設規格 PVC－3510（2）
管板の厚さ

管板名称			（1）管板
材料			SGV49（SGV480）
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
パッキンの中心円の径又は胴の内径	D	（mm）	1800.00
胴の厚さ	t s	（mm）	
管及び管板の支え方 による係数	F		$\begin{gathered} 1.00 \\ \text { (伝熱管の形式: 直管) } \end{gathered}$
管板の支え方			胴側胴と一体である。
任意の管の中心が囲む面積	A	$\left(\mathrm{mm}^{2}\right)$	2.353×10^{6}
面積Aの周のらち穴の径以外の部分の長さ	L	（mm）	1359． 37
許容引張応力	S	（MPa）	120
必要厚さ	t_{1}	（mm）	89.25
必要厚さ	t 2	（mm）	20.03
t_{1} ， t_{2} ，10の大きい値	t	（mm）	89.25
呼び厚さ	t_{b} o	（mm）	95.00
最小厚さ	t_{b}	（mm）	
評価： $\mathrm{t}_{\mathrm{b}} \geqq \mathrm{t}$ ，よって十分である。			

2.5 容器の管台の厚さの計算

設計•建設規格 PVC－3610

管台名称			（1）胴体入口
材料			SM41C（SM400C）
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D 。	（mm）	457.20
許容引張応力	S	（MPa）	100
継手効率	η		1.00
継手の種類			突合せ両側溶接
放射線検査の有無			有り
必要厚さ	t_{1}	（mm）	2.69
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	2.69
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { 。 }}$	（mm）	9.50
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（2）胴体出口
材料			SM41C（SM400C）
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D 。	（mm）	457.20
許容引張応力	S	（MPa）	100
継手効率	η		1.00
継手の種類			突合せ両側溶接
放射線検査の有無			有り
必要厚さ	t ${ }_{1}$	（mm）	2.69
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	2.69
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { 。 }}$	（mm）	9.50
最小厚さ	t ${ }_{\text {n }}$	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（3）水室ドレン
材料			STS42（STS410）
最高使用圧力	P	（MPa）	0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	50
管台の外径	D 。	（mm）	60.50
許容引張応力	S	（MPa）	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0． 23
必要厚さ	t 3	（mm）	2． 40
t_{1} ， t_{3} の大きい値	t	（mm）	2.40
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { 。}}$	（mm）	5.50
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（4）水室空気抜
材料			STS42（STS410）
最高使用圧力	P	（MPa）	0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	50
管台の外径	D 。	（mm）	60.50
許容引張応力	S	（MPa）	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.23
必要厚さ	t 3	（mm）	2.40
t_{1} ， t_{3} の大きい値	t	（mm）	2.40
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	5.50
最小厚さ	tn	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（5）水室入口
材料			SFVC2B
最高使用圧力	P	（MPa）	0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	50
管台の外径	D	（mm）	508.00
許容引張応力	S	（MPa）	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	1.65
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	1.65
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	9.50
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（6）水室出口
材料			SFVC2B
最高使用圧力	P	（MPa）	0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	50
管台の外径	D	（mm）	508.00
許容引張応力	S	（MPa）	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	1.65
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	1.65
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	9． 50
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（7）水室逃し弁
材料			STS42（STS410）
最高使用圧力	P	（MPa）	0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	50
管台の外径	D 。	（mm）	60.50
許容引張応力	S	（MPa）	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.23
必要厚さ	t_{3}	（mm）	2． 40
t_{1} ， t_{3} の大きい値	t	（mm）	2.40
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { 。 }}$	（mm）	5.50
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（8）	水室マンホール
材料				SFVC2B
最高使用圧力	P	（MPa）		0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$		50
管台の外径	D 。	（mm）		508.00
許容引張応力	S	（MPa）		120
継手効率	η			1.00
継手の種類				継手無し
放射線検査の有無				－
必要厚さ	t_{1}	（mm）		1.65
必要厚さ	t 3	（mm）		－
t_{1} ， t_{3} の大きい値	t	（mm）		1.65
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）		9.50
最小厚さ	t_{n}	（mm）		
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。				

