```
本資料のうち, 枠囲みの内容は
商業機密の観点から公開できま
せん。
```

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －補－E－01－0200－7＿改 0
提出年月日	2021年 2 月 9 日

補足－200－7 原子炉格納容器内に使用されるテフロン ${ }^{\circledR}$ 材の
事故時環境下における影響について

1．概要

本資料は，米国 NRC より，NRC Information Notice 2014－04，＂Potential for Teflon ${ }^{\circledR}$ Material Degradation in Containment Penetrations，Mechanical Seals and Other Components＂，（March 26，2014）（以下「NRC Information Notice 2014－04」という。）が発行され，NRCの規制要求外と いう位置づけで，原子炉格納容器貫通部，エアロック，ポンプシール他に影響を及ぼすおそれの あるテフロン ${ }^{\circledR}\left(T e f 1 o n^{\circledR}\right)$ 材の劣化の可能性について米国の事業者等に注意喚起されたことに鑑 み，女川原子力発電所第 2 号機の原子炉格納容器内の機器（原子炉格納容器バウンダリ構成部を含む。）について，テフロン ${ }^{\circledR}\left(T e f l o n{ }^{\circledR}\right)$ 材が事故時環境下において機器の健全性に影響を及ぼす かどうかについて検討し，その結果についてまとめたものである。

2．テフロンの特性
テフロン ${ }^{\circledR}\left(\right.$ Teflon $\left.{ }^{\circledR}\right)$ は，フッ素樹脂の一種であり，米国デュポン社が開発したフッ素樹脂の商標名である。一般に，テフロン ${ }^{\circledR}$ とは，PTFE（ポリテトラフルオロエチレン）のことを指す。（以下「テフロン」という。）

テフロンは，ポリエチレン－$\left(\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{\mathrm{n}}$－の水素 H をフッ素 F に置き換えた－$\left(\mathrm{CF}_{2}-\mathrm{CF}_{2}\right)_{\mathrm{n}}$－が鎖状に連なる構造で，分子量が数 100 万～ 1000 万の分子である。

テフロンの分子は，C－F 間の強い結合力により，C－F 結合距離が短く，F 原子が C－C 鎖の周囲を隙間なく埋め尽くした構造である。この特徴により，強い耐薬品性を有する。また，F 原子同士 の反発により，螺旋構造となり，C－C 自由回転のエネルギーが高い。その結果，曲がりにくく剛直な分子となる。

テフロンは，耐薬品性，耐熱性に極めて優れている。フッ素樹脂は他のプラスチックと同様に射出成形等の成形法が適用可能なものがほとんどであるが，テフロンに関しては，融点以上の温度であっても流動化しないため，粉末治金に似た方法で成形される。また，テフロンは，耐熱特性，耐化学薬品性，電気的特性，非粘着性，自己潤滑性に優れている。

テフロンの基本特性は，別添資料1 のとおりである。以下，テフロンの特性について各種項目別に説明する。

耐化学薬品性
テフロンの最大の特徴はその耐化学薬品性にある。テフロンは，ほとんどすべての酸，ア ルカリ及び有機薬品に対して不活性である。耐オゾン性も良好で，耐候性についても十年間 の曝露試験に対して全く変化のないことが報告されている。吸湿性，吸水性も $0.01 \% / 24 \mathrm{~h}$ 未満である。

電気的特性
テフロンは，その構造の対称性からも明らかな様に，無極性であって，広い周波数領域に わたつて低い誘電率を示し，絶縁抵抗や絶縁破壊の強さもプラスチック中最高水準である。高温の中で，15，000～20，000V の高電圧下においても高い絶縁抵抗を示し，高い耐熱性，耐候性及び非吸湿性と相まって，非常に優れた電気絶縁材料として有用である。

耐熱特性
テフロンの耐熱性もまたプラスチック中最高水準で，$-100 \sim+260^{\circ} \mathrm{C}$ の広い温度範囲にわ たって長時間の使用に耐えることができる。また，用途，用法によってはさらに高温及び低温の使用にも耐えることが碓認され，特に低温では $-196^{\circ} \mathrm{C}$ の液体窒素に使用しても常温と同 じ摩擦係数を示す。テフロンの融点は $327^{\circ} \mathrm{C}$ であって，これ以上の温度ではゲル状態となっ て機械的性質は急激に変化する。分解開始温度は，接触表面や雰囲気に依存するが，350～ $390^{\circ} \mathrm{C}$ 程度であって，それまでの温度では，たとえ融点を超えて加熱しても形は崩れず，常温 に戻せばそのままの形で劣化は認められない。

