女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －工－B－19－0058＿改 0
提出年月日	2021 年 2 月 8 日

VI－2－11－2－5 第1号機制御建屋の耐震性についての計算書

目次

1．概要 1
2．基本方針 1
2.1 位置 1
2.2 構造概要 2
2.3 評価方針 11
3．評価方法 13
3.1 評価対象部位及び評価方針 13
3.2 評価に用いる地震波 15
3.3 荷重及び荷重の組合せ 19
3．4許容限界 20
3.5 解析方法 21
3．6 解析条件 27
3.7 評価方法 38
4．評価結果 39
4．1 構造物全体としての変形性能の評価結果 39
4．2 相対変位による評価結果 40

1．概要
本資料は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」に基づき，第1号機制御建屋が制御建屋に対して，波及的影響を及ぼさ ないことを説明するものである。

その波及的影響の評価は，制御建屋の有する機能が保持されることを確認するために，施設の損傷，転倒，落下等による影響では，第1号機制御建屋の構造物全体としての変形性能の評価を，建屋間の相対変位による影響では，制御建屋への衝突の有無を確認す る。

2．基本方針

2.1 位置

第1号機制御建屋の設置位置を図2－1に示す。

図 2－1 第1号機制御建屋の設置位置

2.2 構造概要

第1号機制御建屋は，地下 3 階，地上 3 階で，基礎底面からの高さは約 29.2 m （地上部約 14.4 m ，地下部 14.8 m ），平面は $54.0 \mathrm{~m} ~(\mathrm{NS}) ~ \times 41.0 \mathrm{~m}$（EW）＊である。建屋の構造は鉄筋コンクリート造（一部鉄骨造）であり，その主たる耐震要素は耐震壁である。

第1号機制御建屋の基礎は，厚さ 1.5 m の心゙た基礎で，支持地盤である岩盤上に直接又はマンメイドロックを介して設置されている。

第1号機制御建屋の概略平面図を図2－2 に概略断面図を図2－3に，建屋配置図を図2－4に，第1号機制御建屋と制御建屋のクリアランスを図2－5に示す。

注記＊：建屋寸法は壁外面押えとする。

（単位：m）
図2－2（1）第 1 号機制御建屋の概略平面図（0．P．＊ 1.5 m ）

注記＊：0．P．は女川原子力発電所工事用基準面であり，東京湾平均海面 （T．P．）－0． 74 m である。

（単位：m）
図2－2（2）第1号機制御建屋の概略平面図（0．P．5．0m）

（単位：m）
図 $2-2$（3）第 1 号機制御建屋の概略平面図（0．P．10．5m）

（単位：m）
図 $2-2(4)$ 第 1 号機制御建屋の概略平面図（0．P．15．0m）

（単位：m）
図 $2-2(5)$ 第 1 号機制御建屋の概略平面図（0．P．19．5m）

（単位：m）

図2－2（6）第1号機制御建屋の概略平面図（0．P．23．45m）

（単位：m）
図 2－3（1）第1号機制御建屋の概略断面図（A－A 断面，NS 方向）

（単位：m）
図 2－3（2）第1号機制御建屋の概略断面図（B－B 断面，EW 方向）

図 2－4 建屋配置図

図 2－5 第1号機制御建屋と制御建屋のクリアランス

2.3 評価方針

第 1 号機制御建屋は，制御建屋と同じ運転状態を想定することから，設計基準対象施設及び重大事故等対処施設に対する波及的影響の評価を行う。

第1号機制御建屋の設計基準対象施設に対する波及的影響の評価においては，基準地震動 S s に対する評価（以下「 S s 地震時に対する評価」という。）を行うこととす る。第1号機制御建屋の波及的影響の評価は，添付書類「VI－2－11－1 波及的影響を及 ぼすおそれのある下位クラス施設の耐震評価方針」に基づき，地震応答解析による評価において，施設の損傷，転倒，落下等による影響では，構造物全体としての変形性能について行う。建屋間の相対変位による影響では，制御建屋との相対変位による評価を行らことで，制御建屋への衝突の有無の確認を行う。この相対変位による評価で は，第 1 号機制御建屋の最大応答変位及び添付書類「VI－2－2－3 制御建屋の地震応答計算書」に基づく最大応答変位を用いる。評価にあたつては，材料物性の不確かさを考慮する。

