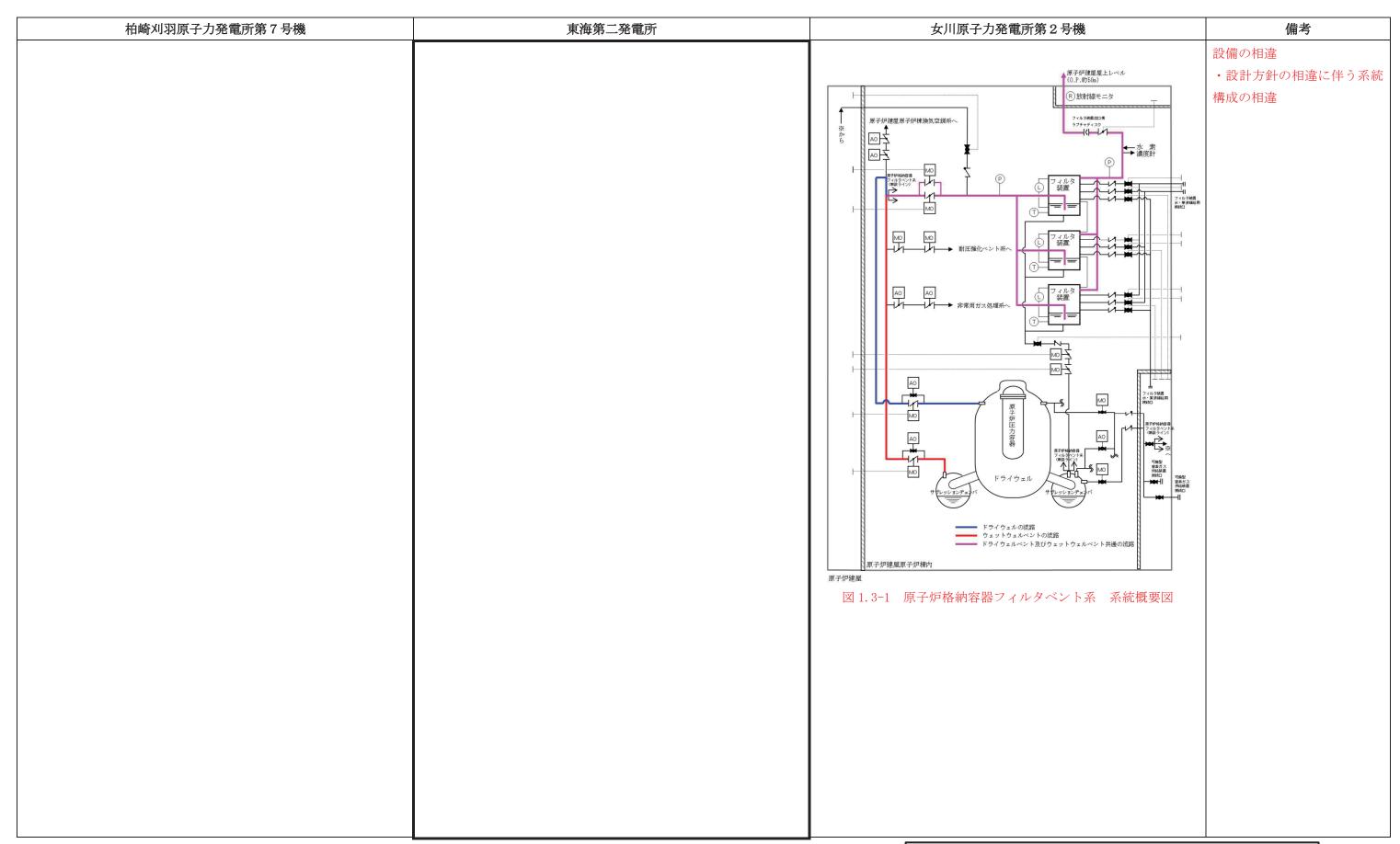
: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第7号機 柏崎の格納容器圧力逃がし装置のフィルタ装置は自社設計、東二及び女川はFramatome 製のため、同一メーカ製である東二との比較表を作成	東海第二発電所	女川原子力発電所第2号機 VI-1-8-1-別添2 原子炉格納容器フィルタベント系の設計	備名称の相違 図書構成の相違 ・以下、章番号や図番号等の相違については、差異理由の記載を省略する。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		目次	設備名称の相違
		2.4.6 排気管排水設備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	設備名称の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		4. 設備の維持管理・・・・・・・・・ 別添2-85	
		別紙	
		別紙1 可燃性ガスの爆発防止対策について・・・・・ 別添 2-94	
		別紙 2 原子炉格納容器フィルタベント系の系統設計条件の考え方	設備名称の相違
		について・・・・・・・・・・・ 別添 2-119	
		別紙3 流量制限オリフィスの設定方法について・・・・ 別添 2-129	
		別紙4 スクラバ溶液の保有水量の設定根拠及び健全性について	設備名称の相違
		別添 2-134	
		別紙 5 原子炉格納容器フィルタベント系隔離弁の人力操作につい	設備名称の相違
		て · · · · · · 別添 2-155	
		別紙 6 ベント実施に伴う作業等の作業員の被ばく評価	表現の相違
		別添 2-160	


: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		1. 概要	
		1.1 設置目的	
		炉心の著しい損傷が発生した場合において, 原子炉格納容器の破	表現の相違
		損及び原子炉格納容器内の水素による爆発を防止するため,原子炉	設備名称の相違
		格納容器フィルタベント系を設置する。	
		本系統はフィルタ装置(フィルタ容器、スクラバ溶液、金属繊維	設備名称の相違
		フィルタ,放射性よう素フィルタ)を通して排気に含まれる放射性	表現の相違
		物質を低減した上で,原子炉格納容器内の雰囲気ガスを放出するこ	
		とで、原子炉格納容器内の圧力及び温度を低下させるとともに、原	
		子炉格納容器内に滞留する水素を大気へ放出する機能を有する。	
		また, 設計基準事故対処設備が有する最終ヒートシンクへ熱を輸	
		送する機能が喪失した場合 <mark>,</mark> かつ残留熱除去系の使用が不可能な場	
		合において, 炉心の著しい損傷及び原子炉格納容器の破損を防止す	
		るために, 大気を最終ヒートシンクとして熱を輸送する機能を有す	
		る。	
		1.2 基本性能	
		原子炉格納容器フィルタベント系は、炉心の著しい損傷が発生し	設備名称の相違
		た場合において、原子炉格納容器内に発生するガスを、フィルタ装	
		置を通して大気に逃がすことで、放出される粒子状の放射性物質	
		(セシウム等)を低減する。	
		このため、放射性物質による環境への汚染の視点も含め、環境へ	
		の影響をできるだけ小さくとどめるものとして定められているCs-	
		137の放出量が100TBqを下回ることができる性能を有したものとす	
		る。	
		フィルタ装置としては、上述したCs-137の放出量制限を満足させ	
		るため、粒子状放射性物質除去効率99.9%以上の性能を有する装置	
		を採用する。	
		また、当該装置は、ガス状放射性よう素の除去効率として、無機	
		よう素は99.8%以上,有機よう素は98%以上の性能を有する。	設計方針の相違
			・無機よう素の除去効率は,東
			二:99%以上,女川:99.8%以上
			として設計,詳細は3.3.3 に
			記載(理由①)

: 前回提出時からの変更箇所

1.3 系統概要 図1.3-1に系統機要を示す。 本系統は、フィルタ装置出口側ラブチャディスク	
本系統は、フィルタ装置、フィルタ装置出口側ラブチャディスク 等で構成する。本系統は、中央制御室からの操作で、原子炉格納容 器第一隔離弁(サプレッションチェンバベント用出口隔離弁又はドライウェルベント用出口隔離弁)及び原子炉格納容器第二隔離弁 (原子炉格納容器フィルタベント系ベントライン隔離弁(A)又は原子炉格納容器フィルタベント系ベントライン隔離弁(B))を「全開」とすることにより、原子炉格納容器内の雰囲気ガスを、ドライウェル又はサブレッションチェンバより抜き出し、フィルタ装置にて放射性物質を低減させた後に、排気管を通して原子炉建屋屋上位置(0.P.約50m)で放出する。 本系統は、排気ラインにフィルタ装置出口側ラブチャディスクを設け、水素爆発防止のため系統内を不活性ガス(窒素)で置換した	
等で構成する。本系統は、中央制御室からの操作で、原子炉格納容器第一隔離弁(サプレッションチェンパベント用出口隔離弁又はドライウェルベント用出口隔離弁)及び原子炉格納容器第二隔離弁(原子炉格納容器フィルタベント系ベントライン隔離弁(A)又は原子炉格納容器フィルタベント系ベントライン隔離弁(B))を「全開」とすることにより、原子炉格納容器内の雰囲気ガスを、ドライウェル又はサプレッションチェンパより抜き出し、フィルタ装置にて放射性物質を低減させた後に、排気管を通して原子炉建屋屋上位置(O. P. 約50m)で放出する。 本系統は、排気ラインにフィルタ装置出口側ラブチャディスクを設け、水素爆発防止のため系統内を不活性ガス(窒素)で置換した	
器第一隔離弁(サプレッションチェンバベント用出口隔離弁又はドライウェルベント用出口隔離弁)及び原子炉格納容器第二隔離弁(原子炉格納容器フィルタベント系ベントライン隔離弁(A)又は原子炉格納容器フィルタベント系ベントライン隔離弁(B))を「全開」とすることにより,原子炉格納容器内の雰囲気ガスを,ドライウェル又はサプレッションチェンバより抜き出し,フィルタ装置にて放射性物質を低減させた後に,排気管を通して原子炉建屋屋上位置(0. P. 約50m)で放出する。 本系統は、排気ラインにフィルタ装置出口側ラブチャディスクを設け,水素爆発防止のため系統内を不活性ガス(窒素)で置換した	称
ライウェルベント用出口隔離弁)及び原子炉格納容器第二隔離弁 (原子炉格納容器フィルタベント系ベントライン隔離弁(A)又は原 子炉格納容器フィルタベント系ベントライン隔離弁(B))を「全開」 とすることにより、原子炉格納容器内の雰囲気ガスを、ドライウェ ル又はサブレッションチェンバより抜き出し、フィルタ装置にて放 射性物質を低減させた後に、排気管を通して原子炉建屋屋上位置 (0. P. 約50m) で放出する。 本系統は、排気ラインにフィルタ装置出口側ラブチャディスクを 設け、水素爆発防止のため系統内を不活性ガス(窒素)で置換した	相違
(原子炉格納容器フィルタベント系ベントライン隔離弁(A)又は原子炉格納容器フィルタベント系ベントライン隔離弁(B))を「全開」とすることにより,原子炉格納容器内の雰囲気ガスを,ドライウェル又はサプレッションチェンバより抜き出し,フィルタ装置にて放射性物質を低減させた後に,排気管を通して原子炉建屋屋上位置(0.P.約50m)で放出する。 本系統は,排気ラインにフィルタ装置出口側ラプチャディスクを設け,水素爆発防止のため系統内を不活性ガス(窒素)で置換した	
子炉格納容器フィルタベント系ベントライン隔離弁(B)) を「全開」とすることにより、原子炉格納容器内の雰囲気ガスを、ドライウェル又はサプレッションチェンバより抜き出し、フィルタ装置にて放射性物質を低減させた後に、排気管を通して原子炉建屋屋上位置(0.P.約50m)で放出する。 本系統は、排気ラインにフィルタ装置出口側ラプチャディスクを設け、水素爆発防止のため系統内を不活性ガス(窒素)で置換した	
とすることにより、原子炉格納容器内の雰囲気ガスを、ドライウェル又はサプレッションチェンバより抜き出し、フィルタ装置にて放射性物質を低減させた後に、排気管を通して原子炉建屋屋上位置(0. P. 約50m)で放出する。 本系統は、排気ラインにフィルタ装置出口側ラプチャディスクを設け、水素爆発防止のため系統内を不活性ガス(窒素)で置換した	・ガス放出位置の相違
ル又はサプレッションチェンバより抜き出し、フィルタ装置にて放射性物質を低減させた後に、排気管を通して原子炉建屋屋上位置(0.P.約50m)で放出する。 本系統は、排気ラインにフィルタ装置出口側ラプチャディスクを設け、水素爆発防止のため系統内を不活性ガス(窒素)で置換した	
射性物質を低減させた後に、排気管を通して原子炉建屋屋上位置 (0. P. 約50m) で放出する。 本系統は、排気ラインにフィルタ装置出口側ラプチャディスクを 設備名 設け、水素爆発防止のため系統内を不活性ガス (窒素) で置換した	
(0. P. 約50m) で放出する。 本系統は、排気ラインにフィルタ装置出口側ラプチャディスクを 設け、水素爆発防止のため系統内を不活性ガス(窒素)で置換した	
本系統は、排気ラインにフィルタ装置出口側ラプチャディスクを 設け、水素爆発防止のため系統内を不活性ガス(窒素)で置換した	
設け、水素爆発防止のため系統内を不活性ガス(窒素)で置換した	
設け、水素爆発防止のため系統内を不活性ガス(窒素)で置換した	称の相違
	141.45 HTE
ラプチャディスクの破裂圧力は、原子炉格納容器からの排気の妨げ	
にならないように、原子炉格納容器からの排気圧力と比較して十分	
小さい圧力に設定する。	
本系統は、中央制御室からの操作を可能とするため、代替電源設	
備からの給電を可能とするが、電源の確保ができない場合であって	
も、放射線量率の低い原子炉建屋付属棟内(非管理区域)より遠隔し表現の)相違
で操作することができる。	
なお、原子炉格納容器からの排気時に、高線量率となるフィルタ	
装置等からの被ばくを低減するために、必要な遮蔽等を行う。	

: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		2. 系統設計	
		2.1 設計方針	
		原子炉格納容器フィルタベント系は, 想定される重大事故等が発	設備名称の相違
		生した場合において、原子炉格納容器の過圧破損及び原子炉格納容	
		器内の水素による爆発を防止するとともに、大気を最終ヒートシン	
		クとして熱を輸送できるよう,以下の事項を考慮した設計とする。	
		(1) 原子炉格納容器フィルタベント系の設置	設備名称の相違
		炉心の著しい損傷が発生した場合において, 原子炉格納容器の過	
		圧による破損を防止するために必要な重大事故等対処設備のうち、	
		原子炉格納容器内の圧力を大気中に逃がすための設備として、原子	
		炉格納容器フィルタベント系を設ける設計とする。	
		a. 原子炉格納容器フィルタベント系は,フィルタ装置 (フィルタ	設備名称の相違
		容器, スクラバ溶液, 金属繊維フィルタ, 放射性よう素フィルタ),	
		フィルタ装置出口側ラプチャディスク,配管・弁類,計測制御装	
		置等で構成し、原子炉格納容器フィルタベント系は、原子炉格納	
		容器内雰囲気ガスを原子炉格納容器調気系を経由して、フィルタ	
		装置へ導き,放射性物質を低減させた後に原子炉建屋屋上に設け	表現の相違
		る放出口から排出(系統設計流量10.0kg/s)することで、排気中	設計の相違
		に含まれる放射性物質の環境への放出量を低減しつつ、原子炉格	・系統設計流量は原子炉定格
		納容器内の圧力及び温度を低下させることができる設計とする。	熱出力の 1%に相当しており東
		フィルタ装置は3台を並列に設置し, フィルタ装置1台当たりのべ	二は約 13.4kg/s, 女川は約
		ントガス流量が同等となる設計とする。	10.0kg/s (理由②)
			・東二はフィルタ装置 1 台で
			あるが,女川はフィルタ装置3
			台を並列に設置し、流量が同
			等となるよう設計(理由③)
		なお,炉心の著しい損傷等を防止するため,原子炉格納容器フ	設備名称の相違
		ィルタベント系を使用した場合に放出される放射性物質の放出	
		量に対して,設置(変更)許可において敷地境界での線量評価を	
		行い,実効線量が5mSv以下であることを確認している。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		b. フィルタ装置は,排気中に含まれる粒子状放射性物質,ガス状	
		の無機よう素及び有機よう素を除去できる設計とする。また、無	
		機よう素をスクラバ溶液中に捕集・保持するためにアルカリ性の	設備名称の相違
		状態 (pH13以上) に維持する設計とする。放射性物質除去能力の	
		設計条件を表2.1-1に示す。	
		表2.1-1 放射性物質除去能力の設計条件	設計方針の相違
		粒子状放射性物質 無機よう素 有機よう素	・1.2項の理由①
		除染係数(DF) 1000以上 500以上 50以上	
		c. 原子炉格納容器フィルタベント系は, サプレッションチェンバ	設備名称の相違
		及びドライウェルと接続し、いずれからも排気できる設計とす	
		る。サプレッションチェンバ側からの排気ではサプレッションチ	
		ェンバの水面からの高さを確保し、ドライウェル側からの排気で	士田 の担告
		to, to	表現の相違
		有効燃料棒頂部よりも高い位置に接続箇所を設けることで、長期	
		的にも溶融炉心及び水没の悪影響を受けない設計とする。	
		d. 原子炉格納容器フィルタベント系は, 排気中に含まれる可燃性	設備名称の相違
		ガスによる爆発を防ぐため、可搬型窒素ガス供給系により、系統	BY MILL IS LUCE
		内を不活性ガス(窒素)で置換した状態で待機させ、不活性ガス	
		で置換できる設計とするとともに、系統内に可燃性ガスが蓄積す	
		る可能性のある箇所にはバイパスラインを設け、可燃性ガスを連	表現の相違
		続して排出できる設計とすることで、系統内で水素濃度及び酸素	
		濃度が可燃領域に達することを防止できる設計とする。	
		e. 原子炉格納容器フィルタベント系は,他の発電用原子炉施設と	設備名称の相違
		は共用しない設計とする。また,原子炉格納容器フィルタベント	
		系と他の系統・機器を隔離する弁は直列で2個設置し,原子炉格	
		納容器フィルタベント系と他の系統・機器を確実に隔離すること	
		で、悪影響を及ぼさない設計とする。	
		f. 原子炉格納容器フィルタベント系の使用に際しては,原子炉格	設備名称の相違
		納容器が負圧とならないよう,原子炉格納容器代替スプレイ冷却	
		系等による原子炉格納容器内へのスプレイは停止する運用を保	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		安規定に定めて管理する。原子炉格納容器フィルタベント系の使用後に再度,原子炉格納容器内にスプレイする場合においても,原子炉格納容器内圧力が規定の圧力まで減圧した場合には,原子炉格納容器内へのスプレイを停止する運用を保安規定に定めて管理する。	
		g. 原子炉格納容器フィルタベント系使用時の排出経路に設置される隔離弁は、遠隔手動弁操作設備(個数4)によって人力により容易かつ確実に操作が可能な設計とする。	設備名称の相違
		h. 排出経路に設置される隔離弁の電動弁については,所内常設蓄電式直流電源設備,常設代替直流電源設備又は可搬型代替直流電源設備からの給電により,中央制御室から操作が可能な設計とする。	・女川の隔離弁は直流電源よ
		i. 系統内に設けるフィルタ装置出口側ラプチャディスクは,原子 炉格納容器フィルタベント系の使用の妨げにならないよう,原子 炉格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計とする。	
		j. 原子炉格納容器フィルタベント系のフィルタ装置は,原子炉建 屋原子炉棟内に設置し,原子炉格納容器フィルタベント系使用後 に高線量となるフィルタ装置等の周囲には遮蔽壁が設置される ことから,原子炉格納容器フィルタベント系の使用時に本系統内 に蓄積される放射性物質から放出される放射線から作業員を防 護する設計とする。	設備の相違 ・女川はフィルタ装置を原子 炉建屋原子炉棟のフィルタ装
		k. 原子炉格納容器フィルタベント系は、水の放射線分解により発生する水素がフィルタ装置内に蓄積することを防止するため、原子炉格納容器フィルタベント系使用後にフィルタ装置スクラバ溶液を、フィルタ装置より低い位置にあるサプレッションチェンバへ移送できる設計とする。	設備の相違

: 前回提出時からの変更箇所

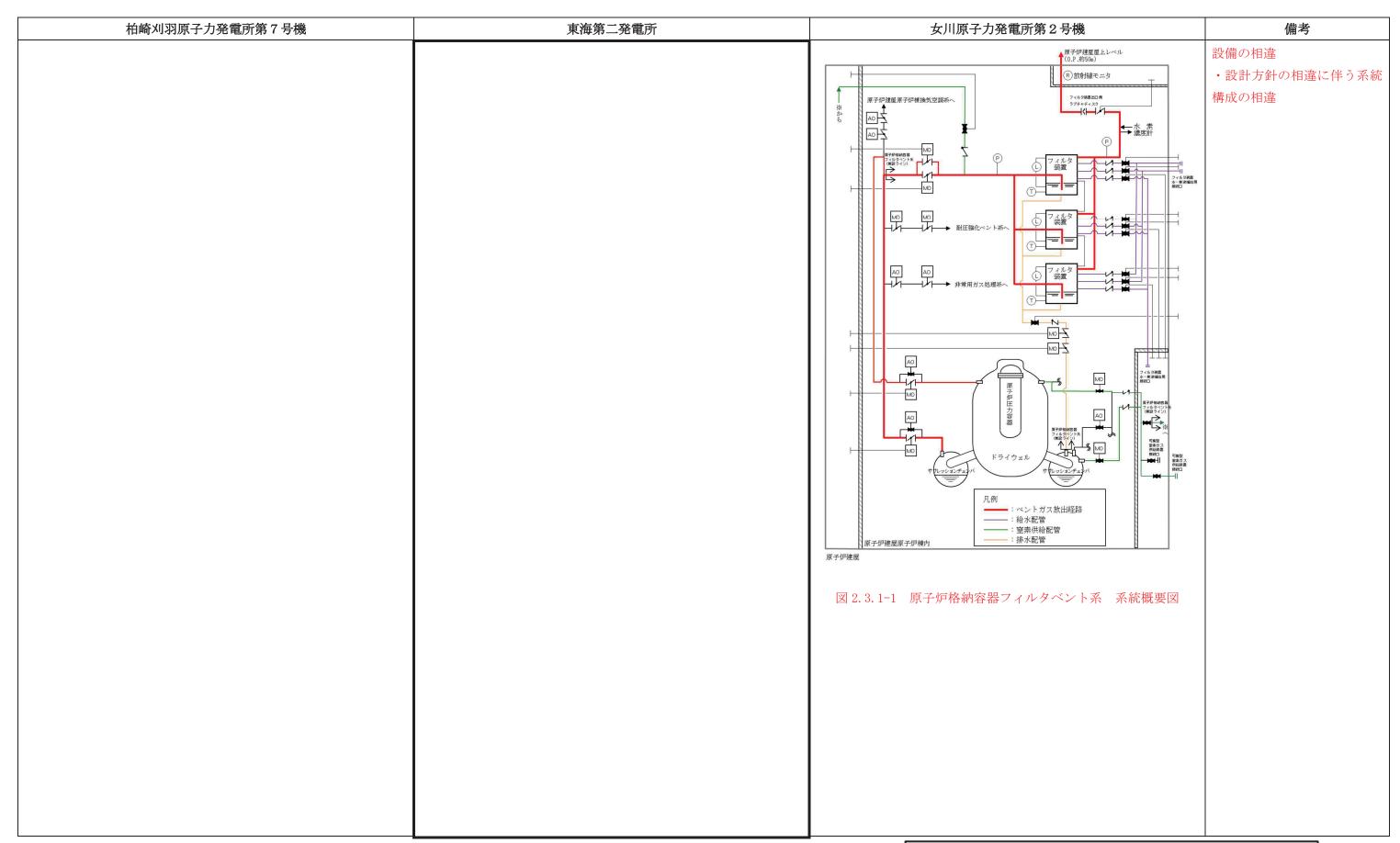
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		1. 原子炉格納容器フィルタベント系は、淡水貯水槽から、大容量	設備名称の相違
		送水ポンプ(タイプI)及び薬液補給装置(自主対策設備)によ	設備の相違
		りフィルタ装置にスクラバ溶液を補給できる設計とする。	・女川のフィルタ装置は、待機
			時に十分な量の薬液を保有している。原スに物は常用した
			ており、原子炉格納容器から
			移行する酸の量を保守的に想
			定しても、アルカリ性を維持
			可能であるため、薬液補給装
			置を自主対策設備として設置
		m. 代替循環冷却系及び原子炉格納容器フィルタベント系は,共通	設備名称の相違
		要因によって同時に機能を損なわないよう, 原理の異なる冷却及	
		び原子炉格納容器内の減圧手段を用いることで多様性を有する	
		設計とする。	
		n. 原子炉格納容器フィルタベント系は,人力により排出経路に設	設備名称の相違
		置される隔離弁を操作できる設計とすることで、代替循環冷却系	
		に対して駆動源の多様性を有する設計とする。	
		o. 代替循環冷却系の代替循環冷却ポンプは原子炉建屋付属棟内	
		に、残留熱除去系熱交換器及びサプレッションチェンバは原子炉	
		建屋原子炉棟内に設置し、原子炉格納容器フィルタベント系のフ	設備名称の相違
		ィルタ装置及びフィルタ装置出口側ラプチャディスクは原子炉	
		建屋原子炉棟内の <mark>代替循環冷却系と</mark> 異なる区画に設置すること	
		で共通要因によって同時に機能を損なわないよう位置的分散を	
		図る設計とする。	
		p. 代替循環冷却系と原子炉格納容器フィルタベント系は,共通要	 設備名称の相違
		因によって同時に機能を損なわないよう、流路を分離することで	BY VIII H 11 Y THALL
		独立性を有する設計とする。	
		WILLIAM TO THE TOTAL TO THE TOTAL TO	
		これらの多様性及び流路の独立性並びに位置的分散によって、	
		代替循環冷却系と原子炉格納容器フィルタベント系は, 互いに重	設備名称の相違
		大事故等対処設備として、可能な限りの独立性を有する設計とす	
		5.	
	_	- ·	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		q. 炉心の著しい損傷が発生した場合において原子炉格納容器内	
		における水素爆発による破損を防止できるように、原子炉格納容	
		器内に滞留する水素及び酸素を大気へ排出するための設備とし	
		て,原子炉格納容器フィルタベント系を設ける設計とする。	設備名称の相違
		r. 原子炉格納容器内に滞留する水素及び酸素を大気へ排出する	
		ための重大事故等対処設備として,原子炉格納容器フィルタベン	設備名称の相違
		ト系は、フィルタ装置(フィルタ容器、スクラバ溶液、金属繊維	
		フィルタ,放射性よう素フィルタ),フィルタ装置出口側ラプチ	
		ャディスク,配管・弁類,計測制御装置等で構成し,炉心の著し	
		い損傷が発生した場合において, 原子炉格納容器内雰囲気ガスを	
		原子炉格納容器調気系を経由して、フィルタ装置へ導き、放射性	
		物質を低減させた後に原子炉建屋屋上に設ける放出口から排出	
		(系統設計流量10.0kg/s) することで, 排気中に含まれる放射性	設計の相違
		物質の環境への排出を低減しつつ、ジルコニウムー水反応及び水	
		の放射線分解等により発生する原子炉格納容器内の水素及び酸	
		素を大気に排出できる設計とする。	
		s. 可搬型窒素ガス供給系は、可燃性ガスによる爆発及び原子炉格	設備名称の相違
		納容器の負圧破損を防止するため、可搬型窒素ガス供給装置を用	
		いて原子炉格納容器内に不活性ガス(窒素)の供給が可能な設計	・東二の窒素供給装置は電源
		とする。	車駆動であるが、女川の可搬
			型窒素ガス供給装置は発電機
			を駆動源としている。
		t. 炉心の著しい損傷が発生した場合において原子炉格納容器内	
		における水素爆発による破損を防止するために必要な重大事故	
		等対処設備のうち、原子炉格納容器内を不活性化するための設備	
			乳件を作り 打造
		として、可搬型窒素ガス供給装置を設ける設計とする。	設備名称の相違
		u. 可搬型窒素ガス供給装置は、発電機を搭載することで、外部か	設備の相違
		らの電源供給は不要な設計とし,原子炉格納容器内に窒素を供給	東二の窒素供給装置は電源
		することで、 <mark>ジルコニウムー水反応及び</mark> 水の放射線分解 <mark>等</mark> により	車駆動であるが、女川の可搬
		原子炉格納容器内に発生する水素及び酸素の濃度を可燃限界未	型窒素ガス供給装置は発電機
		満にできる設計とする。	を駆動源としている。

: 前回提出時からの変更箇所

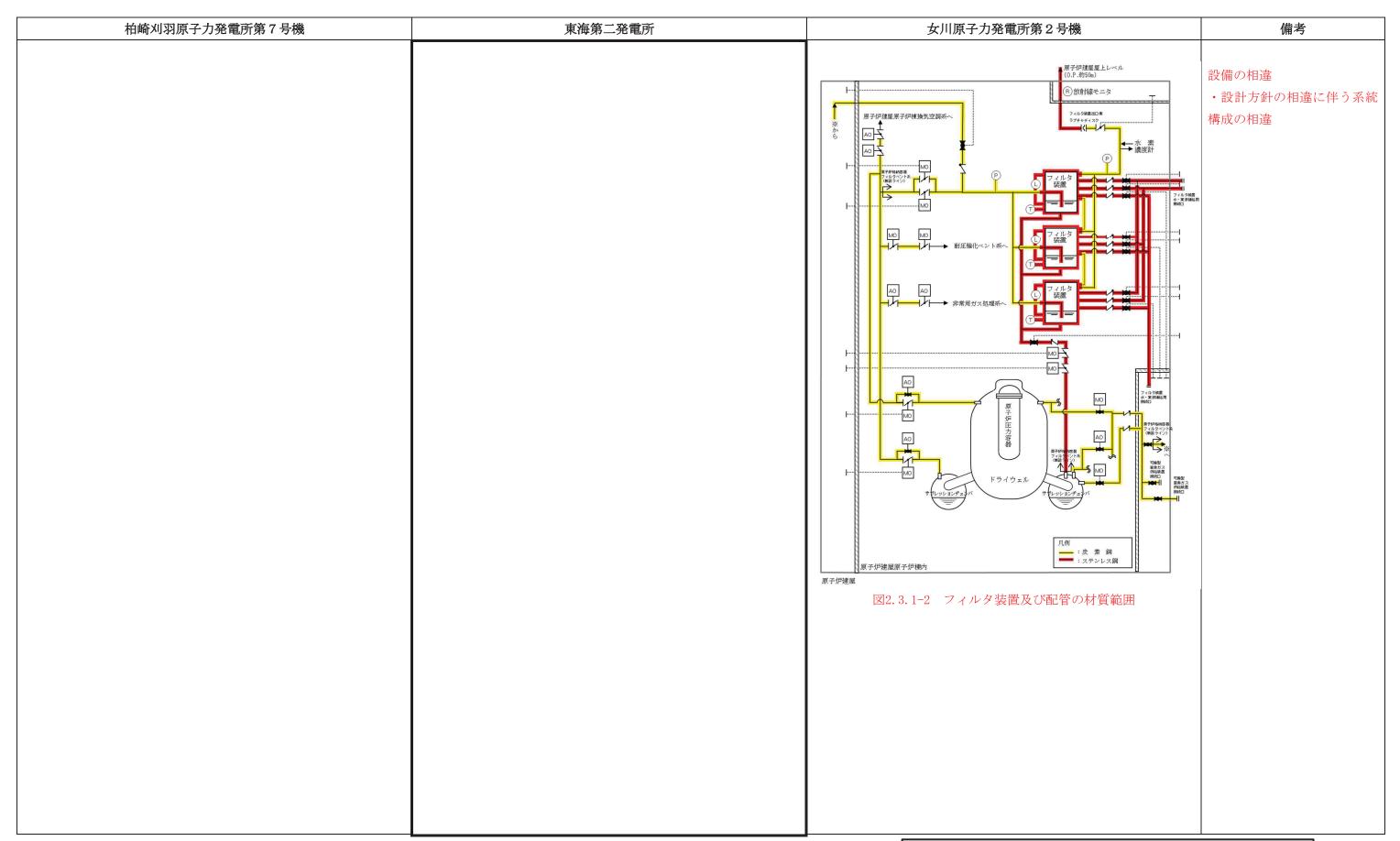
柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発	電所第2号機	備考
		2.2 設計条件 本系統におけ	‡ ける設備の設計条件:	を表2.2-1に示す。	
			表2.2-1	設計条件	設計条件の相違
			設計条件	設定根拠	・原子炉格納容器型式が, 東
		最高使用圧力	854kPa[gage]	原子炉格納容器の限界圧力を考慮し, 2Pd (最高使用圧力427kPa[gage]の2倍) とする。	二: Mark II (1Pd:0.31MPa) に 対し,女川: Mark-I改良型
		最高使用温度	200℃	原子炉格納容器の限界温度を考慮し, 200℃とする。	(1Pd:0.427MPa) (理由⑥)
		設計流量	10.0kg/s (原子炉格納容器圧力 427kPa[gage] において)	原子炉定格熱出力1%相当の飽和蒸気量を,ベント開始圧力が低い場合(427kPa[gage])であっても排出可能な流量とする。	・原子炉格納容器型式の相違に伴う設計条件の相違
		フィルタ装置 内発熱量	370kW	想定されるフィルタ装置に捕集及び保持される放射性物質の崩壊熱に対して十分な余裕を見込み、原子炉定格熱出力の0.015%に相当する発熱量とする。	
		エアロゾル 移行量	150kg	想定されるフィルタ装置に移行するエアロゾルの量 (28kg) に対して十分な余裕を見込み, 150kgとする。 BWRプラントにおける代表炉心 (ABWR)	
		よう素の炉内内蔵量	kg	の平衡炉心末期を対象としたORIGEN2 コードの計算結果*から、 kgとする。	
		耐震条件	基準地震動 S s にて機能維持	基準地震動Ssにて機能を維持する。	
			コードでは,保守的に1サ- 間(416日)の燃焼期間をf	イクル13か月(395日)に対して, 1サイクル 反定している。	
			各納容器フィルタベ	ント系	設備名称の相違
		2.3.1 系統権			
		本系統は,	京子炉建屋原子炉棟	のフィルタ装置室内に設置するフ	設備の相違
		イルタ装置,	原子炉格納容器から	フィルタ装置までの入口配管,フ	・2.1項の理由④
				ロ配管,フィルタ装置出口側ラプ 備,給水設備,可搬型窒素ガス供	
				(情)で構成される。	設計の相違
					・女川はベント後にスクラバ
					溶液を移送しなくても,フィ
					ルタ装置の機能性能を維持で
					きる設計としており、排水設
					備を自主対策設備としてい


: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			る。
		(1) 配管等の構成	
		入口配管は,原子炉格納容器のサプレッションチェンバ及びドラ	設備名称の相違
		イウェルに接続された <mark>原子炉格納容器調気系配管</mark> から分岐し、弁を	設備の相違
		経由して3台並列に設置したフィルタ装置に接続する。	・設計方針の相違に伴う系統
		また、3台のフィルタ装置のスクラバ溶液の水位を等しくするた	構成の相違
		めに、各フィルタ装置の気相部及び液相部をそれぞれ連通管で接続	・2.1項の理由③
		する。	
		フィルタ装置入口側及び出口側の配管は,各フィルタ装置のベン	
		トガス流量を同等とするため, 圧力損失の差を小さくするように配	
		管ルートを設計する。	
		出口配管には,系統待機時に窒素置換された系統と大気を隔離す	設備名称の相違
		るフィルタ装置出口側ラプチャディスクを設置する。フィルタ装置	
		出口側ラプチャディスクはベント開始時に微正圧で動作するもの	
		とし、信頼性の高いものを使用する。	
		フィルタ装置には,外部からスクラバ溶液を補給できるよう給水	設備名称の相違
		配管を設置する。また、外部から系統に窒素を供給できるよう窒素	
		供給配管を設置する。	
		また,ベント後の放射性物質を含むスクラバ溶液を原子炉格納容	
		器(サプレッションチェンバ)に移送するため,及び,万一,放射	
		性物質を含むスクラバ溶液がフィルタ装置室内に漏えいした場合	設計の差異
		に,漏えい水を原子炉格納容器(サプレッションチェンバ)に移送	・2.1項の理由④及び⑤
		するための配管(自主対策設備)を設置する。	・女川はベント後にスクラバ
			溶液を移送しなくても、フィ
			ルタ装置の機能性能を維持で
			きるため、排水設備を自主対
			策設備としている。
		図2.3.1-1に原子炉格納容器フィルタベント系の系統構成を示	設備名称の相違
		す。	
		(2) 材質及び構造	
		配管及び弁は、重大事故等クラス2機器として、「日本機械学会	
		発電用原子力設備規格 設計・建設規格 (2005/2007)」のクラス2	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		の規定に準拠して設計する。材質は炭素鋼を基本とするが、使用環	本田の扣告
		境に応じて耐食性の高いステンレス鋼を使用する。屋内の炭素鋼配	表現の相違
		管及び屋外のステンレス鋼配管は腐食防止の観点から,外面に樹脂	
		系塗料を塗装する。	
		遠隔手動弁操作設備については、隔離弁の操作軸にフレキシブル	設備名称の相違
		シャフトを接続し,原子炉建屋付属棟内(非管理区域)まで延長し,	
		端部にハンドル又は汎用電動工具を取り付けて人力で操作できる	
		構造とする。	
		フィルタ装置出口側ラプチャディスクについては、ベント開始時	設備名称の相違
		の原子炉格納容器圧力(427kPa[gage])と比較して十分低い圧力で	設計の相違
		動作するように設定し、材料はステンレス鋼を使用する。	・2.2項の理由⑥
		系統を構成する主要な機器の仕様を表2.3.1-1に,フィルタ装置	
		及び配管の材質範囲を図2.3.1-2に示す。	
		(3) 系統の切替性	
		原子炉格納容器からフィルタ装置へ至る配管は, ベントを実施す	
		る際、接続する他系統と隔離し、流路を構成する必要がある。対象	
		となる系統は,非常用ガス処理系,原子炉建屋原子炉棟換気空調系	設備名称の相違
		及び耐圧強化ベント系である。これらの系統との取合いの弁は通常	
		全閉状態であるが、開状態の場合でも中央制御室からの操作によ	
		り、速やかに閉操作が可能である。	
		非常用ガス処理系及び原子炉建屋原子炉棟換気空調系との取合	
		いの弁は、フェイルクローズの空気作動弁であることから、全交流	
		動力電源喪失時には、全閉状態となる。また、耐圧強化ベント系と	
		の取合い弁は、電動弁であり、耐圧強化ベント系は原子炉格納容器	表現の相違
		フィルタベント系が使用できない場合に使用する系統であるため,	
		全閉状態を維持する。	
		以上より,原子炉格納容器からフィルタ装置へ至る配管は,ベン	
		トを実施する際、他系統と隔離し、流路の構成が可能である。	


: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表2.3.1-1 主要系統構成機器の仕様	設備の相違
		(1) 配管	・設計方針の相違に伴う設備
		呼び径	構成の相違
		a. 原子炉格納容器調気系配管から 400A 炭素鋼 ベントライン分岐部	
		b. ベントライン分岐部からフィル タ装置 200A	
		c. フィルタ装置から排気ライン合 流部 400A 炭素鋼	
		d. 排気ライン合流部からフィルタ 500A 炭素鋼 装置出口側ラプチャディスク	
		c. フィルタ装置出口側ラブチャデ ィスクから放出口 500A ステンレス鋼	
		(2) 隔離弁	
		型式 駆動方式 呼び径 a. 原子炉格納容器第一隔離弁	-
		電動駆動(直流) 電動駆動(直流) 600A + 遠隔手動弁操作設備 600A	
		用出口隔離弁) b. 原子炉格納容器第一隔離弁	-
		(ドライウェルベント用出口隔離 バタフライ弁 + 遠隔手動弁操作設備 600A	
		c. 原子炉格納容器第二隔離弁	
		(原子炉格納容器フィルタベント バタフライ弁 電動駅動(直流) + 遠隔手動弁操作設備 400A	
		d. 原子炉格納容器第二隔離介 實動販動 (直添)	-
		(原子炉格納容器フィルタベント バタフライ弁 + 遠隔手動介操作設備 400A + 遠隔手動介操作設備	
		(3) 遠隔手動弁操作設備	
		原子炉格納容器第一隔離弁 原子炉格納容器第二隔離弁	
		サプレッション ドライウェルベ 原子炉格納容器 原子炉格納容器	
		■	
		(呼び径)	
		(600A) (600A) (400A) (400A)	
		フレキシブル シャフト長さ 約28m 約20m 約19m 約18m	
		個数 1 1 1	
		(4) フィルタ装置出口側ラプチャディスク	
		(4) ノイルク 表 直 山 口 則 ノノ ナ ヤ ノ イ ヘク 型式 設定破裂圧力 呼び径 材質 個数	
		複合引張型	
		100kPa 500A ステンレス鋼 1 ラプチャディスク	_

