女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-04-0031_改 0
提出年月日	2021 年 2 月 19 日

VI-3-3-3-6-1-1 原子炉補機冷却水系熱交換器の強度計算書

まえがき

本計算書は、添付書類「VI-3-1-5 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」、「VI-3-2-8 重大事故等クラス2容器の強度計算方法」及び「VI-3-2-12 重大事故等クラス2支持構造物(容器)の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお,評価条件の整理に当たって使用する記号及び略語については,添付書類「VI-3-2-1 強度計算方法の概要」に定義したものを使用する。

·評価条件整理表

	施設時の 技術基準 クラスアップするか			条件アップするか			既工認に										
機器名	成設 or	に対象と	カニフ	アップ	施設時機器	DB	SA	条件	DB 🗐	条件	SA 🗐	条件	おける	施設時の 適用規格	評価区分	同等性 評価	評価 クラス
	300-4 01 する施設 クラスアップ 新設 の規定が の有無 あるか		旭武守機益 クラス	クラス クラス	アップ の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	 評価結果 の有無 	週用规俗		区分	778			
原子炉補機 冷却水系	既設	有	管側	有	DB-3	DB-3	SA-2	無	0.78	50	0.78	50	-	S55 告示	設計・建設規格 又は告示	-	SA-2
熱交換器	以取	何	胴側	有	DB-3	DB-3	SA-2	無	1.18	70	1.18	70	-	S55 告示	設計・建設規格 又は告示	-	SA-2

目次

1.	言	算条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1.	1	計算部位 ····································
1.	2	設計条件 · · · · · · · · · · · · · · · · · · ·
2.	彭	a度計算 ····································
2.	1	容器の胴の厚さの計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	2	容器の鏡板の厚さの計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	3	容器の平板の厚さの計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	4	容器の管板の厚さの計算 ・・・・・・ 8
2.	5	容器の管台の厚さの計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	6	容器の補強を要しない穴の最大径の計算18
2.	7	容器の穴の補強計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	8	容器のフランジの計算 ・・・・・・ 31
3.	ţ	を持構造物の強度計算書 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

- 1. 計算条件
- 1.1 計算部位

概要図に強度計算箇所を示す。

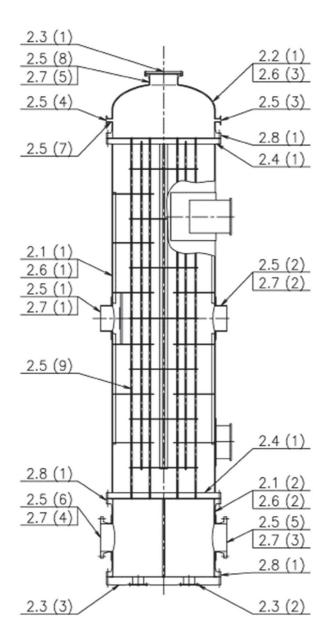


図 1-1 概要図

図中の番号は次ページ以降の 計算項目番号を示す。

1.2 設計条件

最高使用圧力(MPa)	胴側	1.18	管側	0.78
最高使用温度(℃)	胴側	70	管側	50

2. 強度計算

2.1 容器の胴の厚さの計算

設計・建設規格 PVC-3120

胴板名称			(1) 胴側胴板
材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	1.18
最高使用温度		(°C)	70
胴の内径	D _i	(mm)	1800.00
許容引張応力	S	(MPa)	123
継手効率	η		1.00
継手の種類			突合せ両側溶接
放射線検査の有無			有り
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	8.69
t ₁ , t ₂ の大きい値	t	(mm)	8.69
呼び厚さ	t _{s o}	(mm)	15.00
最小厚さ	t s	(mm)	
「評価: t _s ≧t, よって十分	うである。		

容器の胴の厚さの計算

設計・建設規格 PVC-3120

胴板名称			(2) 管側胴板
材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
胴の内径	D _i	(mm)	1800.00
許容引張応力	S	(MPa)	123
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t ₂	(mm)	8.20
t ₁ , t ₂ の大きい値	t	(mm)	8.20
呼び厚さ	t _{s o}	(mm)	15.00
最小厚さ	t s	(mm)	
評価: t _s ≧t, よって十分	である。		

- 2.2 容器の鏡板の厚さの計算
 - (1) 設計・建設規格 PVC-3210

鏡板の形状

鏡板名称	(1) 管側鏡板
鏡板の内面における長径 D _{iL} (mm)	1800.00
鏡板の内面における短径の1/2 h (mm)	450.00
長径と短径の比 D _{iL} /(2・h)	2.00
「評価:D _{iL} /(2・h)≦2,よって半だ円形鏡板で	ある。

(2) 設計・建設規格 PVC-3220

鏡板の厚さ

鏡板名称			(1) 管側鏡板
材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
胴の内径	D _i	(mm)	1800.00
半だ円形鏡板の形状による	係数K		1.00
許容引張応力	S	(MPa)	123
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			—
必要厚さ	t 1	(mm)	5.73
必要厚さ	t ₂	(mm)	5.72
t ₁ , t ₂ の大きい値	t	(mm)	5.73
呼び厚さ	t _{co}	(mm)	15.00
最小厚さ	t c	(mm)	
評価: t c≧ t , よって十分	分である。		