なお，第 1 号機制御建屋は，その配置上，制御建屋と接触する可能性が高い EW 方向 に対して波及的影響の評価を行う。

また，重大事故等対処施設に対する波及的影響の評価においては，S s 地震時に対 する評価を行う。ここで第1号機制御建屋では，設計基準事故時及び重大事故等時の状態における圧力，温度等の条件に有意な差異がないことから，重大事故等対処施設 に対する波及的影響の評価は，設計基準対象施設に対する波及的影響の評価と同一と なる。

2． 4 適用規格•基準等
第1号機制御建屋の波及的影響評価において適用する規格•基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 1999 年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法 -
－原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601••補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991追補版）（以下「 J E AG4601－1991追補版」という。）

3．評価方法

3.1 評価対象部位及び評価方針

第 1 号機制御建屋の波及的影響の評価は，以下の方針に基づき行う。
構造物全体としての変形性能の評価では，質点系モデルを用いた地震応答解析結果 により求められる耐震壁の最大応答せん断ひずみが，許容限界を超えないことを確認 する。

制御建屋との相対変位による評価では，両建屋の最大応答変位の絶対値和（以下「最大相対変位」という。）と建屋間のクリアランスの大小関係により，隣接する制御建屋 への衝突の有無を確認する。なお，最大相対変位が許容限界を超過する場合には，両建屋の時刻歴上の相対変位から衝突の有無を確認する。

以上の評価では，材料物性の不確かさを考慮する。
図 3－1 に波及的影響の評価フローを示す。

図 3－1 第1号機制御建屋の波及的影響の評価フロー

3.2 評価に用いる地震波

第1号機制御建屋の地震応答解析に用いる地震波は，上位クラス施設である制御建屋の評価に適用した添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」に示す解放基盤表面レベルに想定する地震波のうち，基準地震動 S s と する。

地震応答解析に用いる地震波の加速度時刻歴波形及び加速度応答スペクトルを，図 3－2 及び図 3－3に示す。

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1$

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

（c） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$
図 3－2（1）加速度時刻歴波形（基準地震動 S s ，水平方向）（ $1 / 3$ ）

（e） $\mathrm{S} \mathrm{s}-\mathrm{F} 2$

（f） S s－F 3
図 $3-2$（2）加速度時刻歴波形（基準地震動 S s，水平方向）（2／3）

図 $3-2$（3）加速度時刻歴波形（基準地震動 S s，水平方向）（3／3）

図 3－3 加速度応答スペクトル（基準地震動 S s ，水平方向）

3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」にて設定している荷重及び荷重の組合せを用いる。 その荷重の組合せを表3－1 に示す。

表 3－1 荷重の組合せ

外力の状態	荷重組合せ
S s 地震時	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$

［記号の説明］
G：固定荷重
P ：地震と組み合わすべきプラントの運転状態に おける運転荷重

S s ：基準地震動 S s により定まる地震力

3．4 許容限界

第1号機制御建屋の制御建屋に対する波及的影響の評価における許容限界は添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」に記載の許容限界に基づき，表 $3-2$ 及び表 $3-3$ のとおり設定する。

表 3－2 波及的影響の評価における許容限界
（設計基準対象施設に対する評価）

機能設計上の性能目標	地震力	部 位	機能維持のための考え方	許容限界
制御建屋に波及的影響を及ぼさない	$\begin{gathered} \text { 基準 } \\ \text { 地震動 } \\ \text { S s } \end{gathered}$	耐震壁	最大応答せん断ひずみが構造物全体としての構造強度の確認のための許容限界を超えな いことを確認	せん断ひずみ 4.0×10^{-3}
		第1号機制御建屋及び制御建屋	建屋間の最大相対変位が波及的影響を及ぼさないための許容限界を超えないことを確認	相対変位 50 mm