: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		2.3.2 フィルタ装置	
		(1) フィルタ装置仕様	
		フィルタ装置は, <mark>たて置円筒形</mark> の容器であり,常時スクラバ溶液	設備の相違
		を貯留する。また、1 基(全 3 台)で構成し、3 台のフィルタ装置	・女川のフィルタ装置は壁に
		は並列に設置し,原子炉建屋原子炉棟内のフィルタ装置室の壁に固	固定
		定する。容器下部にはベンチュリスクラバ(ベンチュリノズル及び	・2.1 項の理由③
		スクラバ溶液),上部には金属繊維フィルタが設置され,これらを	設備名称の相違
		組み合わせて粒子状放射性物質を除去する。	
		さらに、金属繊維フィルタの後段に、容器内部に放射性よう素フ	
		ィルタを設け、有機よう素及び無機よう素を捕集する物質(銀ゼオ	表現の相違
		ライト)を収納している。	
		フィルタ装置の主な仕様を以下に示す。	
		a. 容器は,重大事故等クラス2容器として「日本機械学会 発電	
		用原子力設備規格 設計・建設規格 (2005/2007)」クラス2容器の	
		規定に準拠して設計する。	
		MLC THE CONTINUES.	
		 b. 容器内に貯留するスクラバ溶液量は, 捕集した放射性物質の崩	設備名称の相違
		 壊熱による減少を考慮し, 設計条件であるフィルタ装置内発熱量	
		370kWに対して,ベント開始後 はベンチュリスクラバによ	設計条件の相違
		る所定の放射性物質の除去性能が確保できるように設定する。	・原子炉定格熱出力の相違
		c. 容器及び内部構造物の材料は, スクラバ溶液に添加されるアル	設備名称の相違
		カリ性の薬剤に対して、耐性に優れるステンレス鋼を使用する。	BY MILE IN 18 THY
		/v / 上い水//itic// して、 mi/上(- 皮(v 0 / · / v v / spi c 反/ii / 0 6	
		d. 容器には、スクラバ溶液の減少分を補充するための注水用の管	
		台、スクラバ溶液を採取するための試料採取用の管台及びスクラ	表現の相違
		バ溶液を移送するためのドレン用の管台を設ける。	
		e. 容器は,ベンチュリノズル及び金属繊維フィルタを内蔵する。	設備名称の相違
		f. 容器内部には、放射性よう素フィルタを設け、銀ゼオライトを	設備名称の相違
		収納する。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		g. 金属繊維フィルタと放射性よう素フィルタの連絡管には、流量制限オリフィスを設け、原子炉格納容器より排出されるガスの体積流量をほぼ一定に保つ設計とする。	
		フィルタ装置の仕様を表2.3.2-1に, 構造を図2.3.2-1に示す。	設備の相違
			・設計方針の相違に伴う設備構成の相違
		N34 レベル計 (狭帯域) N33 レベル計 (狭帯域) N33 レベル計 (狭帯域) N32 換気口 (サンプリング) N31 連通管 N30 重大事政用給水ライン N29 サンプリング N28 運通管 N19 サンプリング N18 ベント N17 ドレン N16 ドレン N16 ドレン N15 ドレン N15 ドレン N11 排水移送ライン N11 排水移送ライン N11 補給水ライン N11 和給水ライン N11 N1	
		注:フィルタ装置(A)のN28及びフィルタ装置(C)のN31は予備とする N10 温度計 N8 圧力計 N8 圧力計 N8 圧力計 N8 レベル計 (広帯域) N5 レベル計 (広帯域) N4 マンホール N3 ガス出口 N2 ガス出口 N1 ガス人口 容号 品 名 個数 材 料 部 品 表 管 台 一 覧 表 管 台 一 覧 表	
		図2.3.2-1 フィルタ装置概略図	

: 前回提出時からの変更箇所

(2) フィルタで図	柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
ペンゲーリストの大き、ベンゲーリ ノメの、スク ハ (大き)では、			(2) フィルタ仕様	
され、ベントルスの中心でおは、日本の中では、「中国の中では、スタットの一では、スタットの一では、「中国の中では、スタットの一では、日本の中では、関係に関する。 ベンチェリアズがは、上部のでもでは、関係が中では、関係に関する。 環境のできなっている。これにより、メルー・計画で構造がよっては、という。これにより、メルー・計画で構造がよっている。これにより、メルー・計画で構造がよっている。これにより、メルー・計画で構造がよっている。これにより、メルー・計画で構造を取り込む時間を設定している。これにより、、「ルー・計画で表現では、スターリングの中ではガスと動を取り込む時間となっている。これによってはガスを取り込む時間となっている。これによってはガスを取り込む時間となっている。これによってはガスを取り込む時間となっている。これで、ナカスのではガスとなってはガスとなってはガスとなっている。これのような、ベンチュリンズが、大多のではガスとなった。「単語の大力、「ルー・プラ・リンズの大力を放けを対している。」と、「ルー・プラ・リンズの大力を対している。」と、「ルー・プラ・リンズの大力を対している。」と、「ルー・プラ・リンズの大力を対している。」と、「ルー・プラ・リンズの大力を対している。」 これのように、 大のチュリンズの人力を対している。 これのように、 大のチュリンズの人力を対している。 これのように、 大のチュリンズの人力を対している。 これのように、 大のチェンリンズの人力を対している。 これのように、 大のチェリンズの人が対している。 これのように、 大のチェリンズの人が関係に関するとっている。 これのように、 大のチェリンズの人が関係に関するとっている。 これに、 表記をではなるとっていた。 表記をではなるとっていた。 大のチェンリンズの人の場間に対しなとなっていた。 大のチェンリンズの人の場間に対しなとなっていた。 大のチェンリンズの人が関係を含まっていた。 表記をではなるとっていた。 大のチェンリンズの人の場間に対しなとなっていた。 大のチェンリンズの人の場面に対している。 これのように、 大のチェンリンズの人の場面に対している。 これに、 表記をではなるとっていた。 大のチェンリンズの人の場面に対している。 これに、 表記をでは、 表記をでは、 表記をではなるとっていた。 表記をでは、 またが、 またが、 またが、 またが、 またが、 またが、 またが、 またが			a. ベンチュリスクラバ	
構集し、スクラ小学教育を保持する。 ベンチェリノズがは、上部されてどの社で穏やかい知が所由の前 遠面は最近でいる。また、ベンチェリノズル中保等の収息が成者前 液が小さくなるスエー・ボの母前にスクラッで高液を収り込むか由 を続けている。これにより、メニートボの母前にスクラッで高液を収り込むか由 を続けている。これにより、メニートボの母前にスクラッで高液を収り込むか由 このキーベンル間のスクラッで高液を収り込むか由 このキーベンル間のスクラッで高液を収り込むから の連絡のモーラースの期間のスクラッで高液を収り込むがよう の連絡のモーラースの期間のスクラッで高速を収り込むがよう の連絡のモーラースの期間のスクラッで高速を収りませて、第二 スクラバの密度に関連を含える。ペンチェリノズルを関連が存在後した起源ナーラー る。また、ベンナがより、スクラバ等を中間 一は出出る。 大・ジテェリノズルも外を溶とがっていく流柱となるため、 素気は基準により相違う。 は また、スクラバ等が出り、一部はより表では、流柱となるため、 素気は基準により相違う。 は また、スクラバ等が出り、 が原則が改む。 「成 混 発生の病・根核よう素を高液性のよりを 変更の相違 また、スクラバ等のは、原体を できなるために、メンシの高液を満すたカリ性の 状態に調性する。 ベンチェリノズルの特別に、日アルカリボに接続を表々カリ性の 状態に調性する。 ベンチェリノズルの特別に、日アルカリボに接続を表のまついて 強いました。 エール・アルカリズルの特別を関係を表えることに、エアルカリズルの機能性後を変えることでは、 エール・アルカリボの動物を対して、 エール・アルカリボの動物を表して、 エール・アルカリアルカリカリのでは、 エール・アルカリアルカリアルカリアルカリアルカリアルカリアルカリアルカリアルカリアルカリ			ベンチュリスクラバは、ベンチュリノズル、スクラバ溶液で構成	設備名称の相違
ペンチュリノスの北、上部が高して、利益では、定面を関する。 第4 編を選やして、加速度と、で、シェリ、上部が落して、側面に出口 関口を設けている。 「おれてまり、八つ・「おかで素を取りかけ関口 を選けている。 「おれてまり、八つ・「おかで素を取りかけ関口 を選けている。 「おれてまり、八つ・「おかで素を取りかけ関口 のおい、ツェリンズル側面内のスタンが高級を取りからない。 コード部の匠力を関型スタンが高級を取りから、ベンチュリ ノスル門に偏体をはら、ペンチュリ ノスル内に偏体をはら、ペンチュリ ノスル内に偏体をはら、ペンチュリ ノスル内に偏体をはら、ペンチュリ ノスル内に備なども、ペンチュリ ノスル内に関しない。 カラン溶液は、カウンドで流の上に カー・ベンチュリノズルは、カル管に放電し、分配性に放電し、会域を発したと配置とするととは、他のベンチュリノズルは、カルで流回上 これでは、他のベンチュリノズルは、カルで流回上 これでは、他のベンチュリノズルは、カスの海に対し、 大力のよ、減速し分配の間が高速とからに、ベンチュリノズル域を対した。 はた、スクライ溶液に対象性の辺違よう者(引・を消象、等性、カリーが高速を対した。 「水が加速ない。」 「水が加速ないに、スクラル溶液を高アルカナ中の 水形が指導する。 マンチュリノズルの対象に対して、対して、カスクル溶液を高アルカナ中の 水形が指導する。 マンチュリノズルの対象に、対して、対して、カスクルの対域に表現して、カスクルの対域に、対力の力を下に関わるように、スクライ溶液の性体を含な、ストンドに、機関域を図え、たて、、スクライ溶液の性体を含な、ストンドに、機関域を図え、たて、、アファイルの流域の対域を変した。たちに、、大力のスの液化の変更を加速なからに、大力のスの液化の変更を加速なからに、大力のスの液化の変更を加速なからに、大力のスの液化の変更を加速なからに、大力のスの液化の変更を加速なからに、大力である。 マンチュリノズルの場面を対して、配性を変した。大力に、機関域を図え、たて、、アファイルの心域を対して、発見して、下で、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルの心域を対して、アファイルので、アファイルので、アファイルの域を対して、アファイルので、ア			され, ベントガス中に含まれる粒子状放射性物質及び無機よう素を	表現の相違
関係信を増やして附近後とはており、上端は野じて、側面に中し対ける様式でいる。また、ベッチェリンズル中位部のより成熟制度 表表の相違			捕集し、スクラバ溶液中に保持する。	
関口を受けている。また、ペンチュリノズル中央部の積も放路所面 概がかまくなるカロート部の画面にカラーの海液を取り込む時日 を設けている。これにより、メロート部の高面はようるとや、ス カート部の画力を周囲メタライ溶液を吸込み、ベンチュリ メスの内に構造する。ペンチュリノズルのは対象なる機能は表面 流速の金でで、イリシーを対し、他のベンテュリノズルと、自然の大きを るとともに、他のベンテュリノズルと、分配では登上で るととには、他のベンテュリノズルと関係が強を機能した影響とす る。た、ベントガスは、スクライ溶液に計画しまかしているない。な 使するベンチュリノズルを関係を表面と振りによっていく変れとなるため。な 変するベンチュリノズルを表面を認なため、 変するベンチュリノズルを表面を認なため。な 変するベンチュリノズルを表面を影響にない。 また、スクライ溶液には大きなが変化がないとなったとなっ。な 表表が気がないより利益。 変していて、スクライ溶液に対し、対象が表面を 表表が成ないより利益。 変していて、スクライ溶液には数件まの影像よう集を不等条件のよ って、オンソ・パが高の含まなが、メスクライ溶液をあった。 、スクライ溶液には数件まの影像よう集を不等条件のよ って、オンソ・パが高からなよ。 、スクライ溶液には数件まの影像よう集を不等条件のよ って、オンソ・パが高からなより、シーパ溶液を含アルカリをの 対路に関係する。 ベンチュリノズルの材質に、前アルカリ性に優れるスクシレンス解 として。 ベンチュリノズルの構造に、前アルカリ性に優れるスクシレンス解 として。 ベンチュリノズルの機能に成るとなっと、スクライ溶液のに、 を表とるスをとに、場が固定を含えるととに、表現を固えるとなる。 、ベンチュリノズルの機能に係を含えるよとに、メクライ溶液のに、 後を表とるスをとに、物の固定とは、多をでは、配置を固えるように、 、インチュリノズルのの機能に係を含えるよとに、 、一、インチュリノズルのの機能に係を含えるととに、配置を固えるように、 、インチュリノズルのの機能に係るなとないの流ののほのを を表とるスをとに、、物の固定と図えるとのに、配置を固えるとなるに、 、インチュリノズルのがらかでより入の液のの臓器が深らない。 など、スターに、、地の固定となるよとに、 、一、インチェリンズルのの機能に係るなるよとに、 、インチェリノズルのの機能に発きるよとに、 、一、インチェリンズをからのでより入り液に破壊を含えるよとに、 、これにより、これにより、これにより、これにより、これにより、 を表とるスターに、、カリーパ溶液ののに を表とるスターに、、カリーパ溶液ののに を表となるとに、、カリーパ溶液ののに など、スターに、、、地のによりを発しましましましましましましましましましましましましましましましましましましま			ベンチュリノズルは、上部に行くにつれて緩やかに矩形断面の流	
#が小さくなるスロート部の側面にスクラバ溶液を取り込む間口を放けている。これにより、スロート語の形成限とすることで、スロート語の比力を周囲スクラン溶液を成込み、ベンチェリ カ			路面積を増やして断面変化させており、上端は閉じて、側面に出口	
を設けている。これにより、スロート部の高速とすることで、スロート部の作力を回回メララバ溶液域域よりも使じされて傾回別コからベンテュリノスル内で傾向を対象でします。			開口を設けている。また、ベンチュリノズル中低部の最も流路断面	表現の相違
ロート部の圧力を周囲スクラバ溶液領域よりも低下させて側面部 ロからベンチェリノズル内間回のスタラバ溶液を残込み、ベンチュリ ノズル内に偏離者とせる。ベンチュリスル内ではガスとの響素液の 液連の室でサイルを持続で調出させる。 ベンチェリノズルは、分配管に設置し、分配管に設置したで立ささせるとともに、他のベンチュリノズルと加密に資金を確保した配置とせる。また、ベントガスは、スクラバ溶液中に また、ベントガスは、スクラバ溶液の配置で含まれて、(がれたからため、内容の 1. 減速し分配管の間を含またかっていくがれたからため、内容の 1. 減速に分配管の間を含またかっていくがれたからため、内容の 1. 減速に対している。 ***********************************			積が小さくなるスロート部の側面にスクラバ溶液を取り込む開口	
ロからベンチュリノズル関側のスクラバ溶液を吸込み、ベンチュリ ノズハはに破酵をせる。ベンチュリノスル内ではガスと破療が高からスクラバ溶液中に排出させる。 ベンチュリノズルは、分配では液産し、分配管に対して直立させ、			を設けている。これにより、スロート部で高流速とすることで、ス	
			ロート部の圧力を周囲スクラバ溶液領域よりも低下させて側面開	
 流車の差で ボールントットが下域 ルンチュリノズルは、分配管に対して直立させるとともに、他のベンテュリノズルを関係性能を確保した配置とする。また、ベントガスは、スクラバ溶液中に 上海田されたのち、減速し分配管の関係経を上がっていく流れとなるため、関係するベンチュリノズルの数は然気で満等により相違)、図2.3.2-3に記載表現の相違 また、スクラバ溶液には放射性の無機よう素(t₀)を捕棄、保持するため、 」が参加される。 」は、極発性の高い無機よう表を不極発性のよう流イオン(1)に変化さむ。 」は、極発性の高い無機よう表を不極発性のよう流イオン(1)に変化さむ。 」は、極発性の高い無機よう表を不極発性のより流のは無時である。ベンチュリノズルの材質は、耐アルカリ性に優れるステンレス鋼とする。 ベンチュリノズルの構賞は、耐アルカリ性に優れるステンレス鋼とする。 ベンチュリノズルの機器仕様を表え。3.2-2に、成番を図2.3.2-1に、スクラバ溶液の仕様を表え。3.2-2に、破棒図図2.3.2-2に、化置を図2.3.2-4に ベンチュリノズルの成のベントガスの流れの概要を図2.3.2-4に 			口からベンチュリノズル周囲のスクラバ溶液を吸込み, ベンチュリ	
クラバ溶液中に排出させる。			ノズル内に噴霧させる。ベンチュリノズル内ではガスと噴霧水滴の	
ペンチュリノズルは、分配管に設置し、分配管に対して直立させるとともに、他のベンチュリノズルと側尾的理を確保した配置とする。また、ベントガスは、スクラバ密を向間を浮き上がっていく流れとなるため、隣接するペンチュリノズルの手える影響はない。 また、スクラバ密液には放射性の無機よう素(In)を雑集、保持するため、「水添加される。 「は、海発性の高い無機よう素を不対発性のよう表すというでは、は、「「」の効果を安定させるために、スクラバ密液を高アルカリ性の水能に兼する。 ベンチュリノズルの材質は、耐アルカリ性に優れるステンレス領とする。 ベンチュリノズルの材質は、耐アルカリ性に優れるステンレス領とする。 ベンチュリノズルの機器に様を表 2.3.2-1 に、スクラバ溶液の仕様来表 2.3.2-2 に、粗酸図を図 2.3.2-3 に、ベンチュリノズルののペントガスの流れの既要を図 2.3.2-3 に、ベンチュリノズルののペントガスの流れの既要を図 2.3.2-4 に			流速の差で <mark>粒子状放射性物質</mark> の捕集効率を高め,上端吐出部からス	
るとともに、他のベンチュリノズルと離隔距離を確保した配置とする。また、ベントガスは、スクラバ溶液中に			クラバ溶液中に排出させる。	
る。また、ベントガスは、スクラバ溶液中に			ベンチュリノズルは、分配管に設置し、分配管に対して直立させ	設備の相違
たのち、減速し分配管の間を浮き上がっていく流れとなるため、降			るとともに,他のベンチュリノズルと離隔距離を確保した配置とす	ベンチュリノズル配置の相
接するペンチュリノズルへ与える影響はない。 また、スクラバ溶液には放射性の無機よう素 (12) を捕集、保持 するため、 が添加される。 は、揮発性の高い無機よう素を不揮発性のよう素イオン (I) に変化させ、 の効果を安定させるために、スクラバ溶液を高アルカリ性の 状態に維持する。 ベンチュリノズルの材質は、耐アルカリ性に優れるステンレス鋼 とする。 ベンチュリノズルの機器仕様を表 2.3.2-1 に、スクラバ溶液の仕 様を表 2.3.2-2 に、艇衝図を図 2.3.2-3 に、 ベンチュリノズルからのベントガスの流れの概要を図 2.3.2-4 に			る。また、ベントガスは、スクラバ溶液中に に排出され	違(ベンチュリノズル個数は
また、スクラバ溶液には放射性の無機よう素(12)を捕集、保持するため。 は、揮発性の高い無機よう素を不揮発性のよう素イオン(II)に変化させ、 の効果を含ませるために、スクラバ溶液を高アルカリ性の状態に対する定では多ために、スクラバ溶液を高アルカリ性の状態に対する。 ベンチュリノズルの材質は、耐アルカリ性に優れるステンレス網とする。 ベンチュリノズルの機器仕様を表 2. 3. 2-1 に、スクラバ溶液の仕様を表 2. 3. 2-2 に、履階図を図 2. 3. 2-3 に、ベンチュリノズルからのベントガスの流れの概要を図 2. 3. 2-4 に			たのち、減速し分配管の間を浮き上がっていく流れとなるため、 <mark>隣</mark>	蒸気流量等により相違),図
また、スクラバ溶液には放射性の無機よう素(I ₂)を捕集、保持 するため、 が添加される。 は、揮発性の高い無機よう素を不揮発性のよ う素イオン (I ²) に変化させ、 の効果を安定させるために、スクラバ溶液を高アルカリ性の 状態に維持する。 ベンチュリノズルの材質は、耐アルカリ性に優れるステンレス鋼 とする。 ベンチュリノズルの機器仕様を表 2.3.2-1 に、スクラバ溶液の仕 様を表 2.3.2-2 に、概略図を図 2.3.2-3 に、 ベンチュリノズルからのベントガスの流れの概要を図 2.3.2-4 に			接するベンチュリノズルへ与える影響はない。	2.3.2-3 に記載
するため、				表現の相違
するため、				
が添加される。			また,スクラバ溶液には放射性の無機よう素 (I2) を捕集,保持	設備名称の相違
は、揮発性の高い無機よう素を不揮発性のよう素イオン (I') に変化させ、 は、 は、 は、 は、 は、 の効果を安定させるために、スクラバ溶液を高アルカリ性の 状態に維持する。 ベンチュリノズルの材質は、耐アルカリ性に優れるステンレス鋼 とする。 ベンチュリノズルの機器仕様を表 2.3.2-1 に、スクラバ溶液の仕様を表 2.3.2-2 に、 概略図を図 2.3.2-2 に、 配置を図 2.3.2-3 に、 ベンチュリノズルからのベントガスの流れの概要を図 2.3.2-4 に			するため、	
う素イオン (I ⁻) に変化させ、 は、 の効果を安定させるために、スクラバ溶液を高アルカリ性の 状態に維持する。 べンチュリノズルの材質は、耐アルカリ性に優れるステンレス鋼 とする。 とする。 ベンチュリノズルの機器仕様を表 2. 3. 2-1 に、スクラバ溶液の仕 様を表 2. 3. 2-2 に、概略図を図 2. 3. 2-2 に、配置を図 2. 3. 2-3 に、 ベンチュリノズルからのベントガスの流れの概要を図 2. 3. 2-4 に			が添加される。	
の効果を安定させるために、スクラバ溶液を高アルカリ性の 状態に維持する。 ベンチュリノズルの材質は、耐アルカリ性に優れるステンレス鋼 とする。 ベンチュリノズルの機器仕様を表 2.3.2-1 に、スクラバ溶液の仕 様を表 2.3.2-2 に、概略図を図 2.3.2-2 に、配置を図 2.3.2-3 に、 ベンチュリノズルからのベントガスの流れの概要を図 2.3.2-4 に			は、揮発性の高い無機よう素を不揮発性のよ	
の効果を安定させるために、スクラバ溶液を高アルカリ性の 状態に維持する。 ベンチュリノズルの材質は、耐アルカリ性に優れるステンレス鋼 とする。 ベンチュリノズルの機器仕様を表 2.3.2-1 に、スクラバ溶液の仕 様を表 2.3.2-2 に、概略図を図 2.3.2-2 に、配置を図 2.3.2-3 に、 ベンチュリノズルからのベントガスの流れの概要を図 2.3.2-4 に			う素イオン (I ⁻) に変化させ, は,	
状態に維持する。 ベンチュリノズルの材質は、耐アルカリ性に優れるステンレス鋼とする。 ベンチュリノズルの機器仕様を表 2. 3. 2-1 に、スクラバ溶液の仕様を表 2. 3. 2-2 に、概略図を図 2. 3. 2-2 に、配置を図 2. 3. 2-3 に、ベンチュリノズルからのベントガスの流れの概要を図 2. 3. 2-4 に				
とする。 ベンチュリノズルの機器仕様を表 2. 3. 2-1 に, スクラバ溶液の仕様を表 2. 3. 2-2 に, 概略図を図 2. 3. 2-2 に, 配置を図 2. 3. 2-3 に, ベンチュリノズルからのベントガスの流れの概要を図 2. 3. 2-4 に				
とする。 ベンチュリノズルの機器仕様を表 2. 3. 2-1 に, スクラバ溶液の仕様を表 2. 3. 2-2 に, 概略図を図 2. 3. 2-2 に, 配置を図 2. 3. 2-3 に, ベンチュリノズルからのベントガスの流れの概要を図 2. 3. 2-4 に				
ベンチュリノズルの機器仕様を表 2. 3. 2-1 に, スクラバ溶液の仕様を表 2. 3. 2-2 に, 概略図を図 2. 3. 2-2 に, 配置を図 2. 3. 2-3 に, ベンチュリノズルからのベントガスの流れの概要を図 2. 3. 2-4 に			とする。	
様を表 2.3.2-2 に、概略図を図 2.3.2-2 に、配置を図 2.3.2-3 に、 ベンチュリノズルからのベントガスの流れの概要を図 2.3.2-4 に				
ベンチュリノズルからのベントガスの流れの概要を図 2.3.2-4 に				
				ļ
				ļ

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			図中の設備名称の相違
		図2.3.2-2 ベンチュリノズル概略図	
		図2.3.2-3 ベンチュリノズルの配置図 (全3台のうち2台(残り1台は180°方位が異なる。))	設備の相違 ・ベンチュリノズル配置の相 違(ベンチュリノズル個数は 蒸気流量等により相違)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図2.3.2-4 ベンチュリノズルからのベントガスの流れの概要	
		b. 金属繊維フィルタ 金属繊維フィルタは、ベンチュリスクラバで除去しきれなかった	設備名称の相違
		粒子状放射性物質を除去する。 金属繊維フィルタは、必要なフィルタ面積と最適なガス流速が得られるように、容器の上部に縦向きに配置される。金属繊維フィルタはステンレス鋼製で、プレフィルタとメインフィルタをであり、周囲の型枠により容器内部に直接取り付けられる。	
		ベントガスは、スクラバ溶液を出た後、スクラバ溶液から生じる湿分(液滴)を含んでいる。長時間の運転でも高い除去効率を確保するため、の間には湿分分離機構が設けられ、除去した液滴は、スクラバ溶液内にドレンされる。	
		金属繊維フィルタの機器仕様を表2.3.2-1に、概略図及びフィルタ装置内の配置を図2.3.2-5及び図2.3.2-6に示す。	

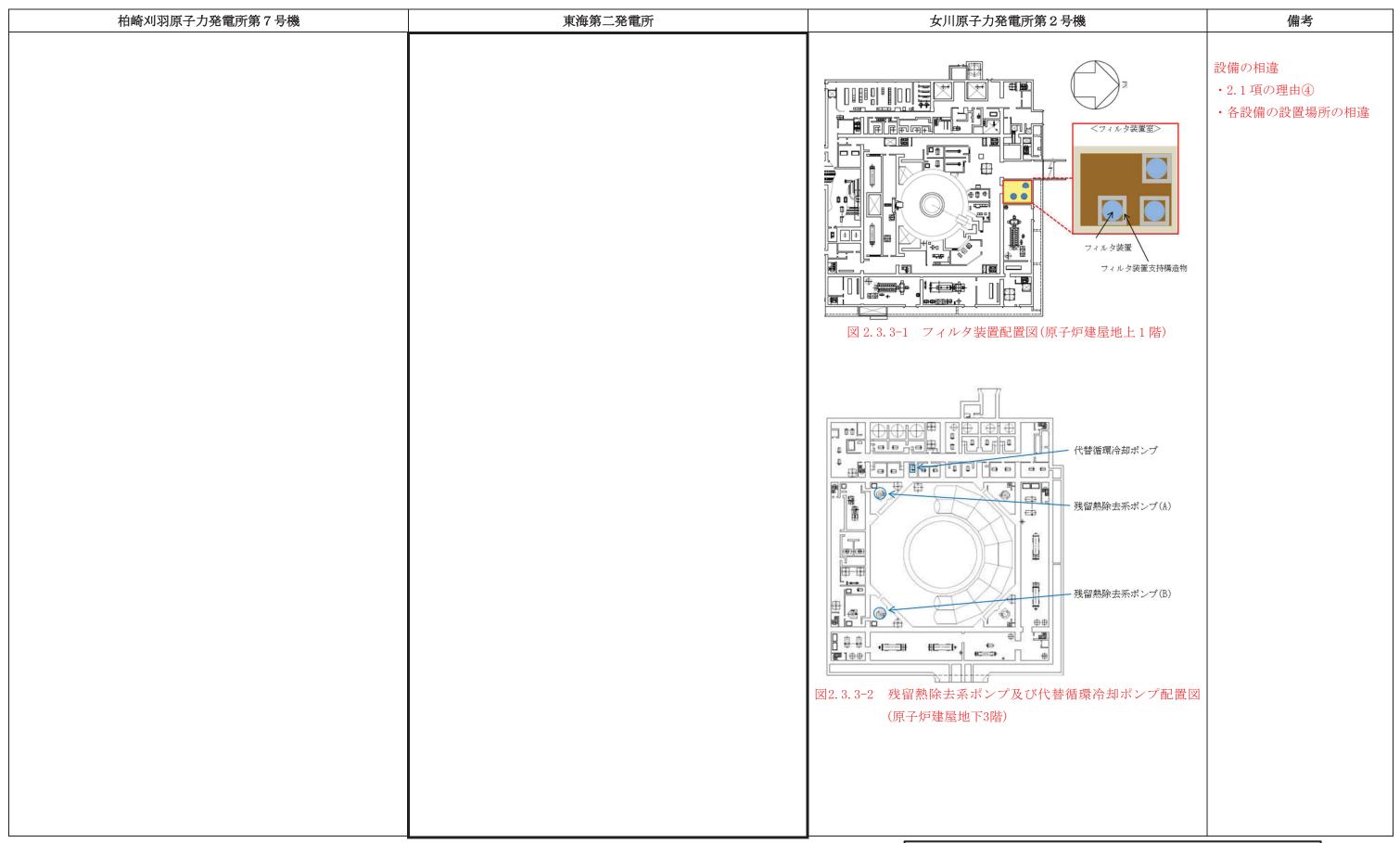
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・設計方針の相違に伴う設備
			仕様の相違
			J
		図2.3.2-5 金属繊維フィルタ概略図	
		図2.3.2-6 フィルタ装置の断面図(金属繊維フィルタ)	
		(a) プレフィルタ及び湿分分離機構	
		プレフィルタは、ベントガスに含まれる液滴を凝集させる。ベントガスに含まれる液滴は、温八八酸機構	
		トガスに含まれる液滴は、湿分分離機構	<u> </u>

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		する際、 し、ベントガス中から 分離される。分離した液滴は、金属繊維フィルタ下部に接続したドレン配管を介してスクラバ溶液中に戻る。 プレフィルタは、約 μmの繊維径のものを使用し、 になっている。繊維の材質は、 ステンレス鋼を採用する。 湿分分離機構の概要を図2.3.2-7に、ドレン配管接続部の概要を図2.3.2-8に示す。	
		図2.3.2-7 湿分分離機構の概略図	
		図2.3.2-8 ドレン配管接続部の概略図	
		(b) メインフィルタ メインフィルタは,約 μmの繊維径のものを使用し, になっている。繊維の材質は, ステンレス鋼を採用する。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		c. 流量制限オリフィス	
		フィルタ装置内の体積流量をほぼ一定に保つため,金属繊維フィ	設備名称の相違
		ルタ下流に流量制限オリフィスを設置する。流量制限オリフィスの	
		穴径は、系統の圧力損失を考慮した上で、ベント開始時の原子炉格	表現の相違
		納容器圧力 (1Pd~2Pd) のうち, 低い圧力 (1Pd) において, 設計流	
		量が確実に排気できるよう設定する。	
		なお, ベントガスは, により,	
		となり、放射性よう素フィルタに供給される。	
		流量制限オリフィスの仕様を表2.3.2-1に示す。	
		1. HALLIO, 1. 7 2 2 2	
		d. 放射性よう素フィルタ	設備名称の相違
		放射性よう素フィルタには、銀ゼオライトを収納し、ベントガス	
		を通過させることで、ガス中に含まれる放射性のよう素を除去す	
		る。 銀ゼオライトの充填部は, A充填部に充填	製備の担造
		孤ピオフィトの元頃的は、	
		頂部のマンホールから充填孔を介して銀ゼオライトを充填若しく	
		は吸引回収できる構造とする。	
		放射性よう素フィルタの仕様を表2.3.2-1に, 概略図を図2.3.2-9	設備名称の相違
		に,フィルタ装置内の放射性よう素フィルタの配置を図2.3.2-10に	NIN H 14 × 1HXZ
		示す。	
			設備の相違
			・設計方針の相違に伴う設備
			仕様の相違
		図2.3.2-9 放射性よう素フィルタ概略図	

: 前回提出時からの変更箇所


柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違 ・設計方針の相違に伴う設備 仕様の相違
		表2.3.2-10 フィルタ装置の断面図(放射性よう素フィルタ) 表2.3.2-1 フィルタ装置主要仕様 (1) 容器 本で置円筒形 財 質 ステンレス鋼 (設備の相違 ・設計方針の相違に伴う設備 仕様の相違
		(2) ベンチュリノズル 材質 ステンレス鋼 付質 ステンレス鋼 す法 横幅約 厚さ約 mm 様幅約 ルー よインフィルタ約 μm 個数 総面積	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(4) 流量制限オリフィス 型 式 同心オリフィス板 材 質 ステンレス鋼(個 数	設備の相違 ・設計方針の相違に伴う設備 仕様の相違
		(5) 放射性よう素フィルタ 材質 銀ゼオライト 充填量 約 ベッド厚さ 約	
		表2.3.2-2 スクラバ溶液仕様(待機水位時) 項目 設定値	
		pH 13以上	
		2.3.3 配置 フィルタ装置は、原子炉建屋原子炉棟内のフィルタ装置室に設置することにより、地震、津波、飛来物の衝突等を考慮した設計とする。また、フィルタ装置等の周囲に設置される遮蔽壁は、鉄筋コンクリート製であり、原子炉格納容器フィルタベント系の使用時に本系統内に蓄積される放射性物質から放出される放射線から作業員を防護する設計とする。また、最終ヒートシンクへ熱を輸送するための設計基準事故対処設備である残留熱除去系ポンプ、残留熱除去	・2.1項の理由④ 表現の相違
		系熱交換器,原子炉補機冷却水ポンプ,原子炉補機冷却水系熱交換器及び原子炉補機冷却海水ポンプに対して位置的分散を図っている。さらに,重大事故等対処設備である代替循環冷却ポンプに対しても位置的分散を図っている。	設備の相違 ・女川は最終ヒートシンクへ
		フィルタ装置の配置を図2.3.3-1に,残留熱除去系ポンプ及び代替循環冷却ポンプの配置を図2.3.3-2に,残留熱除去系熱交換器の配置を図2.3.3-3に,原子炉補機冷却水ポンプ,原子炉補機冷却水	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		系熱交換器及び原子炉補機冷却海水ポンプの配置を図2.3.3-4に示	
		す。	
		原子炉格納容器フィルタベント系の配管については, ベント時に	設備名称の相違
		発生する蒸気凝縮で発生するドレン水による閉塞やこれに起因す	
		る水素及び酸素の滞留を防止するため、配置に留意する。具体的に	
		は配管ルートにUシール部ができないよう配置する。なお,新設部	
		分については、水平配管に適切な勾配を設ける。	
		原子炉格納容器フィルタベント系は, サプレッションチェンバ及	設備名称の相違
		びドライウェルと接続し、いずれからも排気できる設計とするた	
		め、サプレッションチェンバ側からの排気では、重大事故等時の最	
		大水位 (0.P. <mark>-19.14m</mark>) よりも高い位置 (0.P. <mark>13.52m</mark>) に接続箇	設備の相違
		」 所を設け、ドライウェル側からの排気では、有効燃料棒頂部(<mark>0.P.</mark>	設計方針の相違に伴う設備
		<mark>16.51m</mark>) よりも高い位置(0.P. <mark>17.80m</mark>)に接続箇所を設ける。	仕様の相違
			表現の相違
		原子炉格納容器フィルタベント系の配管ルート図を図 2. 3. 3-5~	設備名称の相違
		9 に示す。	BY MILL IN THE

: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・設計方針の相違に伴う設備
			設計の相違
			
		図 2.3.3-5 原子炉格納容器フィルタベント系 配管ルート 体図)	凶 (生
		件凶)	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違 ・設計方針の相違に伴う設備 設計の相違
		図 2.3.3-6 原子炉格納容器フィルタベント系 配管ルート拡大図 (1/4)	
		図 2.3.3-7 原子炉格納容器フィルタベント系 配管ルート拡大図 (2/4)	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違 ・設計方針の相違に伴う設備 設計の相違
		図 2.3.3-8 原子炉格納容器フィルタベント系 配管ルート拡大図 (3/4)	
		図 2.3.3-9 原子炉格納容器フィルタベント系 配管ルート拡大図 (4/4)	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・設計方針の相違に伴う設備 設計の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・設計方針の相違に伴う設備 設計の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・設計方針の相違に伴う設備
			設計の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・設計方針の相違に伴う設備
			設計の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		2.4 付帯設備	
		2.4.1 計装設備	
		原子炉格納容器フィルタベント系の計装設備は,各運転状態にお	設備名称の相違
		いて、設備の状態を適切に監視するため、フィルタ装置出口水素濃	設備の相違
		度,フィルタ装置出口放射線モニタ及びフィルタ装置周り計装設備	・女川は、ベント停止後、窒素
		にて構成する。	供給による系統パージ中にお
			いて系統内の水素濃度が低下
		(1) フィルタ装置出口水素濃度	していることを確認するため
		フィルタ装置出口水素濃度は、ベント停止後の系統内の水素濃度	に,系統内の窒素の流れを考
		が可燃限界4vo1%以下に維持されていることを監視するため、フィ	慮し, 出口配管の水素濃度を
		ルタ装置 <mark>出口</mark> 配管に設置する。	監視する。東二は、系統内の蒸
			気が凝縮してフィルタ装置に
			戻ると非凝縮性ガス濃度が上
			昇し, 可燃限界に至るおそれ
			がある入口配管に系統パージ
			停止後に水素が長期的に滞留
			しないことを確認する。(理由
			7)
			=0.1# t- d1. o le>4.
		ベント停止(原子炉格納容器第一隔離弁を閉止)後は、フィルタ	
		装置の上流側から窒素を供給し、残留するガスを希釈・掃気するこ	表現の相違
		とで、水素が可燃限界に至ることはない。また、フィルタ装置内の	
		放射性物質を保持するスクラバ溶液より放射線分解で発生する水	設備名称の相違
		素は、窒素供給することでフィルタ装置出口配管を通って掃気さ	
		れ、可燃限界に至ることはない。	
		┃ 水素濃度の計測は、ベント停止後の系統内への窒素供給時に実施	運用の相違
		する。	・ベント停止後の運用の相違
		フィルタ装置出口水素濃度の計測範囲は,0~30vol%及び0~	設備の相違
		100vol%とする。計測した水素濃度は、中央制御室及び緊急時対策	・上記の理由⑦及び設備仕様
		所で監視可能な設計とする。	の相違
		フィルタ装置出口水素濃度は、系統待機時には非常用母線より受	表現の相違
		電しているが, 重大事故等時で非常用交流電源設備から受電できな	設備名称の相違
		い場合には,常設代替交流電源設備である <mark>ガスタービン発電機</mark> 及び	設備の相違
		可搬型代替交流電源設備である <mark>電源車</mark> から給電可能な構成とする。	・給電する電源設備の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所		備考		
		フィルタ装置出口水素濃度の主要仕様を表2.4.1-1に示す。			・電源構成は 2. 4. 2 項に記載 設備の相違 ・理由⑦
		表2.4.1	設備の相違		
		種類	熱伝導率式	水素検出器	・理由⑦及び設備仕様の相違
		計測範囲	0∼30vo1%	0~100vo1%	
		個 数	1	1	
		使用電源	交流電源	交流電源	
		度を監視する目的 るため、フィルタ フィルタ装置出 れる排気中の放射 の最大の放射線量	気へ放出する放射性物質濃質からのγ線強度を計測する。 電力る。 電囲は、ベント時に想定さ 電出口配管に内包された時 して、10 ⁻² mSv/h~10 ⁵ mSv/h 量率は、中央制御室及び緊	さ 時 /h 設備の相違	
		には所内常設蓄電 蓄電池 (B) から受 及び125V蓄電池(B 設備である125V代 125V代替蓄電池, 1 可能な構成とする。	式直流電源設備である を電しているが、重大駅)から受電できない場合 、替蓄電池又は可搬型 25V代替充電器及び電流	統待機時及び重大事故等時 125V蓄電池 (A) 及び125V 事故等時で125V蓄電池 (A) 合には、常設代替直流電源 代替直流電源設備である 源車の組み合わせから給電 任様を表2.4.1-2に示す。	設備の相違 ・給電する電源設備の相違 ・電源構成は 2. 4. 2 項に記載

