本資料のうち，枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号機 工事計画審査資料	
資料番号	02 －補－E－20－0710－1＿改2
提出年月日	2021 年2月 12 日

補足－710－1【竜巻への配慮が必要な施設の強度に関する説明書の補足説明資料】

目 次

I．はどめに

1．強度計算の方針に関する補足説明資料
1．1風力係数について
1.2 強度計算時の施設の代表性について
1.3 構造強度評価における評価対象部位の選定について

2．竜巻より防護すべき施設を内包する施設の強度計算に関する補足説明資料
2.1 設計飛来物の衝突による衝撃荷重の算定について
2.2 鉄筋コンクリートの衝突解析モデルにおける破断限界の設定について
2.3 原子炉建屋屋根スラブ変形評価の許容値の設定について
2.4 原子炉建屋屋根スラブの貫通及び裏面剥離評価について
2.5 鉄筋コンクリート部材の貫通評価及び裏面剥離評価について

3．屋外の重大事故等対処設備の固縛装置の強度計算に関する補足説明資料
3.1 固縛装置の設計における保守性について
3.2 固縛装置の設計における設備の代表性について
3.3 資機材保管用コンテナ及び小型船舶の固縛対応について
3.4 固縛装置の評価対象部位について

4．防護対策施設の強度計算に関する補足説明資料
4． 1 竜巻防護ネットの衝突解析について
4.2 飛来物のオフセット衝突の影響について
4.3 金網の設計裕度の考え方
4.4 ワイヤロープの変形を考慮したネットシステムのたわみについて
4.5 ワイヤロープの初期張力について
4.6 補助金網の影響について

4.7 防護板の貫通評価について

5．排気筒の強度計算に関する補足説明資料
5.1 設計飛来物による構造欠損の想定箇所について
5.2 起因事象を竜巻とした場合の排気筒に求められる機能について
5.3 腐食代の考慮について

6．防護対策施設，復水貯蔵タンク及び排気筒の衝突評価に関する補足説明資料 6.1 衝突解析の解析手法の保守性について
\square ：今回提出範囲

I ．はじめに
1．概要
本補足説明資料は，以下の説明書についての内容を補足するものである。
本補足説明資料と添付書類との関連を表－ 1 に示す。
－VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書
表－1 補足説明資料と添付書類との関連（1／4）

竜巻への配慮が必要な施設の強度に関する説明書の補足説明資料	該当添付書類
1．強度計算の方針に関する補足説明資料 1．1 風力係数について \square	VI－3－別添1－1－2「原子炉補機冷却海水ポンプの強度計算書」 VI－3－別添1－1－3「高圧炉心スプレイ補機冷却海水ポンプの強度計算書」 VI－3－別添 1－1－4「高圧炉心スプレイ補機冷却海水系ストレーナの強度計算書」 VI－3－別添1－1－5「復水貯蔵タンクの強度計算書」 VI－3－別添1－1－6「配管及び弁の強度計算書」 VI－3－別添1－1－10－2「海水ポンプ室門型クレーンの強度計算書」 VI－3－別添1－1－10－3「消音器の強度計算書」 VI－3－別添1－1－10－4「ミスト配管及びベント配管の強度計算書」
1．2 強度計算時の施設の代表性について	VI－3－別添1－1－2「原子炉補機冷却海水ポンプの強度計算書」 VI－3－別添 1－1－4「高圧炉心スプレイ補機冷却海水系ストレーナの強度計算書」 VI－3－別添1－1－6「配管及び弁の強度計算書」 VI－3－別添1－1－9「軽油タンクの強度計算書」 VI－3－別添1－1－10－3「消音器の強度計算書」 VI－3－別添1－1－10－4「ミスト配管及びベント配管の強度計算書」

表－1 補足説明資料と添付書類との関連（2／4）

竜巻への配慮が必要な施設の強度に関する説明書 の補足説明資料	該当添付書類
1．強度計算の方針に関する補足説明資料	
1.3 構造強度評価における評価対象部位の選定について	VI－3－別添1－1－2「原子炉補機泠却海水ポンプの強度計算書」 VI－3－別添1－1－3「高圧炉心スプレイ補機冷却海水ポンプの強度計算書」 VI－3－別添1－1－4「高圧炬心スプレイ補機冷却海水系ストレーナの強度計算書」 VI－3－別添1－1－5「復水貯蔵タンクの強度計算書」 VI－3－別添1－1－6「配管及び弁の強度計算書」 VI－3－別添1－1－7「排気筒の強度計算書」 VI－3－別添1－1－8「換気空調設備の強度計算書」 VI－3－別添 1－1－9「軽油タンクの強度計算書」 VI－3－別添1－1－10－2「海水ポンプ室門型クレーンの強度計算書」 VI－3－別添1－1－10－3「消音器の強度計算書」 VI－3－別添 1－1－10－4「ミスト配管及びベント配管の強度計算書」

表－1 補足説明資料と添付書類との関連（3／4）

竜巻への配慮が必要な施設の強度に関する説明書 の補足説明資料	該当添付書類
2．竜巻より防護すべき施設を内包する施設の強度計算に関する補足説明資料	
2.1 設計飛来物の衝突による衝撃荷重の算定 について	
2.2 鉄筋コンクリートの衝突解析モデルにお ける破断限界の設定について	
2.3 原子炉建屋屋根スラブ変形評価の許容値 の設定について	VI－3－別添 1－1－1「竜巻より防護すべき施設を内包する施設の強度計算書」
2.4 原子炉建屋屋根スラブの貫通及び裏面剥離評価について	
2.5 鉄筋コンクリート部材の貫通評価及び裏面剥離評価について	
3．屋外の重大事故等対処設備の固縛装置の強度計算に関する補足説明資料	
3.1 固縛装置の設計における保守性について	
3.2 固縛装置の設計における設備の代表性に ついて	VI－3－別添1－3「屋外重大事故等対処設備の固縛装置の強度計算の方針」
3.3 資機材保管用コンテナ及び小型船舶の固縛対応について	V－3－別添 1－3
3.4 固縛装置の評価対象部位について	

表－1 補足説明資料と添付書類との関連（4／4）

竜巻への配慮が必要な施設の強度に関する説明書 の補足説明資料	該当添付書類
4．防護対策施設の強度計算に関する補足説明資料	
4.1 竜巻防護ネットの衝突解析について	
4.2 飛来物のオフセット衝突の影響について	
4.3 金網の設計裕度の考え方	
4.4 ワイヤロープの変形を考慮したネットシ ステムのたわみについて	VI－3－別添1－2「防護対策施設の強度計算の方針」 VI－3－別添1－2－1－1「竜巻防護ネットの強度計算書
4.5 ワイヤロープの初期張力について	
4.6 補助金網の影響について	
4.7 防護板の貫通評価について	
5．排気筒の強度計算に関する補足説明資料	
5.1 設計飛来物による構造欠損の想定箇所に	
ついて	
5.2 起因事象を竜巻とした場合の排気筒に求 められる機能について	VI－3－別添 1－1－7「排気筒の強度計算書」
5.3 腐食代の考慮について	
6．防護対策施設，復水貯蔵タンク及び排気筒の衝突解析に関する補足説明資料	
6.1 衝突解析の解析手法の保守性について	VI－3－別添 1－5「復水貯蔵タンクの強度計算書」 VI－3－別添1－7「排気筒の強度計算書」 VI－3－別添1－2－1「防護対策施設の強度計算書」

1．強度計算の方針に関する補足資料

1．1 風力係数について

1．概要

本資料は，添付書類「VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書」の添付書類「VI－3－別添 1－1－2 原子炉補機冷却海水ポンプの強度計算書」，添付書類「VI－3－別添1－1－3高圧炉心スプレイ補機冷却海水ポンプの強度計算書」，添付書類「VI－3－別添 1－1－4 高圧炉心ス プレイ補機冷却海水系ストレーナの強度計算書」，添付書類「VI－3－別添 1－1－5 復水貯蔵タンク の強度計算書」，添付書類「VI－3－別添 1－1－6 配管及び弁の強度計算書」，添付書類「VI－3－別添 1－1－10－2 海水ポンプ室門型クレーンの強度計算書」，添付書類「VI－3－別添1－1－10－3 消音器の強度計算書」及び添付書類「VI－3－別添 1－1－10－4 ミスト配管及びベント配管の強度計算書」に用いられる風力係数Cについて，選定根拠を示すものである。

2．風力係数の選定根拠
風力係数の選定は，評価対象部位の形状から，「建築物荷重指針•同解説（2004）」（日本建築学会）の値を準用する。また，海水ポンプ室門型クレーンにおいては，クレーン構造規格第 9 条（風荷重）に基づき設定する。

表 2－1 部材の風力係数＊

注記＊：「建築物荷重指針•同解説（2004）」より抜粑
（1）原子炉補機冷却海水ポンプ
a．ポンプ部

- 電動機取付ボルト $(\mathrm{C}=2.4)$
- ポンプ取付ボルト $(\mathrm{C}=2.4)$
- 基礎ボルト $(\mathrm{C}=2.4)$

電動機台は円形断面であり $\mathrm{C}=1.2$（表 2－1（1）を適用できるが，電動機フレーム，空気冷却器及び外扇カバーは四角形断面（長方形）を有する形状であることから，四角形断面を有する部材C＝2．4を選定。（表2－1（2））

なお，受圧面積は，電動機フレーム，電動機台，空気冷却器及び外扇カバーに対する各々 の風力係数を考慮した竜巻による水平荷重を包含するような投影面積を設定する。

図 2－1 原子炉補機冷却海水ポンプ受圧面

図 2－2 電動機取付ボルト取付位置

図 2－3 ポンプ取付ボルト取付位置

図 2－4 基礎ボルト取付位置
b．電動機部

- 電動機フレーム（ $\mathrm{C}=2.4$ ）
- 空気冷却器取付ボルト（ $\mathrm{C}=2.4$ ）
- 外扇カバー取付ボルト $(\mathrm{C}=2.4)$

四角形断面（長方形）を有する部材よりCを選定。（表 2－1（2）
なお，受圧面積は，電動機フレーム，空気冷却器，外扇カバーに対する各々の風力係数 を考慮した竜巻による水平荷重を包含するような投影面積を設定する。

図 2－5 電動機フレーム受圧面
－主回路用端子箱取付ボルト $(\mathrm{C}=2.4)$
四角形断面（長方形）を有する部材よりCを選定。（表2－1（2）

図 2－6 主回路用端子箱受圧面
（2）高圧炉心スプレイ補機冷却海水ポンプ
a．ポンプ部

- 電動機取付ボルト（ $\mathrm{C}=1.2$ ）
- ポンプ取付ボルト（ $\mathrm{C}=1.2$ ）
- 基礎ボルト $(\mathrm{C}=1.2)$

円形断面を有する部材であることから，Cを選定。（表 2－1（1）
なお，受圧面積は，電動機フレームに対する各々の風力係数を考慮した竜巻による水平荷重を包含するような投影面積を設定する。

主回路用端子箱

（上面図）

（側面図）

図 2－7 高圧炉心スプレイ補機冷却海水ポンプ受圧面

図2－8 電動機取付ボルト取付位置

図2－9 ポンプ取付ボルト取付位置

図 2－10 基礎ボルト取付位置
b．電動機部
－電動機フレーム（ $\mathrm{C}=1.2$ ）
円形断面を有する部材よりCを選定。（表2－1（1）
なお，受圧面積は，電動機フレーム及び主回路用端子箱に対する各々の風力係数を考慮 した竜巻による水平荷重を包含するような投影面積を設定する。

（上面図）

（側面図）
－－：受圧面積

図 2－11 電動機フレーム受圧面
－主回路用端子箱取付ボルト（ $\mathrm{C}=2.4$ ）
四角形断面（長方形）を有する部材よりCを選定。（表 2－1（2））

図 2－12 主回路用端子箱受圧面
－ファンカバー取付ボルト（ $\mathrm{C}=1.2$ ）
円形断面を有する部材よりCを選定。（表 2－1（1）

（上面図）

（正面図）

図 2－13 ファンカバー受圧面
（3）高圧炉心スプレイ補機冷却海水系ストレーナ
－配管（C＝1．2）
高圧炉心スプレイ補機冷却海水系ストレーナ本体及び接続する配管は円形断面を有する部材よりCを選定。（表2－1 1 1）

なお，受圧面積は，高圧炉心スプレイ補機冷却海水系ストレーナ及び接続する配管に対す る各々の風力係数を考慮した竜巻による水平荷重を包絡するような投影面積を設定する。

（a）上面図

（b）側面図

図 2－14 高圧炉心スプレイ補機冷却海水系ストレーナ受圧面
（4）復水貯蔵タンク
-タンク (C=1.2)

円形断面を有する部材よりCを選定。（表2－1（1）
なお，受圧面積は，復水貯蔵タンク胴板の外径及び屋根板を包絡するような投影面積を設定 する。

図 2－15 復水貯蔵タンク受圧面
（5）配管及び弁

- 原子炉補機冷却海水ポンプ周りの配管（ $\mathrm{C}=1.2$ ）
- 高圧炬ふスプレイ補機冷却海水ポンプ周りの配管（ $\mathrm{C}=1.2$ ）
- 非常用ガス処理系（屋外配管）（ $\mathrm{C}=1.2$ ）

円形断面を有する部材よりCを選定。（表2－1（1）
（6）消音器

- 非常用ディーゼル発電設備排気消音器基礎ボルト
- 高圧炉心スプレイ系ディーゼル発電設備排気消音器基礎ボルト

受圧面積は，胴板及び中間台に対する各々の風力係数を考慮した竜巻による水平荷重を包絡するような投影面積を設定する。
a．軸直角方向から風を受けた場合（ $\mathrm{C}=1.2$ ）
円形断面を有する部材よりCを選定。（表 2－1①）

（正面図）

（側面図）
－－！：受圧面積
図 2－16 非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備排気消音器受圧面（軸直角方向）
b．軸方向から風を受けた場合（ $\mathrm{C}=2.4$ ）
平面として風を受けることから，四角形断面（長方形）を有する部材よりCを選定。 （表2－1（2））

（正面図）

図 2－17 非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備排気消音器受圧面（軸方向）
（7）ミスト配管及びベント配管
－非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備付属ミスト配管 （ $\mathrm{C}=1.2$ ）
－軽油タンクベント配管（ $\mathrm{C}=1.2$ ）
円形断面を有する部材よりCを選定。（表2－1①）
（8）海水ポンプ室門型クレーン
－トロリ $(\mathrm{C}=\square)$

- ガーダ（第 1 面 $\mathrm{C}=\square$ ，第 2 面 $\mathrm{C}=\square$ ）
- 脚部（第 1 面 $\mathrm{C}=\square$ ，第 2 面 $\mathrm{C}=\square$ ）

図 2－18 海水ポンプ室門型クレーン受圧面
1.2 強度計算時の施設の代表性について

1．概要

本資料は，添付書類「VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書」 のうち，添付書類「VI－3－別添 1－1－2 原子炉補機冷却海水ポンプの強度計算書」，添付書類「VI－3－別添 1－1－4 高圧炉心スプレイ補機冷却海水系ストレーナの強度計算書」，添付書類「VI－3－別添 1－1－6 配管及び弁の強度計算書」，添付書類「VI－3－別添1－1－9 軽油タンクの強度計算書」，添付書類「VI－3－別添 1－1－10－3 消音器の強度計算書」，添付書類「VI－3－別添 $1-1-10-4$ ミスト配管及びベント配管の強度計算書」において，同種類の計算対象施設が複数存在する施設に対して，代表となる施設を選定して計算を行う場合の代表性について説明するものである。

2．代表性の説明
2.1 原子炉補機冷却海水ポンプ

原子炉補機冷却海水ポンプは4台設置されており，全てが同一設計となっている。
2.2 高圧炉心スプレイ補機冷却海水系ストレーナ

高圧炉心スプレイ補機冷却海水系ストレーナは2台設置されており，全てが同一設計となっている。

2.3 軽油タンク

軽油タンクは，非常用ディーゼル発電設備軽油タンク A～F及び高圧炉心スプレイ系ディーゼル発電設備軽油タンクが設置されており，非常用ディーゼル発電設備軽油 タンク $\mathrm{A} ~ \mathrm{~F}$ は全てが同一設計となっている。

軽油タンクにおいて，設計竜巻による気圧差荷重は軽油タンクベント配管を介して軽油タンク本体内部に作用する。軽油タンクは軽油タンク室及び軽油タンク室（H）内に設置されており，軽油タンクの外面は設計竜巻による気圧差荷重が作用すること から，タンクの許容外圧の算出式より許容外圧が最も厳しくなる軽油タンクを選定す る。

$$
\mathrm{P}_{\mathrm{a}}=\frac{4 \cdot \mathrm{~B} \cdot \mathrm{t}}{3 \cdot \mathrm{D}_{\mathrm{o}}}
$$

B ：J I S B 8 265 図 E． 10 に規定される値	
P_{a} ：許容外圧	
t ：円筒胴の計算厚さ	

軽油タンクの選定結果を表2－1に示す。

表 2－1 軽油タンク（添付書類「VI－3－別添1－1－9 軽油タンクの強度計算書」） の代表選定結果

系統		円筒胴の外径 （mm）	円筒胴の計算厚さ （mm）	許容外圧 （MPa）	選定
軽油タンク	A系（A，C，E）	3556	28	0． 26	
	B 系（ $\mathrm{B}, ~ \mathrm{D}, \mathrm{F}$ ）	3556	28	0． 26	
	H P C S 系	4056	28	0． 20	\bigcirc

2．4 配管（添付書類「VI－3－別添 1－1－6 配管及び弁の強度計算書」，添付書類「VI－3－別添 1－1－9 軽油タンクの強度計算書」及び添付書類「VI－3－別添 1－1－10－4 ミス ト配管及びベント配管の強度計算書」における配管）

代表の選定方法は，添付書類「VI－3－別添 1－1－6 配管及び弁の強度計算書」，添付書類「VI－3－別添 1－1－9 軽油タンクの強度計算書」及び添付書類「VI－3－別添1－1－10－4

ミスト配管及びベント配管の強度計算書」の「3．5 評価方法」に記載のとおり，評価 に用いる支持間隔について管外径，材料ごとにサポートの支持間隔が最長となる箇所 を選定し代表とする。

以下に，添付書類「VI－3－別添1－1－6 配管及び弁の強度計算書」，添付書類「VI－3－別添1－1－9 軽油タンクの強度計算書」及び添付書類「VI－3－別添1－1－10－4 ミスト配管及びベント配管の強度計算書」における各応力の算出式を示す。

風圧力による荷重及び自重により生じる応力は支持間隔（L）の 2 乗に比例するた め，応力が大きくなる箇所として，管外径，材料ごとにサポートの支持間隔が最長と なる箇所を選定する。
（両端支持形状）

$$
\begin{aligned}
& \sigma_{\mathrm{ww}}=\frac{\mathrm{W}_{\mathrm{w}} \cdot \mathrm{~L}^{2}}{8 \cdot \mathrm{Z}} \\
& \sigma_{\text {自重 }}=\frac{\mathrm{w}^{2} \cdot \mathrm{~L}^{2}}{8 \cdot \mathrm{Z}}
\end{aligned}
$$

（片持ち支持形状）

$$
\begin{aligned}
& \sigma_{\mathrm{ww}}=\frac{\mathrm{W}_{\mathrm{w}} \cdot \mathrm{~L}^{2}}{2 \cdot \mathrm{Z}} \quad \begin{array}{l}
\sigma \mathrm{ww}: \text { 風圧力により生じる応力 } \\
\sigma \text { 自重: 自重により生じる応力 } \\
\mathrm{W}_{\mathrm{w}}: \text { 設計竜巻の単位長さ当たりの風圧力による荷重 } \\
\mathrm{w}: \text { 単位長さ当たりの自重による荷重 } \\
\mathrm{L}: \text { 支持間隔 } \\
\mathrm{Z}: \text { 断面係数 }
\end{array} \\
& \sigma_{\text {自重 }}=\frac{\mathrm{w}^{2} \cdot \mathrm{~L}^{2}}{2 \cdot \mathrm{Z}}
\end{aligned}
$$

配管の代表箇所の選定結果を表2－2～表2－5にそれぞれ示す。

表 2－2 配管（添付書類「VI－3－別添1－1－6 配管及び弁の強度計算書」）の代表選定結果

系統		支持形状	管外径 （mm）	材料	最長支持間隔 （m）	代表箇所
原子炉補機冷却海水ポンプ周り	A系	両端支持	508.0	SM400C	10． 4	
	B 系	両端支持	508.0	SM400C	14． 7	\bigcirc
	A系	両端支持	60.5	STS410	2.0	
	B 系	両端支持	60.5	STS410	3.1	\bigcirc
高圧炉心スプレイ補機冷却海水ポンプ周り		両端支持	216.3	STS410	7.0	\bigcirc
		両端支持	60.5	STS410	2.0	\bigcirc
非常用ガス処理系（屋外配管）		両端支持	318.5	STS410	15.4	\bigcirc

表 2－3 配管（添付書類「VI－3－別添1－1－9 軽油タンクの強度計算書」）の代表選定結果

系統		支持形状	管外径	材料	最長支持間隔	代表箇所
燃料移送 ポンプ室	A系	両端支持	60.5	STPT370	3.2	\bigcirc
		両端支持	76.5	STPT370	0． 492	\bigcirc
	B 系	両端支持	60.5	STPT370	3.2	
		両端支持	76.5	STPT370	0． 492	
	H P C S 系	両端支持	60.5	STPT370	2． 165	
		両端支持	76.5	STPT370	0． 492	

注記 $*: ~$ 最長支持間隔が同一の場合は A 系を代表として選定する

表 2－4 配管（添付書類「VI－3－別添 1－1－10－4 ミスト配管及びベント配管の強度計算書」）
の代表選定結果（ミスト配管）

系統		支持形状	管外径 (mm)	材料	最長支持間隔（m）	代表 箇所
機関ミスト配管	A系	両端支持	114.3	STPT410	2.016	
	B 系		114.3	STPT410	3.296	\bigcirc
	H P C S 系		114.3	STPT410	2． 301	
	A 系	片持ち 支持	216.3	STPT410	0． 422	\bigcirc
	B 系		216.3	STPT410	0． 422	
	H P C S 系		216.3	STPT410	0． 422	
潤滑油サンプタンク ミスト配管及び潤滑油補給タンクミスト配管	A 系	両端支持	76.3	STPT410	1． 978	
	B 系		76.3	STPT410	3． 258	\bigcirc
	H P C S 系		76.3	STPT410	2． 282	
	A系	片持ち 支持	114.3	STPT410	0． 418	\bigcirc
	B 系		114.3	STPT410	0． 418	
	H P C S 系		114.3	STPT410	0． 418	
燃料油ドレンタンク ミスト配管	A 系	両端支持	42.7	STPT410	2.310	\bigcirc
	B 系		42.7	STPT410	2． 245	
	H P C S 系		42.7	STPT410	2． 267	
	A 系	片持ち支持	76.3	STPT410	0． 388	
	B 系		76.3	STPT410	0．388	
	H P C S 系		76.3	STPT410	0.418	\bigcirc
燃料デイタンク ミスト配管	A系	両端支持	60.5	STPT410	2.637	
	B 系		60.5	STPT410	2.683	\bigcirc
	H P C S 系		60.5	STPT410	2.536	
	A系	片持ち支持	89.1	STPT410	1． 222	\bigcirc
	B 系		89.1	STPT410	1． 222	
	H P C S 系		89.1	STPT410	1． 222	

注記 $*: ~$ 最長支持間隔が同一の場合はA系を代表として選定する

表 2－5 配管（添付書類「VI－3－別添 1－1－10－4 ミスト配管及びベント配管の強度計算書」） の代表選定結果（ベント配管）

系統		支持形状	管外径 （mm）	材料	最長支持間隔 （m）	代表 箇所
軽油タンクベント配管	A 系	片持ち 支持	114.3	STPT370	1． 127	\bigcirc
	B 系		114.3	STPT370	1． 127	
	H P C S 系		114.3	STPT370	1． 127	
	A系	両端	114.3	STPT370	3． 160	\bigcirc
	B 系		114.3	STPT370	3． 160	
	H P C S 系		114.3	STPT370	2． 500	

注記 $*$ ：最長支持間隔が同一の場合は A 系を代表として選定する

2． 5 消音器

非常用ディーゼル発電設備排気消音器が 2 台，高圧炉心スプレイ系ディーゼル発電設備排気消音器が 1 台設置されている。非常用ディーゼル発電設備排気消音器の 2 台 は同一設計となっている。
1.3 構造強度評価における評価対象部位の選定について

1．概要
機器の構造強度評価における評価対象部位の選定について説明する。

2．評価対象部位の選定について
構造強度評価における評価対象部位の選定については，屋外の機器は（1），屋内の機器は（2）の選定 を基本とし，その他は機器形状等に応じて選定している。

①設計竜巻荷重により，荷重作用点から離れており，大きなモーメントを受ける部位（基礎 ボルト等）
（2）気圧差により荷重を受ける主要部位
（3）規格式により，対象が定められている部位
（4）その他

表 1－1 に構造強度評価対象選定一覧を示す。
表 1－1 構造強度評価対象選定一覧（1／5）

計算書名	施設名称	評価対象部位	応力の種類	選定理由	（1）＊	（2）＊	（3）＊	（4）＊	備考
VI－3－別添 1－1－2	原子炉補機冷却海水	- 電動機取付ボルト - ポンプ取付ボルト - 基礎ボルト - 主回路用端子箱取付ボルト －空気泠却器取付ボ ルト －外扇カバー取付ボ ルト	引張 せん断 組合せ	ポンプ部について，電機部等に作用する設計竜巻による荷重は，電動機フレーム及び電動機台に作用し，電動機台を介して，基礎面及び電動機部を固定しているボルトに作用する。荷重を受ける各部位のう ち，支持断面積の小さな部位に大きな応力が生じることになる。 このことから，以下の部位を構造強度評価の評価対象部位として選定 する。 - 電動機取付ボルト - ポンプ取付ボルト - 基礎ボルト	\bigcirc	－	－	－	
ポンプの強度計算書	ポンプ	電動幾フレーム	曲げ	電動機部について，電動機部等に作用する設計竜巻による荷重は，電動機フレーム及び付属品に作用し，電動機フレーム及び付属品を介し て，付属品の取付部を固定するボルトに作用する。 このことから，以下の部位を構造強度評価の評価対象部位として選定 する。 - 主回路用端子箱取付ボルト - 空気冷却器取付ボルト - 外扇カバー取付ボルト - 電動機フレーム	－	－	－	\bigcirc	設計竜巻による風荷重に対し，ポンプ の主要部材である電動機について，曲 げ応力に対する健全性を碓認

注記 $*: ~$（1）設計童巻荷重により，荷重作用点から離れており，大きなモーメントを受ける部位（基礎ボルト等）
（2）気差により荷重を受ける主要部位
（3）規格式により，対象が定められている部位
（4）その他