表 3－3 波及的影響の評価における許容限界
（重大事故等対処施設に対する評価）

機能設計上の 性能目標	地震力	部 位	機能維持のための考え方	許容限界
制御建屋に波及的影響を及ぼさない	$\begin{gathered} \text { 基漼 } \\ \text { 地震動 } \\ \text { S S } \end{gathered}$	耐震壁	最大応答せん断ひずみが構造物全体としての構造強度の確認のための許容限界を超えな いことを確認	せん断ひずみ 4.0×10^{-3}
		第1号機制御建屋及び制御建屋	建屋間の最大相対変位が波及的影響を及ぼさないための許容限界を超えないことを確認	相対変位 50 mm

3.5 解析方法

3．5．1 地震応答解析モデル
（1）地震応答解析モデル
水平方向の地震応答解析モデルは，建屋を曲げ変形とせん断変形をする耐震壁部及び面内せん断変形をする床スラブ部からなる質点系モデルとし，地盤を等価 なばねで評価した建屋一地盤連成モデルとする。なお，接地率が 65% を下回る場合には，誘発上下動を考慮する。

水平方向の地震応答解析モデル及び諸元を図 3－4に示す。なお，平成 23 年 （2011 年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等に伴ら初期剛性の低下については，観測記録や試験データなどから適切に地震応答解析モデルへ反映し，保守性を確認した上で適用する。耐震壁の初期剛性の設計値に対する補正係数を表 3－4に示す。
（2）地盤ばね
基礎版底面下の地盤は，水平方向の地震応答解析モデルにおいては水平ばね及 び回転ばねで置換している。この水平ばね及び回転ばねは，「JEAG4601－ 1991 追補版」により，基礎版底面下の地盤を等価な半無限地盤と見なして，振動 アドミッタンス理論に基づいて評価している。いずれのばねも振動数に依存した複素剛性として表現されるが，図 $3-5$ に示すようにばね定数として，実部の静的 な値（ K_{c} ）を，また，減衰係数（ C_{c} ）として，建屋 一 地盤連成モデルの 1 次固有円振動数（ ω_{1} ）に対応する虚部の値と原点を結ぶ直線の傾きを採用することにより近似する。このうち，回転ばねには，基礎浮上りによる幾何学的非線形性を考慮 する。基礎底面ばねの評価には解析コード「ADMITHF」を用いる。評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プ ログラム（解析コード）の概要」に示す。地盤ばね定数及び減衰係数を表3－5に，地盤モデルの等価地盤物性値を表 $3-6$ に示す。
（3）入力地震動
地震応答解析モデルへの入力地震動は，「3．2 評価に用いる地震波」に示す基準地震動 S s とし，建屋基礎底面レベルに直接入力する。図 3－6に，地震応答解析モデルに入力する地震動の概念図を示す。

（a）モデル図
質点重量（ $\times 10 \mathrm{kN}$ ）

標高 $0 . \mathrm{P} .$ （m）	建屋		
	${ }^{4} 4$		${ }_{C} 10$
29.15	1	9	15
	1043	368	1210
23． 45	2	10	16
	790	997	833
19.50	3	11	17
	2194	1093	735
15.00	4	12	18
	3281	1200	896
10.50	5	13	19
	3555	1649	1216
5.00	6	14	20
	2503	1253	1045
1.50	7		
	6825		
0.00	8		
	3908		

回転慣性重量 ${ }^{*}=5.28 \times 10^{7} \mathrm{kN} \cdot \mathrm{m}^{2} / \mathrm{rad}$
注記 $*$ ：回転慣性重量は基礎下質点（質点番号8）に集約している。
（b）質点重量•回転慣性重量

図 $3-4$（1）地震応答解析モデル（EW 方向）（1／2）

要素番号
せん断断面積 $\left(\mathrm{m}^{2}\right)$
断面2次モーメント $\left(\times 10^{2} \mathrm{~m}^{4}\right)$