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表2.4.1-2 フィルタ装置出口放射線モニタの仕様 種 類 電離箱 計測範囲 10 ⁻² mSv/h~10 ⁵ mSv/h	設備の相違 ・女川は記載の計測範囲で炉 心損傷前と炉心損傷後のどち
		10 msv/m = 10 msv/m 10 msv/	らも計測可能である。
		(3) フィルタ装置周り計装設備 系統待機時,系統運転時及び事故収束時の各状態において,フィルタ装置の水位,圧力及び温度並びにスクラバ溶液のpHを監視するため,フィルタ装置周辺に水位計,圧力計,温度計及びpH計を設置し,中央制御室,緊急時対策所及び一部現場において監視できる設計とする。	
		フィルタ装置周りの計装設備のうち水位計,圧力計及び温度計は,系統待機時及び重大事故等時には所内常設蓄電式直流電源設備である125V蓄電池(A)及び125V蓄電池(B)から受電しているが,重大事故等時で125V蓄電池(A)及び125V蓄電池(B)から受電できない場合には,常設代替直流電源設備である125V代替蓄電池又は可搬型代替直流電源設備である125V代替蓄電池、125V代替充電器及び電源車の組み合わせから給電可能な構成とする。	・給電する電源設備の相違
		また、pH計は、系統待機時には非常用母線より受電しているが、 重大事故等時で非常用交流電源設備から受電できない場合には、常 設代替交流電源設備であるガスタービン発電機及び可搬型代替交 流電源設備である電源車から給電可能な設計とする。	
		なお、スクラバ溶液は系統待機時に十分な量の薬液を保有することにより、ベントを実施した際に原子炉格納容器から移行する酸の量を保守的に想定しても、アルカリ性を維持することができ、ベント中のpH監視は不要であるため、pH計は自主対策設備とする。また、フィルタ装置水位(広帯域)、フィルタ装置入口圧力(広帯域)及びフィルタ装置出口圧力(広帯域)は、中央制御室にて監視が可能であるため、現場計器は自主対策設備とする。さらに、フィルタ装置水位(狭帯域)、フィルタ装置入口圧力(狭帯域)及びフィルタ装置出口圧力(狭帯域)は系統待機時に確認する計器であるため、自主対策	・設計方針の相違に伴う設備 構成の相違・計装設備の主要な仕様は、表

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		設備とする。	
		(4) 各状態における監視の目的	
		a. 系統待機状態	
		原子炉格納容器フィルタベント系の系統待機時の状態を,以下の	設備名称の相違
		とおり確認する設計とする。	
		(a) フィルタ装置の性能に影響するパラメータの確認	
		フィルタ装置水位(狭帯域)にて、スクラバ溶液の水位が、系統	
		待機時の設定範囲内 (設備の相違
		とで、要求される放射性物質の除去性能が発揮できることを確認す	
		る。	仕様の相違
		系統待機時における水位の範囲は、ベント時のスクラバ溶液の水	表現の相違
		位変動を考慮しても放射性物質の除去性能を維持し、ベント開始後	
		7日間は水補給が不要な範囲である。	K Wind what have
		また、フィルタ装置内のスクラバ溶液のpHがアルカリ性の状態	
		(pH13以上)であることを確認することで、フィルタ装置の性能維	
		持に影響がないことを確認する。	
		(b) 系統不活性状態の確認	
		フィルタ装置入口圧力(狭帯域)及びフィルタ装置出口圧力(狭	
		帯域)にて,封入した窒素圧力 (☐ kPa[gage] 程度)を継続監視す	・設計方針の相違に伴う設備
		ることによって、系統内の不活性状態を確認する。	構成の相違
			・計装設備の主要な仕様は、表
			2.4.1-3 に記載
		b. 系統運転状態	
		原子炉格納容器フィルタベント系の運転時の状態を,以下のとお	設備名称の相違
		り確認する設計とする。	
		(a) 原子炉格納容器内の雰囲気ガスがフィルタ装置へ導かれていることの確認	
		フィルタ装置入口圧力(広帯域)及びフィルタ装置出口圧力(広	設備の相違
		帯域)にて、ベント開始により圧力が上昇し、ベント継続により原	
		子炉格納容器の圧力に追従して圧力が低下傾向を示すことで、原子	
		炉格納容器内の雰囲気ガスがフィルタ装置に導かれていることを	
		確認する。	2.4.1-3 に記載

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機		
		また、フィルタ装置水温度にて、ベント開始によりスクラバ溶液	設備名称の相違
		が待機状態から飽和温度まで上昇することを監視することで,原子	
		炉格納容器のガスがフィルタ装置に導かれていることを確認する。	
		さらに、フィルタ装置出口放射線モニタが初期値から上昇するこ	
		とを確認することにより、ガスが通気されていることを把握でき	表現の相違
		る。	
		(b) フィルタ装置の性能に影響するパラメータの確認	
		フィルタ装置水位(広帯域)にて、スクラバ溶液の水位が、ベン	
		ト後の下限水位から上限水位の範囲内mm)にあるこ	
		とを監視することで、要求される放射性物質の除去性能が維持でき	
		ることを確認する。	仕様の相違
		ベント後における下限水位については、ベンチュリノズルが水没	
		していることを確認するため、上限水位については、金属繊維フィ	
		ルタの性能に影響がないことを確認するためにそれぞれ設定する。	BY MILE LT. IN LUXT
		(c) ベントガスが放出されていることの確認	
		フィルタ装置出口放射線モニタにて, フィルタ装置出口を通過す	
		るガスに含まれる放射性物質からのγ線強度を計測することで,フ	
		ィルタ装置出口配管よりベントガスが放出されていることを確認	
		する。	
		c. 事故収束状態	乳供ななの担告
		原子炉格納容器フィルタベント系の事故収束時の状態を以下のとおり確認する設計とする。	
		(조선) (推改) 집[[조] (조) 집]	
		(a) 系統内に水素が滞留していないことの確認	
		フィルタ装置出口水素濃度にて,ベント停止後の系統内への窒素	設備の相違
		供給時において、水素が系統内に滞留していないことを確認する。	・上記の理由⑦
			運用の相違
			・ベント停止後の運用の相違
		(b) フィルタ装置の状態確認	
		フィルタ装置に異常がないことを確認するため,フィルタ装置水	設備の相違
		位(広帯域)にて、スクラバ溶液の水位が確保されていること、フ	・設計方針の相違に伴う設備

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		ィルタ装置水温度にて温度の異常な上昇がないこと及びフィルタ	構成の相違
		装置出口放射線モニタの指示値が上昇傾向にないことを確認する。	・計装設備の主要な仕様は,表
			2.4.1-3 に記載
			設備名称の相違
			設備の相違
			・女川は、ベント後にフィルタ
			装置のスクラバ溶液を移送し
			た後に水補給を実施し、移送
			後にも水位を確認する。
		(5) 計装設備の仕様	
		フィルタ装置の水位について図 2.4.1-1 に, 計装設備の概略構成	
		図を図 2.4.1-2 に, 主要仕様を表 2.4.1-3 に示す。	
			型件 0.40字
			設備の相違
			・設計方針の相違に伴う設備
			設計の相違
		図 2. 4. 1−1 フィルタ装置水位	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		展子が建筑原子が横浜の登場が、	

: 前回提出時からの変更箇所

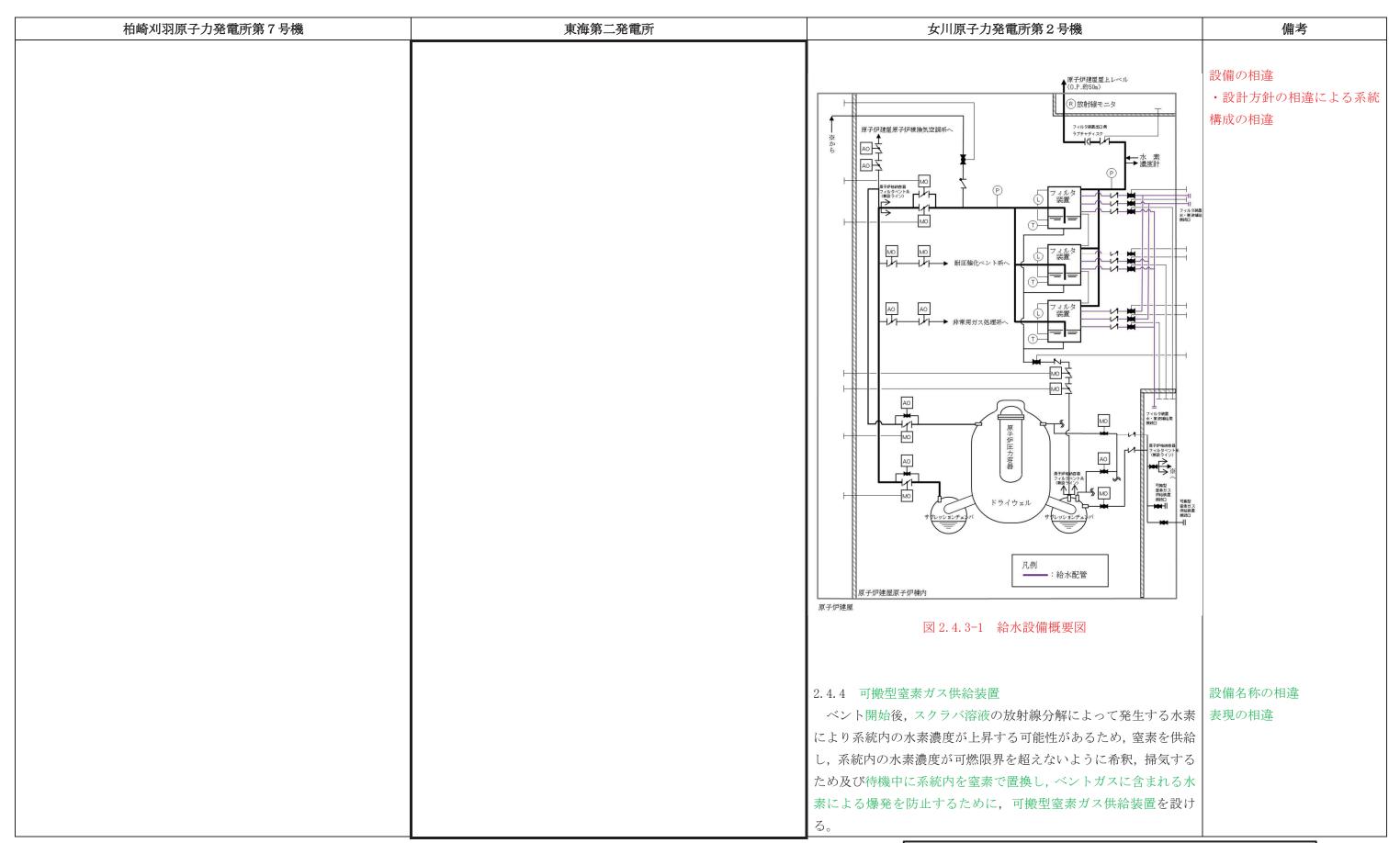
柏崎刈羽原子力発電所第7号機	東海第二発電所		女儿	川原子力	発電所第2号機			備考
		表2.4.1-3 計装設備主要仕様(1/2)			設備の相違			
		監視 パラメータ*!	設置目的	計測範囲	計測範囲の根拠	検出器 個数	監視場所	・設計方針の相違に伴う設備
		①フィルタ装 置水位 (広帯域)	系統運転時の 水位監視	0~ 3650mm*3	系統運転時の下限水位 から上限水位の範囲 (3	中央制御室 緊急時対策所 現場*2	仕様の相違
		置入口圧力	系統運転中に 原子炉格納容 器雰囲気ガス がフィルタ装 置に導かれて いることの確 認	1.0MPa	系統の最高使用圧力 (0.854MPa[gage]) を監視できる範囲	1	中央制御室 緊急時対策所 現場* ²	
		置出口圧力	系統運転中に 原子が格納容 器雰囲気ガス がフィルタ装 置に導かれて いることの確 認	-0.1MPa ~ 1.0MPa	系統の最高使用圧力 (0.854MPa[gage]) を監視できる範囲	1	中央制御室 緊急時対策所 現場**	
		④フィルタ装 置水温度	フィルタ装置 内の水温度監視	1	系統の最高使用温度 (200°C)を監視でき る範囲	3	中央制御室 緊急時対策所	
		⑤フィルタ装 選出口放射 線モニタ	系統運転中に 放出される放 射性物質濃度 の確認	10 °mSv/h ~ 10°mSv/h	想定される放射性物質 がフィルタ装置出口配 管に内包された時の最 大の放射線量率(約 1.9×10³mSv/h)を計 測できる範囲	2	中央制御室 緊急時対策所	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表2.4.1-3 計装設備主要仕様(2/2)	設備の相違
		監視 設置目的 計測範囲 計測範囲の根拠 検出器 パラメータ*1 ご視場所	・設計方針の相違に伴う設備
		⑥フィルタ装 ベント停止後 0~ 想定される水素濃度の 1 遊出口水素 濃度 の系統内の水 素濃度の確認 0~ 変動範囲を計測できる 範囲 計 *** *** 100vol% 1 中央制御室	仕様の相違
		⑦フィルタ装 置水位 (狭 出域) *2 系統待機時のフィルタ 支置の水位の範囲 1580mm*3 次置の水位の範囲 (1580mm*3) す中央制御室 緊急時対策所 を監視できる範囲	
		®フィルタ装置入口圧力 (狭帯域) *2 系統待機時の 空素封入による不活性状態 の確認 0~ 100kPa 「gage」 (kPa[gage] 程度) な監視できる範囲 1 **を監視できる範囲 **を監視できる範囲	
		①フィルタ装置出口圧力 (狭帯域) *** 系統待機時の 窒素封入による不活性状態 の確認 0~ 封人した窒素圧力 (
		⑩スクラバ溶 液pH*² フィルタ装置 性能維持のた めのpH監視 想定されるpIIの変動範 囲を計測できる範囲 1 型のpH監視 取のpH監視	
		注記*1:監視パラメータの数字は図2.4.1-2の丸数字に対応する。 *2:自主対策設備 *3:基準点はフィルタ装置(本体)下部鏡板底部。	
		2.4.2 電源設備	
		ベントガスの流路となる配管に設置される電動弁及び計装設備	表現の相違
		については、通常待機時には非常用母線より受電しているが、重大	
		事故等時で非常用母線から受電できない場合には,常設代替交流電源設備であるガスタービン発電機,可搬型代替交流電源設備である	
		電源車,所内常設蓄電式直流電源設備である125V蓄電池並びに可搬型代替直流電源設備である電源車,125V代替蓄電池及び125V代替充	・電源設備の相違
		電器から給電可能な構成とする。電源構成図を図 2. 4. 2-1, 図 2. 4. 2-2 に示す。	

: 前回提出時からの変更箇所

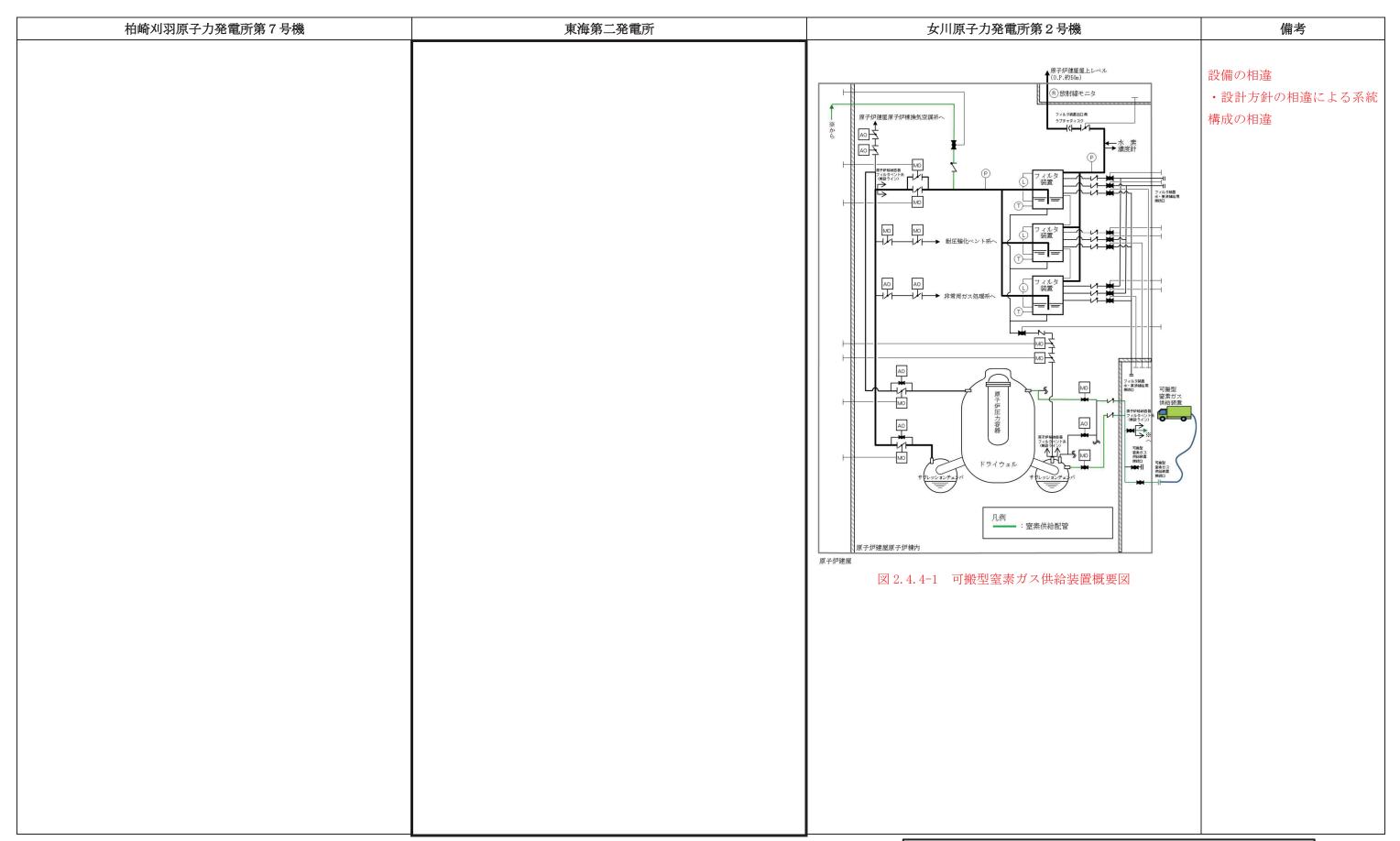
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(7.1.00) (7.1.0	設備の相違 ・設計方針の相違に伴う設備 構成の相違
		100mm w w w w w w w w w w w w w w w w w w	


: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		To a server of the server of	設備の相違に伴う設備構成の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		2.4.3 給水設備 系統待機状態において、フィルタ装置はスクラバ溶液を貯留している状態であるが、重大事故等時において原子炉格納容器フィルタベント系を使用した場合、保持した放射性物質の崩壊熱によりスクラバ溶液が蒸発し、水位が低下する。 このような状況に備え、フィルタ装置には、屋外から給水できる	設備名称の相違
		よう接続口を設け、大容量送水ポンプ(タイプ I)及び薬液補給装置(自主対策設備)からの水及び薬液の補給が可能な設計とする。	設備の相違 ・女川のフィルタ装置は,待機 時に十分な量の薬液を保有し ており,原子炉格納容器から 移行する酸の量を保守的に想 定しても,アルカリ性を維持 可能であるが,薬液補給装置 を自主対策設備として設置す
		給水配管の仕様を表2.4.3-1に,概要を図2.4.3-1に示す。 表2.4.3-1 給水配管仕様 呼び径 50A 材質 ステンレス鋼(SUS316LTP)	きロエバス 欧端 この (設置) る
		γ1	


: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		窒素の供給は,可搬型窒素ガス供給装置により行う。原子 <u>炉建屋</u>	設備名称の相違
		付属棟内又は <mark>屋外に接続</mark> 口を設け、可搬型窒素ガス供給装置を可搬	設備の相違
		ホースにて接続する。	・接続口位置の相違
		なお,可搬型窒素ガス供給装置には発電機を搭載し,外部からの 電源供給は不要な設計とする。	設備の相違 ・東二の窒素供給装置は電源 車駆動であるが、女川の可搬 型窒素ガス供給装置は発電機 を駆動源としている。
		可搬型窒素ガス供給装置の仕様を表2.4.4-1に,窒素供給配管の 仕様を表2.4.4-2に,可搬型窒素ガス供給装置の概要を図2.4.4-1 に,可搬型窒素ガス供給装置の構成概略を図2.4.4-2に示す。	
		表2.4.4-1 可搬型窒素ガス供給装置仕様	設備の相違
		種類 圧力変動吸着方式	・設計方針の相違に伴う設備
		容量 220m³/h[normal]	仕様の相違
		窒素純度 99.0vo1% (不活性ガス)	
		供給圧力 427kPa[gage]	
		個 数 1(予備1)	
		表2. 4. 4-2 窒素供給配管仕様	
		呼 び 径 50A	
		材 質 炭素鋼(STS410)	
		THE DESIGNATION OF THE PROPERTY OF THE PROPERT	

:前回提出時からの変更箇所

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(凡例): 窒素供給用ホース: 配管 : 配管 : 配管 : 配管	設備の相違 ・設計方針の相違による系統 構成の相違
		2.4.5 排水設備 (自主対策設備) ベント終了後の放射性物質を含んだスクラバ溶液を原子炉格納	設計の相違 ・女川はベント後にスクラバ 溶液を移送しなくても、フィ ルタ装置の機能性能を維持で きる設計としており、排水設 備を自主対策設備としてい る。 運用の相違
		容器 (サプレッションチェンバ) に移送するための配管, さらに, 万一, 放射性物質を含むスクラバ溶液がフィルタ装置室に漏えいした場合に, 漏えい水を原子炉格納容器 (サプレッションチェンバ) に移送するための配管を設置する。	・女川では水位調整のために 排水設備を使用しない。 表現の相違 設備の相違 ・2.1項の理由④及び⑤ 設備名称の相違
		フィルタ装置からの排水及び漏えい水の移送は、排水設備に設置する弁の操作により行い、フィルタ装置及びフィルタ装置室より低い位置にあるサプレッションチェンバへ排水する。 排水設備の主要な仕様を表2.4.5-1に、排水設備の概要を図	・2.1項の理由⑤
		(折水設備の主要な仕様を表2.4.5-1に、 折水設備の概要を図 2.4.5-1に示す。	公グログド日月

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

	備考
表2.4.5-1 排水設備仕様 P び 径 DA DA DA DA DA DA DA DA DA D	章 ②理由⑤ 計の相違による系統

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		2.4.6 排気管排水設備 原子炉格納容器フィルタベント系の排気管への雨水の滞留による配管腐食等を防止するため、排気管排水設備を設置する。ドレンポットからの排水は、定期的に水の溜まり具合を確認し、ドレンポット下端に設置する弁の操作により行う。 また、凍結によるドレンポット等の機器損傷防止の観点より凍結防止対策を講じる。	
		排気管排水設備の概要を図2.4.6-1に示す。 (凡例) : 保温材施工範囲 (計画) : 原子炉格納容器フィルタベント系の系統の流れ (フィルタ装置出口側ラブチャディスタ破裂後) 原子炉整盤 アイルタ装置出口側ラブチャディスク破裂後)	設備名称の相違
		図 2. 4. 6-1 排気管排水設備概要図	設備の相違 ・設計方針の相違に伴う設備 構成の相違

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		3. フィルタ性能	
		3.1 フィルタ装置による放射性物質の除去原理	
		3.1.1 エアロゾルの除去原理	
		エアロゾルの除去原理は、一般にフィルタ媒体(ベンチュリスク	
		ラバの場合は水滴、金属繊維フィルタの場合は金属繊維)の種類に	設備名称の相違
		よらず、主に以下の3つの効果の重ね合わせとして記述できる。	
		・さえぎり効果(Interception): 粒径が大きい場合に有効	
		・拡散効果 (Diffusion):流速が遅い場合, 粒径が小さい場合に有	
		効	
		・慣性衝突効果 (Inertia <mark>effect) : 流速が早い場合, 粒径が大きい</mark>	
		場合に有効	
		(1)~(3)に,それぞれの除去効果についてその特性を記載する。	
		これらの除去原理はフィルタ媒体が水滴でも金属繊維でも作用す	
		るが、フィルタの種類や系統条件により効果的に除去できる粒径、	
		流速の範囲が異なることから、幅広い粒径、流速のエアロゾルを除	
		去するためには異なる種類のフィルタを組み合わせることが有効	
		である。	
		(4),(5)に,ベンチュリスクラバ及び金属繊維フィルタにおける	
		エアロゾルの除去原理を示す。	
		(1) さえぎり効果	
		さえぎりによるエアロゾルの捕集は, 図3.1.1-1に示すように,	
		エアロゾルが流線にそって運動している場合に, フィルタ媒体表面	
		から1粒子半径以内にエアロゾルが達したときに起こる。	
		エアロゾル粒径が大きい場合、より遠くの流線に乗っていた場合	
		でもフィルタ媒体と接触することが可能であるため、さえぎりによ	
		る除去効果は、エアロゾル粒径が大きい程大きくなる傾向にある。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		施線 すえぎり マイルタ媒体 引用文献: W. C. ハインズ, エアロゾルテクノロジー, ㈱井上書院 (1985) 図 3.1.1-1 さえぎりによる捕集	
		(2) 払取効果 拡散によるエアロゾルの捕集は、図3.1.1-2に示すように、エアロゾルがフィルタ媒体をさえぎらない流線上を移動しているときでも、フィルタ媒体近傍を通過する際に、ブラウン運動によってフィルタ媒体に衝突することで起こる。 エアロゾル粒径が小さい場合、ブラウン運動による拡散の度合いが大きくなるため、拡散による除去効果は、エアロゾル粒径が小さい程大きくなる傾向にある。また、フィルタ媒体の近傍にエアロゾルが滞在する時間が長い程ブラウン運動によりフィルタ媒体に衝突する可能性が高まるため、流速が遅い程大きくなる傾向にある。	
		 流線 初期粒子流線 (さえぎりはない) プラウン運動による粒子の軌跡 引用文献: W. C. ハインズ,エアロゾルテクノロジー, ㈱井上書院 (1985) 図3. 1. 1-2 拡散による捕集 	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(3) 慣性衝突効果	
		慣性衝突によるエアロゾルの捕集は, 図3.1.1-3に示すように,	
		エアロゾルがその慣性のために、フィルタ媒体の近傍で急に変化す	
		る流線に対応することができず、流線を横切ってフィルタ媒体に衝	
		突するときに起こる。	
		エアロゾル粒径が大きい場合又はエアロゾルの流れが早い場合	
		にエアロゾルの慣性が大きくなり, フィルタ媒体と衝突する可能性	
		が高まるため, 慣性衝突による除去効果はエアロゾル粒径が大きい	
		程大きく,流速が速い程大きくなる傾向がある。	
		### 現代	設備名称の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		慢性衝突	図中の設備名称の相違
		水滴速度V2 水滴 水滴 速度 V 図3. 1. 1-5 ベンチュリノズルにおける速度模式図	
		図 $3.1.1$ -5 に示すとおり、ベンチュリスクラバはガス流速 V_1 と 水滴速度 V_2 が異なることで、ガス中のエアロゾルが水滴に衝突し水 滴に付着する現象を利用していることから、慣性衝突による除去が 支配的と考えられる。慣性衝突効果では「ガス流速」と「粒径」が 主な影響因子である。 以上より、ベンチュリスクラバの除去性能に影響を与える可能性 のある主要なパラメータは、ガス流速、水滴速度、エアロゾル粒径 及び水滴の噴霧量が考えられるが、水滴速度及び水滴の噴霧量はガス流速に依存するため、ガス流速及びエアロゾル粒径が主要なパラ	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第7号機	東海第二発電所	 女川原子力発電所第2号機 メータとなる。 図 3.1.1-6 にベンチュリスクラバにおける除去原理の模式図を示す。 ① ベンチュリノズル下方よりベントガスが流入する。 ② ベンチュリノズルのスロート部(絞り機構)によってベントガスの流速が加速される。 ③ ガス流速を大きくすることで発生する負圧によりスクラバ溶液が吸入され、ガス流中に水滴を噴霧(いわゆる霧吹き)する。 ④ 噴霧によって、微小水滴にすることでエアロゾルが水と接触する面積が大きくなり、エアロゾルがフィルタ媒体と衝突し、ベントガスから捕集される。 ⑤ ベンチュリノズルの出口に設置した板によってベントガス及び水滴の方向が変わり、エアロゾルはスクラバ溶液に保持される。 ⑥ 吐出より噴出した気泡はスクラバ溶液中を浮上する。 図 3.1.1-6 ベンチュリスクラバにおける除去原理の模式図	設備名称の相違
		(5) 金属繊維フィルタにおけるエアロゾルの除去原理 金属繊維フィルタは、ベンチュリスクラバの後段に設置され、よ	設備名称の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		り粒径の小さいエアロゾルを除去する。	
		金属繊維フィルタの除去原理は、図3.1.1-7に示すように、さえ	設備名称の相違
		ぎり、拡散、慣性衝突効果の重ね合わせにより、エアロゾルを金属	
		繊維表面に付着させ捕集する。さえぎり、拡散、慣性衝突効果では	
		「粒径」と「ガス流速」が主な影響因子である。	
		以上より、金属繊維フィルタの除去性能に対して、影響を与える	
		可能性のある主要なパラメータとしては、ガス流速、エアロゾル粒	
		径を考慮する必要がある。	
			
		図3.1.1-7 金属繊維フィルタにおける除去原理	設備名称の相違
		 3.1.2 ガス状放射性よう素の除去原理	
		重大事故等時に発生する放射性よう素は, 粒子状よう素 (CsI:よ	
) う化セシウム等)と,ガス状よう素として無機よう素(I₂:元素状	
		よう素)と有機よう素(CH₃I:よう化メチル等)の形態をとる。大	
		部分のよう素は粒子状よう素として原子炉格納容器内へ放出され、	
		残りは無機よう素として原子炉格納容器内に放出されるが、無機よ	
		う素の一部は原子炉格納容器内の有機物(塗装等)と結合し,有機	
		よう素へ転換する。粒子状よう素については、エアロゾルの除去原	
		理に基づき、ベンチュリスクラバと金属繊維フィルタで捕集する。	設備名称の相違
		無機よう素については、スクラバ溶液に添加された薬剤と化学反	設備名称の相違
		応させることによりベンチュリスクラバで捕集し, 吸着材と化学反	
		応させることにより、放射性よう素フィルタで捕集する。有機よう	
		素については、吸着材と化学反応させることにより、放射性よう素	
		フィルタで捕集する。	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(1) フィルタ装置内におけるベントガスの流れ	
		フィルタ装置内の下部にベンチュリスクラバ(ベンチュリノズ	
		ル,スクラバ溶液等),上部に金属繊維フィルタを設置し,金属繊維	設備名称の相違
		フィルタの下流側に流量制限オリフィスを介して放射性よう素フ	
		イルタを設置する。	
		ベントガスの流れを図3.1.2-1に示す。	
		ベントガスは,流量制限オリフィスを通過する際,	
		となる。オリフィス下流	
		の排気配管は大気に接続されており,放射性よう素フィルタにおけ	
		る圧力は大気圧に近い状態となることから,オリフィス上流の圧力	
		が高いベント開始初期は,	
		オリフィス通過時の蒸気の状態変化のイメージを図3.1.2-2に示	
		す。	
			・フィルタ装置の各部の仕様
		図3.1.2-1 フィルタ装置内のベントガスの流れ	は異なるが、ベントガスの流
			れに差異はない。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図 3.1.2-2 流量制限オリフィス通過時の蒸気の状態変化(イメー	
		ジ)	
		(2) ベンチュリスクラバにおけるよう素の除去 ベントガスがベンチュリスクラバを通過する際, 無機よう素を化	
		学反応によりスクラバ溶液中に効果的に捕集・保持するために、ス	
		クラバ溶液には表3.1.2-1に示す薬剤を添加する。	
		ま2.1.0.1 フカラ が冷冻。の活力で対	· 和供 夕 孙 の 扣 告
		表3.1.2-1 スクラバ溶液への添加薬剤 ^{薬剤} 化学式 目的	設備名称の相違
		ベンチュリスクラバを通過する際,揮発性の高い無機よう素は,	
		添加薬剤との化学反応により非揮発性のよう素イオンに変化し、ス	設備名称の相違
		クラバ溶液中に捕集・保持される。以下に化学反応式を示す。	
		の添加によって,スクラバ溶液はアルカリ性条	設備名称の相違
		件下となるため、式(2)により、無機よう素を捕集する。	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備名称の相違
		したがって、ベンチュリスクラバにおける無機よう素の除去効率 に影響を与える因子として「スクラバ溶液のpH」が挙げられる。 なお、一般的に有機よう素は、無機よう素に比べ活性が低く、反 応しにくいため、ベンチュリスクラバでの有機よう素の除去は期待 していない。	設備名称の相違
		(3) 放射性よう素フィルタにおけるよう素の除去	設備名称の相違
		吸着材は、 ために を添加して粒状に成形したもので、これをフィルタ装置内の放射性よう素フィルタに充填することで、吸着ベッドを形成している。 ベントガスの滞留時間は、ベントガスが吸着ベッドを通過するのに要する時間であり、長い程反応の効率が高まる。また、過熱度は吸着ベッドを通過するベントガスの温度と飽和温度との差であり、 であれば、	設備名称の相違
		したがって、放射性よう素フィルタにおけるよう素の除去効率に 影響を与える因子として「ベントガスの滞留時間」と「過熱度」が 挙げられる。	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所		備考
	したガス流速及びエアロゾ メータであるガス温度及び づき,ベント実施中に想定 3.1.2 項で,ガス状放射性	の除去原理において主要なパラメータと がル粒径に加え、ベント時に変動するパラ がガス蒸気割合について、有効性評価に基 定する運転範囲を表 3.2-1 に示す。また、 とよう素の除去原理において主要なパラメ の pH 及びガスの過熱度について、ベント 長 3.2-1 に示す。	設備名称の相違
	表3. 2-1 ベン	ント実施中における運転範囲	設備の相違
	パラメータ	想定運転範囲	・設備設計の相違に伴う設備
	ガス流速なお、金属なお、金属などのである。	施からほぼ静定した原子炉格納容器圧力に対応するベ ノズルのガス流速は、約 m/s*となる。 : 属繊維フィルタにおけるガス流速は、適切なガス流速 う 金属繊維フィルタの表面積を設定している。	仕様の相違
	■ エアロゾル粒径	ションチェンバからのベント時の粒径分布より、質量 約 μm とする。	
	ベントか 	トら原子炉格納容器温度がほぼ静定した状態の圧力は [gage] となり、このときのベントガスの飽和温度のを最低値とする。ベントガス圧力が最大値 (2Pd) の場は選度は ℃であるが、限界温度が ℃であること 路条件として ℃をベントガス温度の上限とする。	
	ガス蒸気割合異なるのでとす。		
		溶液は高アルカリ性に保つために、	
	ガス過熱度 器圧力(始圧力の上限 (2Pd) からほぼ静定した原子炉格納容	
	注記*: m/sはベントから静定し	した時の原子炉格納容器圧力 kPa[gage]における流) の時の流速を m/sとしている。	
	3.3 性能検証試験結果 3.3.1 性能検証試験の概要	要	
	Framatome社製のフィルク	タ装置は、大規模なセクター試験装置に 意した性能検証試験を行っており、その結	
		っている。以下に試験の概要を示す。	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(1) エアロゾルの除去性能試験 (JAVA試験)	
		Framatome (当時Siemens) 社は, 1980年代から1990年代にかけ,	
		ドイツのカールシュタインにある試験施設(以下「JAVA」という。)	
		にて,電力会社,ドイツ原子力安全委員会 (RSK) 及びその他第三者	
		機関立会の下、フィルタ装置のエアロゾルに対する除去性能試験を	
		行っている。	
		試験装置には、実機に設置するものと同一形状のベンチュリノズ	
		ルと,実機に設置するものと同一仕様の金属繊維フィルタを設置	設備名称の相違
		し, 試験条件として, 実機の想定事象における種々のパラメータ(圧	
		力,温度,ガス流量等の熱水力条件及びエアロゾル粒径,濃度等の	
		エアロゾル条件)について試験を行うことにより、フィルタ装置の	
		使用条件において所定の性能が発揮されることを確認している。試	
		験装置の概要を図3.3.1-1に,試験条件を表3.3.1-1に示す。	
		試験にはエアロゾルを模擬するため、	
		使用している。図3.3.1-2に示すように,試験で使用したの	
		質量中央径は約 μm, 空気中 の質量中央径は約 μm,	
		蒸気中の質量中央径は約μm,ウラニンの質量中央径は約	
		μmとなっている。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図 3. 3. 1−1 JAVA 試験装置概要	
		表3.3.1-1 JAVA試験条件 (エアロゾル除去性能試験)	記載方針の相違
		試験条件	
		(約 kPa[abs]) 温 度 約 ℃	
		流 量 約 m³/h	
		蒸気割合 % エアロゾル	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第 7 号機		図3.3.1-2 試験用エアロゾルの粒径分布	設備名称の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(3) 有機よう素の除去性能試験(JAVA PLUS試験) 実機使用条件を想定した有機よう素の除去性能を確認するため、 Framatome社はJAVA試験装置に有機よう素フィルタを設けたJAVA PLUS試験装置を用いて、2013年より有機よう素の除去性能試験を実施している。 試験装置には、実機に使用する吸着材を実機と同一の密度で充填し、試験条件として種々のパラメータ(圧力、温度、過熱度等の熱水力条件)にて試験を行うことにより、フィルタ装置における有機よう素の除去性能について確認している。 試験装置の概要を図3.3.1-3に、試験条件を表3.3.1-3に示す。	
		表3.3.1-3 JAVA PLUS試験条件 (有機よう素除去性能試験) 試験条件	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図 3. 3. 1-3 JAVA PLUS 試験装置概要	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		3.3.2 エアロゾルの除去性能試験結果	
		JAVA試験における性能検証試験結果を表3.3.2-1~表3.3.2-3に	
		示す。エアロゾルの除去原理では、3.1.1に示すとおり、「流速」と	
		「粒径」が主な影響因子であるため、ガス流速とエアロゾル粒径に	
		対しての性能評価を行った。さらに、その他の試験条件に用いたパ	
		ラメータについてもフィルタ装置のエアロゾルの除去性能への影	
		響を確認するため、ガス温度及びガス蒸気割合に対しての性能評価	
		を行った。試験の結果,エアロゾルの除去能力がDF1000以上である	
		ことを確認した。	記載方針の相違
			・エアロゾルの除去性能試験
			結果の項のため、女川2号で
			は無機よう素及び有機よう素
			については記載していない。
		(1) ガス流速	
			表現の相違
		図3.3.2-1及び図3.3.2-2にベンチュリノズル及び金属繊維フィ	設備名称の相違
		ルタにおけるガス流速に対して整理した性能検証試験結果を示す。	
		DFについては、装置の入口と出口のエアロゾル濃度を測定すること	
		で算出している。	
		ここで, ガス流速は, 体積流量を, 図3.3.2-3に示すベンチュリノ	記載箇所の相違
		ズルの最小断面積であるスロート部の総断面積又は金属繊維フィ	・東二は注記に記載
		ルタの総断面積で割ることにより, ベンチュリノズルのガス流速と	
		金属繊維フィルタのガス流速に換算して確認した。	
		この結果から、ベンチュリスクラバにて想定する運転範囲(約	
		m/s)と金属繊維フィルタにて想定する運転範囲全域	設備の相違
		 にわたって要求されるDF1000 以上を満足していることがわかる。	・設計方針の相違に伴う設備
		なお、運転範囲よりも小さいガス流速においても、ベンチュリス	仕様の相違
		クラバ及び金属繊維フィルタの組合せで, DF1000 以上を満足して	
		いるため、フィルタ装置はガス流速によらず十分な性能を有してい	
		ると言える。	
			記載箇所の相違