- 2.3 容器の平板の厚さの計算
 - (1) 告示第501号第34条第1項

取付け方法及び穴の有無

平板名称	(1) 水室マンホール平板
平板の取付け方法	(a)
平板の穴の有無	無し

(2) 告示第501号第34条第1項

平板の厚さ

平板名称			(1) 水室マンホール平板
材料			SM50B
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
許容引張応力	S	(MPa)	123
取付け方法による係数	Κ		0.20
平板の径	d	(mm)	620.00
必要厚さ	t	(mm)	22.08
呼び厚さ	t po	(mm)	35.00
最小厚さ	t p	(mm)	
評価:t _p \geq t,よって十分	である。		

枠囲みの内容は商業機密の観点から公開できません。

容器の平板の厚さの計算

(1) 告示第501号第34条第1項

取付け方法及び穴の有無

平板名称	(2) 水室ハンドホール平板
平板の取付け方法	(a)
平板の穴の有無	無し

(2) 告示第501号第34条第1項

平板の厚さ

平板名称			(2) 水室ハンドホール平板
材料			SM50B
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
許容引張応力	S	(MPa)	123
取付け方法による係数	Κ		0.20
平板の径	d	(mm)	290.00
必要厚さ	t	(mm)	10. 33
呼び厚さ	t po	(mm)	15.00
最小厚さ	t p	(mm)	
評価: $t_p \ge t$, よって十分で	である。		

枠囲みの内容は商業機密の観点から公開できません。

容器の平板の厚さの計算

(1) 告示第501号第34条第1項及び第2項

取付け方法及び穴の有無

平板名称			(3) 管側平板
平板の取付け方法			(k)
平板の穴の有無			有り
平板の径	d	(mm)	1897.00
穴の径	d h	(mm)	199.90
評価: $d_h \leq d / 2$,	よって第2項第2号	イ (ロ)	により計算を行う。

(2) 告示第501号第34条第1項及び第2項

(JIS B 8265適用)

平板の厚さ

平板名称				(3) 管側平板	
平板材料				SGV49	
ボルト材料				SNB7 直径 63 mm 以下	
ガスケット	 才料			セルフシーリングガスケット (ゴム)	
最高使用压力	力	Р	(MPa)	0.78	
最高使用温度	变		(°C)	50	
平板の許容	引張応力	S	(MPa)	120	
	常温(ガスケット締付時)(20℃)	S _a	(MPa)	173	
容引張応力	最高使用温度(使用状態)	S _b	(MPa)	173	
ボルト中心	円の直径	С	(mm)	1974. 00	
ボルト呼び				M24	
ボルト本数		n		52	
ボルト谷径		d _b	(mm)	20. 752	
実際のボル	ト総有効断面積	A_{b}	(mm^2)	1.759×10^{4}	
ガスケット	妾触面の外径	G s	(mm)	1897.00	
平板の径(ガ	スケット有効径)	d = G	(mm)	1897.00	
内圧による	全荷重	W = H	(N)	2. 205×10^{6}	
使用状態での	の最小ボルト荷重	W_{m1}	(N)	2. 205×10^{6}	
ガスケット約	帝付最小ボルト荷重	W_{m2}	(N)	0	
ボルトの		A_{m1}	(mm^2)	1.274×10^4	
	ガスケット締付時	A_{m2}	(mm^2)	0	
効断面積	いずれか大きい値	A_{m}	(mm^2)	$1.274 imes 10^4$	
ボルト	使用状態	W_0	(N)	$2.205 imes 10^{6}$	
荷重	ガスケット締付時	Wg	(N)	2.624×10^{6}	
	いずれか大きい値	F	(N)	2.624×10^{6}	
モーメント	アーム	h _g	(mm)	38.50	
取付け方法は	こよる係数	Κ		0. 3338	
必要厚さ		t	(mm)	124.97	
呼び厚さ		t po	(mm)	143.00	
最小厚さ		t _p	(mm)		
評価: $t_p \ge t$, よって十分である。					

2.4 容器の管板の厚さの計算

(1) 設計・建設規格 PVC-3510(1)

管穴の中心間距離

管板名称			(1) 管板
管の外径	d_{t}	(mm)	
必要な距離	Z	(mm)	
管穴の中心間距離	P _t	(mm)	34.00
評価: $P_t \ge z$, よって十分である。			

(2) 設計・建設規格 PVC-3510(2)

管板の厚さ

日次の子で			
管板名称			(1) 管板
材料			SGV49 (SGV480)
最高使用圧力	Р	(MPa)	1.18
最高使用温度		(°C)	70
パッキンの中心円の径又は胴の内径	D	(mm)	1800.00
胴の厚さ	t s	(mm)	
管及び管板の支え方	Б		1.00
による係数	F		(伝熱管の形式:直管)
管板の支え方			胴側胴と一体である。
自扱の文え刀			
任意の管の中心が囲む面積	А	(mm^2)	2.353×10^{6}
面積Aの周のうち穴の	L	(mm)	1359. 37
径以外の部分の長さ	L		1339.31
許容引張応力	S	(MPa)	120
必要厚さ	t 1	(mm)	89.25
必要厚さ	t ₂	(mm)	20.03
t ₁ , t ₂ , 10の大きい値	t	(mm)	89.25
呼び厚さ	t bo	(mm)	95.00
最小厚さ	tь	(mm)	
評価: $t_b \ge t$, よって十分である。			