標高 0 ．P． （m）	建屋		
	${ }^{4}$	${ }_{c} 10$	
29.15	（1）	（8）	
	12.3	11.2	
	37.3	36.6	
23.45	（2）	（9）	
	20.5	14.9	
	64.4	41.6	
19.50	（3）	（10）	
	28.7	20.3	
	73.3	50.9	
15.00	（4）	（11）	
	53.1	41.0	
	197.0	88.2	
10.50	（5）	（12）	
	59.5	41.0	
	235.0	100.1	
5.00	（6）	（13）	
	59.5	41.0	
	235.0	100.1	
1.50	（7）		
	2214.0		
	3101.5		
コンクリート部			
	ヤング伊	E $\quad 9.27 \times 10^{3}$	（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
	斦弾性係	G $\quad 3.97 \times 10^{3}$	（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
	ポアソン	$v \quad 0.167$	
	減衰定	h 5\％	

（c）せん断断面積•断面2次モーメント

図 3－4（2）地震応答解析モデル（EW 方向）（2／2）

表 3－4 耐震壁の初期剛性の設計値に対する補正係数

方向	建屋全体
EW	0.45

ばね定数：底面ばねは 0 Hz のばね定数 K c で定数化
減衰係数：建屋一地盤連成系の 1 次固有円振動数 ω_{1} に対応する虚部の値と原点とを結ぶ直線の傾き C c で定数化

図 3－5 地盤ばねの定数化の概要

表 3－5 地盤ばね定数と減衰係数（EW 方向）

地盤ばね 成分	ばね定数 K_{c}	減衰係数
C_{c}		

表 3－6 地盤モデルの等価地盤物性値

せん断波速度 $\mathrm{V}_{\mathrm{S}}(\mathrm{m} / \mathrm{s})$	ポアソン比 v	せん断弾性係数 $\mathrm{G}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
1620	0.390	6.86×10^{3}

図 3－6 地震応答解析モデルに入力する地震動の概念図（水平方向）

3．5．2 解析方法

第1号機制御建屋の地震応答解析には，解析コード「NUPP4」を用いる。建物•構築物の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の解析方法に基づき，時刻歴応答解析により実施する。

なお，地震応答解析に用いる解析コードの検証及び妥当性確認等の概要につい ては，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3.6 解析条件

3．6．1 建物•構築物の復元力特性
（1）耐震壁のせん断応力度一せん断ひずみ関係（ $\tau-\gamma$ 関係）
耐震壁のせん断応力度一せん断ひずみ関係（ $\tau-\gamma$ 関係）は，「JEAG460 1－1991 追補版」に基づき，トリリニア型スケルトンカーブとする。耐震壁のせ ん断応力度一せん断ひずみ関係を図 3－7に示す。

τ_{1} ：第 1 折点のせん断応力度
τ_{2} ：第2折点のせん断応力度
$\tau 3$ ：終局点のせん断応力度
γ_{1} ：第1折点のせん断ひずみ
γ_{2} ：第2折点のせん断ひずみ
γ_{3} ：終局点のせん断ひずみ $\left(=4 \times 10^{-3}\right)$

図 3－7 耐震壁のせん断応力度一せん断ひずみ関係
（2）耐震壁のせん断応力度一せん断ひずみ関係の履歴特性
耐震壁のせん断応力度一せん断ひずみ関係の履歴特性は，「JEAG4601－ 1991 追補版」に基づき，最大点指向型モデルとする。耐震壁のせん断応力度一せ ん断ひずみ関係の履歴特性を図3－8に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が第1折点を越えていない時は負側第1折点に向かう。
c．B－C 間：負側最大点指向
d．各最大点は，スケルトン上を移動することにより更新される。
e．安定ループは面積を持たない。

図 3－8 耐震壁のせん断応力度一せん断ひずみ関係の履歴特性
（3）耐震壁の曲げモーメント一曲率関係（ $\mathrm{M}-\phi$ 関係）
耐震壁の曲げモーメント—曲率関係（M－ $\mathrm{\phi}$ 関係）は，「J E A G 4 6 O 1－1991追補版」に基づき，トリリニア型スケルトンカーブとする。耐震壁の曲げモーメ ントー曲率関係を図3－9に示す。

M_{1} ：第1折点の曲げモーメント
M_{2} ：第2折点の曲げモーメント
M_{3} ：終局点の曲げモーメント
ϕ_{1} ：第 1 折点の曲率
ϕ_{2} ：第 2 折点の曲率
$\phi 3$ ：終局点の曲率