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

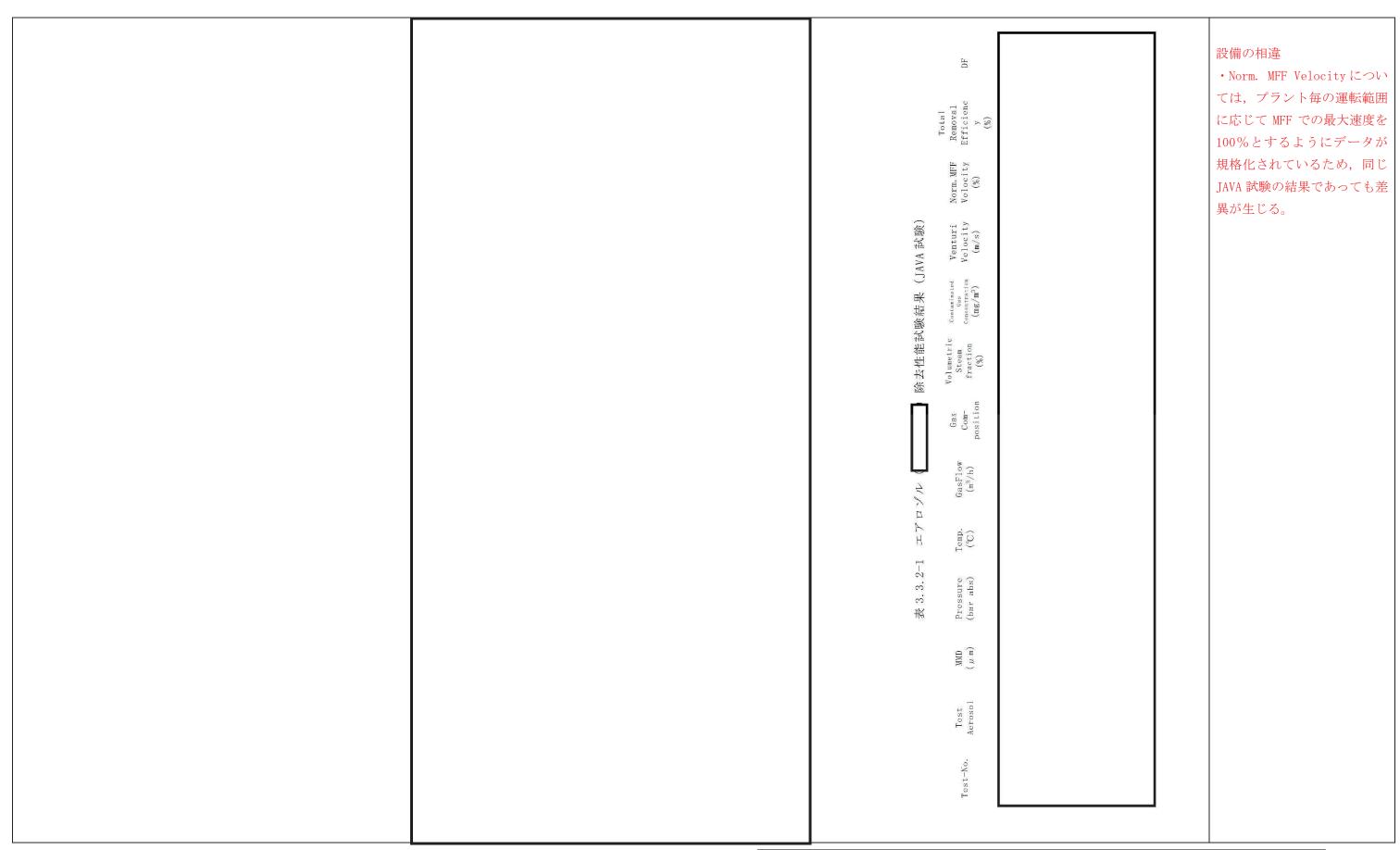
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			記載方針の相違
			設備の相違 ・JAVA 試験結果は同一であるが、運転範囲がプラントにより異なる。
		図 3. 3. 2-1 ベンチュリノズルにおけるガス流速に対する除去係数 (JAVA 試験)	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違 ・JAVA 試験結果は同一であるが、確認する運転範囲がプラントにより異なる。
		図 3. 3. 2-2 金属繊維フィルタにおけるガス流速に対する除去係数 (JAVA 試験)	
			設備の相違 ・設計方針の相違に伴う設備 設計の相違
		図 3.3.2-3 ベンチュリノズルスロート部及び金属繊維フィルタの	
		断面積 (2) エアロゾル粒径	
		図 3. 3. 2-4 に試験用エアロゾル (エアロゾルの粒径) に対して整理した性能検証試験結果を示す。この結果からエアロゾル粒径 (質量中央径:約 μm)の違いによって除去性能に影響が	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		出ているような傾向は見られず、いずれの試験結果においても要求されるDF1000を満足していることがわかる。 サプレッションチェンバからのベント実施時に想定する質量中央径は約 μmである。試験用エアロゾルとしては質量中央径約	設備の相違
		μmの を使用し、DF1000以上を満足していることから、フィルタ装置はエアロゾル粒径に対して十分な性能を有していると言える。 図 3. 3. 2-4 粒径に対する除去係数 (JAVA 試験)	
		(3) ガス温度 図3.3.2-5にガス温度に対して整理した性能検証試験結果を示す。この結果から、ガス温度の違いによって除去性能に影響が出ているような傾向は見られず、試験を実施した全域にわたって要求されるDF1000以上を満足していることがわかる。したがって、ガス温度の運転範囲 ♥() に対して、フィルタ装置はガス温度に対して十分な性能を示していると言える。	


: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第7号機	東海第二発電所	図3.3.2-5 ガス温度に対する除去係数 (JAVA 試験) (4) ガス蒸気割合 図3.3.2-6にガス蒸気割合に対して整理した性能検証試験結果を示す。この結果から、ガス蒸気割合の違いによって除去性能に影響が出ているような傾向は見られず、試験を実施した全域にわたって要求されるDF1000以上を満囲していることがわかる。ガス蒸気割合の運転範囲 (0~100%) で性能検証試験が行われており、フィルタ装置はガス蒸気割合に対して十分な性能を有していると言える。	設備の相違 ・JAVA 試験結果は同一であるが、運転範囲がプラントにより異なる。

赤字:設備,運用又は体制の相違点(設計方針の相違)

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		E	=n./#;
		E Q	設備の相違
		al ioney	・Norm. MFF Velocity につい
		Total Removal Efficiency (%)	ては、プラント毎の運転範囲 に応じて MFF での最大速度を
			100%とするようにデータが
		Norm. WFF Velocity (%)	規格化されているため、同じ
		try (c	JAVA 試験の結果であっても差
		对票) Venturi (m/s)	異が生じる。
		V V	
		は懸結果(JAV Contaminated Gas Concentration (mg/m²)	
		(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
		除去性能 Nolumetric Steam fraction (%)	
		Gas Com- position	
		Gast Tow (m³/n)	
		M .	
		表 3. 3. 2-2 sure Temp. abs) (C)	
		表 3. (bar abs)	
		MWD (m 1/)	
		18-9.1	
		Te Actual Te	
		·0)_1	
		Tost	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 7 5 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	設備の相違 ・Norm. MFF Velocity については、プラント毎の運転範囲に応じて MFF での最大速度を 100%とするようにデータが 規格化されているため、同じ JAVA 試験の結果であっても差 異が生じる。

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		3.3.3 ガス状放射性よう素の除去性能試験結果	
		(1) ベンチュリスクラバにおける無機よう素除去性能試験結果	設計方針の相違
		JAVA試験における無機よう素の除去性能試験結果を表3.3.3-1に	・1.2項の理由①
		示す。無機よう素のベンチュリスクラバ (スクラバ溶液) への捕集	設備名称の相違
		は化学反応によるものであり,その反応に影響を与える因子は,「ス	
		クラバ溶液のpH」である。図 3.3.3-1 に,スクラバ溶液のpHに対す	
		る無機よう素の除去性能試験結果を示す。	
		この結果から,スクラバ溶液がpH の状態においても設計条	
		件である除去効率 99% (DF100) 以上であることを確認した。	
		フィルタ装置全体としての無機よう素の除去性能については、	設計方針の相違
		3.3.3 (3) 項に示す。	・1.2項の理由①
		図3.3.3-1 pHに対する無機よう素除去係数	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表3.3.3-1 ベンチュリスクラバにおける無機よう素除去性能試験	
		結果(JAVA試験)	
		<u> </u>	
		(2) 有機よう素除去性能試験結果	
		JAVA PLUS 試験における有機よう素の除去性能試験結果を表 3.3.3-	
		2 に示す。JAVA PLUS 試験で得られた除去係数を,過熱度で整理し	
		たものを図 3. 3. 3-2 に示す。	
		NIO O C C TAVA DI VICE SAFA/LE	
		図 3. 3. 3-2 JAVA PLUS 試験結果	
		ファベ TAVA DIJIC対験壮果も守機にわいては、かった同となり	
		ここで、JAVA PLUS試験装置と実機においては、ベッド厚さが異	
		なるため、ベントガスの吸着ベッドにおける滞留時間が異なる。そ の補正をするために以下に示す関係を用いる。	
		マンTHH上で y る/にダバーグ バー小 y 対体を用 v 'る。	

: 前回提出時からの変更箇所

一次計分析の相談に伴う政策 位権の相談 ・設計が取り相談に伴う政策 位権の相談 ・減い対象 ・減に対明における条続権の ・対 ・減に対明における条件を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を	・設計方針の相違に伴う設備 仕様の相違 設備の相違 ・運転範囲における過熱度の 相達	・設計方針の相違に伴う設備 仕様の相違 ・選挙範囲における過熱度の 相違	柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			柏崎刈羽原子力発電所第7号機	東海第二発電所		設備の相違 ・設計方針の相違に伴う設備 仕様の相違 設備の相違 ・運転範囲における過熱度の

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表3.3.3-2 有機よう素除去性能試験結果(JAVA PLUS試験)	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(3) 無機よう素除去性能試験結果	設計方針の相違
		一般的に無機よう素は、有機よう素と比べ活性が高く、反応しや	・1.2項の理由①
		すいため、放射性よう素フィルタでも捕集されやすい。したがって、	
		無機よう素に対しても有機よう素と同程度の DF50 以上が期待でき	
		る。	
		また, 前段のベンチュリスクラバでは, 無機よう素の DF が 100	
		以上であるため、フィルタ装置全体として無機よう素に対して	
		DF500 以上の性能が期待できる。	
		なお,JAVA 試験においてスクラバ溶液の pH が の時,DF500	
		以上の結果が得られているのに対し,女川原子力発電所第2号機の	
		フィルタ装置は,系統待機時の pH が 13 以上であるため,フィルタ	
		装置全体の除去係数は DF500 以上が期待できる。	
		3.3.4 フィルタ装置の継続使用による性能への影響	
		フィルタ装置を継続使用することにより,放射性物質の除去性能	
		に影響する可能性のある因子について検討する。	
		(1) エアロゾルの再浮遊	
		a. ベンチュリスクラバ	表現の相違
		(a) 想定する状態	(A)500/作(基
		マイルタ装置を継続使用すると、ベンチュリスクラバで捕集され	
		たエアロゾルにより、ベンチュリスクラバ内のエアロゾル濃度は	
		徐々に上昇する。スクラバ溶液の水面近傍には、水沸騰やベンチュ	 設備名称の相違
		リノズルを通るベントガスによる気流により、細かい飛沫(液滴)	
		が発生するが、その飛沫にエアロゾルが含まれていると、エアロゾ	
		ルがベンチュリスクラバの後段に移行することが考えられる。	
		(b) 影響評価	
		ベンチュリスクラバの後段には、金属繊維フィルタが備えられて	設備名称の相違
		おり、この金属繊維フィルタには、ベンチュリスクラバからの飛沫	
		(液滴) を除去するための機構 (プレフィルタ及び湿分分離機構)	
		と除去したドレン水をスクラバ溶液内に戻すためのドレン配管が	
		設置されている。そのため、ベンチュリスクラバで発生した飛沫(液	
		滴) は、メインフィルタに到達する前に除去される。また、飛沫(液	
		滴)の微細化や蒸発によってエアロゾルが放出される可能性がある	
		が、メインフィルタにて補集される。	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		以上のとおり、フィルタ装置は、ベンチュリスクラバでのエアロ	
		ゾルの再浮遊に対して考慮した設計となっている。	
		b. 金属繊維フィルタ	設備名称の相違
		(a) 想定する状態	
		金属繊維フィルタで捕集されたエアロゾルが蓄積すると, 崩壊熱	
		により金属繊維フィルタの温度が上昇し,放射性物質の融点/沸点	
		を超えた場合に液体/気体となる。これらの液体/気体がベントガ	
		ス流により下流に流された場合,フィルタ装置下流側にエアロゾル	
		を放出することが考えられる。	
		(b) 影響評価	
		金属繊維フィルタに捕集されたエアロゾルの崩壊熱は、ベント中	設備名称の相違
		はベントガスの流れによって冷却され、ベント後はベンチュリスク	
		ラバに捕集したエアロゾルの崩壊熱により発生する蒸気によって	
		冷却されることから、金属繊維フィルタの温度は、エアロゾルの再	
		浮遊が起こるような温度(参考: CsOHの融点: 272.3℃)に対し十分	
		低く抑えることができる。	
		(2) ガス状放射性よう素の再揮発	
		a. ベンチュリスクラバにおける無機よう素の再揮発	
		(a) 想定する状態	
		フィルタ装置を継続使用すると、スクラバ溶液の温度は上昇す	設備名称の相違
		る。スクラバ溶液の温度上昇に伴い、スクラバ溶液中に捕集した無	
		機よう素が気相中に再揮発することが考えられる。	
		(b) 影響評価	
		気液界面(フィルタ装置水面)における無機よう素の平衡につい	
		ては温度依存性があり、スクラバ溶液の水温が高い方が気相の無機	設備名称の相違
		よう素の割合が増える。しかし、アルカリ環境下では、無機よう素	
		とよう素イオンの平衡により液相中に存在する無機よう素が極め	
		て少なく、無機よう素の気相部への移行量は、スクラバ溶液の温度	
		が上昇しても十分小さい値となる。	
		JAVA試験は、高温のベントガスを用いて、無機よう素が気相中に	
		移行しやすい条件での試験を実施しており、温度上昇による影響に	
		配慮したものとなっている。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			30.746 A 47. o le 14.
		b. 放射性よう素フィルタにおける放射性よう素の再揮発	設備名称の相違
		(a) 想定する状態	
		化学工業の分野ではゼオライトに高温の水素を通気することに	
		より捕集されているよう素を再揮発させる技術がある。放射性よう	
		素フィルタに充填された銀ゼオライトに、ベントガスに含まれる水	
		素が通気されると、捕集された放射性よう素が再揮発することが考	
		えられる。	
		(b) 影響評価	
		水素によるよう素の再浮遊は400℃以上の高温状態で数時間程	
		度,水素を通気した場合に起こることが知られている。一方フィル	
		タ装置に流入するガスは200℃以下であり、銀ゼオライトに水素を	
		含むガスが通過したとしても、ゼオライトに捕集されているよう素	
		が再揮発することはない。	
		また、放射性よう素フィルタで捕集した放射性よう素の崩壊熱	設備名称の相違
		は、ベント中はベントガスにより冷却され、ベント後は系統を不活	
		性化するために供給される窒素により冷却されることから、放射性	
		よう素フィルタの温度上昇は、放射性よう素の再揮発が起こるよう	
		な温度(400℃)に対して、十分低く抑えることができる。	
		(3) フィルタの閉塞	
		a. 想定する状態	
		「一心足する状态	
		加え、炉内構造物の過温などによるエアロゾル、コアコンクリート	
		反応により発生するCaO ₂ 等のコンクリート材料に起因するエアロ	
		ブル及び保温材等の熱的・機械的衝撃により発生する粉塵が、フィ	
		ルタ装置に移行する可能性がある。これらのエアロゾルの影響により、ベンチ・リスブルの独陸郊の全屋継続フィルタに仕美し、関策	乳供タチの担告
		り、ベンチュリノズルの狭隘部や金属繊維フィルタに付着し、閉塞	政価名かり相達
		することが考えられる。	
		b. 影響評価	
		ベンチュリノズルの狭隘部を通過するガス流速は、高速となる。	
		ベンチュリノズルの狭隘部寸法に対して, エアロゾルの粒子径は極	
		めて小さく、ベンチュリノズルが閉塞することはない。	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機		
		金属繊維フィルタには、ベンチュリスクラバで捕集されなかった	設備名称の相違
		エアロゾルが移行する。移行するエアロゾル量は、金属繊維フィル	
		タの許容負荷量に対して十分小さく, 金属繊維フィルタが閉塞する	
		ことはない。	
		(4) 薬剤の容量減少	
		a. 想定する状態	
		無機よう素はベンチュリスクラバにて薬剤	
		との反応により捕集されるが、薬剤の容量を超える無機よう素	
		が流入した場合には、無機よう素は捕集されずに下流に流出される	
		ことが考えられる。	
		1 B/\$BV \$77 /pr	
		b. 影響評価	-11 /44 /4 / - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
		スクラバ溶液に含まれるの量は、原子炉格納	設備名称の相違
		容器から放出される無機よう素の量に対して十分大きいことから、	
		容量に達することはない。	
		(5) 放射性よう素フィルタの容量減少	設備名称の相違
		a. 想定する状態	W. M. C. W. A. A. L. W.
		ガス状放射性よう素は、銀ゼオライトに捕集されるが、銀ゼオラ	
		イトの吸着容量に達した場合には、ガス状放射性よう素は捕集され	
		ずに系外に放出されることが考えられる。	
		b. 影響評価	
		放射性よう素フィルタで保持が可能なガス状放射性よう素の吸	設備名称の相違
		着容量(銀分子数)は、原子炉格納容器から放出されるよう素量に	
		対して十分大きいことから吸着容量に達することはない。	
		(6) ベント時に生じるスウェリングによる放射性よう素フィルタ	設備名称の相違
		への影響	
		a. 想定する状態	
		スクラバ溶液に蒸気が流入すると, スウェリングにより水位が上	設備名称の相違
		昇する。その結果、スクラバ溶液の水位は系統待機時に比べ上昇し	
		ており、放射性よう素フィルタの外壁はスクラバ溶液に接すること	
		となり、スクラバ溶液の温度による除去性能に影響することが考え	
		られる。	

: 前回提出時からの変更箇所

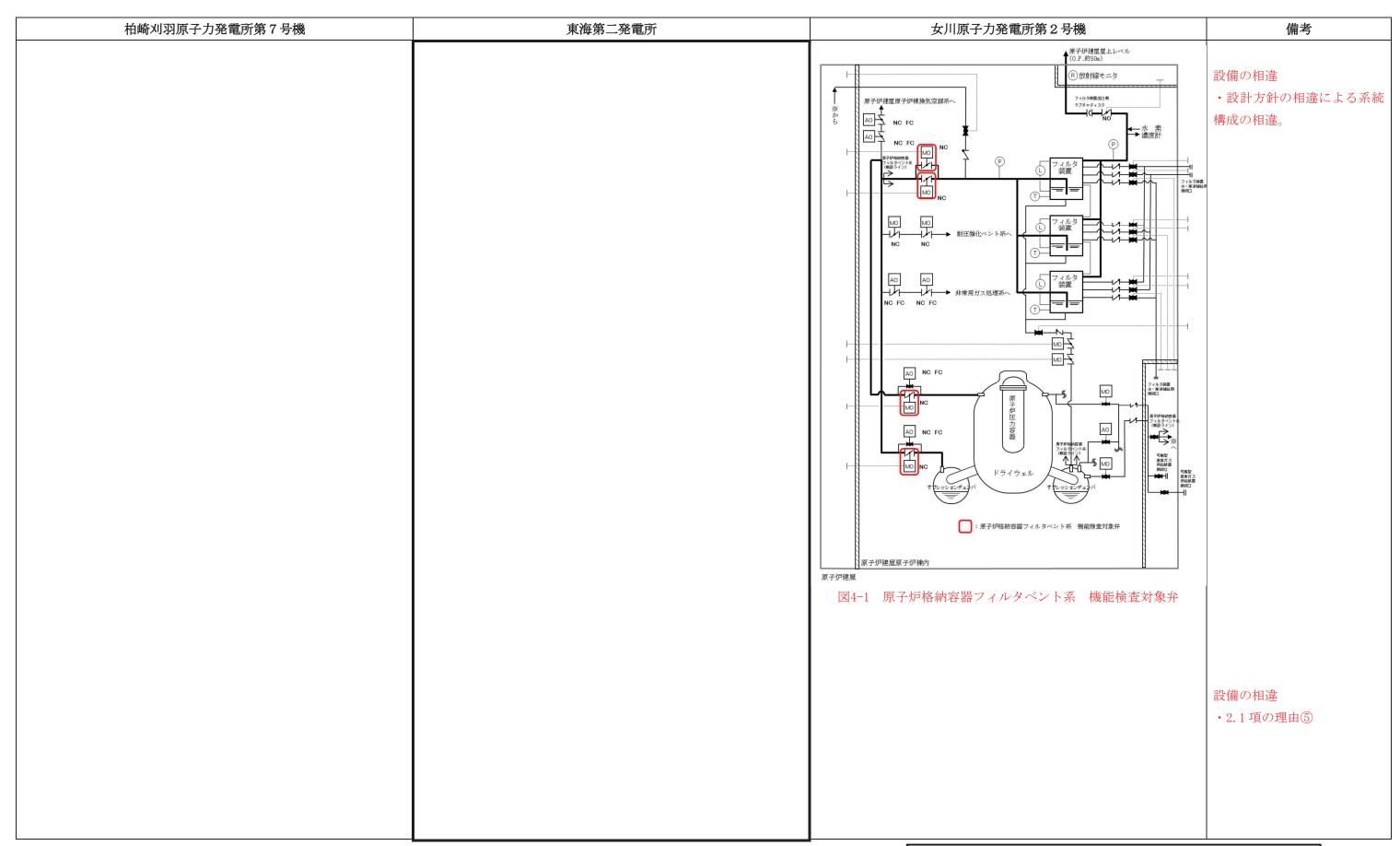
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		b. 影響評価	
		ベントガスの温度はベンチュリスクラバ(スクラバ溶液)を通過	設備名称の相違
		することで,スクラバ溶液の水温と同じになっているものと考えら	
		れ,	
		こととなる。よって、スクラバ溶液と接する放射性よう素フィ	
		ルタの外壁はスクラバ溶液から入熱されるため,放射性よう素フィ	
		ルタで蒸気が凝縮することはなく,よう素の除去性能への悪影響は	
		たい。	
		(7) 吸着材の変質	
		a. 想定する状態	
		放射性よう素フィルタの吸着材として使用する銀ゼオライトは、	設備名称の相違
		■ 放射線の照射環境に長期間晒されると、変質してよう素除去性能が	
		低下することが考えられる。	
		b. 影響評価	
		フィルタ装置で想定される照射量以上の放射線を照射した銀ゼ	
		オライトの性能試験結果から捕集性能を確認しており、よう素の除	
		ま性能への悪影響はない。	
		公性化への密影響はない。 	
		4. 設備の維持管理	
		(1) 点検方法	
		a. 機械設備	
		原子炉格納容器フィルタベント系の機械設備については、女川原	設備名称の相違
		子力発電所の他設備の点検実績等を参考に,設置環境や動作頻度に	プラント名の相違
		対する故障及び劣化モード等を考慮して、適切な周期で点検(時間	
		基準保全)を行うことにより、設備の健全性を確保する。	
		一方,女川原子力発電所として保全の経験がない設備として,高	
		アルカリ性のスクラバ溶液に接液する設備が挙げられる。これらの	
		設備については、劣化モード(腐食等)を考慮した材料選定を行っ	
		ており, 有意な劣化が発生する可能性は小さいと考えているが, 先	
		ずは初回定期検査時に点検を実施し、その結果を基に点検周期を定	
		めるものとする。	
		スクラバ溶液の分析については, 海外プラントにおいて窒素封入	
		環境下で 間薬液濃度の有意な変化は認められていない実績	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		があり、性状に有意な変化はないものと考えられるが、定期検査ご	
		とに実施することとする。	
		また, 放射性よう素フィルタに充填される銀ゼオライトについて	
		は、試験を行い、スクラバ溶液による飽和蒸気環境下で 間	
		保管した後も性能基準を満たしていることを確認した。	
		女川原子力発電所第2号機のフィルタ装置では,銀ゼオライト	
		のサンプリングが可能な設計としており、先ずは初回定期検査時	
		に性状の確認を行い,その結果を基にサンプリング周期を定める	
		ものとする。	
		機械設備の点検内容を表4-1に示す。	
		なお, 点検周期については, 今後の保全活動を実施する中で適切 な周期の見直しを行うこととする。	表現の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機				備考
		3	表4-1 機械	設備の点検内		設備の相違
		設備名		点検内容	点検周期・時期(計画)	・2.1項の理由⑤
			木体	外観点検(内面)	初回定検 (結果によりそ の後の周期を決定)	・各プラントの他設備の点検
		フィルタ装置	機能確認	漏えい確認	本体内部点検に合わせて 実施	実績等を参考に、設置環境や動作頻度に対する故障及び劣
			スクラバ溶液	水質確認	1 定検毎	
		内部構造物 ・ベンチュリノズル	本体	外観点検	初回定検(結果によりそ	化モード等を考慮して点検周 期を定めている。
		・金属繊維フィルタ・流量制限オリフィス・放射性よう素フィルタ	機能確認(放 射性よう素フ	サンブル性状確認	の後の周期を決定)	
		・放射性より系フィルク	ィルタ)	外観点検		
		フィルタ装置出口側 ラブチャディスク	本体	フランジ面手入れ	初回定検(結果によりそ の後の周期を決定)	
			漏えい確認			
				外観点検		
		配管	木体	フランジ部点検 手人れ	10 定検毎	
			機能確認	漏えい確認		
				弁箱内面点検手		
			La the	入れ 弁体, 弁座, 弁	-	
		弁	本体	棒等点検手入れ	2 定検毎	
				パッキン類交換 外観目視点検	-	
			機能確認	漏えい確認		
			170 92 713 713	作動試験		
					備については, 女川原 设置環境や動作頻度に	
		基準保全)を行うこ 電気設備の点検内	とにより, 容を表4-2に ついては,	設備の健全性を 示す。 今後の保全活動	のな周期で点検(時間を確保する。 がを実施する中で適切	

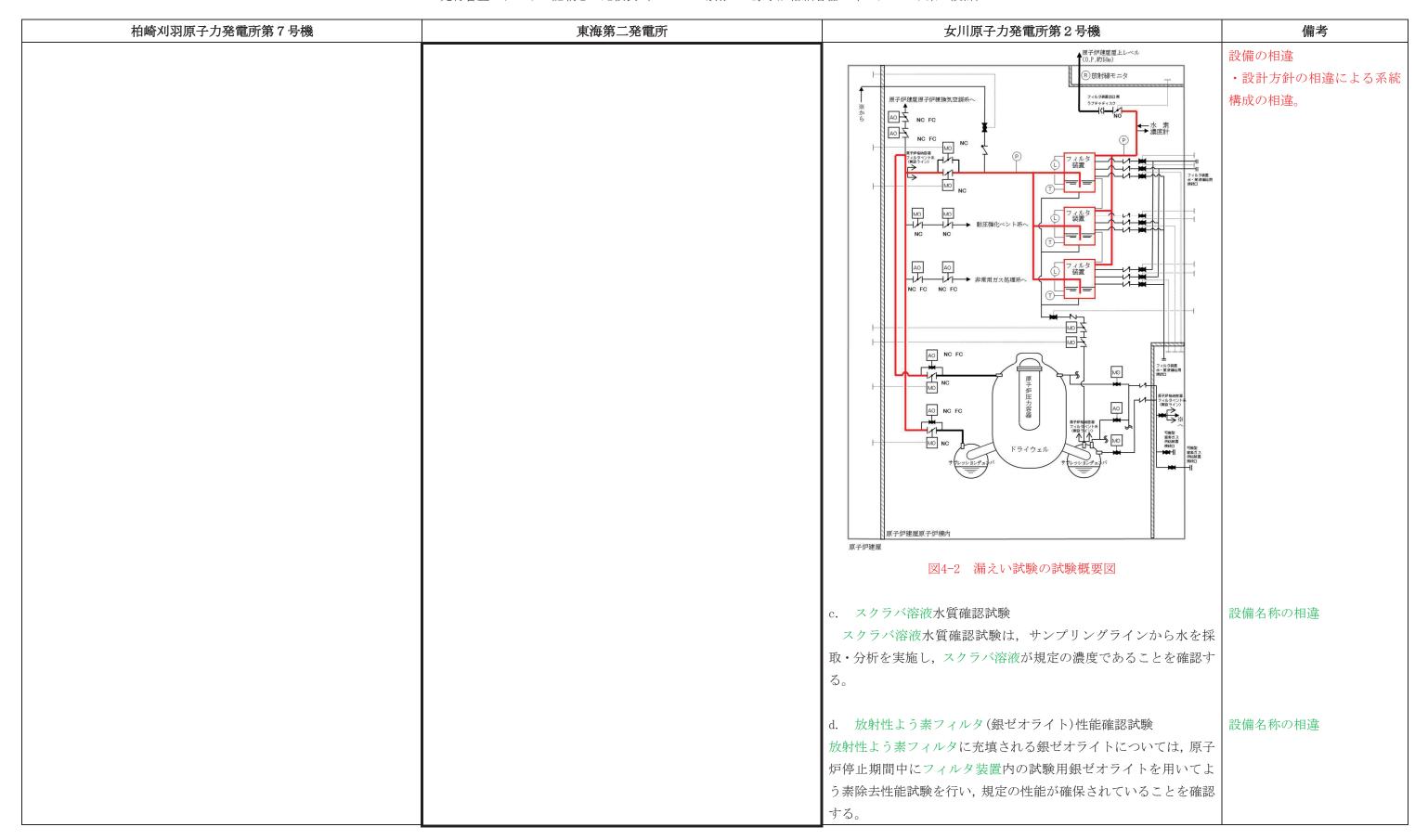

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機				機	備考
			表4-2 電	意気設備の点検内	· 内容	設備の相違
		記	设備名	点検内容	点検周期・時期(計画)	・2.1項の理由⑤
			電動機	外観点検	1 定検毎	・各プラントの他設備の点検
			11. 期 校	分解点検	5 定検毎	実績等を参考に、設置環境や
			トルクスイッチ	動作確認	1,046	
			トルクスイッテ	設定値確認	1 定検毎	動作頻度に対する故障及び劣
			リミットスイッチ	動作確認	1 定検毎	化モード等を考慮して点検周
		電動介駆動部	リミットムイッテ	取付状態確認	── 1 足快毋	期を定めている。
		-C27771 -912-277 pt	電気室	結線点検	1 定検毎	
			開度計	外観点検	1 定検毎	
				指示値確認		
			試験・測定	絶縁抵抗測定		
				作動試験	1 定検毎	
			電流測定			
		子力発電所の 対する故障及 基準保全)を 計装設備の なお,点検	容器フィルタベ 他設備の点検実 び劣化モード等 行うことにより 点検内容を表4-	:績等を参考に, :を考慮して, 適 , 設備の健全性 -3に示す。 , 今後の保全活	設備については、女川原設置環境や動作頻度に 近切な周期で点検(時間 性を確保する。 動を実施する中で適切	プラント名の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子	備考		
			表4-3 計	装設備の点検内容		設備の相違
		設備名	点	検内容	点検周期・時期(計画)	・各プラントの他設備の点検
		水位計	特性試験	外観点検 単体・ループ校正	- 1 定検毎	実績等を参考に、設置環境や
		压力計	特性試験	外観点検 単体・ループ校正	- 1定検毎	動作頻度に対する故障及び劣 化モード等を考慮して点検周
		温度計	特性試験	外観点検 単体・ループ校正	1 定検毎	期を定めている。
		W 0160 >	AL IA -3 FLOA	外観点検	- Ma 10 (c)	
		放射線モニタ	特性試験	単体・ループ校正 線源校正	1 定検毎	
		水素濃度計	特性試験	外観点検 単休・ループ校正	1 定検毎	
			// Am / A E	ガス校正		
			外観検査 特性試験	外觀点檢 計器校正	1 定 検 毎	
		サンブリング機器	機能・性能試験	作動試験	1定検毎	
			分解点検	ボンプ分解点検	1定検毎	
		制御盤	外観検査	外観点検	1 定検毎	
		験」,「漏えい試 う素フィルタ(a. 弁開閉試験 系統が所定の いて開閉試験を ・中央制御室の	験」,「スクラ 銀ゼオライト 機能を発揮す 実施する。図 操作スイッチ	バ溶液水質確認計) 性能確認試験」	るため, 以下の弁につ す。 険	設備の相違 ・2.1項の理由⑤

: 前回提出時からの変更箇所

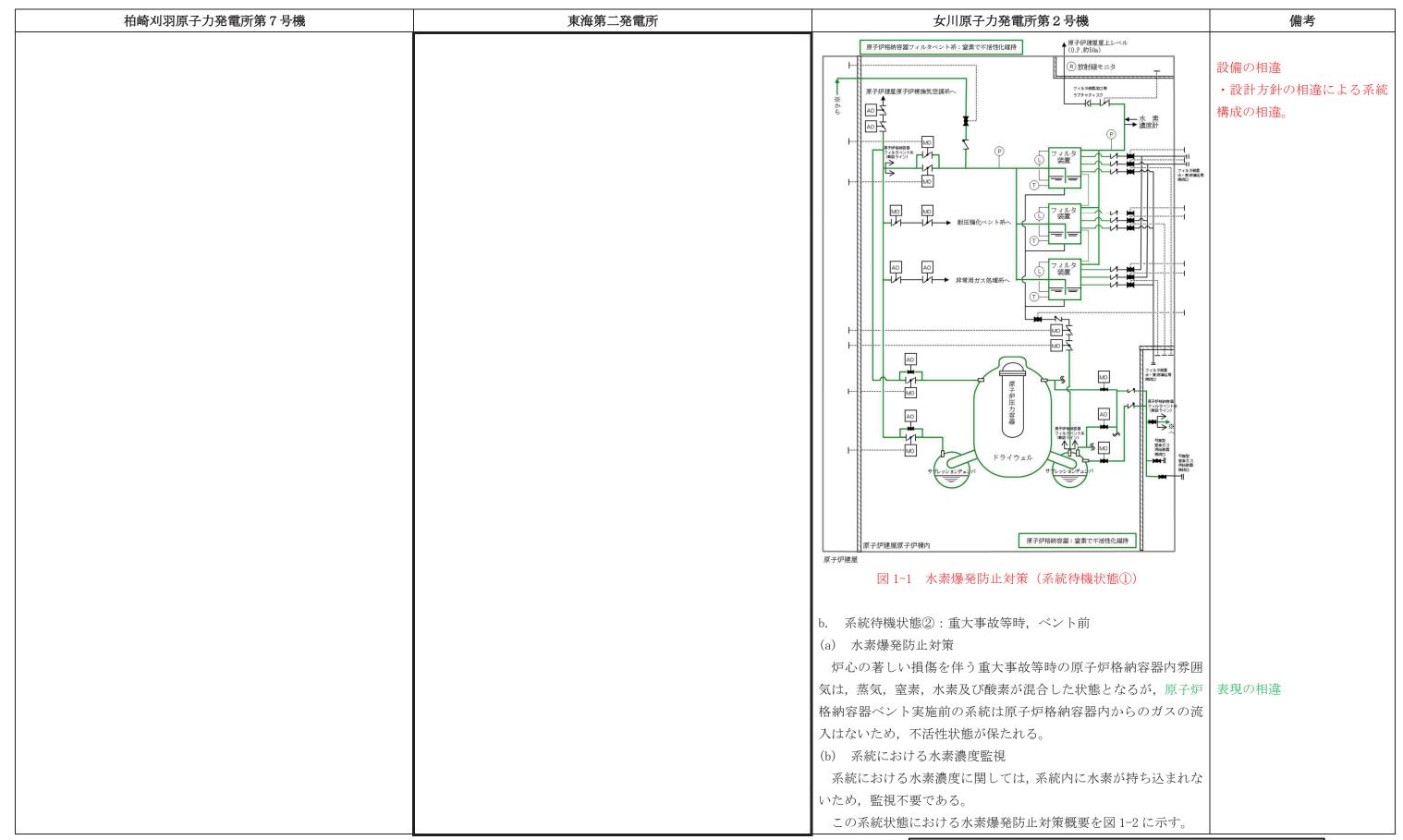

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・2.1項の理由⑤
		b. 漏えい試験(主配管)	
		漏えい試験の試験条件・方法を表 4-4 に, 試験概要図を図 4-2 に	
		示す。	
		漏えい試験の各条件について下記(a)~(c)に整理する。	
		(a) 加圧媒体	
		ベント開始時の系統内は窒素が支配的であること、また、ベント	記載方針の相違
		継続中に漏えい防止対象となる放射性物質は窒素又は空気より分	設計方針の相違
		子量が大きいことから、窒素 <mark>又は空気</mark> を加圧媒体とすることは妥当	・女川は加圧媒体を窒素又は
		であると判断する。	空気とすることで計画
		なお、事故時に発生する水素については、フィルタ装置のフラン	
		ジ部等から漏えい試験の検出限界値の水素が漏えいした場合にお	
		いても,長期にわたってフィルタ装置室内が可燃限界に到達しない	設備の相違
		こと、系統内から水素が漏えいした場合においても、建屋内につい	・2.1項の理由⑤
		ては静的触媒式水素再結合装置による処理が、建屋外については外	
		気への拡散が期待できること、また、試験時の安全性確保の観点か	
		ら、水素を加圧媒体とした漏えい試験は行わない。	
		(b) 試験圧力	
		漏えい試験では, 系統内が不活性状態で維持できることを確認す	
		るため窒素封入圧力 kPa[gage]以上を試験圧力とする。また,系	
		統の使用時にバウンダリ機能を維持できることを確認するため最	
		高使用圧力 854kPa[gage] を試験圧力とする。	設備の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機			備考		
		(c) 試験温度 漏えい試験では、系統の最高使用温度200℃を模擬することが困難となることから約180℃低い常温約20℃での漏えい確認となるが、試験温度については、環境温度が高い場合、配管が熱膨張した状態となり、フランジ部パッキンに圧縮荷重が付加されることによりシール性が向上するものとなることから、常温での試験環境は、保守的となる。			・2.2項の理由⑥		
			加圧		の試験	条件・目的・方法	設備の相違 ・2.2項の理由⑥
		簡易 点検	媒体	試験圧力 kPa[gage]以上 (窒素封入圧力)	温度常温	試験目的・方法 系統内を不活性状態に維持することを目的に,系統全体を窒素封入圧力 (待機状態) に加圧し,著しい漏	- 2. 2 填い垤田⑩
		本格点検	窒素 又は 空気	854kPa[gage]以上 (最高使用圧力)	常温	えいのないことを確認する。 使用時にバウンダリ機能が維持されていることを確認するために、系統全体を最高使用圧力に加圧し、著しい漏えいのないことを確認する。	

: 前回提出時からの変更箇所


: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		別紙 1	
		可燃性ガスの爆発防止対策について	
		1. 原子炉格納容器フィルタベント系	設備名称の相違
		原子炉格納容器フィルタベント系の系統内で可燃性ガスの爆発	
		が発生した場合, 当該系統に期待している放射性物質の低減効果が	表現の相違
		喪失するおそれ又はフィルタ装置内で保持している放射性物質の	
		外部への放出のおそれがあるため、設計及び運用により系統内での	
		可燃性ガスの爆発を防止する。	
		(1) 考慮する可燃性ガスの種類及び対策	
		炉心の著しい損傷を伴う重大事故等時に発生するおそれのある	
		可燃性ガスとして、ジルコニウムー水反応、水の放射線分解及び金	
		属腐食により発生する水素が考えられる*。これらの反応によって	
		原子炉格納容器内水素濃度は,可燃限界濃度である 4vol%を大き	
		く上回るが,原子炉格納容器内雰囲気は通常運転時から不活性化	
		(ドライ条件で酸素濃度 2.5vo1%以下に管理) することに加え, 水	
		の放射線分解によって発生する酸素を考慮しても酸素濃度を可燃	
		限界であるドライ条件で 5vol%未満に管理することで,水素及び	
		酸素が同時に可燃限界に到達することを防止する。原子炉格納容器	設備名称の相違
		フィルタベント系については、待機状態から系統内を窒素で不活性	表現の相違
		化することにより,原子炉格納容器内の水素が排出経路を通過する	
		際における水素爆発を防止する。	
		また,原子炉格納容器フィルタベント系の配管については,ベン	設備名称の相違
		ト時に発生する蒸気凝縮で発生するドレン水による閉塞やこれに	
		起因する水素及び酸素の滞留を防止するために、配管ルートにUシ	
		ール部ができないように配置する。新設部分については水平配管に	
		適切な勾配を設ける。	
		なお,水素爆発の条件として,水素濃度 4vol%かつ酸素濃度	
		5vo1%以上の条件に加えて,着火源又は500℃以上の発熱源が必要	
		となるが,原子炉格納容器内における着火源又は 500℃以上の発熱	
		源の不確かさが大きいため,酸素濃度を管理することで水素爆発を	
		防止することとしている。	
		注記*:溶融炉心・コンクリート相互作用によって,可燃性ガスで	
		ある一酸化炭素が発生することが考えられるが,有効性評	有効性評価結果の相違

