| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

基本設計方針に関する説明資料

【第17条 材料及び構造】
【第55条 材料及び構造】

- 先行審査プラントの記載との比較表
- 要求事項との対比表
（設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式－7）
－各条文の設計の考え方
（設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—6）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） II ：前号：提出時からの変更箇所
【 】 番号：様式 -7 との紐つけをを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表（原子炉本体の基本設計方針）

女川原子力発電所第 2 号機	備考
2．原子炉圧力容器 2．1 原子炉圧力容器本体 原子炉圧力容器は最低使用温度を $10^{\circ} \mathrm{C}$ に設定し，関連温度（初期）を $-35^{\circ} \mathrm{C}$ 以下に設定することで，脆性破壊が生じない設計とする。 【17条8】	設計の差異 （最低使用温度，関連温度初期值の相違。） ＜柏崎刈羽 7 号との比較＞ 記載方針の相違 （柏崎刈羽 7 号は 14 条 2 項の要求として整理している。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（原子炉冷却系統施設（共通項目）の基本設計方針）

《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	備考
		5． 2 材料及び構造等 設計基準対象施設（圧縮機，補助ボイラー，蒸気夕 ービン（発電用のものに限る。），発電機，変圧器及び遮断器を除く。）並びに重大事故等対処設備に属する容器，管，ポンプ若しくは弁若しくはこれらの支持構造物又は炉心支持構造物の材料及び構造は，施設時にお いて，各機器等のクラス区分に応じて以下のとおりと し，その際，日本機械学会「発電用原子力設備規格 設計•建設規格」（J S ME 設計•建設規格）等に従い設計する。 【17条1】【55条1】 ただし，重大事故等クラス 2 機器及び重大事故等ク ラス 2 支持構造物の材料及び構造であって，以下によ らない場合は，当該機器及び支持構造物が，その設計上要求される強度を確保できるよう J S ME 設計•建設規格を参考に同等以上の性能を有することを確認 する。 【55条2】 また，重大事故等クラス 3 機器であって，完成品は，以下によらず，「消防法」に基づく技術上の規格等一般産業品の規格及び基準に適合していることを確認し，使用環境及び使用条件に対して，要求される強度を確保できる設計とする。 【55条3】 重大事故等クラス 2 容器及び重大事故等クラス 2 管 のうち主要な耐圧部の溶接部の耐圧試験は，母材と同等の方法，同じ試験圧力にて実施する。 【55条4】 なお，各機器等のクラス区分の適用については，別紙「主要設備リスト」による。 【17条2】【55 条5】	設備名称の相違 ＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。） ＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。） 表現の相違

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（原子炉冷却系統施設（共通項目）の基本設計方針）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（原子炉冷却系統施設（共通項目）の基本設計方針）

《参考》䄸崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	備考
		（2）破壊じん性 a．クラス 1 容器は，当該容器が使用される圧力，温度，放射線，荷重その他の使用条件に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性 は，寸法，材質又は破壊じん性試験により確認する。 【17 条 7】 b．クラス 1 機器（クラス 1 容器を除く。），クラス 1支持構造物（クラス 1 管及びクラス 1 弁を支持するも のを除く。），クラス 2 機器，クラス 3 機器（工学的安全施設に属するものに限る。），原子炉格納容器，原子炉格納容器支持構造物，炉心支持構造物及び重大事故等クラス 2 機器は，その最低使用温度に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。 【17条9】【55 条 8】 重大事故等クラス 2 機器のうち，原子炉圧力容器に ついては，重大事故等時における温度，放射線，荷重 その他の使用条件に対して損傷するおそれがない設計 とする。 【55 条9】	＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。） ＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。） ＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（原子炉冷却系統施設（共通項目）の基本設計方針）

女川原子力発電所第 2 号機
c．高圧炉心スプレイ系ストレーナ，低圧炉心スプレ イ系ストレーナ及び残留熱除去系ストレーナは，その
最低使用温度に対して適切な破壊じん性を有する材料 を使用する。また，破壊じん性は，寸法，材質又は破壊
じん性試験により確認する。
【17条10】
（3）非破壊試験
クラス 1 機器，クラス 1 支持構造物（棒及びボルト
に限る。），クラス 2 機器（鋳造品に限る。），炉心支持
構造物及び重大事故等クラス 2 機器（鋳造品に限る。）
に使用する材料は，非破壊試験により有害な欠陥がな
いことを確認する。
【17条11】【55条10】

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（原子炉冷却系統施設（共通項目）の基本設計方針）

《参考》䄸崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	備考
		5．2．2 構造及び強度について （1）延性破断の防止 a．クラス 1 機器，クラス 2 機器，クラス 3 機器，原子炉格納容器，炉心支持構造物，重大事故等クラス 2 機器及び重大事故等クラス 3 機器は，最高使用圧力，最高使用温度及び機械的荷重が負荷されている状態（以下「設計上定める条件」という。）において，全体的な変形を弾性域に抑える設計とする。 【17 条 12】【55 条 11】	＜柏崎刈羽 7 号機との比較〉設計の差異 （格納容器型式の相違。）
		b．クラス 1 支持構造物及び原子炉格納容器支持構造物は，運転状態 I 及び運転状態IIにおいて，全体的な変形を弾性域に抑える設計とする。 【17条13】	＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。）
			＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。）
		c．クラス 1 支持構造物であって，クラス 1 容器に溶接により取り付けられ，その損壊により，クラス 1 容器の損壊を生じさせるおそれがあるものは，b．にかか わらず，設計上定める条件において，全体的な変形を弾性域に抑える設計とする。 【17条14】	
		d．クラス 1 容器（オメガシールその他のシールを除 く。），クラス 1 管，クラス 1 弁，クラス 1 支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炬心支持構造物にあっては，運転状態IIIにおいて，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上の不連続部については，補強等により局部的な塑性変形に止まるよう設計する。 【17条15】	＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（原子炉冷却系統施設（共通項目）の基本設計方針）

《参考》䄸崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	備考
		e．クラス 1 容器（オメガシールその他のシールを除 く。），クラス 1 管，クラス 1 支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分 に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態IVにおいて，延性破断に至る塑性変形が生じない設計とする。 【17条16】 f．クラス 4 管は，設計上定める条件において，延性破断に至る塑性変形を生じない設計とする。 【17条17】 g．クラス 1 容器（ボルトその他の固定用金具，オメ ガシールその他のシールを除く。），クラス 1 支持構造物（クラス 1 容器に溶接により取り付けられ，その損壊により，クラス 1 容器の損壊を生じさせるおそれが あるものに限る。）及び原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。）は，試験状態において，全体的な塑性変形が生じない設計とする。 また，応力が集中する構造上の不連続部については，補強等により局部的な塑性変形に止まるよう設計す る。 【17条18】	＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。） $<$ 柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。） ＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。） ＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（原子炉冷却系統施設（共通項目）の基本設計方針）

《参考》䄸崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第 2 号機	備考
		h．高圧炉心スプレイ系ストレーナ，低圧炉心スプレ イ系ストレーナ及び残留熱除去系ストレーナは，運転状態 I，運転状態II及び運転状態IV（異物付着による差圧を考慮）において，全体的な変形を弾性域に抑え る設計とする。 【17条19】 i．クラス 2 支持構造物であって，クラス 2 機器に溶接により取り付けられ，その損壊によりクラス 2 機器 に損壊を生じさせるおそれがあるものには，運転状態 I 及び運転状態IIにおいて，延性破断が生じない設計 とする。 【17条20】 j．重大事故等クラス 2 支持構造物であって，重大事故等クラス 2 機器に溶接により取り付けられ，その損壊により重大事故等クラス 2 機器に損壊を生じさせる おそれがあるものは，設計上定める条件において，延性破断が生じない設計とする。 【55条12】 （2）進行性変形による破壊の防止 クラス1容器（ボルトその他の固定用金具を除く。）， クラス 1 管，クラス 1 弁（弁箱に限る。），クラス 1 支持構造物，原子炬格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I 及び運転状態IIにおいて，進行性変形が生じない設計とする。 【17条21】	＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。） ＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（原子炉冷却系統施設（共通項目）の基本設計方針）

女川原子力発電所第 2 号機	備考
（3）疲労破壊の防止 a．クラス 1 容器，クラス 1 管，クラス 1 弁（弁箱に限る。），クラス 1 支持構造物，クラス 2 管（伸縮継手 を除く。），原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炬心支持構造物は，運転状態I 及び運転状態IIにおいて，疲労破壊が生じない設計とする。 【17条22】 b．クラス 2 機器，クラス 3 機器，原子炉格納容器，重大事故等クラス 2 機器の伸縮継手及び重大事故等ク ラス 2 管（伸縮継手を除く。）は，設計上定める条件で応力が繰り返し加わる場合において，疲労破壊が生じ ない設計とする。 【17条23】【55条13】 （4）座屈による破壊の防止 a．クラス 1 容器（胴，鏡板及び外側から圧力を受け る円筒形又は管状のものに限る。），クラス 1 支持構造物，原子炉格納容器支持構造物及び炉心支持構造物は，運転状態 I，運転状態II，運転状態III及び運転状態IV において，座屈が生じない設計とする。 【17 条 24】 b．クラス 1 容器（胴，鏡板及び外側から圧力を受け る円筒形又は管状のものに限る。）及びクラス 1 支持構造物（クラス 1 容器に溶接により取り付けられ，その損壊により，クラス 1 容器の損壊を生じさせるおそれ があるものに限る。）は，試験状態において，座屈が生 じない設計とする。 【17条25】	$<$ 柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。） ＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。） ＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。） ＜柏崎刈羽 7 号機との比較＞設計の差異 （格納容器型式の相違。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（原子炉冷却系統施設（共通項目）の基本設計方針）
東海算一発電所

女川原子力発電所第 2 号機
c．クラス 1 管，クラス 2 容器，クラス 2 管，クラス
3 機器，重大事故等クラス 2 容器，重大事故等クラス 2
管及び重大事故等クラス 2 支持構造物（重大事故等ク
ラス 2 機器に溶接により取り付けられ，その損壊によ
り重大事故等クラス 2 機器に損壊を生じさせるおそれ
があるものに限る。）は，設計上定める条件において，
座屈が生じない設計とする。
【17条26】【55条14】
d．原子炉格納容器は，設計上定める条件並びに運転状態III及び運転状態IVにおいて，座屈が生じない設計
とする。
【17条27】
e．クラス 2 支持構造物であって，クラス 2 機器に溶接により取り付けられ，その損壊によりクラス 2 機器 に損壊を生じさせるおそれがあるものには，運転状態
I 及び運転状態 IIにおいて，座屈が生じないよう設計 する。
【17条28】
設計の差異
（格納容器型式の相違。）
$<$ 柏崎刈羽 7 号機との比較 $>$設計の差異
（格納容器型式の相違。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（原子炬冷却系統施設（共通項目）の基本設計方針）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（原子炉冷却系統施設（共通項目）の基本設計方針）
東海第二発電所

