本資料のうち、枠囲みの内容 は商業機密の観点から公開 できません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-17-0023_改 0
提出年月日	2021年2月2日

Ⅵ-3-別添 1-1-6 配管及び弁の強度計算書

2021年2月

東北電力株式会社

目 次

1.		概	要	1
2.		基	本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	2.	1	位置	1
	2.	2	構造概要	2
	2.	3	評価方針	3
	2.	4	適用規格・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3.		強力	度評価方法	6
	3.	1	記号の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
	3.	2	評価対象部位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
	3.	3	荷重及び荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
	3.	4	許容限界·····	11
	3.	5	評価方法	13
4.			価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
5.		強力	度評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17

1. 概要

本資料は、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度計算の方針」に示すとおり、屋外に設置している配管及び弁(原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプ周り)並びに非常用ガス処理系(屋外配管)が竜巻時及び竜巻通過後においても、各配管及び弁の機能維持を考慮して、主要な構造部材が構造健全性を有することを確認するものである。

2. 基本方針

配管及び弁について、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえ、配管及び弁の「2.1 位置」、「2.2 構造概要」、「2.3 評価方針」及び「2.4 適用規格」を示す。

2.1 位置

屋外に設置している配管及び弁(原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプ周り)並びに非常用ガス処理系(屋外配管)は、添付書類「VI-3-別添 1-1 竜巻への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示すとおり、図 2-1 に示す位置に設置する。

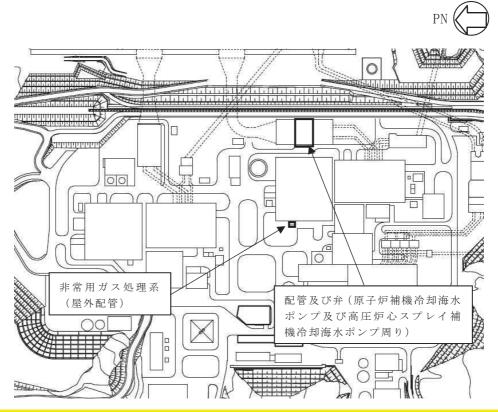


図 2-1 配管及び弁 (原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却 海水ポンプ周り) 並びに非常用ガス処理系 (屋外配管) の位置図

2.2 構造概要

配管及び弁について、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえて、構造を設定する。

配管及び弁は、配管本体及び弁で構成され、支持構造物により床、壁等から支持する構造としている。配管及び弁の概要図を図 2-2 に、各エリアの配管及び弁の配置図を図 2-3、図 2-4 に示す。