: 前回提出時からの変更箇所

価の格納容器破損モード「溶融炉心・コンクリート相互作 用」における評価事故シーケンス「過渡事象+高圧注水失	
敗+低圧 ECCS 失敗+損傷炉心冷却失敗 (+デブリ冷却失敗)」での一酸化炭素の発生量は 1kg 未満 (0.1vol%未満)であり、また、一酸化炭素の可燃限界濃度が空気中において 12.5vol%であることを踏まえると、考慮不要と考えられる。	現の相違
(2) 系統の各運転状態における設計上の考慮 a. 系統待機状態①:プラント通常運転中 (a) 水素爆発防止対策 プラント通常運転中においては、原子炉格納容器と同様に系統内を窒素で不活性化する設計とする。フィルタ装置出口へ至る配管上には、窒素置換時に大気と隔離するため、フィルタ装置出口側ラブチャディスクを設けている。このフィルタ装置出口側ラブチャディスクは、原子炉格納容器からの排気と比較して、十分低い圧力で開放する設計とする。 (b) 系統における水素濃度監視系統における水素濃度に関しては、水素の発生がないため、監視不要である。 この系統状態における水素爆発防止対策概要を図 1-1 に示す。	
	(b) 系統における水素濃度監視 系統における水素濃度に関しては、水素の発生がないため、監視 不要である。

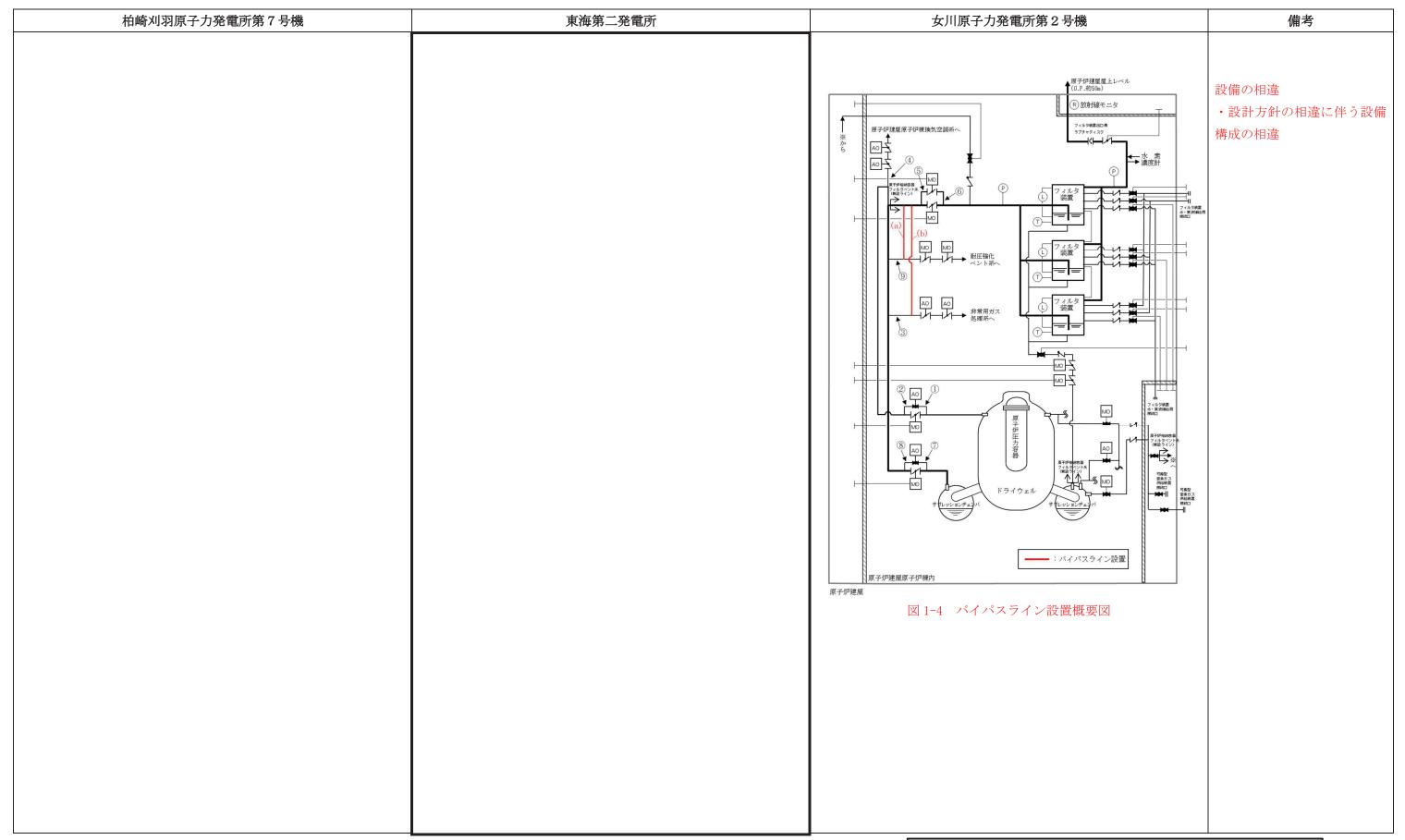
: 前回提出時からの変更箇所

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		原子伊護原子伊藤州 (系統・ 体機状態②) こ、系統運転状態①:ベント実施直後 (a) 水素爆発防止対策 ベント開始時において、ベントガス中の蒸気がスクラバ溶液によって凝縮された場合。酸素濃度が上昇することで、水素爆発が発生するおそれがあるが、ベント実施前から、原子伊格納容器内の酸素濃度をドライ条件で監視し、4.3vo1%に到達した時点でベントを実施する判断基準を設定していること及び原子伊格納容器フィルタベント系は不活性化されているため、仮にベントガス中の蒸気すべてがスクラバ溶液によって凝縮された場合においても水素爆発は	設備名称の相違

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		発生しない。なお、このベント実施判断基準については、酸素濃度	
		の可燃限界である 5vol%に対し,酸素濃度監視設備(格納容器内雰	設備名称の相違
		囲気酸素濃度)の測定誤差である±0.6vo1%に0.1vol%の余裕を考	表現の相違
		慮して設定した。また、原子炉格納容器内の気体については、原子	
		炉格納容器スプレイ及び温度差による自然対流効果によって均一	
		に撹拌されており、濃度分布がないため、酸素濃度監視設備(格納	設備名称の相違
		容器内雰囲気酸素濃度)により原子炉格納容器全体の濃度を代表し	
		て監視することができる。	
		(b) 系統における水素濃度監視	
		系統における水素濃度に関しては,原子炉格納容器から可燃限界	
		を超えた水素が流入するが,原子炉格納容器内の酸素を可燃限界未	
		満で管理していることから監視不要である。	
		(c) 対向流による空気の流入	
		フィルタ装置内が負圧に至るような状況下では, 対向流が発生す	
		ることにより、フィルタ装置内に空気が流入するおそれがある。し	
		かしながら,原子炉格納容器ベント実施時におけるスクラバ溶液沸	表現の相違
		騰までの間,ベントガス中の蒸気がスクラバ溶液によって凝縮され	設備名称の相違
		た場合においても、蒸気の供給が継続的に行われるためフィルタ装	
		置内が負圧にならないこと及び非凝縮性ガスの排出は継続される	
		ことから,対向流は発生しない。	
		(d) 枝管における水素及び酸素の蓄積について	
		原子炉格納容器内の酸素濃度については,ドライ条件に換算し	表現の相違
		て、5vo1%未満に管理することから、ベント実施中において、仮に	
		枝管におけるベントガスの蓄積があった場合においても, 枝管での	
		水素爆発は発生しないと考えられるが、万が一、枝管内での成層化	
		等によって混合ガスの濃度が変化した場合, 枝管での水素爆発の脅	
		威が存在する。そのため、枝管内での混合ガスの蓄積評価を実施す	
		る。枝管における水素及び酸素の混合ガスの蓄積の評価について	
		「BWR 配管における混合ガス(水素・酸素)蓄積防止に関するガイド	
		ライン(第3版)」(日本原子力技術協会)に基づき、上向きの枝管	
		に対して評価を実施する。なお、ガイドラインでは、下向き及び水	表現の相違
		平の枝管に対しては、水封されることで混合ガスが蓄積しないと評	
		価されているため対象外とした。	

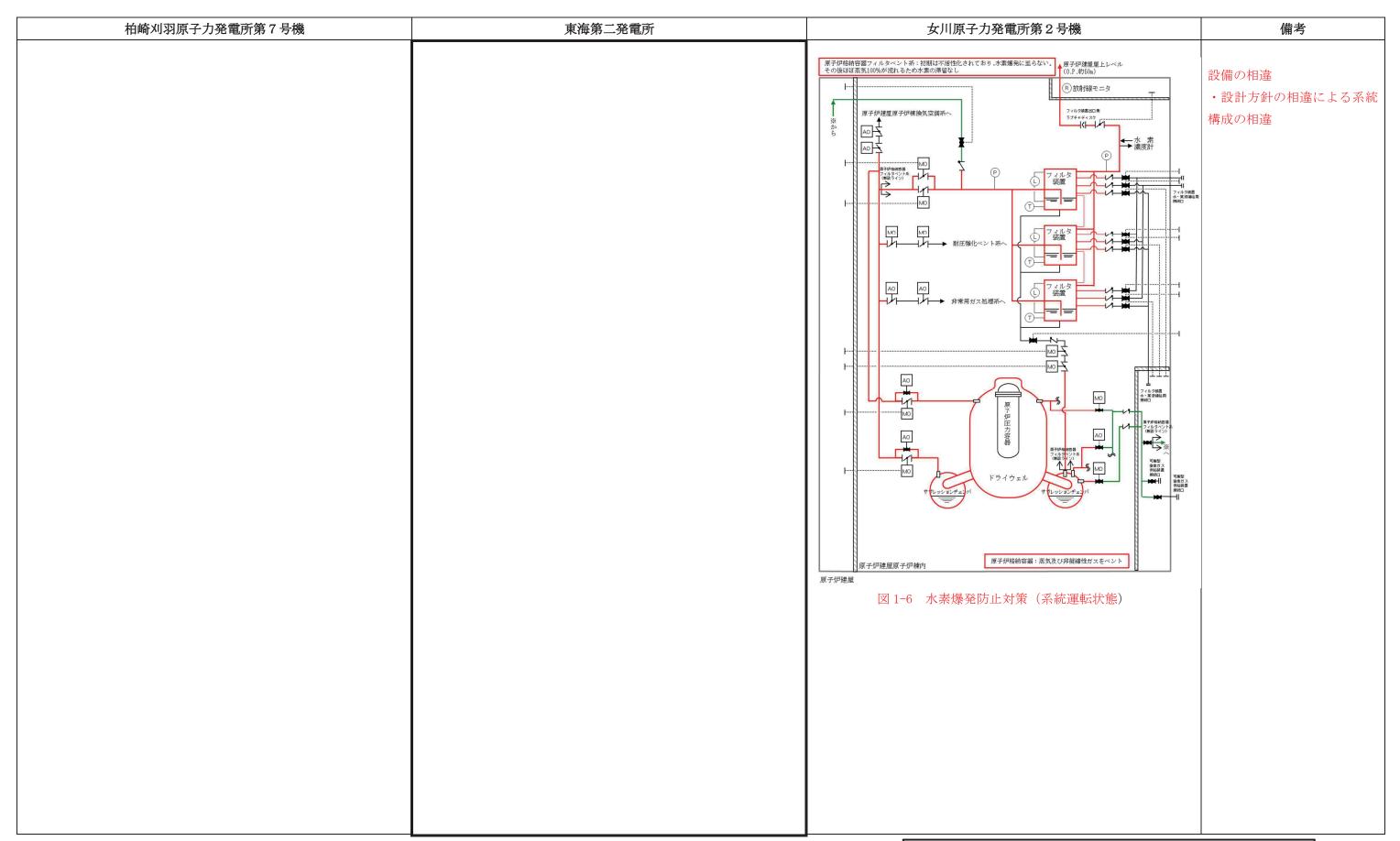

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		枝管長さ (L) を枝管内径 (D) で除することによって規格化した	
		不燃限界長さ(L/D)の数値によって, 枝管内に混合ガスが蓄積する	
		可能性の有無を判断する。不燃限界長さ(L/D) <mark>が</mark> 「BWR 配管におけ	設計方針の相違
		る混合ガス (水素・酸素) 蓄積防止に関するガイドライン (第3版)」	・女川では,運転範囲内で最も
		に規定される換気限界長さ以下であれば混合ガスの蓄積が発生し	流速が遅い場合の換気限界長
		ないとされている。	さをしきい値としている。
		主ラインから分岐する枝管の分岐方向及び評価結果を,表 1-1 に	表現の相違
		示す。	
		表 1-1 より, 非常用ガス処理系ライン及び耐圧強化ベント系ライ	設備の相違
		ンについては、混合ガスが蓄積する可能性がある結果となった。そ	・評価結果によるバイパスラ
		のため,図 1-3~図 1-5 に示すように,バイパスラインを設置し,	イン設置個所の相違
		混合ガスが蓄積することのない設計とする。また、フィルタ装置に	設備名称の相違
		接続される枝管については、下向き又は水平に設置する設計とす	設備の相違
		る。	・女川ではフィルタ装置に接
			続される枝管については、バ
			イパスラインが不要な設計と
			している。
		(e) フィルタ装置出口側ラプチャディスクの下流における水素爆	設備名称の相違
		発について	
		原子炉格納容器からフィルタ装置出口側ラプチャディスクまで	
		は不活性化されていること及び原子炉格納容器内の酸素濃度をド	
		ライ条件で可燃限界未満に維持することで, 高濃度の水素雰囲気に	
		おいても水素爆発は発生しないが、フィルタ装置出口側ラプチャデ	
		ィスク以降については,不活性化していない範囲であるため,高濃	
		度の水素と空気が触れることで水素爆発のおそれがある。しかしな	
		がら、ベント実施直後は、原子炉格納容器からのベントガスによっ	
		て系統内の窒素が押し出され,フィルタ装置出口側ラプチャディス	設備名称の相違
		ク以降の空気が排出されることから, 放出口までの範囲で高濃度の	
		水素が空気と触れず、水素爆発が発生することはないと考えられ	
		る。また、放出口から先については、大気であるものの、大気中に	表現の相違
		は着火源等がなく,水素爆発は発生しないと考えられる。なお,放	
		出口は、逆火防止として金網を設置する。	
			ļ

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機				備考			
		表 1-1 主ラインから分岐する枝管の閉止端までの長さと口径等					設備の相違		
			分岐箇所*	配管 分岐 方向	さ 枝管内 D(m)	35 0	* 換気限界 長さ	選合ガス 蓄積 可能性	・設計方針の相違に伴う設備 仕様の相違
		0	ドライウェルベント用出 口隔離弁バイパスライン (上流側)	水平 —	_	評価対象外	_	無	
			ドライウェルベント用出 口隔離弁バイパスライン (下流側)	水平 —		評価対象外	a -	無	
			原子炉建屋原子炉棟換気	上*3 7.65	3 0, 297		5	有	
		(4)	空調系ライン 原子炉格納容器フィルタ	水平 一	-	評価対象外	-	無	
		(5)	ベント系ベントライン隔 離弁(B) (上流側)	斜上 2.40	5 0.381	0 6.32	8	無	
		6	原子炉格納容器フィルタ ベント系ベントライン隔 離弁(B)(下流側)	斜上 2.91	0 0.381	0 7.64	8	無	
		7	サプレッションチェンバ ベント用出口隔離弁バイ パスライン (上流側)	水平 —	5=	評価対象外	c —	無	
		8	サプレッションチェンバ ベント用出口隔離弁バイ パスライン (下流側)	水平 —	_	評価対象外	_	1115	
		9	耐圧強化ベント系ライン	h.*3 27.99	0. 297	9 93.84	5	有	
			 2*1:フィルタ装置に接続さする。 *2:ベント実施中の想象 200kPa 時の母管流速いて「BWR 配管におけン(第3版)」解説図 *3:分岐方向は水平である 	定運転範囲Φ から求めたれ ける混合ガス] 3.3-7 より;	うち最も 支管 Re 数 (水素・酸 算出した値	。母管流速が値 及び枝管長さの 受素)蓄積防止 1。	低くなる衆 (L)/枝管内		
			変更前			変更後	ŧ		
			上向きの枝管 (混合ガス蓄積可能性範囲) 原子炉格納容器より 主ライン	フィルタ装置へ	原子炉格	納容器より 主ライン	バイパスライン フィル:		
		2	図 1-3 枝管へのバイ	゚゙パスライ	ンの追記	設 (混合ガ	ス蓄積隊	方止)	設備名称の相違

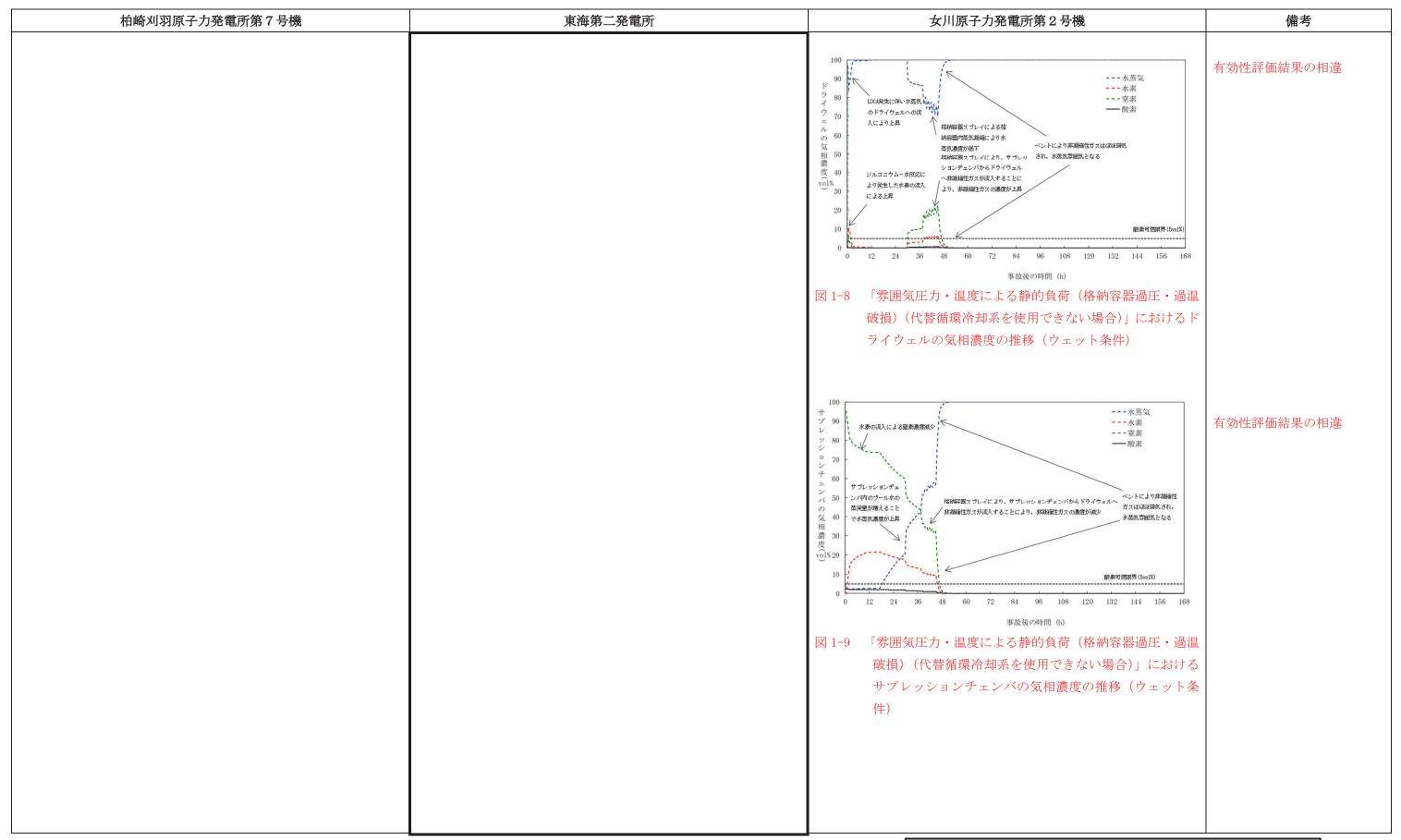
: 前回提出時からの変更箇所


: 前回提出時からの変更箇所

東海第二発電所	女川原子力発電所第2号機	備考
		設備の相違
		・設計方針の相違に伴う設備
		構成の相違
	図 1-5 枝管へのバイパスラインの追設配管 真瞰図	
	東海第二発電所	東海第二発電所 女川原子力発電所第2号機 図 1-6 校管へのパイパスラインの追読配管鳥歌図

: 前回提出時からの変更箇所

次傷の程序 この系能状態における水素爆発防止対接質要を図 1-6 に、酸素膜 療監視表傷(格納容器内容頭気酸素温度)の概要図を図 1-7 に、有 液傷を称の相序 効定評価シナリコ、雰囲気にか、温度による静的負荷(稀納容器の 正・強度を以(代金増度が到象を使用できない場合)」における原 子炉稀添容的交和過度の推移を図 1-8 及び図 1-9 における原 子炉稀添容の交和過度の推移を図 1-8 及び図 1-9 に示す。なお、 図に示す原子が格別容響の水素及の配素の気料度変については、 場合・解析に広づく水・ジル・エ・リム反応により発生する水素に加 え、版の 解析に広づく水・ジル・エ・ウム反応になり発生する水素に加 え、版の 解析であ感していない水の数片線分解によって発生する
水素及び酸素についても考慮している。


: 前回提出時からの変更箇所

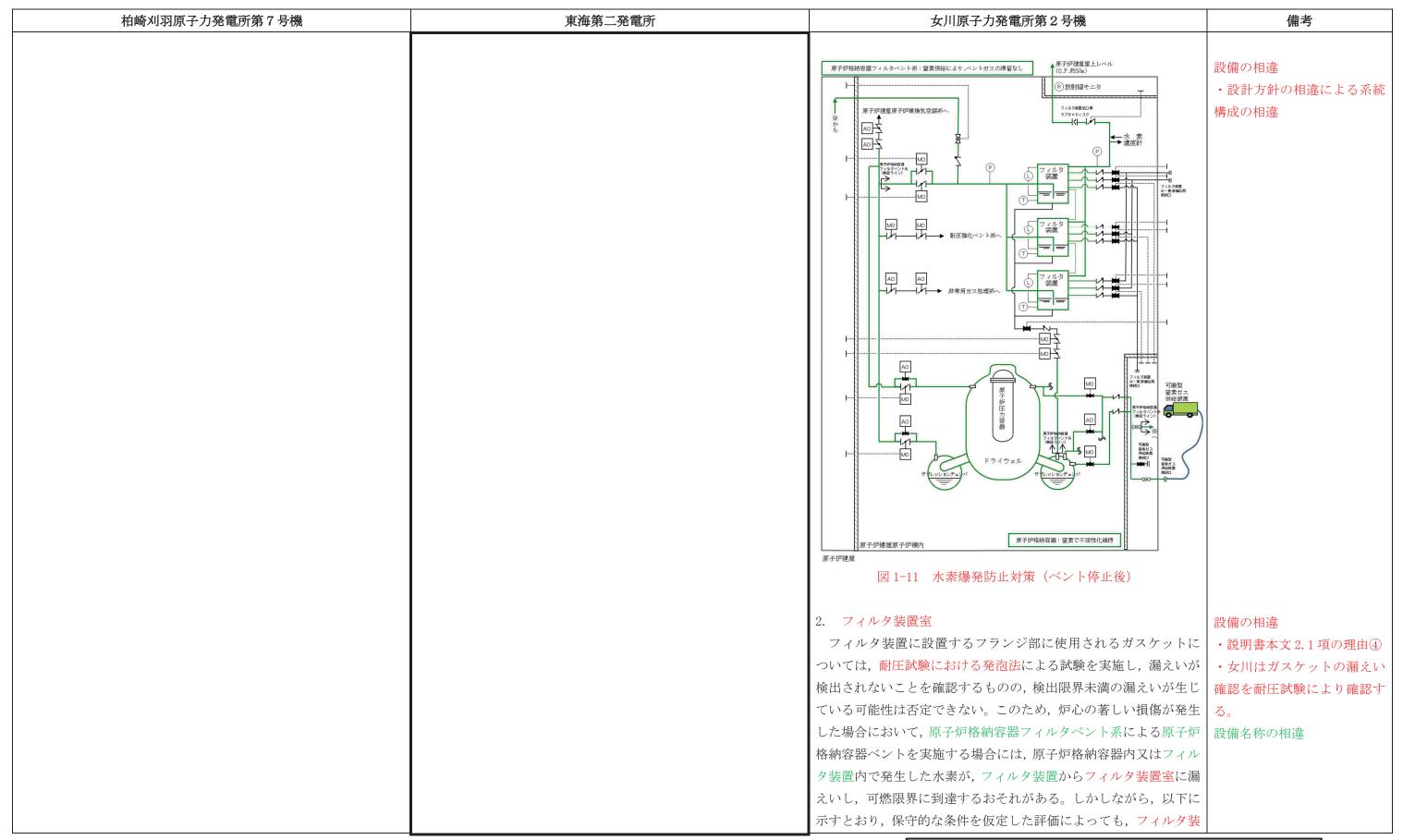
: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		中央制御室 中央制御室 日本 日本 日本 日本 日本 日本 日本 日	設備の相違・設計方針の相違に伴う設備構成の相違

: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		d. 系統運転状態②: 非凝縮性ガス排出(ベント開始後1時間程度)	
		後	
		(a) 水素爆発防止対策	
		ベント実施に伴うサプレッションプール水の減圧沸騰により,可	設備名称の相違
		燃性ガスを含む非凝縮性ガスが排出された以降の原子炉格納容器	
		は、ほぼ水蒸気で満たされた状態となり、系統へ流入するベントガ	
		スもほぼ水蒸気となることから、水素爆発は発生しない。	
		(b) 系統における水素濃度監視	
		系統における水素濃度については、ベントガスがほぼ蒸気となっ	
		ていることから、監視不要である。	
		(c) 対向流による空気の流入	
		原子炉格納容器及び系統から非凝縮性ガスが排出された以降は,	
		仮に対向流が発生した場合であっても,原子炉格納容器及び系統内	
		はほぼ蒸気で満たされている状態となるため、水素爆発は発生しな	
		lν _o	
		この系統状態における水素爆発防止対策概要は図 1-6 と同様で	
		ある。	
		e. 原子炉格納容器ベント停止後	表現の相違
		(a) 水素爆発防止対策	
		原子炉格納容器ベント停止後、スクラバ溶液の放射線分解により	
		水素及び酸素が発生するため、原子炉格納容器第二隔離弁の下流か	
		ら可搬型窒素ガス供給装置による窒素供給を実施し、系統のパージ	
		を継続することで、水素爆発を防止する。	構成の相違。 設備名称の相違
		(b) 系統における水素濃度監視	
		系統における水素濃度に関しては, 窒素供給による <mark>系統パージ中</mark>	運用の相違
		において ,水素が系統内に滞留しないことを確認するため,監視を	・ベント停止後の運用の相違
		実施する。	
		(c) スクラバ溶液の放射線分解による酸素発生	設備名称の相違
		ベント停止後において, スクラバ溶液の放射線分解によって発生	
		する酸素については, スクラバ溶液中の放射性物質の崩壊熱によっ	
		て発生量が変化するが、蒸気の発生量も崩壊熱によって変化する比	
		例関係にあり、以下のとおり、酸素濃度は 0.1vol%未満となるため	

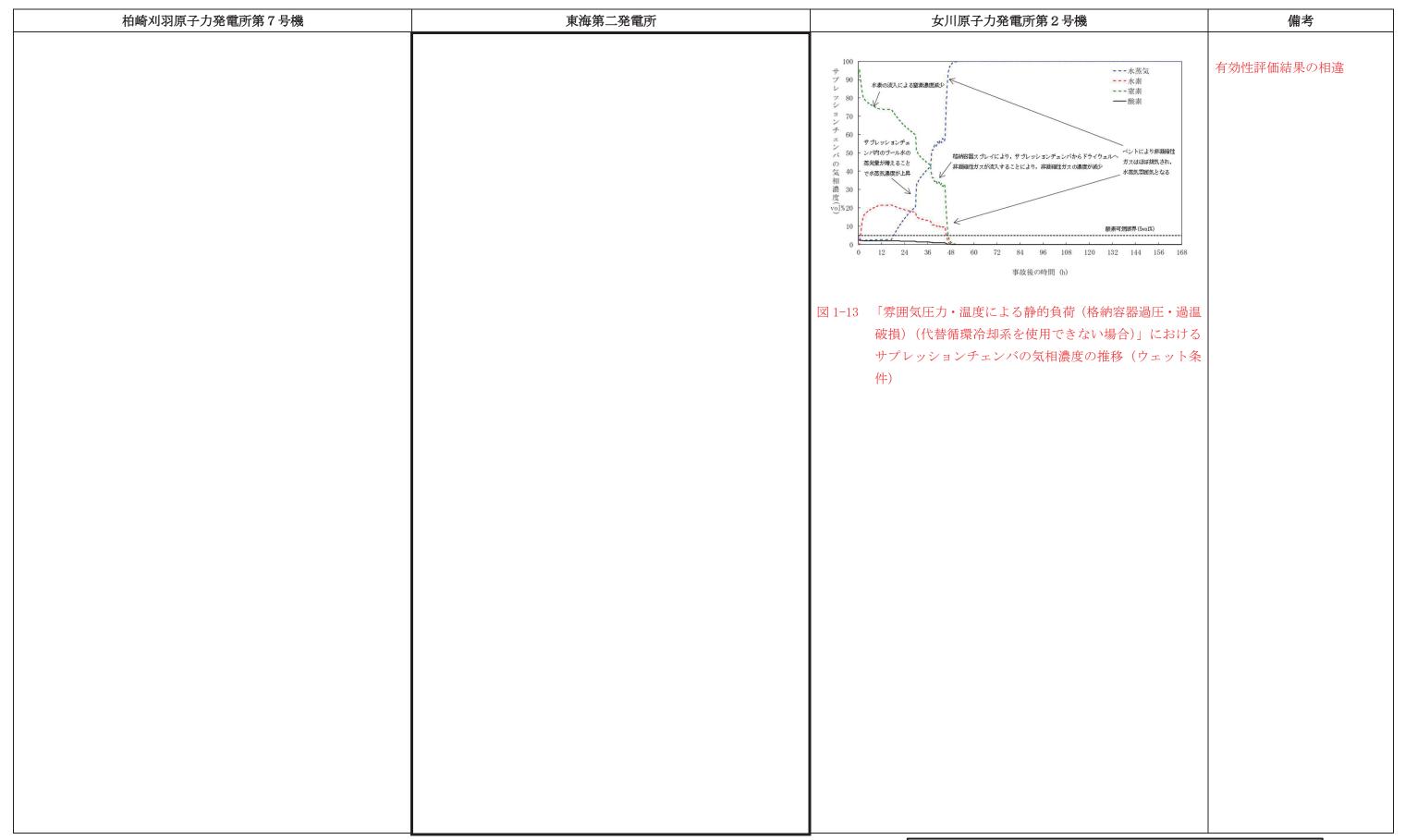

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		系統内で水素爆発することはない。	
		酸素濃度の計算条件は以下のとおりとする。	表現の相違
		・スクラバ溶液は沸騰しているものと想定し、酸素発生量のG値は	
		0.2 (分子/100eV) とする。	
		・スクラバ溶液の放射線吸収割合は 1.0 とする。	
		・崩壊熱はQ(MW)とする。	表現の相違
		・1eV=1.602×10 ⁻¹⁹ (J), アボガドロ数は 6.022×10 ²³ とする。	
		○蒸気発生量= [崩壊熱 (MW)] ×1000/ ([飽和蒸気比エンタルピ] -	
		[飽和水比エンタルピ]) ×1000/分子量×22.4×10 ⁻³ ×3600	
		$= Q \times 1000 / (2675.53 - 418.99) \times 1000 / 18 \times 22.4 \times 10^{-3} \times 3600$	設計条件の相違
			・女川は、日本機械学会 蒸気
		$=1985.4\times Q m^3/h[normal]$	表〈1999〉の比エンタルピによ
			り計算
		○酸素発生量=[崩壊熱 (MW)] ×10 ⁶ × [G値] /100/ (1.602×10 ⁻¹⁹) /	
		(6.022×10 ²³) ×22.4×10 ⁻³ ×3600× [放射線吸収割合]	
		$= Q \times 10^{6} \times 0.2 / 100 / (1.602 \times 10^{-19}) / (6.022 \times 10^{23})$	
		$\times 22.4 \times 10^{-3} \times 3600 \times 1.0$	
		$=1.68 \times Q \text{ m}^3/\text{h[normal]}$	
		○酸素濃度 =酸素発生量/ (蒸気発生量+酸素発生量) ×100	
		=0.085%	
		(d) 排水配管使用時における原子炉格納容器内への空気流入の影	設備名称の相違
		響について	
		原子炉格納容器ベント停止後は,図 1-10 に示すとおり,自重に	表現の相違
		てスクラバ溶液をサプレッションチェンバへ移送することとして	設備の相違
		いる。スクラバ溶液を移送する際には、排水配管の一部に残留した	・説明書本文 2.1 項の理由⑤
		空気がスクラバ溶液とともにサプレッションチェンバへ流入する	設備名称の相違
		が,ベント停止後の原子炉格納容器は窒素供給により不活性化され	
		ており,原子炉格納容器内の水素濃度を可燃限界未満に維持するた	設備の相違
		め、空気の流入による影響はない。	・女川はベント後の原子炉格
			納容器内の不活性化につい
			て、可燃性ガス濃度制御系に
			期待しない。
		この系統状態における水素爆発防止対策概要を図 1-11 示す。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		第子伊護原子伊藤原 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	設備の相違・設計方針の相違による系統構成の相違

: 前回提出時からの変更箇所


: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		置室内の水素濃度は,事象発生7日後において,約5.6×10 ⁻³ vol%	解析結果の相違
		程度であり、長期にわたり可燃限界である 4vol%に到達すること	
		はない。さらに,事象発生7日後以降については,外部支援等によ	
		って,原子炉格納容器除熱機能を復旧させ,原子炉格納容器ベント	表現の相違
		の停止及びスクラバ溶液の移送によるフィルタ装置室への水素漏	設備名称の相違
		えい防止が実施できる。	設備の相違
			・説明書本文 2.1 項の理由④
		以上のことから,フィルタ装置室で水素爆発が発生することはな	
		V _o	
		(1) 評価シナリオ	
		評価シナリオは,炉心損傷を伴う有効性評価事象のうち,原子炉	表現の相違
		格納容器ベント実施時のウェット条件における水素濃度が最も高	
		いシナリオである「雰囲気圧力・温度による静的負荷(格納容器過	
		圧・過温破損) (代替循環冷却系が使用できない場合)」とする。	
		また, 当該シナリオでは, 図 1-12 及び図 1-13 に示すとおり, 原	
		子炉格納容器ベント実施 4 時間程度で原子炉格納容器内雰囲気は	有効性評価結果の相違
		水蒸気 100vo1%雰囲気となるものの,保守的に高濃度の水素が7日	
		間継続して通過することを仮定して評価を実施する。	
		(2) 評価	
		評価条件を表 1-2 に示す。	
		a. 漏えい条件	
		漏えい条件は,「雰囲気圧力・温度による静的負荷(格納容器過	
		圧・過温破損) (代替循環冷却系が使用できない場合)」における原	表現の相違
		子炉格納容器ベント実施前の最大水素濃度である 25vol%(ウェッ	有効性評価結果の相違
		ト条件)とし、その他のガス組成については、水蒸気として取り扱	
		う。また、漏えいした水蒸気については、保守的にすべて凝縮する	
		ものとして評価を実施する。なお、原子炉格納容器ベント実施時の	
		水素濃度は、ドライ条件においても 25vo1%以下であり、漏えいし	
		た水蒸気の凝縮を考慮する場合、ウェット条件の方が保守的な評価	
		となる。	
		漏えい率については,JIS Z 2330(2012)「表 1-漏れ	設計方針の相違
		試験方法の種類,適用方法及び特徴」の「圧力変化法(加圧)」に基	・女川は,ガスケットの試験結
		づき,保守的に <mark>854kPa[gage]</mark> ,200℃の条件下において,検出限界	果よりも当該JISの検出限

: 前回提出時からの変更箇所

	値の水素漏えいがあるものと仮定する。	田はぶりかめベナフナル
	他の小糸棚といかのものと仮足する。	界値が保守的であるため、後 者を使用
	スクラバ溶液の放射線分解によって発生する水素については,発	
	生量が少なく、フィルタ装置を通過する水素濃度 25vo1%の保守性	
	に包絡されるため、考慮しない。	有効性評価結果の相違
	b. フィルタ装置室の条件	設備の相違
	フィルタ装置室の条件は、乾燥空気におけるガス組成とする。	・説明書本文 2.1 項の理由④
	空間容積については、躯体図から算出した数値(フィルタ装置分	記載表現の相違
	を除く。)に対し、機器配管分の低減率として、0.7を乗じて算出する。	
	100	有効性評価結果の相違
	10 0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 事故後の時間(h) 図 1-12 「雰囲気圧力・温度による静的負荷(格納容器過圧・過温 破損)(代替循環冷却系を使用できない場合)」におけるドライウェルの気相濃度の時間(h) 図 1-12 「雰囲気圧力・温度による静的負荷(格納容器過圧・過温 を	

: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所		女儿	川原子力発電所第	2 号機	備考
		表 1-2	フィルタ装	長置室の水素濃度	評価における評価条件	評価条件の相違
		項	Ħ	条件	備考	・有効性評価結果の相違
			10/2/4	WOLDS-CO.	: 炉心損傷を伴う事象のうち,原	
				る静的負荷(格納容器	子炉格納容器ベント実施時のウ	
		評価シ	ナリオ		エット条件における水素濃度が	
					最も高いシナリオを選定	
				きない場合)		
			水素濃度	25vo1%	原子炉格納容器ベント実施前の 最大水素濃度として設定	
		9	水蒸気濃度		保守的な条件として、フィルタ	
			(漏えい時)	75vol%	装置から漏えいする水素以外の	
		8	水蒸気濃度			
			(漏えい後)	0vol%	扱い、漏えい後は水蒸気がすべ	
		漏えい条件	酸素濃度	0vo1%		
		加えて来日	窒素濃度	0vo1%		
					保守的に7日間継続して高濃度	
			漏えい時間	168 時間	の水素が通過することを仮定し	
		2			て設定	
			漏えい率	7. $7 \times 10^{-4} \text{m}^3/\text{h}$	JIS Z 2330 (2012) の可検リーク率 (854kPa, 200	
			1/11/2_ 4	1: 1×10 m / 11	℃,水素条件)を踏まえて設定	
					躯体図から算出した空間容積に	
			空間容積	564m³	対し、機器配管分の低減率 0.7	
		フィルタ装置 室の条件			を考慮して設定	
		4.07条件	窒素濃度	79vol%	空気中のガス組成を踏まえて設	
			酸素濃度	21vo1%	定	
			水素の密度	0.0887kg/m ³		
		濃度算出条件	CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF	1.234kg/m³	標準状態の条件として設定	
		-7 4 11 27 注票与	酸素の密度	1.410kg/m ³		
		321 SEL SX	漏えい	考慮しない	保守的な条件として設定	
		スクラバ溶液	か もんもしがら 八 なの		フィルタ装置を通過する水素濃	
		によって発		考慮しない	度 25vo1%の保守性に包絡され	
		10000	上りる小派		ることを踏まえて設定	
		c. フィル	タ装置室への	の漏えい評価		設備の相違
					ういする水素具は 凹下の	・説明書本文 2.1 項の理由④
				イルグ 表画主、M	んくりの小糸里は、以下の	
		式で算出す	る。			表現の相違
		水素漏え		漏えい率×水素濃 7.7×10 ⁻⁴ ×0.25×	度×漏えい時間・・・・ 式(1) 168	評価条件の相違
				約3.2×10 ⁻² m ³		