女川原子力発電所第2号機	備考
5．2．3 主要な耐圧部の溶接部（溶接金属部及び熱影響部をいう。）について クラス 1 容器，クラス 1 管，クラス 2 容器，クラス 2 管，クラス 3 容器，クラス 3 管，クラス 4 管，原子炉格納容器，重大事故等クラス 2 容器及び重大事故等ク ラス 2 管のらち主要な耐圧部の溶接部は，次のとおり とし，使用前事業者検查により適用基準及び適用規格 に適合していることを確認する。	新検査制度施行に伴ら検査名称の適正化に よる差異
- 不連続で特異な形状でない設計とする。 - 溶接による割れが生ずるおそれがなく，かつ，健全 な溶接部の碓保に有害な溶込み不良その他の欠陥がな いことを非破壊試験により確認する。 - 適切な強度を有する設計とする。 - 適切な溶接施工法，溶接設備及び技能を有する溶接士であることを機械試験その他の評価方法によりあら かじめ確認する。 【17条29】【55条15】	

要求事項との対比表

| 技術基準規則•解釈 |
| :---: | :---: |
| （材料及び構造） |
| 第十七条 設計基準対象施 |

設（圧縮機，補助ボイラー蒸気タービン（発電用のも のに限る。），発電機，変圧器及び遮断器を除く。）に属す る容器，管，ポンプ若しくは弁若しくはこれらの支持構造物又は炉心支持構造物の材料及び構造は，次に定め るところによらなければな らない。この場合において，第一号から第七号まで及び第十五号の規定について は，法第四十三条の三の十一第二項に定める使用前事業者検査の確認を行うまで の間適用する。（1）（2）（3）

【解釈】

1 第 8 号から第 14 号ま での構造強度は，原子炉等規制法第43条の3の14 に基づき維持段階にも適用 される。（2）a

一クラス 1 機器及びクラ ス 1 支持構造物に使用する材料は，次に定めるところ によること。（1）
イクラス 1 機器又はクラ ス 1 支持構造物が，その使用される圧力，温度，水質，放射線，荷重その他の使用条件に対して適切な機械的強度及び化学的成分（使用中の応力その他の使用条件 に対する適切な耐食性を含

設計基準対象施設（圧縮機，補助ボイラー，蒸気ター ビン（発電用のものに限 る。），発電機，変圧器及び遮断器を除く。）に属する容器，管，ポンプ若しくは弁若 しくはこれらの支持構造物又は炉心支持構造物の材料及び構造は，施設時におい て，各機器等のクラス区分 に応じて以下のとおりと し，その際，日本機械学会「発電用原子力設備規格設計•建設規格」（J S ME設計•建設規格）等に従い設計する。

【17条1】

なお，各機器等のクラス区分の適用については，別紙「主要設備リスト」によ る。
【17 条 2】

5．2．1 材料について
（1）機械的強度及び化学的成分
a．クラス 1 機器，クラス 1支持構造物及び炉心支持構造物は，その使用される圧力，温度，水質，放射線，荷重その他の使用条件に対し て適切な機械的強度及び化学的成分（使用中の応力そ の他の使用条件に対する適

設計基準対象施設（圧縮機，補助ボイラー，蒸気ター ビン（発電用のものに限 る。），発電機，変圧器及び遮断器を除く。）に属する容器，管，ポンプ若しくは弁若 しくはこれらの支持構造物又は炉心支持構造物の材料及び構造は，施設時におい て，各機器等のクラス区分 に応じて以下のとおりと し，その際，日本機械学会「発電用原子力設備規格設計•建設規格」（J S ME設計•建設規格）等に従い設計する。
（1）（2）（2） i （3）【17条1】

なお，各機器等のクラス区分の適用については，別紙「主要設備リスト」によ る。
（1）（2）（3）【17条2】

5．2．1 材料について
（1）機械的強度及び化学的成分
a．クラス 1 機器，クラス 1支持構造物及び炉心支持構造物は，その使用される圧力，温度，水質，放射線，荷重その他の使用条件に対し て適切な機械的強度及び化学的成分（使用中の応力そ

口
般構
年
（3）その他の主要な構造
（ i ）本発電用原子炉施設
は，（1）耐震構造，（2）耐津波構造に加え，以下の基本的方針のもとに安全設計を行う。
a ．設計基準対象施設
（1）原子炉冷却材圧力バ ウンダリ
原子炉冷却材圧力バウン ダリを構成する機器（安全施設に属するものに限る。） は，以下を考慮した設計と する。
通常運転時，運転時の異常な過渡変化時及び設計基準事故時に生ずる衝撃，炉心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成 する機器に加わる負荷に耐 えられる設計とする。
原子炉冷却材の流出を制限するために隔離装置を有 する設計とする。 1
通常運転時，運転時の異常な過渡変化時及び設計基準事故時に瞬間的破壊が生 じないよう，十分な破壊じ ん性を有する設計とする。 2
原子炉泠却材圧力バウン ダリからの原子炉冷却材の漏えいを検出する装置を有 する設計とする。 1
5
5.
5.
5.1 原子炉圧力容器及び一次冷却材設備
5．1．1 通常運転時等
5．1．1．2 設計方針
（3）非延性破壊の防止
原子灲冷却材圧力バウン
ダリは，通常運転時，保修
時，試験時，運転時の異常な過渡変化時及び設計基準事故時において，脆性的挙動 を示さず，かつ，急速な伝播型破断を生じない設計とす る。〈1〉
（4）構造強度等
a．原子炉冷却材圧力バウ
ンダリを構成する配管及び機器は，通常運転時，運転時 の異常な過渡変化時及び設計基準事故時に想定される圧力，温度等を考慮し，地震時に生じる荷重をも適切に重ね合わせ，変動時間，繰り返し回数等の過渡条件を想定し，材料疲労や腐食を考慮しても健全性を損なわな い構造強度を有する設計と する。②
b．一次冷却材設備を構成 する系統及び機器は，通常運転時及び運転時の異常な過渡変化時に健全性を損な わない構造強度を有する設計とするとともに，その支持構造物は，温度変化によ る膨張収縮に伴う変位を吸収し得る設計とする。 2 2
基淮要求への適合性を明確
（設置許可に材料及び構造 に関する具体的な記載が無 いため，技術基準要求に対 する設計を明確に記載し た。（以下同様））

原子炉冷却系統施設（共通） 5.2 材料及び構造等

同上

原子炉冷却系統施設（共通） 5．2．1 材料について

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第17条 材料及び構造】

技術基準規則•解釈	
む。）を有すること。（1）A	切な
【解釈】	る材
2 第 1 号イの「使用中の応	【1
力その他の使用条件に対す	
る適切な耐食性を含む」と	b．
は，日本機械学会「発䨋用原	支持

（「日本機械学会「発電用原子力設備規格 設計•建設規枚」（2001 年版及び2005 年版）事例規格「過圧防護に関 する規定（ $\mathrm{NC}-\mathrm{CC}-001$ ）」及び事例規格「応力腐食割れ発生の抑制に対する考慮（NC－ CC－002）」に関する技術評価書」（平成 18 年 8 月原子力安全•保安院，原子力安全基盤機構取りまとめ）及び「日本機械学会 設計•建設規格 （JSME S NC1）正誤表（令和

切な耐食性を含む。）を有す る材料を使用する。

【17条3】
b．クラス 2 機器，クラス 2支持構造物，クラス 3 機器及 びクラス 4 管は，その使用さ れる圧力，温度，荷重その他 の使用条件に対して適切な機械的強度及び化学的成分 を有する材料を使用する。【17条4】
c．原子炉格納容器又は原子炉格納容器支持構造物 は，その使用される圧力，温度，湿度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有す る材料を使用する。
【17条5】
d．高圧炉心スプレイ系ス トレーナ，低圧炉心スプレ イ系ストレーナ及び残留熱除去系ストレーナは，その使用される圧力，温度，荷重 その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用 する。
【17条6】
（2）破壊じん性
a．クラス 1 容器は，当該容器が使用される圧力，温度，

要求事項との対比表

| 設置許可申請書 |
| :---: | :--- |
| 添付書類八 |\(\quad \begin{aligned} \& 設置許可，技術基漼規則

\& 及び基本設計方針との対比\end{aligned}\)
（aa）原子炬格納施設
原子炉格納容器バウンダ リが脆性的挙動をせず，か つ，急速な伝播型破断を生 じないよう，設計に当たっ ては，応力解析等を行い，予測される発生応力による急速な伝播型破断が生じない ように設計する。6

八 原子炉本体の構造及び設備
（4）原子炉容器
（i）構造
f．非延性破壊に対する考慮
原子炉圧力容器は，非延性破壊防止の観点から，原子力規制委員会規則等に基 づき破壊勒性を確認し，適切な温度で使用する。 3
なお，中性子照射による破壊靭性の変化を監視する ため，原子炉圧力容器内に試験片を挿入する。4

リ 原子炬格納施設の構造及び設備
（1）原子炉格納容器の構造原子炉格納施設は，原子炉格納容器及び補助系（格納容器内ガス濃度制御系，格納容器スプレイ泠却系）格納容器スブレイ泠却系）
からなる一次格納施設並び

9．原子炉格納施設
9．1原子炉格納施設
9．1．1 通常運転時等
9．1．1．2 設計方針
（4）構造強度
原子炉格納容器は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時 に想定される静荷重•動荷重に地震荷重を適切に組合 せた状態で健全性を損なわ ない構造強度を有するよう に設計する。 ③
（9）非延性破壊の防止
非延性破壊防止のため，原子炉格納容器については最低使用温度（ $10^{\circ} \mathrm{C}$ ）より $17^{\circ} \mathrm{C}$ 以上低い温度で，原子炉格納容器バウンダリに属 する配管等は，最低使用温度以下で，それぞれ実施し た破壊靭性試験に適合する材料で製作する。〈4

