本資料のうち，枠囲みの内容 は商業機密の観点から公開で
きません。

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －工－B－02－0006＿改 0
提出年月日	2021 年 1 月 15 日

VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書

2021 年 1 月
東北電力株式会社
1．概要 1
2．基本方針 1
2.1 構造概要 1
2．2 解析方針 4
2.3 適用規格•基準等 4
3．解析方法 4
3.1 入力地震動 4
3.2 地震応答解析モデル 7
3．2．1 大型機器系 7
3．2．2 炉内構造物系 26
3.3 解析方法 48
3．3．1 動的解析 48
3．3．2 静的解析 48
3.4 解析条件 49
3．4．1 耐震壁の復元力特性 49
3．4．2 地盤の回転ばねの復元力特性 49
3．4．3 原子炉本体の基礎の復元力特性 49
3．4．4 誘発上下動を考慮する場合の基礎浮上り評価方法 53
3．4．5 材料物性の不確かさ等 53
4．解析結果 55
4． 1 固有値解析 55
4．1．1 大型機器系 55
4．1．2 炉内構造物系 55
4．2 地震応答解析及び静的解析 152
4．2．1 大型機器系 152
4．2．2 炉内構造物系 230
5．設計用地震力 316
5.1 弾性設計用地震動 S d 316
5.2 基準地震動 S s 316

1．概要

本計算書は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づく灲心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答解析について説明 するものである。

地震応答解析により算出した各種応答値及び静的地震力は，添付書類「VI－2－1－9 機能維持の基本方針」に示す建物•構築物及び機器•配管系の設計用地震力として用いる。

2．基本方針

2.1 構造概要

原子炉建屋内の原子炉格納容器，原子炉圧力容器，原子炉しやへい壁及び原子炉本体の基礎等の大型機器，構築物は，その支持構造上から建屋との連成が無視できないため，図 3－1～図 3－10に示すように原子炉建屋と連成で解析する。

原子炉格納容器は，円筒形の鋼製のドライウェル及び円環形の鋼製のサプレッションチェン バからなり，水平地震力は 0．P． 22.500 m で原子炉格納容器シヤラグを介して原子炉建屋に伝達 され，下端は 0．P．1．150m で原子炉建屋基礎版に支持される。
原子炉しゃへい壁は原子炉圧力容器を取り囲む二重円筒鋼板の壁であり，内部にモルタルが充てんされる。また，原子炉格納容器スタビライザを介して原子炉格納容器に結ばれ，さらに原子炉圧力容器スタビライザを介して原子炉圧力容器に結ばれる。

原子炉圧力容器は，鋼製の円筒形容器であり，O．P．\square（原子炉圧力容器スタビライザに より水平方向に支持され，その下部は原子炉圧力容器支持スカートを介して0．P．\square で原子炉本体の基礎により支持される。
原子炉本体の基礎は円筒形の鋼製（無筋コンクリート充てん）構造物で原子炉圧力容器基礎 ボルトにより原子炉圧力容器支持スカートを介して原子炉圧力容器を支持するとともに原子炉 しゃへい壁を支持しており，原子炉本体の基礎の下端は原子炉建屋基礎版に固定する。
原子炬圧力容器内には，気水分離器及びスタンドパイプ，炬心シュラウド，燃料集合体，制御棒，制御棒案内管，制御棒駆動機構ハウジング，ジェットポンプ等が収納される。

炬心シュラウドは薄肉円筒形で，鉛直方向は下部胴下端でシュラウドサポートレグにより原子炉圧力容器に支持され，また上部胴上端とシュラウドサポートプレートが炉心シュラウド支持ロッドにより支持される。水平方向は，上部胴は上部サポートにより，中間胴下端は下部ス タビライザにより，また下部胴下端はシュラウドサポートプレートにより原子炉圧力容器に支持される構造である。炉心シュラウド上部には，さら形のシュラウドヘッドがあり（以下，炉心シュラウド及びシュラウドヘッドを「炉心シュラウド」と総称する。），その上に163本のスタ ンドパイプが立ち，その上の気水分離器を支持している。炉心シュラウド内部には560本の燃料集合体が収納され，下端を炬心支持板，上端を上部格子板で支持されることにより正確に位置が定められている。燃料集合体に加わる荷重は，水平方向は上部格子板及び炉心支持板を支持する炉心シュラウド，鉛直方向は制御棒案内管及び制御棒案内管を支持する制御棒駆動機構