2.5 容器の管台の厚さの計算

設計・建設規格 PVC-3610

管台名称			(1) 胴体入口	
材料			SM41C (SM400C)	
最高使用圧力	Р	(MPa)	1.18	
最高使用温度		(°C)	70	
管台の外径	D _o	(mm)	457.20	
許容引張応力	S	(MPa)	100	
継手効率	η		1.00	
継手の種類			突合せ両側溶接	
放射線検査の有無			有り	
必要厚さ	t 1	(mm)	2.69	
必要厚さ	t ₃	(mm)	—	
t ₁ , t ₃ の大きい値	t	(mm)	2.69	
呼び厚さ	t no	(mm)	9.50	
最小厚さ	t n	(mm)		
評価: t n≧ t , よって十分である。				

枠囲みの内容は商業機密の観点から公開できません。

管台名称			(2) 胴体出口	
材料			SM41C (SM400C)	
最高使用圧力	Р	(MPa)	1.18	
最高使用温度		(°C)	70	
管台の外径	D _o	(mm)	457.20	
許容引張応力	S	(MPa)	100	
継手効率	η		1.00	
継手の種類			突合せ両側溶接	
放射線検査の有無			有り	
必要厚さ	t 1	(mm)	2.69	
必要厚さ	t ₃	(mm)	_	
t ₁ , t ₃ の大きい値	t	(mm)	2.69	
呼び厚さ	t no	(mm)	9. 50	
最小厚さ	t n	(mm)		
評価: t n≧ t , よって十分である。				

枠囲みの内容は商業機密の観点から公開できません。

管台名称			(3) 水室ドレン	
材料			STS42 (STS410)	
最高使用圧力	Р	(MPa)	0.78	
最高使用温度		(°C)	50	
管台の外径	D _o	(mm)	60.50	
許容引張応力	S	(MPa)	103	
継手効率	η		1.00	
継手の種類			継手無し	
放射線検査の有無			_	
必要厚さ	t 1	(mm)	0.23	
必要厚さ	t ₃	(mm)	2.40	
t ₁ , t ₃ の大きい値	t	(mm)	2.40	
呼び厚さ	t no	(mm)	5.50	
最小厚さ	t n	(mm)		
評価: $t_n \ge t$, よって十分である。				

枠囲みの内容は商業機密の観点から公開できません。

管台名称			(4) 水室空気抜	
材料			STS42 (STS410)	
最高使用圧力	Р	(MPa)	0.78	
最高使用温度		(°C)	50	
管台の外径	D _o	(mm)	60.50	
許容引張応力	S	(MPa)	103	
継手効率	η		1.00	
継手の種類			継手無し	
放射線検査の有無			—	
必要厚さ	t 1	(mm)	0.23	
必要厚さ	t ₃	(mm)	2.40	
t ₁ , t ₃ の大きい値	t	(mm)	2.40	
呼び厚さ	t no	(mm)	5.50	
最小厚さ	t n	(mm)		
評価: t n≧ t , よって十分である。				

枠囲みの内容は商業機密の観点から公開できません。

管台名称			(5) 水室入口
材料			SFVC2B
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
管台の外径	D _o	(mm)	508.00
許容引張応力	S	(MPa)	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			_
必要厚さ	t 1	(mm)	1.65
必要厚さ	t ₃	(mm)	—
t ₁ , t ₃ の大きい値	t	(mm)	1.65
呼び厚さ	t no	(mm)	9.50
最小厚さ	t n	(mm)	
「評価: $t_n \ge t$, よって十分	である。		

枠囲みの内容は商業機密の観点から公開できません。

管台名称			(6) 水室出口
材料			SFVC2B
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
管台の外径	D _o	(mm)	508.00
許容引張応力	S	(MPa)	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			_
必要厚さ	t 1	(mm)	1.65
必要厚さ	t ₃	(mm)	_
t ₁ , t ₃ の大きい値	t	(mm)	1.65
呼び厚さ	t no	(mm)	9.50
最小厚さ	t n	(mm)	
「評価: $t_n \ge t$, よって十分	である。		

管台名称			(7) 水室逃し弁	
材料			STS42 (STS410)	
最高使用圧力	Р	(MPa)	0.78	
最高使用温度		(°C)	50	
管台の外径	D _o	(mm)	60. 50	
許容引張応力	S	(MPa)	103	
継手効率	η		1.00	
継手の種類			継手無し	
放射線検査の有無			—	
必要厚さ	t 1	(mm)	0.23	
必要厚さ	t ₃	(mm)	2.40	
t ₁ , t ₃ の大きい値	t	(mm)	2.40	
呼び厚さ	t no	(mm)	5. 50	
最小厚さ	t n	(mm)		
評価: $t_n \ge t$, よって十分である。				

管台名称			(8) 水室マンホール	
材料			SFVC2B	
最高使用圧力	Р	(MPa)	0.78	
最高使用温度		(°C)	50	
管台の外径	D _o	(mm)	508.00	
許容引張応力	S	(MPa)	120	
継手効率	η		1.00	
継手の種類			継手無し	
放射線検査の有無			—	
必要厚さ	t 1	(mm)	1.65	
必要厚さ	t ₃	(mm)	—	
t ₁ , t ₃ の大きい値	t	(mm)	1.65	
呼び厚さ	t no	(mm)	9.50	
最小厚さ	t n	(mm)		
評価: t n≧ t , よって十分である。				