原子炉冷却系統施設（共通） 5．2．1 材料について

同上

同上

要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{\text { 隹 }}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
元年7月12日付け）等及	放射線，荷重その他の使用	放射線，荷重その他の使用	に原子炉建屋原子炉棟及び			
び日本電気埸会 原子炬格	条件に対して適切な破壊じ	条件に対して適切な破壊じ	非常用ガス処理系からなる			
納容器の漏えい率試験規程	儿性を有する材料を使用す	ん性を有する材料を使用す	二次格納施設で構成する。			
（JEAC4203－2008）正䛊表	る。また，破壊じん性は，寸	る。また，破壊じん性は，寸	原子炉格納容器は，上下			
（平成 28 年12月13日付	法，材質又は破壊じん性試	法，材質又は破壊じん性試	部半球円筒形のドライウェ			
（け）等に関する技獄評価書」	験により碓認する。	験により碓認する。	ル及び円環形のサプレッシ			
（原規技発第2001159 号	【17条7】	（1）B（1）【17条7】	ョンチェンバ等からなる圧			
（命和2年1月15日原子			力抑制形であり，その基盤			
力规制委員会決定））（1）a	原子炬圧力容器は最低使	原子炬圧力容器は最低使	は直接岩盤で支持する。5			原子炬本体
	用温度を $10^{\circ} \mathrm{C}$ に設定し，関	用温度を $10^{\circ} \mathrm{C}$ に設定し，関	格納容器バウンダリは，			2.1 原子炉圧力容器本体
ロクラス 1 容器に使用す	連温度（初期）を $35^{\circ} \mathrm{C}$ 以下	連温度（初期）を $-35^{\circ} \mathrm{C}$ 以下	非延性破壊を防止する観点			
る材料にあっては，当該容	に設定することで，脆性破	に設定することで，脆性破	から原子力規制委員会規則			
器が使用される圧力，温度，	壊が生じない設計とする。	壊が生じない設計とする。	等に基づき破壊勒性試験を			
放射線，荷重その他の使用	【17 条8】	（1）【 17 条8】	行い，これに適合する材料			
条件に対して適切な破壊じ			を使用する。原子炉格納容			
ん性を有することを機械試			器の最低使用温度は， $10^{\circ} \mathrm{C}$			
験その他の評価方法により	b．クラス 1 機器（クラス 1	b．クラス 1 機器（クラス 1	とする。6			原子炉冷却系統施設（共通）
確認したものであること。	容器を除く。），クラス 1 支持	容器を除く。），クラス 1 支持	形 式 圧力抑制形			5．2．1 材料について
（1）B	構造物（クラス 1 管及びクラ	構造物（クラス1管及びクラ	形 状			
	ス1弁を支持するものを除	ス1弁を支持するものを除	ドライウェル			
八クラス 1 機器（クラス 1	く。），クラス 2 機器，クラス	く。），クラス 2 機器，クラス	上下部半球円筒形			
容器を除く。）又はクラス1	3 機器（工学的安全施設に属	3 機器（工学的安全施設に属	サプレッションチェン			
支持構造物（クラス1管及	するものに限る。），原子炉	するものに限る。），原子炉	バ			
びクラス1弁を支持するも	格納容器，原子炉格納容器	格納容器，原子炉格納容器	円環形			
のを除く。）に使用する材料	支持構造物及び炬心支持構	支持構造物及び炬心支持構	材 料 炭素鋼			
にあっては，当該機器又は	造物は，その最低使用温度	造物は，その最低使用温度	（JISG3118 及び			
当該支持構造物の最低使用	に対して適切な破壊じん性	に対して適切な破壊じん性	JISG3115）			
温度に対して適切な破懐じ	を有する材料を使用する。	を有する材料を使用する。	寸 法			
儿性を有することを機械試	また，破壊じん性は，寸法，	また，破壊じん性は，寸法，	ドライウェル			
験その他の評価方法により	材質又は破壊じん性試験に	材質又は破壊じん性試験に	円筒部直径 約 23 m			
確認したものであること。	より確認する。	より確認する。	全 高約37m			
（1）C	【17条9】	（1）C（1）F（1）I（1）L（1）M（1）b（1）d	サプレッションチェ			
【解粎】		【17 条9】				
3 第1号口，八，第2号口，			円環部中心線直径			
第3号口，第5号口の破壊	c．高圧炬心スプレイ系ス	c．高圧炉心スプレイ系ス	約 38 m			同上
じん性の規定において，板	トレーナ，低圧炬心スプレ	トレーナ，低圧炬心スプレ	円環部断面直径			
厚の薄い材料や高ニッケル	イ系ストレーナ及び残留熱	イ系ストレーナ及び残留熱	約9．4m			

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第17条 材料及び構造】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
合金等脆性破壊が問題とな らないことが明白な材料に ついては機械試験による確認に代えて寸法や村質によ り確認することができる。 （1）b ニクラス 1 機器又はクラ ス 1 支持構造物（棒及びボ ルトに限る。）に使用する材料にあっては，有害な欠陥 がないことを非破壊試験に より確認したものであるこ と。（1）D 二 クラス 2 機器及びクラ ス 2 支持構造物に使用する材料は，次に定めるところ によること。（1） イ クラス 2 機器又はクラ ス 2 支持構造物が，その使用される圧力，温度，荷重そ の他の使用条件に対して適切な機械的強度及び化学的成分を有すること。（1）E ロ クラス 2 機器に使用す る材料にあっては，当該機器の最低使用温度に対して適切な破壊じん性を有する ことを機械試験その他の評価方法により確認したもの であること。（1）F ハクラス 2 機器に属する鋳造品にあっては，有害な	除去系ストレーナは，その最低使用温度に対して適切 な破壊じん性を有する材料 を使用する。また，破壊じん性は，寸法，材質又は破壊じ ん性試験により確認する。 【17条10】 （3）非破壊試験 クラス 1 機器，クラス 1 支持構造物（棒及びボルトに限る。），クラス 2 機器（鋳造品に限る。）及び炬心支持構造物に使用する材料は，非破壊試験により有害な欠陥 がないことを確認する。 【17条11】	除去系ストレーナは，その最低使用温度に対して適切 な破壊じん性を有する材料 を使用する。また，破壊じん性は，寸法，材質又は破壊じ ん性試験により確認する。 （1）F（1）b（1）c【17条10】 （3）非破壊試験 クラス 1 機器，クラス 1 支持構造物（棒及びボルトに限る。），クラス 2 機器（鋳造品に限る。）及び炉心支持構造物に使用する材料は，非破壊試験により有害な欠陥 がないことを確認する。 （1）D（1）G（1）M 【17条11】	主要貫通部 配管貫通部，電気配線貫通部，機器搬出入用 ハッチ，パーソネルエ アロック等 5			原子炉泠却系統施設（共通） 5．2．1 材料について

要求事項との対比表

赤色：栐式－6に関する掸载（付番及ひ下綵） 青色：設置变更砤可本文及び添付書類八からの引用以外の礼軣 茶色：没置変更胙可と基本段虾方针（後）との对比 緑色：技栯基锥䙺則と基本没計方针（捘）との対比 紫色：基本設計方针（前）と基本設鄙方禅（捘）との対比	100 条 OO I：関連する資料と基本設計方針を組づけるための付番 ＜関連する資料＞ - 様式 -1 への展開表（補足説明資料） - 技術基潐要求機器リスト（設定根拠に関する説明書 別添－1） ：前回提出時からの変更箇所

紫色：基本設計方針（前）と基本設計方針（後）との対比
 －

技術基準規則•解积	$\begin{gathered} \text { 設工認中請書 } \\ \text { 基本設計方針 (前) } \\ \hline \end{gathered}$	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 (後) } \\ \hline \end{gathered}$	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書添付書類八	設置許可，技術基漼規則及び基本設計方針との対比	備考
欠陥がないことを非破壊試験により確認したものであ ること。（1）G 【解粏】 4 非常用炉心冾却設備又 は格納容器熱除去設備に倸 るろ，過装置の材料及び構造 については，第2号及び第 9 号の規定を準用するとと もに，「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等 について（内規）」（平成2 0 •O2•12原院第5号 （平成20年2月27日原子力安全•保安院制定）に適合すること（1）（2）b 三クラス 3 機器（クラス 3容器又はクラス3管をい う。以下同じ。）に使用する材料は，次に定めるところ によること。（1） イクラス 3 機器が，その使用される圧力，温度，荷重そ の他の使用条件に対して適切な機械的強度及び化学的成分を有すること。（1）H口 工学的安全施設に属す るクラス 3 機器に使用する材料にあっては，当該機器 の最低使用温度に対して適切な破壞じん性を有するこ とを機械試験その他の評価方法により確認したもので あること。（1）I【解积】						

要求事項との対比表

赤色：栐式－6に関する掸载（付番及ひ下綵） 茶色：没置変更胙可と基本段虾方针（後）との对比 緑色：技栯基锥䙺則と基本没計方针（捘）との対比 紫色：基本設計方㓌（前）と其本設計方㓌（後）との対比	100 条 OO I：関連する資料と基本設計方針を組づけるための付番 ＜関連する資料＞ - 様式 -1 への展開表（補足説明資料） - 技術基潐要求機器リスト（設定根拠に関する説明書 別添－1） ：前回提出時からの変更箇所

紫色：基本設計方針（前）と基本設計方針（後）との対比

 ：前回提出時からの変更箇所

技術基準規則•解积	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
5第3号口の「工学的安全施設に属するクラス3機器」には非常用ディーゼル発電機の冷却系が含まれ る。（「安全設計分野及び放射楾管理分野における日本電気拹会规格に関する技術評価書」（平成 1 7 年 12 月原子力安全•保安院，原子力安全基盤機構取りまとめ） （1）d 四 クラス 4 管に使用する材料は，当該管が使用され る圧力，温度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有すること。（1）J 五 原子炬格納容器（コンク リート製原子炉格納容器を除く。以下この号において同じ。）及び原子炉格納容器支持構造物に使用する材料 は，次に定めるところによ ること。（1） イ 原子炉格納容器又は原子炬格納容器支持構造物 が，その使用される圧力，温度，湿度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有す ること。（1）K 口 原子炉格納容器又は原子炉格納容器支持構造物の最低使用温度に対して適切						

要求事項との対比表

六 コンクリート製原子炉格納容器のコンクリート部及び鋼製内張り部等に使用 する材料は，次に定めると
ころによること。（4）
イコンクリートにあって は，当該原子炉格納容器が使用される圧力，温度，荷重 その他の使用条件に対して適切な圧縮強度を有するこ と。（4）
ロ コンクリートにあって は，有害な膨張及び鉄筋腐食を起こさないよう，長期 の耐久性を有すること。（4） ハ コンクリート部に強度部材として使用する鉄筋並 びに緊張材及び定着具（以下「鉄筋等」という。）にあ っては，当該原子炉格納容器が使用される圧力，温度，荷重その他の使用条件に対 して適切な機械的強度，化学的成分及び形状寸法を有 すること。（4）
二鋼製内張り部等に使用 する材料にあっては，前号 イ及びロの規定に準ずるこ と。（4）