自己潤滑特性

テフロンの摩擦係数は非常に低く，代表的な固体潤滑剤の 1 つに数えられる。荷重や摩擦速度によっては，他の代表的な固体潤滑剤であるグラファイトや二硫化モリブデンより低い摩擦係数を示す。動摩擦係数は， $0.7 \mathrm{MPa}, ~ 3 \mathrm{~m} / \mathrm{min}$ の条件で 0.10 である。

機械的特性

引張強度は $27 \sim 34 \mathrm{MPa}$ ，伸びは $200 \sim 400 \%$ ，圧縮強度は 12 MPa である。
切削性は極めて良好で，切削加工は容易である。また，温度による膨脹，収縮は金属より遥かに大である。

放射線照射特性
テフロンは，放射線の作用によってテフロンの鎖状分子が切断されることにより，重合度 が低下し，脆性化することが知られている。ただし，放射線により鎖状分子が切断されても テフロン分子はテフロン分子のままであるため，化学的な安定性は維持され，形状も維持さ れる。

別添資料 2 によると，テフロンの放射線に対する耐久性は約 $2 \times 10^{3} \mathrm{~Gy}$ と評価されている。別添資料 3 によると，引張強度は，積算線量の増加とともに徐々に低下していく。別添資料 4 によると，気中における引張強度は，照射とともに徐々に低下する。積算線量 $10^{3} \mathrm{~Gy}$ 以上 $10^{6} \mathrm{~Gy}$ 程度までの領域では，積算線量依存性が小さくなり，未照射材の $20 \sim 40 \%$ の値を維持す る。

3．健全性評価対象となるテフロン材使用機器
（1）テフロン材使用機器の抽出
テフロン材使用機器の抽出は，技術基準規則第 14 条第 2 項及び第 54 条第 1 項にて，設計基準事故及び重大事故等の環境条件下において，安全設備及び重大事故等対処設備について機能を発揮できるよう要求されていることから，安全設備及び重大事故等対処設備のらち事故時に高放射線量下で使用される原子炉格納容器内の機器及び原子炉格納容器バウンダリ構成機器を対象機器 とする。なお，原子炉格納容器外において高放射線量下で使用される設備としては，代替循環冷却系や原子炉格納容器フィルタベント系が挙げられるが，これらの系統を構成する主要な機器で

ある代替循環冷却ポンプや残留熱除去系熱交換器，弁及び配管継ぎ手部において，テフロン材を使用していないことを確認している。

対象機器の中で，機器の構成部品にテフロン材が使用されている機器を抽出した結果，表1の機器でテフロン材を使用していることを確認した。

表1 テフロン材を使用している機器及びテフロン使用部品

テフロン使用機器	テフロン使用部品			
所員用エアロック圧力平衡弁	弁シール部のシールリング，グランドシール部のシール材			
起動領域モニタ及び出力領域モニタ				
制御棒駆動機構	メタル 0 リング			

なお，本資料の検討の端緒となった NRC Information Notice 2014－04では，原子炉格納容器電線貫通部の絶縁材，余熱除去ポンプ及び格納容器スプレイポンプのメカニカルシール，エアロッ ク回りの部品（シャフト貫通部，ステムパッキン及び均圧弁），水素／酸素フロースイッチに用い られるリード線の絶縁材，伝送器に用いられる絶縁材等にテフロン材が使用されていたこと，こ れら部品は別材料の部品へ交換する措置が講じられたことが事例として紹介されているが，女川原子力発電所第 2 号機に関しては，原子炉格納容器電線貫通部，残留熱除去系ポンプ等にテフロ ン材は使用されていない。また，計装品の補償導線及び延長導線の一部にテフロン材（PFA 被膜） の使用が確認されたが，熱収縮チューブで覆う処理を施しているため，テフロン材（PFA 被膜） の露出はなく，劣化による影響がないことを，事故時環境を模擬した実証試験により確認してい る。
（2）健全性評価対象となるテフロン材使用機器（テフロン材使用部品）
表1 で抽出したテフロン材使用部品について，その部品の機能及び機器機能等への影響の有無 を表 2 に示す。また，テフロン材使用機器の概要及び使用時の状態を（1）～③に示す。