枠囲みの内容は商業機密の観点から公開できません。

容器の管台の厚さの計算

設計・建設規格 PVC-3610

管台名称			(9) 伝熱管
材料			C6870TS
最高使用圧力	Р	(MPa)	0.78
外面に受ける最高の圧力	P _e	(MPa)	1.18
最高使用温度		(°C)	70
管台の外径	D _o	(mm)	25.40
許容引張応力	S	(MPa)	81
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			_
必要厚さ	t 1	(mm)	0.13
必要厚さ	t ₂	(mm)	0.69
t ₁ , t ₂ の大きい値		(mm)	0.69
呼び厚さ	t _{t o}	(mm)	1.20
最小厚さ	t t	(mm)	
評価: $t_t \ge t$, よって十分 ⁻	である。		

枠囲みの内容は商業機密の観点から公開できません。

2.6 容器の補強を要しない穴の最大径の計算 設計・建設規格 PVC-3150 (2)

胴板名称			(1) 胴側胴板
材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	1.18
最高使用温度		$(^{\circ}C)$	70
胴の外径	D	(mm)	1830. 00
許容引張応力	S	(MPa)	123
胴板の最小厚さ	t s	(mm)	
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			_
$d_{r1} = (D - 2 \cdot t_s) / 4$		(mm)	
61, d _{r1} の小さい値		(mm)	
K			
D•t _s		(mm^2)	
200, d _{r2} の小さい値		(mm)	148.69
補強を要しない穴の最大径		(mm)	148.69
評価:補強の計算を要するプ	ての名称		胴体入口(2.7(1))
			胴体出口(2.7(2))

容器の補強を要しない穴の最大径の計算 設計・建設規格 PVC-3150(2)

胴板名称			(2) 管側胴板
材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
胴の外径	D	(mm)	1830.00
許容引張応力	S	(MPa)	123
胴板の最小厚さ	t s	(mm)	
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			—
$d_{r1} = (D - 2 \cdot t_s) / 4$		(mm)	
61, d _{r1} の小さい値		(mm)	
К			
D•t _s		(mm^2)	
200, d _{r2} の小さい値		(mm)	185. 75
補強を要しない穴の最大径		(mm)	185. 75
評価:補強の計算を要する穴の	名称		水室入口(2.7(3))
			水室出口(2.7(4))

容器の補強を要しない穴の最大径の計算

設計・建設規格 PVC-3230(2)

鏡板名称			(3) 管側鏡板
材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
鏡板のフランジ部の外径	D	(mm)	1830. 00
許容引張応力	S	(MPa)	123
鏡板の最小厚さ	t c	(mm)	
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			—
$d_{r1} = (D-2 \cdot t_c) / 4$		(mm)	
61, d _{r1} の小さい値		(mm)	
К			
D•t _c		(mm^2)	
200, d _{r2} の小さい値		(mm)	165.79
補強を要しない穴の最大径		(mm)	165.79
評価:補強の計算を要する穴の)名称	水室マンオ	マーノレ(2.7(5))

2.7 容器の穴の補強計算

設計・建設規格 PVC-3160

参照附図 WELD-16

部材名称			(1) 胴体入口
胴板材料			SM50B (SM490B)
管台材料			SM40C (SM400C)
強め板材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	1. 18
最高使用温度	1	(°C)	70
胴板の許容引張応力	S _s	(MPa)	123
管台の許容引張応力	S _n	(MPa)	100
強め板の許容引張応力	S _e	(MPa)	123
穴の径	d	(mm)	
管台が取り付く穴の径	d w	(mm)	461.20
胴板の最小厚さ	t s	(mm)	
管台の最小厚さ	t n	(mm)	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D _i	(mm)	1800.00
胴板の計算上必要な厚さ	t sr	(mm)	8.69
管台の計算上必要な厚さ	t nr	(mm)	
穴の補強に必要な面積	A _r	(mm^2)	
補強の有効範囲	X $_1$	(mm)	
補強の有効範囲	X $_2$	(mm)	
補強の有効範囲	Х	(mm)	
補強の有効範囲	Y 1	(mm)	
強め板の最小厚さ	t _e	(mm)	
強め板の外径	B _e	(mm)	750.00
管台の外径	D _{on}	(mm)	457.20
溶接寸法	L ₁	(mm)	8. 50
溶接寸法	L_2	(mm)	6. 72
胴板の有効補強面積	A_1	(mm^2)	
管台の有効補強面積	A_2	(mm^2)	
すみ肉溶接部の有効補強面積	А з	(mm^2)	117.4
強め板の有効補強面積	A_4	(mm^2)	
補強に有効な総面積	A_0	(mm^2)	
補強: $A_0 > A_r$, よって十分	である。	-	