図 3－9 耐震壁の曲げモーメントー曲率関係
（4）耐震壁の曲げモーメント一曲率関係の履歴特性
耐震壁の曲げモーメントー曲率関係の履歴特性は，「J E A G 4 6 O 1－1991 追補版」に基づき，ディグレイディングトリリニア型モデルとする。耐震壁の曲げ モーメントー曲率関係の履歴特性を図 3－10に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が第1折点を越えていない時は負側第1折点に向かう。
c．B－C 間：最大点指向型で，安定ループは最大曲率に応じた等価粘性減衰を与 える平行四辺形をしたディグレイディングトリリニア型とする。平行四辺形の折点は最大値から $2 \cdot M_{1}$ を減じた点とする。ただし，負側最大点が第2折点を超えていなければ，負側第2折点を最大点とする安定ループを形成する。また，安定ループ内部での繰り返しに用いる剛性は安定ループの戻り剛性に同じとする。
d．各最大点はスケルトン上を移動することにより更新される。

図 3－10 耐震壁の曲げモーメントー曲率関係の履歴特性
（5）剛性低下を考慮したスケルトンカーブの設定
設計基準強度により算定したスケルトンカーブに対して，地震観測記録に基づ き評価した建屋剛性に整合するようにスケルトンカーブの初期剛性を補正する。剛性低下を考慮したスケルトンカーブの概念を図 3－11 及び図3－12に示す。

τ_{1} ：第 1 折点のせん断応力度
τ_{2} ：第2折点のせん断応力度
$\tau 3$ ：終局点のせん断応力度
γ_{1} ：第1折点のせん断ひずみ
γ_{2} ：第2折点のせん断ひずみ
γ_{3} ：終局点のせん断ひずみ $\left(=4 \times 10^{-3}\right)$
$\tau 1_{1}^{\prime}$ ：初期剛性補正後の第1折点のせん断応力度
γ_{1}^{\prime} ：初期剛性補正後の第1折点のせん断ひずみ
注 ：剛性低下を考慮したスケルトンカーブの $\tau 1$ は及び $\gamma 1$ は J E A G 式と は対応しない。

図 3－11 耐震壁のせん断応力度一せん断ひずみ関係の スケルトンカーブの初期剛性の補正

M_{1} ：第1折点の曲げモーメント
M_{2} ：第2折点の曲げモーメント
M_{3} ：終局点の曲げモーメント
ϕ_{1} ：第 1 折点の曲率
ϕ_{2} ：第 2 折点の曲率
$\phi 3$ ：終局点の曲率
M_{1}^{\prime} ：初期剛性補正後の第1折点の曲げモーメント
ϕ_{1}^{\prime} ：初期剛性補正後の第 1 折点の曲率
注：剛性低下を考慮したスケルトンカーブの M_{1}^{\prime} 及び ϕ ！は J E A G 式とは対応しない。

図 3－12 耐震壁の曲げモーメントー曲率関係の
スケルトンカーブの初期剛性の補正
（6）スケルトンカーブの諸数値
制御建屋の各耐震壁について算出したせん断力及び曲げモーメントのスケルト ンカーブの諸数値を表 3－7 及び表 3－8に示す。

表 3－7 せん断力のスケルトンカーブ（ $\tau-\gamma$ 関係）
EW 方向
c 4

$0 . \mathrm{P}$. (m)	τ_{1}^{\prime} $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1}^{\prime} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$29.15 \sim 23.45$	2.11	-	5.23	0.532	-	4.00
$23.45 \sim 19.50$	2.23	-	5.00	0.563	-	4.00
$19.50 \sim 15.00$	2.25	-	5.22	0.565	-	4.00
$15.00 \sim 10.50$	2.29	-	5.29	0.576	-	4.00
$10.50 \sim 5.00$	2.38	-	5.95	0.600	-	4.00
$5.00 \sim 1.50$	2.47	-	5.95	0.622	-	4.00

c 10

$0 . \mathrm{P}$. (m)	τ_{1}^{\prime} $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1}^{\prime} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$29.15 \sim 23.45$	2.12	-	5.23	0.535	-	4.00
$23.45 \sim 19.50$	2.23	-	5.29	0.561	-	4.00
$19.50 \sim 15.00$	2.29	-	5.23	0.578	-	4.00
$15.00 \sim 10.50$	2.25	-	5.04	0.565	-	4.00
$10.50 \sim 5.00$	2.33	-	5.16	0.587	-	4.00
$5.00 \sim 1.50$	2.42	-	5.13	0.609	-	4.00