ハウジングを介し，原子炉圧力容器に伝達される。
制御棒駆動機構は，原子炉圧力容器下部鏡板を貫通し取り付けられる 137 本の制御棒駆動機構ハウジング内に納められ，その上端に取り付けられる制御棒を炉心に挿入する機能を有して いる。

また，炉心シュラウドと原子炉圧力容器の間には，ジェットポンプがシュラウドサポート上 に 20 個据付けられているが，質量が小さく，炉内の構造物の振動に与える影響は小さいため質量のみを考慮する。

同様に中性子束計測案内管及び中性子束計測ハウジングについても炉内の構造物の振動に与 える影響は小さいため質量のみを考慮する。これらの構造概要を図 2－1 及び図 2－2 に示す。

図 2－1 原子炉格納容器，原子炉しゃへい壁，原子炉本体の基礎及び原子炉圧力容器等の構造概要図

図 2－2 原子炉圧力容器内部の構造概要図

2． 2 解析方針

大型機器系の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づいて行う。

地震応答解析は，「3．2 地震応答解析モデル」において設定した地震応答解析モデル及び「3．1入力地震動」において設定した入力地震動を用いて直接積分法による解析を実施し，各種応答値を算出する。
2.3 適用規格•基準等

大型機器系及び炉内構造物系の地震応答解析において適用する規格•基準等を以下に示す。

- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－1984 （（社）日本電気協会）
－原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会） （以下「JEAG4601－1991追補版」という。）

3．解析方法
3.1 入力地震動

地震応答解析モデルへの入力地震動は，添付書類「VI－2－1－2 基準地震動S s 及び弾性設計用地震動 S d の策定概要」に示す解放基盤表面で定義された基準地震動 S s 及び弾性設計用地震動 S d を用いて，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」で建屋基礎底面レベ ルでの地盤の応答として評価されたものを使用する。基準地震動 S s 及び弾性設計用地震動S d の最大加速度を表3－1 及び表3－2に示す。

表 3－1 基準地震動 S s の最大加速度

基準地震動		最大加速度（cm／s ${ }^{2}$ ）	
		水平方向	鉛直方向
S s－D 1	プレート間地震の応答スペクトルに基づく手法による基準地震動	640	430
S s－D 2	海洋プレート内地震（SMGA＊マントル内）の応答スペクトルに基 づく手法による基準地震動	1， 000	600
S s－D 3	海洋プレート内地震（SMGA＊地殻内）の応答スペクトルに基づく手法による基準地震動	800	500
S s－F 1	プレート間地震の断層モデルを用いた手法による基準地震動 （応力降下量（短周期レベル）の不確かさ）	717	393
S s－F 2	プレート間地震の断層モデルを用いた手法による基準地震動 （SMGA＊位置と応力降下量（短周期レベル）の不確かさの重畳）	722	396
S s－F 3	海洋プレート内地震（SMGA＊マントル内）の断層モデルを用いた手法による基準地震動（SMGA＊マントル内集約）	835	443
S s－N 1	2004 年北海道留萌支庁南部地震（K－NET 港町）の検討結果に保守性を考慮した地震動	620	320

注記 $*: ~$ 強震動生成域

表 3－2 弾性設計用地震動 S d の最大加速度

弾性設計用地震動	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	
	水平方向	鉛直方向
S d－D 1	371	249
S d－D 2	580	348
S d－D 3 d－F 1	464	290
S d－F 2	359	197
S d－F 3－N 1	361	198
S		

3.2 地震応答解析モデル
 地震応答解析モデルは，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の解析モデ ルの設定方針に基づき，水平方向及び鉛直方向についてそれぞれ設定する。

3．2．1 大型機器系
3．2．1．1 水平方向
水平方向地震応答解析モデルは図 3－1 及び図 3－2に示すように，原子炉建屋，原子炉格納容器，原子炉圧力容器，原子炉しやへい壁及び原子炉本体の基礎は，それぞれの質点間を等価な曲げ，せん断剛性を有する無質量のはり又は無質量のばねにより結合する。
原子灲格納容器は 12 質点でモデル化し，原子炉格納容器シヤラグと等価なばねで建屋モデルと結合し，下端は原子炉建屋基䂣版と剛に結合する。