枠囲みの内容は商業機密の観点から公開できません。

部材名称			(1) 胴体入口
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	600.00
評価:d≦d _j , よって大きい	-	計算は必	要ない。
溶接部にかかる荷重	W_1	(N)	
溶接部にかかる荷重	W_2	(N)	
溶接部の負うべき荷重	W	(N)	$2.554 imes10^5$
すみ肉溶接の許容せん断応力	S_{w1}	(MPa)	56
突合せ溶接の許容せん断応力	S_{w2}	(MPa)	68
突合せ溶接の許容引張応力	$S_{\rm \ w\ 3}$	(MPa)	86
管台壁の許容せん断応力	S_{w4}	(MPa)	70
応力除去の有無			無し
すみ肉溶接の許容せん断応力係	彩数	F ₁	0.46
突合せ溶接の許容せん断応力係	系数	F ₂	0.56
突合せ溶接の許容引張応力係数	女 1	F ₃	0.70
管台壁の許容せん断応力係数	-	F ₄	0.70
すみ肉溶接部のせん断力	W $_{\rm e~1}$	(N)	
すみ肉溶接部のせん断力	W _{e3}	(N)	
突合せ溶接部のせん断力	W _{e4}	(N)	
突合せ溶接部のせん断力	W $_{e 6}$	(N)	
突合せ溶接部のせん断力	W $_{\rm e}$ $_7$	(N)	
突合せ溶接部の引張力	W e 8	(N)	
突合せ溶接部の引張力	W e 9	(N)	
管台のせん断力	W $_{e\ 1\ 0}$	(N)	
予想される破断箇所の強さ	Webpl	(N)	
予想される破断箇所の強さ	Webpź	2 (N)	
予想される破断箇所の強さ	Webpa	3 (N)	
予想される破断箇所の強さ	Webp4	4 (N)	
予想される破断箇所の強さ	Webpa		
予想される破断箇所の強さ	Webpe	3 (N)	
	≧W, W _e	e b p 3≧W,	$W_{e b p 4} \ge W, W_{e b p 5} \ge W, W_{e b p 6} \ge W$
以上より十分である。			

設計・建設規格 PVC-3160

参照附図 WELD-16

部材名称			(2) 胴体出口
胴板材料			SM50B (SM490B)
管台材料			SM30D (SM430D) SM41C (SM400C)
強め板材料			SM410 (SM400C) SM50B (SM490B)
最高使用圧力	Р	(MPa)	1. 18
最高使用温度	T	(°C)	70
服板の許容引張応力	S _s	(MPa)	123
管台の許容引張応力	S _n	(MPa)	100
強め板の許容引張応力	S _e	(MPa)	123
次の径	d	(mm)	120
管台が取り付く穴の径	d w	(mm)	461.20
胴板の最小厚さ	t s	(mm)	101.20
管台の最小厚さ	t n	(mm)	
胴板の継手効率	η	()	1.00
係数	F		1.00
胴の内径	D _i	(mm)	1800.00
胴板の計算上必要な厚さ	t s r	(mm)	8.69
管台の計算上必要な厚さ	t nr	(mm)	
穴の補強に必要な面積	A r	(mm^2)	
補強の有効範囲	Χ 1	(mm)	
補強の有効範囲	X $_2$	(mm)	
補強の有効範囲	Х	(mm)	
補強の有効範囲	Υ 1	(mm)	
強め板の最小厚さ	t e	(mm)	
強め板の外径	B _e	(mm)	750.00
管台の外径	D _{on}	(mm)	457. 20
溶接寸法	L ₁	(mm)	8.50
溶接寸法	L_2	(mm)	6.72
胴板の有効補強面積	A_1	(mm^2)	
管台の有効補強面積	A_2	(mm^2)	
すみ肉溶接部の有効補強面積	А з	(mm^2)	117.4
強め板の有効補強面積	A_4	(mm^2)	
補強に有効な総面積	Α 0	(mm^2)	
補強:A ₀ >A _r ,よって十分 ⁻	である。		

枠囲みの内容は商業機密の観点から公開できません。

部材名称			(2) 胴体出口
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	600.00
評価: $d \leq d_j$, よって大きい		計算は必	要ない。
溶接部にかかる荷重	W_1	(N)	
溶接部にかかる荷重	W_2	(N)	
溶接部の負うべき荷重	W	(N)	
すみ肉溶接の許容せん断応力	S_{w1}	(MPa)	56
突合せ溶接の許容せん断応力	$S_{\ w\ 2}$	(MPa)	68
突合せ溶接の許容引張応力	S_{w3}	(MPa)	86
管台壁の許容せん断応力	S_{w4}	(MPa)	70
応力除去の有無			無し
すみ肉溶接の許容せん断応力係	系数 F	° 1	0.46
突合せ溶接の許容せん断応力係		2	0.56
突合せ溶接の許容引張応力係数	女 F	3	0.70
管台壁の許容せん断応力係数	F	4	0.70
すみ肉溶接部のせん断力	W $_{\rm e~1}$	(N)	
すみ肉溶接部のせん断力	W _{e3}	(N)	
突合せ溶接部のせん断力	W $_{e 4}$	(N)	
突合せ溶接部のせん断力	W $_{\rm e}$ 6	(N)	
突合せ溶接部のせん断力	W $_{\rm e}$ 7	(N)	
突合せ溶接部の引張力	W e 8	(N)	
突合せ溶接部の引張力	W e 9	(N)	
管台のせん断力	W $_{\rm e\ 1\ 0}$	(N)	
予想される破断箇所の強さ	W _{ebp1}	(N)	
予想される破断箇所の強さ	W _{ebp2}	(N)	
予想される破断箇所の強さ	W _{ebp3}	(N)	
予想される破断箇所の強さ	W _{ebp4}	(N)	
予想される破断箇所の強さ	W _{ebp5}	(N)	
予想される破断箇所の強さ	W _{ebp6}	(N)	
評価:Webp1 W, Webp2	≧W, W _e	^{b p 3} ≧W,	$W_{e b p 4} \ge W, W_{e b p 5} \ge W, W_{e b p 6} \ge W$
以上より十分である。			