表 1－1 構造強度評価対象選定一覧（2／5）

計算書名	施設名称	評価対象部位	応力の種類	選定理由	（1）＊	（2）＊	（3）＊	（4）＊	備考
		- 電動機取付ボルト - ポンプ取付ボルト - 基礎ボルト - 主回路用端子箱取付ボルト -ファンカバー取付 ボルト	引張 せん断 組合せ	ポンプ部について，電機部等に作用する設計竜巻による荷重は，電動機フレーム及び電動機台に作用し，電動機台を介して，基礎面及び電動機部を固定しているボルトに作用する。荷重を受ける各部位のう ち，支持断面積の小さな部位に大きな応力が生じることになる。 このことから，以下の部位を構造強度評価の評価対象部位として選定 する。 －電動機取付ボルト	\bigcirc	－	－	－	
高圧炉心スプレイ補機冷却海水ポンプの強度計算書	高圧炉心スプレイ補機冷却海水ポンプ	電動機フレーム	曲げ	- ポンプ取付ボルト - 基礎ボルト 電動機部について，電動機部等に作用する設計竜巻による荷重は，電動機フレーム及び付属品に作用し，電動機フレーム及び付属品を介し て，付属品の取付部を固定するボルトに作用する。 このことから，以下の部位を構造強度評価の評価対象部位として選定 する。 - 主回路用端子箱取付ボルト - ファンカバー取付ボルト - 電動機フレーム	－	－	－	\bigcirc	設計竜巻による風荷重に対し，ポンプ の主要部材である電動機について，曲 げ応力に対する健全性を確認
VI－3－別添 1－1－4高圧炉心スプレイ補機冷却海水系ストレ ーナの強度計算書	高圧炉心スプレイ補機冷却海水系ストレ ーナ	配管	$\begin{aligned} & \text { 一次 (膜 + 曲 } \\ & \text { げ) } \end{aligned}$	設計竜巻による荷重は，高圧炉心スプレイ補機冷却海水系ストレーナ及び接続する配管に作用する。発生する応力は，ストレーナの胴板と比較し断面積が小さい配管の方が大きくなる。このことから，配管を評価対象部位として選定する。	－	－	－	\bigcirc	

$$
\begin{aligned}
& \text { (3)規格式により, 対象が定められている部位 } \\
& \text { (4)その他 }
\end{aligned}
$$

表 1－1 構造強度評価対象選定一覧（3／5）

計算書名	施設名称	評価対象部位	応力の種類	選定理由	（1）＊	（2）＊	（3）＊	（4）＊	備考
VI－3－別添 1－1－5 復水貯蔵タンクの強度計算書	復水貯蔵タンク	胴板	$\begin{array}{\|l} \hline \text { 一次一般膜 } \\ \text { 組合せ } \\ \text { 座屈 } \\ \hline \end{array}$	設計竜巻の風圧力による荷重及ひ設計飛来物による衝撃荷重は，胴板 に作用し胴板を介して基礎ボルトに作用する。このことから，胴板及 び基礎ボルトを評価対象部位とする。	－	－	\bigcirc	－	
		基礎ボルト	引張 せん断 組合せ		\bigcirc	－	－	－	
VI－3－別添1－1－6 配管及び弁の強度計算書	－原子炬補機冷却海水 ポンプ周りの配管及び弁 －高圧炬心スプレイ補機泠却海水ポンプ周りの配管及び弁 －非常用ガス処理系 （屋外配管）	配管	$\begin{aligned} & \text { 一次 (膜 + 曲 } \\ & \text { げ) } \end{aligned}$	設計竜巻による荷重は，配管本体に作用する。なお，弁を設置してい る箇所においては，弁の断面係数は配管に比べ大きく，配管の評価に包絡されるため配管の評価のみを実施する。サポート（配管支持構造物）については，建屋内外にかかわらず地震に対して耐荷重設計がな されており，配管本体に竜巻による荷重が作用した場合でも，作用荷重は耐荷重以下であるため，竜巻による荷重に対するサポートの設計 は耐震設計に包絡される。 このことから，配管本体を評価対象部位として選定する。	－	－	－	\bigcirc	
VI－3－別添 1－1－7排気筒の強度計算書	排気筒	- 筒身 - 鉄塔	組合せ（圧縮＋曲げ） せん断	排気筒の応力解析による評価対象部位は，設計竜巻による荷重を受け る排気筒の筒身，鉄塔部（主柱材，斜材，水平材）及び脚部を評価対象部位とする。	\bigcirc	－	－	－	

注記＊：（1）設計竜巻荷重により，荷重作用点から離れており，大きなモーメントを受ける部位（基礎ボルト等） （2）気圧差により荷重を受ける主要部位
（3）規格式により，対象が定められている部位
\qquad
表 1－1 構造強度評価対象選定一覧（4／5）

計算書名	施設名称	評価対象部位	応力の種類	選定理由	（1）＊	（2）＊	（3）＊	（4）＊	備考
VI－3－別添 1－1－8 換気空調設備の強度計算書	角ダクト及び丸ダク卜（中央制御室換気空調系，計測制御電源室換気空調系及び原子炉補機室換気空調系）	ダクト鋼板（本体）	曲げ 座屈	設計竜巻の気圧差による荷重は，ダクト本体に作用する。このことか ら，ダクト鋼板（本体）を評価対象部位として選定する。	－	\bigcirc	－	－	
	ダンパ（中央制御室換気空調系，計測制御電源室換気空調系及び原子炉補機室換気空調系）	－ケーシング －ベーン －シャフト	曲げ せん断	設計竜巻の気圧差による荷重は，ケーシング及びベーンに作用し，心゙ ーンを介してシャフトに作用する。このことから，ケーシング，ベー ン及びシャフトを評価対象部位として選定する。	－	\bigcirc	－	－	
	隔離弁（中央制御室換気空調系隔離弁及び原子炉棟給排気隔離弁（原子炉建屋原子炉棟換気空調系））	- 弁箱 - 弁体 - 弁棒	周方向応力 曲げ せん断	設計竜巻の気圧差による荷重は，隔離弁本体の耐圧部に作用する。こ のことから，耐圧部である弁箱，弁体及び开棒を評価対象部位として選定する。	－	\bigcirc	－	－	
	ファン（中央制御室換気空調系，計測制御電源室換気空調系及び原子炉補機室換気空調系）	ケーシング	周方向応力	設計竜巻の気圧差による荷重は，ファンのケーシングに作用する。こ のことから，ケーシングを評価対象部位として設定する。	－	\bigcirc	－	－	
VI－3－別添1－1－9軽油タンクの強度計算書	軽油タンク	タンク（胴板）	外圧	設計竜巻による気圧差荷重は軽油タンクベント配管を介して軽油タ ンク本体に作用する。タンクの許容外圧については，鏡板と比較して胴板が小さいことから，胴板を評価対象部位として選定する。	－	\bigcirc	－	－	
	燃料移送ポンプ及び配管	配管	$\begin{aligned} & \text { 一次 (膜 + 曲 } \\ & \text { げ) } \end{aligned}$	設計竜巻による気圧差荷重は，燃料移送ポンプのケーシング及び接続 する配管に作用する。発生する応力については，ポンプケーシング と比較して断面積が小さく発生応力が大きくなる配管を評価対象部位として選定する。	－	\bigcirc	－	－	

[^0]
表 1－1 構造強度評価対象選定一覧（5／5）

計算書名	施設名称	評価対象部位	応力の種類	選定理由	（1）＊	（2）	（3）＊	（4）＊	備考
VI－3－別添 1－1－10－2海水ポンプ室門型ク	海水ポンプ室門型ク	エンドストッパ	引張 せん断 曲げ 組合せ	設計竜巻による荷重は，海水ポンプ室門型クレーン本体に作用し，ピ ンを介してエンドストッパ及びエンドストッパを支持する基礎ボル トに作用する。海水ポンプ室門型クレーンの転倒により，原子炉補機泠却海水ポンプ等への波及的影響を考慮し，転倒を防止する各部位の	\bigcirc	－	－	－	
レーンの強度計算書		基整ボルト	引張 せん断 組合せ	らち，支持断面積の小さな部位に大きな応力が生じることから，エン ドストッパ及び基礎ボルトを評価対象部位として選定する。	\bigcirc	－	－	－	
VI－3－別添 1－1－10－3消音器の強度計算書	非常用ディーゼル発電設備（高圧炉心スプ レイ系ディーゼル発電設備を含む。）排気消音器	基䊙ボルト	引張 せん断 組合せ	設計竜巻による荷重は，非常用ディーゼル発電設備（高圧炬心スプレ イ系ディーゼル発電設備を含む。）排気消音器本体に作用し中間台を介して基礎ボルトに作用する。排気消音器の転倒により，非常用ディ ーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機の排気機能 に影響を与える波及的影響を考慮し，転倒を防止するための主要な支持部材のらち，荷重作用点から離れていることから転倒モーメントが大きく作用し，発生する応力が厳しくなる基礎ボルトを評価対象部位 として設定する。	\bigcirc	－	－	－	
VI－3－別添 1－1－10－4 ミスト配管及びベン ト配管の強度計算書	－非常用ディーゼル発電設備（高圧炉心ス プレイ系ディーゼ ル発電設備を含 む。）付属ミスト配管 －軽油タンクベント配管	配管	$\begin{aligned} & \text { 一次 (膜 + 曲 } \\ & \text { げ) } \end{aligned}$	設計竜巻による荷重は，配管本体及びサポート（配管支持構造物）に作用する。サポート（配管支持構造物）については，建屋内外にかか わらず地震に対して耐荷重設計がなされており，配管本体に竜巻によ る荷重が作用した場合でも，作用荷重は耐荷重以下であるため，竜巻 による荷重に対するサポート（配管支持構造物）の設計は耐震設計に包絡される。このことから，配管を評価対象部位として選定する。	－	－	－	\bigcirc	

[^1] （3）規格式により，対象が定められている部位
（4）その他

4．防護対策施設の強度計算に関する補足説明資料
4.1 竜巻防護ネットの衝突解析について

1．はじめに
竜巻防護ネットはネット，防護板及び支持部材で構成され，各構成要素の設計方針及 び評価方針について「VI－3－別添1－2 防護対策施設の強度計算の方針」に示している。 このうち，支持部材については，フレーム，大梁，ゴム支承，可動支承等により構成さ れており，フレームや大梁等の支持部材の主要部材は，認可実績プラントの竜巻防護対策施設における架構等と同様に鋼製であるが，フレームを支持する部材の一部材料にゴ ム（ゴム支承）を採用している点で，認可実績プラントの竜巻防護対策施設と異なる設計•構造を採用している。

ゴム支承を採用した目的は，ゴム支承のアイソレート機能により竜巻防護ネットの固有値をやや長周期化することにより，地震時の海水ポンプ室への反力を低減することで ある。一方，竜巻防護ネットの強度計算に関して，設計飛来物である鋼製材の衝突解析 においても，飛来物衝突時のゴム支承の影響について適切に考慮する必要がある。
竜巻防護ネットの構成要素のらち，支持部材の強度評価フロー図を図1－1 に示す。
本資料は，竜巻防護ネットの構造強度評価（衝突解析）の評価方針について，解析モ デルの設定の考え方及び評価に資するゴム支承の鉛直剛性に係る特性試験で得られた知見を踏まえた方針の妥当性について説明し，構造成立性の見通しについて示すものであ る。

図 1－1 支持部材の強度評価フロー図

2．構造概要

竜巻防護ネット全体及び各構成要素の構造概要について以下に示す。
（1）竜巻防護ネット全体
竜巻防護ネットは，ネット，防護板及び支持部材で構成し，海水ポンプ室補機ポン プエリア上面に設置することで，飛来物が外部事象防護対象施設へ衝突することを防止し，外部事象防護対象施設とネットの離隔を確保することなどにより，ネットにた わみが生じたとしても，外部事象防護対象施設に飛来物を衝突させない構造とする。 また，竜巻防護ネットは，海水ポンプ室躯体に支持される構造とする。

ネットは金網，ワイヤロープ及び接続治具（支持部及び固定部）により構成され， ネットに作用する荷重をワイヤロープ及び接続冶具を介してフレームに伝達し，フレ ームから海水ポンプ室躯体に伝達する構造とする。

金網は，らせん状の硬鋼線を 3 次元的に編み込み，編み込みの方向によって荷重を受け持つ展開方向と展開直角方向の異方性を持ち，支持部材の配置，金網に作用する荷重，金網の有する限界吸収エネルギ及び飛来物衝突時のたわみ量を考慮し，金網の展開方向と展開直角方向の長さの比を考慮して，フレーム内に複数枚を重ねて設置す る構造とする。また，金網に飛来物が衝突した際，ワイヤロープに瞬間的な大荷重が作用するのを防ぐため，金網の外側の四隅には緩衝材を設置する構造とする。接続冶具（支持部）はターンバックル及びシャックルにより構成され，ワイヤロープを支持 する構造とする。接続冶具（固定部）は緩衝材の隅角部固定ボルト及び取付プレート により構成され，ワイヤロープを支持部材のフレームに固定する構造とする。

防護板は，鋼板により構成され，防護板に作用する荷重は支持部材に伝達する構造 とする。

ネット及び防護板の支持部材は，フレーム，大梁，可動支承，ゴム支承により構成 され，上載するネット及び防護板を支持する構造とし，支持部材に作用する荷重は，基礎ボルトを介して，海水ポンプ室躯体に伝達する構造とする。また，外部事象防護対象施設に波及的影響を与えないために，支持部材を構成する部材自体の転倒及び脱落を生じない構造とする。竜巻防護ネットの構造計画を表2－1に示す。また，竜巻防護ネットの概要図を図2－1 に，配置図を図2－2にそれぞれ示す。竜巻防護ネットの西側には原子炉建屋が，北側には防潮壁が，東側には防潮堤がそれぞれ配置されている。

表 2－1 竜巻防護ネットの構造計画（ $1 / 3$ ）

構成	計画の概要		説明図
要素	主体構造	支持構造	
ネット，防護板及び支持部材は，飛来物が侵入した場合に，外部事象防護対象施設に衝突する可能性のある海水ポンプ室補機ポンプエリア上面に設置する設計としている。			
ネット	ネットは，金網，ワイヤロ ープ及び接続治具により構成する。	ネットに作用す る荷重は，ワイ ヤロープ及び接続治具を介して支持部材に伝達	
防護板	防護板は鋼製 の鋼板により構成する。	し，支持部材か ら鉄筋コンクリ ート造の海水ポ ンプ室躯体に伝達する構造とす る。 また，防護板に作用する荷重	（平面図）
支持 部材	支持部材は， フレーム，大梁，ゴム支承，可動支承によ り構成する。	は，支持部材に伝達し，支持部材から海水ポン プ室躯体に伝達 する構造とす る。	

表 2－1 竜巻防護ネットの構造計画（2／3）

表 2－1 竜巻防護ネットの構造計画（3／3）

海水ポンプ室

竜巻防護ネット取付け状態

図 2－1 竜巻防護ネットの概要図

原子炉
建屋

図2－2 竜巻防護ネットの配置図（平面図•俯瞰図）
（2）ネットの構造概要
飛来物が衝突した際に局部的に生じる衝撃荷重に耐え，変形することにより飛来物 の持つ運動エネルギを吸収し，外部事象防護対象施設への衝突を防止する設計とする。 ネットは，金網，ワイヤロープ及び接続冶具により構成され，金網の 4 辺をワイヤロ ープにより支持し，ワイヤロープはフレームに設置した接続治具にて支持する構造と する。ワイヤロープの端部はターンバックル又はシヤックルを設置し，ターンバック ル又はシャックルをフレームに設置した取付プレートに接続する構造とする。ネット の概要図を図 $2-3$ に示す。

金網は， 50 mm 目合いの主金網 2 枚及び 40 mm 目合いの補助金網 1 枚で構成する。
金網は，電力中央研究所報告書「竜巻飛来物に対する防護ネットの評価手法と対策工法の提案」（研究報告：N13014）及び電力中央研究所報告書「高強度金網を用いた竜巻飛来物対策工の合理的な衝撃応答評価手法」（総合報告：O 01）（以下「電中研報告書」という。）にて適用性が確認されている評価式及び金網の物性値を用いた設計とす る。ネットを構成する金網，ワイヤロープ及び接続冶具についての構造設計を以下に示す。
a．金網
金網は，らせん状の硬鋼線を山形に折り曲げて列線とし， 3 次元的に交差させて編 み込んだものであり，編み込みの向きにより，展開方向とその直角方向の異方性を有 する。展開方向が主に荷重を受け持ち，展開方向と展開直角方向で剛性や伸び量が異 なるため，これらの異方性を考慮した設計とする。金網は，電中研報告書において， その剛性，最大たわみ時のたわみ角， 1 目合いの破断変位等が確認されている。

金網の寸法は，フレームの主桁及び横補強材の間隔並びに金網の展開方向と展開直角方向の剛性や伸び量の異方性を考慮して，展開方向と展開直角方向の寸法の比（以下「アスペクト比」という。）について，原則として電中研報告書にて適用性が確認さ れている範囲（ $1: 1 \sim 2: 1$ ）に入るように設計する。ただし，設定する寸法での限界吸収エネルギ量等を踏まえ，設置する金網の枚数を増やし，衝撃荷重に対する耐力を持 たせるととともにたわみ量を低減させる設計とする。
b．ワイヤロープ
ワイヤロープの取付部は，展開方向のワイヤロープと展開直角方向のワイヤロープ で荷重の伝達分布が異なり，さらにワイヤロープの巻き方によりワイヤロープ間の荷重伝達に影響を及ぼす可能性があるため，金網に対して 2 本を L 字に設置することに より，ワイヤロープに作用する荷重が均一となるような設計とする。
c．接続治具（支持部及び固定部）
電中研報告書の評価式を適用するため，衝突試験における試験体と同じ構造を採用 しており，飛来物衝突時に急激な大荷重が作用するのを抑制するために，緩衝材を四隅に設置する設計とする。

接続治具は，金網への飛来物の衝突により金網からワイヤロープを介して直接作用 する荷重若しくは発生する応力に対して，破断することのない強度を有する設計とす る。接続治具（支持部）はワイヤロープを支持するターンバックル及びシャックルで あり，接続治具（固定部）は隅角部固定ボルト及びターンバックル又はシャックルを フレームに接続する取付プレートである。

図 2－3 ネットのフレーム取り付け概要図
（3）防護板の構造概要
竜巻防護ネットを構成する防護板は，地震時に発生する変位を踏まえて確保してい るフレーム間のクリアランス並びにフレーム及び海水ポンプ室補機ポンプエリア側壁間のクリアランスから設計飛来物である鋼製材が海水ポンプ室補機ポンプエリア内に侵入しない構造とし，飛来物による衝突に対し，貫通しない部材厚さを確保する設計 とする。防護板の配置概要図を図2－4に示す。

図 2－4 防護板の配置概要図

フレーム及び大梁の構造概要
竜巻防護ネットの支持部材は，フレーム，大梁，可動支承，ゴム支承等により構成 する。このうち，フレームは主桁，横補強材，ブレース等により構成し，上載するネ ット及び防護板を支持する構造とする。また，大梁は海水ポンプ室補機ポンプエリア の南側隔壁上に設置し，海水ポンプ室補機ポンプエリアの北側隔壁と大梁にて，フレ ームを支持する構造とする。フレーム及び大梁は，設計竜巻の風圧力による荷重，飛来物による衝撃荷重及びその他考慮すべき荷重に対し，飛来物が外部事象防護対象施設に衝突することを防止し，また，上載するネット及び防護板の自重並びにネット，防護板及び支持部材への飛来物の衝突時の荷重に対し，これらを支持する構造強度を有する設計とする。

また，ゴム支承及び可動支承に支持されているフレーム並びにゴム支承に支持され ている大梁は，地震力等によって水平方向の変位が生じることから，他の設備との干渉について考慮する必要がある。そのため，フレーム間及びフレームや大梁と海水ポ ンプ室補機ポンプエリア壁面との間に地震時に発生する変位を踏まえてクリアランス を確保する設計とする。

なお，フレームにはストッパーを取り付け，フレームを支持するゴム支承に期待し ない場合でも，フレームの水平方向移動を拘束し，竜巻防護ネットが落下せず，外部事象防護対象施設に波及的影響を与えない構造とする。フレーム及び大梁の配置概要図を図2－5に示す。

図2－5 フレーム及び大梁の配置概要図
（5）ゴム支承及び可動支承の構造概要
支持部材のらちゴム支承及び可動支承については，地震によるフレーム及び大梁の発生応力並びに海水ポンプ室補機ポンプエリア壁面への支点反力を低減•分散させる ことを目的として設置する。支持部材に作用する荷重は，基礎ボルトを介して，海水 ポンプ室躯体に伝達する構造とする。

ゴム支承はフレームと北側隔壁の接続部及び大梁と南側隔壁の接続部に設置する。 フレームと北側隔壁の接続部には，フレーム 1 基に対して，北側隔壁の天面に 2 個の ゴム支承を取り付け，フレームを支持する構造とする。大梁と南側隔壁の接続部は，片側 1 箇所あたり 2 個のゴム支承を取り付けることで，ゴム支承によりフレーム及び大梁を支持する構造とする。

可動支承は大梁とフレームの接続部に設置する。可動支承は南北方向の水平変位に追従し，フレーム 1 基に対して， 2 個の可動支承を取り付けることで，温度変化によ るフレームの伸縮を吸収し，変形による荷重発生を防ぐ構造とする。

ゴム支承及び可動支承は，設計竜巻の風圧力による荷重，飛来物による衝撃荷重及 びその他考慮すべき荷重に対し，上載するネット及び防護板の自重並びにネット，防護板及び支持部材への飛来物の衝突時の荷重に対し，これらを支持する構造強度を有 する設計とする。竜巻防護ネットの支持構造模式図を図 2－6に示す。

また，竜巻防護ネットに使用するゴム支承は道路橋用ゴム支承であり，地震時水平力分散型ゴム支承に分類される。ゴム支承は，「道路橋示方書•同解説 V 耐震設計編 （平成 14 年 3 月）」（以下「道路橋示方書」という。）に従い，「道路橋支承便覧（平成 16年4月）」（以下「道路橋支承便覧」という。）に則り，設計•製作するものであり， ゴム支承の特性，評価式及び許容値は同規格•基準に従う。ゴム支承の構造図を図2－ 7 に，可動支承の構造図を図2－8に示す。

図 2－6 竜巻防護ネットの支持構造模式図

図2－7 ゴム支承の構造図

図2－8 可動支承の構造図

枠囲みの内容は商業機密の観点から公開できません。

3．設置許可段階における主な説明事項
（1）構造概要
竜巻防護ネットの構造概要について，設置許可段階では以下のとおり説明している。
竜巻防護ネットは海水ポンプ室補機ポンプエリア開口部に対し，フレームに取 り付けたネット（金網）を配置することで，飛来物の侵入を阻止し，非常用海水ポンプ等を防護する構造とする。
海水ポンプ室補機ポンプエリアの隔壁（南側）は壁厚が薄くフレームを支持で きないため，フレーム支持用の大梁を設置し，この大梁と隔壁（北側）天面に てネット及び防護板を取り付けたフレームを支持する。

大梁とフレームとの接続部には可動支承を設置し，ブラケットと大梁の接続部及び隔壁（北側）とフレームとの接続部にはゴム支承を設置する。 ゴム支承は，地震により生ずる応力及び反力を低減•分散させることを目的と しており，水平方向の固有周期を長周期側に移動させ応答を下げるとともに，壁面へ伝達させる荷重を分散させる効果を期待する。なお，フレームゴム支承 は， 2 つのうち 1 つ以上の支承が構造強度上の評価方針を満足する設計とする。可動支承は，温度変化によるフレームの伸縮を吸収し，変形による荷重発生を防ぐため，水平変位に追従する機能を有する。
・また，フレームにはストッパーを取り付けており，フレームを支持するゴム支承に期待しない場合でも，竜巻防護ネットが落下せず，非常用海水ポンプ等に波及的影響を与えない設計とする。
（2）竜巻防護ネットの各部位の設計方針
竜巻防護ネット各部位に対する設計方針については，表3－1 のとおり説明している。 また，別紙1に示すとおり，先行プラントとの設計方針についても比較し，支持構造 に相違はあるが，「竜巻に対する設計の基本方針」，「竜巻防護ネットの設計方針」，「支持部材の設計方針」及び「評価項目」に対して，先行プラントとの相違はないことを確認している。

表 3－1 竜巻防護ネット各部位に対する設計方針＊

	部位の名称	設計方針	評価項目	
ネット （金網部）		ネットは，設計竜巻の風圧力による荷重，飛来物によ る衝撃荷重及びその他の荷重に対し，飛来物が非常用海水ポンプ等へ衝突することを防止するために，主要な部材が破断せず，たわみが生じても，非常用海水ポンプ等の機能喪失に至る可能性がある飛来物が非常用海水ポンプ等と衝突しないよう捕捉できる設計とする。	吸収エネル ギ評価	
		破断評価		
		たわみ評価		
防護板			防護板は，設計竜巻の風圧力による荷重，飛来物によ る衝撃荷重及びその他の荷重に対し，飛来物が非常用海水ポンプ等へ衝突することを防止するために，飛来物が防護板を貫通せず，非常用海水ポンプ等に波及的影響を与えない設計とする。	貫通評価
支 持 部 材			支持部材は設計竜巻の風圧力による荷重，飛来物に よる衝撃荷重及びその他の荷重に対し，飛来物が非常用海水ポンプ等へ衝突することを防止するため に，飛来物が支持部材を構成する主要な構造部材を貫通せず，上載するネット及び防護板を支持する機能を維持可能な構造強度を有し，非常用海水ポンプ等に波及的影響を与えないために，支持部材を構成 する部材自体の転倒及び脱落を生じない設計とす る。	貫通評価
	大梁	支持機能評価		
	ブラケット			
	$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$			
	大梁ゴム 支承			
	可動支承			
	ストッパー			

注記＊：本表はEPまとめ資料 6 条（竜巻）－別添1－添付 3．7－10 表6抜粋
（3）衝撃荷重に対するゴム支承•可動支承の影響
設置許可段階では，構造成立性の見通しを確認するため，竜巻防護ネットを構成す る支持部材に対し，代表的な飛来物衝突の解析評価を以下の 2 ステップで実施した。各ステップの評価フロー図を図 3－1 に示す。

【STEP1】

ゴム支承に支持されるフレームに飛来物が衝突した際の挙動を確認するため，ゴ ム支承の剛性を考慮した衝突解析を実施した。衝突解析は，フレームゴム支承によ る影響が最も大きくなると想定される条件（飛来物姿勢，衝突位置，飛来方向）で

実施し，ゴム支承の影響を考慮した場合において，フレームゴム支承，可動支承が フレームを支持する機能を維持可能な構造強度を有することを確認した。

【STEP2】

衝突時の竜巻防護ネットを構成する支持部材の構造成立性を確認するため，以下 の評価を実施した。

STEP2－1：竜巻防護ネットを構成する支持部材（ストッパーを除く）とゴム剛性の結合条件を 3 方向固定（衝撃荷重のピーク値が大きくなると推測される条件）にて衝突解析を行い，構造成立性の確認を行った。

STEP2－2：STEP2－1 はフレームゴム支承に対し非常に厳しい条件であるため，STEP2－ 1 の条件で評価を実施した結果，許容値を満足しない場合には，詳細評価 としてゴム支承の実剛性を考慮した解析条件にて評価を実施した。

STEP2－3：STEP2－2 のフレームゴム支承の評価結果を踏まえて，ストッパーの評価を実施した。ストッパーの評価はゴム剛性の結合条件を自由（ゴム支承によ る荷重の負担は期待せずストッパーに全ての荷重を伝達する条件）とし て衝突解析を行い，構造成立性の確認を行った。
＊1：耐震評価で用いるせん断剛性
＊2：LS－DYNAによる衝突解析により支承部のビーク反力を算出し評価を実施

図 3－1 各ステップの評価フロー図＊
（注記＊：本図はEPまとめ資料 6 条（竜巻）一別添1－添付3．7－28 図14抜粋）

また，衝突解析における耐震評価時に用いるせん断剛性の適用性（別紙 2 参照）や，構造成立性の見通し（別紙 3 参照）を踏まえ，詳細設計段階における設計方針（説明事項）について，設置許可段階で以下のとおり整理している（別紙 4 参照）。

