女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02－工－B－04－0027＿改 0
提出年月日	2021年2月19日

VI－3－3－2－2－1－1 燃料プール泠却浄化系交換器の強度計算書

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」，「VI－3－2－8 重大事故等クラス 2 容器の強度計算方法」及び「VI－3－ 2－12 重大事故等クラス 2 支持構造物（容器）の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。

機器名	既設 or 新設	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか					条件アップするか					既工認に おける 評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$	
			$\begin{gathered} \text { クラスアップ } \\ \text { の有無 } \end{gathered}$		施設時機器クラス	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	$\begin{aligned} & \text { 条件 } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	DB 条件		SA 条件							
					圧力 （MPa）				温度 （ ${ }^{\circ} \mathrm{C}$ ）	圧力 （MPa）	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$							
燃料プール泠却浄化系熱交換器	既設	有	管側	有		DB－3	DB－3	SA－2	無	1.37	66	1.37	66	－	S55 告示	設計•建設規格又は告示	－	SA－2
			胴側	有	DB－3	DB－3	SA－2	無	1.18	70	1.18	70	－	S55 告示	$\begin{gathered} \hline \text { 設計•建設規格 } \\ \text { 又は告示 } \\ \hline \end{gathered}$	－	SA－2	

1．計算条件 1
1.1 計算部位 1
1.2 設計条件 1
2．強度計算 ． 2
2.1 容器の胴の厚さの計算 2
2.2 容器の鏡板の厚さの計算 4
2.3 容器の管板の厚さの計算 6
2． 4 容器の管台の厚さの計算 － 7
2.5 容器の補強を要しない穴の最大径の計算 19
2.6 容器の穴の補強計算 21
2.7 容器のフランジの計算 29
3．支持構造物の強度計算書 31

1．計算条件
1.1 計算部位

概要図に強度計算箇所を示す。

図中の番号は次ページ以降の
計算項目番号を示す。
図 1－1 概要図
1.2 設計条件

最高使用圧力 (MPa)	胴側	1.18	管側	1.37
最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	胴側	70	管側	66

2．強度計算
2.1 容器の胴の厚さの計算

設計•建設規格 PVC－3120

胴板名称			（1）胴側胴板
材料			SGV410
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
胴の内径	D_{i}	（mm）	600.00
許容引張応力	S	（MPa）	103
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t_{1}	（mm）	3.00
必要厚さ	t_{2}	（mm）	4． 96
t_{1} ， t_{2} の大きい値	t	（mm）	4.96
呼び厚さ	$\mathrm{t}_{\mathrm{s} \text { o }}$	（mm）	12.00
最小厚さ	t s	（mm）	
評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}$ ，よって十分である。			

容器の胴の厚さの計算
設計•建設規格 PVC－3120

胴板名称			（2）管側胴板
材料			SUS304
最高使用圧力	P	（MPa）	1.37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
胴の内径	$\mathrm{D}_{\text {i }}$	（mm）	600.00
許容引張応力	S	（MPa）	126
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t_{1}	（mm）	1.50
必要厚さ	t 2	（mm）	4.71
t_{1} ， t_{2} の大きい値	t	（mm）	4.71
呼び厚さ	t s o	（mm）	12.00
最小厚さ	t s	（mm）	
評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}$ ，よって十分である。			

2.2 容器の鏡板の厚さの計算

（1）設計•建設規格 PVC－3210
鏡板の形状

鏡板名称	（1）胴側鏡板
	600.00
鏡板の内面における短径の $1 / 2 \mathrm{~h}$（mm）	150.00
長径と短径の比 $\mathrm{D}_{\mathrm{i} L} /(2 \cdot \mathrm{~h})$	2.00
評価： $\mathrm{D}_{\mathrm{i} L} /(2 \cdot \mathrm{~h}) \leqq 2$ ，よって半だ円形鏡板である。	