原子炉圧力容器，原子灲しやへい壁及び原子炉本体の基礎はそれぞれ 8 質点， 5 質点， 4質点でモデル化する。原子炉圧力容器は原子炉圧力容器スタビライザと等価なばねで，原子炉しやへい壁上端と結び，さらに原子炉格納容器スタビライザと等価なばねにより原子炉格納容器を介し，原子炉建屋に結合する。原子炉圧力容器の下端は，原子炉本体 の基礎の上端に剛に結合し，原子炉本体の基礎の下端は原子炉建屋基礎版上端と剛に結合する。
原子炉建屋は質点系でモデル化し，地盤を等価なばねで評価した建屋一地盤連成モデ ルとする。

建屋底面下の地盤は，水平ばね及び回転ばねで置換する。また，基礎版底面における地盤の水平及び回転ばねは，それ以深の地盤を等価な半無限地盤とみなして，波動論に より評価する。
図 3－1 及び図 3－2 に示した大型機器系の水平方向地震応答解析モデルの各質点質量，部材長，断面二次モーメント，有効せん断断面積，ばね定数等を表3－3～表3－16に示す。 また，解析に用いる各構造物の物性値を表 3－24，表 3－25 及び表 3－27に示す。なお，原子炉建屋のスケルトンカーブ及び地盤ばね定数については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に記載の値を使用する。

図 3－3 及び図 3－4 に示す，誘発上下動を考慮する場合の地震応答解析モデルについて は，「原子力発電所耐震設計技術規程 J E A C 4 6 0 1－2008（（社）日本電気協会）」 を参考に，水平加振により励起される上下応答を評価するために，鉛直方向モデルの諸元及び接地率に応じて変化する回転•鉛直連成ばねについても考慮している。
原子炉本体の基礎の復元力特性は，建屋の方向別に，原子炉本体の基礎の要素を単位 とした水平断面形状より設定する。

3．2．1．2 鉛直方向

鉛直方向地震応答解析モデルは図 3－5 に示すように，原子炉建屋，原子炉格納容器，原子炉圧力容器，原子炉しゃへい壁及び原子炉本体の基礎等の各質点間を等価な軸剛性 を有する無質量のばねにより結合する。また，屋根トラスは，各質点間を等価な曲げ， せん断剛性を有する無質量のはりで結合し，支持端部の回転拘束と等価な回転ばねで結合する。
原子炉格納容器，原子炉圧力容器，原子炉しやへい壁及び原子炉本体の基礎はそれぞ $れ 10$ 質点， 8 質点， 5 質点， 4 質点でモデル化する。原子炉格納容器の下端は，原子炉建屋と剛に結合される。原子炉圧力容器支持スカートの下端は，原子炉本体の基礎の上端 に剛に結合されており，原子炉本体の基礎の下端は，原子炉建屋と剛に結合される。

大型機器系の質点は原則として，水平方向と同一とし，部材の端点及び剛性の変化す る点，応力評価点等に設けるが，全体の振動特性が把握できるよう，質点間隔について は，工学的判断を加えて定めるものとする。
また，水平方向地震応答解析モデルで考慮している水平ばね（原子炉格納容器スタビ ライザ等）については，鉛直方向に対しては拘束効果がない構造となっているか，拘束効果があっても本体部材の鉛直剛性に対して無視できる程度に小さい値であるため，鉛直方向地震応答解析モデルでは考慮しない。

図 3－5に示した鋁直方向地震応答解析モデルの各質点質量，部材長，ばね定数等を表 3－17～表3－23に示す。また，解析に用いる各構造物の物性値を表3－26及び表3－28に示す。

なお，原子炉建屋の地盤ばね定数については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に記載の値を使用する。

記号	内容
－	質点
।	はり
———	水平ばね
（6）	回転ばね

K_{1}	原子炉格納容器シヤラグ
K_{2}	原子炉格納容器スタビライザ
K_{3}	原子炉圧力容器スタビライザ
K_{4}	燃料交換ベローズ
K_{5}	所員用エアロック
K_{6}	ベント管

原子炉本体の基整

しやへい壁

図 3－1 大型機器系地震応答解析モデル（NS 方向，誘発上下動を考慮しない場合）
図 3－2 大型機器系地震応答解析モデル（EW 方向，誘発上下動を考慮しない場合）

原子炉圧力容器及び

31 － $0 . \mathrm{P} \square$

（単位：m）

0．P．-8.100
0．P．-14.100 o．P
0．P． 6.000
0．P．-0.800
（0．P． 8.100
0．P． 22.500
－
$000 \cdot \mathrm{GI} \cdot \mathrm{d} \cdot 0$
－
－
$0 . \mathrm{P}=0.80$
， －