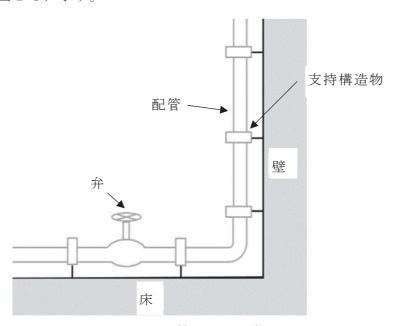


図 2-2 配管及び弁の概要図



図 2-3 原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却 海水ポンプ周り配管配置図

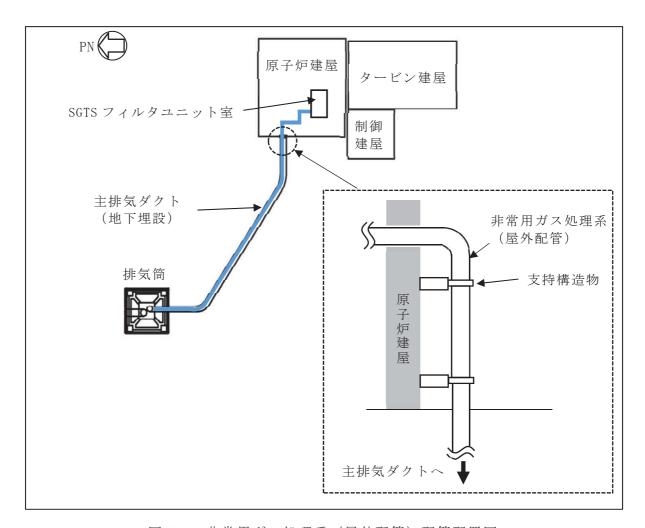


図 2-4 非常用ガス処理系 (屋外配管) 配管配置図

2.3 評価方針

配管及び弁の強度評価は、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の 強度計算の方針」の「4. 荷重及び荷重の組合せ並びに許容限界」にて設定している 荷重及び荷重の組合せ並びに許容限界を踏まえ、配管及び弁の評価対象部位に作用す る貫入及び応力等が、許容限界に収まることを「3. 強度評価方法」に示す方法によ り、「4. 評価条件」に示す評価条件を用いて計算し、「5. 強度評価結果」にて確認 する。

屋外の配管及び弁の強度評価においては、その構造を踏まえ、設計竜巻による荷重 とこれに組み合わせる荷重(以下「設計荷重」という。)の作用方向及び伝達過程を考 慮し、評価対象部位を選定する。

(1) 衝突評価の評価方針

配管及び弁の衝突評価フローを図 2-5 に示す。衝突評価においては、竜巻防護ネットを設置する場合に考慮する飛来物である砂利の貫通限界厚さが外殻を構成する

部材の厚さから計算上必要な厚さを差し引いた残りの厚さ未満であることを確認する。衝突評価では、「タービンミサイル評価について(昭和52年7月20日原子炉安全専門審査会)」で用いられている式を準用し、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度計算の方針」の「5. 強度評価方法」に示す衝突評価が必要な機器の評価式を用いる。配管及び弁の衝突評価における許容限界は、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」に示す許容限界である、外殻を構成する部材の厚さから計算上必要な厚さを差し引いた残りの厚さとする。

なお、非常用ガス処理系(屋外配管)が仮に飛来物による衝突によって貫通して も、その貫通箇所又は本来の排気箇所から排気され、閉塞することはないため、非 常用ガス処理系(屋外配管)の衝突評価は行わない。

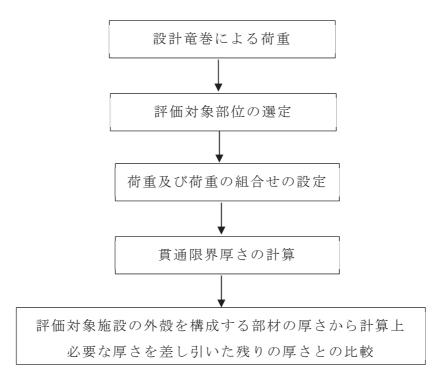


図2-5 配管及び弁の衝突評価フロー

(2) 構造強度評価の評価方針

配管及び弁の構造強度評価フローを図2-6に示す。構造強度評価において,配管及び弁に対し,設計竜巻による荷重に内圧及び自重を加えた応力が許容応力以下であることを確認する。

構造強度評価では、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度 計算の方針」の「5. 強度評価方法」に示す評価式を用いる。配管及び弁の許容限 界は、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度計算の方針」の 「4.2 許容限界」に示す許容限界である,「原子力発電所耐震設計技術指針 重要度分類・許容応力編 (JEAG 4 6 0 1・補-1984)」,「原子力発電所耐震設計技術指針 (JEAG 4 6 0 1-1987)」及び「原子力発電所耐震設計技術指針 (JEAG 4 6 0 1-1991 追補版)」(以下「JEAG 4 6 0 1」という。)の許容応力状態ⅢASとする。

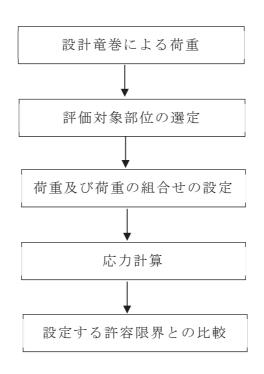


図2-6 配管及び弁の構造強度評価フロー

2.4 適用規格

適用する規格,基準等を以下に示す。

- ・タービンミサイル評価につい<mark>て(</mark>昭和 52 年 7 月 20 日 原子炉安全専門審査会)
- ・<mark>日本建築学会 2004年</mark> 建築物荷重指針・同解<mark>説</mark>
- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 (JEAG4601・ 補-1984)
- ・原子力発電所耐震設計技術指針(JEAG4601-1987)
- ・原子力発電所耐震設計技術指針 (JEAG4601-1991 追補版)
- ・JSME S NC1-2005/2007 発電用原子力設備規格 設計・建設規<mark>格</mark> (以下「設計・建設規格」という。)
- ・日本機械学会 1987年 新版機械工学便覧