①詳細設計段階では現実に即した解析モデルとして，ゴム支承の特性を考慮し た解析モデルを適用し，評価を実施する方針とする。
（2）設置許可段階での構造成立性の見通し時に用いた評価フローを組み替え，詳細設計段階の評価フローを設定する。

③可動支承について，設置許可段階における構造成立性の見通し確認において，可動支承近傍へ飛来物が衝突した場合，許容値を超える結果となったため，詳細設計段階では，可動支承のサイズアップやボルトの仕様変更等の対応を行うことで，許容値を満足させる方針とする。
（4）基本ケースによる各部材の設計を実施した後に，不確かさケースの確認とし て，ゴム支承の剛性のばらつきを考慮した解析モデルの設定，衝突姿勢の影響を考慮した衝突解析（飛来物の長辺衝突）を実施し，評価を実施する方針 とする。

評価フロー（不確かさケース）

図 3－2 詳細設計段階における評価フロー＊

4．詳細設計段階における設計方針
（1）詳細設計段階における検討の経緯及び概要
「3．設置許可段階における主な説明事項」及び海水ポンプ室の耐震補強計画を踏 まえ，竜巻防護ネットの詳細設計を実施している。検討の経緯及び概要について以下 に示す。

海水ポンプ室の詳細設計における構造を，竜巻防護ネットの設計を反映した。具体的には，東西側壁上部への補強梁設置に伴い，海水ポンプ室東西方向開口幅が狭くなったことから，フレーム幅及びフレーム基数の見直しを実施するこ ととした。また，南側隔壁補強を踏まえ，既設東西側壁にブラケットを設置し大梁を支持するとしていた構造から，補強する南側隔壁にて大梁を支持する構造とした。

設置許可段階では保守的にゴム支承の拘束条件を 3 方向固定として支持部材の構造成立性を確認していたが，詳細設計段階では，ゴム支承剛性に係る特性試験を実施した上で，ゴム支承の拘束条件を 3 方向弾性とし，試験を踏まえた剛性のばらつきを不確かさケースとして影響確認することとした。このとき，竜巻防護ネットの機能維持の考え方として，設置許可段階では 2 つのフレームゴ ム支承のうち 1 つ以上の支承が構造強度上の評価方針を満足することを確認す るとしていたが，詳細設計段階においては，いずれのゴム支承も許容値を超え ず構造強度上の評価方針を満足させる方針とした。
＞可動支承についても，詳細設計段階においてはサイズアップやボルトの仕様変更等の対応を行い，許容値を満足させる方針とした。
＞いずれの支承部も許容値を満足させる方針としたことに伴い，構造強度評価に おいて，ストッパーに対して竜巻防護ネットの支持機能を期待しない方針とし た。
飛来物の衝突姿勢（長辺衝突）による影響について，不確かさケースとして確認する方針とした。
（2）竜巻防護ネットの構造について
（1）を踏まえた，設置許可段階における構造概要との比較を図 4－1 及び表 4－1 にそ れぞれ示す。また，表 4－1を踏まえ詳細設計を反映した仕様比較について表 4－2 に示 す。なお，これらの構造変更によって，設置許可段階で説明している竜巻防護ネット の設計方針を変更するものではない。

図 4－1 竜巻防護ネット構造概要比較

表 4－1 竜巻防護ネットの構造比較

	設置許可段階	詳細設計段階	備考
a．フレーム 基数変更	$\begin{aligned} & \text { フレーム基数 } \\ & : 5 \text { 基 } \end{aligned}$	$\begin{aligned} & \text { フレーム基数 } \\ & : 4 \text { 基 } \end{aligned}$	東西側壁補強に伴い東西方向開口幅が狭 くなったことを詳細設計に反映（フレー ム幅を調整）した。
b．大梁の支持位置の変更	既設東西隔壁に ブラケットを設置し大梁を支持	海水ポンプ室補強計画に合わせ，補強する南側隔壁にて大梁を支持	東西側壁補強に伴い東西方向開口幅が狭 くなったこと及び南側隔壁の補強計画を踏まえ，既設東西側壁にブラケットを設置し大梁を支持するとしていた構造か ら，補強する南側隔壁にて大梁を支持す る構造とした。

表 4－2 竜巻防護ネット主要仕様比較

項目		設置許可段階	詳細設計段階
総質量		約 500ton	約 358ton
全体形状		約 29 m （東西方向）\times 約 24 m （南北方向）高さ 約 1 m	約 26 m （東西方向）\times 約 23 m （南北方向）高さ 約 1 m
ネット （金網部）	構成	主金網 $\times 2$ 枚 + 補助金網 $\times 1$ 枚 なお，金網はワイヤロープにて 4 辺支持する	－（変更なし）
	寸法	線径：$\phi 4 \mathrm{~mm}$ 目合い寸法：主ネット 50 mm ，補助ネッ ト 40 mm	－（変更なし）
	主要材料	硬鋼線材，亜鉛めつき鋼線	－（変更なし）
フレーム	数量	5 組	4 組
	寸法	長さ×幅×高さ： 約 $23 \mathrm{~m} \times 4.3 \mathrm{~m} \times 1 \mathrm{~m}$	長さ \times 幅 \times 高さ 主桁： 約 $23 \mathrm{~m} \times 0.6 \mathrm{~m} \times 1.0 \mathrm{~m}$ 横補強材：約 $5.4 \mathrm{~m} \times 0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $5.4 \mathrm{~m} \times 0.5 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $4.3 \mathrm{~m} \times 0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $4.3 \mathrm{~m} \times 0.5 \mathrm{~m} \times 0.4 \mathrm{~m}$ ブレース：約 $5.9 \mathrm{~m} \times 0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $5.9 \mathrm{~m} \times 0.2 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $6.8 \mathrm{~m} \times 0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $6.8 \mathrm{~m} \times 0.2 \mathrm{~m} \times 0.4 \mathrm{~m}$
	$\begin{aligned} & \text { 主要 } \\ & \text { 材料 } \end{aligned}$	SM490A，SM400A，SS400	－（変更なし）
大梁	寸法	長さ×幅×高さ： 約 $26 \mathrm{~m} \times 1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$	長さ×幅×高さ： 約 $25 \mathrm{~m} \times 1.6 \mathrm{~m} \times 1.3 \mathrm{~m}$
	$\begin{aligned} & \hline \text { 主要 } \\ & \text { 材料 } \end{aligned}$	SM520B，SM490A	SM490A
ゴム支承	仕様	水平力分散型	－（変更なし）
	数量	$\begin{aligned} & \text { 大梁用: } 4 \text { 個 (2 組 (2 個/組)) } \\ & \text { 隔壁用: } 10 \text { 個 }(5 \text { 組 (} 2 \text { 個/組)) } \end{aligned}$	大梁用：4個（2 組（2 個／組）） フレーム用：8個（4組（2 個／組））
可動支承	数量	10 個（5 組（2個／組））	8 個（4 組（2個／組））
防護板	材料	SM400A，SS400	SM400A
$\begin{aligned} & \hline \text { 耐震 } \\ & \text { クラス } \end{aligned}$	－	C（S s ）	－（変更なし）

（3）設置許可段階の設計方針との比較
設置許可段階で説明している設計方針に対する，詳細設計段階での設計方針との相違について，支持部材の一部変更はあるものの，設計方針に変更がないことを確認し た。確認した結果について表4－3に示す。なお，詳細について別紙5に示す。

表 4－3 設置許可段階の設計方針に対する比較

設置許可段階の設計方針				詳細設計段階 における方針 との相違	
	部位の名称	設計方針	評価項目		
ネット （金網部）		ネットは，設計竜巻の風圧力による荷重，飛来物 による衝撃荷重及びその他の荷重に対し，飛来物 が非常用海水ポンプ等へ衝突することを防止す るために，主要な部材が破断せず，たわみが生じ ても，非常用海水ポンプ等の機能喪失に至る可能性がある飛来物が非常用海水ポンプ等と衝突し ないよう捕捉できる設計とする。	吸収エネル ギ評価	無し	
		破断評価	無し		
		たわみ評価	無し		
	防護板		防護板は，設計竜巻の風圧力による荷重，飛来物 による衝撃荷重及びその他の荷重に対し，飛来物 が非常用海水ポンプ等へ衝突することを防止す るために，飛来物が防護板を貫通せず，非常用海水ポンプ等に波及的影響を与えない設計とする。	貫通評価	無し
支 持 部 材			支持部材は設計竜巻の風圧力による荷重，飛来物 による衝撃荷重及びその他の荷重に対し，飛来物 が非常用海水ポンプ等へ衝突することを防止す るために，飛来物が支持部材を構成する主要な構造部材を貫通せず，上載するネット及び防護板を支持する機能を維持可能な構造強度を有し，非常用海水ポンプ等に波及的影響を与えないために，支持部材を構成する部材自体の転倒及び脱落を生じない設計とする。	貫通評価	無し
		支持機能評価		無し	
	大梁			無し	
	ブラケット			＊ 1	
	$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$			無し	
	大梁ゴム 支承			無し	
	可動支承			無し	
	ストッパー			＊ 2	

注記＊1：「2．（6）詳細設計による竜巻防護ネットの構造について」に示す構造により，ブラケットは設置しない。
＊ 2 ：いずれの支承部も構造強度上の評価方針を満足する方針とすることから，竜巻防護ネットの支持機能を担ら部材としてストッパーに期待しないこととした。ただし，道路橋示方書にお ける落橋防止構造を参考に，自主的にストッパーを設置することとし，ストッパー設置によ り外部事象防護対象施設に波及的影響を与えないことについて確認する。
（4）詳細設計段階における設計フロー
図 3－2 及び（1）を踏まえ，竜巻防護ネットの衝突解析において基本ケース及び不確 かさケースを設定し評価を実施する。詳細設計段階における竜巻防護ネットの支持部材の評価フロー図を図 4－2 及び表 4－4 に示す。また，詳細設計段階における説明事項 に対する対応方針について，別紙 6 に示す。

支持部材の評価に当たり，解析モデルの設定においては，現実に即したゴム支承の特性を踏まえたゴム支承の剛性を設定することとし，特性試験の実施及び試験により得られた知見を踏まえた剛性の設定の考え方について5章に，飛来物の衝突姿勢の考 え方について 6 章にそれぞれ示す。

注記＊：衝突解析において，以下を考慮し解析ケースを設定する。

考慮する事項	基本ケース における設定	不確かさケース におる設定	
解析モデルにおける ゴム支承の剛性	設計値を設定	不確かさ ケース（1）	剛性のばらつきを考慮 した値を設定
衝突解析における 衝突姿勢	短辺衝突	不確かさ ケース（2）	長辺衝突による影響を 確認

図 4－2 詳細設計における竜巻防護ネット支持部材の評価フロー図
表 4－4 詳細設計段階における支持部材に対する構造強度上の性能目標と評価方針（ $1 / 2$ ）

		$\begin{gathered} \stackrel{\rightharpoonup}{⿺ ⿻ 丷 木 火 火} \\ \hdashline \end{gathered}$
		特精入。 6 体井路
	 	 尔安四敃一

表 4－4 詳細設計段階における支持部材に対する構造強度上の性能目標と評価方針（2／2）

[^2]5．衝突解析に係るゴム支承の剛性の設定
5.1 ゴム支承剛性の設定方針

衝突解析におけるゴム支承の剛性は，道路橋支承便覧より算出する設計値を基に設定することとする。ここで，支持部材のモデル化については，ゴム支承をばね要素と してモデル化し，ゴム支承の荷重一変位の関係である剛性をばね定数として設定して いる。また，竜巻防護ネット周囲の構造物の設置状況や防護板の設置の考慮により，飛来物はゴム支承には直接衝突せず，フレームに衝突し，ゴム支承に荷重が伝達する。竜巻防護ネットへの飛来物衝突のイメージを図5－1に示す。

ゴム支承のせん断剛性については，各種依存性試験を実施し，衝突解析への適用性 について設置許可段階にて説明している（別紙 2 参照）。詳細設計段階においても，構造変更による影響は軽微であることから，設置許可段階で適用した条件と同様の設定方針とする。

なお，せん断剛性に係る各種依存性試験については「補足－600－12 竜巻防護ネット の耐震構造設計（支承構造）についての補足説明資料」に示す。

一方，鉛直剛性については，竜巻影響評価の特徴を踏まえ，道路橋支承便覧に基づ く設計値の適用性及び支承の不確かさとして考慮すべきばらつきについて検討する必要がある。そのため，鉛直剛性に係る特性試験を実施し，設計値を適用することの妥当性及びばらつき範囲を確認する。衝突解析における鉛直剛性の設定フロー図につい て図 5－2に示す。特性試験の実施及びゴム支承の鉛直剛性の設定に当たつては，飛来物の衝突による影響が大きいと想定する衝突位置•方向を考慮する観点から，図 5－1 に示すゴム支承直上のフレームに飛来物が鉛直衝突するケースについて検討する。

図 5－1 竜巻防護ネットへの飛来物衝突のイメージ

図 5－2 衝突解析における鉛直剛性の設定フロー図
5.2 道路橋支承便覧に基づくせん断剛性及び鉛直剛性の設計値

竜巻防護ネットに採用しているゴム支承の構造諸元を表5－1に示す。ここで，表5－ 1 に示しているせん断剛性及び鉛直剛性は，道路橋支承便覧に基づき，以下の式によ り算出する設計値である。

表 5－1 ゴム支承の構造諸元

項目	諸元
支承種類	地震時水平力分散型ゴム支承
ゴム体種類	天然ゴム (NR)
ゴム体有効平面寸法	$800 \mathrm{~mm} \times 800 \mathrm{~mm}$
総ゴム厚 $(コ ゙ ム$ 厚 \times 層数）	192 mm $(24 \mathrm{~mm} \times 8$ 層）
せん断弾性係数	$1.0 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{Gl} 10)$
一次形状係数	8.33
二次形状係数	4.17
せん断剛性	$3.33 \mathrm{kN} / \mathrm{mm}$
鉛直剛性	$972 \mathrm{kN} / \mathrm{mm}$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{s}}=\frac{\mathrm{G}_{\mathrm{e}} \cdot \mathrm{~A}_{\mathrm{e}}}{\sum \mathrm{t}_{\mathrm{e}}} \tag{5.1}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{K}_{\mathrm{v}}=\frac{\mathrm{E} \cdot \mathrm{~A}_{\mathrm{e}}}{\sum \mathrm{t}_{\mathrm{e}}} \tag{5.2}\\
& \mathrm{E}=\alpha \cdot \beta \cdot \mathrm{S}_{1} \cdot \mathrm{G}_{\mathrm{e}} \tag{5.3}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{S}_{1}=\frac{\mathrm{A}_{\mathrm{e}}}{2 \cdot(\mathrm{a}+\mathrm{b}) \cdot \mathrm{t}_{\mathrm{e}}} \quad\left(0.5 \leqq \frac{\mathrm{~b}}{\mathrm{a}} \leqq 2.0 \text { のとき }\right) \tag{5.4}
\end{equation*}
$$

ここで，
K_{s} ：ゴム支承のせん断剛性（ N / mm ）
K_{v} ：ゴム支承の鉛直剛性（圧縮ばね定数）（ N / mm ）
G_{e} ：ゴムのせん断弾性係数 $\left(=1.0 \mathrm{~N} / \mathrm{mm}^{2}\right)$
A_{e} ：ゴム支承本体の側面被覆ゴムを除く面積 $\left(\mathrm{mm}^{2}\right)$
$\Sigma \mathrm{t}{ }_{\mathrm{e}}$ ：総ゴム厚（mm）
E：ゴム支承の縦弾性係数（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\alpha \quad:$ ゴム支承の種類による係数 $\quad(=35)$
β ：ゴム支承の平面形状による係数（ $=1.0$ ）
S_{1} ：一次形状係数
a ：橋軸方向の有効寸法（mm）
b ：橋軸直角方向の有効寸法（mm）
$t \mathrm{e}$ ：ゴム一層の厚さ（mm）

上記のとおり，剛性値はゴム支承の形状によって定まる値であるが，鉛直剛性につ いては，ゴム支承の圧縮性を考慮して定められたものであることが道路橋支承便覧か ら読み取れる。また，ゴム支承の性能の検証として，道路橋支承便覧では圧縮ばね定数が設計値に対して $\pm 30 \%$ 以内であることの確認を要求しており，竜巻防護ネットで用 いるゴム支承においても，製品検査時に圧縮ばね定数の初期ばらつきが設計値の $\pm 30 \%$以内であることを確認することから，この製品初期ばらつきの $\pm 30 \%$ について，鉛直剛性のばらつき範囲設定条件の1つとして考慮することとする。

5.3 鉛直剛性に係る特性試験項目整理及び試験方法

「5．1 ゴム支承剛性の設定方針」及び「5．2 道路橋支承便覧に基づくせん断剛性及び鉛直剛性の設計値」を踏まえ，ゴム支承の鉛直剛性に係る特性試験を実施する。試験は，「道路橋免震用ゴム支承に用いる積層ゴム一試験方法（JISS K 6 4 1 1 ： 2 0 1 2 ）」（以下「 J I S K 6 4 1 1 」という。）及びせん断剛性の各種依存性試験を参考に，設計における適用条件を踏まえて試験項目及び試験条件を設定する。試験項目の比較整理を表5－2に，鉛直剛性に係る特性試験項目を表5－3にそれぞれ示す。 また，各試験の実施フロー図について図 5－3 に示す。

試験体は，J I S K 6 4 1 1 に従い，各試験項目に対応した標準試験体を用い る。ゴム材料の種別は，実機に適用するG10に対して実施する。試験体諸元を表5－4 に示す。
表 5－2 試験項目の比較

J I S K 6411			せん断剛性に係る特性試験		鉛直剛性に係る特性試験	
特性	試験項目	原理	試験内容	備考	試験内容	備考
圧縮及びせ ん断特性	圧縮特性	試験体に一定の圧縮力を載荷し た状態での圧縮力ー鉛直変位特性から圧縮剛性を求める。	－	せん断剛性に関する試験で ないため対象外	試験体に一定の圧縮力又は引張力を載荷した状態で荷重－変位曲線から圧縮又は引張剛性 を算出する。また，基準値に対 する測定値の変化率（初期ばら つき）を求める。	－
	せん断特性	試験体に一定の圧縮力を載荷し た状態でせん断変形を与え，せん断特性を求める。	－	道路橋支承便覧の基準値を適用するため省略	－	$\begin{aligned} & \text { 鉛直剛性に関 } \\ & \text { する試験でな } \\ & \text { いため対象外 } \end{aligned}$
せん断特性 の各種依存性	せん断ひず み依存性	試験体に一定圧縮力を載荷した状態で複数水準のせん断変位を与え，せん断特性のせん断ひずみ依存性を求める。	圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態で複数水準の せん断ひずみにおける正負繰返し加振を行い，せん断剛性を算出する。せん断ひずみ 175\％ の測定値を基準として各測定値との変化率を求める。	－	試験体に複数水準のせん断ひ ずみを与え保持した状態で，圧縮力又は引張力を載荷し，鉛直荷重－変位曲線から圧縮剛性又	－
	圧縮応力度依存性	試験体に複数水準の圧縮力を載荷した状態でせん断変位を与え， せん断特性の圧縮応力度依存性 を求める。	複数水準の圧縮力を載荷した状態でせん断ひずみ 175% によ る正負繰返し加振を行い，せん断剛性を算出する。圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力時の測定値を基準として，各測定値との変化率を求める。	－	は引張剛性を算出する。せん断 ひずみ 0% の測定値を基準と し，各測定値との変化率を求め る。	－
	振動数依存性	試験体に一定圧縮力を載荷した状態で複数水準の水平振動数の せん断変形を与え，せん断特性の振動数依存性を求める。	圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態で各振動数に てせん断ひずみ 175% による正負繰返し加振を行い，せん断剛性を算出する。振動数 0.5 Hz の測定値を基準として各測定値 との変化率を求める。	－	試験体に複数水準の速度を有 した錘によって圧縮力又は引張力を載荷し，荷重－変位曲線 から圧縮又は引張剛性を算出 する。静的な圧縮又は引張剛性 を基準として，各速度における圧縮又は引張剛性の変化率を求める。	（以下「速度依存性試験」 という。）

表 5－2 試験項目の比較

J I S K 64411			せん断剛性に係る特性試験		鉛直剛性に係る特性試験	
特性	試験項目	原理	試験内容	備考	試験内容	備考
せん断特性 の各種依存性	繰返し数依存性	試験体に一定圧縮力を載荷した状態で繰返しせん断変位を連続 して与え，せん断特性の繰返し数 に対する依存性を求める。	圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態でせん断ひず み 175% による正負繰返し加振 を行い，せん断剛性を算出す る。その後，せん断ひずみ 175% による正負繰返し加振を50回行い，せん断剛性を算出する。 50 回加振前の測定値を基準と して 50 回加振後の測定値との変化率を求める。	－	せん断ひずみ 175% による正負繰返し加振を行う前及び行っ た後の試験体に圧縮力又は引張力を載荷し，荷重－変位曲線 から圧縮又は引張剛性を算出 する。50 回加振前の測定値を基準として 50 回加振後の測定値との変化率を求める。	－
	温度依存性	試験体を複数水準の温度に保持 して，一定圧縮力を載荷した状態 でせん断変位を与え，せん断特性 の環境温度の変化に対する依存性を求める。	各温度で加熱された試験体に圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態でせん断ひず み 175% による正負繰返し加振 を行い，せん断剛性を算出す る。 $23^{\circ} \mathrm{C}$ の測定値を基準として各温度におけるせん断剛性と の変化率を求める。	－	各温度で加熱された試験体に圧縮力又は引張力を載荷し，荷重－変位曲線から圧縮又は引張剛性を算出する。 $23^{\circ} \mathrm{C}$ の測定値 を基準として各温度における圧縮又は引張剛性との変化率 を求める。	－
終局特性	せん断変形性能	試験体に一定の圧縮力を載荷し た状態でせん断変形を与え，積層 ゴムが破断又はせん断力ーせん断変位曲線において，せん断力が急激に低下するなどの安定性が失われる限界を求める。	－	依存性を求め る試験でない ため対象外	－	鉛直剛性に関 する試験でな いため対象外
	引張特性	試験体にせん断変位 0 又は一定の せん断変形を与えた状態で引張力を加え，その引張力ー引張変位曲線において降伏又は破断が生 じる時点の引張力及びせん断変位を求める。	－	道路橋支承便覧の中で確認 されているた め省略	－	道路橋支承便覧の中で確認 されているた め省略

表 5－2 試験項目の比較

	$\begin{aligned} & \text { 甛 } \\ & \text { 舁 } \end{aligned}$	1		 元，ッド 出 Ω 肫处	
		 视等㴗區扫舞 6 	I	I	I
	$\begin{aligned} & \text { 抑 } \\ & \text { 汧 } \end{aligned}$	1	上飞杪进䋥寝畐裉 0氣心が さが中眼处	 HS想和多	
			I	－	I
		进䅎进溢 保心中，き訤 	 持出 \＃ 	岷，㤩好心㗪 본 6炶，䢒 6熼中場 1艺以的录㨫甚 上先荌栄 移必出	为出 8恣尔㥪 \pm in x 㨞心断睍っ 華 6进海扣人㘳抽 5 㓠筎 4 蒾 413 a 6置 \ddagger的长
$\begin{aligned} & n \\ & \curvearrowleft \\ & \curvearrowleft \end{aligned}$			$\begin{aligned} & i \\ & 1 \\ & - \\ & i \end{aligned}$		
					㮦 $\stackrel{\text {＂}}{\text {＂}}$ 首 些 燓

表 5－3 鉛直剛性に係る特性試験項目

試験	項目	試験内容	試験条件
圧縮／引張剛性確認試験	（1）圧縮／引張剛性確認	圧縮／引張剛性の実剛性及び初期ばらつきを求め る。	試験体数：10体 圧縮力： $0.5 \sim 8.0 \mathrm{~N} / \mathrm{mm}^{2}$ 引張力： $0.5 \sim-2.0 N / \mathrm{mm}^{2}$
各種依存性 試験	（2）せん断ひ ずみ依存性	複数のせん断ひずみを与 えたときの圧縮／引張剛性の依存性を求める。	試験体数：1体 せん断ひずみ： $\pm 0, ~ 50 \%, ~ 75 \%, ~ 100 \%$ の 4 水準
	（3）繰返し数依存性	繰返し荷重に対する圧縮 ／引張剛性の依存性を求 める。	試験体数： 1 体 繰返し数： 50 回
	（4）温度依存性	使用環境の温度変化に対 する圧縮／引張剛性の依存性を求める。	試験体数：1体 温度：$-20,-10,0,10,23,40^{\circ} \mathrm{C}$ の 6 水準
	（5）熱老化特性	熱老化試験により熱老化前後の圧縮／引張剛性の経年変化を求める。	試験体数：1体 熱老化： $23^{\circ} \mathrm{C} \times 60$ 年相当
	（6）速度依存性	ゴム支承が高速で変形し たときの圧縮／引張剛性 を確認する。	試験体数：1体 ゴム変形速度：1．0， $1.5,2.0 \mathrm{~m} / \mathrm{s}$ の 3 水準

図 5－3 鉛直剛性に係る特性試験の実施フロー図

表 5－4 試験体の諸元

試験	測定項目	試験体		
		適用規格	形状	せん断弾性係数
（1）圧縮／引張剛性確認 （2）せん断ひずみ依存性 （3）繰返し数依存性 （4）温度依存性 （6）速度依存性	圧縮剛性引張剛性	$\begin{aligned} & \text { J I S K } \quad 64111 \\ & \text { 標準試験体 No. } 3^{*} \end{aligned}$	$\begin{aligned} & \text { 有効平面寸法 } \\ & 400 \mathrm{~mm} \times 400 \mathrm{~mm} \\ & \\ & \text { 総ゴム厚 } \\ & 54 \mathrm{~mm} \\ & (9 \mathrm{~mm} \times 6 \text { 層 }) \end{aligned}$	G10
（5）熱老化特性		$\begin{aligned} & \text { J I S K } \quad 6 \quad 4111 \\ & \text { 標準試験体 No. } 2^{*} \end{aligned}$	$\begin{aligned} & \text { 有効平面寸法 } \\ & 240 \mathrm{~mm} \times 240 \mathrm{~mm} \\ & \\ & \text { 総ゴム厚 } \\ & 30 \mathrm{~mm} \\ & (5 \mathrm{~mm} \times 6 \text { 層 }) \end{aligned}$	1． $0 \mathrm{~N} / \mathrm{mm}^{2}$