表 $3-8$ 曲げモーメントのスケルトンカーブ $(\mathrm{M}-\phi$ 関係）
EW方向

$\begin{gathered} \text { 0. P. } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1}^{\prime} \\ \left(\times 10^{6} \mathrm{kN} \cdot \mathrm{~m}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2} \\ \left(\times 10^{6} \mathrm{kN} \cdot \mathrm{~m}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{3} \\ \left(\times 10^{6} \mathrm{kN} \cdot \mathrm{~m}\right) \end{gathered}$	$\begin{gathered} \phi 1_{1}^{\prime} \\ \left(\times 10^{-5} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \phi_{2} \\ \left(\times 10^{-5} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \phi_{3} \\ \left(\times 10^{-5} / \mathrm{m}\right) \end{gathered}$
$29.15 \sim 23.45$	0． 461	0． 787	1． 13	1.33	4.93	98.6
$23.45 \sim 19.50$	0.833	1． 42	2.01	1． 40	4.95	99.1
$19.50 \sim 15.00$	1.05	1.88	2． 79	1． 55	5.17	103
$15.00 \sim 10.50$	2.69	4． 70	6.80	1． 47	4.99	99.7
$10.50 \sim 5.00$	3.64	6． 27	9． 20	1． 67	5.08	102
$5.00 \sim 1.50$	3.91	6． 54	9． 49	1． 80	5． 12	102

3．6．2 地盤の回転ばねの復元力特性
地盤の回転ばねに関する曲げモーメントー回転角の関係は「JEAG4601 －1991追補版」に基づき，浮上りによる幾何学的非線形性を考慮する。回転ばね の曲げモーメントー回転角の関係を図 3－13に示す。

浮上り時の地盤の回転ばねの剛性は，図3－13の曲線で表され，減裹係数は，回転ばねの接線剛性に比例するものとして考慮する。

M ：転倒モーメント
M_{0} ：浮上り限界転倒モーメント（＝W•L／6）
θ ：回転角
日。 ：浮上り限界回転角
K_{0} ：地盤の回転ばね定数（浮上り前）
K ：地盤の回転ばね定数（浮上り後）
W ：建屋総重量
L ：建屋基礎幅

図 3－13 回転ばねのモーメントー回転角の関係

3．6．3 材料物性の不確かさ

解析においては，「3．5．1 地震応答解析モデル」に示す物性値及び定数を基本 ケースとし，材料物性の不確かさを考慮する。材料物性の不確かさを考慮した地震応答解析は，基本ケースにおける建屋応答を確認した上で，建屋応答への影響 の大きい地震動に対して検討を実施する。さらに第1号機制御建屋は波及的影響 の評価対象であることから，上位クラス施設（制御建屋）で選定した地震動にお いても実施する方針とし，S s－D 1，S s－D 2 ，S s－D 3，S s－F 3 及 びS s－N 1 に対して実施することとする。

材料物性の不確かさのうち，地盤物性については，地盤調査結果の平均値をも とに設定した数値を基本ケースとし，支持地盤のせん断波速度のばらつきは，変動係数 $\pm 7 \%$ を考慮し，底面地盤ばねの算定に適用する。

建屋剛性の不確かさについて，水平方向については基準地震動 S s 入力後の建屋全体の平均的な剛性低下を全ての基準地震動 S s について評価し，最も剛性低下するケースの低下後の剛性を初期剛性の不確かさとして考慮する。なお，終局耐力については，実機のコンクリート強度が設計基準強度より高い傾向にあり，終局耐力はその分高いほうに上振れすることが考えられるが，終局耐力の増加は建屋の変形を抑制する方向の評価となることから，これを考慮しない。