七 炉心支持構造物に使用

要求事項との対比表

	$\begin{aligned} & \text { 設工認申請書 } \\ & \text { 基本設計方針 } \end{aligned}$	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 } \end{gathered} \text { (後) }$		設置詳可申請書添付書類八	設置許可，技術基漼規則及び基本設計方針との対比	備考
$\begin{aligned} & \text { する村料は, 第一号イ, ハ及 } \\ & \text { びん = 規定に漼ずること。 } \\ & \text { (1) } \end{aligned}$						原子炬洽却系䖻施設（共通） 5．2．2 構造及び強度につ いて
へクラス1機器及びクラ	5．2．2 稱造及び強度につ	5．2．2 楼造及び強度につ				
ス 1 支持橎造物の偁造及び	いて	いて				
強度は，次比定めるところ	（1）延轪破断の防止	（1）延性破姃か防止				
によること。（2）	a．クララス1機器，クラス2	a．クラス1機器，クラス2				
	機器，クラス3 3 幾器，原子炉					
イクラス1機器にあって	格納容器及び火即心支持緟造	格綌器器及び炬心支持㮔造				
は，最高便用圧力，最高使用	物は，最高使用圧力，最高使	物は，最高使用压力，最高使				
温度及ひ機杫的荷重加負荷	用温度及び機械的荷重から負	用温度及び機棫的荷重力兌負				
されている状態（以下 設計 $^{\text {a }}$	荷されている状熊（以下）	荷されている状滤（以下「設				
上定める条件」という。）に	計上定める条件」といら。）	計上定める条件」といら。）				
おいて，全体的な変形を弹	において，全体的な変形を	において，全体的な変形を				
性域に抑えること。（2）	弹性域比抑えるる浐計とす	弹性域比抑元る設計とす				
ロクラス1支㭙稱造物に	${ }_{\text {30 }}^{\text {［17 }}$（12］	3． （2anleneu（2V（2ac（ą				
あっては，連绞状態1及び		c（2d［17 条12】				
連輷状熊川において，全体						同上
的な変形を弹珄域化㧕える	b．クラス 1 文持橎造物及	b．クラス 1 支持稱造物及				
こと。（2）	て原子效格納容蜀文持倳造	ひ原子炉格納容器文持窚造				
ハクラス1容㗊（オメガ						
－ルその他のシールを除						同上
＜），クラス1管，クラス1	とする。	とする。				
弁及ぴクラス 1 支持栱造物	［17 ${ }^{\text {条 } 131}$					
にあっては，連転状熊川に						
おいて，全体的な羔性変形	c．クラス 1 文持根造物で	c．クラス 1 支持檑造物で				
が生じないこと。ただし，構	あって，クラス1容器に浴接					
造上の不連絞部しおかける局	により取り付けられ，その	により取り付けられ，その				
部的な塑性変形はこの限り でない。（2）C	損壊により，クラス1容器の損壊を生じさせる打それが	損壊により，クラス 1 容器の損溒を生じさせるおそれが				
	あるものは，b．にかかわら	あるものは，b．ぐかかわら				
ニクラス1容器（オメガ	ず，設計上定める各珄に校	ず，設計上定める条件にお訪				
ールその他のシールを除	いて，全体的な变形を弹性	いて，全体的な変形を突弾性				

設置許可申請書
$\underset{\substack{\text { 要求事項との対比表 } \\ \text { 設置許可申請書 }}}{\text { 信 }}$
赤色：様式－6に関する記載（付番及び下線）青色：設置変更許可本文及び添付書類八かから引引用以外の記載

緑色：技利基坴㭠梘則と基本設計方針（捘）との対比
100条 001 ：関連寸る資料と基本設計方釙を組らけるための付番 ＜開連する資料〉

 ：前回提出時からの変更毘所

要求事項との対比表

要求事項との対比表

技術基潐規則•解粎	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備
（2）八の「全体的な塑性変形が生じないこと。ただし，構造上の不連絖部における局部的な塑性変形はこの限 りではない。」とは，応力が集中する綯所である「構造上の不連続部」にのみ一時的な荷重による塑性変形を許容するが，構造体の機能低下に至るような塑性変形 は許容しないこと。（2）e （3）二の「延性破断に至る塑性変形が生じないこと」 とは，第所の限定なしに塑性変形が生じることを計容 するが，構造体の著しい機能震失に至るような塑性変形は許容しないこと。（2）f 8 第8号ホ及びへの「ボル トその他の固定用金具」と は，ボルト及びナット等を いう。八からホの「オメガシ ールその他のシール」とは， オメガシール及びキャノピ ーシールをいら。（2）g 9 第 8 号への「進行性変形」とは，内圧などによる一定の応力（一次応力）が加わ った状態で，熱応力等（二次応力）による変形（ひずみ） が弾性的举動を示す領域を超え繰り返し加えられる場合に，その変形（ひずみ）が一方向に蓄積されるもの で，「進行性変形が生じない こと」とは，その二次広力に	により取り付けられ，その損壊によりクラス 2 機器に損壊を生じさせるおそれが あるものには，運転状態 I及び運転状態IIにおいて，延性破断が生じない設計と する。 【17条20】 （2）進行性変形による破壊の防止 クラス 1 容器(ボルトその他の固定用金具を除く。）， クラス1管，クラス1弁（弁箱に限る。），クラス 1 支持構造物，原子炬格納容器（著し い応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態 I 及び運転状態IIに おいて，進行性変形が生じ ない設計とする。 【17条21】 （3）疲労破壊の防止 a．クラス 1 容器，クラス 1管，クラス 1 弁（弁箱に限 る。），クラス 1 支持構造物， クラス 2 管（伸縮継手を除 く。），原子炬格納容器（著し い応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運	により取り付けられ，その損壊によりクラス 2 機器に損壊を生じさせるおそれが あるものには，運転状態 I及び運転状態IIにおいて，延性破断が生じない設計と する。 （2）P（2）a【17条20】 （2）進行性変形による破壞の防止 クラス 1 容器（ボルトその他の固定用金具を除く。）， クラス 1 管，クラス 1 弁（弁箱に限る。），クラス 1 支持構造物，原子炉格納容器（著し い応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態 I 及び運転状態IIに おいて，進行性変形が生じ ない設計とする。 （2）F（2）X（2）AF（2）a（2）g（2）h 条21】 （3）疲労破壊の防止 a．クラス 1 容器，クラス 1管，クラス 1 弁（弁箱に限 る。），クラス 1 支持構造物， クラス 2 管（伸縮継手を除 く。），原子炉格納容器（著し い応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炬心支持構造物は，運				原子炉冷却采統施設（共通） 5．2．2 構造及び強度につ いて 同上

要求事項との対比表

赤色：様式－6に関する記載（付番及び下線） 青色 ：設置変更許可本文及び添付書類八からの引用以外の記載 茶色：設皇変更許可と基本設計方針（後）との対比 緑色：技術基㢸規則と基本設計方針（後）との対比 紫色：基本設計方針（前）と基本設計方針（後）との対比	100条 101 ：関連する資料と基本設計方針を紐づけるための付番 ＜関連する資料＞ - 栐式一 1 への展開表（補足説明資料） - 技術基準要求機器リスト（設定根拠に関する説明書 別添－1） 前回提出時からの変更箇所

技術基淮規則•解积	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備
よる変形（ひずみ）を弾性的举動を示す範囲内汇抑える こと。（2h 10 第1号加ら第5号ま で，第7号から第12号ま で及び第 14 号の規定に適合する村料及び構造とは，「設計•建設规格2005（200 7）」 又は 「設計•建設規格 2 012」及び日本機珑学会「発電用原子力設備规格 材料规格（2012 年版）（JSUE S NJ1－2012）」（以下「「材料规格 2012」」という。）の規定 に，「日本機械学会「設計•建設规格」及び「材料規格」 の適用に当たつて（別記一 2）」の要件を付したものに よること。なお，この規則の施行の際琴に施設し，又は着手した設計基淮対象施設 については，施設時に適用 された規格（「発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号）」等）に よること。（ 「設計•建設规格 2007 技術評価書」，「設計•建設规格2012技術評価書」及び「日本機棫学会「発電用原子力設備規格 村料規格 （2012 年版）」（JSUE S NJ1 －2012）纪関する技術評価書」（原規技発第 1408062 号 （平成26年8月6日原子力规制委員会決定。以下「材料规格2012技術評価	転状態 I 及び運転状態IIに おいて，疲労破壊が生じな い設計とする。 【17条22】 b．クラス 2 機器，クラス 3機器及び原子炉格納容器の伸縮継手は，設計上定める条件で応力が繰り返し加わ る場合において，疲労破壊 が生じない設計とする。 【17条23】 （4）座屈による破壊の防止 a．クラス 1 容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限 る。），クラス 1 支持構造物，原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I，運転状態II，運転状態III及び運転状態IVにお いて，座屈が生じない設計 とする。 【17条24】 b．クラス 1 容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限 る。）及びクラス 1 支持構造物（クラス 1 容器に溶接によ り取り付けられ，その損壊	転状態 I 及び運転状態IIに おいて，疲労破壊が生じな い設計とする。 （2）G（2）N（2）Z（2）AG（2）a【17条 22】 b．クラス 2 機器，クラス 3機器及び原子炉格納容器の伸縮継手は，設計上定める条件で応力が繰り返し加わ る場合において，疲労破壊 が生じない設計とする。 （2）M（2）R（2）Y（2）a【17条23】 （4）座屈による破壊の防止 a．クラス 1 容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限 る。），クラス 1 支持構造物，原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I，運転状態II，運転状態III及び運転状態IVにお いて，座屈が生じない設計 とする。 （2） $\mathrm{H}(2) \mathrm{J}(2) \mathrm{AB}(2) \mathrm{AH}(2) \mathrm{a}$ 【17条 24】 b．クラス 1 容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限 る。）及びクラス 1 支持構造物（クラス 1 容器に溶接によ り取り付けられ，その損壊				原子炉冷却系統施設（共通） 5．2．2 構造及び強度につ いて 同上 同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第17条 材料及び構造】