設計・建設規格 PVC-3160

参照附図 WELD-16

部材名称			(3) 水室入口
- 胴板材料			(0) 八里八日 SM50B (SM490B)
管台材料			SFVC2B
強め板材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	0.78
最高使用温度	T	(°C)	50
服板の許容引張応力	S _s	(MPa)	123
管台の許容引張応力	S _n	(MPa)	120
強め板の許容引張応力	S _e	(MPa)	123
次の径	d	(mm)	120
管台が取り付く穴の径	d w	(mm)	512.00
胴板の最小厚さ	t s	(mm)	012.00
管台の最小厚さ	t n	(mm)	
胴板の継手効率	η	(imit/	1.00
係数	F		1.00
胴の内径	Di	(mm)	1800.00
胴板の計算上必要な厚さ	tsr	(mm)	5. 73
管台の計算上必要な厚さ	t n r	(mm)	
穴の補強に必要な面積	A r	(mm^2)	
補強の有効範囲	Χ 1	(mm)	
補強の有効範囲	X $_2$	(mm)	
補強の有効範囲	Х	(mm)	
補強の有効範囲	Υ 1	(mm)	
強め板の最小厚さ	t e	(mm)	
強め板の外径	B _e	(mm)	800.00
管台の外径	D _{on}	(mm)	508.00
溶接寸法	L ₁	(mm)	8.50
溶接寸法	L_2	(mm)	6.72
胴板の有効補強面積	A_1	(mm^2)	
管台の有効補強面積	A_2	(mm^2)	
すみ肉溶接部の有効補強面積	Аз	(mm^2)	117.4
強め板の有効補強面積	A_4	(mm^2)	
補強に有効な総面積	A_0	(mm^2)	
補強:A ₀ >A _r , よって十分 ⁻	である。		

枠囲みの内容は商業機密の観点から公開できません。

部材名称			(3) 水室入口
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	600.00
評価:d≦dj,よって大き	い穴の補強	計算は必	要ない。
溶接部にかかる荷重	W_1	(N)	
溶接部にかかる荷重	W_2	(N)	
溶接部の負うべき荷重	W	(N)	
評価:W<0,よって溶接部	の強度計算	は必要ない	
以上より十分である。			

枠囲みの内容は商業機密の観点から公開できません。

設計・建設規格 PVC-3160

参照附図 WELD-16

部材名称			(4) 水室出口
胴板材料			SM50B (SM490B)
管台材料			SFVC2B
強め板材料			SM50B (SM490B)
最高使用圧力	Р	(MPa)	0. 78
最高使用温度		(°C)	50
胴板の許容引張応力	S _s	(MPa)	123
管台の許容引張応力	S _n	(MPa)	120
強め板の許容引張応力	S _e	(MPa)	123
穴の径	d	(mm)	
管台が取り付く穴の径	d w	(mm)	512.00
胴板の最小厚さ	t s	(mm)	
管台の最小厚さ	t n	(mm)	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D _i	(mm)	1800.00
胴板の計算上必要な厚さ	t sr	(mm)	5. 73
管台の計算上必要な厚さ	t nr	(mm)	
穴の補強に必要な面積	A _r	(mm^2)	
補強の有効範囲	X 1	(mm)	
補強の有効範囲	X $_2$	(mm)	
補強の有効範囲	Х	(mm)	
補強の有効範囲	Y 1	(mm)	
強め板の最小厚さ	t _e	(mm)	
強め板の外径	B _e	(mm)	800.00
管台の外径	D _{on}	(mm)	508.00
溶接寸法	L ₁	(mm)	8.50
溶接寸法	L ₂	(mm)	6.72
胴板の有効補強面積	A_1	(mm^2)	
管台の有効補強面積	A_2	(mm^2)	
すみ肉溶接部の有効補強面積	Аз	(mm^2)	117.4
強め板の有効補強面積	A_4	(mm^2)	
補強に有効な総面積	A_0	(mm^2)	
補強:A₀>Aェ,よって十分~	である。		

枠囲みの内容は商業機密の観点から公開できません。

部材名称			(4) 水室出口
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	600.00
評価:d \leq d _j , よって大き	い穴の補強	計算は必	要ない。
溶接部にかかる荷重	W_1	(N)	
溶接部にかかる荷重	W_2	(N)	
溶接部の負うべき荷重	W	(N)	
評価:W<0,よって溶接部	の強度計算	は必要ない	() ₀
以上より十分である。			

枠囲みの内容は商業機密の観点から公開できません。

設計・建設規格 PVC-3160

参照附図 WELD-34

部材名称			(5) 水室マンホール
鏡板材料			SM50B (SM490B)
管台材料			SFVC2B
最高使用圧力	Р	(MPa)	0.78
最高使用温度		(°C)	50
鏡板の許容引張応力	S _c	(MPa)	123
管台の許容引張応力	S _n	(MPa)	120
穴の径	d	(mm)	
管台が取り付く穴の径	d w	(mm)	508.00
鏡板の最小厚さ	t _c	(mm)	
管台の最小厚さ	t n	(mm)	
鏡板の継手効率	η		1.00
係数	F		1.00
鏡板の内面における長径のK1倍	R	(mm)	1620.00
鏡板の内面における長径	D _{iL}	(mm)	1800.00
鏡板の内面における短径	D _{iS}	(mm)	900.00
長径と短径の比	D _{iL} /]	Dis	2.00
係数	Κ 1		0.90
鏡板の計算上必要な厚さ	t _{c r}	(mm)	
管台の計算上必要な厚さ	t nr	(mm)	
穴の補強に必要な面積	A _r	(mm^2)	
補強の有効範囲	Χ ₁	(mm)	
補強の有効範囲	X $_2$	(mm)	
補強の有効範囲	Х	(mm)	
補強の有効範囲	Y 1	(mm)	
管台の外径	D _{on}	(mm)	508.00
溶接寸法	L ₁	(mm)	8.50
鏡板の有効補強面積	A 1	(mm^2)	
管台の有効補強面積	A_2	(mm^2)	
すみ肉溶接部の有効補強面積	A_3	(mm^2)	72.25
補強に有効な総面積	A_0	(mm^2)	
$補強: A_0 > A_r, よって十分^-$	である。		