0 2

 \cong

3. 強度評価方法

3.1 記号の定義

(1) 衝突評価の記号の定義

配管及び弁の衝突評価に用いる記号を表3-1に示す。

表3-1 衝突評価に用いる記号

記号	単位	定義		
D o	mm	管の外径		
d	m	評価において考慮する飛来物が衝突する衝突断面の等価直径		
K	_	鋼板の材質に関する係数		
M	kg	評価において考慮する飛来物の質量		
Р	MPa	最高使用圧力		
S	MPa	許容引張応力		
Т	mm	鋼板の貫通限界厚さ		
t	mm	胴の計算上必要な厚さ		
V	m/s	評価において考慮する飛来物の飛来速度		
η	_	継手効率		

 \circ

 \mathbb{R}

(2) 構造強度評価の記号の定義

配管及び弁の構造強度評価に用いる記号を表 3-2 に示す。

表3-2 構造強度評価に用いる記号

記号	単位	定義				
Λ	m^2/m	単位長さ当たりの施設の受圧面積(風向に垂直な面に投影した				
A	111 / 111	面積)				
С	_	建築物荷重指針・同解説により規定される風力係数				
D	mm	管外径				
G		ガスト影響係数				
g	m/s^2	重力加速度				
L	m	支持間隔				
M	N•m	風荷重により作用する曲げモーメント				
m	kg/m	単位長さ当たりの質量				
Р	MPa	内圧				
q	MPa	設計用速度圧				
S	MPa	設計・建設規格 付録材料図表Part5の表にて規定される設計降				
S y		伏点				
t	mm	板厚				
W _W	N/m	設計竜巻の単位長さ当たりの風圧力による荷重				
W	N/m	単位長さ当たりの自重による荷重				
Z	mm^3	断面係数				
π	_	円周率				
ΔΡ	MPa	設計竜巻の気圧低下量				
σ 1, σ 2	MPa	配管に生じる応力				
σ w p	MPa	気圧差により生じる応力				
σ wтı,	MDo	複合荷重により生じる応力				
σ w T 2	MPa	後日刊 里により生しる心力				
σww	MPa	風圧力により生じる応力				
σ 自重	MPa	自重により生じる応力				
σ 内圧	MPa	内圧により生じる応力				

 \bigcirc

 \simeq

3.2 評価対象部位

配管及び弁の評価対象部位は、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて示している評価対象部位に従って、「2.2 構造概要」にて設定している構造に基づき、設計荷重の作用方向及び伝達過程を考慮し設定する。

(1) 衝突評価の評価対象部位

評価において考慮する飛来物の衝突により、配管及び弁に衝撃荷重が作用し貫入する可能性があるため、貫入によりその施設の機能が喪失する可能性のある箇所を評価対象部位として選定する。弁が設置されている箇所においては、弁の板厚は配管の板厚に比べ厚く、配管の評価に包絡されるため、配管の評価のみ実施する。

配管及び弁の衝突評価における評価対象部位を図3-1に示す。

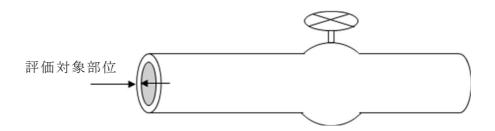


図3-1 配管及び弁の衝突評価の評価対象部位

(2) 構造強度評価の評価対象部位

設計竜巻による荷重は、配管本体に作用する。なお、弁を設置している箇所においては、弁の断面係数は配管に比べ大きく、配管の評価に包絡されるため配管の評価のみを実施する。サポート(配管支持構造物)については、建屋内外にかかわらず地震に対して耐荷重設計がなされており、配管本体に竜巻による荷重が作用した場合でも、作用荷重は耐荷重以下であるため、竜巻による荷重に対するサポートの設計は耐震設計に包絡される。このことから、配管本体を評価対象部位として選定する。

