> 本資料のうち, 枠囲みの内容は商業機密の観点から公開できません。

女川原子力発電所第2号機	工事計画審査資料
資料番号	02 －工－B－17－0019＿改 0
提出年月日	2021 年 2 月 2 日

VI－3－別添 1－1－2 原子炉補機冷却海水ポンプの強度計算書
1．概要 1
2．基本方針 1
2.1 位置 1
2.2 構造概要 2
2.3 評価方針 3
2．4 適用規格 5
3．強度評価方法 5
3.1 記号の定義 5
3.2 評価対象部位 10
3．3 荷重及び荷重の組合せ 13
3．4 許容限界 16
3．5 評価方法 18
4．評価条件 32
5．強度評価結果 35

1．概要

本資料は，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」 に示すとおり原子炉補機冷却海水ポンプが竜巻時及び竜巻通過後においても，送水機能 の維持を考慮して，主要な構造部材が構造健全性を有することを確認するものである。

2．基本方針
原子炉補機冷却海水ポンプについて，添付書類「VI－3－別添1－1 竜巻への配慮が必要 な施設の強度計算の方針」の「3．2 機能維持の方針」に示す構造計画を踏まえ，原子炉補機冷却海水ポンプの「2．1 位置」，「2．2 構造概要」，「2．3 評価方針」及び「2．4 適用規格」を示す。

2.1 位置

原子炉補機冷却海水ポンプは，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「3．2 機能維持の方針」に示すとおり，屋外の海水ポンプ室補機ポンプエリアに設置する。海水ポンプ室補機ポンプエリアの位置図を図2－1に示 す。

図 2－1 海水ポンプ室補機ポンプエリアの位置図

2.2 構造概要

原子炉補機冷却海水ポンプについて，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「3．2 機能維持の方針」に示す構造計画を踏まえて，構造を設定する。

原子炉補機泠却海水ポンプは，ポンプ据付面から電動機台までのポンプ部と，電動機台より上部の電動機部からなる立型ポンプであり，同一設計の原子炉補機冷却海水 ポンプを 4 台設置している。原子炉補機冷却海水ポンプ電動機の形状は，四角形を基本としたフレームに，外扇カバー，主回路用端子箱及び空気冷却器が付加された形態 である。原子炉補機冷却海水ポンプの概要図を図2－2に示す。

主回路用端子箱
（a）上面図

（b）側面図

図 2－2 原子炉補機冷却海水ポンプの概要図

2.3 評価方針

原子炉補機冷却海水ポンプの強度評価は，添付書類「VI－3－別添1－1 竜巻への配慮 が必要な施設の強度計算の方針」の「4．荷重及び荷重の組合せ並びに許容限界」に て設定している，荷重及び荷重の組合せ並びに許容限界を踏まえ，原子炉補機冷却海水ポンプの評価対象部位に作用する貫入及び応力等が，許容限界に収まることを「3．強度評価方法」に示す方法により，「4．評価条件」に示す評価条件を用いて計算し，「5．強度評価結果」にて確認する。

原子炉補機冷却海水ポンプの強度評価においては，その構造を踏まえ，設計竜巻に よる荷重とこれに組み合わせる荷重（以下「設計荷重」という。）の作用方向及び伝達過程を考慮し，評価対象部位を選定する。
（1）衝突評価の評価方針
原子炉補機冷却海水ポンプの衝突評価フローを図 2－3に示す。衝突評価において は，竜巻防護ネットを設置する場合に考慮する飛来物である砂利の貫通限界厚さが外殻を構成する部材の厚さ未満であることを確認する。衝突評価では，「タービンミ サイル評価について（昭和 52 年 7 月 20 日 原子炉安全専門審査会）」で用いられ ている式を準用し，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」に示す衝突評価が必要な機器の評価式を用いる。原子炉補機冷却海水ポンプの衝突評価における許容限界は，添付書類「VI－3－別添1－ 1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2許容限界」に示す許容限界である，外殻を構成する部材の厚さとする。

評価対処施設の外殻を構成する部材の厚さとの比較

図 2－3 原子炉補機冷却海水ポンプの衝突評価フロー
（2）構造強度評価の評価方針
原子炉補機冷却海水ポンプの構造強度評価フローを図 2－4 に示す。構造強度評価 においては，原子炉補機冷却海水ポンプに対して，設計竜巻による荷重に運転時の状態で作用する荷重及び自重を加えた応力が許容応力以下であることを確認する。各部材の構造強度評価において，その部材に対して応力が大きくなる方向から風が当たることを想定する。各部材の構造強度評価には，設計竜巻による荷重は水平方向より作用する外荷重という観点で地震荷重と同等なものであると考え，「原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 O 1•補－1984）」，「原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）」及び「原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）」（以下「 J E A G 4 6 0 1 」 という。）における 1 質点系モデルによる評価方法を準用し，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」に示す評価式を用いる。

原子炉補機冷却海水ポンプの構造強度評価における許容限界は，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」に示 す許容限界である，J E A G 4 6 0 1 の許容応力状態 III A S とする。

図 2－4 原子炉補機冷却海水ポンプの構造強度評価フロー
（3）動的機能維持評価の評価方針
原子炉補機冷却海水ポンプの動的機能維持評価フローを図 2－5に示す。原子炉補機冷却海水ポンプは動的機器であるため，構造強度評価に加え，軸受部の動的機能維持評価を行う。動的機能維持評価においては，原子炉補機冷却海水ポンプ据付面 から上部の受圧面積が大きくなる方向から風が当たることを想定し，設計竜巻の風圧力による荷重を受けた際のフレーム変位により生じる軸受荷重が接触面圧の許容

荷重以下であることを確認する。動的機能維持評価では，添付書類「VI－3－別添1－1竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」に示す評価式を用いる。原子炉補機冷却海水ポンプの動的機能維持評価における許容限界は，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2許容限界」に示す許容限界である，軸受部の接触面圧の許容荷重とする。

図2－5 原子炉補機泠却海水ポンプの動的機能維持評価フロー

2.4 適用規格

適用する規格，基準等を以下に示す。

- タービンミサイル評価について（昭和 52 年 7 月 20 日 原子炉安全専門審査会）
- 日本建築学会 2004 年 建築物荷重指針•同解説
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601•補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
- 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
- J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）
－日本機械学会 1987 年 新版機械工学便覧

3．強度評価方法
3.1 記号の定義
（1）衝突評価の記号の定義
原子炉補機冷却海水ポンプの衝突評価に用いる記号を表3－1に示す。

表 3－1 衝突評価に用いる記号

記号	単位	定義
d	m	評価において考慮する飛来物が衝突する衝突断面の等価直径
K	-	鋼板の材質に関する係数
M	kg	評価において考慮する飛来物の質量
T	mm	鋼板の貫通限界厚さ
v	m / s	評価において考慮する飛来物の飛来速度