表2 テフロン材を使用している機器及びテフロン使用部品

テフロン材使用機器		部品の機能	機器機能等＊${ }^{*}$ への影響
機器	部品		
所員用エアロック	シールリング	弁のシール機能	あり＊2
圧力平衡弁	シール材	弁グランド部のシール機能	なし
起動領域モニタ 出力領域モニタ		炉水のシール機能	なし
制御棒駆動機構	メタル 0 リング	漏えい防止機能	なし

注記＊1：当該機器の機能及び原子炉格納容器のバウンダリ機能への影響
＊2：所員用エアロックの内外に 2 重に設置されており，両方のシール機能が同時に喪失 した場合に原子炉格納容器のバウンダリ機能への影響が生じる
（1）所員用エアロックの圧力平衡弁
所員用エアロックは，図 1 に示すとおり，原子炉格納容器に 1 箇所設置されている。所員用 エアロックは，図2に示すとおり，中心軸を水平に配置した中空円筒構造の設備であり，円筒 の両端面に位置する隔壁にそれぞれ 1 枚ずつ扉を設けることにより，原子炉格納容器内外を結 ぶ通路として使用されるものである。

内外 2 枚の扉を結ぶ連接機構により，少なくとも一方の扉は閉じた状態となるように設計さ れている。閉じた状態の扉には，微圧ながら扉の両側に差圧がかかるため，図 3 に示すとおり，扉 1 枚ごとに 1 個の圧力平衡弁が設置されており，扉を開く際に，扉の動きに先行して圧力平衡弁が開くことにより，扉の差圧が解消され，その後，扉に操作力が作用する仕組みとなって いる。

テフロン材は，図 4 に示すとおり，圧力平衡弁のシートとして使用している。ボール弁のシ ールリングは，弁が全閉状態の際，差圧によりボール型弁体が弁箱に押し付けられ，ボール型弁体と弁箱の当たり面をシールリングで密封する。弁には 2 つのシールリングが装備されてい るが，差圧の向きに応じて，2 つあるうちの圧縮される側のシールリングが弁の密封性を確保 するように働く。この状態のシールリングに着目すると，ボール型弁体にかかる差圧によりシ ールリングがボール型弁体から弁箱に向かって押し付けられる作用と，ボール型弁体と弁箱の隙間領域においてシールリングにかかる差圧でシールリングがシールリング溝に押し付けられ る作用により，一方向に圧縮を受ける応力状態となる。

なお，グランドシール部のシール材については，外部の異物混入防止が主な機能であるた め，弁のシール機能には影響がない。
（2）起動領域モニタ及び出力領域モニタ
起動領域モニタ及び出力領域モニタは，それぞれ，原子炉の停止状態～起動状態，原子炉の起動状態～定格出力運転状態において，原子炉の炉心内における中性子束を計測し，原子炉の状態を監視するために設置される検出器である。各中性子束検出器は，中性子束に応じた電気信号を出力し，その電気信号は信号ケーブルを介して計測制御系に伝送される。

テフロン材は，図 5 に示すとおり，起動領域モニタ及び出力領域モニタの
に使用している。
（3）制御棒駆動機構（CRD）
制御棒駆動機構（以下「CRD」という。）は，水圧による制御棒の通常挿入，引抜駆動及び緊急時の急速挿入（スクラム）を行う駆動装置である。

テフロン材は，図 6 に示すとおり，CRD のメタル 0 リングのテフロンコーティングに使用し ている。

メタル 0 リングのテフロンコーティングについては，SUS 製のメタル 0 リングのシール面の表面粗さに追従させる目的で施されており，高い面圧で CRD ハウジングフランジと CRD フラン ジに挟まれた装着状態において 0 リング表面のテフロンコーティングが仮に劣化したとしても，当該部のシール機能は確保できるものと考える。

4．テフロン材使用機器の健全性
4.1 テフロン使用機器の設置場所と環境条件

機器の機能及び原子炉格納容器のバウンダリ機能に影響を与える可能性がある部位にテフロン材を使用している機器の設計基準事故及び重大事故等の環境条件下における健全性について検討 する際に考慮すべき環境条件については，技術基準規則第 14 条第 2 項及び第 54 条第 1 項のとお り，温度，圧力，湿度，放射線，荷重，屋外天候，海水，電磁的障害，周辺機器等からの悪影響及び冷却材の性状がある。