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		フィルタ装置室内での水素濃度を評価するため,式(1)で得た結	設備の相違
		果を mol 数に換算する。	・説明書本文 2.1 項の理由④
		水素の物質量 = 密度×体積×割合/分子量····· 式(2)	
		$= 0.0887 \times 3.2 \times 10^{-2} \times 1 / (2 \times 10^{-3})$	評価条件の相違
		= 約1.4mol	
		次に,フィルタ <mark>装置室</mark> 側の気体の物質量を算出する。	設備の相違 ・説明書本文 2.1 項の理由④
		酸素の物質量 = 密度×体積×割合/分子量····· 式(3)	
		$= 1.410 \times 564 \times 0.21 / (32 \times 10^{-3})$	評価条件の相違
		= 約5.219×10 ³ mol	
		窒素の物質量 = 密度×体積×割合/分子量····· 式(4)	
		$= 1.234 \times 564 \times 0.79 / (28 \times 10^{-3})$	
		$=$ 約 1.964 \times 10 4 mo1	
		式(1)~式(4)の結果を踏まえ、フィルタ装置室の水素濃度は以下	設備の相違
		のとおりとなる。	・説明書本文 2.1 項の理由④
		水素濃度 = 水素の物質量/(水素の物質量+酸素の物質量	
		+窒素の物質量)×100 ····· 式(5)	
		= 1.4 / $(1.4+5.219\times10^3+1.964\times10^4)$ ×100 = 1.4 / 1.4	評価条件の相違
		3. 可搬型窒素ガス供給装置の容量	設備名称の相違
		可搬型窒素ガス供給装置の容量は、下記のうち供給量が多くなる	
		①を考慮して設定している。	
		① ベント後、中長期的に除熱機能が復旧し、原子炉格納容器内の	運用の相違
		除熱を開始する前に窒素供給を開始し、除熱中の原子炉格納容器	・女川はベント停止前に原子
		内の水素濃度を可燃限界(4vo1%)未満に維持	炉格納容器窒素供給を開始
			表現の相違
			設計方針の相違
			・女川は、除熱復旧後の原子炉
			格納容器内の水素濃度を可燃
			限界 (4vol%) 未満に維持でき

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			るように窒素供給容量を設定
		② ベント停止後の原子炉格納容器フィルタベント系の水素滞留	
		防止のため、窒素の供給を行い、系統内の水素濃度を可燃限界	表現の相違
		(4vol%) 未満に維持	設計方針の相違
			・女川は、除熱復旧後の原子炉
			格納容器内の水素濃度を可燃
			限界(4vol%)未満に維持できるように窒素供給容量を設定
			るよりに至糸供和谷里を試足
		可搬型窒素ガス供給装置の主要な仕様を表 1-3 に示す。	設備名称の相違
		表 1-3 可搬型窒素ガス供給装置の主要仕様	設備の相違
		供給容量 220m³/h[normal]	・設計方針の相違に伴う設備
		純度 99.0vo1% (不活性ガス)	仕様の相違
		供給圧力 427kPa[gage] (可搬型窒素ガス供給装置出口にて)	
		NTIZ 可拠刑の主おっ併処は異のの主併処の見の訊字について	凯供 复新页扣等
		以下に,可搬型窒素ガス供給装置の窒素供給容量の設定について 示す。	設備名称の相違
			表現の相違
		ベント開始後に原子炉格納容器内で発生する水素は, サプレッシ	
		ョンチェンバに移行した放射性物質による水の放射線分解による	設備名称の相違
		ものが支配的となる。	
		このため、水素発生量は、サプレッションチェンバへの放射性物	表現の相違
		質の移行量が大きい事象である格納容器破損モード「雰囲気圧力・	
		温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却系を	
		使用できない場合)」における評価事故シーケンス「大破断 LOCA+	
		HPCS 失敗+低圧 ECCS 失敗+全交流動力電源喪失」時において、ベ	
		ント開始後, ドライウェル圧力が 427kPa[gage]まで低下した時点	
		(事故発生約45時間後)の水の放射線分解による発生を想定する。	
		格納容器破損モード「雰囲気圧力・温度による静的負荷(格納容	
		器過圧・過温破損)(代替循環冷却系を使用できない場合)」における評価事故シーケンス「大破断 LOCA+HPCS 失敗+低圧 ECCS 失敗+	
		会評価事故シーケンス「人破断 LOCA+HPCS 矢敗+低圧 ECCS 矢敗+ 全交流動力電源喪失」時における,事故発生後約 45 時間経過時点	
		の水素発生量及び酸素発生量を図 1-14 に示す。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		The continue of the conti	有効性評価結果の相違
		可搬型窒素ガス供給装置の窒素供給容量は、格納容器破損モード「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用できない場合)」における評価事故シーケンス「大破断 LOCA+HPCS 失敗+低圧 ECCS 失敗+全交流動力電源喪失」時における水素発生量及び酸素発生量に対して、原子炉格納容器内の水素濃度を可燃限界(4vol%)未満に維持できるように、180m³/h [normal] 以上と設定している。 窒素供給量は以下の式を用いて算出する。	設計方針の相違

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

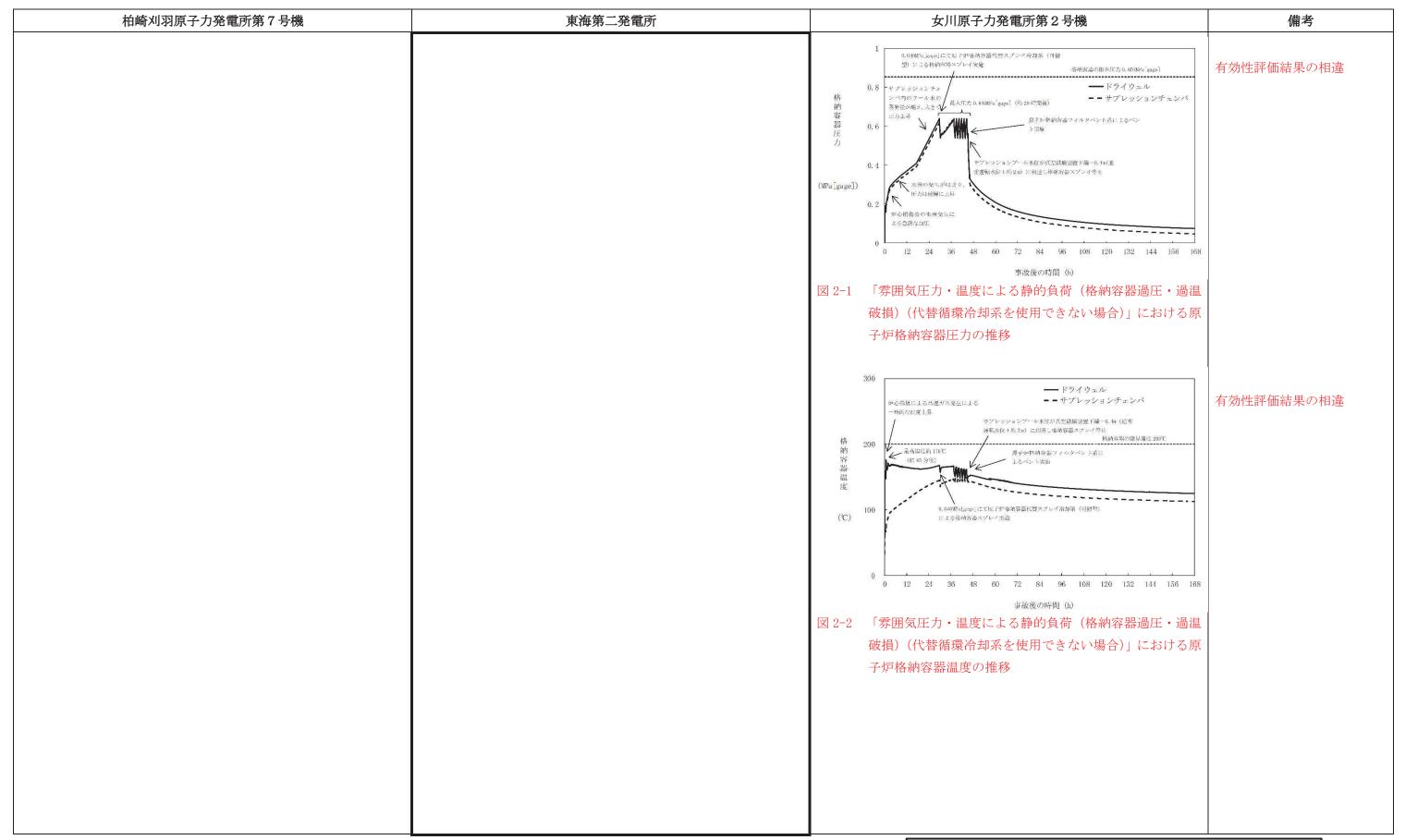
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			るように窒素供給容量を設定
		水素発生量=Q×10 ⁶ ×G値 ^(分子/100eV) /100/ (1.602×10 ⁻¹⁹) *1	表現の相違
		/ (6. 022×10 ²³) *2×22. 4×10 ⁻³ ×3600	
		×放射線吸収割合 · · · · · · · 式(6)	
		窒素供給容量= (水素発生量-水素発生量×0.04	
		一酸素発生量×0.04)	
		/0.04 · · · · · 式(7)	
		酸素発生量= (水素発生量) / 2m³/h [normal] · · · · · · 式(8)	
		Q : 崩壊熱 (MW)	
		注記*1:1eV=1.602×10 ⁻¹⁹ (J)	
		*2:アボガドロ数 6.022×10 ²³	
		水素発生量の計算には以下の条件及びMAAP解析結果を適用する。	
		・除熱機能の復旧により原子炉格納容器内は冷却されており、水	
		は非沸騰状態となっていることを想定し水素発生量のG値は	
		0.25 (分子/100eV) とする。	
		・放射線吸収割合は炉心部では 0.1,原子炉格納容器では 1.0 と	
		する。	
		・放射線分解に寄与する発熱量は、MAAP解析結果より炉心部では	 解析結果の相違
		約8.71MW, 原子炉格納容器では約2.61MW とする。	AT VITAZIS & TEXT
		炉心部水素発生量= <mark>8.71×10⁶×</mark> 0.25/100/ (1.602×10 ⁻¹⁹)	
		/ (6. 022×10 ²³) ×22. 4×10 ⁻³ ×3600×0. 1	
		$=1.83$ m $^3/h$ [normal]	
		原子炉格納容器水素発生量= <mark>2.61×10⁶×0.25/100</mark>	
		$/ (1.602 \times 10^{-19}) / (6.022 \times 10^{23})$	
		$\times 22.4 \times 10^{-3} \times 3600 \times 1.0$	
		$=5.46 \text{m}^3/\text{h [normal]}$	
		合計水素発生量=1.83+5.46	
		$=7.29$ m 3 /h [normal]	
		酸素発生量=7.29/2	
		$=3.65$ m $^3/h$ [normal]	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		窒素供給容量= (7.29-7.29×0.04-3.65×0.04) /0.04 =171.31m³/h [normal]	設計方針の相違 ・女川は、除熱復旧後の原子炉格納容器内の水素濃度を可燃限界(4vol%)未満に維持できるように窒素供給容量を設定
			解析結果の相違
			設計方針の相違 ・女川は、除熱復旧後の原子炉格納容器内の水素濃度を可燃限界(4vol%)未満に維持できるように窒素供給容量を設定

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設計方針の相違
			・女川は,除熱復旧後の原子炉
			格納容器内の水素濃度を可燃
			限界 (4vol%) 未満に維持でき
			るように窒素供給容量を設定


赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機 備	 j考
		別紙 2	
		原子炉格納容器フィルタベント系の系統設計条件の考え方につい 設備名称の相違	皇
		1. 系統設計条件	
		原子炉格納容器フィルタベント系については、想定される事故事 象での使用条件下において、性能を発揮できる設計とするため、系	基
		統設計条件を定めている。主な系統設計条件を表 2-1 に示す。	
		表 2-1 原子炉格納容器フィルタベント系の系統設計条件 設計条件の相違	圭
		設計条件設定根拠最高使用圧力854kPa[gage]原子炉格納容器の限界圧力を考慮し、2Pd (最高 使用圧力427kPa[gago]の2倍)とする。	
		最高使用温度 200℃ 原子炉格納容器の限界温度を考慮し、200℃とする。	
		10.0kg/s (原子炉格納容器圧力 投計流量 (原子炉格納容器圧力 427kPa[gage] において) (ほかで) (原子炉格熱出力1%相当の飽和蒸気量を、ベント開始圧力が低い場合(427kPa[gage])であっても排出可能な流量とする。	
		想定されるフィルタ装置に捕集及び保持される フィルタ装置 内発熱量 370kW 370kW 370kW 370kW 370kW より、原子炉定格熱出力の0.015%に相当する発熱 量とする。	
		# 想定されるフィルタ装置に移行するエアロゾル の量 (28kg) に対して十分な余裕を見込み, 150kgとする。	
		よう素の炉内 内蔵量	
		基準地震動Ss 基準地震動Ss にて機能を維持する。	
		注記*: ORIGEN2 コードでは、保守的に1サイクル13か月(395日)に対して、1サイクル10000時間(416日)の燃焼期間を仮定している。	
		原子炉格納容器フィルタベント系の各設計条件の考え方を以下に示す。	-

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		2. 最高使用圧力及び最高使用温度 原子炉格納容器フィルタベント系は、炉心の著しい損傷が発生した場合において、原子炉格納容器の破損を防止するため、原子炉格納容器内のガスを排気することにより、原子炉格納容器内の圧力及び温度を低下させることができる設計とし、原子炉格納容器圧力が原子炉格納容器の限界圧力 854kPa[gage] (2Pd:最高使用圧力の2倍)に到達するまでにベント操作を実施することとしている。	設備名称の相違 表現の相違 設計条件の相違 ・説明書本文 2. 2 項の理由⑥
		借)に到達するよでにヘント操作を実施することとしている。 有効性評価における原子炉格納容器圧力及び原子炉格納容器温度の推移から、ベント時に原子炉格納容器圧力及び原子炉格納容器温度は限界圧力 854kPa[gage]及び限界温度 200℃を下回ることから、2Pd、200℃を最高使用圧力及び最高使用温度としている。	・説明書本义 2.2 頃の理田(6) 表現の相違
		有効性評価のうち格納容器破損モード「雰囲気圧力・温度による 静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用できない場合)」における原子炉格納容器圧力及び原子炉格納容器温度の 推移を図 2-1 及び図 2-2 に示す。	表現の相違
		原子炉格納容器圧力の最大値は約 640kPa[gage],原子炉格納容器の最高温度は約 178℃であり、原子炉格納容器の限界圧力及び限界温度を下回っている。	有効性評価結果の相違 ・女川の原子炉格納容器圧力 及び原子炉格納容器温度の最 大値は、それぞれ原子炉格納 容器限界圧力及び原子炉格納 容器限界温度を下回る。

: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		3. 系統流量 (ベントガス流量) 原子炉格納容器フィルタベント系の系統流量は,原子炉定格熱出力の1%相当の蒸気流量をベント開始圧力が低い場合 (1Pd) においても排出できるよう以下のとおり設定している。	設備名称の相違
		(1) 蒸気流量の設定 重大事故等発生後の数時間で原子炉格納容器フィルタベント系 が使用されることはないが、保守的に原子炉停止後2時間~3時間後 に原子炉格納容器フィルタベント系が使用されると考え、その時点 での原子炉の崩壊熱として原子炉定格熱出力の1%を設定し、それ に相当する蒸気流量とする。	設備名称の相違
		(2) 原子炉格納容器圧力の設定 有効性評価において原子炉格納容器フィルタベント系のベント 開始圧力を 1Pd~2Pd としており、原子炉格納容器圧力が低い方が 蒸気排出条件が厳しくなるため、原子炉格納容器圧力は 1Pd とす る。	表現の相違設備名称の相違
		(3) 系統流量の算出 (1)及び(2)の組合せにより、系統流量を設定する。系統流量は式 (1)により算出する。崩壊熱は、保守的に注水された水を蒸発させ るエネルギーに全て寄与する評価とし、サプレッションプール等へ の熱の移行は考慮しない。さらに、原子炉圧力容器に注水された水 の蒸発によって発生した蒸気についても、保守的にサプレッション プール等による凝縮を考慮せず、系統流量として取り扱う。	設備名称の相違
		$W_{Vent} = Q_R \times 0.01/(h_s - h_w) \times 3600/1000 \cdots$ 式(1) ここで、 W_{Vent} : 系統流量(t/h) Q_R : 定格熱出力($2436 \times 10^3 kW$) h_s : 1Pd における飽和蒸気の比エンタルピ($2750 k J/kg$) h_w : 1Pd, $60^{\circ}C^{\circ}$ における水の比エンタルピ($252 k J/kg$) 注記*:原子炉圧力容器に注水する水温を保守的に高めに設定 した温度	設備の相違 ・原子炉定格熱出力の相違 ・定格圧力が異なることによ る、比エンタルピの相違
		(重大事故等対処設備として期待する <mark>水源の運転時最高</mark> 温度 60℃)	設備の相違 ・女川は復水貯蔵タンクの運

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			転時最高温度として設定
		以上より,系統流量は 35t/h となることから, 35t/h をkg/s へ単	
		位換算し,保守的に切り上げた 10.0kg/s を原子炉格納容器圧力 1Pd	・式(1)より算出した系統流量
		の時の系統流量とする。系統流量は、配管設計やオリフィスの設計	の相違
		条件として使用する。	
		なお, 原子炉格納容器圧力が 1Pd より高い圧力でベントする場合	表現の相違
		には、その時の原子炉格納容器圧力と系統全体の圧力損失から系統	
		流量が決まり,原子炉格納容器圧力が 1Pd 以上になれば系統流量も	
		10.0kg/s 以上となり、より蒸気を排出しやすい状況となる。	
		4. フィルタ装置内発熱量	
		原子炉格納容器フィルタベント系のフィルタ装置内発熱量は, 原	設備名称の相違
			設備の相違
		ている。	・原子炉定格熱出力の相違
		NUREG-1465における原子炉格納容器ソースタームに	表現の相違
		 基づき、ドライウェルベント時に原子炉格納容器からフィルタ装置	
		に移行する FP による崩壊熱を評価する。	
		フィルタ装置内発熱量は以下の式で表される。	
		【フィルタ装置内発熱量】	
		=【①ベント時の原子炉の崩壊熱】	
		×【②FP の原子炉格納容器への放出割合】	
		÷【③原子炉格納容器内の DF】	
		×【④フィルタ装置に蓄積する FP の崩壊熱への寄与割合】	
		① ベント時の原子炉の崩壊熱	
		重大事故等発生後の数時間で原子炉格納容器フィルタベント系	設備名称の相違
		が使用されることはないが、保守的に原子炉停止後約2時間~3時間	以偏石47007但是
		後に原子炉格納容器フィルタベント系が使用されると考え、その時	
		点での原子炉の崩壊熱として、原子炉定格熱出力の1%とする。	
		② FP の原子炉格納容器への放出割合	
		NUREG-1465に基づき, 揮発性核種のうち原子炉格納容	
		器への放出割合が最も大きい Halogen(I)の放出割合である61%で	
		代表させる。(表2-2)	本用の担告
		③ 原子炉格納容器内のDF	表現の相違
		海外で行われたFPエアロゾルの自然除去効果に関する試験(NSPP	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		試験等)では、原子炉格納容器のエアロゾルは数時間程度で1/10程	
		度まで減少している結果が得られており,原子炉格納容器内のエア	
		ロゾルに対する除去効果として, ドライウェルベント時は DF:10 <mark>*</mark>	
		とする。	
		注記*:事象発生から約45時間(有効性評価におけるベント開始	解析結果の相違
		時間)後の MAAP 解析結果から,DF は 10000 程度であるこ	
		とを確認しており、DF: 10 としている発熱量評価の設定は	
		保守的である。	
		④ フィルタ装置に蓄積する FP の崩壊熱への寄与割合	
		NUREG-1465に基づき,揮発性が比較的高く,炉心損傷	
		を伴う事故時に有意な放出割合となり, フィルタ装置に蓄積する核	
		種として, Halogen (I), Alkali metal (Cs), Te, Ba及びSrを想	
		定し、これら核種の崩壊熱への寄与割合は22%とする。(表2-3)	
		したがって、定格熱出力に対する崩壊熱は以下のように評価され	
		る。	
		ドライウェルベント:0.01×0.61÷10×0.22=0.01342%	
		以上より、フィルタ装置内発熱量は、上記割合を包絡する条件と	
		し,原子炉定格熱出力の 0.015%である 370kW(2436MW×0.015%)	設備の相違
		と設定する。	・原子炉定格熱出力の相違
		フィルタ装置内発熱量は、スクラバ溶液の初期保有量及びフィルの世界の世界が表現ない。	設備名称の相違
		タ装置の寸法設定に使用される。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原	京子力発電	所第2号機	Š		備考
		表 2-2 NUR	EG-14	65にお	ける原子炉	格納容	器内への放出	
		割合						
		H 7 H		Early-In-		Late-In	n-	
		元素グループ	Gap Release	vessel	Ex-vessel	vesse	合計	
		Noble gases*1	0.05	0.95	0	0	1.00	
		Halogens (I)	0.05	0. 25	0.30	0.01	0.61	
		Alkali metal	0.05	0.20	0.35	0.01	0.61	
		(Cs)	0	0.05	0. 25	0.005	0.305	
		Ba, Sr	0	0.03	0. 23	0.003	0. 12	
		Noble metals (Mo, Ru, Sb)	0	0.0025	0.0025	0	0.005	
		Се	0	0.0005	0.005	0	0.0055	
		La	0	0.0002	0.005	0	0.0052	
		注記*1:希ガス	はフィルタ装置	置内に蓄積した	ないため,評価	西対象外と	する。	
		表 2-3	汝出割合が	大きい揮発	*性核種の崩	崩壊熱害	序与割合	
		元素グループ*2	放出割合丨)放出割合 ハロゲン比)	②崩壊熱寄与 (炉停止後約2		崩壊熱寄与割合 ①×②	
		Halogens (I)	0.61	1.0	0.18		0.18	
		Alkali metal (Cs)	0.61	1.0	0.02		0.02	
		Te	0. 305	0.5	0.02		0.01	
		Ba, Sr	0.12	0.2	0.06		0.01	
							する。また,放出	
		5. エアロゾル	移行量					
				5 ち、エア	ロゾル移行	量の最	も厳しい「雰	
		囲気圧力・温度						
								表現の相違
		環冷却系を使用						衣児の相達
		ルタ装置に移行	「するエア」	コソルの重	重を表 2-4	に示す	(参考)。	
		表 2-4 原子炉	i格納容器が	らフィル	タ装置に移	行する	エアロゾル重	有効性評価結果の相違
		量						
		シーケン	ス (事象)			ロゾル重量		
			25 75 10 12		ットウェルベン	/ト ドラ	イウェルベント	
		雰囲気圧力・温 (格納容器過 (代替循環冷却系を	圧・過温破損)		2.6g		1200g	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		一方,原子炉格納容器からのエアロゾルの移行量を保守的に評価	
		するため, サプレッションプールによるスクラビング効果がないド	設備名称の相違
		ライウェルベント時の原子炉格納容器からフィルタ装置に移行す	
		るエアロゾル量について、核分裂生成物の炉内内蔵量とNUREG	
		-1465に基づく炉心から原子炉格納容器へ放出される核分裂	
		生成物の割合を用いて評価した結果,約 28kg となるが,エアロゾ	解析結果の相違
		ルに係る海外規制の規定 <mark>を踏まえ,150kg</mark> として設計する。	・設計条件の相違にともなう
			エアロゾル量の相違
			設計方針の相違
			・エアロゾル量の設定につい
			て, 女川は 150kg で保守的で
			あると整理, 詳細は後述の (参
			考) 1. 項に記載
		想定するエアロゾル移行量の評価方法と海外規制におけるエア	
		ロゾル移行量を以下に示す。	
		(1) 核分裂生成物の炉内内蔵量	
		各核種グループの FP の炉内内蔵量を表 2-5 に示す。	
		(2) 核分裂生成物の原子炉格納容器への放出割合	
		NUREG-1465に基づき、各核種グループの放出割合を設	
		定する(表 2-2)。	
		(3) 原子炉格納容器内の DF	
		保守的にドライウェルベントの場合を想定し、崩壊熱の設定と同	
		様に, DF:10 とする。	表現の相違
		以上より、想定するエアロゾル量を計算した結果、約 28kg とな	解析結果の相違
		る。	
		評価式を以下に示す。	
		【エアロゾル量】=	
		】 [(核種グループの炉内内蔵量)	
		全核種グループ	
		× (核種グループの原子炉格納容器への放出割合)/10]	
		(4) 海州田田でかけて、ママッジ・バケー目	
		(4) 海外規制におけるエアロゾル移行量	
		ドイツ RSK の勧告では、フィルタ装置に移行するエアロゾル量と	
		して PWR については 60kg, BWR については 30kg としている。また、	
		スイスの原子力施設ガイドラインにおいては、エアロゾル量は	
		150kg と規定されている。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機					備考
			主 2_5 - 1	龙	物の炉内内蔵量		解析結果の相違
			X 2 ⁻⁰ 1				
		核種	代表	炉内内蔵量		エアロゾル	
		グループ Halogens	化学形態 CsI	(kg)	放出割合 (-) 0.61	移行量(kg)*	
		Alkali metal	Cs0H	-	0. 61		
		Te	TeO ₂ , Sb]	0.305		
		Ba, Sr	BaO, SrO		0.12		
		Noble metals Ce	MoO ₂ CeO ₂	_	0. 005 0. 0055		
		La	La ₂ O ₃	1	0. 0052		
				•	合計	2.8E+01	
		注記*:エアロ	コゾル移行量は	,金属繊維フィ	イルタの総面積の設定に	上 使用される。	
			·K				
		6. 引用文南		- ".			
					dent Source Term	s for Light-	
		Water Nucl	ear Power	Plants", 19	995		
		(2) "Aeros	sol Releas	se and Tra	ansport Program	Semiannual	
		Progress R	eport For (October 198	83-March 1984",	NUREG/	
		CR - 38	3 0 Vol. 1	, ORNL/TM-9	217/V1		
		(参考)					
		1. エアロゾ	ルの保守性	について			
					へ系の設計条件に~	ついて	設備名称の相違
					の設計条件として		BY /叫气日九1人人1日1年
					√	10, -1 -1	記記十分Lの和学
		ル移行量を 15	UKK (C IX 化	している。			設計方針の相違
		(9) 車歩い	トリオにより	<i>、</i> たてアロヽ	ブル移行量についっ	~	
					リオの選定につい		
					状よう素(無機よ		
							設備名称の相違
		格納容器フィ	ルタベント	系に流入す	る。エアロゾルが	発生する事故	
		シナリオは, 柞	各納容器破	員防止対策 <i>(</i>	の有効性評価の対	象とする事故	
		シーケンスの	うち,以下	に示す MAAF	P解析上の特徴を	踏まえ,原子	
		炉圧力容器が	健全な事故	シーケンス	である「雰囲気圧	力・温度によ	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		る静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用でき	
		ない場合)」を選定している。	
		(a) 原子炉圧力容器内に溶融炉心が存在する場合は,炉心が再冠	
		水し溶融炉心の外周部が固化した後でも、溶融炉心中心部は溶	
		融プール状態を維持する。一方,原子炉圧力容器破損時は,原子	
		炉圧力容器破損前に水張りしたペデスタル部で溶融炉心の一部	
		が粒子化するとともに、最終的にはクエンチする。エアロゾル	
		移行量は溶融炉心の温度が高い方がより多くなるため,原子炉	
		圧力容器が健全な場合がより保守的な評価となる。	
		(b) 原子炉圧力容器内に溶融炉心が存在する場合は、溶融炉心冠	
		水時において溶融炉心上部の水によるスクラビング効果を考慮	
		していない。一方,溶融炉心がペデスタル部に存在する場合は,	
		溶融炉心上部の水によるスクラビング効果を考慮している。以	
		上より、スクラビング効果を考慮していない原子炉圧力容器が	
		健全な場合がより保守的な評価となる。	
			設備の相違
			・女川は原子炉格納容器下部
			からドライウェル床ドレンサ
			ンプに通じるドレン配管内に
			コリウムシールドを設置(自
			主対策設備) しており, ペデス
			タル全面に設置するものでは
			ないため, コリウムシールド
			については記載していない。
		b. 対象シーケンスにおけるエアロゾル移行量について	
		「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	
		(代替循環冷却系を使用できない場合)」シーケンスにおける原子	設備名称の相違
		炉格納容器フィルタベント系へ流入するエアロゾル移行量を表 2-6	
		に示す。本シーケンスの有効性評価ではウェットウェルベントを優	表現の相違
		先して実施することとしているが,ここではドライウェルベントを	
		実施した場合のエアロゾル移行量も併せて示している。表 2-6 よ	
		り,エアロゾル移行量はウェットウェルベント時よりドライウェル	
		ベント時の方が多く 1.2kg であるが, 原子炉格納容器フィルタベン	解析結果の相違
		ト系で設計上想定するエアロゾル移行量はこれを十分上回る 150kg	
		である。	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 2-6 静的負荷シーケンスにおける FP エアロゾル移行量	
		放出する系統 FP エアロゾル移行量(kg)	
		ウェットウェルベント 0.0026	
		ドライウェルベント 1.2	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		別紙 3	
		流量制限オリフィスの設定方法について	
		1. 流量制限オリフィスの設定方法	机供力和力力
		原子炉格納容器フィルタベント系は、原子炉格納容器の過圧破損	
		を防止するため,原子炉格納容器内で発生する蒸気量以上のガスを ベントできる必要がある。	衣児(7) 作達
		~~ントじさる必要 <i>いめ</i> る。	
		一方,原子炉格納容器圧力の上昇に伴い,ベントガスの質量流量	表現の相違
		が増加する場合においても、ベンチュリノズルの流速を適正な条件	,,,,_
		に保持するため、フィルタ装置の下流に流量制限オリフィスを設置	
		することにより、体積流量をほぼ一定に保つ設計としている。	
		ベント操作は原子炉格納容器圧力が 1Pd~2Pd(<mark>427kPa[gage]~</mark>	設備の相違
		854kPa[gage]) の時に開始する運用としており、流量制限オリフィ	・説明書本文 2.1 項の理由⑥
		スの設計に当たっては、ベント時において原子炉格納容器圧力が低	表現の相違
		い状態(原子炉格納容器と大気の差圧が低い状態)を考慮し,原子	
		炉格納容器圧力 1Pd の時に原子炉定格熱出力の 1%相当の蒸気を排	
		出できるよう,以下のとおり設定する。	
		なお、原子炉格納容器圧力 1Pd で必要量を排出可能な設計として	
		いるため、より差圧が大きくなる原子炉格納容器圧力 2Pd によるベ	
		ントの場合においても必要量は排出できる。	
		□ 流量制限オリフィス上流の流路の圧力損失を計算し,流量制限	
		オリフィス上流の圧力を算出する。	
		② 流量制限オリフィス下流の流路の圧力損失を計算し、流量制限	
		オリフィス下流の圧力を算出する。	
		③ ①及び②で算出した流量制限オリフィスの上流及び下流の圧	
		力条件下で,原子炉定格熱出力の1%相当の蒸気を排出できるよ	
		うな流出断面積を算出する。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		オリフィスの流出断面積は,以下の式に基づき計算する。	
		ここで	表現の相違
		V: 体積流量 m: 質量流量	
		σ:比体積	
			表現の相違
			設備の相違
			・説明書本文 2.1 項の理由⑥
			設備の相違
			・女川は原子炉格納容器圧力
			1Pd 時においてベントを実施
			した場合に、設計流量のベン トガスが臨界流となるよ
			うに設計している。
		概算評価結果を表 3-1 及び図 3-1 に,原子炉格納容器圧力とベン	表現の相違
		チュリノズル入口における体積流量の関係を図 3-2 に示す。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備名称の相違
		2. オリフィス以外の圧力損失 オリフィス以外の圧力損失については、以下に示す。(1) 入口配管、出口配管 配管の圧損は、損失係数に実機を想定して直管部、エルボ、ティー及び弁等を考慮して以下の式に基づき計算する。	
		ここで	表現の相違
		(2) フィルタ装置 フィルタ装置内圧力損失は JAVA 試験の結果から導出した以下の 実験式に基づき計算する。	設備名称の相違
		ここで	設備の相違 ・設計条件の相違により、フィルタ装置上流でのガス流速及びフィルタ装置入口の密度が異なる。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(3) 放射性よう素フィルタ	設備名称の相違
		放射性よう素フィルタの圧力損失は, 試験結果に基づき約 kPa	設備の相違
		(1Pd 時) とする。	・設計条件の相違により,各圧
			力損失の値が異なる。
		表 3-1 原子炉格納容器圧力に対する体積流量(概算評価)	
		原子炉格納 入口配管 7/ルク装置内 おりフィス 放射性 出口配管 g量流量 体積流量 よう素フィルタ よう素フィルタ m³/s	
		容器圧力 圧力損失 圧力損失 圧力損失 圧力損失 圧力損失 圧力損失 圧力損失 (相対比) kPa [gage] kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa	
		854 kPa *1 *1	
		(2Pd)	
		427 (1Pd)	
		注記*1:原子炉格納容器圧力 1Pd のときの値を 100%とした場合の比を記載	
		注記*1:原子炉恰納谷番圧力 IPa のとさの値を 100%とした場合の氏を記載 *2:ベント実施後,原子炉格納容器圧力が十分低下した時点の圧力	
			設備の相違
			・表 3-1 の圧力損失の評価結
			果をプロットしており、圧力
			勾配が異なる。
		図 3-1 圧力勾配図	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・表 3-1 の圧力損失及び流量
			評価結果をプロットしてお
			り,流量特性が異なる。
		図 3-2 原子炉格納容器フィルタベント系の流量特性	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		別紙 4	
		フカラバ流流の伊女水県の乳空担加及が使人州とのいて	乳供互补の扣 净
		スクラバ溶液の保有水量の設定根拠及び健全性について	設備名称の相違
		ベンチュリスクラバのスクラバ溶液について, その保有水量の設	
		定根拠を示すとともに、その健全性が維持されることを確認する。	
		1. 保有水量の設定根拠	
		スクラバ溶液の保有水量は、ベント開始後 24 時間はベンチュリ	
		スクラバによる所定の放射性物質の除去性能が得られる水量(以下	表現の相違
		「最小水量」という。)から、ベント開始初期に発生する蒸気凝縮に	
		よる水位上昇時において、金属繊維フィルタが水没しない水量(以	
			設備の相違
		定している。なお、初期水量(系統待機時)は上記を考慮し、補給	
		期間の確保の観点から水量を大きく、かつ、上限水位にも余裕を持った値として、約	仕様の相違 ・女川は, 上限水位及び下限水
		った値として、約 tと設定している。	・ 対所は、工限が位及び下限が 位の評価を踏まえ、初期水位
			を設定
		フカニバ茨茨の北昌の記字担加さいてに二十 され ファルカ壮	乳件タサの担告
		スクラバ溶液の水量の設定根拠を以下に示す。また,フィルタ装置水位の概略図を図 4-1 に示す。	改伽石がり相连
		(1) 最大水量について	
			表現の相違
			=0.74 o Le34
			設備の相違
			・設計方針の相違に伴う設備

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			仕様の相違
			=0./# /z / t . o . Lp \ / t
			設備名称の相違
			設備の相違
			・以下①~③の値の合計によ
			る。
			Lister Lister
			表現の相違
			設備の相違 ・設計方針の相違に伴う設備
			仕様の相違
			表現の相違
			設備の相違
			・設計方針の相違に伴う設備
			仕様の相違
			設計方針の相違
			・女川は、水量の評価を精緻化
			するため、蒸気の凝縮に寄与
			する構造材として配管を考慮
			=11./#;
			設備の相違 ・設計方針の相違に伴う設備
			仕様及び各パラメータの相違
			表現の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・設計方針の相違に伴う設備
			仕様及び各パラメータの相違
			設備名称の相違
			設備の相違
			・設計方針の相違に伴う設備
			仕様の相違
		(2) 最小水量について	
			設備名称の相違
			設備の相違
			・設計方針の相違に伴う設備
			仕様の相違
			設備名称の相違
			設備の相違
			・以下①~③の値の合計によ
			る。
			設備の相違
			・設計方針の相違に伴う設備
			仕様の相違
			PARK CIEVE
			表現の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・設計方針の相違に伴う設備
			仕様の相違
			設計方針の相違
			・女川は、水量の評価を精緻化
			するため、蒸気の凝縮に寄与
			する構造材として配管を考慮
			設備名称の相違
			設備の相違
			・設計方針の相違に伴う設備
			仕様の相違
			設計方針の相違
			・女川は水量の評価を精緻化
			するため,放射性物質の発熱
			量を24時間一定とせず,24時
			間分の積算値で評価

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・設計方針の相違に伴う設備
			仕様及び各パラメータの相違
			表現の相違
			表現の相違
			設備の相違
			・設計方針の相違に伴う設備
			仕様の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違 ・設計方針の相違に伴う設備
			仕様の相違
		図 4-1 フィルタ装置水位の概略図	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 4-1 ベント時における物性値	設計方針の相違
			・女川は水量の評価を精緻化
			するため,放射性物質の発熱
			量を24時間一定とせず,24時
			間分の積算値で評価
		(3) スクラバ溶液の補給期間について	設備名称の相違
		フィルタ装置の設計条件に基づいているスクラバ溶液の初期保	
		有水量(フィルタ装置の寸法)は、他の設計条件と同様に、大きな 保守性を確保し設定(設計)している。一末、スクラバ溶液の連絡	
		保守性を確保し設定(設計)している。一方,スクラバ溶液の補給期間は,運用に係るものであり,有効性評価に基づく運用を考慮し	
		で評価することとし、有効性評価のうちベント時間を厳しく評価する。 「おいった」とは、有効性評価のうちベント時間を厳しく評価す	
		る大破断 LOCA を想定した「雰囲気圧力・温度による静的負荷(格	
		納容器過圧・過温破損)」におけるフィルタ装置内の発熱量を用い	
		たスクラバ溶液の水位挙動より評価する (表 4-2)。	
		スクラバ溶液の補給期間の評価条件及び評価結果を以下に示す。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		a. 評価条件	
		(a) 初期水量: kg	設備の相違
			・女川は、上限水位及び下限水
			位の評価を踏まえ、初期水位
			を設定
		(1)	
		(b) 室温: 25℃*1	設計方針の相違
			・女川では、フィルタ装置の水
			量計算ではすべて室温 25℃を
			条件として評価している。
		(c) ベント時の原子炉格納容器圧力:図 4-2 のとおり	設計方針の相違
		(d) フィルタ装置内発熱量: kW* ²	・女川はウェットウェルベン
		(a) a la la sage de la	ト及びドライウェルベントの
			両方において、フィルタ装置
			内発熱量は10kWで一定として
			評価している。
		注記*1:ベント実施前のスクラバ溶液の初期水温としても使用。	設備名称の相違
		系統待機時の原子炉建屋原子炉棟内の平均温度として	
		設定した値	・説明書本文 2.1 項の理由④