（2）構造強度評価及び動的機能維持評価の記号の定義
原子炉補機冷却海水ポンプの構造強度評価及び動的機能維持評価に用いる記号を表 3－2 及び表 3－3に示す。

表 3－2 構造強度評価に用いる記号（ $1 / 2$ ）

記号	単位	定義
A	m^{2}	受圧面積（風向に垂直な面に投影した面積）
A_{11}	m^{2}	電動機台及び電動機フレームの受圧面積（風向に垂直な面に投影した面積）
A_{12}	m^{2}	電動機フレームの受圧面積（風向に垂直な面に投影した面積）
A_{13}	m^{2}	主回路用端子箱の受圧面積（風向に垂直な面に投影した面積）
A_{14}	m^{2}	空気冷却器の受圧面積（風向に垂直な面に投影した面積）
A_{15}	m^{2}	外扇カバーの受圧面積（風向に垂直な面に投影した面積）
A_{b}	mm^{2}	ボルトの断面積
C	－	建築物荷重指針•同解説により規定される風力係数
C ${ }_{p}$	－	ポンプ振動による震度
D	mm	電動機フレーム外径
D i	mm	ボルトのピッチ円の直径
d	mm	電動機フレーム内径
F	MPa	設計•建設規格 SSB－3121．1（1）により規定される値
$\mathrm{F}_{\mathrm{b}} \mathrm{i}$	N	ボルトに作用する引張力
f b	MPa	設計•建設規格 SSB－3121．1 により規定される供用状態A及びBでの許容曲げ応力
f s	MPa	設計•建設規格 SSB－3121．1 により規定される供用状態A及びBでの許容せん断応力
f t	MPa	設計•建設規格 SSB－3121．1 により規定される供用状態A及びBでの許容引張応力
G	－	ガスト影響係数

表3－2 構造強度評価に用いる記号（2／2）

記号	単位	定義
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
H	N	自重による荷重
H_{P}	mm	風の受圧面積算出時の電動機台高さ
H_{M}	mm	風の受圧面積算出時の電動機フレーム高さ
h	mm	重心と支点間の距離
h p	$\mu \mathrm{m}$	予想最大全振幅
L_{1}	mm	支点と評価ボルト間の距離
L_{H}	mm	基準面から重心位置までの距離
M	$\mathrm{N} \cdot \mathrm{mm}$	設計竜巻により評価対象部位に作用するモーメント
M ${ }_{\text {p }}$	$\mathrm{N} \cdot \mathrm{mm}$	ポンプの回転により働くモーメント
M s	kg	ポンプスラスト
m	kg	質量
m_{i}	kg	ボルトに加わる機器質量
N	rpm	回転数（同期）
n_{i}	－	ボルトの本数
P	kW	ポンプ出力
Q $\mathrm{bi}^{\text {i }}$	N	ボルトに働くせん断力
q	MPa	設計用速度圧
$\mathrm{S}_{\text {y }}$	MPa	設計•建設規格 付録材料図表Part5の表にて規定される設計降伏点
S_{u}	MPa	設計•建設規格 付録材料図表Part5の表にて規定される設計引張強さ
$\mathrm{W}_{\text {T }}$	N	設計竜巻による複合荷重
$\mathrm{W}_{\mathrm{T} 1}$	N	設計竜巻による複合荷重（ $\left.\mathrm{W}_{\mathrm{T} 1}=\mathrm{W}_{\mathrm{P}}\right)$
$\mathrm{W}_{\mathrm{T} 2}$	N	設計竜巻による複合荷重（ $\left.\mathrm{W}_{\mathrm{T} 2}=\mathrm{W}_{\mathrm{W}}+0.5 \cdot \mathrm{~W}_{\mathrm{P}}+\mathrm{W}_{\mathrm{M}}\right)$
W_{M}	N	設計竜巻による飛来物の衝撃荷重
$W_{\text {P }}$	N	設計竜巻の気圧差による荷重
W_{w}	N	設計竜巻の風圧力による荷重
Z	mm^{3}	断面係数
$\Delta \mathrm{P}$	MPa	設計竜巻の気圧低下量
π	－	円周率
σ	MPa	電動機フレームの曲げ応力
σ b i	MPa	ボルトに生じる引張応力
τ	MPa	せん断応力
$\tau \mathrm{bi}$	MPa	ボルトに生じるせん断応力

表 3－3 動的機能維持評価に用いる記号（1／2）

記号	単位	定義
A	m^{2}	電動機台の受圧面積（風向に垂直な面に投影した面積）
a	mm	部材間の長さ
a 1	mm	ポンプ据付面から電動機台上端までの長さ
a 2	mm	電動機台上端から電動機下部軸受までの長さ
a 3	mm	電動機台上端から荷重作用点までの長さ
b_{1}	mm	回転子リブ幅（短辺）
b 2	mm	回転子リブ幅（長辺）
C	－	建築物荷重指針•同解説により規定される風力係数
D	mm	回転子軸中心とリブ重心間の距離
d	mm	回転子コア径
D m	mm	電動機フレーム外径
d m	mm	電動機フレーム内径
D p	mm	電動機台外径
d_{p}	mm	電動機台内径
E	MPa	縦弾性係数
Em	MPa	電動機フレームの縦弾性係数
E_{p}	MPa	電動機台の縦弾性係数
Em ${ }^{\prime}$	MPa	回転子の縦弾性係数
G	－	ガスト影響係数
h＇	mm	基準点から作用点までの距離
h_{1} ，	mm	電動機台上端から荷重作用点までの距離
$\mathrm{h}_{2}{ }^{\prime}$	mm	電動機下部軸受から荷重作用点までの距離
h 3，	mm	荷重作用点から荷重作用点までの距離
h_{1}	mm	回転子リブ高さ（長辺）
h 2	mm	回転子リブ高さ（短辺）
I	mm^{4}	断面二次モーメント
I m	mm^{4}	電動機フレームの断面二次モーメント
$\mathrm{I}_{\mathrm{m}}{ }^{\prime}$	mm^{4}	回転子の断面二次モーメント
I_{p}	mm^{4}	電動機台の断面二次モーメント
i	rad	傾斜
i 1	rad	ポンプ据付面から電動機台上端部の傾斜
i 3	rad	電動機台上端部から荷重作用点の傾斜