要求事項との対比表
赫色：様式－6に関する記载（付番及び下線）青色：設置変更許可本文及び添寸瞻類八かから引用以外の記載

100条OO1：関連寸る資料と基本設計方鈝を組らけるための付番 ＜関連する資料〉

 ：前回提出時からの変吏箇所

要求事項との対比表


```
青色:設置変更許可本文及び添付書颣八からの引用以外の記載
```



```
<閔連する資料
```


\square

```


要求事項との対比表

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & 設工認申請書基本設計方針（前） & 設工認申請書基本設計方針（後） & \[
\begin{gathered}
\text { 設置許可申請書 } \\
\text { 本文 } \\
\hline
\end{gathered}
\] & 設置許可申請書添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
域に抑えること。（2U \\
口 原子炉格納容器のらち \\
著しい応力が生ずる部分及 \\
び特殊な形状の部分にあっ \\
ては，第八号イ，八，二及び \\
ホのクラス 1 容器の規定を \\
準用する。（2）V \\
八原子炉格納容器支持構造物にあっては，第八号口， \\
八及びニのクラス 1 支持構 \\
造物の規定を準用する。（2）W \\
二原子炉格納容器のらち \\
著しい応力が生ずる部分及 \\
び特殊な形状の部分並びに \\
原子炬格納容器支持構造物 \\
にあっては，運転状態I 及 \\
び運転状態 IIにおいて，進 \\
行性変形による破壊が生じ ないこと。（2）X \\
ホ 原子炉格納容器の伸縮継手にあっては，設計上定 める条件で応力が繰り返し加わる場合において，疲労破壊が生じないこと。（2）Y ～原子炉格納容器のらち著しい応力が生ずる部分及 び特殊な形状の部分並びに原子炬格納容器支持構造物 にあっては，運転状態I 及 び運転状態IIにおいて，疲労破壊が生じないこと。（2）Z卜 原子炉格納容器にあっ ては，設計上定める条件並 びに運転状態II及び運転状態IVにおいて，座屈が生じ ないこと。（2）AA \\
チ 原子炉格納容器支持構
\end{tabular} & & & & & & \\
\hline
\end{tabular}

要求事項との対比表

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解积 & 設工認申請書基本設計方針（前） & 設工認申請書基本設計方針（後） & \[
\begin{gathered}
\text { 設置許可申請書 } \\
\text { 本文 }
\end{gathered}
\] & 設置許可申請書
添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
造物にあっては，運転状態 I，運転状態II，運転状態III及び運転状態IVにおいて，座屈が生じないこと。（2）AB \\
十三 コンクリート製原子炉格納容器の構造及び強度 は，次に定めるところによ ること。（4） \\
イコンクリートにあって は，荷重状態 I，荷重状態II及び荷重状態IIIにおいて圧縮破壊が生じず，かつ，荷重状態IVにおいてコンクリー ト製原子炉格納容器が大き な塑性変形に至る圧縮破壊 が生じないこと。（4） \\
口 鉄筋等にあっては，荷重状態 I ，荷重状態II 及び荷重状態IIIにおいて降伏せ ず，かつ，荷重状態IVにおい て破断に至るひずみが生じ ないこと。（4） ハコンクリート部にあっ ては，荷重状態I，荷重状態 II 及び荷重状態IIIおわて せん断破壊が生じず，かつ，荷重状態IVにおいてコンク リート製原子炉格納容器が大きな塑性変形に至るせん断破壊が生じないこと。（4） ニライナプレート（貫通部 スリーブが取り付く部分を除く。）にあっては，荷重状態 I 及び荷重状態IIにおい て著しい残留ひずみが生じ ず，かつ，荷重状態III及び荷
\end{tabular} & & & & & 女川 2 号は，コンクリート製原子炉格納容器ではないた め，該当しない & \\
\hline
\end{tabular}

要求事項との対比表

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & 設工認申請書基本設計方針（前） & 設工認申請書基本設計方針（後） & \[
\begin{gathered}
\text { 設置許可申請書 } \\
\text { 本文 } \\
\hline
\end{gathered}
\] & 設置許可申請書添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
重状態IVにおいて破断に至 らないこと。（4） \\
ホ ライナプレート（貫通部 スリーブが取り付く部分を除く。）にあっては，二の規定によるほか，第十二号へ の原子炉格納容器の規定を準用する。（4） \\
へ ライナプレート（貫通部 スリーブが取り付く部分に限る。），貫通部スリーブ及 び定着金具（ライナプレー トに取り付ける定着金具で あって，全ての荷重状態に おいて全体的な変形を弾性域に抑えることができるも のを除く。）にあっては，第十二号八，二，へ及びチの原子炉格納容器支持構造物の規定を準用する。この場合 において，第十二号中「運転状態 I 及び運転状態II」と あるのは「荷重状態 I 及び荷重状態II」と，「運転状態 I ，運転状態 II，運転状態III及び運転状態IV」とあるの は「荷重状態 I ，荷重状態 II ，荷重状態III及び荷重状態IV」と読み替えるものと する。（4） \\
ト ナックルにあっては，第十二号口，二及びへの原子炉格納容器のらち著しい応力が生ずる部分及び特殊な形状の部分の規定を準用す る。（4）
\end{tabular} & & & & & & \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第17条 材料及び構造】

要求事項との対比表

色：様式－6に開する記載（付番をで下悢）



－些本設計方針（前）と基本設計方針（後）との対比
〈閏連する資料〉


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & 設工認申請書基本設計方針（前） & 設工認申請書基本設計方針（後） & \[
\begin{gathered}
\text { 設置許可申請書 } \\
\text { 本文 } \\
\hline
\end{gathered}
\] & 設置許可申請書添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
【解釈】 \\
11 第 13 号イの「荷重状態 \(I\) ，荷重状態II及び荷重状態IIIにおいて圧縮破壊が生じず」とは，原子炉格納容器のコンクリートが弾性状態を保持することであり， \\
「荷重状態IVにおいてコン クリート製原子炬格納容器 が大きな塑性変形に至る圧縮破壊が生じないこと。」と は，若干の塑性変形は許容 するが，圧縮破壊が生じな い変形（ひずみ）までに制限 することであり，圧縮応力 による塑性変形が過大な状態又は圧縮破壊を生じてい る状態は許容しないこと。 \\
（4） \\
12 第13号八の「荷重状態 \(I\) ，荷重状態 II及び荷重状態IIにおいてせん断破壊 が生じず」とは，原子炉格納容器のコンクリート部が，塑性変形が過大な状態又は せん断破壊を生じている状態に対して十分な余裕を保持することであり，「荷重状態IVにおいてコンクリート製原子炬格納容器が大きな塑性変形に至るせん断破壊 が生じないこと。」とは，若干の塑性変形は許容する が，せん断応力による塑性変形が過大な状態又はせん断破壊を生じている状態は許容しないこと。
\end{tabular} & & & & & & \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第17条 材料及び構造】

要求事項との対比表




－然本設計方針（前）と基本設計方針（後）との対比

100 条 001 ：関連する資料と基本設計方針を組かけるための付番〈開連する資料〉
－技術基淮要求機羄り

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & 設工認申請書基本設計方針（前） & 設工認申請書基本設計方針（後） & 設置許可申請書
本文 & 設置許可申請書添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
（4） \\
13 第13号への規定に おいて，「全ての荷重状態に おいて全体的な変形を弾性域に抑えることができる」 とは，機械的荷重に対する許容荷重として弾性変形の範囲に抑えることに加え，内張り鋼板に生ずる強制ひ ずみにより定着金具に生ず る変位量が，破断変位に対 し十分な裕度を有すること をいう。（4） \\
14 第 6 号及び13号の規定に適合する村料及び構造とは，日本機械学会「コン クリート製原子炉格納容器規格」の規定に，「日本機械学会「コンクリート製原子炉格納容器規格」の適用に当たつて（別記ー4）」の要件を付したものによるこ と。なお，この規則の施行の際現に施設し，又は着手し た設計基準対象施設につい ては，施設時に適用された規格（「コンクリート製原子炉格納容器に関する構造等 の技術基準（平成 2 年通商産業省告示第 4 5 2 号）」等）によること。（「日本機械学会「コンクリート製原子炉格納容器規格（JSME SNE1 －2003）」技術評価書」（平成 17年7月原子力安全•保安院，原子力安全基盤機構取りまとめ）（4）
\end{tabular} & & & & & & \\
\hline
\end{tabular}

【第17条 材料及び構造】
要求事項との対比表

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & 設工認申請書基本設計方針（前） & 設工認申請書基本設計方針（後） & 設置許可申請書本文 & 設置許可申請書添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
十四 炉心支持構造物の構造及び強度は，次に定める ところによること。（2） イ 設計上定める条件にお いて，全体的な変形を弾性域に抑えること。（2）AC \\
口 運転状態IIIにおいて，全体的な塑性変形が生じない こと。ただし，構造上の不連続部における局部的な塑性変形はこの限りでない。（2）A D \\
八 運転状態IVにおいて，延性破断に至る塑性変形が生 じないこと。（2）AE \\
二炉心支持構造物にあっ ては，運転状態I及び運転状態IIにおいて，進行性変形による破壊が生じないこ と。（2）AF \\
ホ 運転状態I 及び運転状態IIにおいて，疲労破壊が生じないこと。（2）AG \\
へ 運転状態 I ，運転状態 II，運転状態III及び運転状態IVにおいて，座屈が生じ ないこと。（2）AH
\end{tabular} & & & & & & \\
\hline 十五 クラス1容器，クラス 1 管，クラス 2 容器，クラス 2 管，クラス 3 容器，クラス 3 管，クラス 4 管及び原子炉格納容器のうち主要な耐圧部の溶接部（溶接金属部及び熱影響部をいう。）は， & \begin{tabular}{l}
5．2．3 主要な耐圧部の溶接部（溶接金属部及び熱影響部をいう。）について \\
クラス 1 容器，クラス 1管，クラス 2 容器，クラス 2管，クラス 3 容器，クラス 3管，クラス 4 管及び原子炬格
\end{tabular} & \begin{tabular}{l}
5．2． 3 主要な耐圧部の溶接部（溶接金属部及び熱影響部をいう。）について \\
クラス 1 容器，クラス 1 \\
管，クラス 2 容器，クラス 2 \\
管，クラス 3 容器，クラス 3 \\
管，クラス 4 管及び原子炉格
\end{tabular} & & & & 原子炉冷却系統施設（共通） 5．2．3 主要な耐圧部の溶接部（溶接金属部及び熱影響部をいう。）について \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第17条 材料及び構造】

要求事項との対比表


100条 OO ：関連する資料と基本設計方釙を組かけるための付番〈閔連する貸料〉


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & 設工認申請書基本設計方針（前） & 設工認申請書基本設計方針（後） & \[
\begin{gathered}
\text { 設置許可申請書 } \\
\text { 本文 } \\
\hline
\end{gathered}
\] & 設置許可申請書添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
次に定めるところによるこ と。（3） \\
イ 不連続で特異な形状で ないものであること。（3）A \\
ロ 溶接による割れが生ず るおそれがなく，かつ，健全 な溶接部の確保に有害な溶込み不良その他の欠陥がな いことを非破壊試験により確認したものであること。 （3） B \\
八適切な強度を有するも のであること。（3）C \\
二機械試験その他の評価方法により適切な溶接施工法，溶接設備及び技能を有 する溶接士であることをあ らかじめ確認したものによ り溶接したものであるこ と。（3）D \\
【解釈】 \\
15 第 15 号に規定する「主要な耐圧部の溶接部」 とは，以下に揭げるものの溶接部をいう。 \\
（1）－（1）椟燃料物質の取扱施設及び貯蔵施設，原子炬冷却系統施設（蒸気ター ビンを除く。以下同じ。），計測制御系統施設，放射性廃電物の廃错施設（排気筒を除く。以下同じ。）又は放射楾管理施設に属する容器
\end{tabular} & \begin{tabular}{l}
納容器のうち主要な耐圧部 の溶接部は，次のとおりと し，使用前事業者検査によ り適用基準及び適用規格に適合していることを確認す る。 \\
－不連続で特異な形状でな い設計とする。 \\
－溶接による割れが生ずる おそれがなく，かつ，健全な溶接部の確保に有害な溶込 み不良その他の欠陥がない ことを非破壊試験により確認する。 \\
－適切な強度を有する設計 とする。 \\
－適切な溶接施工法，溶接設備及び技能を有する溶接士 であることを機械試験その他の評価方法によりあらか じめ確認する。 \\
【17条29】
\end{tabular} & \begin{tabular}{l}
納容器のうち主要な耐圧部 の溶接部は，次のとおりと し，使用前事業者検査によ り適用基準及び適用規格に適合していることを確認す る。（3）a（3）f \\
－不連続で特異な形状でな い設計とする。（3）A（3）b \\
－溶接による割れが生ずる おそれがなく，かつ，健全な溶接部の確保に有害な溶込 み不良その他の欠陥がない ことを非破壊試験により確認する。（3）B（3）c（3）d \\
－適切な強度を有する設計 とする。（3）C（3）e \\
－適切な溶接施工法，溶接設備及び技能を有する溶接士 であることを機械試験その他の評価方法によりあらか じめ確認する。 \\
（3）【17条29】
\end{tabular} & & & & \\
\hline
\end{tabular}

要求事項との対比表
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
赤色：栐式－6に関する掸载（付番及ひ下綵） \\
 \\
茶色：没置変更胙可と基本段虾方针（後）との对比 \\
 \\
紫色：基本設計方㓌（前）と其本設計方㓌（後）との対比
\end{tabular} & \begin{tabular}{l}
100 条 OO I：関連する資料と基本設計方針を組づけるための付番 ＜関連する資料＞ \\
- 様式一 1 への展開表（補足説明資料） \\
- 技術基淮要求機器リスト（設定根拠に関する説明書 別添 -1 ） \\
：前回提出時からの変更箇所
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & 設工認申請書基本設計方針（前） & 設工認申請書基本設計方針（後） & \[
\begin{gathered}
\begin{array}{c}
\text { 設置許可申請書 } \\
\text { 本文 }
\end{array} \\
\hline
\end{gathered}
\] & 設置許可申請書
添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
（（2）－（1）に規定する容器 を除く。又はこれらの設備 に属する外径 150 mm 以上の管（（3）及び（4）に規定するものを除く。）であ って，その内包する放射性物質の浱度が， 37 mBq ／cm \({ }^{3}\)（その内包する放射性物質が波体にある場合 は， \(37 \mathrm{kBq} / \mathrm{cm}^{3}\) ）末满のもののらち，次に定め る圧力以上の圧力を加えら れる部分（以下「侕圧部」） について溶接を必要とする もの \\
1 水用の容器又は管であ って，最高使用温度 10 \(O^{\circ} \mathrm{C}\) 未满のものについて は，最高使用圧力1960 \(k P a\) \\
－液化ガス（通常の使用状態での温度における飽和圧力が196kPa以上であ って現に液体の状態である もの又は圧力が196kP aにおける飽和温度が 3 \(5^{\circ} \mathrm{C}\) 以下であって現に液体 の状態であるものをいう。以下同じ。）用の容器又は管 については，最高使用圧力 OkPa \\
－イ 又は口に規定する容器以外の容器については，最高使用圧力 98 kPa \\
＝イ又は口に規定する管以外の管については，最高使用圧力 980 kPa （長
\end{tabular} & & & & & & \\
\hline
\end{tabular}

要求事項との対比表
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
100 条 OO I：関連する資料と基本設計方針を組づけるための付番 \\
＜関連する資料＞ \\
- 様式－ 1 への展開表（補足説明資料） \\
- 技術基淮要求機器リスト（設定根拠に関する説明書 別添－1）
\(\qquad\) ：前回提出時からの変更䈏所
\end{tabular} \\
\hline
\end{tabular}

紫色：基本設計方針（前）と基本設計放針（後）との対比
 －
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & 設工認申請書基本設計方針（前） & 設工認申請書基本設計方針（後） & \[
\begin{aligned}
& \text { 設置許可申請書 } \\
& \text { 本文 }
\end{aligned}
\] & 設置許可申請書添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
手継手の部分にあっては， 490 kPa ） \\
（1）－（2）非常用電源設備又は補機駆動用燃料設備 （非常用電源設備及び補助 ボイラーに係るものを除 く。）に属する容器のうち，耐圧部について溶接を必要 とするもの \\
（1）－（3）非常用電源設備，兆災防護設備又は区画排水設備に係る外径15O \(m m\) 以上の管のらち，耐圧部について溶接を必要とす るもの \\
（2）－（1）原子炬本体又は原子炉格納施設に属する容器 \\
（2）－（2）原子炉冷却系統施設，計測制御系統施設又 は放射線管理施設に属する容器であって非常時に安全装置として使用されるもの \\
（3）原子炉本体に属する容器又は原子炉格納容器に取り付けられる管のらち， それが取付けられる当該容器から最も近い止め弁まで の部分 \\
（4）原子炬冷却系統施設，計測制御系統施設，放射線管理施設又は原子炉格納施設のうち原子炉格納容器安全設備，放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備若しくは厈力逃が
\end{tabular} & & & & & & \\
\hline
\end{tabular}

要求事項との対比表