部材名称			(5) 水室マンホール
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	600.00
評価:d \leq d _j , よって大き	い穴の補強	(計算は必)	要ない。
溶接部にかかる荷重	W $_{1}$	(N)	
溶接部にかかる荷重	W_2	(N)	
溶接部の負うべき荷重	W	(N)	
評価:W<0,よって溶接部の	の強度計算	は必要ない	
以上より十分である。			

枠囲みの内容は商業機密の観点から公開できません。

2.8 容器のフランジの計算

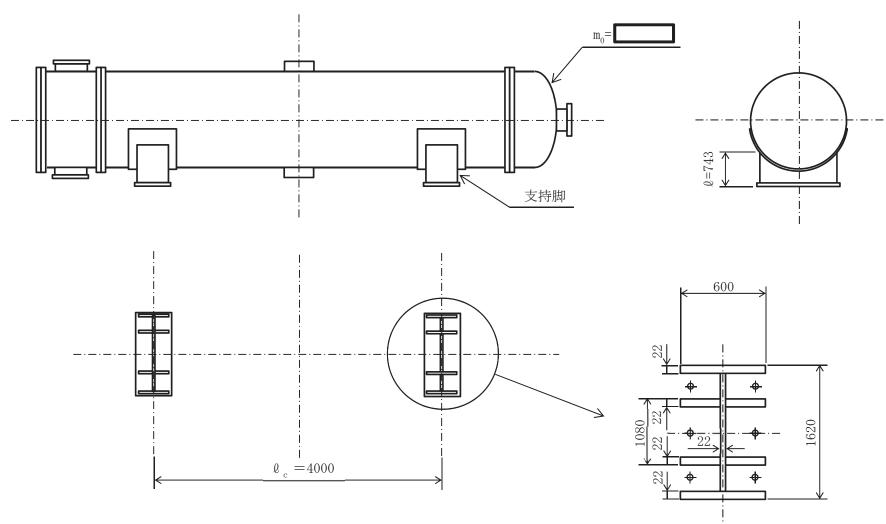
設計・建設規格 PVC-3710

(JIS B 8265 附属書3適用)

(内圧を受けるフランジ)

参照附図 FLANGE-2 一体形フランジ

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2 M				/ • •		
フランジ名称		(1) 水室フランジ							
フランジ材料		SGV49 (SGV480)							
胴又は管台材料	ŀ		SM50B (SM490B)						
ボルト材料				SI	VB7(直	径63mm以下)			
ガスケット材料	ŀ			セルフシ	ーリング	ヷガスケット(ゴム)		
ガスケット厚さ			(mm)			5			
ガスケット座面	jの形状					_			
最高使用圧力		Р	(MPa)	0.78					
				最高使用	温度	常温			
	温度条件		(°C)	(使用状)	(使用状態) (ガスケット締付時)				
ᆕᄷᆁᇉᆤᆂ				(50)					
許容引張応力	ボルト		(MPa)	$\sigma_{b} =$	173	σ _a =	173		
	フランジ		(MPa)	$\sigma_{\rm f} =$	120		120		
	胴又は管台		(MPa)	$\sigma_n =$	123	$\sigma_{na} =$	123		
フランジの外径		А	(mm)		2030.00				
フランジの内径		В	(mm)		1800.00				
ボルト中心円の	С	(mm)	1974.00						
セルフシールカ	セルフシールガスケットの外径			1897.00					
ハブ先端の厚さ		g ₀	(mm)	15.00					
フランジ背面のハブの厚さ			(mm)		35.00				
ハブの長さ			(mm)			60.00			
ボルト呼び					$M24 \times 3$				
ボルト本数				52					
ボルト谷径		d b	(mm)	20. 752					
ガスケット接触面の外径			(mm)	1897.00					
ガスケット接触面の幅		Ν	(mm)						
ガスケット係数		m		0					
最小設計締付圧	E力	У	(N/mm^2)	0					
ガスケット座の)基本幅	b o	(mm)			-			
ガスケット座の)有効幅	b	(mm)			_			
内圧による全荷	Н	(N)	2.205×10^{6}						
ガスケットに加える圧縮力		Н _р	(N)						
使用状態での最小ボルト荷重		W _{m 1}	(N)	2. 205×10^{6}					
ガスケット締付最小ボルト荷重		W_{m2}	(N)		0				
(A_{m1}	(mm^2)		1.274×10^{4}				
ボルトの所要	ガスケット締付時	A _{m 2}	(mm^2)	0					
総有効断面積	いずれか大きい値	Am	(mm^2)			1.274×10^{4}			
実際のボルト総	有効断面積	A _b	(mm^2)			1.759×10^{4}			
	m, よって十分である。	_							