表 3－3 動的機能維持評価に用いる記号（2／2）

記号	単位	定義
i 4	rad	荷重作用点の傾斜
M	$\mathrm{N} \cdot \mathrm{mm}$	設計竜巻により作用するモーメント
Ma_{a}	$\mathrm{N} \cdot \mathrm{mm}$	設計竜巻により作用するモーメント
M_{b}	$\mathrm{N} \cdot \mathrm{mm}$	設計竜巻により作用するモーメント
M_{c}	$\mathrm{N} \cdot \mathrm{mm}$	設計竜巻により作用するモーメント
q	MPa	設計用速度圧
$\mathrm{W}_{\text {T }}$	N	設計竜巻による複合荷重
$\mathrm{W}_{\mathrm{T} 2}$	N	設計竜巻による複合荷重（ $\left.\mathrm{W}_{\mathrm{T} 2}=\mathrm{W}_{\mathrm{W}}+0.5 \cdot \mathrm{~W}_{\mathrm{P}}+\mathrm{W}_{\mathrm{M}}\right)$
W＇	N	たわみ量及び発生荷重計算における設計竜巻による複合荷重
W＂	N	発生荷重
W_{a}＂	N	電動機下部軸受部の発生荷重
$\mathrm{W}_{\mathrm{b}}{ }^{\text {＂}}$	N	電動機上部軸受部の発生荷重
W_{M}	N	設計竜巻による飛来物の衝撃荷重
W_{P}	N	設計竜巻の気圧差による荷重
W_{w}	N	設計竜巻の風圧力による荷重
x	mm	荷重作用点から評価対象部までの距離
x ，	mm	評価対象部から支点までの距離
$\mathrm{x}_{\mathrm{a}}{ }^{\prime}$	mm	ポンプ上部軸受部から電動機下部軸受部までの距離
$\mathrm{x}_{\mathrm{b}}{ }^{\prime}$	mm	電動機下部軸受部から電動機上部軸受部までの距離
y	mm	たわみ量
Y 1	mm	ポンプ据付面から電動機台上端部のたわみ量
Y 2	mm	電動機台上端部から電動機下部軸受部のたわみ量
y 3	mm	電動機台上端部から荷重作用点のたわみ量
Y 4	mm	荷重作用点のたわみ量
Y 5	mm	荷重作用点から電動機上部軸受部のたわみ量
y a	mm	電動機下部軸受部のたわみ量
y b	mm	電動機上部軸受部のたわみ量
$\Delta \mathrm{P}$	MPa	設計竜巻の気圧低下量
π	－	円周率
δ	mm	評価対象部位から支点までの変位量

3.2 評価対象部位

原子炉補機冷却海水ポンプの評価対象部位は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2許容限界」にて示す評価対象部位を踏 まえ，「2．2 構造概要」にて設定している構造に基づき，設計荷重の作用方向及び伝達過程を考慮し選定する。
（1）衝突評価の評価対象部位
評価において考慮する飛来物の衝突により，原子炉補機冷却海水ポンプに衝撃荷重が作用し貫入する可能性があるため，貫入によりその施設の機能が喪失する可能性のある箇所を評価対象部位として選定する。

原子炉補機冷却海水ポンプ地上部の全方向からの飛来物を考慮し，貫入により施設 の機能が喪失する可能性がある箇所として最薄部となる主回路用端子箱を選定する。原子炉補機冷却海水ポンプの衝突評価における評価対象部位を図3－1に示す。

主回路用端子箱

図 3－1 原子炉補機冷却海水ポンプの評価対象部位（衝突評価）
（2）構造強度評価の評価対象部位
a．ポンプ部
ポンプ部について，電動機部等に作用する設計竜巻による荷重は，電動機フレ
ーム及び電動機台に作用し，電動機台を介して，基礎面及び電動機部を固定して いるボルトに作用する。荷重を受ける各部位のらち，支持断面積の小さな部位に大きな応力が生じることになる。

このことから，以下の部位を構造強度評価の評価対象部位として選定する。

- 電動機取付ボルト
- ポンプ取付ボルト
- 基礎ボルト
b．電動機部
電動機部について，電動機部等に作用する設計竜巻による荷重は，電動機フレ ーム及び付属品に作用し，電動機フレーム及び付属品を介して，付属品の取付部

を固定するボルトに作用する。
このことから，以下の部位を構造強度評価の評価対象部位として選定する。

- 電動機フレーム
- 主回路用端子箱取付ボルト
- 空気冷却器取付ボルト
- 外扇カバー取付ボルト

原子炉補機泠却海水ポンプの構造強度評価における評価対象部位を図 3－2，図 3－3に示す。

図 3－2 原子炉補機冷却海水ポンプの構造強度評価対象部位図（ポンプ部）

主回路用端子箱

図 3－3 原子炉補機冷却海水ポンプの構造強度評価対象部位図（電動機部）
（3）動的機能維持評価の評価対象部位
ポンプ据付面より上部に設計竜巻により荷重を受けた際に，電動機フレーム等が変位することにより軸と軸受が接触した場合に動的機能維持が困難となるため，以下の部位を動的機能維持評価の評価対象部位として選定する。

- 電動機下部軸受部
- 電動機上部軸受部

原子炉補機冷却海水ポンプの動的機能維持評価における評価対象部位を図 3－4 に示す。

電動機下部軸受部

図 3－4 原子炉補機冷却海水ポンプ動的機能維持評価対象部位概略図

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．1 荷重及び荷重の組合せ」に示している荷重及び荷重の組合せを用いる。
（1）衝突評価の荷重及び荷重の組合せ
衝突評価において考慮する飛来物として竜巻防護ネット（ネットの網目寸法 40 mm ） をすり抜ける砂利を設定し，砂利の衝撃荷重を考慮する。

衝突評価においては，評価対象部位に砂利が衝突した際に跳ね返らず，貫入する ものとして評価する。

砂利の諸元を表 3－4，原子炉補機冷却海水ポンプの衝突評価に用いる荷重を表3－ 5 に示す。

表 3－4 砂利の諸元

飛来物	d(m)	$\begin{aligned} & \mathrm{K} \\ & (-) \end{aligned}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{v} \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	
				水平方向	鉛直方向
砂利	0.04	1.0	0.2	59.3	27.2

表 3－5 原子炉補機冷却海水ポンプの衝突評価に用いる荷重

施設分類	施設名称	評価対象部位	荷重
屋外の外部事象 防護対象施設	原子炉補機冷却 海水ポンプ	主回路用端子箱	飛来物による衝撃 荷重

（2）構造強度評価及び動的機能維持評価の荷重及び荷重の組合せ
a．荷重の設定
構造強度評価及び動的機能維持評価に用いる荷重は，以下の荷重を用いる。
（a）常時作用する荷重
常時作用する荷重として，持続的に生じる荷重である自重を考慮する。
自重による荷重は以下のとおり計算する。

$$
\mathrm{H}=\mathrm{m} \cdot \mathrm{~g}
$$

（b）設計竜巻による荷重
風圧力による荷重及び気圧差による荷重を考慮する。竜巻防護ネットによる風圧力の低減はないものとして保守的な評価を行う。また，竜巻防護ネットを すり抜ける極小飛来物である砂利による衝撃は瞬間的で，衝突時間が極めて短 く，衝突される機器へ伝わる加速度が小さいことから，機器へ作用する荷重は構造強度に影響を与えないので設計竜巻による荷重とこれに組み合わせる荷重

に衝撃荷重を考慮しない。
イ．風圧力による荷重（ W_{w} ）
風圧力による荷重 W_{W} は，添付書類「VI－3－別添1－1 竜巻への配慮が必要 な施設の強度計算の方針」の「4．1（3）c．（a）風圧力による荷重」に示す式に従い，算出する。

$$
\mathrm{W}_{\mathrm{w}}=\mathrm{q} \cdot \mathrm{G} \cdot \mathrm{C} \cdot \mathrm{~A}
$$