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（9）伝熱管
材料			C6870TS
最高使用圧力	P	（MPa）	0.78
外面に受ける最高の圧力	$\mathrm{P}_{\text {e }}$	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D 。	（mm）	25． 40
許容引張応力	S	（MPa）	81
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.13
必要厚さ	t 2	（mm）	0.69
t_{1} ， t_{2} の大きい値		（mm）	0.69
呼び厚さ	t_{t} o	（mm）	1． 20
最小厚さ	$\mathrm{t}_{\text {t }}$	（mm）	
評価： $\mathrm{t}_{\mathrm{t}} \geqq \mathrm{t}$ ，よって十分である。			

2． 6 容器の補強を要しない穴の最大径の計算
設計•建設規格 PVC－3150（2）

胴板名称		（1）胴側胴板
材料		SM50B（SM490B）
最高使用圧力 P	（MPa）	1.18
最高使用温度	$\left({ }^{\circ} \mathrm{C}\right)$	70
胴の外径 D	（mm）	1830.00
許容引張応力 S	（MPa）	123
胴板の最小厚さ $\mathrm{t}_{\text {s }}$	（mm）	
継手効率 $\quad \eta$		1.00
継手の種類		継手無し
放射線検査の有無		－
$\mathrm{d}_{\mathrm{r} 1}=\left(\mathrm{D}-2 \cdot \mathrm{t}_{\mathrm{s}}\right) / 4$	（mm）	
$61, \mathrm{~d}_{\mathrm{r} 1}$ の小さい値	（mm）	
K		
D • t ${ }_{\text {s }}$	$\left(\mathrm{mm}^{2}\right)$	
200，d r_{2} の小さい値	（mm）	148.69
補強を要しない穴の最大径	（mm）	148.69
評価：補強の計算を要する穴の名称		胴体入口（2．7（1））胴体出口（2．7（2））

容器の補強を要しない穴の最大径の計算
設計•建設規格 PVC－3150（2）

胴板名称		（2）管側胴板
材料		SM50B（SM490B）
最高使用圧力 P	（MPa）	0.78
最高使用温度	$\left({ }^{\circ} \mathrm{C}\right)$	50
胴の外径 D	（mm）	1830.00
許容引張応力 S	（MPa）	123
胴板の最小厚さ ${ }^{\text {d }}$	（mm）	
継手効率 $\quad \eta$		1.00
継手の種類		継手無し
放射線検査の有無		－
$\mathrm{d}_{\mathrm{r} 1}=\left(\mathrm{D}-2 \cdot \mathrm{t}_{\mathrm{s}}\right) / 4$	（mm）	
61， $\mathrm{d}_{\mathrm{r} 1}$ の小さい値	（mm）	
K		
D • $\mathrm{t}_{\text {s }}$	$\left(\mathrm{mm}^{2}\right)$	
200，d ${ }_{\text {r } 2}$ の小さい値	（mm）	185.75
補強を要しない穴の最大径	（mm）	185.75
評価：補強の計算を要する穴の名称		水室入口（2．7（3））水室出口（2．7（4））

容器の補強を要しない穴の最大径の計算
設計•建設規格 PVC－3230（2）

鏡板名称			（3）管側鏡板
材料			SM50B（SM490B）
最高使用圧力	P	（MPa）	0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	50
鏡板のフランジ部の外径	D	（mm）	1830.00
許容引張応力	S	（MPa）	123
鏡板の最小厚さ	t c	（mm）	
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
$\mathrm{d}_{\mathrm{r} 1}=\left(\mathrm{D}-2 \cdot \mathrm{t}_{\mathrm{c}}\right) / 4$		（mm）	
61，d ${ }_{\text {r } 1}$ の小さい値		（mm）	
K			
D • t_{c}		$\left(\mathrm{mm}^{2}\right)$	
200， $\mathrm{d}_{\mathrm{r} 2}$ の小さい値		（mm）	165.79
補強を要しない穴の最大径		（mm）	165.79
評価：補強の計算を要する穴の名称 水室マン			