これらのうち，テフロン材の特性から，材料の劣化としては，放射線による劣化が考えられる こと，テフロン材使用部品の使用時の状態から圧力による影響を受けることから，考慮すべき条件は，放射線，圧力となる。これら要素を含む通常時，設計基準事故時，重大事故等時の環境条件を表3に示す。
4.2 テフロン材使用機器の放射線による劣化に対する健全性
（1）所員用エアロックの圧力平衡弁（弁シール部のシールリング）
a．通常運転時
エアロック圧力平衡弁は，通常運転時の条件下では $2 \mathrm{~Gy} / \mathrm{h}$ であることから，通常運転期間 である 13 ヶ月での積算線量は 20 kGy 程度となり，テフロンの放射線の耐久性に対する $2 \times$ $10^{3} \mathrm{~Gy}$ を超過するおそれがある。

通常運転時，当該弁は閉状態を維持し，圧力平衡弁に 2 つあるシールリングのうちシール している側は 1 方向に押し付けられ摺動することはないこと，圧力平衡弁の構造上，原子炉格納容器の内圧により 1 方向に押され密着性が向上する方向の力が作用するためシールリン グの形状変化は考え難いこと，また，ボール弁の形状上，ボールとシールリングが閉塞して

おりテフロンの形状を維持できることから，シールリングの機械的特性が低下してもシール材の自己形状は維持されると考えられる。

さらに，別添資料 4 によれば，この積算線量（ 20 kGy 程度）の放射線照射下においては， テフロン材の引張強度は未照射材の 30% 程度まで低下することが示されている。テフロン材 の圧縮強度についても引張応力と同程度の強度低下を示すと仮定した場合，テフロン材の圧縮強度は 12 MPa であることから（別添資料 1 ），通常運転時の放射線条件下においてもテフロ ン材は3．6MPa 程度の圧縮強度を有していると推定され，圧縮に対する耐性が完全に喪失す ることはないと考えられることから，エアロック圧力平衡弁のシール部の健全性は確保でき ると考えられる。
なお，当該機器は定期点検ごとに漏えい試験等の点検がなされ，圧力平衡弁としての機能 が碓保される保全内容となっている。

b．設計基準事故時

設計基準事故の条件下では，事故後数日で積算線量 $2 \times 10^{3} \mathrm{~Gy}$ を超過し，その線量を超過し て以降は，材料が未照射である場合に比べ優位な影響が現れ，その影響としては，重合度の低下及びそれに伴うテフロン材の機械的特性の低下（引張強度の低下，圧縮強度の低下等） がある。

設計基準事故時，当該弁は閉状態を維持し，圧力平衡弁に 2 つあるシールリングのらちシ ールしている側は1方向に押し付けられ摺動することはないこと，圧力平衡弁の構造上，原子炉格納容器の内圧により 1 方向に押され密着性が向上する方向の力が作用するためシール リングの形状変化は考え難いこと，また，ボール弁の形状上，ボールとシールリングが閉塞 しておりテフロンの形状を維持できることから，シールリングの機械的特性が低下してもシ ール材の自己形状は維持されると考えられる。

さらに，別添資料 4 によれば，設計基準事故時における積算線量（ 260 kGy 程度）の放射線照射下においては，テフロン材の引張強度は未照射材の 20% 程度まで低下することが示され ている。テフロン材の圧縮強度についても引張応力と同程度の強度低下を示すと仮定した場合，テフロン材の圧縮強度は 12 MPa であることから（別添資料 1 ），設計基準事故時の放射線条件下においてもテフロン材は 2.4 MPa 程度の圧縮強度を有していると推定され，圧縮に対 する耐性が完全に喪失することはないと考えられることから，エアロック圧力平衡弁のシー ル部の健全性は確保できると考えられる。

なお，テフロン材は金属部品の内部に設置されており放射線の遮蔽が期待できること，ま た，当該圧力平衡弁は，所員用エアロックの内外に 2 重に配置されており，外側の圧力平衡弁が設置される所員用エアロック内は，表3 に示す原子炉格納容器内の環境よりも穏やかで あると想定されることから，設計基準事故時のテフロン材の機械的特性は上記の評価より高 く維持されることが想定される。

c．重大事故等時

重大事故等時は設計基準事故時より厳しい環境条件となり，設計基準事故時と比較してテ フロン材の引張強度，圧縮強度の低下がより顕著に表れる。

重大事故等時，当該弁は閉状態を維持し，圧力平衡弁に 2 つあるシールリングのうちシー ルしている側は1方向に押し付けられ摺動することはないこと，圧力平衡弁の構造上，原子炉格納容器の内圧により 1 方向に押され密着性が向上する方向の力が作用するためシールリ ングの形状変化は考え難いこと，また，ボール弁の形状上，ボールとシールリングが閉塞し ておりテフロンの形状を維持できることから，シールリングの機械的特性が低下してもシー ル材の自己形状は維持されると考えられる。