口。 気圧差による荷重（ W_{P} ）
気圧差による荷重 W_{P} は，添付書類「VI－3－別添1－1 竜巻への配慮が必要 な施設の強度計算の方針」の「4．1（3）c．（b）気圧差による荷重」に示す式に従い，算出する。

$$
\mathrm{W}_{\mathrm{P}}=\Delta \mathrm{P} \cdot \mathrm{~A}
$$

八。荷重の組合せ
設計竜巻による複合荷重 $\mathrm{W}_{\mathrm{T}}\left(\mathrm{W}_{\mathrm{T} 1}, \mathrm{~W}_{\mathrm{T} 2}\right)$ は，添付書類「VI－3－別添1－1竜巻への配慮が必要な施設の強度計算の方針」の「4．1（2）荷重の組合せ」 に示す式に従い，算出する。なお，原子炉補機泠却海水ポンプは気圧差が生 じ難い構造であるため，複合荷重の選定において， $\mathrm{W}_{\mathrm{T} 2}$ としては気圧差を考慮するが， $\mathrm{W}_{\mathrm{T} 1} 1$ の評価は実施しない。

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{T} 1}=\mathrm{W}_{\mathrm{P}} \\
& \mathrm{~W}_{\mathrm{T} 2}=\mathrm{W}_{\mathrm{W}}+0.5 \cdot \mathrm{~W}_{\mathrm{P}}+\mathrm{W}_{\mathrm{M}}
\end{aligned}
$$

（c）運転時の状態で作用する荷重
運転時の状態で作用する荷重としては，鉛直下向きに作用するポンプスラス ト荷重を考慮する。
b．荷重の組合せ
構造強度評価に用いる荷重の組合せは，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．1 荷重及び荷重の組合せ」にて設定 している荷重の組合せを踏まえ，原子炉補機冷却海水ポンプの評価対象部位ご とに設定する。
ボルト材の構造強度評価において，水平方向に取り付けられている場合（主回路用端子箱取付ボルト及び空気冷却器取付ボルト）は，自重を考慮する。

原子炉補機冷却海水ポンプの評価対象部位に作用する荷重及び強度評価にて考慮する荷重の組合せを表3－6に示す。

表 3－6 荷重の組合せ

3．4 許容限界

原子炉補機冷却海水ポンプの許容限界は，添付書類「VI－3－別添1－1 竜巻への配慮 が必要な施設の強度計算の方針」の「4．2許容限界」にて設定している許容限界に従 つて，「3．2 評価対象部位」にて設定した評価対象部位ごとに，機能損傷モードを考慮し，外殻を構成する部材の厚さ，J E A G 4 6 O 1 に基づく許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の許容応力及び軸受部の接触面圧の許容荷重を用いる。
（1）衝突評価における許容限界
衝突評価における許容限界は，評価において考慮する飛来物による衝撃荷重に対 し，外殻を構成する部材が，機能喪失に至る可能性のある変形を生じないことを計算により確認するため，評価式により算定した貫通限界厚さが，外殻を構成する部材の厚さ未満であることを許容限界とする。原子炉補機冷却海水ポンプの外殻を構成する部材の厚さを表3－7に示す。

外部事象防護対象施設	外殻を構成する部材の厚さ
原子炉補機冷却海水ポンプ	

（2）構造強度評価における許容限界
原子炉補機冷却海水ポンプの許容限界は，J E A G 4 6 O 1 を準用し，「クラス 2 ， 3 支持構造物」の許容限界を適用する。設計荷重に対して，当該施設に要求される安全機能を維持できるように弾性設計とするため，許容応力状態III ${ }_{\mathrm{A}} \mathrm{S}$ から算出し た以下の許容応力を許容限界とする。J E A G 4 6 0 1 に従い，設計•建設規格 付録材料図表Part5，6の表にて許容応力を計算する際は，評価対象部位の周囲環境温度及び許容最高温度に応じた値をとるものとするが，温度が設計•建設規格 付録材料図表記載の中間の値の場合は，比例法を用いて計算する。ただし，設計•建設規格 付録材料図表Part5，6で比例法を用いる場合の端数処理は，小数点第 1 位以下 を切り捨てた値を用いるものとする。

原子炉補機冷却海水ポンプの構造強度評価における許容限界を表3－8，許容応力を表3－9に示す。

表 3－8 原子炉補機冷却海水ポンプの構造強度評価における許容限界

評価対象部位	許容応力状態	応力の種類			許容限界
ボルト	III ${ }_{\text {A }} \mathrm{S}$	$\begin{aligned} & \text { 一次 } \\ & \text { 応力 } \end{aligned}$	引張		$1.5 \mathrm{ft}_{\mathrm{t}}$
			せん断		1.5 f
			組合せ	Min $\left\{1.5 \mathrm{f}_{\mathrm{t}}\right.$ ，	（2．1 f $\left.\left.{ }_{\mathrm{t}}-1.6 \tau\right)\right\}$
電動機フレーム	III ${ }_{\text {A }} \mathrm{S}$	$\begin{aligned} & \text { 一次 } \\ & \text { 応力 } \end{aligned}$	曲げ		1.5 fb

表 3－9 原子炉補機冷却海水ポンプの構造強度評価における許容応力

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$1.5 \mathrm{ft}_{\mathrm{t}}$ （MPa）	$1.5 \mathrm{fs}$ （MPa）	$1.5 \mathrm{fb}_{\mathrm{b}}$ （MPa）
電動機取付 ボルト	SCM435	$40 * 1$	785	930	651	488	375	－
ポンプ取付 ボルト	SCM435	$40 * 1$	785	930	651	488	375	－
基礎ボルト	SCM435	$40 * 1$	785	930	651	488	375	－
電動機フレーム	SS400	$155 * 2$	205	373	205	－	－	237
主回路用端子箱取付ボルト	SUS304	40＊1	205	520	205	153	118	－
空気冷却器取付 ボルト	SUS304	$40 * 1$	205	520	205	153	118	－
外扇カバー取付 ボルト	SUS304	$40 * 1$	205	520	205	153	118	－

注記＊1：周囲環境温度
＊2：電動機の耐熱クラス F 種における許容最高温度
（3）動的機能維持評価における許容限界
動的機能維持評価における許容限界は，設計荷重により電動機フレームが変形する場合においても原子炉補機冷却海水ポンプの運転継続が可能であるように，軸受部の接触面圧の許容荷重を許容限界とする。

軸受部の接触面圧の許容荷重を表3－10に示す。

表 3－10 軸受部の接触面圧の許容荷重

評価対象部位	許容荷重（N）
電動機上部軸受部	
電動機下部軸受部	

3.5 評価方法
（1）衝突評価の評価方法
原子炉補機冷却海水ポンプの衝突評価は，添付書類「VI－3－別添1－1 竜巻への配慮 が必要な施設の強度計算の方針」の「5．強度評価方法」にて設定している衝突評価 が必要な機器の評価式を用いる。