```

青色:設罩変更許可本文及び添付書類八かから方引用以外の記截
*)

```


```

<開連まる資料

```

```

*)
色：基本設計方針（前）と基本設計方针（後）との対此

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & 設工認申請書基本設計方針（前） & \[
\begin{gathered}
\text { 設工認申請書 } \\
\text { 基本設計方針 (後) } \\
\hline
\end{gathered}
\] & \(\underset{\text { 設置許可申請書 }}{\text { 本文 }}\) & 設置許可申請書
添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
し装置に属する管であっ て，非常時に安全装置とし て使用されるもの（（3）に規定するものを除く。） \\
（5）核燃料物質の取报施設及び眝蔵施設，原子炉冷却系䖻施設，計測制御系統施設，放射性廃寁物の廃鸾施設若しくは放射線管理施設に属する容器（（2）－ （2）䚰規定するものを除く。）又はこれらの施設に属する外径 61 mm （最高使用圧力 98 kPa 末満の管にあ っては，1 0 0 mm）を超え る管（（3）（4）比規定する ものを除く。）であって，そ の内包する放射性物質の濃度が \(3 \mathrm{mBq} / \mathrm{cm}^{3}\)（そ の内包する放射性物質が液体中にある場合は，37k \(\mathrm{Bq} / \mathrm{cm}^{3}\) ）以上のもの \\
（6）上記（1）～（5）に規定する容器又は管の耐圧部に取付く溶接部（非耐圧部である場合を含き。） \\
（例）・キャノピーシールの溶接部 \\
- 管と管板との浴接部 \\
- 而圧部村に直接浴接され るラグ，ブラケット等であ って地震，熱㱶張，反力，重量，振動等による過度の変位を防止するために施設さ れるもの（3）a \\
16 第15号イに規定す
\end{tabular} & & & & & & \\
\hline
\end{tabular}

要求事項との対比表
```

赤色:嵄式-6に関する記載(付番及び下䌊)
青色:設罣変更許可本文及び涹付書類八かからの引用以外の記截
*)

```


```

<開連まる資料

```


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解积 & 設工認申請書基本設計方針（前） & 設工認申請書基本設計方針（後） & \(\underset{\substack{\text { 設置許可中請書 } \\ \text { 本文 }}}{ }\) & 設置許可申請書
添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
る「不連続で特異な形状で ないもの」とは，溶接部の設計において，溶接部の開先等の形状に配慮し，鋭い切欠き等の不連続で特異な形状でないものをいう。（3b \\
17 第15号口に規定す る「溶接による割れが生ず るおそれがなく」とは，溶接後の非破䍚試験において割 れがないことに加え，溶接時の有害な欠陷により割れ が生じるおそれがないこと をいい，「健全な浴接部の碓保に有害な溶込め不良その他の欠陥がないこと」とは，溶接部の設計及び形状が溶込み不足を生じがたいもの であり，溶接部の表面及び内部に有害な欠陌がないこ とをいう。（3） \\
18 第15号口に規定す る「非破壊試験」は，放射線透過試験，超音波探傷試験，磁汾探傷試験，浸透探鹪試験，目視試験等をいう。（3）d \\
19 第15号八に規定す る「適切な强度を有する」と は，母材と同等以上の機械的强度を有するものである ことをいう。（3） \\
20 第15号の規定に適合する浴接部は，次の（1）
\end{tabular} & & & & & & \\
\hline
\end{tabular}

要求事項との対比表
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
赤色：栐式－6に関する掸载（付番及ひ下綵） \\
青色：設置变更砤可本文及び添付書類八からの引用以外の礼軣 \\
茶色：没置変更胙可と基本段虾方针（後）との对比 \\
緑色：技術盐推規則と基本段計方針（衡）との対比 \\
紫色：基本設計方针（前）と基本設計方針（俊）との対比
\end{tabular} & \begin{tabular}{l}
100 条 OO 1 ：関連する資料と基本設計方針を組づけるための付番 ＜関連する資料＞ \\
- 様式 -1 への展開表（補足説明資料） \\
- 技術基準要求機器リスト（設定根拠に関する説明書 別添－1） \\
：前回提出時からの変更箇所
\end{tabular} \\
\hline
\end{tabular}

紫色：基本設計方針（前）と基本設計方針（後）との対比

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解积 & 設工認申請書基本設計方針（前） & 設工認申請書基本設計方針（後） & \[
\begin{gathered}
\text { 設置許可申請書 } \\
\text { 本文 }
\end{gathered}
\] & 設置許可申請書添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
又は（2）のいずれかに適合 したものをいう。 \\
（1）日本機械学会「発電用原子力設備规格 溶接规格 （2007 年版）（JSUE S NB1－ 2007）」（以下「「溶接規格 20 07」」という。）及び「設計•建設規格2005（2007）」の規定に「日本機㭜学会「溶接規格」等の適用に当たつて（別記－5）」の要件を付したも の \\
（2）日本機㣝学会「発電用原子力設備规格 溶接规格 （2012 年版（2013 年追補 を含き。）（JSUE S NB1－201 2／2013）」（以下「「溶接規格 2012（2013）」」といら。）及び \\
「設計•建設規格 2012」の規定に「日本機械学会「設計•建設規格」及び「村料規榃」の適用に当たつて（別記 －2）」及び「日本機械学会「溶接規格」等の適用に当 たって（別記－5）」の要件 を付したもの \\
（「日本機械学会「発電用原子力設備規格 溶接規格」（2 007 年版）に関する技術評価書」（平成 20 年 10 月原子力安全•保安院，原子力安全基盤機構取りまとめ。以下「「溶接規格 2007 技術評価書」」という。），「日本機械学会「発電用原子力設備規格 溶接規格 2012 年版／2013年追補（JSVE S NB1－2012
\end{tabular} & & & & & & \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第17条 材料及び構造】

要求事項との対比表

\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & 設工認申請書基本設計方針（前） & 設工認申請書基本設計方針（後） & \(\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }\) & 設置許可申請書
添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline ／2013）に関する技術評価書」（原規技発 1502041 号 （平成27年2月4日原子力规制委員会決定。以下「溶接规格 2012 （2013）技術評価書」」という。），「設計•建設規格2007技術評価書」及び「設計•建設規格2 012 技術評価書」な书，ウ エルドオーバーレイ工法を適用する場合は，「ウェルド オーバーレイ工法の適用に当たつて（別記－3）」によ ること。（3）f & & & & & & \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—6
【第 17 条 材料及び構造】
\begin{tabular}{|l|l|}
\hline- 該当なし \\
前回提出時からの変更飊所 \\
様式 -6
\end{tabular}