フランジ名称				(1)	水室フランジ		
	使用状態	Wo	(N)	(-/	2.205×10^{6}		
ボルト荷重	ガスケット締付時	Wg	(N)		2.624 $\times 10^{6}$		
距離		R	(mm)		52.00		
			~ /	$H_{D} =$	1.985×10^{6}		
荷重			(N)	$H_{G} =$	0		
117 11				$H_{T} =$	2. 197×10^5		
				$h_{\rm D} =$	69.50		
モーメントアーム			(mm)	$h_{G} =$	38.50		
			(iiiii)	$h_{\rm T} =$	62.75		
				$M_{\rm D} =$	1.379×10^{8}		
モーメント			(N•mm)	$M_{G} =$	0		
				$M_{\rm T} =$	1.379×10^{7}		
フランジに作用	使用状態		(N · mm)	$M_{o} =$	1.517×10^{8}		
するモーメント	ガスケット締付時		$(N \cdot mm)$	$M_g =$	1.010×10^{8}		
形状係数		h 。	(IV IIII) (mm)	IVI g —	164. 32		
係数		h/h.	(11111)		0. 3651		
		g_1/g_0			2. 3333		
- ^示		<u> </u>)		2. 3333		
係数		F			0.8532		
係数		V			0. 2456		
フランジの内外径		K					
係数		<u> </u>					
係数		T U					
係数		Y		17.7602			
係数		Z		16. 1618 8. 3561			
你奴		L			0. 3001		
係数		d	(mm^3)		2.674 $\times 10^{6}$		
係数	$e \qquad (mm^{-1})$				0.005192		
フランジの厚さ	の厚さ t (mm)				86.50		
係数 L					1.0182		
		宇田市祭にする	けてフランバ	シの砕く			
応力		使用状態にお	(MPa)		許容引張応	+	
心刀			(MPa)	訂昇旭			
ハブの軸方向応力		σ _H		164	$1.5 \cdot \sigma_{\rm f} = 2.5 \cdot \sigma_{\rm n} =$	180 307	
コランジの坐奴士	白内中			10	1		
フランジの半径方 フランジの周方向		σ _R		18 35	$\sigma_{\rm f} =$	120	
ノノインワロ灯印	$(\sigma_{\rm H} + \sigma_{\rm R})/2$	σ _T		91	$\sigma_{\rm f} =$	120	
組合せ応力	$\frac{(0_{\mathrm{H}} + \mathbf{\sigma}_{\mathrm{R}})/2}{(\mathbf{\sigma}_{\mathrm{H}} + \mathbf{\sigma}_{\mathrm{T}})/2}$			91	$\sigma_{\rm f} =$	120 120	
		「スケット締付	ナ時のフラン		$\sigma_{\rm f} =$	120	
応力		マンワン レ 不単生	(MPa)	<u>ンの強さ</u> 計算値	許容引張応	<u>カ</u>	
			(INIL a)	印光吧	市台引張心 1.5・σ _{f a} =	180	
ハブの軸方向応力		$\sigma_{\rm H}$		109	$2.5 \cdot \sigma_{n a} =$	180	
フランジの半径方	向応力	σ _R		12	$\sigma_{fa} =$	120	
フランジの周方向		σ _T		23	$\sigma_{fa} =$	120	
	$(\sigma_{\rm H} + \sigma_{\rm R})/2$	*		61	$\sigma_{fa} =$	120	
組合せ応力	$(\sigma_{\rm H} + \sigma_{\rm T})/2$			66	$\sigma_{fa} =$	120	
応力の評価:	$\frac{\sigma_{\rm H} \leq Min(1.5 \cdot \sigma_{\rm f},)}{\sigma_{\rm H} \leq Min(1.5 \cdot \sigma_{\rm f},)}$	2.5 • σ_{n})		$\sigma_{\rm H} \leq {\rm Min}(1.5 \cdot \sigma$	$f_a, 2.5 \cdot \sigma_{p_a})$		
C The second sec	$\sigma_{\rm R} \leq \sigma_{\rm f}$	~ 11 /		$\sigma_{\rm R} \leq \sigma_{\rm f a}$	~ 11 a /		
	$\sigma_{\rm T} \leq \sigma_{\rm f}$			$\sigma_{\rm T} \leq \sigma_{\rm fa}$			
	$(\sigma_{\rm H} + \sigma_{\rm R}) / 2 \leq \sigma_{\rm f}$			$(\sigma_{\rm H} + \sigma_{\rm R})/2 \leq \sigma_{\rm f a}$			
	$(\sigma_{\rm H} + \sigma_{\rm T}) / 2 \leq \sigma_{\rm f}$			$(\sigma_{\rm H} + \sigma_{\rm T}) / 2 \leq \sigma$			
	以上より十分である) ₀					

3. 支持構造物の強度計算書

(1) 一次圧縮応力及び一次曲げ応力による組合せ評価

種類	脚本数	材料	最高使用温度 (℃)	F値 (MPa)	鉛直荷重 F _c (N)	断面積 A (mm²)	曲げモーメント M(N・mm)	断面係数 Z (mm ³)
橫置円筒形容器	2	SS41 (SS400)	70	<mark>223</mark>		8.650×10^4		

	<mark>147</mark>		<mark>148</mark>	<mark>0. 69</mark>	算出値は,許
一次圧縮応力	許容圧縮応力	一次曲げ応力	許容曲げ応力	組合せ評価	
σ _c (MPa)	f _c (MPa)	σ _b (MPa)	f _b (MPa)	$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}} \leq 1$	

原子炉補機冷却水系熱交換器 支持構造物の強度計算説明図

評価

許容値以下であるので強度は十分である。

(単位:mm)