飛来物が外部事象防護対象施設に衝突する場合の貫通限界厚さを，「タービンミサ イル評価について（昭和52年7月20日 原子炉安全専門審査会）」で用いられている BRL式を用いて算出する。
$\mathrm{T}^{\frac{3}{2}}=$ $0.5 \cdot \mathrm{M} \cdot \mathrm{v}^{2}$
$1.4396 \times 10^{9} \cdot \mathrm{~K}^{2} \cdot \mathrm{~d}^{\frac{3}{2}}$
（2）構造強度評価及び動的機能維持評価の評価方法
原子炉補機冷却海水ポンプの構造強度評価及び動的機能維持評価は，添付書類「VI －3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」 にて設定している評価式を用いる。
a．計算モデル
（a）構造強度評価
計算モデルは 1 質点系モデルとし，ポンプ部は全高の $1 / 2$ の位置に，電動機部は風圧力による荷重の作用中心に複合荷重が作用することとする。また，設計竜巻による風荷重はそれぞれの評価対象部位に対して発生応力が大きくなる方向から当たるものとする。ポンプ部及び電動機部の応力の計算モデル図を図 3－5 及び図3－6に示す。

図 3－5 応力の計算モデル図（ポンプ部）

図 3－6 応力の計算モデル図（電動機部）
（b）動的機能維持評価
動的機能維持評価の際の電動機フレームのたわみ量計算において，ポンプ据付面から電動機台上端まで（ポンプ部）と，電動機台上端から電動機まで（電動機部）の片持ち梁と考え，違う断面性能の一軸中空形モデルで，荷重が全高 の半分の位置に作用することとする。ポンプ部の断面性能は，電動機台の断面性能を一様に有する単純円筒形モデルとして評価し，電動機部については電動機フレームの断面性能を用いて評価する。たわみ量計算モデル図を図3－7に示 す。

ポンプ据付面より上部の静止体（電動機フレーム等）は，水平方向の複合荷重により，ポンプ据付面を固定端として一方向に変形する。一方，回転体（ポ ンプ軸及び電動機軸）は，風荷重を受けないため，変形せず，電動機上部から鉛直方向に吊り下げられた状態を維持する。電動機フレーム等の変形により，軸受反力が許容荷重を超えないことを確認する。

図 3－7 原子炉補機泠却海水ポンプのたわみ量計算モデル図
b．計算方法
（a）応力の算出
イ．ポンプ部（ボルト部）
電動機取付ボルト，ポンプ取付ボルト及び基礎ボルトの配置図を図 3－8～図 3－10に示す。
（イ）風による転倒モーメントM

$$
\mathrm{M}=\mathrm{W}_{\mathrm{T}} \cdot \frac{\left(\mathrm{H}_{\mathrm{M}}+\mathrm{H}_{\mathrm{P}}\right)}{2}
$$

（ロ）引張応力 σ_{bi}
$F_{b i}=\frac{W_{T 2} \cdot \frac{\left(\mathrm{H}_{\mathrm{M}}+\mathrm{H}_{\mathrm{P}}\right)}{2}-\left(\mathrm{m}_{\mathrm{i}}+\mathrm{M}_{\mathrm{s}}\right) \cdot\left(1-\mathrm{C}_{\mathrm{p}}\right) \cdot \mathrm{g}^{2} \cdot \frac{\mathrm{D}_{\mathrm{i}}}{2}}{\frac{3}{8} \cdot \mathrm{n}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}}$

ここで，ポンプ振動による震度 C_{p} は，
$\mathrm{C}_{\mathrm{p}}=\frac{1}{2} \cdot \mathrm{~h}_{\mathrm{p}} \cdot\left(\frac{2 \cdot \pi \cdot \mathrm{~N}}{60}\right)^{2} \cdot \frac{1}{\mathrm{~g}}$

ただし，F $\mathrm{b}_{\mathrm{i}} \leqq 0$ ならば引張力は発生しない。
$\mathrm{F}_{\mathrm{b} \mathrm{i}}>0$ ならば引張力は作用しているので，以下の引張応力の計算を行 う。

$$
\sigma_{\mathrm{bi}}=\frac{\mathrm{F}_{\mathrm{bi}}}{\mathrm{~A}_{\mathrm{b}}}
$$

（八）せん断応力 $\tau \mathrm{b} \mathrm{i}$
【電動機取付ボルト及びポンプ取付ボルト】

$$
\mathrm{Q}_{\mathrm{bi}}=\mathrm{W}_{\mathrm{T} 2}
$$

$$
\tau_{b i}=\frac{Q_{b i}+\frac{2 \cdot M_{p}}{D_{i}}}{n_{i} \cdot A_{b}}
$$

ここで，ポンプの回転により働くモーメント M_{p} は

$$
\mathrm{M}_{\mathrm{p}}=\frac{60}{2 \cdot \pi \cdot \mathrm{~N}} \cdot 10^{6} \cdot \mathrm{P}
$$

【基礎ボルト】

$$
\mathrm{Q}_{\mathrm{bi}}=\mathrm{W}_{\mathrm{T} 2}
$$

$$
\tau_{\mathrm{bi}}=\frac{\mathrm{Q}_{\mathrm{bi}}}{\mathrm{n}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{b}}}
$$

$8 \times$ M30 電動機取付ボルト

図 3－8 電動機取付ボルトの配置図
$20 \times$ M42 ポンプ取付ボルト

図 3－9 ポンプ取付ボルトの配置図
$12 \times$ M48 基礎ボルト

図 3－10 基礎ボルトの配置図

ロ．電動機部
電動機フレーム，主回路用端子箱取付ボルト部，空気冷却器取付ボルト部及び外扇カバー取付ボルト部の詳細図を図3－11～図3－14に示す。
（イ）電動機フレーム
電動機フレームの応力算出方法を以下に示す。
－曲げ応力
（i）風による転倒モーメントM

$$
\mathrm{M}=\mathrm{W}_{\mathrm{T}} \cdot \mathrm{~h}
$$

（ii）曲げ応力 σ
$\sigma=\frac{\mathrm{M}}{\mathrm{Z}}$
ここで，
$Z=\frac{1}{6} \cdot \frac{D^{4}-d^{4}}{D}$

電動機フレーム断面

図 3－11 電動機フレーム詳細図
（ロ）主回路用端子箱取付ボルト部及び空気冷却器取付ボルト部
主回路用端子箱取付ボルト部及び空気冷却器取付ボルト部の応力算出方法を以下に示す。
－引張応力
（ i ）風圧力及び自重に生じる曲げモーメントM

$$
\mathrm{M}=\left(\mathrm{W}_{\mathrm{T}}+\mathrm{H}\right) \cdot \mathrm{L}_{\mathrm{H}}
$$

（ ii ）引張応力 $\sigma \mathrm{b}$ i

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{bi}}=\frac{\mathrm{M}}{\mathrm{~L}_{1} \cdot \mathrm{n}_{\mathrm{i}}} \\
& \sigma_{\mathrm{bi}}=\frac{\mathrm{F}_{\mathrm{bi}}}{\mathrm{~A}_{\mathrm{b}}}
\end{aligned}
$$