各条文の設計の考え方
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{第17条（材料及び構造）} \\
\hline \multicolumn{6}{|l|}{1．技術基準の条文，解釈への適合性に関する考え方} \\
\hline No． & 基本設計方針で記載する事項 & 適合性の考え方（理由） & 項－号 & 解釈 & 添付書類 \\
\hline （1） & 材料 & 技術基準の要求を受けた内容とし て記載している。 & \[
\begin{aligned}
& 1 \text { 一 } \\
& \sim \text { 五 } \\
& 1 \text { 七 }
\end{aligned}
\] & \[
\begin{gathered}
2 \sim 5 \\
10
\end{gathered}
\] & \(\mathrm{a}, \mathrm{b}\) \\
\hline （2） & 構造及び強度 & 同 上 & \[
\begin{gathered}
1 \text { 八 } \\
\sim \text { 十二 } \\
1 \text { 十四 }
\end{gathered}
\] & \[
\begin{gathered}
1 \\
4 \\
6 \sim 10 \\
\hline
\end{gathered}
\] & b \\
\hline （3） & 主要な耐圧部の溶接部 & 同 上 & 1 十五 & \(15 \sim 20\) & － \\
\hline （4） & コンクリート製原子炉格納容器 & コンクリート製原子炉格納容器は施設しないため記載しない。 & \[
\begin{gathered}
1 \text { 六 } \\
1 \text { 十三 }
\end{gathered}
\] & \(11 \sim 14\) & － \\
\hline \multicolumn{6}{|l|}{2．設置許可本文のらち，基本設計方針に記載しないことの考え方} \\
\hline No． & 項目 & \multicolumn{3}{|l|}{考え方} & 添付書類 \\
\hline 1 & 原子炉冷却材圧力バウ
ンダリ & \multicolumn{3}{|l|}{第 27 条に対する内容であり，本条文では記載しない。} & － \\
\hline 2 & \[
\begin{array}{|l|}
\hline \text { 原子炉冷却材圧力バウ } \\
\text { ンダリの破壊じん性 } \\
\hline
\end{array}
\] & \multicolumn{3}{|l|}{基本設計方針に具体的な内容を記載するため記載しな い。} & － \\
\hline 3 & 原子炉圧力容器の破壊 じん性 & \multicolumn{3}{|l|}{同 上} & b \\
\hline 4 & 監視試験片 & \multicolumn{3}{|l|}{第 22 条に対する内容であり，本条文には記載しない。} & － \\
\hline 5 & 原子炉格納容器の構造 & \multicolumn{3}{|l|}{第44条に対する内容であり，本条文には記載しない。} & － \\
\hline 6 & 原子炉格納容器の破壊 じん性 & \multicolumn{3}{|l|}{基本設計方針に具体的な内容を記載するため記載しな い。} & b \\
\hline \multicolumn{6}{|l|}{3．設置許可添八のうち，基本設計方針に記載しないことの考え方} \\
\hline No． & 項目 & \multicolumn{3}{|l|}{考え方} & 添付書類 \\
\hline （1） & 原子力冷却材圧力バウ ンダリの脆性破壊の防止 & \multicolumn{3}{|l|}{基本設計方針に具体的な内容を記載するため記載しな い。} & b \\
\hline （2） & 原子力冷却材圧力バウ
ンダリの構造強度 & \multicolumn{3}{|l|}{同 上} & b \\
\hline （3） & 原子炉格納容器バウン ダリの構造強度 & \multicolumn{3}{|l|}{第44条に対する内容であり，本条文では記載しない。} & b \\
\hline 4） & 原子炉格納容器バウン ダリの破壊じん性 & \multicolumn{3}{|l|}{基本設計方針に具体的な内容を記載するため記載しな い。} & b \\
\hline \multicolumn{6}{|l|}{4．詳細な検討が必要な事項} \\
\hline No． & \multicolumn{5}{|c|}{書類名} \\
\hline a & \multicolumn{5}{|l|}{クラス 1 機器及び炉心支持構造物の応力腐食割れ対策に関する説明書} \\
\hline b & \multicolumn{5}{|l|}{強度に関する説明書} \\
\hline c & \multicolumn{5}{|l|}{原子炉（圧力）容器の脆性破壊防止に関する説明書} \\
\hline d & \multicolumn{5}{|l|}{原子炉格納施設の構造図（原子炉格納容器）} \\
\hline e & \multicolumn{5}{|l|}{発電用原子炉の設置の許可との整合性に関する説明書} \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式－6
【第17条 材料及び構造】
f 設計及び工事に係る品質マネジメントシステムに関する説明書

\section*{設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7}

【第55条 材料及び構造】
要求事項との対比表
\begin{tabular}{|c|c|}
\hline & 数 \\
\hline 炜： & ＜関 \\
\hline &  \\
\hline \begin{tabular}{l}
緑色：技術基淮規則と基本設計方針（後）との対比 \\
紫色：基本設計方針（前）と基本設計方針（後）との対
\end{tabular} & －技術基準要求機器りスト（設定根拠汇関す \\
\hline
\end{tabular}


紫色：基本設計方針（前）と基本設計方針（後）との対比
\begin{tabular}{|c|c|c|c|c|c|}
\hline 技術基準規則•解积 & 設工認申請書基本設計方針（後） & 設置許可申請書
本文 & 設置許可申請書添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
（材料及び構造） \\
第五十五条 重大事故等対処設備に属する容器，管，ポンプ若し くは弁又はこれらの支持構造物 の材料及び構造は，次に定めると ころによらなければならない。こ の場合において，第一号から第三号まで及び第七号の規定につい ては，法第四十三条の三の十一第二項に定める使用前事業者検查 の確認を行らまでの間適用する。 （1）（2）（3） \\
【解釈】 \\
1 第4号から第6号までの構造强度は，原子炉等規制法第 43 条 の3の14に基づき維持段階に も適用される。（2）a
\end{tabular} & \begin{tabular}{l}
5.2 材料及び構造等 \\
重大事故等対処設備に属する容器，管，ポンプ若しくは弁はこ れらの支持構造物の材料及び構造は，施設時において，各機器等 のクラス区分に応じて以下のと おりとし，その際，日本機械学会「発電用原子力設備規格 設計•建設規格」（J SME 設計•建設規格）等に従い設計する。 \\
（1）（1）d（2）（2）d（3）【55 条 1】 \\
ただし，重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の材料及び構造であって，以下によらない場合は，当該機器及び支持構造物が，その設計上要求される強度を確保できるよう J SME 設計•建設規格を参考 に同等以上の性能を有すること を確認する。 \\
（1）A（1）b（2）A（2）a（2）b【55条2】 \\
また，重大事故等クラス 3 機器 であって，完成品は，以下によら ず，「消防法」に基づく技術上の規格等一般産業品の規格及び基準に適合していることを確認し，使用環境及び使用条件に対して，要求される強度を確保できる設計とする。 \\
（1）E（1）c（2）G（2）a（2） c 【55条3】 \\
重大事故等クラス2容器及び重大事故等クラス2管のうち主要な耐圧部の溶接部の耐圧試験は，母材と同等の方法，同じ試験圧力に
\end{tabular} & 該当箇所なし & 該当箇所なし & \begin{tabular}{l}
基準要求への適合性を明確化 \\
（設置許可に材料及び構造に関 する具体的な記載がないため，技術基準要求に対する設計を明確 に記載した。）（以下同じ。）追加要求事項に伴亏差異 \\
（新規制基準施行前に工事着手 していたものを除く。）（以下同 じ。）
\end{tabular} & \begin{tabular}{l}
原子炉冷却系統施設（共通） \\
5.2 材料及び構造等 \\
同上 \\
同上 \\
同上
\end{tabular} \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第55条 材料及び構造】
要求事項との対比表

\begin{tabular}{|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & \[
\begin{gathered}
\text { 設工認申請書 } \\
\text { 基本設計方針 }(\text { 後 }) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { 設置許可申請書 } \\
\text { 本文 }
\end{gathered}
\] & 設置許可申請書
添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline & \begin{tabular}{l}
て実施する。 \\
（3）A（3）【55条4】 \\
なお，各機器等のクラス区分の適用については，別紙「主要設備 リスト」による。 \\
（1）（2）（3）【55条5】
\end{tabular} & & & & 原子炉冷却系統施設（共通） 5.2 材料及び構造等 \\
\hline 一 重大事故等クラス 1 機器及 び重大事故等クラス 1 支持構造物に使用する材料は，次に定める ところによること。（4） & & & & 重大事故等クラス 1 機器，重大事故等クラス 1 支持構造物は本工事計画の対象外。（新規制基準）施行前より工事着手していたもの を除く。）（以下同じ。） & \\
\hline イ 重大事故等クラス 1 機器又は重大事故等クラス 1 支持構造物 が，その使用される圧力，温度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有すること。（4） & & & & & \\
\hline 口重大事故等クラス 1 機器に使用する材料にあっては，当該機器 の最低使用温度に対して適切な破壊じん性を有することを機械試験その他の評価方法により確認したものであること。④ & & & & & \\
\hline 八重大事故等クラス 1 機器に属 する鋳造品にあっては，有害な欠陥がないことを非破壊試験によ り確認したものであること。（4） & & & & & \\
\hline 二重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物 に使用する材料は，次に定めると ころによること。ただし，次に掲 & & & & & \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第55条 材料及び構造】
要求事項との対比表

表


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第55条 材料及び構造】
要求事項との対比表

\begin{tabular}{|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & \[
\begin{gathered}
\text { 設工認申請書 } \\
\text { 基本設計方針 (後) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 設置許可申請書 } \\
\text { 本文 } \\
\hline
\end{gathered}
\] & 設置許可申請書
添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
三 重大事故等クラス 3 機器（重大事故等クラス 3 容器，重大事故等クラス 3 管，重大事故等クラス 3 ポンプ又は重大事故等クラス 3 弁をいう。以下同じ。）に使用 する材料は，当該機器が使用され る圧力，温度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有すること。（1） E \\
【解釈】 \\
4 第3号に規定する「適切な機械的強度及び化学的成分を有す ること」とは，例えば，日本産業規格等の適切な規格及び基準に適合する材料とする。完成品とし て一般産業品の規格基準へ適合 している場合（消防法に基づく技術上の規格を満たす消防車等）に は，第3号の規定を満たすものと解釈する。（1） c \\
四 重大事故等クラス 1 機器及び重大事故等クラス 1 支持構造物 の構造及び強度は，次に定めると ころによること。ただし，想定さ れる重大事故等に対処するため に必要な構造及び強度を有する ものについては，この限りでな い。（4） \\
イ 重大事故等クラス 1 機器にあ っては，設計上定める条件におい て，全体的な変形を弾性域に抑え ること。（4）
\end{tabular} & \begin{tabular}{l}
線，荷重その他の使用条件に対し て損傷するおそれがない設計と する。 \\
（1）C（1）【55条9】 \\
（3）非破壊試験 \\
重大事故等クラス 2 機器（鋳造品に限る。）に使用する材料は，非破壊試験により有害な欠陥が ないことを確認する。 \\
（1）【55条10】
\end{tabular} & & & & \begin{tabular}{l}
原子炉泠却采䖻施設（共通） \\
5．2．1 材料について
\end{tabular} \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第55条 材料及び構造】
要求事項との対比表



設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第55条 材料及び構造】
要求事項との対比表
\begin{tabular}{|c|c|}
\hline 赤色：様式－6に関する記載（付番及び下䌊） &  \\
\hline 青色：設置変更䛨可本文及攵添付書類八加らの引用以外の記载 & ＜閏連する資料＞ \\
\hline  & －椂式－1への展關表（禣足颔明資料） \\
\hline 緑色：技術基淮規則と基本設計方針（後）との対比 &  \\
\hline 紫色：基本設計方針（前）と基本設計方針（後）との㸚 & ：前回提出時からの素更通所 \\
\hline
\end{tabular}