2.7 容器の穴の補強計算

設計•建設規格 PVC－3160
参照附図 WELD－16

容器の穴の補強計算
設計•建設規格 PVC－3160
参照附図 WE L D -16

部材名称			（2）胴体出口
胴板材料			SM50B（SM490B）
管台材料			SM41C（SM400C）
強め板材料			SM50B（SM490B）
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
胴板の許容引張応力	$\mathrm{S}_{\text {s }}$	（MPa）	123
管台の許容引張応力	S_{n}	（MPa）	100
強め板の許容引張応力	S_{e}	（MPa）	123
穴の径	d	（mm）	
管台が取り付く穴の径	d_{w}	（mm）	461.20
胴板の最小厚さ	t s	（mm）	
管台の最小厚さ	t_{n}	（mm）	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D_{i}	（mm）	1800.00
胴板の計算上必要な厚さ	t sr	（mm）	8.69
管台の計算上必要な厚さ	$\mathrm{t}_{\mathrm{n}} \mathrm{r}$	（mm）	
穴の補強に必要な面積	A_{r}	$\left(\mathrm{mm}^{2}\right)$	
補強の有効範囲	X_{1}	（mm）	
補強の有効範囲	X_{2}	（mm）	
補強の有効範囲	X	（mm）	
補強の有効範囲	Y_{1}	（mm）	
強め板の最小厚さ	t_{e}	（mm）	
強め板の外径	B e	（mm）	750.00
管台の外径	Don	（mm）	457.20
溶接寸法	L_{1}	（mm）	8.50
溶接寸法	L_{2}	（mm）	6.72
胴板の有効補強面積	A_{1}	$\left(\mathrm{mm}^{2}\right)$	
管台の有効補強面積	A_{2}	$\left(\mathrm{mm}^{2}\right)$	
すみ肉溶接部の有効補強面積	A_{3}	$\left(\mathrm{mm}^{2}\right)$	117.4
強め板の有効補強面積	A_{4}	$\left(\mathrm{mm}^{2}\right)$	
補強に有効な総面積	A_{0}	$\left(\mathrm{mm}^{2}\right)$	
補強： $\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$ ，よって十分である。			

容器の穴の補強計算
設計•建設規格 PVC－3160
参照附図 WE LD－ 16

部材名称			（3）水室入口
胴板材料			SM50B（SM490B）
管台材料			SFVC2B
強め板材料			SM50B（SM490B）
最高使用圧力	P	（MPa）	0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	50
胴板の許容引張応力	S s	（MPa）	123
管台の許容引張応力	S_{n}	（MPa）	120
強め板の許容引張応力	$\mathrm{S}_{\text {e }}$	（MPa）	123
穴の径	d	（mm）	
管台が取り付く穴の径	d_{w}	（mm）	512.00
胴板の最小厚さ	t s	（mm）	
管台の最小厚さ	t_{n}	（mm）	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D_{i}	（mm）	1800.00
胴板の計算上必要な厚さ	t s r	（mm）	5.73
管台の計算上必要な厚さ	$\mathrm{t}_{\mathrm{n} \text { r }}$	（mm）	
穴の補強に必要な面積	A_{r}	$\left(\mathrm{mm}^{2}\right)$	
補強の有効範囲	X_{1}	（mm）	
補強の有効範囲	X_{2}	（mm）	
補強の有効範囲	X	（mm）	
補強の有効範囲	Y_{1}	（mm）	
強め板の最小厚さ	t_{e}	（mm）	
強め板の外径	B e	（mm）	800.00
管台の外径	$\mathrm{D}_{\text {on }}$	（mm）	508.00
溶接寸法	L_{1}	（mm）	8.50
溶接寸法	L_{2}	（mm）	6.72
胴板の有効補強面積	A_{1}	$\left(\mathrm{mm}^{2}\right)$	
管台の有効補強面積	A_{2}	$\left(\mathrm{mm}^{2}\right)$	
すみ肉溶接部の有効補強面積	A_{3}	$\left(\mathrm{mm}^{2}\right)$	117.4
強め板の有効補強面積	A_{4}	$\left(\mathrm{mm}^{2}\right)$	
補強に有効な総面積	A 0	$\left(\mathrm{mm}^{2}\right)$	
補強： $\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$ ，よって十分である。			