（2）設計•建設規格 PVC－3220
鏡板の厚さ

鏡板名称			（1）胴側鏡板
材料			SGV410
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
胴の内径	D_{i}	（mm）	600.00
半だ円形鏡板の形状に			1.00
許容引張応力	S	（MPa）	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	3.47
必要厚さ	t_{2}	（mm）	3.45
t_{1} ， t_{2} の大きい値	t	（mm）	3.47
呼び厚さ	tco	（mm）	12.00
最小厚さ	t c	（mm）	
評価： $\mathrm{t}_{\mathrm{c}} \geqq \mathrm{t}$ ，よって十分である。			

容器の鏡板の厚さの計算
（1）設計•建設規格 PVC－3210
鏡板の形状

鏡板名称		(2)	管側鏡板
鏡板の内面における長径	D_{iL}	(mm)	600.00
鏡板の内面における短径の $1 / 2$	h	$(\mathrm{~mm})$	150.00
長径と短径の比	$\mathrm{D}_{\mathrm{iL}} /(2 \cdot \mathrm{~h})$	2.00	
評価 $: \mathrm{D}_{\mathrm{iL}} /(2 \cdot \mathrm{~h}) \leqq 2$, よって半だ円形鏡板である。			

（2）設計•建設規格 PVC－3220
鏡板の厚さ

鏡板名称			（2）管側鏡板
材料			SUS304
最高使用圧力	P	（MPa）	1.37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
胴の内径	D_{i}	（mm）	600.00
半だ円形鏡板の形状に			1.00
許容引張応力	S	（MPa）	126
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	3.29
必要厚さ	t_{2}	（mm）	3.27
t_{1} ， t_{2} の大きい値	t	（mm）	3.29
呼び厚さ	tco	（mm）	12.00
最小厚さ	t c	（mm）	
評価： $\mathrm{t}_{\mathrm{c}} \geqq \mathrm{t}$ ，よって十分である。			

2.3 容器の管板の厚さの計算

（1）設計•建設規格 PVC－3510（1）
管穴の中心間距離

| 管板名称 | | （1） | 管板 |
| :--- | :--- | :--- | :--- | :--- |
| 管の外径 | d_{t} | (mm) | |
| 必要な距離 | z | (mm) | |
| 管穴の中心間距離 | P_{t} | (mm) | 25.00 |
| 評価 $: \mathrm{P}_{\mathrm{t}} \geqq \mathrm{z}$, よって十分である。 | | | |

（2）設計•建設規格 PVC－3510（2）
管板の厚さ

管板名称			（1）管板
材料			SUSF304
最高使用圧力	P	（MPa）	1． 37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
パッキンの中心円の径又は胴の内径	D	（mm）	642.18
胴の厚さ	t s	（mm）	－
管及び管板の支え方 による係数	F		1.25 （伝熱管の形式：U字管）
管板の支え方			管側胴と一体でない。 $\left(t_{s} / D=-\right)$
任意の管の中心が囲む面積	A	$\left(\mathrm{mm}^{2}\right)$	2． 498×10^{5}
面積 A の周のらち穴の径以外の部分の長さ	L	（mm）	403.94
許容引張応力	S	（MPa）	126
必要厚さ	t_{1}	（mm）	41.86
必要厚さ	t_{2}	（mm）	7.91
t_{1} ， t_{2} ， 10 の大きい値	t	（mm）	41.86
呼び厚さ	t_{b} o	（mm）	65.00
最小厚さ	t_{b}	（mm）	
評価： $\mathrm{t}_{\mathrm{b}} \geqq \mathrm{t}$ ，よって十分である。			

2． 4 容器の管台の厚さの計算設計•建設規格 PVC－3610

管台名称			（1）胴体入口
材料			STS410
最高使用圧力	P	（MPa）	1． 18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D 。	（mm）	165.20
許容引張応力	S	（MPa）	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.95
必要厚さ	t 3	（mm）	3.80
t_{1} ， t_{3} の大きい値	t	（mm）	3.80
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { 。 }}$	（mm）	7.10
最小厚さ	t ${ }_{\text {n }}$	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