注記＊：J I S K 6 4 1 1 で寸法等が規定されている試験体（試験項目毎に J I Sに規定されている標準試験体寸法のうち，大きい（実機寸法に近い）供試体を選定。）
（1）圧縮／引張剛性確認試験
試験体に鉛直方向の圧縮及び引張荷重を与えたときの鉛直剛性を求める。試験方法は，圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ 程度に相当する鉛直荷重を原点として，圧縮応力度 8． $0 \mathrm{~N} / \mathrm{mm}^{2}$ による圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を行う。それぞれ の試験において 3 回載荷し， 3 回目の鉛直荷重－鉛直変位曲線から，圧縮及び引張剛性を求める。剛性を算出する応力範囲は，圧縮側は，J I S K 6 4 1 1 及び道路橋支承便覧を参考に $1.5 \sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値を基 に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ とする。試験結果は，（4）温度依存性試験より求めた温度補正式によ って基準温度（ $23^{\circ} \mathrm{C}$ ）相当に補正したものを測定値とする。
（2）せん断ひずみ依存性試験
試験体に複数のせん断ひずみを与え保持した状態で，圧縮方向及び引張方向の鉛直剛性を測定する。試験方法は，せん断ひずみを与えた状態で，圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$程度に相当する鉛直荷重を原点として，圧縮応力度 $8.0 \mathrm{~N} / \mathrm{mm}^{2}$ による圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を実施し，これを各せん断ひずみに対して行う。 それぞれの試験において 3 回載荷し， 3 回目の鉛直荷重 一 鉛直変位曲線から圧縮及 び引張剛性を求める。また，試験に用いる鉛直荷重は，各せん断ひずみにおける試験体の有効支圧面積より算出した圧縮／引張応力度相当の荷重とする。剛性を算出 する応力範囲は，圧縮側は，J I S K 6 4 1 1 及び道路橋支承便覧を参考に1．5
$\sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値を基に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ とする。試験結果は，（4）温度依存性試験より求めた温度補正式によって基準温度（ $23^{\circ} \mathrm{C}$ ）相当に補正したものを測定値とする。圧縮及び引張剛性は，せん断ひずみ 0% の測定値を基準として，各せん断ひずみにおける測定値との変化率を求める。

（3）繰返し数依存性試験

試験体に繰返し水平加振 50 回を与えたときの鉛直剛性の依存性を求める。試験方法は 50 回加振試験の前に圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ 程度に相当する鉛直荷重を原点と して，圧縮応力度 $8.0 \mathrm{~N} / \mathrm{mm}^{2}$ による圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を行う。それぞれの試験において 3 回載荷し， 3 回目の鉛直荷重 一 鉛直変位曲線 から鉛直剛性を求める。その後，50回加振試験後に同様の試験を実施し，圧縮及び引張剛性を求める。剛性を算出する応力範囲は，圧縮側は，J I S K 6411及び道路橋支承便覧を参考に $1.5 \sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値 を基に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ とする。試験結果は，（4）温度依存性試験より求めた温度補正式 によって基準温度（ $23^{\circ} \mathrm{C}$ ）相当に補正したものを測定値とする。圧縮及び引張剛性 は， 50 回繰返し加振前の測定値を基準として， 50 回繰返し加振後における測定値と の変化率を求める。
（4）温度依存性試験
試験体に複数の温度条件を与えたときの鉛直剛性の依存性を求める。試験方法は，試験体を試験温度になるまで恒温槽で保持したのち，迅速に二軸試験機へ取り付け，圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ 程度に相当する鉛直荷重を原点として，圧縮応力度 $8.0 \mathrm{~N} / \mathrm{mm}^{2}$ に よる圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を行う。それぞれの試験にお いて 3 回載荷し， 3 回目の鉛直荷重一鉛直変位曲線から圧縮及び引張剛性を求める。剛性を算出する応力範囲は，圧縮側は，J I S K 6 4 1 1 及び道路橋支承便覧 を参考に $1.5 \sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値を基に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ と する。圧縮及び引張剛性は，基準温度（ $23^{\circ} \mathrm{C}$ ）時の測定値を基準として，各温度条件における測定値との変化率を求める。

なお，各温度条件における恒温槽での保持時間（試験体を恒温槽に入れてから取 り出すまでの時間）は，8時間以上とする。
（5）熱老化特性試験
熱老化前後の鉛直剛性の変化を確認する。熱老化は基準温度（ $23^{\circ} \mathrm{C}$ ）で 60 年に相当する試験条件とする。試験方法は，試験体の熱老化を行ら前に，圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ 程度に相当する鉛直荷重を原点として，圧縮応力度 $8.0 \mathrm{~N} / \mathrm{mm}^{2}$ による圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を行う。それぞれの試験において 3 回載

荷し， 3 回目の鉛直荷重一鉛直変位曲線から圧縮及び引張剛性を求める。その後，恒温槽で試験条件の熱老化をさせ，熱老化前と同様の試験を実施し，圧縮及び引張剛性を求める。圧縮側は，J I S K 6 4 1 1 及び道路橋支承便覧を参考に1．5 $\sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値を基に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ とする。試験結果は，（4）温度依存性試験より求めた温度補正式によって基準温度（ $23^{\circ} \mathrm{C}$ ）相当に補正したものを測定値とする。圧縮及び引張剛性は，熱老化前の測定値を基準とし て，熱老化後の測定値との変化率を求める。
（6）速度依存性試験
試験体を高速で変形させたときの鉛直剛性の速度依存性について確認する。試験方法は，試験装置上に設置した供試体上に錘を落下し衝突させ，衝撃力を与える。負荷された荷重値，変位時刻履歴を計測し，荷重一変位曲線から圧縮及び引張剛性 を求める。

なお，速度は計測された変位時刻履歴から速度時刻履歴に変換し，最大荷重到達時までの平均速度を当該試験の速度条件とする。

ここで，速度依存性を確認する試験範囲については，運動量保存則に基づくゴム支承の変形速度及び衝突解析によってゴム支承が変形するときの最大鉛直変形速度 を基に設定する。以下に，運動量保存則及び衝突解析によるゴム支承の変形速度の評価について示す。衝突解析によるゴム支承の変形速度は解析時の鉛直剛性の影響 を受け，鉛直剛性が小さいほど変形速度が大きくなると考えられるため，剛性値を パラメータにした衝突解析により，鉛直剛性に対するゴム支承変形速度の傾向を踏 まえて試験条件を設定する。
a．運動量保存則によるゴム支承の変形速度の評価
竜巻防護ネットのフレームに飛来物が衝突した際のフレームの移動速度を，衝突前後の運動量保存則から算出する。算出にあたつて，ゴム支承のばね剛性はフレー ムの移動に対し抵抗となり得るが，この影響はないものとして扱う。また，フレー ムを剛体と仮定し，簡便に一次元の衝突問題として，飛来物はゴム支承直上のフレ ーム北側に衝突し，衝突後はフレームと飛来物が一体となって移動を始めるものと する。（図5－4参照）

以上の条件から，運動量保存則から以下の式が成り立つ。

$$
\begin{aligned}
& \mathrm{m} \mathrm{v}=(\mathrm{m}+\mathrm{M}) \mathrm{V} \cdots(1) \\
& \text { ここで, } \\
& \mathrm{m}: \text { 飛来物 }(\text { 鋼製材 }) \text { 重量 }(\mathrm{m}=135 \mathrm{~kg}) \\
& \mathrm{v}: \text { 飛来物 }(\text { 鋼製材 }) \text { 衝突速度 } \quad(\mathrm{v}=16.7 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

$\mathrm{M}:$ フレーム重量（ $\mathrm{M}=60000 \mathrm{~kg})$
V ：衝突後のフレーム移動速度（m／s）

図 5－4 飛来物衝突前後のイメージ
（1）式より，

$$
\begin{aligned}
\mathrm{V} & =\mathrm{mv} /(\mathrm{m}+\mathrm{M}) \\
& =135 \times 16.7 /(135+60000) \\
& \fallingdotseq 0.04(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

上記のとおり，フレームの質量が飛来物に比べて著しく大きいことから，衝突後 のフレームの変形速度は最大でも約 $0.04 \mathrm{~m} / \mathrm{s}$ となる。フレームはゴム支承に支持さ れていることから，ゴム支承の変位速度はフレームの移動速度と同等の速度になる と想定される。
b．衝突解析によるゴム支承の変形速度の評価
解析コード「LS－DYNA」による非線形時刻歴解析により，ゴム支承の変形速度を評価した。
（a）解析モデル
速度依存性試験条件を確認するために実施した衝突解析のモデル図を図5－5に示す。飛来物及びフレームの各部材はシェル要素でモデル化し，ゴム支承はばね要素にてモデル化した。

（b）飛来物諸元
飛来部諸元を表5－5に示す。

表 5－5 飛来物諸元

	鋼製材
寸法 (m)	$4.2 \times 0.3 \times 0.2$
質量 (kg)	135
水平方向の飛来速度 $(\mathrm{m} / \mathrm{s})$	46.6
鉛直方向の飛来速度 $(\mathrm{m} / \mathrm{s})$	16.7

（c）荷重条件
本解析はゴム支承の鉛直方向変形速度の評価を目的としていることから，荷重条件としては，飛来物の衝撃荷重のみを考慮した。また，接触条件として飛来物 と被衝突物の間の摩擦を考慮し，減衰に関しては考慮しないこととした。
（d）拘束条件
拘束条件を表5－6に示す。ゴム支承のせん断剛性は道路橋支承便覧に基づく設計値を入力し，鉛直剛性については，設計値に対して $1 / 100 \sim 100$ 倍までの範囲で パラメータスタディを実施した。

表 5－6 拘束条件

方向	フレームゴム支承	可動支承
X	設計値 $(3.33 \mathrm{kN} / \mathrm{mm})$	自由
Y	設計値 $(3.33 \mathrm{kN} / \mathrm{mm})$	拘束
Z	設計値 $(972 \mathrm{kN} / \mathrm{mm})$ を基準に， 「（f）解析ケース」に示す条件で実施	拘束

（e）材料物性等
イ。材料の応力ーひずみ関係
材料の応力ーひずみ関係は，バイリニア型とした。
材料に適用する応力ーひずみ関係の概念図を図5－6に示す。

図 5－6 応力ーひずみ関係の概念図

ロ．ひずみ速度依存性
竜巻による飛来物に対する解析は，衝撃問題で変形速度が大きいため，衝突時 の鋼材のひずみ速度による影響を，以下の Cowper－Symonds 式により考慮する。
$\sigma_{\mathrm{D}}=\sigma_{\mathrm{S}} \cdot\left\{1+\left(\frac{\dot{\varepsilon}}{\mathrm{C}}\right)^{\frac{1}{\mathrm{p}}}\right\}$
ここで，σ_{D} はひずみ速度 $\dot{\varepsilon}$ 時の降伏応力，$\sigma \mathrm{s}$ は初期降伏応力，$\dot{\varepsilon}$ はひずみ速度，C及びpはひずみ速度依存性のパラメータである。

ひずみ速度依存性パラメータを表 5－7に示す。

表 5－7 ひずみ速度依存性パラメータ

	飛来物 （鋼製材）	竜巻防護ネット （フレーム）	
C材質	SS400	SM400	SM490
$\mathrm{C}(1 / \mathrm{s})$			
p			

八。破断ひずみ
衝突解析における許容限界は，鋼材の破断ひずみを設定する。破断ひずみにつ いては，J I S に規定されている伸びの下限値を基に設定するが，「NEI07－13： Methodology for Performing Aircraft Impact Assessments for New Plant Designs」においてTF（多軸性係数）を \square とすることが推奨されていることを踏 まえ，安全余裕として $\mathrm{TF}=\square$ を考慮して設定する。
（f）解析ケース
解析ケースを表5－8に示す。

表 5－8 解析ケース

No．	鉛直剛性		飛来物の衝突条件			
	入力値 $(\mathrm{kN} / \mathrm{mm})$	設計値から の比率	衝突位置	衝突 姿勢	衝突 方向	衝突速度 （m／s）
1	9.72	1／100	$\begin{aligned} & \text { 主桁 } \\ & \text { (ゴム支承 } \\ & \text { の直上) } \end{aligned}$	短辺	鉛直	16.7
2	97.2	1／10				
3	972	1				
4	9720	10				
5	97200	100				

（g）解析結果
飛来物が衝突した直下にあるゴム支承の鉛直方向変形速度履歴を図 5－7 に示す。最大速度はおおむね衝突直後の圧縮側で生じている。また，各解析ケースにおけ る鉛直剛性と最大速度の関係を表 5－9 及び図 5－8に示す。ゴム支承の変形速度は鉛直剛性が小さいほど大きくなり，鉛直剛性が大きくなると変形速度は小さくな る傾向となった。ここで，解析ケースNo．1～No． 3 において，鉛直剛性の変化がゴ ム支承の変形速度に与える影響が小さかった理由としては以下のとおり考えられ る。
＞飛来物はフレームに衝突することから，飛来物の衝撃荷重及び飛来物がフ レームに衝突した瞬間の加速度は，ゴム支承の剛性によらずに決まると考 えられる。
＞このとき，仮にゴム支承の鉛直剛性を 0 とした場合は，ゴム支承に反力が生じないため，ゴム支承の変形速度は最大となる。実際にはゴム支承の鉛直剛性により，ゴム支承に生じる変位に比例した反力が発生することによ り，変形速度は抑制される。
＞ゴム支承の剛性が比較的小さい場合は，鉛直剛性に応じてゴム支承の反力 が小さくなるため，ゴム支承の変形速度への影響は軽微な結果となり，ゴ ム支承の剛性が大きい場合は，飛来物の衝撃荷重が作用する時間内に，衝撃荷重を打ち消す反力が発生するため，ゴム支承の変形速度が抑制される結果となったと考えられる。
＞今回の結果においては，設計条件の剛性 $972 \mathrm{kN} / \mathrm{mm}$ とした場合（解析ケース No．3），また，設計条件から大きく剛性を下げた場合（解析ケース No． 1 及 びNo．2）でも，衝撃荷重と比較して反力が小さく，ゴム支承の変形速度へ の影響が小さかったものと考えられる。
＞なお，ゴム支承変形速度最大時のゴム支承の変位は，解析ケースNo． 3 で約 0.3 mm であり，解析ケース No． 1 及びNo． 2 においても，その際の変位は同程度となる。

図 5－7 飛来物衝突位置直下のゴム支承変形速度履歴

表 5－9 ゴム支承の鉛直剛性と最大変形速度の関係

解析ケース		No． 1	No． 2	No． 3	No． 4	No． 5
鉛直剛性（kN／mm）		9． 72	97.2	972	9720	97200
ゴム支承変形速度$(\mathrm{m} / \mathrm{s})$	最大（引張側）	0． 44	0.41	0． 48	0． 42	0． 23
	最小（圧縮側）	－0．83	－0．82	－0．72	－0．46	－0．20
	絶対値最大	0.83	0． 82	0． 72	0.46	0． 23

図 5－8 ゴム支承の鉛直剛性と最大変形速度の関係
c．試験条件
速度依存性が存在する場合，一般的には速度が速くなると剛性が大きくなること から，上記予備解析の結果より，変形速度の最大値（ $0.83 \mathrm{~m} / \mathrm{s}$ ）を包絡するよう，目標とするゴム支承の変形速度を $1.0 \mathrm{~m} / \mathrm{s}$ として試験を実施する。その際，参考として より大きな速度である $1.5 \mathrm{~m} / \mathrm{s}$ 及び $2.0 \mathrm{~m} / \mathrm{s}$ についても試験を実施することとする。

なお，運動量保存則より，飛来物がフレームに衝突した際のゴム支承の変形速度 は $0.04 \mathrm{~m} / \mathrm{s}$ 程度であり，この速度は今回設定した試験条件に十分包絡される。

5．4 試験装置

（1）～（5）の試験には 2MN 二軸試験機，（6）の試験には落錘式衝撃試験装置を用い る。試験装置の主な仕様を表5－10及び表5－11に，試験装置の概要を図5－9～図5－ 11 に示す。

表 5－10 2MN二軸試験機の主な仕様

項目		2MN 二軸試験機	制御系	計測
鉛直方向	最大荷重	2000 kN （圧縮） 1000 kN （引張）	荷重制御変位制御	荷重変位
	最大変位	300 mm		
水平方向	最大荷重	$\pm 400 \mathrm{kN}$	変位制御 （正弦波，矩形波，三角波）	荷重変位
	最大変位	$\pm 200 \mathrm{~mm}$		
	最大速度	$630 \mathrm{~mm} / \mathrm{s}$		

表 5－11 落錘式衝撃試験装置の主な仕様

種類	落錘式衝撃試験装置
最大衝撃力	圧縮方向： 2000 kN
引張方向： 500 kN	
最大衝突速度	$3 \mathrm{~m} / \mathrm{s} \quad$（落下高さ 0.5 m$)$
錘最大重量	3000 kg

図 5－9 試験装置（2MN 二軸試験機）の外観

図 5－10 試験装置（落錘式衝撃試験装置）の外観（圧縮側）

図 5－11 試験装置（落錘式衝撃試験装置）の外観（引張側）

5.5 試験結果

各種試験より得られた鉛直剛性特性結果を図 5－12～図5－18に示す。以下にその結果を記載する。
（1）圧縮／引張剛性確認試験
図 5－12 に示す結果より，圧縮剛性は式（5．2）から求める設計値とほぼ同等であ ることを確認した。一方，引張剛性は，圧縮剛性の設計値の 20% 程度であることを確認した。この結果を踏まえ，圧縮剛性の基準値は式（5．2）から求める設計値とし，引張剛性の基準値は本試験結果の平均値とした。

上記基準値を基に初期ばらつきを評価した結果，図 5－13に示す結果より，圧縮剛性のばらつきはプラス側で最大 $+2 \%$ 程度，マイナス側で最大 -15% 程度であること，引張剛性のばらつきはプラス側で最大 16% 程度，マイナス側で最大 -21% 程度であり，道路橋支承便覧に規定されている製品初期ばらつき $\pm 30 \%$ 以内であることを確認し た。

図 5－12 圧縮／引張剛性確認試験結果（算出値）

図 5－13 圧縮／引張剛性確認試験結果（変化率）
（2）せん断ひずみ依存性試験
竜巻防護ネットの強度評価に用いる荷重及び荷重の組合せを考慮し，水平方向に竜巻による風荷重が負荷された状態でのゴム支承に生じるせん断ひずみを想定し， せん断ひずみ 0% を基準に，せん断ひずみ 100% までの範囲を確認している。

図 5－14に示す結果より，圧縮剛性はせん断ひずみの増加により最大で -11% 程度 の変化率となることが分かった。一方，引張剛性については最大で -2% 程度であり， せん断ひずみの増加によらずほぼ一定の傾向を示すことが分かった。

図 5－14 せん断ひずみ依存性試験結果
（3）繰返し数依存性試験
図 5－15に示す結果より，50 回の正負繰返し加振後の圧縮及び引張剛性の変化率 について，圧縮剛性は－7\％程度，引張剛性は－13\％程度となることが分かった。

図 5－15 繰返し数依存性試験結果
（4）温度依存性試験
図 5－16に示す結果より，低温になるほど剛性が大きくなることが分かる。基準温度 $23^{\circ} \mathrm{C}$ に対する圧縮及び引張剛性の変化率は，女川 2 号機の環境条件を踏まえて， $-15^{\circ} \mathrm{C}$ から $40^{\circ} \mathrm{C}$ までの範囲を確認しており，圧縮剛性について，$-15^{\circ} \mathrm{C}$ では $+27 \%$ 程度， $40^{\circ} \mathrm{C}$ では－8\％程度となること，引張剛性については，$-15^{\circ} \mathrm{C}$ では $+14 \%$ 程度， $40^{\circ} \mathrm{C}$ では -4% 程度となることが分かった。

注記 $*:-15^{\circ} \mathrm{C}$ の結果は補正式より算出

図 5－16 温度依存性試験結果
（5）熱老化特性試験
図 5－17に示す結果より，使用期間 60 年相当の熱老化に対する圧縮及び引張剛性 の変化率は，圧縮剛性は $+5 \%$ 程度，引張剛性は -18% 程度となることが分かった。

図 5－17 熱老化特性試験結果
（6）速度依存性試験
図 5－18より，圧縮剛性の速度依存性試験について，「5．3（6）c．試験条件」にて設定した試験条件（ゴムの変形速度）を満足していることを確認した。また，結果 のばらつきや変形速度が大きくなるにしたがい，剛性が低下する傾向が見られるが，一般に速度依存性は変形速度の増加により剛性が高くなることから，錘の落下距離 が大きくなるにしたがって，鋀切り離し時のわずかな回転力により錘衝突時に傾斜角が増えたことが要因と考えられ，速度依存性がないと判断した。

一方，引張剛性の速度依存性試験については，変形速度の増加に伴い剛性が高く なり，速度依存性があることを確認した。

なお，引張剛性の速度依存性試験において，ゴム支承の変形速度が圧縮側に対し て小さいが，圧縮側と同様の外力を負荷しており，ゴムの速度依存性により変形が抑制されたものと考えられる。

図 5－18 速度依存性試験結果

今回，引張剛性に関して，静的な引張剛性碓認試験において低い剛性を示したこ と，また，速度依存性試験において速度依存性が発現したことについて，以下のと おり考察した。
＞一般に，ゴム支承のゴム（天然ゴム）材料単体に着目すると，天然ゴムは粘弾性材料であり速度依存性を有すること，また，圧縮側の剛性に対して引張側の剛性が小さいことが知られている。

「5．5（1）圧縮／引張剛性確認試験」において，圧縮剛性に対して引張剛性が小さくなったことについては，ゴム支承においてもゴム材料自体の性質が表れ たものと考えられる。

また，鉛直剛性を算出する際の一次形状係数は，ゴム 1 層当たりの拘束面積及 びゴム 1 層当たりの自由面積から求められ，ゴムの拘束による影響を定性的に

評価する指標である。一次形状係数が小さい場合に速度依存性を示すことが報告されている（図5－19 参照）。一次形状係数が小さいほどゴム支承の鉛直剛性 も小さくなり，このときゴム材料自体が持つ速度依存性を有する特性が顕著に表れるものと考えられる。

「5．5（6）速度依存性試験」において，圧縮側については，一次形状係数が図 5－19に比べて大きい（ $\left.\mathrm{S}_{1}=8.33\right)$ ため，ゴム材料自体の特性が出にくく，今回 の試験範囲において速度依存性が見られない結果となったと考えられる。一方，引張側については，静的な引張剛性確認試験において圧縮剛性に対して引張剛性が小さかったことにより，ゴム材料自体が持つ速度依存性を有する特性が発現したものと考えられる。

図－1 鉛直剛性変化率 ${ }^{11}$ （ $G=5.6, ~ 1,000(230)-48 \times 5$ ， $S_{1}=4, ~ S_{2}=4,2$ ）

図－2 鉛直剛性変化率 ${ }^{2)}$
$\left(G=5.6, ~ 520(110)-32 \times 8, ~ S_{1}=3.2, ~ S_{2}=2.0\right)$

図5－19 拘束が小さいゴム支承の鉛直（圧縮）剛性の振動数依存性＊
（注記＊：免震用積層ゴムハンドブック，（社）日本ゴム協会，理工図書 より抜粋。図－1 の一次形状係数 $\mathrm{S}_{1}=4$ の場合は，鉛直剛性が準静的に対し 1.0 Hz で約 5% 増加し，図－2の一次形状係数 $\mathrm{S}_{1}=3.2$ の場合は，鉛直剛性が準静的に対 し 1.0 Hz で約 30% 増加している。）

5． 6 試験結果を踏まえた剛性の設定
竜巻防護ネットの衝突解析においては，設置許可段階で実施したせん断剛性の各種依存性試験及び鉛直剛性に係る特性試験結果より得られたばらつきについて，飛来物衝突解析に反映し，剛性のばらつきを考慮したケースにおいても竜巻防護ネットの構造健全性が損なわれないことを確認する。適用するばらつきの設定方針を以下に示す。
（1）せん断剛性
各種依存性試験結果を適用し，道路橋支承便覧から求める設計値（3．33 kN／mm） に対するばらつきをプラス側とマイナス側それぞれ考慮する。せん断剛性のばらつ きを表5－12に示す。

なお，試験結果については，「補足－600－12 竜巻防護ネットの耐震構造設計（支承構造）についての補足説明資料」に示す。

表 5－12 せん断剛性のばらつき設定

項目	変化率	
	剛性変化 $(+$ 側）	剛性変化（一側）
基準値 $(\mathrm{kN} / \mathrm{mm})$	3.33	3.33
繰返し数依存性	-	-10%
温度依存性	$+25 \%$	-5%
熱老化依存性	$+10 \%$	-
初期ばらつき	$+10 \%$	-10%
積算値	$+45 \%$	-25%
考慮する ばらつ範囲	$+50 \%$	-30%
ばらつきを 考慮した剛性値 $(\mathrm{kN} / \mathrm{mm})$	5.00	2.33

（2）鉛直剛性
「5．5 試験結果」の試験結果を踏まえ，圧縮剛性については，道路橋支承便覧か ら求める設計値（972 kN／mm）と同程度の剛性であることを確認したことから，せん断剛性と同様に，設計値に対するばらつきをプラス側とマイナス側それぞれ考慮す る。また，引張剛性については，圧縮剛性とは異なる特性が試験により得られたこ とから，これらを包含するようなばらつき範囲を設定する。具体的には，「5．5（1）圧縮／引張剛性確認試験」の引張剛性試験において，低い剛性を示したことから， マイナス側は，この静的な引張剛性試験結果を踏まえたばらつきを考慮する。また，

「5．5（6）速度依存性試験」において，静的な引張剛性試験結果より大きい剛性を示したことを踏まえ，プラス側は速度依存性試験結果を踏まえたばらつき考慮する。鉛直剛性のばらつきを表5－13に示す。

表 5－13 鉛直剛性のばらつき設定

項目	変化率			
	剛性変化（＋側）		剛性変化（－側）	
	圧縮剛性	引張剛性	圧縮剛性	引張剛性
基準値（ $\mathrm{kN} / \mathrm{mm}$ ）	972＊1	1130＊2	972＊1	171＊3
初期ばらつき＊4	＋30\％	＋30\％	－30\％	－30\％
せん断ひずみ依存性	－	－	－15\％	－
繰返し数依存性	－	－	－10\％	－15\％
温度依存性	＋30\％	＋15\％	－10\％	－5\％
熱老化特性	＋5\％	－	－	－20\％
積算値	＋65\％	＋45\％	－65\％	－70\％
考慮する ばらつき範囲 （剛性値（ $\mathrm{kN} / \mathrm{mm}$ ））	$\begin{gathered} +70 \% \\ (1660) \end{gathered}$	$\begin{gathered} +50 \% \\ (1700) \end{gathered}$	$\begin{aligned} & -70 \% \\ & (291) \end{aligned}$	$\begin{gathered} -75 \% \\ (42.7) \end{gathered}$
ばらつきを考慮した剛性値 （ $\mathrm{kN} / \mathrm{mm}$ ）	$1700 * 5$		42．7＊${ }^{\text {\％}}$	

注記 $* 1$ ：設計条件における基本ケースの剛性値
＊2：速度依存性試験結果を，以下のとおり基準値として考慮する。

$$
\begin{aligned}
& \left(\text { 実機ゴム支承の圧縮剛性の基準値) } \times \frac{(\mathrm{J} \text { I S 試験体の速度依存性試験結果の平均值) }}{(\mathrm{J} \text { I S 試験体の圧縮剛性の基準値) }}\right. \\
& =972 \times \frac{1338}{1152} \\
& =1128 \fallingdotseq 1130(\mathrm{kN} / \mathrm{mm})
\end{aligned}
$$

＊3：引張剛性試験結果を，以下のとおり基準値として考慮する。

$$
\begin{aligned}
& \text { (実機ゴム支承の圧縮剛性の基準値) } \times \frac{(\mathrm{J} \text { I S 試験体の引張剛性試験結果の平均値) }}{(\mathrm{J} \text { I S 試験体の圧縮剛性の基準値) }} \\
& =972 \times \frac{202.9}{1152} \\
& =171.1 \fallingdotseq 171(\mathrm{kN} / \mathrm{mm})
\end{aligned}
$$

＊4：5． 2 項に示す初期ばらつきを考慮する。
＊5：圧縮剛性及び引張剛性について，それぞれの基準値にばらつきを考慮 した場合の剛性が大きい方を考慮する。
＊6：圧縮剛性及び引張剛性について，それぞれの基準値にばらつきを考慮 した場合の剛性が小さい方を考慮する。
（3）衝突解析におけるゴム支承の剛性設定
以上を踏まえ，竜巻防護ネットの構造強度評価（衝突解析）におけるゴム支承の剛性の基本ケース及び不確かさケースについて表5－14に示す。