容器の穴の補強計算
設計•建設規格 PVC－3160
参照附図 WE LD－ 16

部材名称			（4）水室出口
胴板材料			SM50B（SM490B）
管台材料			SFVC2B
強め板材料			SM50B（SM490B）
最高使用圧力	P	（MPa）	0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	50
胴板の許容引張応力	S s	（MPa）	123
管台の許容引張応力	S_{n}	（MPa）	120
強め板の許容引張応力	$\mathrm{S}_{\text {e }}$	（MPa）	123
穴の径	d	（mm）	
管台が取り付く穴の径	d_{w}	（mm）	512.00
胴板の最小厚さ	t s	（mm）	
管台の最小厚さ	t_{n}	（mm）	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D_{i}	（mm）	1800.00
胴板の計算上必要な厚さ	ts r	（mm）	5.73
管台の計算上必要な厚さ	$\mathrm{t}_{\mathrm{n} \mathrm{r}}$	（mm）	
穴の補強に必要な面積	A_{r}	（ mm^{2} ）	
補強の有効範囲	X_{1}	（mm）	
補強の有効範囲	X_{2}	（mm）	
補強の有効範囲	X	（mm）	
補強の有効範囲	Y_{1}	（mm）	
強め板の最小厚さ	t_{e}	（mm）	
強め板の外径	B e	（mm）	800.00
管台の外径	D on	（mm）	508.00
溶接寸法	L_{1}	（mm）	8.50
溶接寸法	L_{2}	（mm）	6． 72
胴板の有効補強面積	A_{1}	$\left(\mathrm{mm}^{2}\right)$	
管台の有効補強面積	A_{2}	$\left(\mathrm{mm}^{2}\right)$	
すみ肉溶接部の有効補強面積	A_{3}	$\left(\mathrm{mm}^{2}\right)$	117.4
強め板の有効補強面積	A_{4}	$\left(\mathrm{mm}^{2}\right)$	
補強に有効な総面積	A_{0}	（ mm^{2} ）	
補強： $\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$ ，よって十分である。			

容器の穴の補強計算
設計•建設規格 PVC－3160
参照附図 WE LD－ 34

部材名称			（5）水室マンホール
鏡板材料			SM50B（SM490B）
管台材料			SFVC2B
最高使用圧力	P	（MPa）	0.78
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	50
鏡板の許容引張応力	S c	（MPa）	123
管台の許容引張応力	S_{n}	（MPa）	120
穴の径	d	（mm）	
管台が取り付く穴の径	d_{w}	（mm）	508.00
鏡板の最小厚さ	t_{c}	（mm）	
管台の最小厚さ	t_{n}	（mm）	
鏡板の継手効率	η		1.00
係数	F		1.00
鏡板の内面における長径の K_{1} 倍	R	（mm）	1620.00
鏡板の内面における長径	$\mathrm{D}_{\mathrm{i} \text { L }}$	（mm）	1800.00
鏡板の内面における短径	$\mathrm{D}_{\mathrm{i} \text { S }}$	（mm）	900.00
長径と短径の比	$\mathrm{D}_{\mathrm{i}} \mathrm{L}$		2.00
係数	K_{1}		0.90
鏡板の計算上必要な厚さ	$\mathrm{tar}_{\text {c }}$	（mm）	
管台の計算上必要な厚さ	$\mathrm{t}_{\mathrm{n} \mathrm{r}}$	（mm）	
穴の補強に必要な面積		$\left(\mathrm{mm}^{2}\right)$	
補強の有効範囲	X_{1}	（mm）	
補強の有効範囲	X_{2}	（mm）	
補強の有効範囲	X	（mm）	
補強の有効範囲	Y_{1}	（mm）	
管台の外径	D on	（mm）	508.00
溶接寸法	L_{1}	（mm）	8.50
鏡板の有効補強面積	A_{1}	$\left(\mathrm{mm}^{2}\right)$	
管台の有効補強面積	A_{2}	$\left(\mathrm{mm}^{2}\right)$	
すみ肉溶接部の有効補強面積	A_{3}	$\left(\mathrm{mm}^{2}\right)$	72.25
補強に有効な総面積	A_{0}	$\left(\mathrm{mm}^{2}\right)$	
補強： $\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$ ，よって十分である。			

部材名称			（5）	水室マンホール
大きい穴の補強				
補強を要する穴の限界径	d_{j}	（mm）		600.00
評価： $\mathrm{d} \leqq \mathrm{d}_{\mathrm{j}}$ ，よって大きい穴の補強計算は必要ない。				
溶接部にかかる荷重 W_{1}（N）				
溶接部にかかる荷重	W_{2}	（N）		
溶接部の負うべき荷重	W	（N）		
評価：W＜0，よって溶接部の強度計算は必要ない。以上より十分である。				

2.8 容器のフランジの計算

設計•建設規格 PVC－3710
（J I S B 8 265 附属書 3 適用）
（内圧を受けるフランジ）
参照附図 F L A N G E－2 一体形フランジ