配管及び弁の構造強度評価における評価対象部位を図3-2に示す。

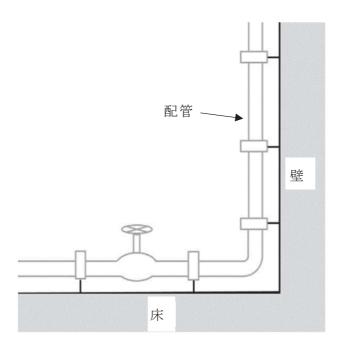


図 3-2 配管及び弁の構造強度評価の評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは、添付書類「VI-3-別添 1-1 竜巻への配慮が必要な施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の組合せを用いる。

(1) 衝突評価の荷重及び荷重の組合せ

衝突評価において考慮する飛来物として, 竜巻防護ネット (ネットの網目寸法40 (mm)) をすり抜ける砂利を設定し、砂利の衝撃荷重を考慮する。

衝突評価においては、評価対象部位に砂利が衝突した際に跳ね返らず、貫入するものとして評価する。

砂利の諸元を表 3-3, 配管及び弁の衝突評価に用いる荷重を表 3-4 に示す。

V d Κ Μ (m/s)飛来物 (m)(-)(kg) 水平方向 鉛直方向 砂利 0.04 1.0 0.2 59.3 27.2

表 3-3 砂利の諸元

施設分類	施設名称	評価対象部位	荷重	
	配管及び弁(原子炉補機冷			
屋外の外部事象	却海水ポンプ及び高圧炉心	 配管	飛来物による	
防護対象施設	スプレイ補機冷却海水ポン		衝擊荷重	
	プ周り)			

表 3-4 配管及び弁の衝突評価に用いる荷重

(2) 構造強度評価の荷重及び荷重の組合せ

a. 荷重の設定

構造強度評価に用いる荷重を以下に示す。

(a) 常時作用する荷重

常時作用する荷重として、持続的に生じる荷重である自重を考慮する。 単位長さ当たりの自重による荷重は以下のとおり計算する。

 $w = m \cdot g$

(b) 設計竜巻による荷重

風圧力による荷重及び気圧差による荷重を考慮する。竜巻防護ネットによる 風圧力の低減は無いものとして保守的な評価を行う。なお、非常用ガス処理系 (屋外配管)は大口径の配管が開放された施設であるため、気圧差は発生しないことから気圧差による荷重は考慮しない。また、非常用ガス処理系(屋外配管)が仮に飛来物による衝突によって貫通しても、その貫通箇所又は本来の排気箇所から排気され、閉塞することはないため、設計竜巻による荷重とこれに組み合わせる荷重に衝撃荷重を考慮しない。さらに、竜巻防護ネットをすり抜ける極小飛来物である砂利による衝撃は瞬間的で、衝突時間が極めて短く、衝突される機器へ伝わる加速度が小さいことから、機器へ作用する荷重は構造強度に影響を与えないので設計竜巻による荷重とこれに組み合わせる荷重に衝撃荷重を考慮しない。

イ. 風圧力による荷重(Ww)

風圧力による荷重 W_w は、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度計算の方針」の「4.1(3)c.(a) 風圧力による荷重」に示す式に従い、算出する。

 $W_W = q \cdot G \cdot C \cdot A$

ロ. 気圧差による荷重(W_P)

気圧差による荷重Wpは,添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度計算の方針」の「5. 強度評価方法」に示す評価方法に従って,

気圧差を見かけ上の配管の内圧の増加として考慮する。具体的な計算方法は、「3.5(2) 構造強度評価の評価方法」に示す。

(c) 運転時の状態で作用する荷重

運転時の状態で作用する荷重としては、配管に作用する内圧を考慮する。なお、非常用ガス処理系(屋外配管)の内圧については、気圧差同様考慮しない。

b. 荷重の組合せ

構造強度評価に用いる荷重の組合せは、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」にて設定している荷重の組合せを踏まえ、配管及び弁の評価対象部位ごとに設定する。