表 5－14 衝突解析におけるゴム支承の剛性値

	剛性値（kN／mm）		
	基本ケース	不確かさケース	
		剛性変化（ + 側）	剛性変化（－側）
せん断剛性	3.33	5.00	2.33
鉛直剛性	972	1700	42.7
備考	道路橋支承便覧に基づく設計値	各種依存性試験を踏まえたばらつき を考慮した値	

6．評価ケースの設定方針及び構造成立性の確認
設置許可段階での説明事項（別紙3参照）を踏まえ，衝突解析の評価ケースの設定方針を整理する。評価ケースの設定に当たっては，「原子力発電所の竜巻影響評価ガイド」 を踏まえ，飛来物の衝突する方向が安全側の設計となるように設定する。また，前章ま でに説明した衝突解析におけるゴム支承の剛性設定を踏まえ，代表的な評価ケースに対 して構造成立性を確認する。
（1）評価ケースの設定
竜巻防護ネットが先行プラントと異なり支持部材に支承構造を採用していることを踏まえ，竜巻防護ネットの支持部材の衝突解析における評価ケースを設定する。具体的には，飛来物の衝突を考慮する部材の検討，構造及び荷重伝達経路を考慮して飛来物衝突により影響を受ける部材の検討を踏まえて，飛来物の衝突位置及び評価対象部位を設定する。また，各評価ケースにおける衝突解析結果を踏まえて，ゴム支承の剛性の不確かさ及び飛来物の姿勢の不確かさの影響について評価する。なお，長辺衝突 の場合，短辺衝突時に比べて飛来物の受ける風の抵抗が大きく，飛来物衝突速度は低 くなると考えられるが，保守的に短辺衝突と同様の飛来速度にて，飛来物全面が被衝突物に衝突するものとする。
a．飛来物の衝突を考慮する部材の検討
竜巻防護ネットの構造や周辺構造物の配置を踏まえて，飛来物が衝突しうる部材 を設定する。

南北方向の飛来物衝突に関して，北側については防潮壁が近接していること から飛来物衝突を考慮しない。
東西方向の飛来物衝突に関して，西側は原子炉建屋，東側は防潮壁が近接し ているが，保守的に飛来物衝突を考慮する。なお，竜巻防護ネットの対称性 から，代表して西側からの飛来物衝突を考慮する。
鉛直方向の飛来物衝突に関して，竜巻防護ネットの対象性から，代表して西側のフレーム 2 基への飛来物衝突を考慮する。
以上を踏まえ，支持部材のらち飛来物が衝突しうる部材としては，フレームのら ち主桁，横補強材及びブレース並びに大梁が考えられるが，ブレースはネットの上部に設置しており，ネットの吸収エネルギ評価及び破断評価に包含されるため，主桁，横補強材及び大梁を対象とする。
b．飛来物衝突により影響を受ける部材（評価対象）の検討
支持部材を構成する主桁，横補強材，大梁，フレームゴム支承，大梁ゴム支承，可動支承を評価対象とし，a．項に示した部材に飛来物が衝突した際の荷重の伝達経路を考慮して評価ケースを設定する。

表 6－1 に竜巻防護ネットの支持部材の衝突解析における評価ケースを示す。また， これを踏まえ，衝突解析における解析モデルは，3次元 FEMによりフレーム，大梁及 び鋼製材をシェル要素でモデル化する。解析モデル図を図6－1に示す。また，フレー ム配置図を図6－2に，飛来物衝突位置を示した解析モデル図を図6－3にそれぞれ示す。表 6－1に示す評価ケースを基本ケースとし，評価結果については「VI－3－別添1－2－1－1竜巻防護ネットの強度計算書」にて説明する。また，不確かさケースとしてゴム支承 の剛性の不確かさ及び飛来物の姿勢の不確かさの影響について評価した結果について「補足説明資料 710－1 竜巻への配慮が必要な施設の強度に関する説明書の補足説明資料」にて説明する。

a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
$\begin{gathered} \text { 主桁 } \\ (フ レ ー ム G 1) \end{gathered}$	【構造】 主桁は，北側はフレーム ゴム支承により支持さ れ，ゴム支承は基礎ボル トにて海水ポンプ室躯体 に固定されている。南側 は可動支承及び大梁によ り支持されており，大梁 は大梁ゴム支承により支持され，ゴム支承は基礎 ボルトにて海水ポンプ室躯体に固定されている。 また， 2 つの主桁は横補強材により連結している。	主桁	主桁自身への影響を確認するため，曲げ の影響が大きい主桁中央と衝突荷重が集中する主桁端部への水平／鉛直方向の衝突を考慮する。ただし，設置許可段階 での評価結果を踏まえて，ケース G1－EW－ 3 を評価ケースとして選定する。	G1－EW－1	端部 （南側）	水平 EW	$\begin{aligned} & \text { (別紙3 (5)水平 (EW) - } \\ & 1 \text { に対応) } \end{aligned}$
				G1－EW－2	中央	水平 EW	$\left\lvert\, \begin{aligned} & \text { (別紙 } 3 \text { ⑥水平 (EW) - } \\ & 2 \text { に対応) } \end{aligned}\right.$
				G1－EW－3	端部 （北側）	水平 EW	$\begin{array}{\|l\|l} \text { (別紙 } 3 \text { ⑦水平 (EW) - } \\ 3 \text { に対応) } \end{array}$
				G1－NS－1	端部	水平 NS	$\begin{array}{\|l} \text { (別紙 } 3 \text { (4)水平 (NS) - } \\ 1 \text { に対応) } \end{array}$
				G1－V－1	$\begin{gathered} \text { 端部 } \\ \text { (南側) } \\ \hline \end{gathered}$	鉛直	（別紙3（1）鉛直－1に対応）
				G1－V－2	中央	鉛直	（別紙 3対応） （2）鉛直－2に
				G1－V－3	端部 （北側）	鉛直	（別紙3対応） （3）鉛直－3に
	【荷重伝達経路】北側：主桁 \Rightarrow フレームゴ ム支承 \Rightarrow 基礎ボルト \Rightarrow 海水ポンプ室躯体 南側：主桁 \Rightarrow 可動支承 \Rightarrow大梁 \Rightarrow 大梁ゴム支承 \Rightarrow 基礎ボルト \Rightarrow 海水ポンプ室躯体 また，水平方向衝突によ る西側主桁から東側主桁 への荷重伝達は，横補強材を経由する。	横補強材	横補強材への影響を確認するため，横補強材に近い位置で衝突荷重が集中する よう，横補強材取付位置近傍の主桁中央及び主桁端部への水平方向の衝突を考慮する。 なお，鉛直衝突に対しては，主桁の方が十分に曲げ剛性が高く，横補強材には有意な荷重が伝達されないと考えられる ため対象外とする。	G1－EW－1	端部 （南側）	水平 EW	－
				G1－EW－2	中央	水平 EW	－
				G1－EW－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	水平 EW	－
		大梁	大梁に対しての影響を確認するため，大梁に近い位置で衝突荷重が集中するよ う，可動支承近傍の主桁端部への水平／鉛直方向の衝突を考慮する。ただし，設置許可段階での評価結果を踏まえて，ケ ース G1－V－1 を評価ケースとして選定す る。	G1－EW－1	端部 （南側）	水平 EW	$\begin{array}{\|l\|} \hline \text { (別紙3 (5)水平 (EW) - } \\ 1 \text { に対応) } \end{array}$
				G1－NS－1	端部	水平 NS	$\begin{array}{\|c\|} \hline \text { (別紙 3 (4)水平 (NS) - } \\ 1 \text { に対応) } \end{array}$
				G1－V－1	端部 （南側）	鉛直	（別紙3対応） （1）鉛直－1に

a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
$\begin{gathered} \text { 主桁 } \\ (フ レ ー ム G 1) \end{gathered}$	【構造】 主桁は，北側はフレーム ゴム支承により支持さ れ，ゴム支承は基礎ボル トにて海水ポンプ室躯体 に固定されている。南側 は可動支承及び大梁によ り支持されており，大梁 は大梁ゴム支承により支持され，ゴム支承は基礎 ボルトにて海水ポンプ室躯体に固定されている。 また， 2 つの主桁は横補強材により連結している。 【荷重伝達経路】北側：主桁 \Rightarrow フレームゴ ム支承 \Rightarrow 基礎ボルト \Rightarrow 海水ポンプ室躯体 南側：主桁 \Rightarrow 可動支承 \Rightarrow大梁 \Rightarrow 大梁ゴム支承 \Rightarrow 基礎ボルト \Rightarrow 海水ポンプ室躯体 また，水平方向衝突によ る西側主桁から東側主桁 への荷重伝達は，横補強材を経由する。	フレーム	フレームゴム支承に対しての影響を確認するため，フレームゴム支承に近い位	G1－EW－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	水平 EW	－
			ゴム支承近傍の主桁端部への水平／鉛直方向の衝突を考慮する。	G1－V－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	鉛直	－
			大梁ゴム支承に対しての影響を確認す	G1－EW－1	$\begin{gathered} \text { 端部 } \\ \text { (南側) } \end{gathered}$	$\begin{gathered} \text { 水平 } \\ \text { EW } \end{gathered}$	（別紙 3 （5）水平（EW）－ 1 に対応）
		$\begin{gathered} \text { 大梁ゴム } \\ \text { 支承 } \end{gathered}$	中するよう，可動支承近傍の主桁端部へ の水平／鉛直方向の衝突を考慮する。た だし，設置許可段階での評価結果を踏ま	G1－NS－1	端部	$\begin{gathered} \text { 水平 } \\ \text { NS } \end{gathered}$	（別紙3（4）水平（NS）－ 1 に対応）
			選定する。	G1－V－1	$\begin{aligned} & \text { 端部 } \\ & \text { (南側) } \end{aligned}$	鉛直	（別紙3（1）鉛直－1に対応）
			可動支承に対しての影響を確認するた	G1－EW－1	端部 （南側）	水平 EW	（別紙3（5）水平（EW）－ 1 に対応）
		可動支承	の水平／鉛直方向の衝突を考慮する。た だし，設置許可段階での評価結果を踏ま	G1－NS－1	端部	水平 NS	（別紙3（4）水平（NS）－ 1 に対応）
			て選定する。	G1－V－1	端部 （南側）	鉛直	（別紙3（1）鉛直－1に対応）

4. 1-57

a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
$\begin{gathered} \text { 主桁 } \\ (フ レ ー ム G 2) \end{gathered}$	主桁（フレームG1）と同様	主桁	主桁自身への影響を確認するため，曲げ の影響が大きい主桁中央と衝突荷重が集中する主桁端部への水平／鉛直方向の衝突を考慮するが，主桁自身の仕様はフ レームG1と同じため，G1の評価に包絡 される。	－	－	－	－
		横補強材	横補強材への影響を確認するため，横補強材に近い位置で衝突荷重が集中する よう，横補強材取付位置近傍の主桁中央及び主桁端部への水平方向の衝突を考慮するが，G2 には隣接するフレームが配置されていることから対象となる評価 ケースは無い。 なお，鉛直衝突に対しては，主桁の方が十分に曲げ剛性が高く，横補強材には有意な荷重が伝達されないと考えられる ため対象外とする。	－	－	－	－
		大梁	大梁に対しての影響を確認するため，大梁に近い位置で衝突荷重が集中するよ ら，可動支承近傍の主桁端部への水平／鉛直方向の衝突を考慮する。 また，大梁の曲げモーメントが大きくな るように，大梁中央に近い方の東側主桁 に衝突させる。	G2－NS－1	端部	水平 NS	－
				G2－V－1	端部 （南側）	鉛直	－

4．1－58

4. 1-59

4. 1-60

a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
大梁	【構造】 大梁は大梁ゴム支承を介 して基礎ボルトにて海水 ポンプ室躯体に固定され ている。 【荷重伝達経路】 大梁 \Rightarrow 大梁ゴム支承 \Rightarrow 基礎ボルト \Rightarrow 海水ポンプ室躯体	主桁	構造上，有意な荷重が伝達されないため対象外とする。	－	－	－	－
		横補強材	構造上，有意な荷重が伝達されないため対象外とする。	－	－	－	－
		大梁	大梁自身への影響については，BRL式に よる貫通限界板厚以上であることを確認する。	－	－	－	－
		$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	構造上，有意な荷重が伝達されないため対象外とする。	－	－	－	－
				$B-V-1$	中央	鉛直	－
				$B-V-2$	端部	鉛直	－
		可動支承	構造上，有意な荷重が伝達されないため対象外とする。	－	－	－	－

4．1－61

図6－1 解析モデル図

図6－2 フレーム配置図

（主桁への飛来物衝突）

（横補強材への飛来物衝突）

$\longrightarrow: ~$ 評価ケース
\cdots ：評価ケースに包絡されるケース
（大梁への飛来物衝突）

図 6－3 飛来物衝突位置図
（2）構造成立性の確認
前項で整理した評価ケースのらち，設置許可段階で評価結果が厳しくなることが明 らかとなった（別紙 3 参照），フレームゴム支承及び可動支承を対象として，構造健全性を確認する。確認に当たっては，ゴム支承の剛性のばらつき及び飛来物の衝突姿勢 による影響も考慮する。
a．解析モデル
図 6－1 に示す解析モデルとする。飛来物，フレーム及び大梁の各部材はシェル要素でモデル化し，ゴム支承はばね要素にてモデル化する。また，防護板はその質量 を設置しているフレームに考慮する。解析コードは，「LS－DYNA」を用いる。
b．飛来物諸元
飛来物諸元については，表 5－5 と同様である。
c．荷重条件
自重，風圧力及び飛来物の衝撃荷重を考慮する。また，接触条件として飛来物と被衝突物の間の摩擦を考慮し，減衰に関しては考慮しないこととした。
d．拘束条件
可動支承の拘束条件については表 5－6 と同様とする。また，ゴム支承については，表5－14に示す剛性を持つばね要素としてモデル化する。
e．材料物性等
（a）材料定数
飛来物及び竜巻防護ネットの材料定数を表6－3に示す。
材料定数は，「発電用原子力設備規格設計•建設規格 J S M E S N C 1－ 2005／2007」に基づき設定する。

表 6－3 材料定数

	材質	降伏応力 σ_{y} (MPa)	縦弹性係数 E (MPa)
飛来物 （鋼製材）	SS 400 $(\mathrm{t} \leqq 16)$	245	202000
竜巻防護ネット （フレーム及び大梁）	SM490 $(16<\mathrm{t} \leqq 40)$	315	202000

（b）材料の応力ーひずみ関係

材料の応力ーひずみ関係は，バイリニア型とする。
材料に適用する応力ーひずみ関係の概念図を図6－4に示す。

図6－4 応力ーひずみ関係の概念図
（c）ひずみ速度依存性
竜巻による飛来物に対する解析は，衝撃問題で変形速度が大きいため，衝突時 の鋼材のひずみ速度による影響をCowper－Symonds 式により考慮する。

$$
\sigma_{\mathrm{D}}=\sigma_{\mathrm{S}} \cdot\left\{1+\left(\frac{\dot{\varepsilon}}{\mathrm{C}}\right)^{\frac{1}{\mathrm{p}}}\right\}
$$

ここで，σ_{D} は動的応力，$\sigma \mathrm{s}$ は静的応力，$\dot{\varepsilon}$ はひずみ速度， C 及び p はひずみ速度依存性のパラメータである。

ひずみ速度依存性パラメータを表6－4に示す。

表6－4 ひずみ速度依存性パラメータ

	飛来物 （鋼製材）	竜巻防護ネット （フレーム及び大梁）
材質	SS400	SM490
$\mathrm{C}(1 / \mathrm{s})$		
p		

（d）破断ひずみ
衝突解析における許容限界は，鋼材の破断ひずみを設定する。破断ひずみにつ いては，J I S に規定されている伸びの下限値を基に設定するが，「NEI07－13： Methodology for Performing Aircraft Impact Assessments for New Plant Designs」においてTF（多軸性係数）を \square とすることが推奨されていることを踏 まえ，安全余裕として $\mathrm{TF}=\square$ を考慮して設定する。

> 枠囲みの内容は商業機密の観点から公開できません。
f．解析ケース
解析ケースを表6－5に示す。衝突位置及び衝突方向は，設置許可段階でフレーム ゴム支承及び可動支承の評価結果が厳しかった，図6－5に示す位置及び方向とする。

表 6－5 解析ケース

No．	評価ケース	ゴム支承剛性値		飛来物の衝突条件			
		水平剛性 （ $\mathrm{kN} / \mathrm{mm}$ ）	鉛直剛性 （ $\mathrm{kN} / \mathrm{mm}$ ）	衝突位置	衝突 姿勢	衝突 方向	衝突速度 $(\mathrm{m} / \mathrm{s})$
1	G1-V-3 －基本	3.33	972	主桁 （フレームゴ ム支承近傍）	短辺	鉛直	16． 7
2	$\begin{array}{\|l\|} \hline \text { G1-V-3 } \\ \text {-不確かさ (+) } \\ \hline \end{array}$	5.00	1700				
3	$\begin{array}{\|l\|} \hline \text { G1-V-3 } \\ \text {-不確かさ (-) } \\ \hline \end{array}$	2.33	42.7				
4	$\begin{array}{\|l} \text { G1-EW-3 } \\ \text {-基本 } \end{array}$	3． 33	972			水平	46.6
5	$\begin{array}{\|l\|} \hline \text { G1-EW-3 } \\ \text {-不確かさ(+) } \end{array}$	5.00	1700				
6	$\begin{array}{\|l\|} \hline \text { G1-EW-3 } \\ \text {-不確かさ (-) } \\ \hline \end{array}$	2． 33	42.7				
7	$\begin{array}{\|l} \text { G1-EW-1 } \\ \text {-基本 } \end{array}$	3.33	972	主桁 （可動支承近傍）	短辺	水平	46.6
8	$\begin{array}{\|l\|} \hline \text { G1-EW-1 } \\ \text {-不確かさ (+) } \\ \hline \end{array}$	5.00	1700				
9	$\begin{array}{\|l\|} \hline \text { G1-EW-1 } \\ \text {-不確かさ (-) } \\ \hline \end{array}$	2． 33	42.7				
10	$\begin{aligned} & \text { G1-V-1 } \\ & \text {-基本 } \end{aligned}$	3． 33	972				
11	$\begin{array}{\|l} \text { G1-V-1 } \\ \text {-不確かさ (+) } \end{array}$	5.00	1700			鉛直	16． 7
12	$\begin{array}{\|l\|} \hline \mathrm{G} 1-\mathrm{V}-1 \\ \text {-不確かさ(-) } \\ \hline \end{array}$	2． 33	42.7				
13	$\begin{array}{\|l\|l} \text { G1-V-3 } \\ \text {-長辺 } \\ \hline \end{array}$	3． 33	972	主桁	長辺	鉛直	16.7
14	G1－EW－3 －長辺			ム支承近傍）		水平	46.6
15	$\begin{aligned} & \text { G1-EW-1 } \\ & \text {-長辺 } \\ & \hline \end{aligned}$			主桁 （可動支承近 傍）			
16	G1-V-1 －長辺					鉛直	16． 7

（ゴム支承の剛性のばらつきによる不確かさの影響確認）

（飛来物の衝突姿勢による不確かさの影響確認）

図 6－5 飛来物衝突位置及び衝突方向
g．解析結果
（a）基本ケースにおける構造成立性及びゴム支承の剛性のばらつきによる影響
基本ケース及びゴム支承の剛性のばらつきによる影響を考慮した解析ケースに対する，フレームゴム支承の衝突解析結果を表6－6に，可動支承の衝突解析結果 を表6－7にそれぞれ示す。全ての解析ケースにおいて，フレームゴム支承及び可動支承の部材に発生する応力等は許容値を超えず，構造強度上の評価方針を満足 することを確認した。また，ゴム支承の剛性のばらつきによる影響は比較的軽微 であると考えられる。

表 6－6 フレームゴム支承の衝突解析結果＊1

評価対象部位		評価項目	$\frac{\text { No. } 1}{\text { 発生値 }}$		$\frac{\text { No. } 2}{\text { 発生値 }}$		$\frac{\text { No. } 3}{\text { 発生値 }}$		$\frac{\text { No. } 4}{\text { 発生値 }}$		$\frac{\text { No. } 5}{\left(\text { 発生値 }^{2}\right.}$		$\begin{gathered} \text { No. } 6 \\ \hline \text { 発生值 } \end{gathered}$		許容値	
		西側	東側													
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	ゴム体		応力度 （引張）	0.7	0.5	0.6	0.4	0.2	0.2	0.4	0.3	0.4	0.3	0.2	0.2	2.0 MPa
		$\begin{aligned} & \text { せん断 } \\ & \text { ひずみ } \end{aligned}$	60	66	40	44	85	94	65	70	44	48	91	99	250 \％	
		応力度 （圧縮）	2	1	2	1	1	1	1	1	1	1	1	1	23 MPa	
	内部鋼板	応力度 (引張)	22	11	22	11	11	11	11	11	11	11	11	11	280 MPa	
	$\begin{aligned} & \text { 取付 } \\ & \text { ボルト } \end{aligned}$	応力度 （組合せ）	72	94	75	97	70	73	88	88	93	90	71	76	420 MPa	
	$\begin{aligned} & \text { 基礎 } \\ & \text { ボルト } \end{aligned}$	応力度 （組合せ）	59	55	60	57	45	48	54	56	57	58	48	51	257 MPa	

注記 $* 1$ ：本表に記載の結果は暫定値。

表 6－7 可動支承の衝突解析結果＊1

評価対象部位		評価項目	No． 7		No． 8		No． 9		No． 10		No． 11		No． 12		許容値	
		発生値	発生値													
		西側	東側													
可動支承	構造部材		水平荷重	1276	726	1249	752	1316	721	596	378	587	390	621	379	2900 kN
			鉛直荷重 （圧縮）	364	269	372	265	332	268	629	110	701	101	735	150	5600 kN
		鉛直荷重 （引張）	442	420	356	419	448	322	319	198	397	192	272	253	1800 kN	

注記 $* 1$ ：本表に記載の結果は暫定値。
（b）飛来物の衝突姿勢に対する影響
基本ケース及び飛来物の衝突姿勢に対する影響を考慮した解析ケースに対する， フレームゴム支承の衝突解析結果を表 6－8 に，可動支承の衝突解析結果を表 6－9 にそれぞれ示す。全ての解析ケースにおいて，フレームゴム支承及び可動支承の部材に発生する応力等は許容値を超えず，構造強度上の評価方針を満足すること を確認した。なお，ゴム支承に対しては衝突姿勢を長辺衝突とした場合の影響は軽微であったが，可動支承に対しては与える影響が大きい傾向が見られた。

長辺衝突では，短辺衝突に対して荷重作用面が大きいため飛来物の局部に作用 する荷重は小さく，また，細長比が小さいことから，飛来物の圧壊に対する強度 が高く，衝突時エネルギ消費がないため，被衝突物に伝達される荷重が大きくな ったものと考えられる。また，図 6－6に示すとおり，ゴム支承に対しては，支承 の配置上，支承の設置位置と飛来物の衝突位置の中心が合わないことにより，飛来物の衝突によるエネルギは支承部に集中せず分散したと考えられる。一方，可動支承に対しては，影響が大きくなるよう支承の設置位置と飛来物の衝突位置の中心を合わせていることで，飛来物の衝突によるエネルギが支承部に十分に伝達 され，支承部に与える影響が大きくなったと考えられる。

図 6－6 飛来物衝突位置の概要（長辺衝突）

表 6－8 フレームゴム支承の衝突解析結果＊1

評価対象部位		評価項目	No． 1		No． 13		No． 4		No． 14		許容値	
		発生値	発生値		発生値		発生値					
		西側	東側	西側	東側	西側	東側	西側	東側			
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$			応力度（引張）	0.7	0.5	0.5	0.4	0.4	0.3	0.4	0.6	2．0 MPa
	ゴム体		せん断ひずみ	60	66	60	66	65	70	64	70	250 \％
		応力度（压縮）	2	1	1	1	1	1	1	1	23 MPa	
	内部鋼板	応力度（引張）	22	11	11	11	11	11	11	11	280 MPa	
	取付ボルト	応力度（組合せ）	72	94	68	91	88	88	93	109	420 MPa	
	基礎ボルト	応力度（組合せ）	59	55	54	54	54	56	56	62	257 MPa	

注記＊ 1 ：本表に記載の結果は暫定値。

表 6－9 可動支承の衝突解析結果＊1

注記 $* 1: ~$ 本表に記載の結果は暫定値。
（3）不確かさケースの設定
構造成立性の結果を踏まえ，表 6－1にて整理した基本ケースに対して，ゴム支承の剛性のばらつきによる影響及び飛来物の衝突姿勢による影響をそれぞれ確認する。
a．ゴム支承の剛性のばらつきによる影響評価（不確かさケース（1））
ゴム支承の剛性の変化が評価に与える影響が大きいのは，支承部の評価に対して であると考えられることから，フレームゴム支承及び可動支承部の評価に対して， ゴム支承の不確かさ（剛性のばらつき）による影響を確認する。結果については，「6．（2）g．（a）基本ケースにおける構造成立性及びゴム支承の剛性のばらつきによ る影響」より，各種依存性試験を踏まえたゴム支承の剛性のばらつきを考慮しても，基本ケースに対する影響は軽微であったものの，他の基本ケースの結果を踏まえ，裕度が小さいケースに対しても，影響評価を実施することとする。
b．飛来物の衝突姿勢による影響評価（不確かさケース（2））
竜巻防護ネットの構造や周辺構造物の配置関係を踏まえると，飛来物の長辺衝突 が起こり得る可能性は低いと考えられるが，「6．（2）g．（b）飛来物の衝突姿勢に対す る影響」より，飛来物の衝突する位置によっては与える影響が大きい傾向が見られ ることから，基本ケースに対して長辺衝突し得るケースについては，飛来物衝突姿勢の不確かさによる影響を確認することとする。

不確かさケースの選定の考え方を表 6－2 に示す。

表 6－2 不確かさケースの選定の考え方（1／2）

a．飛来物衝突部材	b．評価対象	基本ケース			不確かさケース（1） （剛性のばらつき）	$\begin{aligned} & \text { 不確かさケース (2) } \\ & \text { (飛来物衝突姿勢) } \end{aligned}$
		ケース	衝突位置	衝突 方向		
$\begin{gathered} \text { 主桁 } \\ (フ レ ー ム G 1) \end{gathered}$	主桁	G1－EW－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	水平 EW	－＊1	評価実施
	横補強材	G1－EW－1	端部 （南側）	水平 EW		
		G1－EW－2	中央	水平 EW		
		G1－EW－3	端部 （北側）	水平 EW		
	大梁	G1－V－1	端部 （南側）	鉛直		
	$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	G1－EW－3	$\begin{gathered} \text { 端部 } \\ \text { (北側) } \\ \hline \end{gathered}$	水平 EW	評価実施 （前項参照）	
		G1－V－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	鉛直		
	$\begin{gathered} \text { 大梁ゴム } \\ \text { 支承 } \end{gathered}$	G1－V－1	端部 （南側）	鉛直	－＊1	
	可動支承	G1－EW－1	$\begin{aligned} & \text { 端部 } \\ & \text { (南側) } \end{aligned}$	水平 EW	評価実施 （前項参照）	
横補強材(フレームG1)	大梁	G1－V－4	中央	鉛直	－＊1	横補強材の上フラン ジの寸法が飛来物の長辺寸法未満であ り，衝突しないこと から，評価実施しな い
		G1－V－5	端部	鉛直		
	$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	G1－V－6	中央	鉛直		
		G1－V－7	端部	鉛直		
	大梁ゴム 支承	G1－V－4	中央	鉛直		
		G1－V－5	端部	鉛直		
	可動支承	G1－V－4	中央	鉛直		
		G1－V－5	端部	鉛直		