さらに，別添資料 4 によれば，重大事故等時における積算線量（ 300 kGy 程度）の放射線照射下においては，テフロン材の引張強度は未照射材の 15% 程度まで低下することが示されて いる。テフロン材の圧縮強度についても引張応力と同程度の強度低下を示すと仮定した場合， テフロン材の圧縮強度は 12 MPa であることから（別添資料 1 ），重大事故等の放射線条件下に おいてもテフロン材は 1.8 MPa 程度の圧縮強度を有していると推定され，圧縮に対する耐性 が完全に喪失することはないと考えられることから，エアロック圧力平衡弁のシール部の健全性は確保できると考えられる。

しかしながら，重大事故等時は，設計基準事故時と比較してテフロン材の放射線による劣化がより顕著になることから，当該圧力平衡弁の放射線下における健全性を向上することで， プラント安全性の向上を図ることとし，使用前検査までにより耐性に優れたシール材として PEEK 材に交換する。交換後のシール材は，表 4 に示すとおり重大事故等時の環境下において も十分な耐性を有することを確認しているものである。

5．結論

女川原子力発電所第 2 号機の原子炉格納容器内に使用されているテフロン材に関しては， 4.2項に示す健全性評価結果に基づき，設計基準事故及び重大事故等のいずれの事故環境下であって も，プラント安全性に影響を及ぼさないものと判断できる。さらに，安全上の機能を有するもの については耐環境性に優れたシール材に交換することで，プラント安全性のさらなる向上を図る。

表3 原子炉格納容器内で使用されるテフロン材の健全性評価用環境条件

	温度	圧力	放射線
通常運転時	$66{ }^{\circ} \mathrm{C}$	$13.7 \mathrm{kPa}[\mathrm{gage}]$	$2 \mathrm{~Gy} / \mathrm{h}$
設計基準事故時	$171^{\circ} \mathrm{C}$	$427 \mathrm{kPa}[\mathrm{gage}]$	$260 \mathrm{kGy} / 6$ ヶ月
重大事故等時	$200^{\circ} \mathrm{C}$	$854 \mathrm{kPa}[\mathrm{gage}]$	$300 \mathrm{kGy} / 7$ 日