紫色：基本設計訪洤（前）と基本設計方针（後）との対〈同連する資料〉 －技凍基準要求機器りスト（設定根执伅関する説明書 別添－1）
\begin{tabular}{|c|c|c|c|c|c|}
\hline 技術基淮規則•解釈 & 設工認申請書基本設計方針（後） & \[
\begin{gathered}
\text { 設置許可申請書 } \\
\text { 本文 } \\
\hline
\end{gathered}
\] & 設置許可申請書
添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
の性能を有する場合」には，当該機器及び支持構造物がその設計上要求される强度を碓保できる ものであることを示すこと。（2b \\
イ 重大事故等クラス 2 機器にあ っては，設計上定める条件におい て，全体的な変形を弾性域に抑え ること。（2）B \\
【解釈】 \\
6 第 4 号イ，第 5 号イ及び第 6号比規定する「全体的な変形を弾性域に抑えること」とは，本規程第17条6を準用するものをい う。ただし，第 6 号の重大事故等 クラス3機器にあっては，完成品 として一般産業品の規格及び基準へ適合している場合（消防法に基づく技術上の規格を満たす消防車等）には，第六号の規定を满 たすものと解釈する。（2）c \\
口重大事故等クラス 2 機器に属 する伸縮継手にあっては，設計上定める条件で応力が繰り返し加 わる場合において，疲労破壊が生 じないこと。（2）C \\
八重大事故等クラス2管（伸縮継手を除く。）にあっては，設計上定める条件において，疲労破壊 が生じないこと。（2）D \\
二重大事故等クラス 2 容器及び重大事故等クラス2管にあって は，設計上定める条件において，
\end{tabular} & \begin{tabular}{l}
5．2．2 構造及び強度について \\
（1）延性破断の防止 \\
a．重大事故等クラス 2 機器及 び重大事故等クラス 3 機器は，最高使用圧力，最高使用温度及び機械的荷重が負荷されている状態 （以下「設計上定める条件」とい ら。）において，全体的な変形を弹性域に抑える設計とする。 \\
（2）B（2）G（2）a（2）【55条11】 \\
j．重大事故等クラス 2 支持構造物であって，重大事故等クラス 2 機器に溶接により取り付けら れ，その損壊により重大事故等ク ラス 2 機器に損壊を生じさせる おそれがあるものは，設計上定め る条件において，延性破断が生じ ない設計とする。 \\
（2） F （2）【 55 条 12】 \\
（3）疲労破壊の防止 \\
b．重大事故等クラス 2 機器の伸縮継手及び重大事故等クラス 2 管（伸縮継手を除く。）は，設計上定める条件で応力が繰り返 し加わる場合において，疲労破壊 が生じない設計とする。 （2）C（2）D（2）a【55条13】 \\
（4）座屈による破壊の防止 \\
c．重大事故等クラス 2 容器，重大事故等クラス 2 管及び重大事
\end{tabular} & & & & \begin{tabular}{l}
原子炉泠却系統施設（共通） \\
5． 2.2 構造及び強度について \\
同上 \\
同上 \\
同上
\end{tabular} \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第55条 材料及び構造】
要求事項との対比表

> 赤色: 檥式-6に関する記載 (付番及び下線)
> 素色: 設䓢変更牪可本文及び添付書類八からの引用以外の妇

> 100 条 001 : 関連する資料と基本陪計方針を紐かけるための付番\(\begin{aligned} & \text { く闌連する資料〉 } \\ & \text { 榑式-1~の }\end{aligned}\)-技訹基㩁要求機器りスト (敦定根执に関する説明書 別添 -1 )
\begin{tabular}{|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & 設工認申請書基本設計方針（後） & \[
\begin{gathered}
\text { 設置許可申請書 } \\
\text { 本文 } \\
\hline
\end{gathered}
\] & 設置許可申請書添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
座屈が生じないこと。（2）E \\
ホ 重大事故等クラス 2 支持構造物であって，重大事故等クラス 2機器に溶接により取り付けられ， その損壊により重大事故等クラ ス 2 機器に損壊を生じさせるお それがあるものにあっては，設計上定める条件において，延性破断及び座屈が生じないこと。（2）F \\
【解釈】 \\
7 第1号，第2号，第4号及び第5号の規定に適合する材料及 び構造とは，本規程第17条10 を準用するものをいう。この場合 において，第1号及び第4号の規定の適用に当たって「クラス2」 とあるのは「重大事故等クラス 1」と，第2号及び第5号の規定 の適用に当たつて「クラス2」と あるのは「重大事故等クラス2」 とそれぞれ読み替えるものとし，「材料規格 2012」の許容引張応力（S 値）は，「設計•建設規格 2005 （2007）」付録材料図表の値 に読み替えるものとする。（「材料規格2012技術評価書•）（1）d（2）d（4） \\
六 重大事故等クラス 3 機器の構造及び強度は，設計上定める条件 において，全体的な変形を弾性域 に抑えること。（2）G \\
七 重大事故等クラス 1 容器，重大事故等クラス1管，重大事故等
\end{tabular} & \begin{tabular}{l}
故等クラス 2 支持構造物（重大事故等クラス 2 機器に溶接により取り付けられ，その損壊により重大事故等クラス 2 機器に損壊を生じさせるおそれがあるものに限る。）は，設計上定める条件に おいて，座屈が生じない設計とす る。 \\
（2） \(\mathrm{E}(2) \mathrm{F}(2) \mathrm{a}\) \\
【55 条 14】 \\
5．2．3 主要な耐圧部の溶接部 （溶接金属部及び熱影響部をい
う。) について \\
重大事故等クラス 2 容器及び重大事故等クラス 2 管のらち主
\end{tabular} & & & & \begin{tabular}{l}
原子炉冷却系統施設（共通） \\
5．2．3 主要な耐圧部の溶接部（溶
\end{tabular} \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第55条 材料及び構造】
要求事項との対比表
\begin{tabular}{|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & \[
\begin{gathered}
\text { 設工認中請書 } \\
\text { 基本設計方針 (後) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { 設置許可申請書 } \\
\text { 本文 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { 設置許可申請書 } \\
\text { 添付書類八 }
\end{gathered}
\] & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
クラス 2 容器及び重大事故等ク ラス 2 管のらち主要な耐圧部の溶接部（溶接金属部及び熱影響部 をいう。）は次に定めるところに よること。ただし，重大事故等ク ラス 2 容器及び重大事故等クラ ス2管にあっては，次に掲げる性能と同等以上の性能を有する場合は，この限りでない。（3）A \\
【解釈】 \\
8 第 7 号比規定する「主要な耐圧部の溶接部」とは，本規程第 1 7 条15を準用するものをいう。 （3） a \\
イ不連続で特異な形状でないも のであること。（3B \\
【解釈】 \\
9 第 7 号イに規定する「不連続 で特異な形状でないもの」とは，本規程第17条16を準用する ものをいう。（3）b \\
－溶接による割れが生ずるおそ れがなく，かつ，健全な溶接部の確保に有害な溶达み不良その他 の欠陥がないことを非破壊試験 により確認したものであること。 （3）C \\
【解利】 \\
10 第7号口に規定する「溶接 による割れが生ずるおそれがな く」とは，本規程第17条17を淮用するもの在いう。（3）
\end{tabular} & \begin{tabular}{l}
要な耐圧部の溶接部は，次のとお りとし，使用前事業者検査により適用基準及び適用規格に適合し ていることを確認する。（3）A（3）a（3） f \\
－不連続で特異な形状でない設計とする。（3）B（3b \\
－溶接による割れが生ずるおそ れがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他 の欠陥がないことを非破壊試験 により確認する。（3）C（3）c（3）d \\
－適切な強度を有する設計とす \\
る。（3）（3） \\
－適切な溶接施工法，溶接設備及 び技能を有する溶接士であるこ とを機械試験その他の評価方法 によりあらかじめ確認する。 \\
（3）【55条15】
\end{tabular} & & & & 接金属部及び熱影響部をいう。） について \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第55条 材料及び構造】


備考
\begin{tabular}{|c|c|c|c|c|c|}
\hline 技術基準規則•解釈 & \[
\begin{gathered}
\text { 設工認申請書 } \\
\text { 基本設計方針 (後) } \\
\hline
\end{gathered}
\] & 設置許可申請書
本文 & 設置許可申請書
添付書類八 & 設置許可，技術基準規則及び基本設計方針との対比 & 備考 \\
\hline \begin{tabular}{l}
【解釈】 \\
11 第 7 号口に規定する「非破壊試験」とは，本規程第 17 条 1 8を準用するものをいう。（3）d \\
八適切な強度を有するものであ ること。（3D \\
【解利】 \\
12 第 7 号八に規定する「適切 な強度を有する」とは，本规程第 17条19を準用するものをい j）（3） \\
二機械試験その他の評価方法に より適切な溶接施工法，溶接設備及び技能を有する溶接士である ことをあらかじめ確認したもの により溶接したものであること。 （3） \\
【解釈】 \\
13 第 7 号の規定に適合する溶接部とは，本規程第 17 条 20 妻準用するものをいう。この場合に おいて，重大事故等クラス 1 容器及び重大事故等クラス1管に係 るものにあっては「クラス2」は「重大事故等クラス1」と読か替 えるものとする。また，重大事故等クラス2容器及び重大事故等 クラス 2 管に倸るものにあって は「クラス2」は「重大事故等り ラス2」と読め替えるものとす る。（3）f
\end{tabular} & & & & & \\
\hline
\end{tabular}

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—6
【第55条 材料及び構造】
```

-:該当なし
: 前回提出時からの変更箇所

各条文の設計の考え方

第55条（材料及び構造）					
1．技術基準の条文，解釈への適合性に関する考え方					
No．	基本設計方針で記載する事項	適合性の考え方（理由）	項－号	解釈	添付書類
（1）	材料	技術基準の要求を受けた内容とし て記載している。	$\begin{aligned} & 1 \text { 二 } \\ & 1 \text { 三 } \end{aligned}$	$\begin{gathered} 2 \sim 4 \\ 7 \end{gathered}$	a，b
（2）	構造及び強度	同 上	$\begin{array}{ll} 1 & \text { 五 } \\ 1 & \text { 六 } \end{array}$	$\begin{gathered} 1 \\ 5 \sim 7 \end{gathered}$	a
（3）	主要な耐圧部の溶接部	同 上	1 七	$8 \sim 13$	－
（4）	重大事故等クラス 1 機器及び重大事故等クラス1支持構造物	特定重大事故等対処施設に属する ものは，今回の変更申請対象外で あるため記載しない。	$\begin{array}{ll} \hline 1 & \text { 一 } \\ 1 & \text { 四 } \\ 1 & \text { 七 } \\ \hline \end{array}$	$\begin{gathered} 2 \\ 7 \sim 13 \end{gathered}$	－
2．設置許可本文のうち，基本設計方針に記載しないことの考え方					
No．	項目	考え方			添付書類
	なし				
3．設置許可添八のうち，基本設計方針に記載しないことの考え方					
No．	項目	考え方			添付書類
	なし				
4．詳細な検討が必要な事項					
No．	書類名				
a	強度に関する説明書				
b	原子炉（圧力）容器の脆性破壊に関する説明書				
c	設計及び工事に係る品質マネジメントシステムに関する説明書				