注記＊ 1 ：基本ケース全体の結果を踏まえ，裕度の小さいケースに対して評価を実施する。

表 6－2 不確かさケースの選定の考え方（2／2）

a．飛来物衝突部材	b．評価対象	基本ケース			不確かさケース（1） （剛性のばらつき）	不確かさケース（2） （飛来物衝突姿勢）
		ケース	衝突位置	$\begin{aligned} & \text { 衝突 } \\ & \text { 方向 } \\ & \hline \end{aligned}$		
$\begin{gathered} \text { 主桁 } \\ \text { (フレームG2) } \end{gathered}$	大梁	G2－NS－1	端部	水平 NS		
		G2－V－1	端部 （南側）	鉛直		
	$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	G2－V－2	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	鉛直		
	大梁ゴム支承	G2－NS－1	端部	水平 NS		
		G2－V－1	端部 （南側）	鉛直		
	可動支承	G2－NS－1	端部	$\begin{gathered} \text { 水平 } \\ \text { NS } \end{gathered}$		
		G2－V－1	端部 （南側）	鉛直		
$\begin{gathered} \text { 横補強材 } \\ \text { (フレームG2) } \end{gathered}$	大梁	G2－V－3	中央	鉛直		
		G2－V－4	端部	鉛直	－＊1	評価実施
	$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	G2－V－5	中央	鉛直		
		G2－V－6	端部	鉛直		
	$\begin{gathered} \text { 大梁ゴム } \\ \text { 支承 } \end{gathered}$	G2－V－3	中央	鉛直		
		G2－V－4	端部	鉛直		
	可動支承	G2－V－3	中央	鉛直		
		G2－V－4	端部	鉛直		
大梁	$\begin{gathered} \text { 大梁ゴム } \\ \text { 支承 } \end{gathered}$	B－V－1	中央	鉛直		
		B－V－2	端部	鉛直		

注記＊1：基本ケース全体の結果を踏まえ，裕度の小さいケースに対して評価を実施する。

7．まとめ
本資料では，竜巻防護ネットのうち支持部材の強度評価に係る設計方針及び評価方針を示し，構造成立性について確認した。
－詳細設計段階において，設置許可段階の説明事項から方針変更がないことを確認し た。
－ゴム支承の鉛直剛性に係る特性試験を実施し，衝突解析におけるゴム支承剛性の設定方針，解析モデルの設定及び評価ケースの考え方を示した。
－試験結果を踏まえたゴム支承の剛性の不確かさ及び衝突姿勢による不確かさも考慮し，衝突解析の代表的な評価ケースに対して，構造成立性が確保できることを確認した。また，ゴム支承のゴム体に生じる引張応力が許容値を満足し，フレームが浮き上がるような損傷モードが発生しないことを確認した。
なお，詳細設計段階における対応事項について，別紙 6 に示す。

以上

先行プラントとの設計方針の比較（EP まとめ資料抜粋）

別紙 1
竜巻施護ネットの設計方針に関する先行ブラントとの比較

竜巻防護ネットツ設計方針等について，先行ブラントと比較した結果を表1に整理する。構成部村のうち，ネット（金綗部）と防護板は先行ブラントと構造設計の相違がないが，ゴム支承及び可動支承を用いることで先行プラントと支持部材が異 なることを新まえて，支持部材に対する設計方針について比較を実施した。

表1 竜巻に対する設計の基本方針，竜卷防護ネットの設計方針等の比較

カアン1	女州	（事考）菓海第二	甹军理由
菓普に行方 	 6. 	 よ 技梫）	美嶪無し
 ゆ設計方野	 	 計とする。 設）	3\％碞名称の祖䢒
疑計少针	 	 服海を生にない設計にすS 計算の方針 2.2 構造强度の教非力针（3）䄸螎）	
支姷樯能境揌保する锃材	 	桭	
支共的析市 			

女川 2 号师の竜巻防護ネットは，先行ブラントと支持構造に相違はあるが，「竜巻に対する設計の基本方針」，「竜巻防護ネットの設計方釷」，「支持部材の設計方針」，「評価項目」に対して，先行プラントとの相違はないことを確䛱した。

ゴム支承のせん断剛性の衝突解析への適用性（EP まとめ資料抜粋）

別紙3（補足1）

衝突解析に対するゴム支承の影響に対する検討

竜巻防護ネットに採用する地震時水平力分散型ゴム支承は，ゴム支承のせん断剛性を利用して，上部構造の慣性力を複数の下部構造に分散させる機能を持 つ。耐震設計については「道路橋示方書•同解説（（社）日本道路協会，平成 14年 3 月）」及び「道路橋支承便覧（（社）日本道路協会，平成16年4月）」に則 り，線形ばね要素でモデル化し，ゴム支承による荷重の低減効果を見込んだ耐震評価を実施する。（竜巻防護ネットの耐震評価方針については，設置許可基準規則第 4 条に対する適合状況説明資料『設計基準対象施設について（第 4 条地震による損傷の防止）』で説明）

一方，飛来物の衝撃荷重によるゴム支承の影響•評価については，先行プラ ントにおいて審査実績がないことや，評価に関わる規格類が制定されていない ことを踏まえ，衝突解析におけるゴム支承の影響について，以下のとおり検討 を実施した。

1．飛来物衝突時と地震時におけるゴム支承変位速度の比較
（1）検討方法
竜巻防護ネットのフレームはゴム支承に支持されているため，飛来物が衝突した場合や地震時にはフレームが移動する。フレームの移動速度が飛来物衝突時と地震時で異なる場合，ゴム支承の挙動が異なることが考えら れる。

この影響を検討するため，飛来物衝突後のフレーム移動速度から想定さ れるゴム支承の変位速度と，耐震評価において想定するゴム支承の変位速度を比較し検討する。
（2）飛来物衝突時のフレーム速度の算出
竜巻防護ネットのフレームに飛来物が衝突した際のフレームの移動速度 は，衝突前後の運動量保存則から算出する。算出にあたつて，ゴム支承のば ね剛性はフレームの移動に対し抵抗となり得るが，この影響はないものとし て扱ら。飛来物はフレームの南側に衝突し，衝突後はフレームと飛来物が一体となって移動を始めるものとする。（図1参照）

以上の条件から，運動量保存則から以下の式が成り立つ

$$
\mathrm{mv}=(\mathrm{m}+\mathrm{M}) \quad \mathrm{V} \cdots(1)
$$

ここで， m ：設計飛来物（鋼製材）重量（ $\mathrm{m}=135 \mathrm{~kg}$ ）
v ：設計飛来物（鋼製材）衝突速度（ $\mathrm{v}=46.6 \mathrm{~m} / \mathrm{s}$ ）
M ：フレーム重量（ $\mathrm{M}=62000 \mathrm{~kg}$ ）
V ：衝突後のフレーム移動速度（m／s）

6 条（竜巻）－別添 1 —添付 3.7 —別紙 $3-5$

図1 飛来物衝突前後のイメージ
（1）式より，

$$
\begin{aligned}
\mathrm{V} & =\mathrm{mv} /(\mathrm{m}+\mathrm{M}) \\
& =135 \times 46.6 /(135+62000) \\
& \fallingdotseq 0.1(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

上記のとおり，フレームの質量が飛来物に比べて著しく大きいことから，衝突後のフレームの移動速度は最大でも約 $0.1 \mathrm{~m} / \mathrm{s}$ となる。フレームはゴム支承に支持されていることから，ゴム支承の変位速度はフレームの移動速度と同等の速度になると想定される。
（3）ゴム支承特性試験について
ゴム支承の動的特性を把握するための試験のうち振動数依存性試験を実施している。本試験は，ゴム支承を振幅 95 mm の単振動（ $0.1 \sim 1 \mathrm{~Hz}$ の振動数） でせん断変形させた際の剛性を実測したものである。試験結果を図 2 に示す。
（図 2 は「設置許可基準規則第 4 条に対する適合状況説明資料『設計基準対象施設について（第 4 条 地震による損傷の防止）』」より抜粋）

ここで，変位 $\mathrm{x}=\mathrm{A} \sin \omega \mathrm{t}$ より $(\mathrm{A}=95 \mathrm{~mm}, \omega=2 \pi \mathrm{f}, \mathrm{f}=0.1,0.5,1.0 \mathrm{~Hz})$変位速度 $\mathrm{x}=\mathrm{A} \omega \cos \omega \mathrm{t}$ であるから，変位速度の最大値は $\mathrm{A} \omega$ となる。

$$
\begin{aligned}
& \mathrm{f}=0.1 \mathrm{~Hz} \text { のとき, } \mathrm{A} \omega=95 \times 2 \pi \times 0.1 \fallingdotseq 0.06 \mathrm{~m} / \mathrm{s} \\
& \mathrm{f}=1.0 \mathrm{~Hz} \text { のとき, } \mathrm{A} \omega=95 \times 2 \pi \times 1.0 \fallingdotseq 0.60 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

よって振動数依存性試験における変位速度の最大値は約 $0.06 \sim 0.60 \mathrm{~m} / \mathrm{s}$ の範囲となる。試験結果から，この速度範囲において，せん断剛性の変化は無視できるものであることを確認している。

6 条（竜巻）一別添 1 —添付 3.7 —別紙 3－6

＊2Hz，4Hz の結果は補正式より算出
（c）振動数依存性試験

図2 せん断特性試験結果

6 条（竜巻）一別添 1 －添付 3.7 —別紙 3－7
（4）検討結果
飛来物衝突後のフレーム移動速度から想定されるゴム支承の変位速度は約 $0.1 \mathrm{~m} / \mathrm{s}$ 程度である。一方，振動数依存性試験結果から，ゴム支承の変位速度が約 $0.06 \sim 0.60 \mathrm{~m} / \mathrm{s}$ の速度範囲において，せん断剛性の変化は無視できる ものであることを確認している。
よって，飛来物衝突時のゴム支承の変位速度は，振動数依存性試験で確認 している速度範囲内であることから，飛来物衝突時においてもゴム支承のせ ん断剛性は適用できると考える。

2．衝突解析におけるゴム支承境界条件の影響確認
前項の検討を踏まえて，耐震評価に使用したせん断剛性を考慮した衝突解析を実施し，衝突解析におけるゴム支承せん断剛性の影響を確認する。
（1）検討方法
ゴム支承に支持される竜巻防護ネットに飛来物が衝突した場合，飛来物に よる衝撃荷重がフレームや大梁を介しくゴム支承に伝わり変形することに より，衝撃荷重が低減されることが考えられる。

この影響について，衝突解析におけるゴム支承の境界条件を耐震評価に使用した線形ばねモデルと同等としたものと，ゴム支承の影響を排除する観点 で 3 方向固定としてモデル化したものでそれぞれ衝突解析を実施し，ゴム支承と可動支承へ伝達される衝撃荷重の差を比較する。
（2）検討における解析条件
衝突解析は，解析コード「LS－DYNA」を用いて3次元 FEM モデルによりフ レームをモデル化し評価を実施する。フレームはシェル要素でモデル化し，境界条件は端部を固定条件としたものと，ゴム支承を線形ばねモデルとし，水平剛性を考慮したものでそれぞれ解析を実施する。可動支承の境界条件は，可動方向はフリー，固定方向は固定の条件とする。飛来物の衝突方向につい ては，ゴム支承の剛性が小さく，変形が大きい水平方向からの水平衝突とし，衝突位置はフレームの中央に衝突したケースを代表として実施する。検討に おける解析条件を表1に，検討に用いる衝突位置や解析モデルを図3に示す。

6 条（竜巻）一別添 1 —添付 3.7 —別紙 3－8

表1 検討における解析条件

検討ケース		$\begin{aligned} & \text { (1)フレームゴム支承部を固定 } \\ & \text { としてモデル化 } \end{aligned}$	（2）フレームゴム支承部を線形ばねモデル化
解析モデル		LS－DYNA による 3 次元 FEM モデル	
境 界 条 件	ゴム支承	固定条件	$\begin{gathered} \text { 線形ばねモデル*1 } \\ \text { 水平剛性 : } 2.689(\mathrm{kN} / \mathrm{mm}) \\ \text { 鉛直方向: } 863(\mathrm{kN} / \mathrm{mm}) \end{gathered}$
	可動支承	可動方向は拘束なし非可動方向は固定条件	
衝突方向		ゴム支承の剛性が小さく，変形量が大きい水平方向（西から東）からの衝突	
衝突位置		フレーム中央	

＊ 1 ：耐震評価モデルと同様の水平剛性を設定

図 3 ゴム支承の影響検討における飛来物衝突位置及び解析モデル図

6 条（竜巻）－別添 1 －添付 3.7 －別紙 3－10
（3）検討結果
検討の結果，ゴム支承と可動支承へ伝達される衝撃荷重は，ゴム支承の境界条件を固定条件とした場合に大きな反力が発生する結果となることを確認した。特にゴム支承における衝撃荷重に大きな差が生じており，ゴム支承 のせん断剛性を固定条件とすると，ゴム支承自体に発生する衝撃荷重が非常 に大きくなることを確認した。検討結果を表2に示す。
なお，今回の検討は水平方向からの衝突に対する結果であるが，ばね剛性 を考慮することによる影響は鉛直方向についても同様であり，境界条件を固定とした場合，衝撃荷重は大きくなることが想定される。

表2 ゴム支承せん断剛性影響の検討結果

評価対象			衝撃荷重（ピーク値）（kN） ゴム支承境界条件	
			固定	せん断剛性有
ゴム支承 （東側）	X 方向	＋側	456	2
		－側	－478	－4
	Y 方向	＋側	229	1
		一側	－265	－24
ゴム支承 （西側）	X 方向	＋側	429	4
		一側	－415	－2
	Y 方向	＋側	224	1
		－側	－260	－24
可動支承 （東側）	X 方向	＋側	0	0
		－側	0	0
	Y 方向	＋側	454	424
		－側	－508	－392
可動支承 （西側）	X 方向	＋側	0	0
		一側	0	0
	Y 方向	＋側	300	265
		－側	－375	－355

3．まとめ
衝突時と地震時においてゴム支承の変位速度について有意な差がないことか ら，衝突解析においても耐震評価と同等条件でゴム支承をモデル化した評価が適用可能と考えられる。
そこで，ゴム支承のせん断剛性を考慮したものと，考慮しない固定条件とし たものでそれぞれ衝突解析を実施し，衝突時におけるゴム支承のせん断剛性の影響を確認した。解析の結果から，ゴム支承を固定条件とすると特にゴム支承自体に発生する衝撃荷重が非常に大きくなることを確認した。この場合，ゴム支承の下部構造に伝達される荷重も大きくなるため，下部構造に対しても厳し い条件となることを確認した。

6 条（竜巻）一別添 1 －添付 3.7 －別紙 3－11

支持部材の構造成立性について（EP まとめ資料抜粋）

别紙 3

童券防護ネットの構造成立姓確㒛結果について（STEPI）

1．解析条件

衝突解析は，ごム支承による影響が最も大きくなると想定される条件（摽来物薆勢，衙突位冨，飛来方向）で実施し，ゴム支隶め影響を考慮した場合にまふいて，フ レームざム支承，可動文承がフレームを支持する機能を維持可能な構造強度を有ず ることを確認する。

評価対象は支持機能に大きな影響を与える部材をあるフレームゴム支承と可動交承とする。解析条件と飞の考え方を表1，2 及ひ脐2 に示す。

図 1 STEP1 構造成立性磪認フロー

6条（竜巻）一別添1—䄻村3．7－別䇅3－1

表1 STEP1 D解析条件

殷穴愐目	設定条旿	考え方
	周貫䂔值く用い （素2素胞）	 この委伦速度は，地震時のぎム支承の動的特性を把握するために奏旅し 承のせん涍㡀性を適用する。
枟容方面	桃平方面	 響方大类い方勿。
	三八厶支乘近傍	
飛来物安荌		

表2 フレームゴム支承，可動支承の結合条件

方間	フレームッ゙ム支事	可䳪文我
8	弾性	白由
\％	弾性	刪
2	炜	刚

図2 裂来物新突位直及せ解析モデル図（STEP1）

2．䏽析詰㡽

枰仾好㝵			些出值			
		或相	戠县			
	D +8 体		道力度（引焅）	1．2 MPa	0． 7 Ma	$2.0 \mathrm{Mra}^{\text {a }}$
		＋	61%	609	250×3	
			2．397a	2.19 Fa	29.8 Kral $^{\text {en }}$	
		皆力璂（3）根）	2actia	203 Ela		
			G）${ }^{\text {a }}$	stura	42 $\mathrm{MHP}^{\text {a }}$	
	$4 \rightarrow 2$ 早－4 4			6805	$244 \mathrm{MFa}^{\text {en }}$	

評俨対象			砰研項目	䈣生值［9Pa］		许容值［ $\mathrm{XXPa}^{\text {a }}$＊	
			西㑡	東溉			
$\begin{aligned} & \text { 可娌 } \\ & \text { 支集 } \end{aligned}$	（1）イールブレー			支圧灾力	18	21	351
	2＋くり村		支住応力	22	25	60 （ $\boldsymbol{\text {－}}$－ －值）	
	3龶繒ごム		支圧灾力	18	21	50 （ 1 －方－値）	
	4ビストン		曲ば必力	65	74	280	
	5里金		文珃灾力	57	65	335	
			世ん斯庶力	16	15	148	
	かんースザット	突出䭒	曲げ尤力	33	32	258	
			交仼尥力	67	66	351	
		支厈部	交圧忍力	110	110	351	
			曲げ灾力	400	390	343	
	（1）		引張心力	8.8	8.7	343	
			せん斯施力	54	54	198	
	8）レール取付ボ目		引張忍力	600	600	525	
	9xさドロート	椄合がルト	引張応力	450	450	420	
	（1）上認拱合ボル1		せん斯応力	220	220	323	
	110下認挍合析」		組合せ	$\begin{aligned} & 208 \\ & (211) \end{aligned}$	$\begin{aligned} & 206 \\ & (212) \\ & \hline \end{aligned}$	榎2	
	18ッースブロー1		世ん斯応力	11	11	198	
			曲げ免力	180	170	343	

■：支株機龍に係る部材
：支持棲能に集る部朽のうも許容値を超えるもの
注）上記の評健項目については綌度が小さい㖽目を伐表して記載している。

図4 可動支承の構造図

6 条（童巻）一別添 1－棌付 3．7－別紙 3－4

影椋 4

$$
\begin{aligned}
& \text { (交持韩來全体め) 構造成立栍) }
\end{aligned}
$$

1．評価方法
 るため，龱1に示すフローで評価を奉旅する。

図1 STEP2竍価フロー

2．二゙山㓮性め桔合条件を3方向国定（STEP2－1）
（1）解析条件

表1 STEP2－1 解析条件

傹建㖵目	設定条件	考克少
$\begin{array}{\|c\|c\|} \hline \text { 1支市 } \\ \text { 甽珄 } \\ \hline \end{array}$	3 方同冨定 （友2素睡）	
陠突方何		（上豊及
	7103－8	 （即）（6） は以近䄱に連粱（ C ，（8） （7）
		齐场設定

艻可	フレーム任交交本	可動交亲
\pm	制	自曲
γ	削	标
2	䀦	傫

（2）解析祮果

性を考虚した衝塋䚪析を行い，緸浩成立性の確認を行う。

漌足きサる办籵をする

袁3 STEP2－1 に打ける解析結果

																	杆舜偖	
			（2）		\％		（4）		（b）		6		（4）					
		知真－1	firita				N（FF（NS）－ 1		本F．（LX）－1		木平（EW）－		1．7（EM）					
	ザローム			0.23		0.46		1．66		L． 41		1． 12		1.83		9， $05^{\text {T }}$		2.0
	大雨			$\begin{aligned} & 260 \\ & (364) \end{aligned}$		$\begin{array}{r} 160 \\ (364) \\ \hline \end{array}$		$\begin{array}{r} 110 \\ (364) \\ \hline \end{array}$		$\begin{array}{r} 120 \\ (364) \\ \hline \end{array}$		$\begin{aligned} & 180 \\ & (364) \end{aligned}$		$\begin{gathered} 130 \\ (364) \end{gathered}$		$\begin{aligned} & 120 \\ & (164) \end{aligned}$		\＄2
773	本缶	充力度（組合胣）（MPa）	$\begin{array}{r} 100 \\ \text { (343) } \\ \hline \end{array}$		$\begin{gathered} 64 \\ \text { (342) } \\ \hline \end{gathered}$		$\begin{array}{r} \hline 45 \\ (34.3) \\ \hline \end{array}$		$\begin{gathered} 47 \\ (1433) \\ \hline \end{gathered}$		$\begin{gathered} 83 \\ (143) \\ \hline \end{gathered}$		$\begin{gathered} 53 \\ (243) \end{gathered}$		$\begin{aligned} & 46 \\ & (343) \end{aligned}$		無2	
			140		100		79		84		130		100		84		294	
			西㣐	里们	西陶	宋仵	西偫	里俈	西㑡	東㑑	西椎	策偡	西㑲	東溉	西㑑	車间	－	
$\left.\begin{gathered} 7-4 \\ y^{2} 2 \\ \frac{7}{7} \end{gathered} \right\rvert\,$	2 ${ }^{\text {a }}$ 体		0	0	t． 4	0.9	14	0.6	0.3	0.2	0,1	0	1.2	0.9	23	3.4	2.0	
		世ん斯》－1ス（\％）	88	56	190	200	310	${ }^{93}$	170	140	130	190	230	240	360	310	250	
		发力度伍部）（MFa）	1.2	1．2	3.4	2.6	42.8	2.1	2.2	L． 8	1.6	2.2	3.8	3.4	25	7.7	29.8	
			11	11	33	24	450	20	21	17	15	21	36	32	240	72	280	
	取行戈號		$\begin{array}{\|c\|} \hline 45 \\ 4800 \end{array}$	$\begin{array}{\|c\|} \hline 44 \\ (430) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 160 \\ \hline 4209 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 160 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 660 \\ \hline 1308 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \frac{95}{} \\ \hline 4200 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 140 \\ 420 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 120 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 100 \\ \hline \text { 1420) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 160 \\ 420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 200 \\ \hline \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 210 \\ (4201) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 420 \\ (345) \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 310 \\ (3922) \\ \hline \end{array}$	該2	
			$\begin{gathered} 40 \\ (294) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 38 \\ 1394 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 170 \\ \hline 559 \\ \hline \end{array}$	$\begin{aligned} & \hline 760 \\ & \hline 2535 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} \hline 370 \\ 165 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 93 \\ \hline 1294 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 120 \\ \hline \\ \hline \end{array}$	$\begin{array}{r} 110 \\ (394) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 100 \\ 1294 \\ \hline \end{array}$	$\begin{array}{r} 130 \\ -255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 180 \\ \hline 2300 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 180 \\ 12501 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 310 \\ 1110\rangle \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 219 \\ 1 \\ \hline \end{array}$	含2	
	3 4 隹		1.2		0.7		0，2		0.3		Q． 8		0.6		0.2		2.0	
		＋2．	110		96		89		95		170		12.		91		250	
			4.7		2.8		1.8		1.9		3.2		2.3		1.9		23.1	
			50		30		19		20		34		25		20		280	
	取付ま゙か		$\begin{array}{r} 110 \\ 4800 \\ \hline \end{array}$		$\begin{aligned} & 1200 \\ & 4209 \end{aligned}$		$\begin{array}{r} 100 \\ (420) \\ \hline \end{array}$		$\begin{array}{r} 110 \\ 4200 \\ \hline \end{array}$		$\begin{gathered} 180 \\ (420) \\ \hline \end{gathered}$		$\begin{array}{r} 140 \\ (420) \end{array}$		$\begin{array}{r} 100 \\ (420) \\ \hline \end{array}$		\％2	
$\begin{aligned} & \text { 可赖 } \\ & \text { 专浱 } \end{aligned}$	2－nctk－1	处力仼柂）（MPa）	坥	23	33	22	13	13	15	14	22	24	19	18	16	14	351	
			100	28	40	27	16	18	18	17	27	30	23	22	15	17	（6）	
	生施）		运	23	33	23	13	13	15	14	18	24	19	18	15	14	50	
	\％ 18		230	81	120	79	48	46	54	49	80	86	65	65	53	48	280	
	国金		200	70	100	69	41	49	47	43	70	75	88	57	46	48	335	
		发力力（t＋A．＊＊）（MFa）	43	20	21	12	2.5	0.1	3.8	2.1	20	10	14	11	2.7	0，4	148	
			91	43	45	24	7.3	6.2	7.9	6． 1	42	21	30	23	5.5	0.8	258	
			190	89	42	50	15	0.3	16	14	85	44	61	47	11	1.5	351	
			93	82	61	68	51	62	61	63	160	230	95	110	54	56	351	
	$1-$	或方（曲げ）（ MFa ）	430	320	260	250	170	160	200	210	550	740	340	390	180	180	343	
			25	12	12	6.6	2.0	0.1.	2.2	1.9	11	5.8	3． 1	6.2	1.5	0.2	343	
			49	40	30	33	25	25	30	31	π	110	47	65	25	23	198	
			600	440	340	360	270	280	330	340	340	1220	510	610	290	100	835	
			324	380	310	280	190	176	220	230	620	810	390	430	159	190	420	
			190	160	120	140	700	100	120	130	310	460	790	230	110	130	323	
			$\begin{array}{\|l\|} 320 \\ (273) \\ \hline \end{array}$	$\begin{array}{\|c} 200 \\ (300) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 180 \\ (376) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 140 \\ (358) \end{array}$	$\begin{array}{\|c\|} 77 \\ (416) \\ \hline \end{array}$	$\left\|\begin{array}{c} 62 \\ (412) \end{array}\right\|$	$\begin{array}{\|c\|} \hline 31 \\ (379) \\ \hline \end{array}$	$\begin{gathered} 91 \\ (374) \\ \hline \end{gathered}$	$\begin{array}{\|l} 480 \\ \text { (588) } \end{array}$	$\begin{array}{r} 220 \\ (182) \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline 180 \\ (254) \end{array} \right\rvert\,$	$\begin{gathered} 190 \\ (202) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 76 \\ (405) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 70 \\ (397) \\ \hline \end{array}$	㴆 2	
	大－3tr｜	矿力（t）	16	10	9.1	7.0	4.0	3.2	4.7	4.7	14	16	9.3	9.15	3.9	3.5	198	
		安力曲矿）（4Pa）	270	170	150	120	65	32	77	77	240	278	150	150	64	58	34.3	