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違・説明書本文 2.1 項の理由④
		*2:45 時間後のベントを想定し、炉心の放射性物質の内蔵量から算出したフィルタ装置へ流入するエアロゾル及び無機よう素の発熱量の最大値(約 kw) に余裕を考慮した値	解析条件の相違
		b. 評価結果 スクラバ溶液の水量挙動を図 4-3 に示す。ベント時のスクラバ溶液の水位は最高水位、最低水位に至らず、想定事故においては事象発生後7日間(168時間)運転員による水の補給操作は不要となる。	
		表 4-2 設備設計と運用の主な条件設定の差異 設計条件 運用 【水補給の運用の評価】	解析条件の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設計方針の相違 ・女川は水量の評価を精緻化
			するため、原子炉格納容器圧
			力について、MAAPによる解析 結果を適用
			和木を適用
		図 4-2 ベント時の圧力推移図	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			解析条件の相違
		図 4-3 「雰囲気圧力・温度による静的負荷(格納容器過圧・過温	
		破損)(代替循環冷却系を使用できない場合)」におけるベント時のスクラバ溶液の水量変動	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		2. スクラバ溶液の健全性 2.1 スクラバ溶液の pH スクラバ溶液は,無機よう素をスクラバ溶液中に捕集・保持する ためにアルカリ性の状態 (pH7 以上) に維持する必要があるが,重	設備名称の相違
		大事故等発生時においては、原子炉格納容器内のケーブルから放射線分解、熱分解等により塩化水素 (HC1) 等の酸が放出され、ベント実施により原子炉格納容器からフィルタ装置 (スクラバ溶液) に移行するため、pH が低下する可能性がある。これに対して、スクラバ溶液は、待機時における重大事故等時に発生する可能性がある酸の量に対して十分な塩基量を確保することにより、ベント実施中の pH 監視を実施することなく、確実にアルカリ性の状態を維持することとしている。	表現の相違
		なお、スクラバ溶液の pH については、定検時にサンプリングを 実施し、性状を確認する。	表現の相違
		(1) 原子炉格納容器内の酸性物質及び塩基性物質 重大事故等時に原子炉格納容器内において発生する酸性物質と 塩基性物質については、NUREG/CR-5950において検討 が実施されており、その発生源として燃料(核分裂生成物)、原子炉 水、サプレッションプール水溶存窒素、原子炉格納容器内ケーブル、	設備名称の相違
		原子炉格納容器下部コンクリートが掲げられている。これに加え、 原子炉格納容器内の塗料についても成分元素に窒素が含まれており、酸として硝酸、塩基としてアンモニア等の発生源となる可能性がある。主な酸性物質、塩基性物質を発生源ごとに表 4-3 に示す。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女	川原子力発	電所第2号機		備考
		表 4-3	主な酸性	物質と塩基性物質	1	
		発生源	酸性物質	塩基性物質	備考	
		燃料 (核分裂生成物)	よう化水素 (HI)	水酸化セシウム (CsOH)等		
		原子炉水	_	五ほう酸ナトリウム (Na ₂ B ₁₀ O ₁₆)	ほう酸水注入系によ りほう酸水を原子炉 へ注入した場合	
		サブレッションプール水溶 存窒素	硝酸 (IINO ₃)	_		
		原子炉格納容器内ケーブル	塩化水素 (IIC1)	_		
		原子炉格納容器下部コンク リート(溶融炉心落下時)	二酸化炭素 (CO ₂)	_		
		原子炉格納容器內塗料	硝酸 (HNO ₃)	アンモニア (NH ₃)		
			出合に MCC きいと考え 解により発 消費する す 重要である す する。	I により発生する られる原子炉格料 生する塩化水素, が, ことから,以下で 起因する酸の発生	る二酸化炭素に加 内容器内ケーブル スクラバ溶液中 スクラバ溶液の では、これらの発 生量	設計方針の相違 ・女川は酸の起因となり得る 元素の量を調査し、ベント前
			o1の酸性物	質が原子炉格納容		に全て原子炉格納容器内に放出される仮定で酸の発生量を評価

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設計方針の相違
			・女川は酸の起因となり得る
			元素の量を調査し、ベント前
			に全て原子炉格納容器内に放
			出される仮定で酸の発生量を
			評価
		図 4-4 原子炉格納容器内のケーブルに起因する酸の量	
		b. サプレッションプール水での放射線分解により発生する硝酸	設備名称の相違
		の量	表現の相違
		*** 重大事故等時において、サプレッションプール水中ではサプレッ	
		ションプール水溶存窒素の放射線の照射によって硝酸が生成され	
		る。	
		^ ° なお, 原子炉格納容器内に放出されたエアロゾルの一部はフィル	
		タ装置のスクラバ溶液に移行し、フィルタ装置内での硝酸の発生に	設備名称の相違
		 寄与すると考えられるが、ここでは、原子炉格納容器内に放出され	
		た放射性よう素を全てエアロゾル (CsI) とし, サプレッションプー	
		ル内に全てのエアロゾルが移行するものとして,硝酸の発生量を評	
		価した上で、発生した硝酸は全てフィルタ装置に移行し、スクラバ	
		溶液の塩基と反応するものとして評価している。このため、ラジオ	
		リシスによるスクラバ溶液のpHの影響は保守的に評価されている。	
		NUREG-1465, Reg.Guide.1.183及びNUREG/CR	
		-5950に基づき、サプレッションプール水の積算吸収線量から	設備名称の相違
		硝酸の生成量を評価した結果、事象発生7日後に約 molとな	設計方針の相違
		る。	・東二においては、薬液の補給
			設備を設置しないため,ベン
			ト後60日後までの評価を実施
			しているが, 女川は自主対策
			設備として薬液補給装置を設
			置するため、7日後までの評価

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			としている。(理由⑧)
		$HNO_3 = G_w \times D \times V_S$	記載方針の相違
		ここで,	単位換算方法の相違
		HNO3: 積算硝酸生成量 (mol)	
		Gw:水の硝酸生成G値に相当する換算係数(mol/L/Mrad(Water))	
		D:サプレッションプール水の積算吸収線量 (Mrad(Water))	
		V _s :サプレッションプール水体積(L)	
		c. MCCIにより発生する二酸化炭素の量	
		原子炉格納容器内には玄武岩系のコンクリート*1を使用してい	設備の相違
		ることから、MCCI により発生する二酸化炭素の発生量は少ないと	・東二は, コリウムシールドを
		考えられるものの、有効性評価での重大事故等時のコンクリート侵	MCCI 対策としてペデスタル全
		食量約 cm に対して保守的に約 cm のコンクリート侵食を見込	面に設置するが,女川は,コリ
			ウムシールド(自主対策設備)
			を原子炉格納容器下部からド
			ライウェル床ドレンサンプに
			通じるドレン配管内に設置す
			るため,有効性評価上コンク
			リート侵食が生じる。
		MCCI により発生する二酸化炭素は,高温環境下において溶融炉	
		心に含まれる金属元素によって酸性物質ではない一酸化炭素に還	
		元されるが、全て二酸化炭素として評価した結果、二酸化炭素の発	
		生量は約 mol*2 となる。	解析条件の相違
		注記*1:コンクリートの組成例は以下のとおり。	・女川は、発生する一酸化炭素
		成分 玄武岩系コンクリート(重量%)	をすべて二酸化炭素とし,2倍
		$\begin{array}{c c} SiO_2 & 54.84 \\ TiO_2 \ , MnO \ , MgO & 7.21 \end{array}$	の物質量として評価すること
		CaO 8.82 Na₂O 1.80	で保守的な評価としている。
		K₂O 5.39	
		Fe ₂ O ₈ 6.26 Al ₂ O ₈ 8.32	
		$\begin{array}{c c} C_{12}O_8 & 0.00 \\ CO_2 & 1.50 \end{array}$	
		H ₂ O(自由水,結合水) 5.86	
		*2:二酸化炭素は二価の酸のため,2倍の物質量とした。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		二酸化炭素は塩化水素ほど溶解度が大きくないため, フィルタ装	
		置内では全量がスクラバ溶液に溶解することはなく、また弱酸のた	
		め、酸性物質としてスクラバ溶液に与える影響は小さいと考える	
		が、本評価では保守的にスクラバ溶液の pH に影響を与える酸性物	
		質として評価する。	
			設計方針の相違
			・女川は,無機よう素の捕集に
			より消費される塩基量が微小
			であること及び当該消費量が
			スクラバ溶液の初期濃度の設
			計余裕の中に収まることか
			ら,全体の消費量に見込んで
			いない。
		d. の分解により消費される塩基の量	
		スクラバ溶液に含まれる は、酸素が存在する場	設備名称の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		合,水酸化物イオンと下記の反応により分解することが知られてお	
		り、分解されるの量は、スクラバ溶液の積算吸収線	設備名称の相違
		量の増加に伴って増加する。	
		ここでは、スクラバ溶液の積算吸収線量によらず、スクラバ溶液	設備名称の相違
		に含まれる 全量が分解したとして、塩基の消費量を	表現の相違
		評価した結果, の分解により消費される塩基の量は	
		約 mol となる。	設計方針の相違
			・設計方針の相違に伴う設備
			設計の相違
		(スクラバ溶液に含まれる の量)	設備名称の相違
			設計方針の相違
		<u> </u>	・設計方針の相違に伴う設備
		の分解により消費される塩基の量)	設計の相違
		(2) フィルタ装置での塩基の消費量	
		(1)項で生成した酸性物質は、ほとんどが液相に溶解してサプレ	設備名称の相違
		ッションプールに移行し、ベント時にはサプレッションプールに残	
		留してフィルタ装置には移行しない可能性もあるが、保守的に全量	
		が移行するとして評価する。スクラバ溶液の消費される塩基の量	設備名称の相違
		は、以下のとおりとなる。	
			和司士仙の担告
		【フィルタ装置での塩基の消費量(約 mol)】 ・原子炉格納容器内ケーブルに起因する酸で消費される塩基の量	設計方針の相違 ・別紙 4 2.1(1)b. の理由®
		・原丁が俗利谷器内グーブルに起因する酸で信貸される塩基の重 約 mol	・ 別紙 4 2.1(1)b. の遅田の
		W.2	所切相木が推進
		・サプレッションプール水から発生する硝酸で消費される塩基の量	設備名称の相違
		約 mol	BYNN H 11 Y TRACE
		・MCCI で発生する二酸化炭素で消費される塩基の量 約 mol	
		・の分解により消費される塩基の量 約 mol	
			設計方針の相違
			・別紙4 2.1(1)b. の理由8

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			解析結果の相違
		(3) スクラバ溶液の pH 評価結果	設備名称の相違
		フィルタ装置は無機よう素(I ₂)を捕集及び保持するものである	BX VIII Y II Y I I I I I I I I I I I I I I
		ため、ベント期間中、スクラバ溶液をアルカリ性に維持する必要が	設計方針の相違
		あり、スクラバ溶液には塩基の消費量(約 mol)を考慮する。	・別紙4 2.1(1)b. の理由⑧
		消費される約 mol の塩基に相当する の濃	設備の相違
		度は、待機時水量(約 t) 時に約 wt% (=	・設計方針の相違に伴う設備
) となることから, これに余裕を考慮し	
		て、スクラバ溶液の待機時 濃度は wt%以上	設備名称の相違
		とする。	
			 設備の相違
			・設計方針の相違に伴う設備
			設計の相違
		この場合、スクラバ溶液の pH は約 であり、スクラバ溶液は	解析結果の相違
		アルカリ性の状態を維持できる。	設計方針の相違
			・別紙4 2.1(1)b. の理由⑧
			設備名称の相違
		(4) 薬液の劣化・濃度均一性	
		フィルタ装置スクラバ溶液に添加する の水系の相平衡については、「工業用水便覧」より、図 4-5 のとおり示されている。	設備名称の相違 出典図書の相違
		マーマル・工不川小区元」のファーロックにはリックではいている。	四六四目*/11)歴

: 前回提出時からの変更箇所

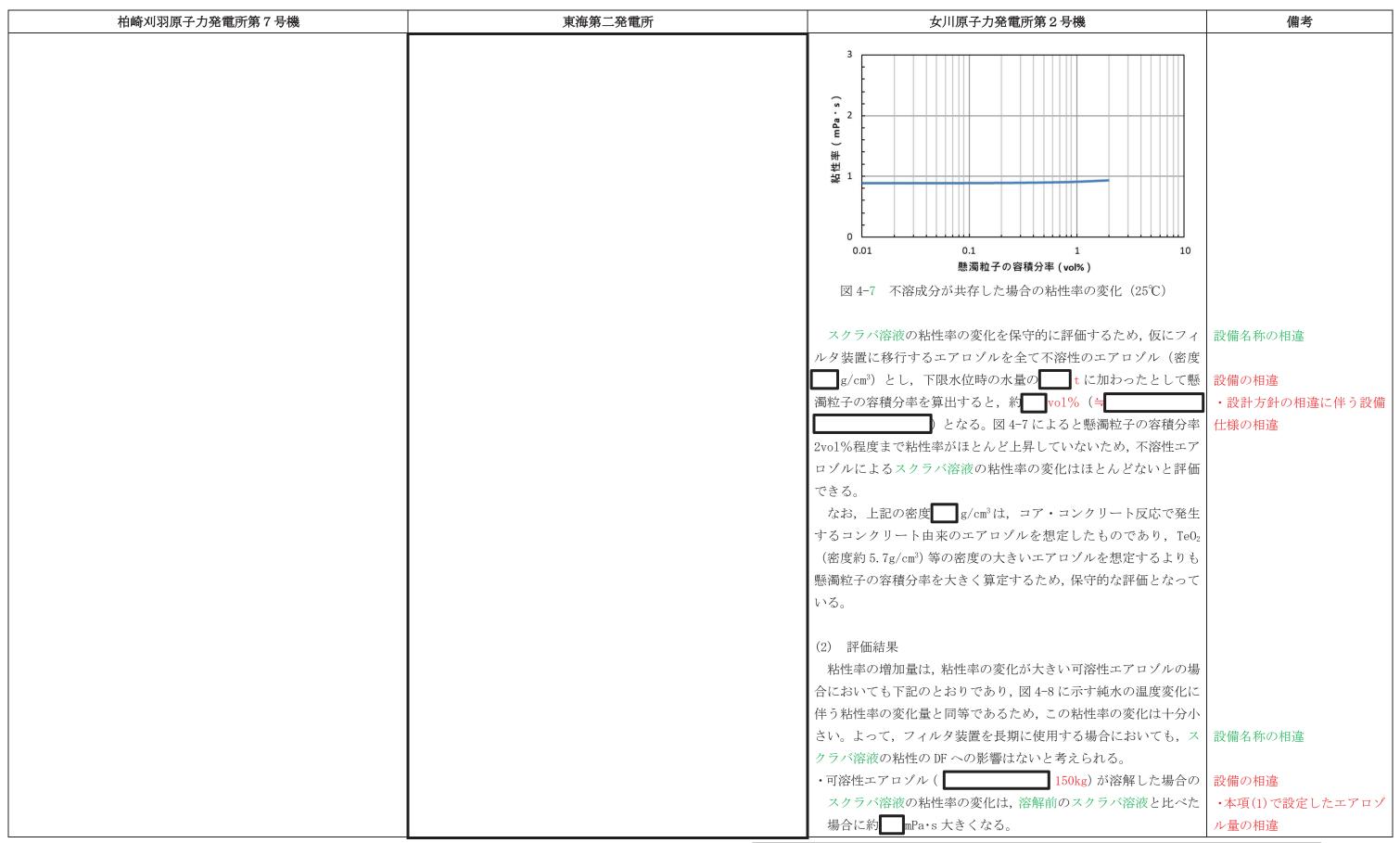
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図 4-5 より,フィルタ装置スクラバ溶液の添加濃度である	設備名称の相違
		では、水温が 0℃以上であれば相変化は起こらない(つ	
		まり析出することはない)ことがわかる。フィルタ装置は <mark>原子炉建</mark>	設備の相違
		屋原子炉棟内のフィルタ装置室に設置することとしており、スクラ	・説明書本文 2.1 項の理由④
		バ溶液は 10℃以上となる。よって、フィルタ装置待機中に が	
		析出することはない。	
		また, 」 は非常に安定な化学種であり,フィルタ装置待機中,	
		フィルタ装置はフィルタ装置出口側ラプチャディスクにより外界	設備名称の相違
		と隔離され、窒素雰囲気に置かれることから、フィルタ装置待機中	
		において、薬液が変質することはない。	
		また、フィルタ装置を使用すると、ベンチュリノズルから噴射さ	
		れるベントガスによりバブリングされ, は均一に拡散される	
		 と考えられる。	
		図 4-5 の水系相平衡図	出典図書の相違

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(5) スクラバ溶液の管理について (3)に記載したとおり、スクラバ溶液は待機時に十分な薬剤の量を確保しておくことで、ベントを実施した際に原子炉格納容器から酸が移行した場合においても、スクラバ溶液はpH7以上を維持できる。以上を踏まえ、スクラバ溶液の管理について以下に示す。なお、系統待機時の管理については、原子炉施設保安規定に規定する。	設備名称の相違
		 a. 系統待機時の管理 ・施設定期検査時に の濃度が wt%以上であること及び pH が 13 以上であることを確認する。 ・スクラバ溶液が通常水位の範囲内であることを確認する。 	設備の相違 ・本項(3)に記載のとおり 設備名称の相違
		b. ベント中の管理 ・スクラバ溶液の水位を監視し、下限水位に至る場合においては、水及び薬液を補給する。	設備名称の相違 表現の相違 設計方針の相違 ・別紙 4 2.1(1)b. の理由®
		c. ベント停止後(隔離弁閉止後) ・ベント停止後において、フィルタ装置に異常がないことを確認するため、フィルタ装置水位計にて、スクラバ溶液の水位が確保されていることを確認する。	設備名称の相違 設備の相違 ・女川は、ベント後にフィルタ 装置のスクラバ溶液を移送し た後に水補給を実施し、移送 後にも水位を確認する。
		2.2 スクラバ溶液の粘性 ベントにより原子炉格納容器からフィルタ装置にエアロゾルが 移行すると、スクラバ溶液の粘性は、エアロゾルが可溶性の場合は そのエアロゾルの水和性と溶解する量によって、不溶性の場合はスクラバ溶液に分散する固体粒子の量によって変化する。可溶性エアロゾル又は不溶性エアロゾルの影響によるスクラバ溶液の粘性率の変化を保守的に評価した結果、その変化は十分小さく、DFへの影響がないことを確認した。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子	力発電所第2号機		備考
		(1) フィルタ	装置内に移行っ	するエアロゾル等の影響		
		重大事故等	時に原子炉格組	内容器内へ放出されるエ	アロゾルがべ	
		ントによりフィ	ィルタ装置に移	行することから, NUR	EG-146	
		5 に記載され	ている原子炉格	納容器への放出割合を参	寒間し,フィル	
		タ装置内へ移	行するエアロン	ブル量を基にスクラバ溶	液への影響を	設備名称の相違
				- 1 4 6 5 では原子炉格		
				ate In-Vessel 等)ごと		
				り、本評価では事故後長		
				するため、放出過程ごと		
				算出に使用している。	· ////////////////////////////////////	
				は、可溶性エアロゾルと	不淡性エアロ	
				となる。エアロゾルの種		
				こなる。エノロノルの個	規 こ 1分件 リー	
		否を表 4-4 にえ	N 9 o			
		表 4-4	エアロゾル(設計条件)の種類と溶解	の可否	設計条件の相違
		核種グループ	代表化学形態	FPエアロゾル移行量 (kg)	溶解の可否	・ 設備仕様の相違に伴う設計
		Halogens	CsI	11 = 7 = 2 7 19 11 = (118)	可溶性	条件の相違
		Alkali metal	CsOH		可溶性	ZICIT Z TRAZ
		Te Ba, Sr	TeO ₂ , Sb BaO, SrO	-	不溶性 可溶性	
		Noble metals	MoO ₂	-	不溶性	
		Се	CeO ₂		不溶性	
		La	La ₂ O ₃		不溶性	
		構造材	SiO ₂ 等 合計	150	大半は不溶性	
			ЦП	100		
				エアロゾルでは, スクラ		設備名称の相違
		に与える影響に	はそれぞれ異な	ることから,可溶性エア	ロゾル、不溶	
		性エアロゾル	こ分けて粘性に	与える影響を確認する。		
		なお、流体が	ぶ流動する際の	抵抗を示す粘性の大きさ	は,粘性率η	
		[mPa·s] で表	され,水の粘性	生率は水温 10℃の場合は	約 1.3mPa·s,	
		80℃の場合は約	約0.3mPa·s でも	ある。(引用文献(8))		引用文献の相違
		ادا ماین م				
		a. 可溶性工				en tile te et a lande
				に溶解すると、分解して		設備名称の相違
		存在し、溶解し	したイオンの周	囲に水分子が水和しやす	い場合には,	
		イオンと水分	子が集団として	振る舞うため移動しにく	くなり, 粘性	


: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		率が大きくなる。一方、溶解したイオンの周囲に水分子が水和しに	
		くい場合には、イオンや水分子が移動しやすくなり、粘性率が小さ	
		くなる。(引用文献(4))	
		ベント実施後にフィルタ装置に含まれる主な陽イオンには	
		K ⁺ , Cs ⁺ があり,陰イオンにはOH ⁻ , C1 ⁻ , Br ⁻ , I ⁻ , CO ₃ ²⁻ , HCO ₃ ⁻ , SO ₄ ²⁻	
		がある。これらイオンのうち、水和しやすく粘性率の増加に最も寄	
		与する陽イオンは , 陰イオンは OH であり, 水和しにくく粘性	
		率の減少に寄与する陽イオンは Cs+, 陰イオンは I-であると考えら	
		れる。(引用文献(3), (5))	
		このため,フィルタ装置にエアロゾルが移行した場合の粘性率	
		は、エアロゾルの全量を	
		とき最も大きく、よう化セシウム (CsI) として評価したときには小	
		さくなる。	
		スクラバ溶液として低温 (粘性率が高い) の 25℃における	設備名称の相違
		とよう化セシウムが水に溶解した場合の粘性率の変化	
		を図 4-6 に示す。	
		図 4-6 と CsI が水に溶解した場合の粘性率の変化 (25℃)	
		(:引用文献(6), CsI:引用文献(7))	
		スクラバ溶液に添加している化学薬剤は	設備名称の相違
			設備の相違
		であり、このスクラバ溶液の粘性率は、化学薬剤を全て	
		として評価すると,図 4-6 より約 mPa·s とな	仕様の相違

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		る。 また、スクラバ溶液の粘性率の変化を保守的に評価するため、仮にフィルタ装置に移行するエアロゾルが全で (150kg=3750mol)と想定とすると、その溶液のモル濃度は約 mol/L上昇し、約 mol/L(=	設備の相違 ・設計方針の相違に伴う設備 仕様の相違
		b. 不溶性エアロゾルの影響 エアロゾルが不溶性の場合,スクラバ溶液中ではコロイド等の懸 濁粒子濃度が上昇すると考えられる。このような懸濁粒子が分散した溶液の粘性率はアインシュタインの粘度式等によって評価することができる(引用文献(3))。 $\eta/\eta_0-1=2.5\phi$ ここで、 $\eta: 懸濁粒子溶液の粘性、\eta_0: 分散溶媒の粘性、\phi: 懸濁粒子の容積分率を示す。上式を用いて、懸濁粒子濃度が粘性率に及ぼす影響を評価した結果を図 4-7 に示す (アインシュタインの粘度式の成立限界である容積分率 2vo1\%までを記載)。$	設備名称の相違

: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		2 1.8 1.6 1.4 1.2 1 1 1 1 1 1 1 1 1 1 1 1 1	
		した場合にも粘性率を著しく大きくさせることはない。 2.3 スクラバ溶液の逆流防止 金属繊維フィルタのプレフィルタにおける圧損が大きい場合,金属繊維フィルタに設置されるドレン配管において逆流が発生し,金属繊維フィルタにスクラバ溶液が流入する可能性がある。フィルタ装置の設計では、プレフィルタの圧損を考慮しており、想定される圧損に対して余裕のある値として kPa の圧損を考慮している。具体的には、ドレン配管から金属繊維フィルタにスクラバ溶液が流入しないよう、金属繊維フィルタ下端から下方約 mの位置にスクラバ溶液の水位上限を設定している。実機ではプレフィルタの圧損は 程度であり、ドレン配管の逆流を考慮しても、スクラバ溶液が金属繊維フィルタまで逆流するおそれはないと評価できる。	
		S CALINET DAY CAVISORY CHI IM CC DO	設備の相違 ・女川は、系統待機時及び運転 中にフィルタ装置の水位が上 限水位となることはなく、排 水は考慮していない。

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		また、金属繊維フィルタのドレン配管の内径は約 mmであり、	設備名称の相違
		金属繊維フィルタに流入するベントガスに含まれるエアロゾルの	
		粒径は極めて小さい ことから、ドレン配管の閉塞が発生す	設計方針の相違に伴う設備
		るおそれはないと言える。	仕様の相違
		フィルタ装置のスクラバ溶液水位の概要を図 4-9 に示す。	
		図 4-9 フィルタ装置のスクラバ溶液水位	
		凶 4-9 ノイルク 表直のヘクノハ俗似小位	
		3. 引用文献	
		(1) NUREG/CR-5950 "Iodine Evolution and pH	
	I	Control", Dec. 1992	
	I	(2) NUREG/CR -5 564 "Core-Concrete	
	I	Interactions Using Molten UO_2 With Zirconium on A	
	I	Basaltic Basement", Apr. 1992	
	I	(3) 化学便覧第 5 版	引用文献の相違
	I		・版の相違であり、引用した内
			容に相違はない。
		(4) 上平恒,「水の分子工学」	•

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(5) 横山晴彦,田端正明「錯体の溶液化学」	
		(6) Pal M. Sipos, Glenn Hefter, and Peter M. May, Viscosities	
		and Densities of Highly Concentrated Aqueous MOH	
		Solutions ($M^+ = Na^+$, K^+ , Li^+ , Cs^+ , $(CH_3)_4N^+$) at 25.0°C,	
		J. Chem. Eng. Data, 45, 613-617(2000)	
		(7) Grinnell Jones and Holmes J.Fornwalt, The Viscosity of	
		Aqueous Solutions of Electrolytes as a Function of the	
		Concentration. III. Cesium Iodide and Potassium	
		Permanganate, J. Am. Chem. Soc., 58(4), 619-625(1936)	
			引用文献の相違
			・女川では本図書を引用して
			いない。
		(8) 日本機械学会 蒸気表<1999>	
		(6) 日平饭似于云 然风衣(1999/	

: 前回提出時からの変更箇所

別紙 5 原子炉格納容器フィルタベント系隔離弁の人力操作について 1. 原子炉格納容器フィルタベント系隔離弁の人力操作 原子炉格納容器フィルタベント系の隔離弁は、中央制御室からの 操作ができない場合には、現場の隔離弁験作場所から遠隔手動弁操 作設備を介して弁操作を実施する。ベントに必要な弁の位置と操作 場所について、図5-1~図5-4 に示す。 ベントは、ベント準備作業として、原子炉格納容器フィルタベン ト系ベントライン「隔離弁を「全開」したのちにサプレッションチェ ンバベント用出口隔離弁を「全開」したのちにサプレッションチェ ンバベント用出口隔離弁を「全開」したのちにサプレッションチェ ンバベント用出口隔離弁を「全開」したのちにサプレッションチェ とが、アライン「隔離弁を「全開」したのちにサプレッションチェ ・女川は最初に	
1. 原子炉格納容器フィルタベント系隔離弁の人力操作 原子炉格納容器フィルタベント系の隔離弁は、中央制御室からの 操作ができない場合には、現場の隔離弁操作場所から遠隔手動弁操 作設備を介して弁操作を実施する。ベントに必要な弁の位置と操作 場所について、図 5-1~図 5-4 に示す。 ベントは、ベント準備作業として、原子炉格納容器フィルタベン ト系ベントライン隔離弁を「全開」したのちにサプレッションチェ ・女川は最初に ンバベント用出口隔離弁を 開操作し、開始する。	
1. 原子炉格納容器フィルタベント系隔離弁の人力操作 原子炉格納容器フィルタベント系の隔離弁は、中央制御室からの 操作ができない場合には、現場の隔離弁操作場所から遠隔手動弁操 作設備を介して弁操作を実施する。ベントに必要な弁の位置と操作 場所について、図 5-1~図 5-4 に示す。 ベントは、ベント準備作業として、原子炉格納容器フィルタベン ト系ベントライン隔離弁を「全開」したのちにサプレッションチェ ・女川は最初に ンバベント用出口隔離弁を 開操作し、開始する。	
原子炉格納容器フィルタベント系の隔離弁は、中央制御室からの操作ができない場合には、現場の隔離弁操作場所から遠隔手動弁操作設備を介して弁操作を実施する。ベントに必要な弁の位置と操作場所について、図 5-1~図 5-4 に示す。ベントは、ベント準備作業として、原子炉格納容器フィルタベン・系ベントライン隔離弁を「全開」したのちにサプレッションチェ・ケメ川は最初にレバベント用出口隔離弁又はドライウェルベント用出口隔離弁を開操作し、開始する。	
原子炉格納容器フィルタベント系の隔離弁は、中央制御室からの操作ができない場合には、現場の隔離弁操作場所から遠隔手動弁操作設備を介して弁操作を実施する。ベントに必要な弁の位置と操作場所について、図 5-1~図 5-4 に示す。ベントは、ベント準備作業として、原子炉格納容器フィルタベント系ベントライン隔離弁を「全開」したのちにサプレッションチェ・ケメ川は最初にレバベント用出口隔離弁又はドライウェルベント用出口隔離弁を開操作し、開始する。	
操作ができない場合には、現場の隔離弁操作場所から遠隔手動弁操作設備を介して弁操作を実施する。ベントに必要な弁の位置と操作場所について、図 5-1~図 5-4 に示す。 ベントは、ベント準備作業として、原子炉格納容器フィルタベン 運用の相違ト系ベントライン隔離弁を「全開」したのちにサプレッションチェ・女川は最初にンバベント用出口隔離弁又はドライウェルベント用出口隔離弁を開操作し、開始する。	
場所について、図 5-1~図 5-4 に示す。	
ベントは、ベント準備作業として、原子炉格納容器フィルタベン 運用の相違 ト系ベントライン隔離弁を「全開」したのちにサプレッションチェ ・女川は最初に ンバベント用出口隔離弁又はドライウェルベント用出口隔離弁を に第一隔離弁を 開操作し、開始する。 とにより、ベン	
ト系ベントライン隔離弁を「全開」したのちにサプレッションチェ ・女川は最初に ンバベント用出口隔離弁又はドライウェルベント用出口隔離弁を 開操作し、開始する。 ・女川は最初に に第一隔離弁を とにより、ベン	
ンバベント用出口隔離弁又はドライウェルベント用出口隔離弁を に第一隔離弁を 開操作し、開始する。 とにより、ベン	
開操作し、開始する。	第二隔離弁,次
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
	納容器内の放
時の放射線防護対策として遮蔽を設置する。実際の操作にあたって 射性物質を含む	
は、現場へのアクセス時間及び必要な操作時間を考慮し、緊急時の格納容器内に関係では、それのような、おおいたなどを開かる。	
線量限度である 100mSv を超えることがないように管理を行う。 運用としている 設計の相違	0
・弁の遠隔操作	悬所 遮蔽設計
の相違。なお、対	
所の陽圧化設備	
いる。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		原子炉建屋 地下2階 (0.P800) ※: 弁設優位置はトーラス高上部であり 展前レベルは地下3階 (0.P8100) 第一部 では、日本の	・各設備の設置場所の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
相順四月初原丁月光電別第1万勝	果体形一発电灯	アルア (0. P. 6000) 「原子炉建屋 地下1階 (0. P. 6000) 「原子炉建屋 地下1階 (0. P. 6000) 「東子砂理園町子砂園 は は は は は は は は は は は は は は は は は は は	設備の相違・各設備の設置場所の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		原子炉建屋 地上1階 (0. P. 15000) ※: 弁股型位置の床面レベルは 地下中間 (0. P. 15000) 18	・各設備の設置場所の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		原子炉建屋 地上 2階 (0. P. 22500)	・各設備の設置場所の相違

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		別紙 6	
		ベント実施に伴う作業等の作業員の被ばく評価	表現の相違
		1. ベント実施に伴うベント操作時の作業員の被ばく評価	
		炉心の著しい損傷時においても,現場において,人力で原子炉格	設備名称の相違
		納容器フィルタベント系の隔離弁の操作ができるよう, 放射線防護	
		対策として原子炉格納容器第一隔離弁(サプレッションチェンバベ	放射線防護対策の相違
		ント用出口隔離弁及びドライウェルベント用出口隔離弁)作業場所	
		には鉛厚さ 2mm の <mark>遮蔽厚さを有する</mark> 遠隔手動弁操作設備遮蔽を設	省略)
		け,鉛 2mm 相当のタングステンベストを着用して作業することで放	
		射性物質のガンマ線による外部被ばくを低減する設計とする。ベン	
		ト実施に伴うベント操作を手動で行う場合の作業員の被ばく評価	
		を行い,遠隔手動弁操作設備遮蔽は作業員を防護するために必要な	
		遮蔽厚さ等を有しており、作業員の実効線量は緊急作業時の線量限	
		度である 100mSv 以下となることを確認した。	
			表現の相違
		ベント操作としてサプレッションチェンバからのベントを行う	設備名称の相違
		場合及びドライウェルからのベントを行う場合のそれぞれにおけ	
		る原子炉格納容器第一隔離弁(サプレッションチェンバベント用出	設備名称の相違
		口隔離弁及びドライウェルベント用出口隔離弁) 及び原子炉格納容	
		器第二隔離弁(原子炉格納容器フィルタベント系ベントライン隔離	
		弁(A)/(B)) の開操作時の被ばく評価を行った。	
		(1) 証何名仏	
		(1) 評価条件	
		a. 放出量評価条件 ************************************	事状なったいるな称の担告
		格納容器破損防止対策の有効性評価で想定している炉心損傷を	
		前提とした事象のうち、炉心損傷時間が早く、格納容器ベントを実	
		施する「大破断 LOCA+HPCS 失敗+低圧 ECCS 失敗+全交流動力電源	省略)
		要失」の代替循環冷却系を使用できない場合が最も放射性物質の放	
		出量が多くなるため、この事象をベント実施に伴うベント操作時の	
		作業員の被ばく評価で想定する事象として選定する。	
		また、放出量評価条件を表 6-1、大気中への放出過程及び概略図	
		を図 6-1~図 6-4 に示す。大気中への放出経路については図 6-5 に	to the second second
		示すとおりであり、非常用ガス処理系等が起動し原子炉建屋原子炉	
		棟の負圧達成するまで(事象発生から 70 分間)は原子炉建屋から	評価条件の相違

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		の漏えいを想定し地上放出するとし、原子炉建屋原子炉棟の負圧が	・非常用ガス処理系の起動時
		達成した以降(事象発生から 70 分間以降)は排気筒からの放出を	間の相違
		想定する。また,ベント実施時は原子炉格納容器フィルタベント系	表現の相違
		からの放出を想定し原子炉建屋屋上の原子炉格納容器フィルタベ	設備名称の相違
		ント系排気管放出とする。	
		b. 被ばく評価条件	
		被ばく経路は,図 6-6 <mark>及び</mark> 図 6-7 に示すとおりであり,経路ごと	評価条件の相違
		に以下に示す評価を行った。	・東二は屋外移動時及び屋外
			作業時の被ばく経路を考慮
		大気中へ放出される放射性物質については,表 6-2 及び表 6-3 に	
		示すように、ガウスプルームモデルを用いて拡散効果を考慮して外	
		部被ばく及び内部被ばくの評価を行った。	表現の相違
		外気から作業場所内へ流入した放射性物質による被ばくについ	
		ては,屋外の放射性物質の濃度と作業場所の放射性物質の濃度を同	
		じとし、外部被ばくについては、表 6-4 に示すとおり作業場所の空	
		間体積と等価な半球状とし、半球の中心の線量で行い、内部被ばく	表現の相違
		については、表 6-5 に示す線量換算係数、呼吸率及びマスクの効果	
		を考慮し評価を行った。なお、原子炉格納容器第一隔離弁の操作に	設備名称の相違
		ついては,作業場所に遠隔手動弁操作設備遮蔽を設け,タングステ	放射線防護対策の相違
		ンベスト及び自給式呼吸器を着用して作業することを考慮し評価	(以下,同様の差異は記載を
		を行った。	省略)
		大気中に放出され地表面に沈着した放射性物質からのガンマ線	
		による外部被ばくについては、ガウスプルームモデルを用いて拡散	
		効果を考慮して放射性物質の濃度を求めた後,表 6-5 に示す地表面	
		への沈着速度を考慮し評価を行った。	
		原子炉格納容器フィルタベント系配管, 原子炉格納容器フィルタ	設備名称の相違
		ベント系フィルタ装置、原子炉建屋原子炉棟等からの直接ガンマ線	評価条件の相違
		による被ばくについては、表 6-6~表 6-8 に示す原子炉建屋壁、作	・女川はフィルタ装置からの
		業場所に設置する遠隔手動弁操作設備遮蔽の遮蔽効果を考慮し評	線量影響を考慮しているが,
		価を行った。なお、評価で考慮するコンクリート遮蔽は、建築工事	東二は考慮していない(以下,
		標準仕様書 JASS5N・同解説 (原子力発電所施設における鉄筋コンク	同様の差異は記載を省略)
		リート工事,日本建築学会)に準拠して施工しているため,公称値	表現の相違
		からマイナス側許容差 (-5mm) を引いた値を適用し, その密度は	記載箇所の相違
		2.15g/cm³とする。	・東二は表中にのみ記載

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		c. アクセスルート	-11./# /z / 1. 0 \pr\fr
		原子炉格納容器第一隔離弁(サプレッションチェンバベント用出	設備名称の相違
		口隔離弁)のベント操作を行う場合のアクセスルートは、図 6-8~	
		図 6-11 に示すとおりである。原子炉格納容器第一隔離弁(ドライウェルベント用出口隔離弁)のベント操作を行う場合のアクセスル	
		- トは、図 6-12~図 6-14 に示すとおりである。原子炉格納容器第	ļ
		二隔離弁(原子炉格納容器フィルタベント系ベントライン隔離弁	
		$(A)/(B)$) のベント操作を行う場合のアクセスルートは図 $6-12\sim$ 図	
		6-14 に示すとおりである。	
		d. 評価点	
		評価点は、図 6-15 に示すとおりであり、ベント操作の作業場所	表現の相違
		を評価点とする。	,,,,
		アクセスルートの評価点は、作業場所と同じ評価点とする。作業	評価条件の相違
		場所は原子炉格納容器第一隔離弁(サプレッションチェンバベント	(以下,同様の差異は記載を
		用出口隔離弁) のベント操作時は地下 1 階非常用電気品室(B), 原	省略)
		子炉格納容器第一隔離弁(ドライウェルベント用出口隔離弁)では	
		地上1階DG(B)室,原子炉格納容器第二隔離弁(原子炉格納容器フ	
		ィルタベント系ベントライン隔離弁(A)/(B)) のベント操作時は地	
		上1階DG(B)室である。なお、作業及び移動に必要な時間は常に上	
		記の評価点にいるものとし、被ばく評価を行った。	
		W. West Pre	
		e. 作業時間	-11./# /z 1/. 0 \LD\#.
		原子炉格納容器第二隔離弁(原子炉格納容器フィルタベント系ベ	
		ントライン隔離弁)の開操作は、ベント実施前に行うものとし、サ	評価条件の相違 佐業時間の英里(以下、同様
		プレッションチェンバ側及びドライウェル側共通で原子炉格納容	
		器第二隔離弁の作業時間は66分(移動時間(往復)12分+作業時間54分)とする。また。原子恒格納容器第一隔離允(サプレッジ)	の差異は記載を省略)
		間 54 分)とする。また、原子炉格納容器第一隔離弁(サプレッションチェンバベント用出口隔離弁及びドライウェルベント用出口	
		隔離弁)の開操作は、作業時間は96分(移動時間(往復)12分十	
		作業時間(原子炉格納容器第一隔離弁作業場所滞在)84分)とする。	