表4交換後のシール材の耐環境性

設備	交換後のシール材	耐熱温度	耐放射線性
所員用エアロック圧力平衡弁	PEEK 材	$250^{\circ} \mathrm{C}$	約 10 MGy

図 1 原子炉格納容器の概要図

図2 所員用エアロックの構造図

図 3 所員用エアロックにおける圧力平衡弁の位置

注記：赤枠は，テフロン材使用箇所を示す

図 4 所員用エアロック圧力平衡弁の構造図

図5 起動領域モニタ及び出力領域モニタの取付部の概略図

注記：赤枠は，テフロン材使用箇所を示す

図 6 制御棒駆動機構の概略図

ふつ素樹脂特性一筧

											Deperikuch	
	㭙	＊	4．4	$\begin{aligned} & \text { ASTM } \\ & \text { Hutan } \end{aligned}$	PTEE	PFA	fep	ETFE	PVDF	ECTEE	PCTEE	PVF
$\begin{aligned} & \text { 娄 } \\ & \text { 毕 } \end{aligned}$		風	0		323	300－310	260	270	156－170	245	220	203
				D792	214－2．20	2．12－217	2．12－2．17	1.70	1．76－1．38	1．63～169	2．1～2．2	1．38－7．57
$\begin{aligned} & \text { a } \\ & \text { 杜 } \\ & \text { 的 } \end{aligned}$		保洋共	MPa_{3}	D638	27－34	24－34	22－31	45	34－43	48	31－41	88
		弗 os	3	DE3 38	200～400	300	250－350	100－400	80－300	200－350	80－250	118－250
		枟紼里	MPa	D695	12	17	15.	49	67～96	－	31～51	－
	教等	（78）	3／3m	0250es	150	彔景ぜ「			160－370		130～140	－
		2らさル）		B7\％	－	－	－	850	A79－83	－	R75－95	－
	Esit	（2）		02280	050－665	D64	1060－65	D1／5	065－70	DS5	07b－89	－
		誛本运》	SRa	D790	0．55	0．66－89	0.65	1.4	2．0－2．5	265－1069	1，3～18	－
			CHa	De38	Mc－4s	－	0.34	0.82	1．3－1．5	1.0	10－2．	1.9
		你粞			0.10	0.20	0.30	0.40	0.59	－	0.37	－
		运䄈事	W／m－K	लश7	025	025	025	0.24	610－2．313	0.16	Q20）－（cesz	（14400，
		明，䍃	12thek	B240	1.0	1.0	12	1．9－2．0	1.4	－	0.92	1.9
			$10^{-1 /} / \mathrm{K}$	De9s	10	12	8，3－11	59	$7 \sim 14$	80	4．5～-7.0	7．1～7．8
	余 -	－	0		180	230	170	385	－	－	170	－
		7.5 MPa			55	50	50	74	87～120	77	－	－
		0.45 MFF	6		121	74	72	104	149	116	126	－
			6	（制可家）	280	260	200	160－190	150	165－189	177－200	100
		拫浐事	acmi		$>19^{11}$	$>10^{41}$	$>10^{11}$	$>10^{16}$	2×30^{16}	$>10^{14}$	$1.2 \times 10^{\text {ma }}$	1.2×10^{4}
			cy mimy	D149	19	20	20－24	16	10	20	20－24	－
		60 Hz		D150	<2.1	＜2．1	2.1	26	8.4	26	2．2－2．8	8．2－8．5
	㱷	$10^{\prime} \mathrm{Hz}$		Diso	<2.1	<2.1	2.1	26	8.4	28	2．3－2．8	6．2－6．7
		$10^{\circ} \mathrm{Hz}$		Di50	<2.1	<21	2.1	28	6.43	20	$23-2.5$	6．2～7．0
	暑	50 Hz		D169	＜ 0.0002	＜ 00002	＜00002	0.0006	0.049	＜000005	0.0012	－
	$\frac{8}{i t}$	${ }^{10} \mathrm{~Hz}$		D150	＜acose	＜acocer	＜0．0002	0.0008	0.018	0.0015	ater－vicer	0.3
	瑗	10 Hz		D150	＜ 0.0002	00003	＜0．000s	0.005	＜0．015	（1）060390	－	－
		下－5 柂	sec．	D495	$\geqslant 800$	＞300	>300	75	50～70	18	>360	－
	吸水	本（24ht）	\star	B570	＜0．0）	＜0．01	＜ 0.07	0.089	csamenis	0.01	0.00	＜0．5
		（3， $\mathrm{mmm}^{\text {\％}}$ ）		（ul－94）	v－0	V－o	v－0	v－0	k－0	$\mathrm{V}-\mathrm{O}$	V．0	H88
			\％	D2803	>95	>95	>95	30	44	60	>95	23
	衡治				45.	dot	4t．	tal	部	勀	t	tal
		織			－	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle
		アルかり			－	－	－	0	ρ	\bigcirc	\bigcirc	0
		，${ }^{\text {a }}$			－	－	－	0	Δ	0	6	a

6．

データがこれまでに蓄積されている。これらは NASA，CERN（European Organization for Nuclear Research）${ }^{[2]}$ など多くの研究機関でまとめられている。日本では，電気学会が電気学会技術報告＂耐放射線性誘電•絶縁材料の最近の動向＂${ }^{[3]}$ としてまとめられている。

CERN でまとめられたケーブル材料，エラストマー，熱硬化樹脂についての＂一般的な使用限界線量＂を図5（a）～（c）に示す。

図5－1．CERNでまとめられた＂一般的な耐放射線性＂
（a）エラストマー（ゴム）
（b）電気絶縁材料

図5－2．CERNでまとめられた＂一般的な耐放射線性＂
（c）熱可塑性高分子

[^0]

Fig．2．Teflon，Irradiated in Air．

出典：W．W．Parkinson and W．K．Kirkland：＂The Effect of Air on the Radiation－Induced Degradation of Polytetrafluoroethylene（TEFLON）＂，USAEC Report ORNL－TM－1757，Oak Ridge National Laboratory，February 1967

[^0]: 出典：W．W．Parkinson and 0．Sisman：＂The Use of Plastics and Elastomers in Nuclear Radiation＂，Nuclear Engineering and Design， 17 （1971）247－280