	管台名称			（2）胴体出口
	材料			STS410
	最高使用圧力	P	（MPa）	1.18
	最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
	管台の外径	D	（mm）	165.20
	許容引張応力	S	（MPa）	103
	継手効率	η		1.00
	継手の種類			継手無し
	放射線検査の有無			－
	必要厚さ	t_{1}	（mm）	0.95
	必要厚さ	t 3	（mm）	3.80
	t_{1} ， t_{3} の大きい値	t	（mm）	3.80
	呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	7.10
	最小厚さ	t_{n}	（mm）	
\bigcirc	評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よつ	ある。		

容器の管台の厚さの計算
設計•建設規格 PVC－3610

	管台名称			（3）水室入口
	材料			SUS304TP
	最高使用圧力	P	（MPa）	1.37
	最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
	管台の外径	D 。	（mm）	165.20
	許容引張応力	S	（MPa）	126
	継手効率	η		1.00
	継手の種類			継手無し
	放射線検査の有無			－
	必要厚さ	t_{1}	（mm）	0.90
	必要厚さ	t 3	（mm）	－
	t_{1} ， t_{3} の大きい値	t	（mm）	0.90
	呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	7.10
	最小厚さ	t_{n}	（mm）	
\bigcirc	評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よつ	ある。		

容器の管台の厚さの計算
設計•建設規格 PVC－3610

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（5）胴体ドレン
材料			SFVC2B
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D 。	（mm）	46． 00
許容引張応力	S	（MPa）	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.23
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	0.23
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { 。 }}$	（mm）	9.15
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（6）胴体ドレン
材料			SFVC2B
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D	（mm）	34.00
許容引張応力	S	（MPa）	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.17
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	0.17
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	5.50
最小厚さ	t ${ }_{\text {n }}$	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（7）胴体空気抜
材料			SFVC2B
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D 。	（mm）	46． 00
許容引張応力	S	（MPa）	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.23
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	0.23
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { 。 }}$	（mm）	9.15
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

\bigcirc	管台名称			（8）胴体空気抜
	材料			SFVC2B
	最高使用圧力	P	（MPa）	1.18
	最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
	管台の外径	D 。	（mm）	34.00
	許容引張応力	S	（MPa）	120
	継手効率	η		1.00
	継手の種類			継手無し
	放射線検査の有無			－
	必要厚さ	t_{1}	（mm）	0.17
	必要厚さ	t_{3}	（mm）	－
	t_{1} ， t_{3} の大きい値	t	（mm）	0.17
	呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	5.50
	最小厚さ	t_{n}	（mm）	
	評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よつ	ある。		

容器の管台の厚さの計算
設計•建設規格 PVC－3610

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（10）水室空気抜
材料			SUS304TP
最高使用圧力	P	（MPa）	1.37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
管台の外径	D 。	（mm）	27． 20
許容引張応力	S	（MPa）	126
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.15
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	0.15
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	3.90
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（11）	胴体逃がし弁
材料				STS410
最高使用圧力	P	（MPa）		1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$		70
管台の外径	D 。	（mm）		27． 20
許容引張応力	S	（MPa）		103
継手効率	η			1.00
継手の種類				継手無し
放射線検査の有無				－
必要厚さ	t_{1}	（mm）		0.16
必要厚さ	t 3	（mm）		1． 70
t_{1} ， t_{3} の大きい値	t	（mm）		1． 70
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）		3.90
最小厚さ	t_{n}	（mm）		
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。				