材料物性の不確かさを考慮する地震応答解析ケースを表 3－10に，地盤物性の不確かさを考慮した解析用地盤物性を表3－11に示す。

表 3－10 材料物性の不確かさを考慮する地震応答解析ケース

対象地震動	ケース名	スケルトン曲線		建屋減衰	地盤物性
		初期岡性	終局耐力		底面地盤ばね
基準地震動 S s （EW 方向）	$\begin{array}{\|l} \text { ケース } 1 \\ \text { (基本ケース) } \end{array}$	2011年3月11日東北地方太平洋沖地震 の観測記録を用いた シミュレーション解析により補正	設計基淮強度を用い JEAG 式で評価	5\％	標準地盤
	ケース 2	同上	同上	同上	標準地盤＋+
	ケース 3				標準地盤－σ
	ケース 4	基本ケースの 0.75 倍	同上	同上	標準地盤
	ケース 5				標準地盤＋$+\sigma$
	ケース 6				標準地盤－σ

表 3－11 地盤物性の不確かさを考慮した解析用地盤物性

	等価地盤の せん断波速度 $(\mathrm{m} / \mathrm{s})$	ポアソン比 v	せん断弾性係数 $\mathrm{G}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
基本ケース	1620	0.390	6.86×10^{3}
$+\sigma$ 相当	1730	0.390	7.86×10^{3}
$-\sigma$ 相当	1510	0.390	5.94×10^{3}

3.7 評価方法

第1号機制御建屋の波及的影響の評価は，基準地震動S s における質点系モデルの地震応答解析結果を用い，以下のとおり評価する。

なお，以下の評価には，材料物性の不確かさを考慮する。

3．7．1 構造物全体としての変形性能の評価方法
構造物全体としての変形性能の評価は，質点系モデルによる地震応答解析を行 い，応答せん断ひずみを算出し，最大応答せん断ひずみが許容限界を超えないこ とを確認する。

3．7．2 相対変位による評価方法
相対変位による評価は，「3．5 解析方法」に示す第1号機制御建屋の地震応答解析モデルによる解祈結果と添付書類「VI－2－2－3 制御建屋の地震応答計算書」 における地震応答解析結果から，地震動毎に最大応答変位の和を算出し，その値 が許容限界を超えないことを確認する。最大相対変位を算出する際の基準点は，各建屋の基礎底面レベルの地盤面とする。

また，衝突のおそれのある床レベルに地震応答解析モデルの質点がない場合に は，当該床レベルの上下の質点の応答変位を用いた線形補間により，当該床レベ ルの変位を算出する。

更に，上記の最大相対変位が許容限界を超える場合には，各建屋の時刻歴応答変位による相対変位が，許容限界を超えないことを確認する。

4．評価結果
4． 1 構造物全体としての変形性能の評価結果
基準地震動 S s に対する最大応答せん断ひずみ（EW 方向）を表4－1に示す。
その結果，ケース 1 （基本ケース）において，最大応答せん断ひずみは 1.79×10^{-3} （要素番号（9），S s－D 2）である。また，材料物性の不確かさを考慮した場合の最大応答せん断ひずみは，最大で 1.86×10^{-3}（要素番号（9），ケース 5，S s－D 2）で あり，いずれの場合においても許容限界（ 4.00×10^{-3} ）を超えないことを確認した。

表 4－1 建屋の最大応答せん断ひずみ（EW 方向）
（単位：$\times 10^{-3}$ ）

注：（ ）内は各ケースにおいて応答が最大となる地震動を示す。材料物性の不確かさを考慮した地震応答解析は，基準地震動 S s－D 1，S s－D 2，S s－D 3， S s－F 3 及び S s－N 1 に対して実施。

4．2 相対変位による評価結果

4．2．1 最大相対変位による評価結果
基準地震動S s に対する建屋間の最大相対変位（EW 方向）を表4－2に示す。 その結果，最大相対変位は，ケース $1 \sim 6$ の制御建屋質点レベル 0. P． 29.15 m （第 1 号機制御建屋質点レベル O．P．29．15m）とケース 4～6 の制御建屋質点レベル 0．P．22．95m（第1号機制御建屋質点レベル O．P．23． 45 m ）において許容限界を超 える。