路

$$
\begin{aligned}
& \text { O.P. } 48.725 \\
& \text { O.P. } 41.200
\end{aligned}
$$

0．P． 33.200

表 3－3 原子炬建屋のモデル諸元（NS 方向）

	質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）	回転慣性 $\left(\times 10^{6} \mathrm{t} \cdot \mathrm{~m}^{2}\right)$
	61	33． 200		10． 70	29． 20	30.8	1． 410
	60	22.500			59.40	59.2	2.510
	59	15．000		9.50	59．40	59.2	2． 560
	58	6． 000		9． 00	73.40	75.0	3． 410
	57	－0．800		6.80	108.90	107.8	3.520
	2	－8． 100		7． 30	114． 40	107.8	－
	56	50.500		9． 30	3． 84	10.0	0.141
	55	41.200					0． 252
	54	33.200		8． 00	6． 35	18.2	6． 120
	53	22.500		10.70	54． 30	59.4	9． 430
	52	15.000		7． 50	101． 20	85.8	8． 580
	51	6． 000		9． 00	159． 50	123． 2	9． 940
\bigcirc	50	－0．800		6.80	211.10	165.2	10.61
\simeq	2	－8．100		7． 30	216． 10	165.2	－
\bigcirc	49	33.200		10． 70	3． 83	50.6	0． 412
1	48	22.500					0.932
N	46	15.000		7.50	9.63	72.7	1． 150
5	45	6． 000		9.00	11.20	71.0	0．761
（1）	3	1． 150		4． 85	10.50	66.8	－
	44	50.500		9． 30	3.90	10.0	0.141
\sim	43	41.200		8.00	6.8	18.	0.309
O	42	33.200		8.00	6． 82	18.2	5.090
	41	22.500		10.70	50.70	59.8	6． 840
	40	15.000		7． 50	105． 30	90.0	7.100
	39	6.000		9． 00	132． 10	118.7	7.870
	38	－0．800		6.80	184． 10	155． 3	7． 140
	2	－8．100		7． 30	188.30	159.8	－
	37	33.200		10.70	22.40	28． 4	0.872
	36	22.500					1． 350
	35	15． 000		7.50	46.50	52.0	2． 250
	34	6． 000		9.00	62.80	77.0	2． 700
	33	－0．800		6.80	84.00	107.8	3.040
	2	－8．100		7． 30	81.60	107.8	－
	3	1． 150		9． 25	15．70	108.0	0.921
	2	－8． 100					38.16
	1	－14．100		6.00	3195． 70	6468.0	23． 06

表 3－4 原子炉建屋（補強部材）のモデル諸元（NS 方向）

質点 番号	標高 $0 . \mathrm{P} .(\mathrm{m})$	質量 (t)	部材長 (m)	断面二次 モーメント $\left(\times 10^{3} \mathrm{~m}^{4}\right)$	有効せん断 断面 $\left(\mathrm{m}^{2}\right)$	回転慣性 $\left(\times 10^{6} \mathrm{t} \cdot \mathrm{m}^{2}\right)$
44	50.500	-	9.30	0.0794	0.1844	-
43	41.200	-	8.00	0.4001	7.56	-
42	33.200	-	8.30	0.0794	0.1844	-
56	50.500	-	9.30	-		
55	41.200	-	8.00	0.7001	7.56	-
54	33.200	-			-	

表 3－5 原子炉建屋（床ばね）のモデル諸元（NS 方向）

質点 番号		ばね定数 $(\mathrm{t} / \mathrm{m})$	減衰 $(\%)$
37	42	3.570×10^{6}	5.0
36	41	3.614×10^{6}	5.0
35	40	3.820×10^{6}	5.0
34	39	4.613×10^{6}	5.0
33	38	8.792×10^{6}	5.0
44	56	1.365×10^{5}	5.0
42	49	2.457×10^{6}	5.0
41	48	2.871×10^{6}	5.0
40	46	5.825×10^{6}	5.0
39	45	3.840×10^{6}	5.0
38	50	8.208×10^{5}	5.0
49	54	3.199×10^{6}	5.0
48	53	3.335×10^{6}	5.0
46	52	5.723×10^{6}	5.0
45	51	4.043×10^{6}	5.0
54	61	2.233×10^{6}	5.0
53	60	2.704×10^{6}	5.0
52	59	2.125×10^{6}	5.0
51	58	2.557×10^{6}	5.0
50	57	1.711×10^{6}	5.0