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（12）伝熱管
材料			SUS304TB
最高使用圧力	P	（MPa）	1.37
外面に受ける最高の圧力	P_{e}	（MPa）	1． 18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D	（mm）	
許容引張応力	S	（MPa）	126
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t 1	（mm）	0.11
必要厚さ	t 2	（mm）	0.45
t_{1} ， t_{2} の大きい値		（mm）	0.45
呼び厚さ	t t 。	（mm）	
最小厚さ	t t	（mm）	
評価： $\mathrm{t}_{\mathrm{t}} \geqq \mathrm{t}$ ，よって十分である。			

2.5 容器の補強を要しない穴の最大径の計算

設計•建設規格 PVC－3150（2）

胴板名称	（1）胴側胴板
材料	SGV410
最高使用圧力 P （MPa）	1.18
最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）	70
胴の外径 D（mm）	624.00
	103
胴板の最小厚さ $\mathrm{t}_{\text {s }}$ 年（mm）	
継手効率 $\quad \eta$	1.00
継手の種類	継手無し
放射線検査の有無	－
$\mathrm{d}_{\mathrm{r} 1}=\left(\mathrm{D}-2 \cdot \mathrm{t}_{\mathrm{s}}\right) / 4$	
61，d r_{1} の小さい値（mm）	
K	
$\mathrm{D} \cdot \mathrm{ts}$（ $\left.\mathrm{mm}^{2}\right)$	
200，d r_{2} の小さい値（mm）	131.67
補強を要しない穴の最大径（mm）	131.67
評価：補強の計算を要する穴の名称	胴体入口（2．6（1）） 胴体出口（2．6（2））

容器の補強を要しない穴の最大径の計算
設計•建設規格 PVC－3150（2）

胴板名称	（2）管側胴板
材料	SUS304
	1.37
最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）	66
胴の外径 ${ }^{\text {a }}$（ ${ }^{\text {a }}$（mm）	624.00
許容引張応力 S（MPa）	126
胴板の最小厚さ $\mathrm{t} \mathrm{s}^{\text {c }}$（mm）	
継手効率 $\quad \eta$	1.00
継手の種類	継手無し
放射線検査の有無	－
$\mathrm{d}_{\mathrm{r} 1}=\left(\mathrm{D}-2 \cdot \mathrm{ts}_{\mathrm{s}}\right) / 4$	
61，d r_{1} の小さい値（mm）	
K	
$\mathrm{D} \cdot \mathrm{t} \mathrm{s}^{\text {c }}$（ $\left.\mathrm{mm}^{2}\right)$	
200，d r 2 の小さい値（mm）	124.03
補強を要しない穴の最大径（mm）	124.03
評価：補強の計算を要する穴の名称	水室入口（2．6（3）） 水室出口（2．6（4））

2.6 容器の穴の補強計算

設計•建設規格 PVC－3160
参照附図 WELD－16

部材名称			（1）胴体入口
胴板材料			SGV410
管台材料			STS410
強め板材料			SGV410
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
胴板の許容引張応力	S s	（MPa）	103
管台の許容引張応力	S_{n}	（MPa）	103
強め板の許容引張応力	S_{e}	（MPa）	103
穴の径	d	（mm）	
管台が取り付く穴の径	d_{w}	（mm）	169.20
胴板の最小厚さ	t s	（mm）	
管台の最小厚さ	t_{n}	（mm）	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D_{i}	（mm）	600.00
胴板の計算上必要な厚さ	ts r	（mm）	3.47
管台の計算上必要な厚さ	$\mathrm{t}_{\mathrm{n} \text { r }}$	（mm）	
穴の補強に必要な面積	A_{r}	$\left(\mathrm{mm}^{2}\right)$	
補強の有効範囲	X_{1}	（mm）	
補強の有効範囲	X_{2}	（mm）	
補強の有効範囲	X	（mm）	
補強の有効範囲	Y_{1}	（mm）	
強め板の最小厚さ	$\mathrm{t}_{\text {e }}$	（mm）	
強め板の外径	B e	（mm）	310.00
管台の外径	D on	（mm）	165.20
溶接寸法	L_{1}	（mm）	7.03
溶接寸法	L_{2}	（mm）	5.02
胴板の有効補強面積	A_{1}	（mm²）	
管台の有効補強面積	A_{2}	（ mm^{2} ）	
すみ肉溶接部の有効補強面積	A_{3}	（mm²）	49． 42
強め板の有効補強面積	A_{4}	（mm²）	
補強に有効な総面積	A_{0}	$\left(\mathrm{mm}^{2}\right)$	
補強： $\mathrm{A}_{0}>\mathrm{A}_{\text {r }}$ ，よって十分である。			