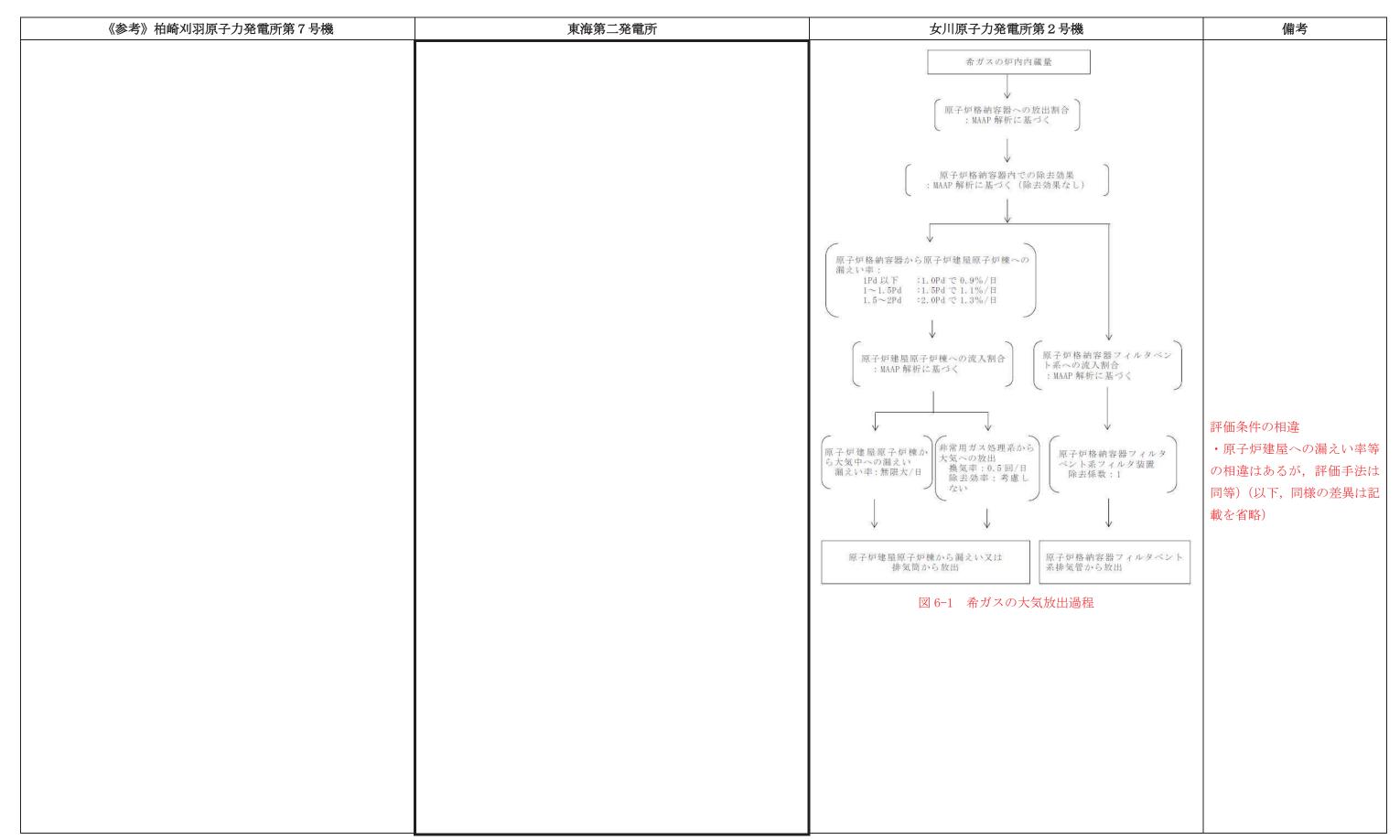
: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発電所	第2号機	備考
			表 6-1 放出量評価条	条件 (1/4)	評価条件の相違
		項目	評価条件	選定理由	・熱出力, 炉内内蔵量等に差異
		評価事象	「大破断LOCA+HPCS失敗+低圧 ECCS失敗+全交流動力電源喪失」	格納容器破損防止対策の有効性評価 で想定する格納容器破損モードのう ち、中央制御室の運転員又は対策要 員の被ばくの観点から結果が最も厳 しくなる事故収束に成功した事故シ	はあるが評価方法は同等(以下,同様の差異は記載を省略)
		炉心熱出力	2436 MW	ーケンスを選定 定格熱出力	
		運転時間	1サイクルあたり	1 サイクル13ヶ月	
		2.17	10000時間(約416日)	(395日)を考慮して設定	
		取替炉心の 燃料装荷割合	1サイクル: 0.229 2サイクル: 0.229 3サイクル: 0.229 4サイクル: 0.229 5サイクル: 0.084	取替炉心の燃料装荷割合に基づき設 定	
		炉 <mark>内</mark> 内蔵量	希ガス類: 1.6×10 ¹⁹ Bq よう素類: 2.1×10 ¹⁹ Bq Cs 類: 8.4×10 ¹⁷ Bq Te 類: 6.0×10 ¹⁸ Bq Ba 類: 1.8×10 ¹⁹ Bq Ru 類: 1.8×10 ¹⁹ Bq Ce 類: 5.5×10 ¹⁹ Bq La 類: 4.1×10 ¹⁹ Bq (核種毎の炉内内蔵量を核種グループ毎に集約して記載)	「単位熱出力当たりの炉内内蔵量(Bq/MW)」×「2436MW(定格熱出力)」(単位熱出力当たりの炉内内蔵量(Bq/MW)は、BWR 共通条件として、女川2号機と同じ装荷燃料(9×9燃料)、運転時間(10000時間)で算出したABWRのサイクル末期の値を使用)	
		放出開始時間	原子炉格納容器漏えい:事故発生 直後(なお,放射性物質は,MAAP解 析に基づき事故発生約5分後から 漏えい) 原子炉建屋原子炉棟漏えい:事故 発生直後 非常用ガス処理系による放出:事 放発生から70分後 原子炉格納容器フィルタベント	原子炉建屋原子炉棟漏えい:原子炉建屋原子炉棟の負圧達成までの期間 非常用ガス処理系による放出:原子炉建屋原子炉棟の負圧達成時刻 原子炉格納容器フィルタベント系に よる原子炉格納容器内の減圧及び除	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発電所第2号機		備考
			表 6-1 放出量評価条件 (2/4)		
		項目	評価条件	選定理由	
		原子炉格納容器pH 調整系の効果	考慮しない	原子炉格納容器pH調整系は、重大事故等 対処設備と位置付け ていないため、保守	
		よう素の形態	粒子状よう素:5% 無機よう素:91% 有機よう素:4%	的に設定 R. G. 1, 195に基づき 設定	
		漏えい率(希ガス,	1Pd以下 :1.0Pdで 0.9%/日 1~1.5Pd :1.5Pdで 1.1%/日 1.5~2Pd :2.0Pdで 1.3%/日	MAAP解析にて原子炉 格納容器の開口面積 を設定し原子炉格納 容器圧力に応するもの とし、原子炉格納容 器の設計漏えい率 (0.99dで0.5%/日) 及びAECの式等に 基づき設定	
		原子炉格納容器から原子炉建屋への 漏えい率 (無機よう素)	1Pd 以下 :0.9%/日 (一定) 1~1.5Pd :1.1%/日 (一定) 1.5~2Pd :1.3%/日 (一定)	原子炉格納容器の設 計漏えい率、AEC の式等に基づき設定	
		原子炉格納容器からの漏えいに関す る捕集効果(除去 係数)	粒子状放射性物質:10 無機よう素:1 有機よう素:1	粒子状物質に対して は,原子炉格納容器 からの漏えいに関す る捕集効果を考慮	
		での除去効果(粒 子状放射性物質) 原子炉格納容器内		MAAP の FP 挙動モデ ル	
		での除去効果(有 機よう素)	考慮しない	保守的に設定	
		原子炉格納容器内 での除去効果 (無	自然沈着率: 9.0×10 ⁻⁴ (1/s) (原子炉格納容器内の積算放出量の 1/200 まで)	CSE 実験及び Standard Review Plan 6,5,2に基づき 設定	
		機よう素)	サプレッションチェンバ内のプール水のス クラビングによる除去効果:5(ウェットウェ ルベントのみ)		

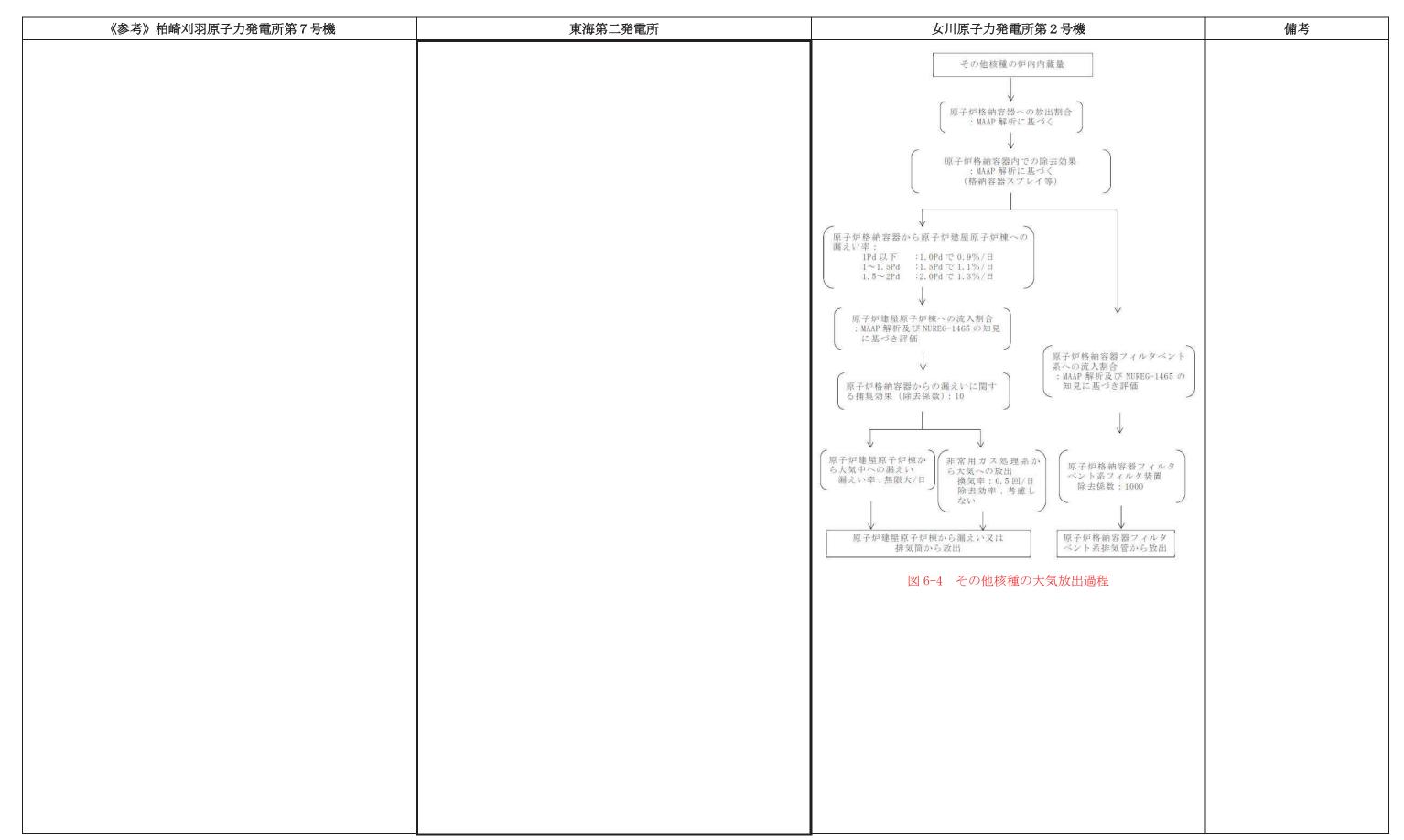

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発電所第2号機		備考
			表 6-1 放出量評価条件(3/4	4)	
		項目	評価条件	選定理由	
		原子炉格納容器 から原子炉建屋 への漏えい割合	Cs 類: 約3.1×10° 約3.1×10°	MAAP 解析結果及び NUREG-1465 に基づき 設定	
		大気への漏えい 率 (非常用ガス 処理系の起動 前)	無限大(回/日)(地上放出) (原子炉建屋原子炉棟負圧維持期間以外は、 原子炉格納容器から原子炉建屋へ漏えいした 放射性物質は、即座に大気へ漏えいするもの として評価)		
		非常用ガス処理 系から大気への 放出率 (非常用 ガス処理系の起 動後)	0.5(回/日) (排気筒放出)	設計値に基づき設定 (非常用ガス処理系の ファン容量)	
		非常用ガス処理系の起動時間	事故発生から70分後	起動操作時間 (60分) + 負圧達成時間 (10分)(保守的に負圧達成 時間として 10分を想 定)	
		非常用ガス処理 系のフィルタ除 去効率		保守的に設定	
		原子炉建屋ブロ ーアウトパネル の開閉状態		原子炉建屋原子炉棟内 の急激な圧力上昇等に よる原子炉建屋ブロー アウトパネルの開放が ないため	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 6-1 放出量評価条件 (4/4)	
		項目 評価条件 選定理由 ウェットウェル ドライウェルベ	
		ボース類: 約9.5×10 ⁻¹ 約9.5×10 ⁻¹ 約9.5×10 ⁻¹ よう素類: 約3.0×10 ⁻² 約3.3×10 ⁻² 約3.2×10 ⁻⁴ からベントラインへの放出割合 と 類: 約1.2×10 ⁻⁶ 約2.4×10 ⁻⁵ 約2.6×10 ⁻⁵ 約2.6×10 ⁻⁶ 約3.2×10 ⁻⁶ 約3.2×10 ⁻⁶ 約2.6×10 ⁻⁵ 約3.2×10 ⁻⁶ 約3.2×10 ⁻⁶ 約3.2×10 ⁻⁶ 約3.2×10 ⁻⁶ 約2.6×10 ⁻⁷	
		Ce 類: 約2.4×10 ⁻⁹ 約6.4×10 ⁻⁷	
		原子炉格納容器 希ガス:1 フィルタベント 有機よう素:50 系フィルタ装置 無機よう素:500 の除去係数 粒子状放射性物質:1000	

: 前回提出時からの変更箇所


赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格前容器のでの放出割合 : 組AP 解析に基づく (格前容器内での) 原子炉格前容器内での (福	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		マンウムの炉内内機像 マンウムの炉内内機像 マンウムの炉内内機像 原子炉格納容器から原子炉建屋原子炉 採入の 御えい率: 114 以下 : 1.19 は 1.15 で 2 Pd : 2.0 Pd で 1.9% / Pd 1.5 で 2 Pd : 2.0 Pd で 1.3 % / Pd 1.5 で 2 Pd : 2.0 Pd で 1.3 % / Pd 1.5 で 2 Pd : 2.0 Pd で 1.3 % / Pd バスチが格納容器フィルタ (原子炉格納容器からの 御えいに関す	

: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

英国からの設立 (19 20年) **
議会保証金の数据

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		MIX	設備名称の相違

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		渡ばく経路 ①大気中へ放出された放射性物質からのガンマ線による液ばく (クラウドシャインによる外部液はく) ②外気から作業場所に流入した放射性物質によるが低でく (作業場所内に浮遊している放射性物質による外部液でく:遠隔 手動井機作設備遮蔽及びタングステンベスト着用に伴う遮蔽効果を考慮。ただし、自結式呼吸器の使用により内部液ばくはないものとする。) ②原子が建則内の放射性物質からのガンマ線による殊能がほく) ③フィルタ装置と5元を対し物質からのガンマ線による疾 施波はく(ただし、ベント支験後のかまれてよ) ③文が中へ放出され地表面に活着した放射性物質からのガンマ線による疾 施波はく(ただし、ベント支験後のかまれてる) 「企り大変をからかまする。) ②家人に放射性物質からのガンマ線による疾 施波はく(ただし、ベント支験後のかまれてる) 「企り大変をからかまする。) ②家人に放射性物質がらのガンマ線による疾 施波はく(ただし、ベント支験後のかまれてる) 「企り大変をからかまれてる) 「などしたがした。など、大変をしたな射性物質がらのガンマ線による疾 施波はく(ただし、ベント支験後のからのガンマ線による液ばく) ②アクシャイント表質をある。 「など、大変性のないないないないないないないないないないないないないないないないないないない	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発電所第	2 号機	備考
			表 6-2 大気拡散評	価条件	評価条件の相違
		項目	評価条件	選定理由	・気象データ等の相違はある
		大気拡散評価 モデル	ガウスプルームモデル	発電用原子炉施設の安全解析に関 する気象指針に基づき評価	が, 評価手法は同等(以下, 同
		気象データ	1 年間の気象テータ(2012 年 1 月~2012 年 12 月) 地上園 ・地上約 10m	原子炉格納容器フィルタベント系 排気管及び原子炉建量からの放出 は地上風(地上10m)の気象データ を使用。排気筒からの放出は排気 筒風(地上71m)の気象データを使用	様の差異は記載を省略)
		放出源及び放出源高さ(有効高さ)	原子炉格納容器フィルタベント系排気管からの放出:地上 36m	原子炉格納容器フィルタベント系 排気管からの放出は建屋影響を考 慮し原子炉建屋屋上からの放出と 想定し設定 なお、建屋巻込みの影響を受けな い排気筒の放出源高さは、敷地境	
		実効放出継続時間	排気筒からの放出:地上 90m 1 時間	保守的に最も短い実効放出継続時	
		累積出現頻度	小さい方から 97 %	間を設定 気象指針に基づき設定	
		建屋の影響	ト系排気管からの放出:考慮 する	排気筒については高さが周囲の建 屋 2.5 倍以上あるため巻き込みの	
		巻き込みを生じる代 表建屋	原子炉建屋	放出源から最も近く,巻き込みの 影響が最も大きい建屋として選定	
		大気拡散評価点	図 6-15 参照	屋内移動時の評価点は作業場所と 同一とする	
		着日方位		排気筒については評価点の方位とし、原子炉建屋漏えい及び原子炉格納容器フィルタベント系排気管については放出源が評価点に近いことから、180度をカバーする方位を対象とする	
		建屋影響	2050m²	原子炉建屋の最小投影断面積を設 定	
		形状係数	0. 5	発電用原子炉施設の安全解析に関 する気象指針に基づき設定	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発電所第	2号機		備考
		表 6-3 評価(に使用する相対濃度(Q)	- (χ/Q) 及び相対	才線量	
		作業内容	放出源	相対濃度及び	相対線量	
	原子发	^百 格納容	原子炉格納容器フィル タベント系排気管	D/Q	9. 5 × 10 ⁻⁴ 5. 7 × 10 ⁻¹⁸	
	器第一 (サブ ョンチ	- 隔離弁 プレッシ 屋内移動 テェンパ / - 用出口 作業時	原子炉建屋プロー	χ/Q (s/m³) 約1 D/Q	1.9×10 ⁻³	
	網網	推弁) 操作	排気筒	χ/Q (s/m³) 常り2 D/Q	2. 9×10 ⁻⁶	
			原子炉格納容器フィル タベント系排気管	(Gy/Bq) 約1	. 2×10 ⁻¹⁹ 9. 5×10 ⁻⁴	
	器第一(ドラ	戸格納容 一隔離弁 ライウェ 屋内移動	W.	(Gy/Bq) 約6 x/Q	1. 9×10 ⁻³	
	口隔的	作業時 (作業時 (作業時 (本)	アウトパネル	7/0	2. 9×10 ⁻⁶	
			排気筒	D/Q	. 2×10 ⁻¹⁹	
	器第二	万格納容 二隔離弁 子炉格納 屋内移動	原子炉建屋ブローアウトパネル	D/Q	1, 9×10 ⁻³	
	容器プペント	(原子炉格納 屋内移動 容器フィルタ ベント系ベン 作業時 トライン隔離	4	χ/Q	2. 9×10 ⁻⁶	
	弁)『	開操作	74 X III	D/Q (Gy/Bq) 約1	. 2×10 ⁻¹⁹	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 6-4 建屋内に流入した放射性物質による外部被ばく評価条件 (1/2)	評価条件の相違 ・作業場所の空間体積,放射線
		項目 評価条件 選定理由 $D = 6.2 \times 10^{-14} \cdot Q_{\gamma} \cdot \chi/Q \cdot E_{\gamma} \cdot (1 - e^{-\mu \cdot R}) \cdot 3600$ $D : 放射線量率 (Sv/h)$	防護対策等の相違はあるが, 評価手法は同等(以下,同様の 差異は記載を省略)
		Q _y : 大気に放出された放射性物質放出率 (Bq/s) (0.5MeV換算値) E _y : ガンマ線エネルギ (0.5MeV/dis) μ : 空気に対するガンマ線エネルギ吸収係数 (3.9×10 ⁻³ /m) R : 作業エリア等の空間体積と等価な半球の半径(m) R = ³ √2π V _R : 作業エリア等の空間体積 (m ³)	
		(サプレッションチェンバからのベントを行う場合> ・原子炉格納容器フィルタベント系ベントライン隔離弁 操作場所 : 1860m³	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発電所第2号機		備考
			屋内に流入した放射性物質による外部 2/2)	皮ばく評価条件 かいかい かいかい かいかい かいかい かいかい かいかい かいかい かい	
		項目	評価条件	選定理由	
		屋内作業場 所流入率の 考慮		保守的に外気濃度 と同一濃度とする	
		サプンスト ルチン隔ドル出及 ウェル出操権 所の遮蔽	鉛 2mm	設計値に基づき設定	
			給2mm相当のタングステンベストの着用による遮蔽ダ 果及び不均等被ばくを考慮して評価 【不均等被ばくの評価式】 Hge=0.11Ha+0.89Hb Hge:外部被ばくの実効線量 Ha:タングステンベストの着用による遮蔽効果を 考慮しない実効線量 Hb:タングステンベストの着用による遮蔽効果を 考慮した実効線量	炉プェリー かった かっと かっと かっと はいい にいる でいる でいる でいる でいる でいる でいる でいる でいる でいる で	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所		女川原子力発電所第2号機		備考
			表 6-5 線量換算係数,呼吸率	等	
		項目	評価条件	選定理由	
		線量換算係数	成人実効線量換算係数を使用 (主な核種を以下に示す) I-131 : 2.0×10 ⁻⁸ Sv/Bq I-132 : 3.1×10 ⁻¹⁰ Sv/Bq I-133 : 4.0×10 ⁻⁹ Sv/Bq I-134 : 1.5×10 ⁻¹⁰ Sv/Bq I-135 : 9.2×10 ⁻¹⁰ Sv/Bq Cs-134 : 2.0×10 ⁻⁸ Sv/Bq Cs-136 : 2.8×10 ⁻⁹ Sv/Bq Cs-137 : 3.9×10 ⁻⁸ Sv/Bq L記以外の核種はICRP Pub. 71, 72に基づく	ICRP Publication 71, 72に基づく	
		呼吸率	$1.2\mathrm{m}^3/\mathrm{h}$	成人活動時の呼吸率を設定	
		マスクの除染係数	DF50	性能上期待できる値 から設定	
		自給式呼吸器の考慮	原子炉格納容器第一隔離弁操作時に着用 (内部被ばくの影響を受けない)	現場での隔離弁開操 作時に着用する 連用に合わせて設定	
		地表面への沈着速度	粒子状放射性物質: 0.4 cm/s 無機よう素: 0.4 cm/s 有機よう素: 1.4×10 ⁻³ cm/s	女川原子力発電所の 実気象から求めた沈 着速度から保守的に 設定	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	7	女川原子力発電所第2号機		備考
		表 6-6 原子炉格納容	容器フィルタベント系配管7	からの直接ガンマ線	評価条件の相違
		項目	作業場所における評価条件 配管 配管 遮蔽厚さ 位置 向き*1 及び距離	選定理由	・遮蔽厚さ等の相違はあるが、 評価手法は同等(以下,同様の 差異は記載を省略)
		地下1階 非常用 電気品室 (B) 遮蔽 厚さ 地上1階 DG(B)室	地下1階 上下方向 地上1階 南北方向 地上1階 東西方向 地上1階 上下方向 地上1階 東西方向 地上1階 東西方向 地上1階 上下方向 地上2階 南北方向 地上2階 東西方向	ベント操作エリアにおける原子炉建屋原子炉棟壁等を考慮(図6-8~図6-14参照)	
		許容差	評価で考慮するコンクリート遮蔽は、公称値からマイナス側許容差 (-5mm)を引いた値を適用	建築工事標準仕様書 JASS5N・同解説 (原子 力発電所施設における 鉄筋コンクリート工 事,日本建築学会)に基 づき設定	
		コンクリート密度	2.15g/cm ³	建築工事標準仕様書 JASS5N・同解説(原子 力発電所施設における 鉄筋コンクリート工 事、日本建築学会) に基づき設定	
		地下1階 非常用 電気品室 (B) から評価 点までの 距離 地上1階 DG(B)室	地下1階 上下方向 2.7m 地上1階 南北方向 8.8m 地上1階 東西方向 2.7m 地上1階 上下方向 2.7m 地上1階 東西方向 2.7m 地上1階 上下方向 2.7m 地上1階 上下方向 1.8m 地上2階 東西方向 1.8m		
		*2:原子炉建屋原子炉	フィルタベント系配管は方向毎に評値 炉棟躯体 1 枚に対してマイナス側許3 炉棟躯体 2 枚に対してマイナス側許3	容差を考慮	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 6-7 原子炉格納容器フィルタベント系フィルタ装置からの 直接ガンマ線	
		評価点 遮蔽厚さ*1 線源からの 距離 選定理由	
		地下 1 階 非常用電気品室(B)	
		地上 1 階 DG (B) 室	
		引いた値を適用 *2:原子炉建屋原子炉棟躯体3枚に対してマイナス側許容差を考慮 *3:原子炉建屋原子炉棟躯体2枚に対してマイナス側許容差を考慮	
		表 6-8 原子炉建屋からの直接ガンマ線	
		項 目 評価条件 選定理由 原子炉建屋原子炉棟外 遮蔽厚さ	
		原子炉建屋原子炉棟内 原子炉建屋原子炉棟内に放出され 審査ガイドに示された 線源強度分布 た放射性物質が均一に分布 とおり設定 原子炉建屋原子炉棟外	
		原子炉建屋原子炉棟の 原子炉建屋原子炉棟の幾何形状を モデル 原子炉建屋原子炉棟の幾何形状を 原子炉建屋の評価モデ ルを図6-16 及び図6-17 に示す	
		直接ガンマ線評価コー ド 直接ガンマ線評価:QAD-CGGP2R 現行許認可(添十)に同じ	
		注記 *4:評価で考慮するコンクリート遮蔽は、公称値からマイナス側許容差 (-5mm) を 引いた値を適用	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
《参考》柏崎刈羽原子力発電所第7号機		女川原子力発電所第2号機 図 6-8 原子炉格納容器第一隔離弁(サプレッションチェンバベント用出口隔離弁)の操作場所及びアクセスルート(原子炉建屋地上3階及び制御建屋地上3階) 図 6-9 原子炉格納容器第一隔離弁(サプレッションチェンバベント用出口隔離弁)の操作場所及びアクセスルート(原子炉建屋地上2階、タービン建屋地上2階及び制御建屋地上2階)	評価条件の相違 ・操作場所、アクセスルート等 の相違はあるが、評価手法は 同等(以下、同様の差異は記載 を省略)

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図 6-10 原子炉格納容器第一隔離弁(サプレッションチェンバベ	
		ント用出口隔離弁)の操作場所及びアクセスルート(原子炉建屋	
		地上1階,タービン建屋地上1階及び制御建屋地上1階)	
		図 6-11 原子炉格納容器第一隔離弁(サプレッションチェンバベ	
		ント用出口隔離弁)の操作場所及びアクセスルート(原子炉建屋	
		地下1階,タービン建屋地下1階及び制御建屋地下1階)	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図 6-12 原子炉格納容器第一隔離弁(ドライウェルベント用出口	
		隔離弁)及び第二隔離弁(原子炉格納容器フィルタベント系ベン	
		トライン隔離弁(A)/(B)) の操作場所及びアクセスルート(原子炉	
		建屋地上3階及び制御建屋地上3階)	
		図 6-13 原子炉格納容器第一隔離弁(ドライウェルベント用出口	
		隔離弁)及び第二隔離弁(原子炉格納容器フィルタベント系ベン	
		トライン隔離弁(A)/(B))の操作場所及びアクセスルート(原子炉	
		建屋地上2階,タービン建屋地上2階及び制御建屋地上2階)	
		<u> </u>	105

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		网 6 14	
		図 6-14 原子炉格納容器第一隔離弁(ドライウェルベント用出口隔離弁)及び第二隔離弁(原子炉格納容器フィルタベント系ベント	
		ライン隔離弁(A)/(B)) の操作場所及びアクセスルート(原子炉建	
		屋地上1階,タービン建屋地上1階及び制御建屋地上1階)	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考

: 前回提出時からの変更箇所

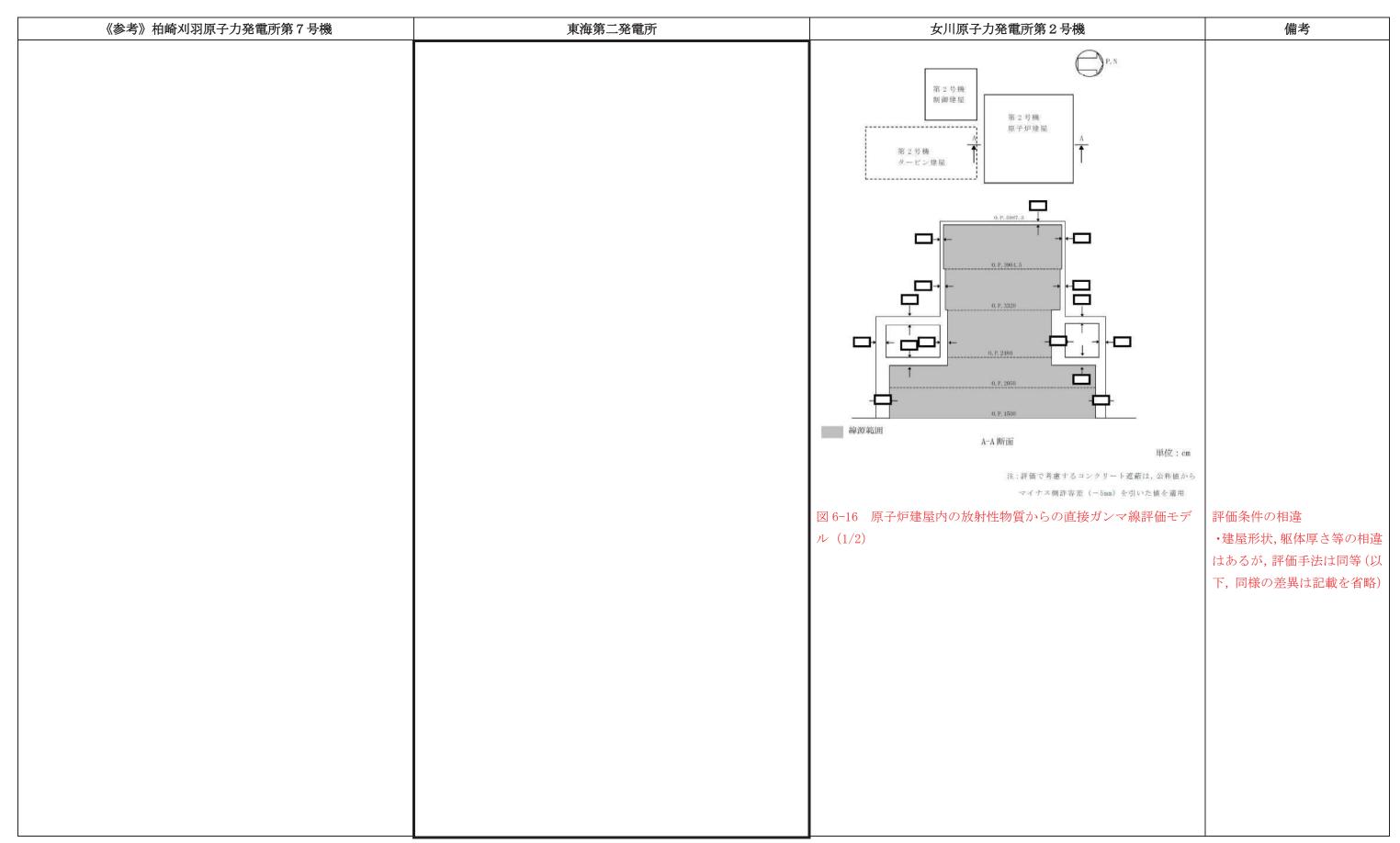
《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考

: 前回提出時からの変更箇所

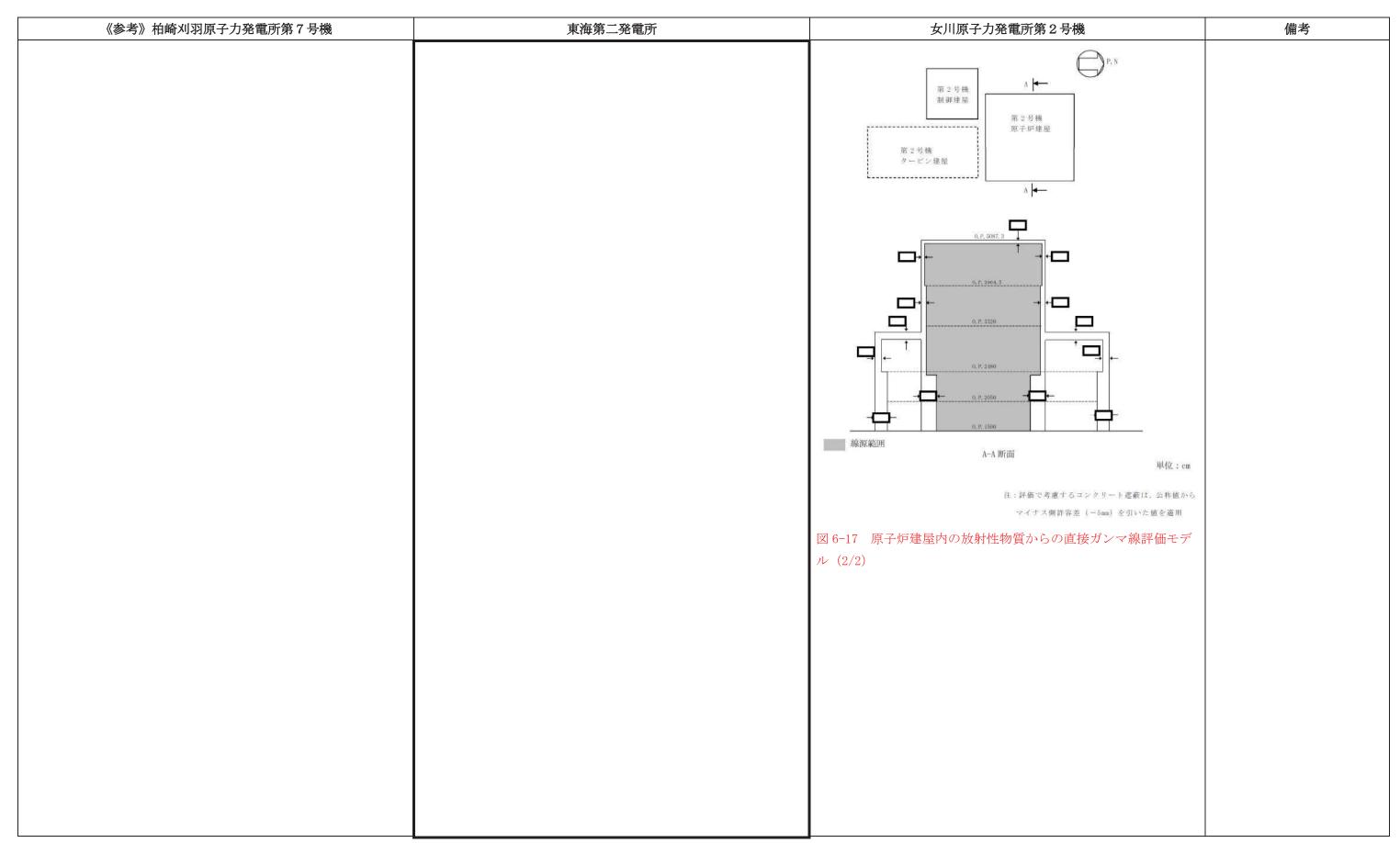
《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考


: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考


: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		図 6-15 大気中に放出された放射性物質の濃度評価点	J.
		四 0 10	

: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 6-9 原子炉格納容器第二隔離弁(原子炉格納容器フィルタベン	
		ト系ベントライン隔離弁)開操作に伴う移動時及び作業時の線量	
		(単位: mSv/h)	
		原子炉格納容器第二隔離弁* (原子炉格納容器フィルタベント系ベントライン隔離弁 (A) / (B)) をばく経路 原内移動時 屋内移動時	
		作業時	
		大気中へ放出された放射性物質 外部被ぼく 約 3. 2×10 ⁻⁶ 約 3. 2×10 ⁻⁶ 約 3. 2×10 ⁻⁶ による被ぼく 内部被ぼく 屋内に流入する放射性物質の影響に包絡される	
		大気中へ放出され地表面に沈着した放射性物質か 5のガンマ線による被ばく 外気から作業場所内へ流入した 外部被ばく 約6.8×10 ⁻⁵ 約6.8×10 ⁻⁵ 約6.8×10 ⁻⁵ 約6.8×10 ⁻⁵ 約6.8×10 ⁻⁵ 約6.8×10 ⁻⁵ 約6.8×10 ⁻⁵ 約6.8×10 ⁻⁵ 約6.8×10 ⁻⁵ 約6.8×10 ⁻⁵ 約6.9×10 ⁻⁴ 約8.9×10 ⁻⁴	
		放射性物質による被ぼく 内部被ぼく 約7.5×10 ⁻³ 約7.5×10 ⁻³ 約7.5×10 ⁻³ 約7.5×10 ⁻³ に	
		原子炉格納容器フィルタベント系配管内の放射性 物質からのガンマ線による外部被ばく	
		作業線量率 約1,1×10 ⁻² 約1,1×10 ⁻² 約1,1×10 ⁻²	
		(作業時及び移動時) ポリリー 1×10 *m5v 利 1.1×10 *m5v 利 1.1×10 *m5v 作業員の実効線量	
		(合計) #9.1.2.^10 mov 注記 *:原子炉格納容器第二隔攤弁開機作はベント実施前に行う。	
		表 6-10 原子炉格納容器第一隔離弁(サプレッションチェンバベ	
		ント用出口隔離弁)開操作に伴う移動時及び作業時の線量	
		(単位:mSy/h)	
		原子炉格納容器第一隔離弁 (サプレッションチェンパペント用出口隔離弁)	
		作業時 (中央制御室→作業場所) (作業場所→中央制御室)	
		原子が建築内の放射社物質から0カンマ終による 外部被ばく 約 6.6×10 ⁻⁶ 約 2.0×10 ⁻³ 約 6.6×10 ⁻⁶ 大気中へ放出された放射性物質 による被ばく 外部被ばく 内部被ばく 約 2.9×10 ⁻⁶ 約 1.4×10 ⁻¹⁰ 約 2.9×10 ⁻⁶	
		大気中へ放出され地表面に沈着した放射性物質か ちのガンマ線による被ばく 約3.3×10 ⁻⁵ 約3.0×10 ⁻⁵ 約3.3×10 ⁻⁵	
		外気から作業場所内へ流入した 外部被ぼく 約4.6×10 ¹ 約3.1×10 ⁻⁴ 約1.4×10 ² 放射性勢質による被ぼく 内部被ぼく 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		旅子が恰前でありイルジー・デポイイルジメ戦日: の放射性物質からのガンマ線による外部被ばく 原子炉格前容器フィルタベント系配管内の放射性 物質からのガンマ線による外部被ばく 約3.9×10 ⁻¹⁰ 約 3.9×10 ⁻¹⁰ 対象外 約 1.1×10 ⁻¹ 約 1.1×10 ⁻¹	
		作業線量率 約 4.6×10 ¹ 約 2.3×10 ⁻³ 約 1.4×10 ² 作業時間及び移動時間 84 分 6 分 6 分	
		作業員の実効機能 (作業時及び移動時) 約 6.5×10 ¹ mSv 約 2.3×10 ⁻¹ mSv 約 1.4×10 ¹ mSv 作業員の実効機能	
		17. # 10 元 3 m m m	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 6-11 原子炉格納容器第一隔離弁(ドライウェルベント用出口	
		隔離弁)開操作に伴う移動時及び作業時の線量	
		(単位: mSv/h) 原子炉格納容器第一隔離弁	
		彼ばく経路	
		原子炉建屋内の放射性物質からのガンマ線による 約 6.7×10 ⁻⁶ 約 2.0×10 ⁻³ 約 6.7×10 ⁻⁶	
		大気中へ放出された放射性物質 外部被ばく 内部被ばく 約 2. 2×10 ⁻² 屋内に流入する放射性物質の影響に包絡される 約 2. 2×10 ⁻² 内部被ばく 約 2. 2×10 ⁻² 屋内に流入する放射性物質の影響に包絡される 大気中へ放出され他表面に沈着した放射性物質が 数 3. 3×10 ⁻⁵ 約 3. 0×10 ⁻⁵ 約 3. 0×10 ⁻⁵ 約 3. 0×10 ⁻⁵	
		5.00 ガン - 緑による板ばく	
		原子炉格納容器フィルタベント系フィルタ装置内 の放射性物質からのガンマ線による外部被ばく 原子原料を影響フィルタベント系 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	
		物質からのガンマ線による外部被ばく	
		作業時間及び移動時間	
		作業員の来効線量 (合計) 注記 *: 自給式呼吸器の使用により内部被ばくはないものとする。	
		Line F. Landston and Control of the	
		4. 引用文献	
		(1) Regulatory Guide 1.195, "Methods and Assumptions for	
		Evaluating Radiological Consequences of Design Basis	
		Accidents at Light-Water Nuclear Power Reactors", May	
		2003	
		(2) Standard Review Plan6.5.2, "Containment Spray as a	
		Fission Product Cleanup System", March 2007	
		(3) Standard Review Plan6.5.5, "Pressure Suppression Pool	
		as a Fission Product Cleanup System", March 2007	
		(4) NUREG-1465, "Accident Source Terms for Light-Water	
		Nuclear Power Plants", 1995	