フランジ名称				（1）水室フランジ			
フランジ材料				SGV49（SGV480）			
胴又は管台材料				SM50B（SM490B）			
ボルト材料				SNB7（直径 63mm 以下）			
ガスケット材料				セルフシーリングガスケット（ゴム）			
ガスケット厚さ			（mm）	5			
ガスケット座面の形状				－			
最高使用圧力		P	（MPa）	0.78			
許容引張応力	温度条件		$\left({ }^{\circ} \mathrm{C}\right)$	最高使用温度 （使用状態） （50）		常温 （ガスケット締付時） （20）	
	ボルト		（MPa）	$\sigma_{\mathrm{b}}=$	173	$\sigma_{\mathrm{a}}=$	173
	フランジ		（MPa）	$\sigma_{\mathrm{f}}=$	120	$\sigma_{\text {fa }}=$	120
	胴又は管台		（MPa）	$\sigma_{\mathrm{n}}=$	123	$\sigma_{\mathrm{na}}=$	123
フランジの外径		A	（mm）	2030.00			
フランジの内径		B	（mm）	1800.00			
ボルト中心円の直径		C	（mm）	1974.00			
セルフシールガスケットの外径		Dg_{g}	（mm）	1897.00			
ハブ先端の厚さ		g_{0}	（mm）	15.00			
フランジ背面のハブの厚さ		g_{1}	（mm）	35.00			
ハブの長さ		h	（mm）	60.00			
ボルト呼び				M24×3			
ボルト本数		n		52			
ボルト谷径		d_{b}	（mm）	20.752			
ガスケット接触面の外径		$\mathrm{G}_{\text {s }}$	（mm）	1897.00			
ガスケット接触面の幅		N	（mm）	－			
ガスケット係数		m		0			
最小設計締付圧力		y	（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	0			
ガスケット座の基本幅		b	（mm）	－			
ガスケット座の有効幅		b	（mm）	－			
内圧による全荷重		H	（N）	2.205×10^{6}			
ガスケットに加える圧縮力		H_{p}	（N）	－			
使用状態での最小ボルト荷重		$\mathrm{W}_{\mathrm{m} 1}$	（N）	2.205×10^{6}			
ガスケット締付最小ボルト荷重		$\mathrm{W}_{\mathrm{m} 2}$	（N）	0			
ボルトの所要総有効断面積	使用状態	$\mathrm{A}_{\mathrm{m} 1}$	$\left(\mathrm{mm}^{2}\right)$	1． 274×10^{4}			
	ガスケット締付時	$\mathrm{A}_{\mathrm{m} 2}$	$\left(\mathrm{mm}^{2}\right)$	0			
	いずれか大きい値	A_{m}	$\left(\mathrm{mm}^{2}\right)$	1． 274×10^{4}			
実際のボルト総有効断面積		A_{b}	$\left(\mathrm{mm}^{2}\right)$	1.759×10^{4}			
評価： $\mathrm{A}_{\mathrm{b}}>\mathrm{A}_{\mathrm{m}}$ ，よって十分である。							

3．支持構造物の強度計算書
（1）一次圧縮応力及び一次曲げ応力による組合せ評価

種類	脚本数	材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \mathrm{F} \text { 値 } \\ & (\mathrm{MPa}) \end{aligned}$	鉛直荷重 $\mathrm{F}_{\mathrm{c}}(\mathrm{~N})$	断面積 $\mathrm{A}\left(\mathrm{~mm}^{2}\right)$	$\begin{gathered} \text { 曲げモーメント } \\ \mathrm{M}(\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	断面係数 Z（mm ${ }^{3}$ ）
横置円筒形容器	2	SS41（SS400）	70	223		8.650×10^{4}		

$\begin{gathered} \text { 一次圧縮応力 } \\ \sigma_{c}(\mathrm{MPa}) \end{gathered}$	許容圧縮応力 $\mathrm{f}_{\mathrm{c}}(\mathrm{MPa})$	一次曲げ応力 $\sigma_{b}(\mathrm{MPa})$	許容曲げ応力 $\mathrm{f}_{\mathrm{b}}(\mathrm{MPa})$	組合せ評価 $\frac{\sigma_{\mathrm{c}}}{\mathrm{f}_{\mathrm{c}}}+\frac{\sigma_{\mathrm{b}}}{\mathrm{f}_{\mathrm{b}}} \leqq 1$	評価
	147		148	0.69	算出値は，許容値以下であるので強度は十分である。

原子炉補機冷却水系熱交換器 支持構造物の強度計算説明図