表 3－6 原子炉格納容器のモデル諸元（NS 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
32					
31					
30					
29					
28					
27					
26					
25					
24					
23					
22					
21					
62 （3）					

表 3－7 原子炉しやへい壁のモデル諸元（NS 方向）

質点番号	標高 0. P. (m)	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）
20					
19					
18					
17					
16					
7					

表 3－8 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（NS 方向）

質点番号	標高 0．P．（m）	質量 （ t ）	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
62 （3）					

表 3－9 大型機器系のばね定数（NS 方向）

No．	は名称	ばね定数 $(\mathrm{t} / \mathrm{m})$	減衰定数 $(\%)$
K_{1}	原子炉格納容器シヤラグ		1.0
$\mathrm{~K}_{2}$	原子炉格納容器スタビライザ		1.0
$\mathrm{~K}_{3}$	原子炉圧力容器スタビライザ		1.0
$\mathrm{~K}_{4}$	燃料交換ベローズ		1.0
$\mathrm{~K}_{5}$	所員用エアロック		1.0
$\mathrm{~K}_{6}$	ベント管		1.0

表 3－10 原子炉建屋のモデル諸元（EW 方向）

	質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）	$\begin{gathered} \text { 回転慣性 } \\ \left(\times 10^{6} \mathrm{t} \cdot \mathrm{~m}^{2}\right) \end{gathered}$
	63	33.200		10． 70	29． 90	32.4	1． 130
	62	22.500					1． 900
	61	15． 000		7.50	60． 50	54.7	2． 790
	60	6． 000		9.00	80.30	84.0	3.740
	59	－0．800		6.80	105． 80	109． 2	3． 760
	2	－8．100		7． 30	105.90	117.6	－
	58	50.500		9． 30	6． 49	13.3	0． 247
	57	41.200		8.00	10.30	21.2	0.285
	56	33.200		8.00	10.30	21.2	6.640
	55	22.500		10． 70	27． 30	53.0	9． 240
	54	15.000		7.50	107.30	79.8	9.010
	53	6.000		9.00	152.30	121.4	10． 12
\bigcirc	52	－0．800		6.80	216.90	170.0	10． 121
\propto	2	－8．100		7． 30	213.80	167.2	－
\cdots	51	33.200		10． 70	3.07	63.3	0． 720
1	50	22.500		7.50	9.63	72.7	1． 610
$\stackrel{1}{1}$	48	15.000		9． 50	9.63	72.7	1． 050
5	47	6． 000		9． 00	11． 20	71.0	0． 761
（1）	3	1． 150		4． 85	10.50	66.8	－
	46	50.500		9． 30	6． 49	13． 3	0． 247
\sim	45	41.200					0． 475
O	44	33.200		8.00	12.50	17.4	5.610
	43	22.500		10． 70	29.50	51.8	5.830
	42	15． 000		7.50	34.00	36.5	0.099
	41	22.500		7.50	66.10	76.6	3.900
	40	15.000		9.00	9270	107.1	9． 890
	39	6． 000		9.00	92.70	107.1	11． 43
	38	－0．800		6.80	219.90	163.7	11．15
	2	－8．100		7． 30	227.80	169.0	－
	37	33.200		10． 70	37.60	41.0	2． 590
	36	22.500					2． 860
	35	15． 000		7.50	65.30	57.4	2． 580
	34	6． 000		9.00	85.90	84.0	3.080
	33	－0．800		6.80	110.90	114.8	3． 120
	2	-8.100		7． 30	113.10	117.6	－
	3	1． 150		9． 25	15． 70	108.0	0.921
	2	－8．100					45.39
	1	－14．100		6.00	3803． 20	6468.0	27.44

表 3－11 原子炉建屋（補強部材）のモデル諸元（EW 方向）

質点 番号	標高 $0 . P . ~$	質量 (m)	部材長 (m)	断面二次 モーメント $\left(\times 10^{3} \mathrm{~m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$	回転慣性 $\left(\times 10^{6} \mathrm{t} \cdot \mathrm{m}^{2}\right)$
45	41.200	-	8.00	1.8883	8.58	-
44	33.200	-		-		