配管本体には、自重、風圧力による荷重、気圧差による荷重及び内圧が作用する。

構造強度評価に用いる荷重の組合せを表3-5に示す。

施設分類	施設名称	評価対象部位	荷重
	配管及び弁(原子炉補機冷		①風圧力による荷重
	却海水ポンプ及び高圧炉	配管	②気圧差による荷重
屋外の外部事象	心スプレイ補機冷却海水	四C '目'	③自重
防護対象施設	ポンプ周り)		④内圧
	非常用ガス処理系(屋外配	二 左左	①風圧力による荷重
	管)	配管	②自重

表 3-5 荷重の組合せ

3.4 許容限界

配管及び弁の許容限界は、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従って、「3.2 評価対象部位」にて設定した評価対象部位ごとに、機能損傷モードを考慮し、外殻を構成する部材の厚さから計算上必要な厚さを差し引いた残りの厚さ及びJEAG4601に基づく許容応力状態ⅢASの許容応力の許容荷重を用いる。

(1) 衝突評価の許容限界

衝突評価における許容限界は、評価において考慮する飛来物による衝撃荷重に対し、外殻を構成する部材が、機能喪失に至る可能性のある変形を生じないことを計算により確認するため、評価式により算定した貫通限界厚さが配管及び弁の外殻を構成する部材の厚さから計算上必要な厚さを差し引いた残りの厚さ未満であること

を許容限界とする。

配管及び弁(原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプ周り)における計算上必要な厚さは、設計・建設規格 PPD-3411に基づき、以下の式より算出する。

$$t = \frac{P \cdot D_{o}}{2 \cdot S \cdot \eta + 0.8 \cdot P}$$

配管及び弁の外殻を構成する部材の厚さから計算上必要な厚さを差し引いた残り の厚さを表3-6に示す。

表3-6 配管及び弁の外殻を構成する部材の厚さから計算上必要な厚さを 差し引いた残りの厚さ

外部事象防護対象施設	外殻を構成する 部材の厚さ (mm)	計算上必要 な厚さ (mm)	外殻を構成する部材の厚 さから計算上必要な厚さ を差し引いた残りの厚さ (mm)
原子炉補機冷却海水ポン プ周りの配管及び弁	5. 5	0.23	5. 27
高圧炉心スプレイ補機冷 却海水ポンプ周りの配管 及び弁	5. 5	0.23	5. 27

(2) 構造強度評価の許容限界

配管の許容限界は、JEAG4601を準用し、「クラス2、3配管」の許容限界を適用する。設計荷重に対して、当該施設に要求される安全機能を維持できるように弾性設計とするため、許容応力状態IIIASから算出した以下の許容応力を許容限界とする。JEAG4601に従い、設計・建設規格 付録材料図表Part5、6の表にて許容応力を計算する際は、評価対象部位の最高使用温度に応じた値をとるものとするが、温度が設計・建設規格 付録材料図表記載の中間の値の場合は、比例法を用いて計算する。ただし、設計・建設規格 付録材料図表Part5、6で比例法を用いる場合の端数処理は、小数点第1位以下を切り捨てた値を用いるものとする。

配管の構造強度評価における許容限界を表3-7、許容応力を表3-8に示す。

表 3-7 配管の許容限界

許容応力状態	許容限界	
	一次応力 (膜+曲げ)	
III _A S	S y	

表 3-8 配管の許容応力

577 /正 4. 45 第7 / 25	材料	温度条件*	S y	S
評価対象配管		(\mathcal{C})	(MPa)	(MPa)
原子炉補機冷却海水ポンプ周り配管	SM400C	50	211	110
原子が 価機行 が 海水 か ク ク 向 り 配 官	STS410	50	239	103
高圧炉心スプレイ補機冷却海水ポン	STS410	50	239	103
プ周り配管	313410	90	239	105
非常用ガス処理系 (屋外配管)	STS410	140	215	103

注記 *:最高使用温度

3.5 評価方法

(1) 衝突評価の評価方法

配管及び弁の衝突評価は、添付書類「VI-3-別添1-1 竜巻への配慮が必要な施設の強度計算の方針」の「5. 強度評価方法」にて設定している衝突評価が必要な機器の評価式を用いる。

飛来物が外部事象防護対象施設に衝突する場合の貫通限界厚さを,「タービンミサイル評価について(昭和52年7月20日 原子炉安全専門審査会)」で用いられているBRL式を用いて算出する。

$$T^{\frac{3}{2}} = \frac{0.5 \cdot M \cdot v^{2}}{1.4396 \times 10^{9} \cdot K^{2} \cdot d^{\frac{3}{2}}}$$