（iii）せん断応力 τ bi

$$
\begin{aligned}
& \tau_{\mathrm{bi}}=\frac{\mathrm{Q}_{\mathrm{bi}}}{\mathrm{~A}_{\mathrm{b}} \cdot \mathrm{n}_{\mathrm{i}}} \\
& \text { 乙こで, } \\
& \mathrm{Q}_{\mathrm{bi}}=\mathrm{W}_{\mathrm{T}}+\mathrm{H}
\end{aligned}
$$

図 3－12 主回路用端子箱取付ボルト部詳細図

図 3－13 空気冷却器取付ボルト部詳細図
（ハ）外扇カバー取付ボルト部
外扇カバー取付ボルトの応力算出方法を以下に示す。
（ i ）風による転倒モーメントM

$$
\mathrm{M}=\mathrm{W}_{\mathrm{T}} \cdot \mathrm{~L}_{\mathrm{H}}
$$

（ii）引張応力 σ bi

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{bi}}=\frac{\mathrm{M}}{\mathrm{~L}_{1} \cdot \mathrm{n}_{\mathrm{i}}} \\
& \sigma_{\mathrm{bi}}=\frac{\mathrm{F}_{\mathrm{bi}}}{\mathrm{~A}_{\mathrm{b}}}
\end{aligned}
$$

（iii）せん断応力 $\tau_{\mathrm{b}} \mathrm{i}$

$$
\tau_{\mathrm{b} \mathrm{i}}=\frac{\mathrm{W}_{\mathrm{T}}}{\mathrm{~A}_{\mathrm{b}} \cdot \mathrm{n}_{\mathrm{i}}}
$$

$A-A$ 矢視
（b）発生荷重の計算
イ．たわみ量の計算
たわみ量の算出において，設計竜巻による風圧力を受ける面は風の影響を受ける面積が大きい外扇カバー，空気冷却器，電動機フレーム及び電動機台 とし，水平荷重W＇は外扇カバー，空気冷却器，電動機フレーム及び電動機台に発生する水平荷重を包絡するような面積を設定し算出する。
$\mathrm{W}^{\prime}=\mathrm{W}_{\mathrm{T} 2}$
風による水平荷重の受圧面積を図3－15に示す。

図 3－15 風による水平荷重の受圧面積

以下のミオソテスの方法より各評価対象部位のたわみ量 y と傾斜 i を算出 する。なお，荷重は高さの半分の位置に作用することとする。

ミオソテスの方法
$\mathrm{y}=\frac{\mathrm{M} \cdot \mathrm{a}^{2}}{2 \cdot \mathrm{E} \cdot \mathrm{I}}+\frac{\mathrm{W}^{\prime} \cdot \mathrm{a}^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}}$
$i=\frac{M \cdot a}{E \cdot I}+\frac{W^{\prime} \cdot a^{2}}{2 \cdot E \cdot I}$
$\mathrm{M}=\mathrm{W}^{\prime} \quad \cdot \mathrm{h}^{\prime}$
（イ）電動機下部軸受部
－ポンプ据付面から電動機台上端部のたわみ量 y_{1} ，傾斜 i_{1}
$\mathrm{y}_{1}=\frac{\mathrm{M}_{\mathrm{a}} \cdot \mathrm{a}_{1}{ }^{2}}{2 \cdot \mathrm{E}_{\mathrm{p}} \cdot \mathrm{I}_{\mathrm{p}}}+\frac{\mathrm{W}^{\prime} \cdot{ }^{2} \mathrm{a}_{1}{ }^{3}}{3 \cdot \mathrm{E}_{\mathrm{p}} \cdot \mathrm{I}_{\mathrm{p}}}$

$$
\begin{aligned}
& \mathrm{i}_{1}=\frac{\mathrm{M}_{\mathrm{a}} \cdot \mathrm{a}_{1}}{\mathrm{E}_{\mathrm{p}} \cdot \mathrm{I}_{\mathrm{p}}}+\frac{\mathrm{W}^{\prime} \cdot \mathrm{a}_{1}^{2}}{2 \cdot \mathrm{E}_{\mathrm{p}} \cdot \mathrm{I}_{\mathrm{p}}} \\
& \mathrm{M}_{\mathrm{a}}=\mathrm{W}^{\prime} \cdot \mathrm{h}_{1}, \\
& \text { ここで, 電動機台の断面図を図 } 3-16 \text { に示す。 }
\end{aligned}
$$

図 3－16 電動機台の断面図

円筒形であるため，断面二次モーメントは以下のとおり算出する。

$$
I_{p}=\frac{\pi \cdot\left(D_{P}^{4}-d_{P}^{4}\right)}{64}
$$

－電動機台上端部から電動機下部軸受部のたわみ量 y 2

$$
\begin{aligned}
& \mathrm{y}_{2}=\frac{\mathrm{M}_{\mathrm{b}} \cdot \mathrm{a}_{2}^{2}}{2 \cdot \mathrm{E}_{\mathrm{m}} \cdot \mathrm{I}_{\mathrm{m}}}+\frac{\mathrm{W}^{\prime} \cdot \mathrm{a}_{2}^{3}}{3 \cdot \mathrm{E}_{\mathrm{m}} \cdot \mathrm{I}_{\mathrm{m}}} \\
& \mathrm{M}_{\mathrm{b}}=\mathrm{W}^{\prime} \cdot \mathrm{h}_{2}
\end{aligned}
$$

ここで，電動機フレームの断面図を図 3－17に示す。

図 3－17 電動機フレームの断面図

四角形であるため，断面二次モーメントは以下のとおり算出する。

$$
I_{m}=\frac{D_{m}^{4}-d_{m}^{4}}{12}
$$

よって，電動機下部軸受部のたわみ量は

$$
\mathrm{y}_{\mathrm{a}}=\mathrm{y}_{1}+\mathrm{y}_{2}
$$

ここで，電動機下部軸受部のたわみ量と傾斜計算モデル図を図 3－18 に示 す。

図 3－18 電動機下部軸受部のたわみ量と傾斜計算モデル図
（ロ）電動機上部軸受部
－電動機台上端部から荷重作用点のたわみ量 y 3，傾斜 i 3

$$
\begin{aligned}
& \mathrm{y}_{3}=\frac{\mathrm{M}_{\mathrm{c}} \cdot \mathrm{a}_{3}^{2}}{2 \cdot \mathrm{E}_{\mathrm{m}} \cdot \mathrm{I}_{\mathrm{m}}}+\frac{\mathrm{W}^{\prime} \cdot \mathrm{a}_{3}^{3}}{3 \cdot \mathrm{E}_{\mathrm{m}} \cdot \mathrm{I}_{\mathrm{m}}} \\
& \mathrm{i}_{3}=\frac{\mathrm{M}_{\mathrm{c}} \cdot \mathrm{a}_{3}}{\mathrm{E}_{\mathrm{m}} \cdot \mathrm{I}_{\mathrm{m}}}+\frac{\mathrm{W}^{\prime} \cdot \mathrm{a}_{3}^{2}}{2 \cdot \mathrm{E}_{\mathrm{m}} \cdot \mathrm{I}_{\mathrm{m}}} \\
& \mathrm{M}_{\mathrm{c}}=\mathrm{W}^{\prime} \cdot \mathrm{h}_{3}
\end{aligned}
$$