特されることを俌認

日：支持桃能に傒万言材

6条（竜巻）一別誘1—派付3．7—别紙4－4
表4 STEP2－1 における支承部の評価

衝突位置				飛来物㣫突位置						
				（1）	（2）	（3）	（1）	（5）	（6）	（7）
				给直－1	紷直－2	紷直－3	水平（NS）－1	水平（EW）－1	水平（EW）－2	水平（EW）－ 3
				$\begin{gathered} \text { フレーム } \\ \text { 可動支承近傍 } \end{gathered}$	$\begin{gathered} \text { フレーム } \\ \text { 中央部 } \\ \hline \end{gathered}$	$\begin{gathered} \text { フレーム } \\ \text { ゴム支承近傍 } \end{gathered}$	$\begin{gathered} \text { フレーム } \\ \text { 南側端部 } \\ \hline \end{gathered}$	$\begin{gathered} \text { フレーム } \\ \text { 可動支承近傍 } \end{gathered}$	$\begin{aligned} & \hline \text { フレーム } \\ & \text { 中央部 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { フレーム } \\ \text { ゴム支承近傍 } \end{gathered}$
衝突方向				蛅直	唉直	䛇直	水平（ NS ）	水平（EW）	水平（EW）	水平（EW）
$\begin{gathered} \text { 評価果果 } \end{gathered}$	評価対象	構造強度上の評価方针	位蛍	－	－	－	－	－	－	－
	$\begin{gathered} \text { フレーム } \\ \text { =4ム支永 } \\ * 1 \end{gathered}$	竜巻の風圧力による荷重及 び設計飛来物による衝繋荷重 に対し，支持機能を維持する ため，作用する応力等が「道路橋示方書•同解説 V 耐震設計蝙（H14．3）」 又は許容応力状態 $\mathrm{IV} \mathrm{N}_{\mathrm{S}} \mathrm{S}$ の許容応力に基つく基潼值を超えないことを確認す る。	西側 東側	\bigcirc	\bigcirc	 - ヨ体 - 内寝初板 - 取付秃 - アカーボ性	\bigcirc	\bigcirc	\bigcirc	
				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
		竜巻の風圧力による荷車及心設計笑来物による衝繋荷重 に対し，上載するフレーム等	西侧		\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc
	可動支承	を支持する機能に係る部析が支持機能を維持するため，作用する応力が許容応力状態IV ${ }_{1}$ S の許容応力を超えないこと を碓認する。	東侧	\bigcirc	\bigcirc	\bigcirc	\bigcirc	許容住を超える部材 $丶^{*} 2$ －レール - レール取付ボッ - エンドブレート接合术ハト - 上部接合末＇は - 下部接合\＄${ }^{\circ}$ は		\bigcirc

＊1：フレームゴム支承は，2 つのらち 1 つ以上の支承が構造強度上の評価方針を満足することを確認する
＊2：一部部材が許容値を超える結果となったが，詳細設計段階では，可動支承のサイズアップやボルトの仕様変更等の対応を行う ことで，許容値を満足させる方針とする
$\square:$ STEP2－2 にて詳細評価を実施

6 条（竜巻）一別添 1 —添付 3.7 —別紙 4－5

（1）解析条件

娄 5 STEP2－2解析条件

艮定場目	誏定柔性	考え力
	面富泙栭な用いンるせ人㴪测珄 （信6書㽤）	
	标平	
車㿥佼置	二小今支事近掊	STEP2－1 の（\％）め連実位㨁を同标

爱6フレームぎム交承，可動支承の結合条件

कtat		可称支年
X	策性	自甫
I	弾性	塥
z	W	W1．

飛来物
䓶案方向

（2）解析結果
フレームゴム支承め衔突解析綪果を表7に示す。
方針を満足けることを確誢した

泙侐対鹪			等生植		样涪植	
		衰倠	象粚			
	（1）$=$ ¢ 体					$2.0 \mathrm{MPa}^{\text {6i1 }}$
		せん斯吅する	62 \％	62\％	$1250 \%^{32}$	
		发力庶（汪綡）	2.0 MPa	2.0 Mrs	29.8 ［ ${ }^{\text {Pa }}{ }^{\text {＊1 }}$	
		退力度（考者）	19 MPa	19 MPa	$280 \mathrm{MPa}^{42}$	
		长可度（部合せ）	51． M	60 MPa		
	（1）「こ力一ボット	民方度（姐会古）	48 MPa	82 Mra	$294 \mathrm{MPa}^{\text {P2 }}$	

（1）解析条件
場合は確認されしなかっのたことから，ストッバーに支持機能が必要な状㫛てはないが。

家す。

表8 STEP2－3解所条件

昡建收目		费者方
	自由 （蒌9素開）	
	水平	
	1 人年－3	
桃来物㳣考		

为問	フレームニ゙ム支我	可哑文我
X	自井	目曲
Y	自井	陮
Z	自由	陠

及 水解析手デル图（STEP2－3）

（2）解析結果
 ठ

図6 設計型来物衡突時のフレーム変位イメージ
表10 ストッパー域力捙俩枯果

	䈣生值（MPa）	埌椎值（ MPa ）
せん所矿力	19	198
柬ば必力	228	313
組合せせ力	230	343

 て吽用する条件こ評価在実施した，酐価条件け以下の上おり，

- 風力保数Cは2．1とする
- 复庄面皘は形状を考慮した投影面皘
- ナレームコみ支承（西側）めみから残存L風荷重を受ける場合属代表とした

（ii）本非值結第は
䡴䒠植

		垏的地境：	哏生稙	呋新䛧	
		東噺			
	（1）			0．1 MPa $^{\text {a }}$	$2.0 \mathrm{MPa}^{\text {ar }}$
			130%	$250{ }^{0}{ }^{\text {e2 }}$	
			1．2 MFa	$29.8 \mathrm{MPa}^{\text {＋20 }}$	
	26M㴘調极 	退力度（引穊）		$280 \mathrm{MPa}^{\text {a }}$	
		客力度（明亚直）	100 MPa		
		虑力樓（新会等）	73 MPa	$2014 \mathrm{Mra}^{\text {s2 }}$	

5．STEや2に杍けむ構造成立性兄通し

交承が構造強度上の評価为針を満足することを確潩した。

 レームの交持機能を維特けること在确認した。

上を确晹した。

満足させる方鈄とする。

 するためっ，構造成立性の兄通しがあることを確諴した。

詳細設計段階における説明事項（EP まとめ資料抜粋）

別紙 6

設置許可段階と詳細設計段階での説明事項
3 項の説明事項 No．に対応
設置許可段階では，【STEP1】及び【STEP2】の評価のとおり，竜巻防護ネットの構造成立性にかかわる代表的な評価結果をもって，構造成立性の見通しを説明した。

詳細設計段階では現実に即した解析モデルとして，フレームゴム支承の特性を考慮 した解析モデルを適用し，評価を実施する方針とする。

設置許可段階での構造成立性の見通し時に用いた評価フローを組み替え，詳細設計段階の評価フロー（基本ケース）を以下のとおり設定する。

可動支承の評価対象部材について，設置許可段階における構造成立性の見通し確認 において，可動支承近傍へ飛来物が衝突した場合，許容値を超える結果となっている が，詳細設計段階では，可動支承のサイズアッブやボルトの仕様変更等の対応を行り ことで，許容値を満足させる方針とする。
基本ケースによる各部材の設計を実施した後に，不確かさケースの確認として，ゴ ム支承の剛性のばらつきを考慮した解析モデルの設定，衝突姿勢の影響を考慮した衝突解析（飛来物の長辺衝突）を実施し，評価を実施する方針とする。

図1 詳細設計段階における評価フロー
6 条（竜巻）一別添 1—添付 3．7－別紙 6－1

			1 設置許可段階及	設計段	の説	（1／3）				
評価対象	支持部材の設計方針	構造強度上の 性能目標	構造強度上の評価方針	評価部材	主な機能損傷モード		許容限界	説明段階		
					作用荷重	限界状態		（溝造成立性見通L）		C P
								STEP 1	STEP2	
	支持部材は設計竜卷 の風圧力による荷重，飛来物による衝撃荷重及びその他の荷重に対し，飛来物 が非常用海水ボンブ等へ衝突することを防止するために，飛来物が支持部材を構成する主要な構造部材を貫通せず，上載 するネット及び防護板を支持する機能を維持可能な構造強度 を有し，非常用海水 ボンブ等に波及的影響を与えないため に，支持部材を構成 する部材自体の転倒及び脱落を生じない設計とする。	［費通］ 設計飛来物の支持部材への衝突に対 して，衝突箇所で貫通させない。 【支持機能】	設計飛来物が支持部材に衝突し た場合に，衝突箈所に発生する衝撃荷重によって費通が生じな いように，フレームの鋼材が終局状態に至るようなひずみを生 じないことを確認する。 竜巻の風圧力による荷重及び設計飛来物による衝掔荷重に対 し，上載するネットを支持する ため，フレームの䒽材が終局状龍に至るようなひずみを生じな いことを確認する。	フレーム	- 自重 - 上載荷亘 （ネット） - 竜巻風荷重 - 衝撃荷亘	衝突面の全断面欠損	NE107－13 にTF （多軸性係数） を考慮して設定 した破断ひずみ以下（LS－DYNA による衝突解析 によりひずみ量 を算出）	－	（STEP2－1）	○ $\begin{aligned} & \text { (基本ケース及び } \\ & \text { 不碓かさケース) } \end{aligned}$
		【支持機能】支持部材は設計竜巻の風圧力による荷重，飛来物によ る衝撃荷重及びそ の他の荷重に対 し，上載するネッ ト及び防護板を支持する機能を維持可能な構造強度を有する。	竜巻の風圧力による荷重及び設計飛来物による衝撆荷重に対 L，上載するフレーム等を支持 する構造強度を維持するため，作用する応力が許容応力状龍IV ${ }_{1} \mathrm{~S}$ の許容応力を超えないことを確認する。	大梁	- 自重 - 上載荷亘（ネ ット，フレー ム） - 竜卷風借重 - 衝撃荷亘	終局状熋	発生する応力が JEAG 4601 のIV S以下	－	○ （STEP2－1）	\bigcirc （基本ケース及誯 不雒かさケース）
				$\begin{gathered} \text { ブラケット } \\ \begin{array}{c} \text { ブラケット } \\ \text { アンカー } \\ \text { ボルト } \end{array} \end{gathered}$	- 自重 - 上載荷亘 （ネット，フ レーム，大梁） - 竜卷風荷重 - 衝撃荷旦					

※ EP：設置許可段階 CP：詳細設計段階
6 条（竜巻）一別添 1—添付 3．7－別紙 6－2
表1 設置許可段階及び詳細設計段階での説明事項（2／3）

評価対象	支持部材の設計方針	構造強度上の性能厷標	構造強度上の評価方針		評価部材	主な機能損傷モード		許容限界	説明段階＂		
								EP（構造成立性見通し）		C P	
						作用荷重	限界状態				
								STEP1	STEP2		
$\begin{aligned} & \text { 童 } \\ & \text { 弮 } \\ & \text { 訪 } \\ & \text { 謢 } \end{aligned}$	支持部材は設計竜巻の風圧力による荷重，飛来物による衝撃荷重及びその他の荷重に対し，飛来物が非常用海水 ポンプ等へ衝突す ることを防止する ために，飛来物が支持部材を構成する	【支持機能】支持部材に設計竜巻の風圧力による荷重，飛来物によ	竜巻の風圧力による荷重及 び設計飛来物による衝撃荷重に対し，支持機能を維持す		ゴム体 内部鋼板 大梁ゴム支 承取付ボル ト	- 自重 - 上載荷 （ネット，フ レーム，大梁） - 竜巻風荷重 - 衝撃荷重	終局状態		-	$\begin{gathered} \bigcirc \\ (\mathrm{STEP} 2-1) \end{gathered}$	$\begin{gathered} \text { O } \\ \text { (基本ケース及ぴ } \\ \text { 不碓かさケース) } \end{gathered}$
$\begin{aligned} & \text { ッ } \\ & \text { 支 } \\ & \text { 持 } \\ & \text { 部 } \\ & \text { 材 } \end{aligned}$	主要な構造部材を貫通せず，上載する ネット及び防護板 を支持する機能を維持可能な構造強度を有し，非常用海水ポンブ等に波及的影響を与えない ために，支持部材を構成する部材自体 の転倒及び脱落を生じない設計とす る。	る衝撃荷重及びそ の他の荷重に対 し，上載するネッ ト及び防譩板を支持する機能を維持可能な構造強度を有する。	るため，作用する応力等が 「道路橋示方書•同解説V耐震設計編（H14．3）」又は許容応力状態 $V_{A} S$ の許容応力に基づく基準値を超えないこ とを確認する。		ゴム体 内部鋼板 取付ボルト アンカーボルト	- 自重 - 上載荷 $\begin{gathered} \text { (ネット, フ } \\ \text { レーム) } \end{gathered}$ - 竜巻風荷重 - 衝撃荷重	終局状態	－発生する引張応力が道路橋支承便覧の許容値以下 －発生するせ ん断ひずみが道路橋支承便覧の許容侹以下 －発生する応力が JEAG 4601 のIVAS 以下	\bigcirc	$\begin{gathered} \bigcirc \\ (\text { STEP2-1) } \\ (\text { STEP2-2) } \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \text { (基本ケース《び } \\ \text { 不磪かさケース) } \end{gathered}$

＊1：フレームゴム支承は，2つのうち 1 つ以上の支承が構造強度上の評価方針を満足することを確認する。許容限界を満足しない結果となつた場合，二次的影響評価を実施する。 ＊ 2 ：不確かっさケースではストッツ
※ EP：設置許可段階 CP：詳細設計段階

6 条（竜巻）一別添 1—添付 3．7－別紙 6－3
表1 設置許可段階及び詳細設計段階での説明事項（3／3）

評価対象	支持部材の設計方針	構造強度上の 性能目嘌	構造強度上の 評価方針	評価部材		主な機能損傷モード		許容限界	説明段階＊			
						EP（構造成立性見通し）			C P			
						作用荷重	限界状態					
						STEP1				STEP2		
	支持部材は設計竜巻の風圧力に よる荷重，飛来物 による衝撃荷重及びその他の荷重に対し，飛来物 が非常用海水ポ ンプ等へ衝突す ることを防止す るために，飛来物 が支持部材を構成する主要な構造部材を貫通せ ず，上載するネッ ト及び防護板を支持する機能を維持可能な構造強度を有し，非常用海水ポンプ等 に波及的影響を与えないために，支持部材を構成 する部材自体の転倒及び脱落を生じない設計と する。		竜巻の風圧力による荷重及び設計飛来物によ る衝撃荷重に対し，上載 するフレーム等を支持 する機能に係る部材が支持機能を維持するた め，作用する応力が許容応力状態 $I V_{A} S$ の許容応力を超えないことを確認する。	$\begin{aligned} & \text { 可 } \\ & \text { 動 } \\ & \text { 㕛 } \end{aligned}$	リールブレート		- 自重 - 上載荷重 （ネット， フレーム） －竜巻風荷重 －衝撃荷重	終局状態	発生する応 力が JEAG 4601 のIV ${ }_{A} \mathrm{~S}$ 以下	\bigcirc	$\underset{(\mathrm{STEP} 2-1)}{\bigcirc}$	$\begin{gathered} \bigcirc \\ \begin{array}{c} \text { (基本ケース及び } \\ \text { 不碓かささケース } \end{array} \end{gathered}$
					ベーズ゚ 外							
					レール							
					$\begin{aligned} & \text { Vール取付 } \\ & \text { ボルト } \end{aligned}$							
					エンドプレート 接合が壮							
					上部妾合 ボルト							
					下部妾合 ボルト							
					ベースでレート							
		その他の荷重 に対し，上載す るネット及び防護板を支持 する機能を維持可能な構造強度を有する。	竜巻の風圧力による荷重及び設計飛来物によ る衝撃荷重に対し，フレ ーム等を支持する構造強度を維持するため，作用する応力が許容応力状態IVAS の許容応力を超えないことを確認す る。	ストッパー		－竜巻風荷重 －衝撃荷重	終局状態	発生する応 力が JEAG 4601 のIV ${ }_{A} \mathrm{~S}$ 以下	－	O （STEP2－3）	0 （不確かさケース）	

[^3]
以上

6 条（竜巻）一別添 1 —添付 3.7 －別紙 6－4

海水ポンプ室補機ポンプエリアの南側隔壁を補強し設置したコーベル上にフレーム支持用の大梁 を設置し，この大梁とコーベルを追加した隔壁（北側）天面にてネット及び防護板を取り付けたフ レームを支持する。

また，
フレームは海水ポンプ室補機ポンプエリアの北側隔壁（厚さ 4m）に対して約 1.65 m 重なる構造と し，南側隔壁（厚さ 0.5 m ）に対しても約 0.4 m 重なる構造とし，海水ポンプ室補機ポンプエリアに落下しない構造とする。

竜巻防護ネットの構造概要を図 2 及び図 3 に示す。また，竜巻防護ネットの仕様を表 1 に示す。

支持方式模式図（ A－A 矢視）
図2 竜巻防護ネットの概要図

分類（1）

（ブラケットの廃止•支持壁変更）
海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。

分類（1）

（フレーム基数の変更）
東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。

設置許可段階		
【6 条（竜巻）－別添 1－添付 3．7－4】		
表1 竜巻防護ネットの仕様		
総質量		約 500ton
全体形状		約 29 m （東西方向）\times 約 24 m （南北方向）高さ 約 1 m
ネット（金網部）	橉成	主ネット $\times 2$ 枚＋補助ネット $\times 1$ 枚
	寸法	線径：$\phi 4 \mathrm{~mm}$ 目合い寸法：主ネット 50 mm ，補助ネット 40 mm
	主要材料	硬絧線材，覀鉛めつき銅線
フレーム	数量	5 組
	寸法	長さ×幅 \times 高さ：約 $23 \mathrm{~m} \times 4.3 \mathrm{~m} \times 1 \mathrm{~m}$
	主要材料	SM490A，SM400A，SS400
大梁	寸法	長さ \times 幅 \times 高さ ：約 $26 \mathrm{~m} \times 1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$
	主要材料	SM520B，SM490A
ゴム支承	仕様	水平力分散型
	数量	大梁用：4㫦（2組（2個／組）） フレーム用： 10 個（5 組（2 個／組））
可動支承	数量	フレーム用： 10 個（5 組（2 倜／組））
ブラケット	材料	SM490A
防護板	材料	SM400A，SS400
耐震クラス	－	C

詳細設計段階

分類（1）
（フレーム基数の変更）
東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。

分類（2）

（大梁断面サイズ変更及び材料変更，防護板の材料変更）設計進捗を踏まえ，断面サイズ及び材料を変更した。

分類（3）
（記載適正化

【6 条（竜巻）—別添1—添付3．7－13】
3．5．2 構造設計
ネット（金網部）及びフレームで発生した荷重は，海水ポンプ室補機ポンプエリアの壁面に伝達 する構造とする。
海水ポンプ室の壁面のうち，隔壁（南側）は厚さ 0.6 m であり，荷重に対して十分な強度を確保で きない可能性があるため，十分な厚み（厚さ 2 m ）がある側壁（東側）及び側壁（西側）にブラケッ トを取付け，大梁を設置することで，フレームを支持する。もう一方の指示は厚さ 1.5 m の隔壁（北側）にて実施する。
以上により，十分なん厚みがあり強度が確保できる隔壁（北側）と側壁（東側，西側）で荷重を受ける構造とする。

図7 竜巻防護ネットの構造（イメージ）

【6条（竜巻）一別添1—添付3．7－11】
ネットを取り付けるフレームは，主桁，横補強材，ブレースで構成され，主桁と横補強材で区切 られるセル毎にネットを支持する。1台のフレームに対いて，セルは4つとし，5 台のフレームで海水ポンプ室のほぼ全域を覆う構造とする。

支持方式模式図（ $\mathrm{A}-\mathrm{A}$ 矢視）
岡7竜巻防護ネットの構造（イメージ）

ネットを取り付けるフレームは，主桁，横補強材，ブレースで構成され，主桁と横補強材で区切 られるセル毎にネットを支持する。 1 台のフレームに対いて，セルは 4 つとし， 4 台のフレームで海水ポンプ室のほぼ全域を覆う構造とする

ネット（金網部）及びフレームで発生した荷重は，海水ポンプ室補機ポンプエリアの壁面に伝達 する構造とする。

海水ポンプ室の南側隔壁に大梁を設置することで，フレームに支持する。もう一方の支持の厚さ 1.5 m の北側隔壁にて実施する。

以上により，十分な厚みがあり強度が確保できる北側隔壁と南側隔壁で荷重を受ける構造とする。

分類（1）

（フレーム基数の変更）
東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。

分類（1）
（ブラケットの廃止•支持壁変更）

海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側嗝壁にて大梁を支持する構造 とした。

分類（1）

（フレーム基数の変更）
東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。

分類（1）

（ブラケットの廃止•支持壁変更）
海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。

設置許可段階	詳細設計段階	備考
【6 条（竜巻）一別添1—添付3．7－15】 2．6．2 構造設計 ゴム支承はフレームと隔壁（北側）の接続部及び大梁とブラケットの接続部に設置する。 フレームと隔壁（北側）の接続部は，フレーム 1 基に対して，隔壁（北側）の天面に設置した 2 個 のゴム支承をとりつける構造とする。（隔壁（北側）には計 10 個のゴム支承を設置） 大梁の支持は，片側 1 か所あたり 2 基のブラケットを設置し，各ブラケットの上に 1 個のゴム支承を設置する。（ブラケットには計 4 個のゴム支承を設置） 大梁とフレームの接続部は可動支承を用いる。可動支承はフレーム 1 基に対して， 2 個の可動支承で支持する。（大梁には計 10 個の可動支承を設置）可動方向は南北方向のみである。	ゴム支承はフレームと北側隔壁の接続部及び大梁と南側隔壁の接続部に設置する。フレームと北側隔壁の接続部には，フレーム 1 基に対して，北側隔壁の天面に 2 個のゴム支承を取り付け，大梁 と南側隔壁の接続部は，片側 1 箇所あたり 2 個のゴム支承を取り付けることで，ゴム支承によりフ レーム及び大梁を支持する構造とする。 可動支承は大梁とフレームの接続部に設置する。可動支承は南北方向の水平変位に追従し，フレ ーム 1 基に対して， 2 個の可動支承を取り付けることで，温度変化によるフレームの伸縮を吸収し，変形による荷重発生を防ぐ構造とする。	分類（1） （フレーム基数の変更）東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。 分類（1） （ブラケットの廃止•支持壁変更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。
【6 条（竜巻）一別添1—添付3．7－15】 図 10 支持構造模式図	図 2－5 竜巻防護ネットの支持構造模式図	分類（1） （フレーム基数の変更）東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映（フレーム幅を調整） 分類（1） （ブラケットの廃止•支持壁変更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。

設置許可段階
【6 条（竜巻）—別添1—添付3．7－27】
これらの影響を踏まえて，構造成立性の見通しを確認するために，竜巻防護ネットを構成する支
持部材に対し，代表的な飛来物衝突の解析評価を実施する。評価は以下の 2 ステップで実施する。

【STEP1】

ゴム支承に支持されるフレームに飛来物が衝突した際の挙動を確認するため，ゴム支承の剛性 を考慮した衝突解析を実施する。衝突解析は，フレームゴム支承による影響が最も大きくなると想定される条件（飛来物姿勢，衝突位置，飛来方向）で実施し，ゴム支承の影響を考慮した場合 において，フレームゴム支承，可動支承がフレームを支持する機能を維持可能な構造強度を有す ることを確認する。STEP1 の評価結果について別紙3に幣理する。

【STEP2】

衝突時の竜巻防護ネットを構成する支持部材の構造成立性を確認するため，以下の評価を実施 する。STEP2 の評価結果については別紙 4 に幣理する。
STEP2－1：竜巻防護ネットを構成する支持部材（ストッパーを除く）はゴム剛性の結合条件を 3 方向固定（衝撃荷重のピーク値が大きくなると推測される条件）にて衝突解析を行い，構造成立性の確認を行う。
STEP2－2：STEP2－1 はフレームゴム支承に対し非常に厳しい条件であるため，STEP2－1 の条件で評価を実施した結果，許容値を満足しない場合には，詳細評価としてゴム支承のせん断剛性を考慮した解析条件にて評価を実施する。
STEP2－3：STEP2－2 のフレームゴム支承の評価結果を踏まえて，ストッパーの評価を実施する。ス トッパーの評価はゴム剛性の結合条件を自由（ゴム支承による荷重の負担は期待せずス トッパーに全ての荷重を伝達する条件）とし衝突解析を行い，構造成立性の確認を行う。

詳細設計段階における検討経緯
「3．設置許可段階における主な説明事項」及び海水ポンプ室の耐震補強計画を踏まえて，竜巻防護ネットの詳細設計を実施した。検討の経緯及び概要について以下に示す。
＞海水ポンプ室の詳細設計における構造を，竜巻防護ネットの設計を反映した。具体的には，東西側壁上部への補强梁設置に伴い，海水ポンプ室東西方向開口幅が狭くなったことか ら，フレーム幅及びフレーム基数の見直しを実施することとした。また，南側隔壁補強を踏まえ，既設東西側壁にブラケットを設置し大梁を支持するとしていた構造から，補強す る南側隔壁にて大梁を支持する構造とした。
＞設置許可段階では保守的にゴム支承の拘束条件を3方向固定として支持部材の構造成立性を確認していたが，詳細設計段階では，ゴム支承剛性に係る特性試験を実施した上で， ゴム支承の拘束条件を3方向弹性とし，試験を踏まえた剛性のばらつきを不確かさなース として影響確認することとした。このとき，竜巻防護ネットの機能維持の考え方として，設置許可段階では 2 つのフレームゴム支承のらち 1 つ以上の支承が構造強度上の評価方針を满足することを碓認するとしていたが，詳細設計段階においては，いずれのゴム支承 も許容值を超えず構造强度上の評価方針を满足させる方針とした。
＞可動支承についても，詳細設計段階においてはサイズアップやボルトの仕様変更等の対応 を行い，許容值を満足させる方針とした。
＞いずれの支承部も許容值を満足させる方針としたことに伴い，構造強度評価において，ス トッパーに対して竜巻防護ネットの支持機能を期待しない方針とした。
＞飛来物の衝突姿勢（長辺衝突）による影響について，不碓かさケースとして確認する方針 とした。
（4）詳細設計段階における設計フロー
詳細設計段階での説明事項を踏まえ，竜巻防護ネットの衝突解析において基本ケース及び不確か さケースを設定し評価を実施する。詳細設計段階における竜巻防護ネットの支持部材の評価フロー図を図4－1 に示す。
なお，詳細設計段階における説明事項に対する対応方針について，別紙5に示す。
衝突解析の実施に当たり，現実に即したゴム支承の特性を考慮し，適切な解析モデルを設定する よう，ゴム支承の剛性の設定方針及び特性試験の実施について次章に示す。

分類（2）

（強度評価フローの見直し）
設置許可段階における説明事項を踏まえ，構造成立性を確認 した評価フローを組み替え，基本ケース及び不確かさケース の評価を実施する評価フロー とした。詳細については「補足説明資料 710－1 4.1 竜巻防護 ネットの衝突解析について」に示す。

設置許可段階	詳細設計段階	備考
【6 条（竜巻）一別添 1 —添付 3．7－38】 西側 図19 設計飛来物衝突時の荷重伝達例 （水平方向（南から北）から衝突した場合）	西側 図19 設計飛来物衝突時の荷重伝達例 （水平方向（南から北）から衝突した場合）	分類（1） （フレーム基数の変更）東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。 分類（1） （ブラケットの廃止•支持壁変更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。
【6 条（竜巻）一別添 1—添付 3．7－38】 東側 図20 設計飛来物衝突時の荷重伝達例 （水平方向（西から東）から衝突した場合）	図20 設計飛来物衝突時の荷重伝達例 （水平方向（西から東）から衝突した場合）	分類（1） （フレーム基数の変更）東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。 分類（1） （ブラケットの廃止•支持壁変更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。