(2) 構造強度評価の評価方法

配管及び弁の構造強度評価は、添付書類「VI-3-別添 1-1 竜巻への配慮が必要な施設の強度計算の方針」の「5. 強度評価方法」にて設定している評価式を用いる。

a. 計算モデル

配管は一定距離ごとにサポートによって支えられているため、風圧力による一様な荷重を受ける単純支持梁として評価を行う。評価に用いる支持間隔は管外径、材質ごとにサポートの支持間隔が最長となる箇所を選定する。保温材を使用している配管については、保温材を含めた受圧面積を考慮して評価を行う。弁を設置

している場合はサポート支持間隔が短くなるため、弁を設置している場合の受圧 面積は最大支持間隔での受圧面積に包絡される。

配管モデル図を図3-3に示す。

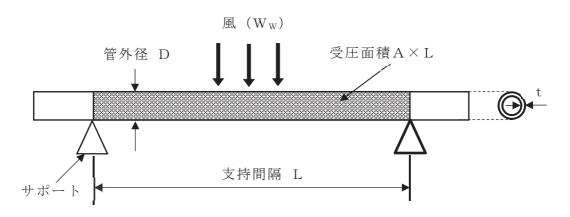


図 3-3 配管モデル図

b. 計算方法

(a) 竜巻による応力計算

イ. 風圧力により生じる応力

風圧力による荷重が配管の支持スパンに等分布荷重として加わり、曲げ応力を発生させるものとして、以下の式により算定する。

$$\sigma_{WW} = \frac{M}{Z} = \frac{W_W \cdot L^2}{8 \cdot Z}$$

ここで,

$$Z = \frac{\pi}{32 \cdot D} \left\{ D^4 - \left(D - 2 \cdot t \right)^4 \right\}$$

ロ. 気圧差により生じる応力

気圧差による荷重は、気圧が低下した分、内圧により生じる一次一般膜応力が増加すると考えて、その応力増加分を以下の式により算定する。

$$\sigma_{WP} = \frac{\Delta P \cdot D}{4 \cdot t}$$

したがって、イ.及びロ.項の複合荷重により生じる応力 σ_{WT1} 及び σ_{WT2} は以下の式により算出する。

$$\sigma_{WT1} = \sigma_{WP}$$

0 2

 \simeq

 $\sigma_{WT2} = \sigma_{WW} + 0.5 \cdot \sigma_{WP}$

(b) 組合せ応力

竜巻荷重と組み合わせる荷重として、配管に常時作用する自重及び運転時に 作用する内圧を考慮する。自重により生じる曲げ応力及び内圧により生じる一 次一般膜応力は、以下の式により算定する。

$$\sigma_{\text{自重}} = \frac{\mathbf{w} \cdot \mathbf{L}^{2}}{8 \cdot \mathbf{Z}}$$

$$\mathbf{w} = \mathbf{m} \cdot \mathbf{g}$$

$$\sigma_{\text{内E}} = \frac{\mathbf{P} \cdot \mathbf{D}}{4 \cdot \mathbf{t}}$$

したがって、自重及び風圧力による荷重により生じる曲げ応力と気圧差による荷重及び内圧により生じる一次一般膜応力を足し合わせ、配管に生じる応力として以下の式により σ_1 及び σ_2 を算出する。

$$\sigma_1 = \sigma_{\text{ le}} + \sigma_{\text{ pE}} + \sigma_{\text{ WT 1}}$$

$$\sigma_2 = \sigma_{\text{ le}} + \sigma_{\text{ pE}} + \sigma_{\text{ WT 2}}$$

4. 評価条件

「3. 強度評価方法」に用いる評価条件を表 4-1~表 4-4 に示す。

表 4-1 共通評価条件

ガスト係数	風力係数	設計用速度圧	気圧低下量	重力加速度
G (-)	C (-)	q (MPa)	ΔP (MPa)	$^{ m g}_{({ m m/s}^2)}$
1	1.2	6. 13×10^{-3}	7.6×10^{-3}	9.80665