容器の穴の補強計算
設計•建設規格 PVC－3160
参照附図 WE LD -16

部材名称			（2）胴体出口
胴板材料			SGV410
管台材料			STS410
強め板材料			SGV410
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
胴板の許容引張応力	S s	（MPa）	103
管台の許容引張応力	S_{n}	（MPa）	103
強め板の許容引張応力	S e	（MPa）	103
穴の径	d	（mm）	
管台が取り付く穴の径	d_{w}	（mm）	169.20
胴板の最小厚さ	t s	（mm）	
管台の最小厚さ	t_{n}	（mm）	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D_{i}	（mm）	600.00
胴板の計算上必要な厚さ	t s r	（mm）	3.47
管台の計算上必要な厚さ	$\mathrm{tar}_{\mathrm{n}}$	（mm）	
穴の補強に必要な面積	A_{r}	$\left(\mathrm{mm}^{2}\right)$	
補強の有効範囲	X_{1}	（mm）	
補強の有効範囲	X_{2}	（mm）	
補強の有効範囲	X	（mm）	
補強の有効範囲	Y_{1}	（mm）	
強め板の最小厚さ	$\mathrm{t}_{\text {e }}$	（mm）	
強め板の外径	B e	（mm）	310.00
管台の外径	Don	（mm）	165.20
溶接寸法	L_{1}	（mm）	7.03
溶接寸法	L_{2}	（mm）	5.02
胴板の有効補強面積	A_{1}	$\left(\mathrm{mm}^{2}\right)$	
管台の有効補強面積	A_{2}	$\left(\mathrm{mm}^{2}\right)$	
すみ肉溶接部の有効補強面積	A_{3}	$\left(\mathrm{mm}^{2}\right)$	49． 42
強め板の有効補強面積	A_{4}	$\left(\mathrm{mm}^{2}\right)$	
補強に有効な総面積	A 0	$\left(\mathrm{mm}^{2}\right)$	
補強： $\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$ ，よって十分である。			

容器の穴の補強計算
設計•建設規格 PVC－3160
参照附図 WE LD -16

部材名称			（3）水室入口
胴板材料			SUS304
管台材料			SUS304TP
強め板材料			SUS304
最高使用圧力	P	（MPa）	1.37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
胴板の許容引張応力	S s	（MPa）	126
管台の許容引張応力	S_{n}	（MPa）	126
強め板の許容引張応力	$\mathrm{S}_{\text {e }}$	（MPa）	126
穴の径	d	（mm）	
管台が取り付く穴の径	d_{w}	（mm）	169． 20
胴板の最小厚さ	t s	（mm）	
管台の最小厚さ	t_{n}	（mm）	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D_{i}	（mm）	600.00
胴板の計算上必要な厚さ	tsr	（mm）	3.29
管台の計算上必要な厚さ	$\mathrm{tar}_{\mathrm{n}}$	（mm）	
穴の補強に必要な面積	A_{r}	$\left(\mathrm{mm}^{2}\right)$	
補強の有効範囲	X_{1}	（mm）	
補強の有効範囲	X_{2}	（mm）	
補強の有効範囲	X	（mm）	
補強の有効範囲	Y_{1}	（mm）	
強め板の最小厚さ	$\mathrm{t}_{\text {e }}$	（mm）	
強め板の外径	B e	（mm）	310.00
管台の外径	$\mathrm{D}_{\text {on }}$	（mm）	165.20
溶接寸法	L_{1}	（mm）	7.03
溶接寸法	L_{2}	（mm）	5.02
胴板の有効補強面積	A_{1}	$\left(\mathrm{mm}^{2}\right)$	
管台の有効補強面積	A_{2}	$\left(\mathrm{mm}^{2}\right)$	
すみ肉溶接部の有効補強面積	A_{3}	$\left(\mathrm{mm}^{2}\right)$	49． 42
強め板の有効補強面積	A_{4}	$\left(\mathrm{mm}^{2}\right)$	
補強に有効な総面積	A 0	$\left(\mathrm{mm}^{2}\right)$	
補強： $\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$ ，よって十分である。			