表 4－2 第1号機制御建屋と制御建屋の最大相対変位（EW 方向，絶対値和）

第 1 号機制御建屋		制御建屋		$\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ヶース) } \end{aligned}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	許容 限界
$\begin{aligned} & \hline \text { 質点 } \\ & \text { 番号 } \end{aligned}$	$\begin{gathered} 0 . \mathrm{P} . \\ (\mathrm{m}) \end{gathered}$	質点番号	$\begin{gathered} \text { 0. P. } \\ (\mathrm{m}) \end{gathered}$							
$\begin{gathered} 1,9 \\ 15 \end{gathered}$	29．15	$\begin{gathered} 1,9 \\ 10 \end{gathered}$	29.15	$\begin{gathered} 58.1 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 57.8 \\ (\mathrm{~S} s-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 58.3 \\ (\mathrm{~S} \text { s - D } 2 \text {) } \end{gathered}$	$\begin{gathered} 67.9 \\ (\mathrm{~s} \text { s - D 1) } \end{gathered}$	$\begin{gathered} 67.9 \\ (\mathrm{~s} \text { s - D 1) } \end{gathered}$	$\begin{gathered} 68.0 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{D} 1) \end{gathered}$	
$\begin{gathered} 2,10 \\ 16 \end{gathered}$	23.45	2，11	22.95	$\begin{gathered} 48.4 \\ (\mathrm{~S} \text { s - D } 2) \end{gathered}$	$\begin{gathered} 48.3 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 48.5 \\ (\mathrm{~S} \text { s - D } 2 \text {) } \end{gathered}$	$\begin{gathered} 56.5 \\ (\mathrm{~s} s-\mathrm{N} 1) \end{gathered}$	$\begin{gathered} 56.2 \\ \left(\mathrm{~S}_{\mathrm{s}-\mathrm{N} 1)}\right. \text {) } \end{gathered}$	$\begin{gathered} 56.9 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$	
$\begin{gathered} 3,11 \\ 17 \end{gathered}$	19.50	3，12	19.50	$\begin{gathered} 37.1 \\ (\mathrm{~S} \text { s - D } 2) \end{gathered}$	$\begin{gathered} 37.1 \\ (\mathrm{~s}-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 37.5 \\ (\mathrm{~s} . \operatorname{l}-\mathrm{D}) \end{gathered}$	$\begin{gathered} 46.5 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$	$\begin{gathered} 46.2 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$	$\begin{gathered} 46.8 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$	
$\begin{gathered} 4,12, \\ 18 \end{gathered}$	15.00	4， 13	15.00	$\begin{gathered} 24.2 \\ (\mathrm{~s} \text { s - D } 1 \text {) } \end{gathered}$	$\begin{gathered} 23.9 \\ (\mathrm{~S} \text { s - D } 1) \end{gathered}$	$\begin{gathered} 24.4 \\ (\mathrm{~S} \text { s - D 1) } \end{gathered}$	$\begin{gathered} 32.3 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$	$\begin{gathered} 32.0 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$	$\begin{gathered} 32.5 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$	

注：（ ）内は各ケースにおいて応答が最大となる地震動を示す。材料物性の不確かさを考慮した地震応答解析は，基準地震動 S s－D 1，S s－D 2，S s－D 3， Ss－F 3 及び S s－N 1 に対して実施。

4．2．2 時刻歴相対変位による評価結果
材料物性の不確かさを考慮した時刻歴相対変位の最大値は 16.3 mm であり，基準地震動S s 時に相対変位が許容限界を超えないことを確認した。

材料物性の不確かさを考慮したS s 地震時において時刻歴相対変位が最大とな るS s－F 3 を入力したときの 0．P．29． 15 m 位置での時刻歴相対変位を図 $4-1$ に示す。

図 4－1 時刻歴相対変位（S s－F 3，0．P．29．15m，ケース3）