表 4-2 評価条件 (原子炉補機冷却海水ポンプ周り配管)

管外径 D (mm)	材料	支持間隔 L (m)	板厚 t (mm)	単位長さ 当たりの 質量 m (kg/m)	単位長さ 当たりの 受圧面積 A (m²/m)	内圧 P (MPa)
508.0	SM400C	14. 7	9.5	330.4	0.6380	0.78
60.5	STS410	3. 1	5.5	10.9	0.1105	0.78

表 4-3 評価条件(高圧炉心スプレイ補機冷却海水ポンプ周り配管)

管外径 D (mm)	材料	支持間隔 L (m)	板厚 t (mm)	単位長さ 当たりの 質量 m (kg/m)	単位長さ 当たりの 受圧面積 A (m²/m)	内圧 P (MPa)
216.3	STS410	7.0	8.2	86. 1	0.3463	0.78
60.5	STS410	2.0	5.5	15. 1	0. 1905	0.78

表 4-4 評価条件(非常用ガス処理系(屋外配管))

管外径 D (mm)	材料	支持間隔 L (m)	板厚 t (mm)	単位長さ当 たりの質量 m (kg/m)	単位長さ当 たりの受圧 面積 A (m²/m)
318.5	STS410	15. 4	10.3	78. 3	0.3185

5. 強度評価結果

(1) 衝突評価結果

竜巻発生時の砂利の貫通限界厚さを表 5-1 に示す。

表 5-1 砂利の貫通限界厚さ

	貫通限界厚さ		
飛来物	Т		
	(mm)		
	水平方向	鉛直方向	
砂利	1.0	1.0	

砂利の貫通限界厚さ(1.0mm)と配管及び弁の外殻を構成する部材の厚さから計算上 必要な厚さを差し引いた残りの厚さとの比較を表5-2に示す。

砂利の貫通限界厚さは、配管及び弁の外殻を構成する部材の厚さから計算上必要な 厚さを差し引いた残りの厚さ未満である。また、弁の板厚は配管に比べ厚いため、配 管の評価に包絡される。

表 5-2 配管及び弁の衝突評価結果(砂利)

外部事象防護対象施設	外殻を構成する部材の厚 さから計算上必要な厚さ を差し引いた残りの厚さ (mm)	貫通限界厚さ T (mm)	結果
原子炉補機冷却海水ポ 5.27 ンプ周りの配管及び弁 (配管)		1.0	貫通しない
高圧炉心スプレイ補機 冷却海水ポンプ周りの 配管及び弁	5.27 (配管)	1.0	貫通しない

(2) 構造強度評価結果

a. 原子炉補機冷却海水ポンプ周りの配管及び弁

構造強度評価結果を表5-3に示す。

原子炉補機冷却海水ポンプ周りの配管に発生する応力は,許容応力以下である。 また,弁を設置している箇所においては,弁の断面係数は配管に比べ大きく配管の

 \circ

 \Box

評価に包絡される。

管外径 D (mm)	材料	σ ₁ (MPa)	σ ₂ (MPa)	許容応力 (MPa)
508.0	SM400C	59	129	211
60.5	STS410	13	95	239

b. 高圧炉心スプレイ補機冷却海水ポンプ周りの配管及び弁構造強度評価結果を表5-4に示す。

高圧炉心スプレイ補機冷却海水ポンプ周りの配管に発生する応力は、許容応力以下である。また、弁を設置している箇所においては、弁の断面係数は配管に比べ大きく配管の評価に包絡される。

表 5-4 評価結果(高圧炉心スプレイ補機冷却海水ポンプ周り)

管外径 D (mm)	材料	σ ₁ (MPa)	σ ₂ (MPa)	許容応力 (MPa)
216.3	STS410	25	83	239
60.5	STS410	9	67	239

c. 非常用ガス処理系 (屋外配管)

構造強度評価結果を表5-5に示す。

非常用ガス処理系(屋外配管)に発生する応力は、許容応力以下である。

表 5-5 評価結果(非常用ガス処理系(屋外配管))

管外径 D (mm)	材料	σ ₁ (MPa)	σ ₂ (MPa)	許容応力 (MPa)
318.5	STS410	31	124	215