部材名称				水室入口
大きい穴の補強				
補強を要する穴の限界径	d_{j}	（mm）		． 00
評価： $\mathrm{d} \leqq \mathrm{d}_{\mathrm{j}}$ ，よって大きい穴の補強計算は必要ない。				
溶接部にかかる荷重	W_{1}	（N）		
溶接部にかかる荷重	W_{2}	（N）		
溶接部の負らべき荷重	W	（N）		
評価： $\mathrm{W}<0$ ，よって溶接部の強度計算は必要ない。以上より十分である。				

容器の穴の補強計算
設計•建設規格 PVC－3160
参照附図 WE LD -16

部材名称			（4）水室出口
胴板材料			SUS304
管台材料			SUS304TP
強め板材料			SUS304
最高使用圧力	P	（MPa）	1.37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
胴板の許容引張応力	S s	（MPa）	126
管台の許容引張応力	S_{n}	（ MPa ）	126
強め板の許容引張応力	$\mathrm{S}_{\text {e }}$	（MPa）	126
穴の径	d	（mm）	
管台が取り付く穴の径	d_{w}	（mm）	169.20
胴板の最小厚さ	t_{s}	（mm）	
管台の最小厚さ	t_{n}	（mm）	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D_{i}	（mm）	600.00
胴板の計算上必要な厚さ	$\mathrm{t}_{\mathrm{s} \mathrm{r}}$	（mm）	3.29
管台の計算上必要な厚さ	$\mathrm{tar}_{\mathrm{n}}$	（mm）	
穴の補強に必要な面積	A_{r}	$\left(\mathrm{mm}^{2}\right)$	
補強の有効範囲	X_{1}	（mm）	
補強の有効範囲	X_{2}	（mm）	
補強の有効範囲	X	（mm）	
補強の有効範囲	Y_{1}	（mm）	
強め板の最小厚さ	$\mathrm{t}_{\text {e }}$	（mm）	
強め板の外径	B e	（mm）	310.00
管台の外径	$\mathrm{D}_{\text {on }}$	（mm）	165.20
溶接寸法	L_{1}	（mm）	7.03
溶接寸法	L_{2}	（mm）	5.02
胴板の有効補強面積	A_{1}	（ mm^{2} ）	
管台の有効補強面積	A_{2}	$\left(\mathrm{mm}^{2}\right)$	
すみ肉溶接部の有効補強面積	A_{3}	$\left(\mathrm{mm}^{2}\right)$	49.42
強め板の有効補強面積	A_{4}	$\left(\mathrm{mm}^{2}\right)$	
補強に有効な総面積	A 0	$\left(\mathrm{mm}^{2}\right)$	
補強： $\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$ ，よって十分である。			

[^0]
2.7 容器のフランジの計算

設計•建設規格 PVC－3710
（ J I S B 8 265 附属書 3 適用）
（内圧を受けるフランジ）
参照附図 F L A NGE－2 一体形フランジ

3．支持構造物の強度計算書
（1）一次圧縮応力及び一次曲げ応力による組合せ評価

燃料プール冷却浄化系熱交換器 支持構造物の強度計算説明図

[^0]: 枠囲みの内容は商業機密の観点から公開できません。