よって，荷重作用点のたわみ量 y_{4} ，傾斜 i 4

$$
\begin{aligned}
& \mathrm{y}_{4}=\mathrm{y}_{1}+\mathrm{y}_{3} \\
& \mathrm{i}_{4}=\mathrm{i}_{1}+\mathrm{i}_{3}
\end{aligned}
$$

荷重作用点から電動機上部軸受部のたわみ量 y 5

$$
\mathrm{y}_{5}=\mathrm{x} \cdot \mathrm{~s} \text { in }\left(\mathrm{i}_{4}\right)
$$

以上より，電動機上部軸受部のたわみ量は
$\mathrm{y}_{\mathrm{b}}=\mathrm{y}_{4}+\mathrm{y}_{5}$
ここで，電動機上部軸受部のたわみ量と傾斜計算モデル図を図 3－19に示す。

図 3－19 電動機上部軸受部のたわみ量と傾斜計算モデル図

ロ．発生荷重の算出
軸受部において，フレーム変位により作用する軸受反力と軸受許容荷重を比較し，発生荷重が許容荷重より小さいことを確認する。

発生荷重W＂は次式より計算する。
$\delta=$ 評価対象部位の変位量 - 支点の変位量
また，発生荷重は
$\delta=\frac{\mathrm{W}^{\prime} \cdot \mathrm{x}^{, 3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}}$
より
$W^{\prime \prime}=\frac{3 \cdot \mathrm{E} \cdot \mathrm{I} \cdot \delta}{\mathrm{x}^{\prime}{ }^{3}}$
（イ）電動機下部軸受部の発生荷重
$\mathrm{W}_{\mathrm{a}} "=\frac{3 \cdot \mathrm{E}_{\mathrm{m}}^{\prime} \cdot \mathrm{I}_{\mathrm{m}}{ }^{\prime} \cdot \delta_{\mathrm{a}}}{\mathrm{x}_{\mathrm{a}}, 3}$
ここで，$\delta_{\mathrm{a}}=\mathrm{y}_{\mathrm{a}}$
回転子（電動機部）の断面図を図3－20に示す。

図 3－20 回転子（電動機部）の断面図

回転子の断面二次モーメントは以下のとおり算出する。

$$
\mathrm{I}_{\mathrm{m}}^{\prime}=\frac{\pi \cdot \mathrm{d}^{4}}{64}+2 \cdot\left\{\mathrm{D}^{2} \cdot \mathrm{~b}_{1} \cdot \mathrm{~h}_{1}+\left(\frac{\mathrm{b}_{1} \cdot \mathrm{~h}_{1}^{3}}{12}\right)\right\}+2 \cdot\left(\frac{\mathrm{~b}_{2} \cdot \mathrm{~h}_{2}^{3}}{12}\right)
$$

（ロ）電動機上部軸受部の発生荷重

$$
\begin{gathered}
\mathrm{W}_{\mathrm{b}}^{\prime \prime}=\frac{3 \cdot \mathrm{E}_{\mathrm{m}}^{\prime} \cdot \mathrm{I}_{\mathrm{m}}^{\prime} \cdot \delta_{\mathrm{b}}}{\mathrm{x}_{\mathrm{b}}^{\prime}, 3} \\
\text { ここで, } \delta_{\mathrm{b}}=\mathrm{y}_{\mathrm{b}}-\mathrm{y}_{\mathrm{a}}
\end{gathered}
$$

4．評価条件

（1）構造強度評価の評価条件
「3．強度評価方法」に用いる評価条件を表4－1～表4－8に示す。

表 4－1 評価条件

G $(-)$	q (MPa)	$\Delta \mathrm{P}$ (MPa)	hp_{p} $(\mu \mathrm{m})$	N (rpm)	P (kW)	g $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	W_{M} (N)
1.0	6.13×10^{-3}	7.6×10^{-3}	80	750	420	9.80665	0

表 4－2 評価条件（電動機取付ボルト）

C $(-)$	m_{i} (kg)	M_{s} (kg)	n_{i} $(-)$	D_{i} (mm)	A_{12} $\left(\mathrm{~m}^{2}\right)$	ボルト サイズ
2.4	6900	4300	8	1220	7.25	M30

h_{p} $(\mu \mathrm{m})$	N (rpm)	P (kW)	A_{b} $\left(\mathrm{mm}^{2}\right)$
80	750	420	706.9

表 4－3 評価条件（ポンプ取付ボルト）

C $(-)$	m_{i} (kg)	M_{s} (kg)	n_{i} $(-)$	D_{i} (mm)	A_{11} $\left(\mathrm{~m}^{2}\right)$	ボルト サイズ
2.4	26300	4300	20	1600	12.63	M42

h_{p} $(\mu \mathrm{~m})$	N (rpm)	P (kW)	A_{b} $\left(\mathrm{mm}^{2}\right)$
80	750	420	1385

表 4－4 評価条件（基礎ボルト）

C $(-)$	m_{i} (kg)	M_{s} (kg)	n_{i} $(-)$	A_{11} $\left(\mathrm{~m}^{2}\right)$	D_{i} (mm)	ボルト サイズ
2.4	28300	4300	12	12.63	1900	M48

N (rpm)	A_{b} $\left(\mathrm{mm}^{2}\right)$
750	1810

表 4－5 評価条件（電動機フレーム）

C $(-)$	h (mm)	D (mm)	d (mm)	A_{12} $\left(\mathrm{~m}^{2}\right)$
2.4	825			7.25

表 4－6 評価条件（主回路用端子箱取付ボルト）

C $(-)$	A_{13} $\left(\mathrm{~m}^{2}\right)$	ボルト サイズ	A_{b} $\left(\mathrm{mm}^{2}\right)$	m (kg)	$\mathrm{n}_{\mathrm{i}}^{*}$ $(-)$
2.4	0.1980	M12	113.1	100	$10(3)$

L_{H} (mm)	L_{1} $(\mathrm{~mm})$
245	560

注記＊：（ ）内の数字は引張応力計算の際に考慮したボルトの本数

表 4－7 評価条件（空気冷却器取付ボルト）

C $(-)$	A_{14} $\left(\mathrm{~m}^{2}\right)$	ボルト サイズ	A_{b} $\left(\mathrm{mm}^{2}\right)$	$\mathrm{m} *_{1}$ $(\mathrm{~kg})$	$\mathrm{n}_{\mathrm{i}}^{* 2}$ $(-)$
2.4	2.403	M 12	113.1	670	$17(7)$

L_{H} $(m m)$	L_{1} $(m m)$
322.5	800

注記＊1：上載する外扇カバーの重量を含む
＊2：（ ）内の数字は引張応力計算の際に考慮したボルトの本数

表 4－8 評価条件（外扇カバー取付ボルト）

C $(-)$	A_{15} $\left(\mathrm{~m}^{2}\right)$	ボルト サイズ	A_{b} $\left(\mathrm{mm}^{2}\right)$	$\mathrm{n}_{\mathrm{i}} *^{2}$ $(-)$	L_{H} (mm)
2.4	2.813	M12	113.1	$14(4)$	562.5