設置許可段階								詳細設計段階								備考
【6 条 北側 $8 . \rightarrow$ 8．\rightarrow	（竜巻）一別深 東側	忝1—添付3．7－39 図 21	ごいていがい 計飛来物衝突時の荷直方向から衝突した場	荷重伝達例場合）				図21 設計飛来物衝突時の荷重伝達例 （鉛直方向から衝突した場合）								分類（1） （フレーム基数の変更）東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。 分類（1） （ブラケットの廃止•支持壁変更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。
表17 支持部材に対する構造強度上の性能目標と評価方針（2／2）								表17 支持部材に対する構造強度上の性能目標と評価方針（2／2）								分類（1） （ブラケットの廃止）
					－							二推淮				海水ポンプ室補強計画を踏ま
	風压力による信重，笑 棈成十 可僾な棈透新度を价 を棈成ける宣材自体の い2atとなる。			フレーム		（事突函の）全楼流欠挸			交持钆材は汉計菓类の L．洜本物が韭常用泊 に，不来物が多持尼析 そ棈成十る主要な格治 可德な根読詵度を有 ないために，支持謁い いでるとさす。	 ＋5．		フレーム	－白禹 上数何系 	 金䉼通欠批		え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。
															ONS以下	

竜巻防護ネットの支持部材の評価フロー図に対して，詳細設計段階における説明事項及び申送り事項への対応方針を整理した結果について図 1 及び表 1 に示す。

注記＊1：衝突解析において，以下を考慮し解析ケースを設定する。

考慮する事項	$\begin{gathered} \text { 基本ケース } \\ \text { における設定 } \\ \text { 【(2)】*2 } \end{gathered}$	不確かさケース における設定【（4】 】 ${ }^{2}$	
解析モデルにおける ゴム支承の剛性 【（1）${ }^{* 2}$	設計値を設定	不確かさ ケース（1）	剛性のばらつきを考慮 した値を設定【c】＊2
衝突解析における衝突姿勢【b】＊2	短辺衝突	不確かさ ケース（2）	長辺衝突による影響を確認

＊2：【】内は表1に示す各No．に対応

図1 竜巻防護ネットの支持部材の評価フロー図
表1詳細設計段階における対応事項整理結果（1／2）

分類	No．	内容	対応方針	資料等への反映
説明 事項	（1）	詳細設計段階では現実に即した解析モ デルとして，ゴム支承の特性を考慮した解析モデルを適用し，評価を実施する方針とする。	「5．衝突解析に係るゴム支承の剛性の設定」にて実施したゴム支承の鉛直剛性に係る特性試験結果を踏ま え，ゴム支承の特性を考慮した衝突解析を実施する方針を示した。	「補足－710－1 4．15．衝突解析に係るゴム支承の剛性 の設定」
	（2）	設置許可段階での構造成立性の見通し時に用いた評価フローを組み替え，詳細設計段階の評価フローを設定する。	「4．詳細設計段階における設計方針」にて，衝突解析 において基本ケース及び不確かさケースを設定する評価フローを示した。	「補足－710－1 4.1 4. 詳細 設計段階における設計方針」
	（3）	可動支承について，設置許可段階におけ る構造成立性の見通し確認において，可動支承近傍へ飛来物が衝突した場合，許容値を超える結果となったため，詳細設計段階では，可動支承のサイズアップや ボルトの仕様変更等の対応を行らこと で，許容値を満足させる方針とする。	「6．評価ケースの設定方針及び構造成立性の確認」 にて，設置許可段階において許容値を超える結果とな った可動支承近傍への飛来物衝突に対して，許容値を満足し，可動支承の支持機能が維持されることを示し た。	「補足－710－1 4.16. ケースの評価 ケース定方針及び構造 ケースの設定方針及び構造成立性の確認」
	（4）	基本ケースによる各部材の設計を実施 した後に，不確かさケースの確認とし て，ゴム支承の剛性のばらつきを考慮し た解析モデルの設定，衝突姿勢の影響を考慮した衝突解析（飛来物の長辺衝突） を実施し，評価を実施する方針とする。	「5．衝突解析に係るゴム支承の剛性の設定」にてゴ ム支承の剛性のばらつきを考慮した解析モデルの設定 について示した。また，「6．評価ケースの設定方針及 び構造成立性の確認」にて，衝突姿勢の影響を考慮した評価ケースの設定の考え方について示し，代表的な飛来物衝突ケースに対して，支承部の構造成立性が確保 されることを示した。	「補足－710－1 4．15．衝突解析に係るゴム支承の剛性 の設定」及び「補足－710－1 4．16．評価ケースの設定方針及び構造成立性の確認」

表1 詳細設計段階における対応事項整理結果 $(2 / 2)$

分類	No．	内容	対応方針	資料等への反映
$\begin{gathered} \text { 申送り } \\ \text { 事項 } \end{gathered}$	a	飛来物衝突時の上向反力に対して，フレ ームが浮き上がらないことを詳細設計段階で説明する。	「6．評価ケースの設定方針及び構造成立性の確認」 にて，設置許可段階において厳しい評価結果となった フレームゴム支承近傍への飛来物衝突に対して，衝撃荷重による上向きの反力によりフレームゴム支承に生 じる引張応力度が許容値を満足し，フレームの浮き上 がりによる損傷が生じないことを示した。	「補足－710－1 4.16. ケースの評価 ケース定方針及び構造 成立性の確認」
	b	衝突方向に対する影響について，ガイド の考え方を踏まえて詳細設計段階で説明する。	「6．評価ケースの設定方針及び構造成立性の確認」 にて，「原子力発電所の竜巻影響評価ガイド」を踏まえ た衝突解析の評価ケースの設定の考え方について示し た。また，代表的な飛来物評価ケースに対して構造成立性が確保されることを示した。	「補足－710－14．16．評価 ケースの設定方針及び構造 成立性の確認」
	c	ゴム支承の衝撃荷重に対する試験内容 について，詳細設計段階で説明する。	「5．衝突解析に係るゴム支承の剛性の設定」にて，衝突解析に資するゴム支承の鉛直剛性に係る特性試験を実施し，試験を踏まえたゴム支承の剛性の設定方針を示した。	「補足－710－1 4． 1 5．衝突解析に係るゴム支承の剛性 の設定」

4． 3 金網の設計裕度の考え方

1．概要

本資料は，竜巻飛来物防護を目的とした高強度金網の設計裕度に関して，金網の耐衝撃性能評価に用いる機械的特性値の設定の考え方について説明するものである。

2．金網の機械的特性値
高強度金網の耐衝撃性能評価に用いる機械的特性値は，金網の交点引張試験から算定 している。金網（50 mm 目合い）の交点引張試験結果（全20 データ）を図2－1に示す。 また，図 2－1より算出した金網の等価剛性，破断伸び量，破断荷重を表2－1に示す。

図 2－1 金網の交点引張試験結果

表 2－1 金網の交点引張試験結果の平均値
$\left.\begin{array}{|c|c|c|c|}\hline \text { 等価剛性 } \\ (\mathrm{kN} / \mathrm{m})\end{array} \begin{array}{c}\text { 破断伸び量 } \\ (\mathrm{mm})\end{array} \begin{array}{c}\text { 破断荷重 } \\ (\mathrm{kN})\end{array}\right]$

3．ネットの強度評価における裕度の考慮
金網の等価剛性は表2－1に示す値を用いるが，交点引張試験結果のばらつきを考慮し た裕度を確保することとする。ここで，表2－1に示す等価剛性とは別に，図2－1 の金網 の交点引張試験結果から多直線近似剛性を求め，金網の吸収エネルギを算出した結果を図 3－1に示す。等価剛性にて吸収エネルギを評価した場合，多直線近似剛性より算出し た吸収エネルギよりも，最大で 5.6% 高くなることから，金網の許容吸収エネルギについ ては，等価剛性より算出した吸収エネルギを $1 / 1.056$ 倍することにより裕度を確保する。

図 3－1 等価剛性と多直線近似の差異
4.7 防護板の貫通評価について

1．はじめに
竜巻防護ネットの防護板は，鋼板により構成され，防護板に作用する荷重は支持部材 に伝達する構造としている。防護板の衝突評価においては，以下に示す BRL 式により，飛来物の貫通を生じない最小厚さ以上であることを確認している。

$$
\mathrm{T}^{\frac{3}{2}}=\frac{0.5 \cdot \mathrm{M} \cdot \mathrm{v}^{2}}{1.4396 \times 10^{9} \cdot \mathrm{~K}^{2} \cdot \mathrm{~d}^{\frac{3}{2}}}
$$

ここで，
d ：評価において考慮する飛来物が衝突する衝突断面の等価直径（m）
K：鋼板の材質に関する係数（－）
M：評価において考慮する飛来物の質量（kg）
$\mathrm{T}: ~$ 鋼板の貫通限界厚さ（m）
v ：評価において考慮する飛来物の飛来速度（ m / s ）

2．防護板の構造
防護板の取り付け概要を図2－1に示す。

図 2－1 防護板概要図 $(1 / 2)$

図 2－1 防護板概要図 $(2 / 2)$

3．BRL 式の適用性
BRL 式では飛来物の運動エネルギ，等価直径，及び鋼板（被衝突体）の材質に関する係数をパラメータとし，既往文献「竜巻飛来物を模擬した角管の落下衝突による鋼板の貫通評価，日本機械学会論文集，Vol．83，No．851，2017年」，「竜巻飛来物を模擬した重錘の鋼板上への自由落下衝突試験による鋼板貫通評価手法の提案 研究報告：N15004， 2015 年」及び「竜巻飛来物衝突を受ける鋼板の耐貫通性能に関する研究－BRL 式の適用性 に関する基礎研究－研究報告：019003，2019 年」（以下「既往文献」という。）におい ては，上記パラメータを変化させた試験による BRL 式の適用性の検討，また，竜巻飛来物を模擬した角管による鋼板貫通試験と BRL 式の比較による BRL 式のパラメータ設定方法の検討を実施している。

既往文献の報告内容と竜巻防護ネットの防護板の衝突評価内容の比較により，評価の妥当性及び保守性を確認した。確認結果を表3－1に示す。
表 3－1 確認結果（1／2）

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{BRL 式パラメータ} \& 既往文献 \& 女川 \& 備考

\hline \& 質量M \& 1300 kg

$16.5 \sim 17.1 \mathrm{~m} / \mathrm{s}$ \& 135 kg

$46.6 \mathrm{~m} / \mathrm{s}$ \& | ＜既往文献＞ |
| :--- |
| 「原子力発電所の竜巻影響評価ガイド」の飛来物例（鋼製材（質量 135kg，最大水平速度 $51 \mathrm{~m} / \mathrm{s}$ ））と運動エネルギを一致させるために質量，速度（落下高さ）を設定している。 |
| ＜女川＞ |
| 「原子力発電所の竜巻影響評価ガイド」の飛来物例を踏まえ，フジタモデ ルの風速場を適用した場合における飛散評価を実施し，飛来物条件（鋼製材（質量 135 kg ，最大水平速度 $46.6 \mathrm{~m} / \mathrm{s}$ ））を設定している。 |

\hline 飛来物 \& 等価直径 d \& 周長が等価とな るように設定 \& 接触面積が等価 となるように設定 \& | ＜既往文献＞ |
| :--- |
| BRL 式を角管飛来物の衝突•貫通に適用する場合，BRL式の等価直径dは，「周長」が等しい円柱の直径とすることが妥当であることを確認している。 |
| ＜女川＞ |
| 等価直径 dを，「周長」や「投影面積」 よりも更に大きい「接触面積」と等し い値としており，保守的な設定として いる。 |
| 衝突面 |
| 接触面積 |
| or |
| 等価円への |
| 飛来物 \square投影面積 or |
| 置換え |
| 図 飛来物直径の換算方法鋼板上への自由落下衝突試験によ る鋼板貫通評価手法の提案 研究報告：N15004」より抜粋） \square周長 （「竜巻飛来物を模擬した重錘の |

\hline
\end{tabular}

4． $7-3$
表 3－1 確認結果（2／2）

BRL 式パラメータ		既往文献	女川	備考
防護板	材料係数 K	$\begin{aligned} & \mathrm{K}=1 \\ & (\mathrm{SS} 400) \end{aligned}$	$\begin{aligned} & \mathrm{K}=1 \\ & (\mathrm{SM} 400) \end{aligned}$	＜既往文献＞ BRL 式でK＝1 とした限界板厚曲線は，SS400 の鋼板に対する試験結果の貫通／不貫通の間に入る（試験結果と一致する）ことを確認している。ま た，SM490 やSM520 においてもKは1．14 末満と推定している。 ＜女川＞ 竜巻防護ネットの防護板はSM400の鋼板を使用している。既往文献の結果 から，SM400でも材料定数 Kを 1 程度とすることは妥当と考えられる。
	その他 （支持条件）	四辺固定 （二辺固定につ いても実施）	二辺固定	＜既往文献＞ 四辺固定の試験を実施し，BRL 式により保守的に評価できることを確認し ている。また，二辺固定による試験も実施し，四辺固定の方が，飛来物衝突部に局所的な変形が卓越し，鋼板にとってより厳しい条件となることを確認している。 ＜女川＞ 竜巻防護ネットの防護板は二辺固定であるため，適用可能と判断してい る。
	貫通限界厚さT	9 mm （試験結果）	$\begin{aligned} & 29.60 \mathrm{~mm} \\ & \text { (BRL 式) } \end{aligned}$	＜既往文献＞ 上記の条件にて試験を実施した結果，鋼板の貫通限界厚さTは9mmである ことを確認している。 ＜女川＞ 上記女川の条件にてBRL式により評価した結果，鋼板の貫通限界厚さTは既往文献の試験値（ 9 mm ）を大きく上回っており，保守的な評価となって いる。

6．防護対策施設，復水貯蔵タンク及び排気筒の衝突評価に関する補足説明資料
6.1 衝突解析の解析手法の保守性について

1．概要

本資料は，添付書類「VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書」 のうち，「VI－3－別添1－5 復水貯蔵タンクの強度計算書」，「VI－3－別添1－7 排気筒の強度計算書」及び「VI－3－別添 1－2－1 防護対策施設の強度計算書」（以下「竜巻衝突解析 の強度計算書」という。）に関する補足説明資料である。

鋼製部材については，それぞれ竜巻衝突解析の強度計算書において3次元 F E Mモデ ルを用いた飛来物衝突評価を実施しており，これらの評価における鋼材の動的物性値の設定は，電力中央研究所報告「竜巻飛来物を模擬した重錘の鋼板上への自由落下衝突試験による鋼板貫通評価手法の提案（研究報告：N15004）」（以下，「電中研報告」という。） において実施している重錘の自由落下衝突試験のための事前解析の解析手法を参考に実施している。

本資料においては，上述の動的物性値の設定手法について示すとともに，参照した電中研報告における解析手法（以下「電中研解析手法」という。）が重錘の自由落下衝突試験結果と整合していること，及び当社の設定条件が電中研報告の試験結果に対し保守性 を有していることについて記載する。

なお，上記の比較検討は防護鋼板を対象にしたものであるが，衝突評価は部材の局部的影響に着目した解析であることから，形状が異なる部材についても適用可能である。設定条件の保守性に係る評価フローを図1－1に示す。

図 1－1 設定条件の保守性に係る評価フロー

2．動的物性値の選定手法
飛来物の衝突に対する解析は，変形速度が大きいためひずみ速度効果を考慮すること とし，以下に示すCowper－Symonds の式を適用している。

$$
\sigma_{\mathrm{D}}=\sigma_{\mathrm{S}} \cdot\left\{1+(\dot{\varepsilon} / \mathrm{C})^{1 / \mathrm{p}}\right\}
$$

ここで，σ_{D} はひずみ速度 $\dot{\varepsilon}$ 時の降伏応力，σ_{S} は初期降伏応力，$\dot{\varepsilon}$ はひずみ速度， C及びpはひずみ速度依存性のパラメータを表す。これらのパラメータは，日本溶接協会の動的物性の推定式（以下「WES式」という。）にフィッティングする様に選定した。以下に，竜巻防護鋼板の防護鋼板を例として，選定したパラメータ（表 2－1 参照）と その選定方法を示す。

表 2－1 Cowper－Symonds 式へ入力するパラメータ（防護鋼板）

	防護鋼板
材料	SS 400
$\mathrm{C}\left(\mathrm{s}^{-1}\right)$	
p	

降伏応力及び引張強さに関するWES 式は以下のとおり

$$
\begin{aligned}
& \sigma_{\mathrm{Y}}=\sigma_{\mathrm{Y} 0}\left(\mathrm{~T}_{0}\right) \cdot \exp \left[8 \times 10^{-4} \cdot \mathrm{~T}_{0} \cdot\left(\frac{\sigma_{\mathrm{Y} 0}\left(\mathrm{~T}_{0}\right)}{\mathrm{E}}\right)^{-1.5} \cdot\left\{\frac{1}{\mathrm{~T} \cdot \ln \left(10^{8} / \dot{\varepsilon}\right)}-\frac{1}{\mathrm{~T}_{0} \cdot \ln \left(10^{8} / \dot{\varepsilon}_{0}\right)}\right\}\right] \\
& \sigma_{\mathrm{T}}=\sigma_{\mathrm{T} 0}\left(\mathrm{~T}_{0}\right) \cdot \exp \left[8 \times 10^{-4} \cdot \mathrm{~T}_{0} \cdot\left(\frac{\sigma_{\mathrm{T} 0}\left(\mathrm{~T}_{0}\right)}{\mathrm{E}}\right)^{-1.5} \cdot\left\{\frac{1}{\mathrm{~T} \cdot \ln \left(10^{9} / \dot{\varepsilon}\right)}-\frac{1}{\mathrm{~T}_{0} \cdot \ln \left(10^{9} / \dot{\varepsilon}_{0}\right)}\right\}\right]
\end{aligned}
$$

ここで，$\sigma \mathrm{Y}$ ，$\sigma \mathrm{yo}$ は降伏応力，$\sigma \mathrm{T}$ ，$\sigma \mathrm{To}$ は引張強さ， T ， T_{0} は温度，$\dot{\varepsilon}$ ，$\dot{\varepsilon}_{0}$ はひ ずみ速度，Eはヤング係数を示す。

鋼製部材の動的物性値を選定するにあたり，以下の項目を考慮した。
（1）被衝突物について，貫通評価における許容値は破断ひずみとしていることから， Cowper－Symonds 式により算出した引張強さが WES 式で算出した値にフィッティ ングする様，パラメータを適切に設定した。
（2）飛来物については，Cowper－Symonds 式により算出した降伏応力が WES 式で算出 した値にフィッティングする様，パラメータを適切に設定した。

[^4]（3）（1）及び（2）と併せて，電中研報告書では，ひずみ速度 $10\left(\mathrm{~s}^{-1}\right)$ 近傍において， Cowper－Symonds 式で算出した引張強さが WES 式で算出したものよりも小さくな るように設定し，貫通評価に対して保守的になるように配慮していることを参考に，ここではひずみ速度 $0.01 ~ 100\left(\mathrm{~s}^{-1}\right)$ の範囲においてWES 式で算出した値よ りも小さくなるように設定した。

表 2－1 に示すパラメータを適用したときの動的物性値について，WES 式による値と合 わせ図 2－1 に示す。
\square
図 2－1 防護鋼板におけるひずみ速度－真応力曲線

3．電中研解析手法と自由落下衝突試験結果との整合性について
上記の動的物性値設定手法の設定に際し参照した，電中研解析手法の妥当性について以下に示す。
3.1 事前解析における塑性ひずみ及び試験結果における貫通有無について

電中研報告においては，事前解析にて得られた衝突エネルギーと鋼板に発生する相当塑性ひずみの関係を求め，試験の重錘落下高さに反映を行っている。その際に得ら れた事前解析結果による相当塑性ひずみと自由落下衝突試験における貫通有無の関係 を表3－1に示す。

表 3－1 事前解析結果による相当塑性ひずみと自由落下衝突試験における貫通有無

試験（解析）ケース	試験条件			試験結果によ る貫通有無	事前解析で得 られた相当塑性ひずみ（\％）
	飛来物	被衝突体＊	落下高さ （m）		
SS－1	剛パイプ重錘	SS400	17.0	有	17.4
SS－2	剛パイプ重錘	SS400	12.5	有	14.9
SS－4	剛パイプ重錘	SS400	11	無	14.1
SS－3	剛パイプ重錘	SS400	9． 5	無	13.0

注記 $*$ ：有効開口部サイズ $1.4 \mathrm{~m} \times 1.4 \mathrm{~m} \times \mathrm{t} 9 \mathrm{~mm}$ ，接続部 2 辺固定

上記の試験結果及び事前解析結果より，試験ケース SS－2 においては，貫通が発生し ており，事前解析により得られた相当塑性ひずみは 14.9% である。また，試験ケース SS－4においては，貫通が発生しておらず，事前解析により得られた相当塑性ひずみは 14． 1% である。したがって，試験結果及び事前解析結果より，SS400 鋼板については，相当塑性ひずみが $14.1 \% \sim 14.9 \%$ の間で貫通が発生することが考えられる。

3．2 SS400 鋼板の引張試験における塑性ひずみについて
表3－2に自由落下衝突試験に用いた SS 400 鋼板の引張試験で得られた材料特性値を示す。ここで，試験に使用した被衝突体であるSS400 鋼板の材料試験値から得られた引張ひずみに相当する塑性ひずみが 14.9% であることから，被衝突体であるSS400 鋼板の塑性ひずみが 14.9% 付近に達した場合に飛来物が貫通することが考えられる。

表3－2 自由落下衝突試験に用いた SS400鋼板の材料試験値他

部材	材料試験結果（平均値）				引張ひずみを真ひずみに換算した値（－）	塑性ひずみ （左記から弾性ひずみを差 し引いた値）
	降伏	引張	引張	ヤング		
	応力	強さ	ひずみ	率		
	（MPa）	（MPa）	（－）	（GPa）		
$\begin{gathered} \text { 鋼板 } \\ \text { (SS400) } \end{gathered}$	322.3	474.4	0． 1624	209.7	0.150	0． 148

3.3 電中研解析手法及び自由落下衝突試験結果と材料試験値の整合性
3.1 の事前解析における相当塑性ひずみと自由落下衝突試験における貫通有無より，飛来物衝突により発生するSS400 鋼板の相当塑性ひずみが $14.1 ~ 14.9 \%$ に達した場合 に貫通することが考えられること，3．2のSS400 鋼板の引張試験における材料試験値 よりSS400鋼板の塑性ひずみが 14.8% であることから，電中研報告における事前解析及び自由落下衝突試験結果は材料試験結果とよく整合していることが確認できる。

したがって，電中研解析手法は自由落下衝突試験結果とよく整合している解析手法 であるといえる。表3－3に，電中研報告における事前解析及び自由落下衝突試験から得られた結果並びに材料試験から得られた結果を示す。

表 3－3 電中研報告書における事前解析，自由落下衝突試験及び材料試験から得られた結果

事前解析及び自由落下 衝突試験から得られた結果	材料試験から得られた結果	
SS400鋼板については，飛来	自由落下衝突試験に使用し	左記より電中研解析手法は
物衝突により相当塑性ひず	たSS400 鋼板の引張ひずみ	自由落下衝突試験結果とよ
みが $14.1 \% ~ 14.9 \%$ に達した	に相当する塑性ひずみが	く整合しているといえる。
場合に貫通する。	14.8%	

4．電中研解析手法と当社の解析手法の比較について
電中研解析手法と当社の解析手法の比較を表4－1に示す。本比較表より，当社の解析手法については，「静的な物性値の出典」及び「破断ひずみ（破断条件）」において保守性を有しており，その他については差異がないことから，当社の解析手法は電中研解析手法に比べ保守性を有しているといえる。

表 4－1 電中研解析方法と当社の解析手法の差異

比較項目		電中研解析手法	当社の解析手法	備考
解析コード		AUTODYN	LS－DYNA	「原子力安全基盤機構：原子力発電施設等に係る構造物の爆発衝撃荷重挙動解析 （JNES／SSD08－014，平成 20 年 11 月）」にお いて，AUTODYN と LS－DYNA との間でコード に依存する特性は少ないことが確認され ていることから，解析コードに有意な差 はないといえる。
材料 物性値	静的な物性値 の出典	材料試験値	JIS 及び JSME 規格値	電中研解析手法については，引張試験に おいて得られた材料試験値を使用してお り，JIS 及び JSME 規格値を使用している当社の解析手法に保守性有 （例：SS400 鋼板の材料試験値の降伏応力 322 MPa に対してJIS 値は 245 MPa ）
	動的な物性値 の出典	WES 式＊${ }^{1}$	同左	＊1：（社）日本溶接協会「動的繰返し大変形を受ける溶接鋼構造物の脆性破壊性能評価方法，WES2808：2003」による推定式
	応力ーひずみ 関係	Cowper Symonds モデル*2	同左	＊2：「原子力安全基盤機構：原子力発電施設等に係る構造物の爆発衝撃荷重挙動解析 （JNES／SSD08－014，平成 20 年 11 月）」にお いて使用しているひずみ速度を考慮した モデル
	破断ひずみ （破断条件）	相当塑性ひずみ が JSME 規格＊3 の限界 3 軸ひず み ε L における $\mathrm{TF}=2$ の値に達し た場合を提案 （例．SS400 の場合：12．8\％）		破断ひずみについて電中研提案の値に対 し，小さな値を採用していることから破断しやすい設定となっており，保守性を有している。 ＊3：「日本機械学会：発電用原子力設備規格シビアアクシデント時の構造健全性評価ガイドライン $\langle\mathrm{BWR}$ 鋼製格納容器編 ＞（2014 年 7 月）」

枠囲みの内容は商業機密の観点から公開できません。

6．1－6

5．当社の解析手法と自由落下衝突試験結果との比較について
当社の解析手法の保守性を確認することを目的として，表4－1に記載している当社の解析手法における設定値を用いて，電中研報告における重錘の鋼板上への自由落下衝突試験（以下，電中研試験という）の追解析を行った。その結果を表 5－1 に，解析モデル を図5－1に示す。解析モデルは電中研試験と同様2辺固定とし，重錘部については，密度を大きくした要素を採用することで重錘の重量を模擬している。また，本検討におい ては，解析ソフトとしてLS－DYNAを用いた。

表 5－1 の追解析結果より，自由落下衝突試験において貫通が発生しなかったケースに おいても，当社の解析手法による解析結果においては貫通が発生していること，また貫通が発生したケースにおける残留速度が自由落下衝突試験結果の残留速度よりも大きい ことから，当社の解析手法は保守性を有しているといえる。

表 5－1 当社の解析手法による自由落下衝突試験の追解析

試験ケース	試験条件			試 験 結 果によ る貫通有無（残留速度（m／s））	当社の解析手法を用いた追解析によ る貫通有無（残留速度 $(\mathrm{m} / \mathrm{s})$ ）
	飛来物	被衝突体	落下高さ （m）		
SS－1	剛パイプ重錘	SS400	17．0	有（8．5m／s）	
SS－2	剛パイプ重錘	SS400	12.5	有 $(2.9 \mathrm{~m} / \mathrm{s})$	
SS－4	剛パイプ重錘	SS400	11	無	
SS－3	剛パイプ重錘	SS400	9． 5	無	

図 5－1 解析モデル

> 枠囲みの内容は商業機密の観点から公開できません。

[^0]: 注記 $*$ ：（1）設計竜巻荷重により，荷重作用点から離れており，大きなモーメントを受ける部位（基礎ボルト等）

[^1]: 注記＊：（1）設計竜巻荷重により，荷重作用点から離れており，大きなモーメントを受ける部位（基礎ボルト等）

[^2]: 注記＊：いずれの支承部も構造強度上の評価方針を満足することを確認する。

[^3]: ※ EP：設置許可段階 CP：詳細設計段階

[^4]: 枠囲みの内容は商業機密の観点から公開できません。