L_{1}
$(\mathrm{~mm})$

注記＊：（ ）内の数字は引張応力計算の際に考慮したボルトの本数
（2）動的機能維持評価の評価条件
「3．強度評価方法」に用いる評価条件を表4－9～表4－15に示す。

表 4－9 評価条件（たわみ量の算出）

C				
$(-)$	A $\left(\mathrm{m}^{2}\right)$	G $(-)$	q (MPa)	$\Delta \mathrm{P}$ (MPa)
2.4	12.63	1	6.13×10^{-3}	7.6×10^{-3}

表 4－10 評価条件（電動機下部軸受部（たわみ量の算出））

変位量計算モデル の材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	W_{M} (N)	h_{1}, (mm)	h_{2}, (mm)	a_{1} $(\mathrm{~mm})$
SM400A	40	0	375	205	2150
SS400	155	0			

a_{2} $(\mathrm{~mm})$	E_{p} (MPa)	I_{p} $\left(\mathrm{mm}^{4}\right)$	E_{m} (MPa)	I_{m} $\left(\mathrm{mm}^{4}\right)$
170	202000	1.598×10^{10}	195000	5.840×10^{9}

表 4－11 評価条件（電動機下部軸受部（発生荷重の算出））

発生荷重計 算モデルの 材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	Em_{m}, (MPa)	Im_{m}, $\left(\mathrm{mm}^{4}\right)$	x_{a}, (mm)	δ_{a} (mm)
S 35 C	155	193000	3.562×10^{8}	1945	0.3040

表 4－12 評価条件（電動機上部軸受部（たわみ量の算出））

変位量計算モ デルの材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	W_{M} (N)	$\mathrm{h}_{3}{ }^{\prime}$ (mm)	a_{3} $(\mathrm{~mm})$	E_{m} (MPa)
SS 400	155	0	0	375	195000

Im $\left(\mathrm{mm}^{4}\right)$
5.840×10^{9}

表 4－13 評価条件（電動機上部軸受部（発生荷重の算出））

発生荷重計算 モデルの材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{Em}_{\mathrm{m}}{ }^{\prime}$ (MPa)	$\mathrm{I}_{\mathrm{m}}{ }^{\prime}$ $\left(\mathrm{mm}^{4}\right)$	$\mathrm{x}_{\mathrm{b}}{ }^{\prime}$ (mm)	$\delta \mathrm{b}$ (mm)
S 35 C	155	193000	3.562×10^{8}	1840	0.3959

5．強度評価結果
（1）衝突評価結果
竜巻発生時の砂利の貫通限界厚さを表5－1に示す。

表 5－1 砂利の貫通限界厚さ

飛来物	貫通限界厚さ T (mm)	
	水平方向	鉛直方向
砂利	1.0	1.0

砂利の貫通限界厚さ（ 1.0 mm ）と原子炉補機冷却海水ポンプの外殼を構成する部材の厚 さとの比較を表5－2に示す。

砂利の貫通限界厚さは，原子炉補機冷却海水ポンプの外殻を構成する部材の厚さ未満である。

表 5－2 外部事象防護対象施設の衝突評価結果（砂利）

外部事象防護対象施設	外殼を構成する部材 の厚さ (mm)	貫通限界厚さ T (mm)	結果
原子炉補機冷却海水ポンプ		1.0	貫通しない

（2）構造強度評価結果
a．電動機取付ボルト
竜巻発生時の構造強度評価結果を表 5－3に示す。
電動機取付ボルトに発生する応力は，許容応力以下である。

[^0]表 5－3 評価結果（電動機取付ボルト）

応力分類	複合荷重 $\mathrm{W}_{\mathrm{T} 2}$ による応力 (MPa)	許容応力 (MPa)
引張	50	488
せん断	26	375
組合せ	50	488

b．ポンプ取付ボルト
竜巻発生時の構造強度評価結果を表 5－4 に示す。
ポンプ取付ボルトに発生する応力は，許容応力以下である。

表 5－4 評価結果（ポンプ取付ボルト）

応力分類	複合荷重 $W_{\text {T2 による応力 }}^{(\mathrm{MPa})}$	許容応力 (MPa)
引張	22	488
せん断	9	375
組合せ	22	488

c．基礎ボルト
竜巻発生時の構造強度評価結果を表 5－5に示す。
基礎ボルトに発生する応力は，許容応力以下である。

表 5－5 評価結果（基礎ボルト）

応力分類	複合荷重 $W_{\mathrm{T} 2}$ による応力 (MPa)	許容応力 (MPa)
引張	19	488
せん断	11	375
組合せ	19	488

d．電動機フレーム
竜巻発生時の構造強度評価結果を表5－6に示す。
電動機フレームに発生する応力は，許容応力以下である。

表 5－6 評価結果（電動機フレーム）

応力分類	複合荷重 $W_{\mathrm{T} 2}$ による応力 (MPa)	許容応力 (MPa)
曲げ	10	237

e．主回路用端子箱取付ボルト
竜巻発生時の構造強度評価結果を表 5－7に示す。
主回路用端子箱取付ボルトに発生する応力は，許容応力以下である。

表 5－7 評価結果（主回路用端子箱取付ボルト）

応力分類	複合荷重 $W_{\text {T2 }}$ による応力 (MPa)	許容応力 (MPa)
引張	6	153
せん断	5	118
組合せ	6	153

f．空気冷却器取付ボルト
竜巻発生時の構造強度評価結果を表5－8に示す。
空気冷却器取付ボルトに発生する応力は，許容応力以下である。

表 5－8 評価結果（空気冷却器取付ボルト）

応力分類	複合荷重 $\mathrm{W}_{\mathrm{T} 2}$ による応力 (MPa)	許容応力 (MPa)
引張	26	153
せん断	27	118
組合せ	26	153

g．外扇カバー取付ボルト
竜巻発生時の構造強度評価結果を表5－9に示す。
外扇カバー取付ボルトに発生する応力は，許容応力以下である。

表 5－9 評価結果（外扇カバー取付ボルト）

応力分類	複合荷重 $\mathrm{W}_{\mathrm{T} 2}$ による応力 (MPa)	許容応力 (MPa)
引張	77	153
せん断	33	118
組合せ	77	153

（3）動的機能維持評価結果
a．電動機下部軸受部
竜巻発生時の動的機能維持評価結果を表5－10に示す。
電動機下部軸受部の発生荷重は，許容荷重以下である。

表 5－10 評価結果（電動機下部軸受部）

発生荷重 (N)	許容荷重 (N)
8.512×10^{3}	

b．電動機上部軸受部
竜巻発生時の動的機能維持評価結果を表5－11に示す。
電動機上部軸受部の発生荷重は，許容荷重以下である。

表 5－11 評価結果（電動機上部軸受部）

発生荷重（N）	許容荷重（N）
1.309×10^{4}	

[^0]: 枠囲みの内容は商業機密の観点から公開できません。