表 3－12 原子炉建屋（床ばね）のモデル諸元（EW 方向）

質点番号		ばね定数 $(\mathrm{t} / \mathrm{m})$	回転ばね 定数 （ $\mathrm{t} \cdot \mathrm{m} / \mathrm{rad}$ ）	減衰 （\％）
37	44	1． 790×10^{6}	－	5.0
36	41	6.941×10^{6}	－	5.0
35	40	5． 216×10^{6}	－	5.0
34	39	5.952×10^{6}	－	5.0
33	38	6.932×10^{6}	－	5.0
41	43	4.589×10^{6}	－	5.0
40	42	4． 898×10^{6}	－	5.0
39	47	4． 147×10^{6}	－	5.0
38	52	6． 961×10^{5}	－	5.0
46	58	2． 427×10^{5}	－	5.0
44	51	5． 404×10^{6}	3.62×10^{8}	5.0
43	50	7.870×10^{6}	3.62×10^{8}	5.0
42	48	6.680×10^{6}	－	5.0
51	56	2． 019×10^{6}	3.62×10^{8}	5.0
50	55	2． 367×10^{6}	3.62×10^{8}	5.0
48	54	2.522×10^{6}	－	5.0
47	53	3.962×10^{6}	－	5.0
56	63	4． 150×10^{6}	－	5.0
55	62	4.530×10^{6}	－	5.0
54	61	4． 206×10^{6}	－	5.0
53	60	4.926×10^{6}	－	5.0
52	59	7.985×10^{6}	－	5.0
39	42	－	9.90×10^{9}	5.0

表 3－13 原子炉格納容器のモデル諸元（EW 方向）

	質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 $\left(\mathrm{m}^{2}\right)$
	32					
	31					
	30					
	29					
	28					
	27					
	26					
	25					
	24					
	23					
	22					
	21					
\bigcirc	64 （3）					
\sim						
\cdots	表 3－14 原子炉しゃへい壁のモデル諸元（EW 方向）					
1 $\stackrel{1}{1}$ 1						
5	番号					
（2）	20					
	19					
$\begin{aligned} & \mathrm{N} \\ & 0 \end{aligned}$	18					
	17					
	16					
	7					

表 3－15 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（EW 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \\ \hline \end{gathered}$	有効せん断断面積 $\left(\mathrm{m}^{2}\right)$
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
64 （3）					

表 3－16 大型機器系のばね定数（EW 方向）

No．	名称	ばね定数 $(\mathrm{t} / \mathrm{m})$	減衰定数 $(\%)$
K_{1}	原子炉格納容器シヤラグ		1.0
$\mathrm{~K}_{2}$	原子炉格納容器スタビライザ		1.0
$\mathrm{~K}_{3}$	原子炉圧力容器スタビライザ		1.0
$\mathrm{~K}_{4}$	燃料交換ベローズ		1.0
$\mathrm{~K}_{5}$	所員用エアロック		1.0
$\mathrm{~K}_{6}$	ベント管		1.0

表 3－17 原子炉建屋のモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 $\left(\times 10^{6} \mathrm{t} / \mathrm{m}\right)$
1	48． 725		7.525	20.81
2	41.200		8． 000	49． 21
3	33.200			
4	22.500		10． 700	140.00
			7.500	284.60
5	15． 000		9.000	284.40
6	6． 000		6． 800	509． 30
7	－0． 800		7.300	486.60
8	－8． 100			
9	-14.100		6.000	2910.60

表 3－18 原子炉建屋（屋根トラス部）のモデル諸元（鉛直方向）

質点番号	標高 0．P．（m）	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m）
1	48.725	－	6． 400	6.99	1.11
10	48.725	333		6.99	
11	48.725	326	6． 300		1.12
12	48.725	163	6． 300	6.99	0． 773

表 3－19 原子炉格納容器のモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 $(\mathrm{t} / \mathrm{m})$
41				
40				
39				
38				
37				
36				
35				
34				
33				
32				
14				

表 3－20 原子炉しゃへい壁のモデル諸元（鉛直方向）

質点 番号	標高 0．P．(m)	質量 (t)	部材長 (m)	ばね定数 $(\mathrm{t} / \mathrm{m})$
23				
22				
21				
20				
19				
18				

表 3－21 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（鉛直方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 $(\mathrm{t} / \mathrm{m})$
31				
30				
29				
28				
27				
26				
25				
24				
18				
17				
16				
15				
14				

表 3－22 インナーコンクリートのモデル諸元（鉛直方向）

質点 番号	標高 $0 . P . ~(m)$	質量 (t)	部材長 (m)	ばね定数 $(\mathrm{t} / \mathrm{m})$
14				
8				

表 3－23 原子炉建屋屋根トラス部のばね定数

No．	名称	ばね定数 $(\mathrm{t} \cdot \mathrm{m} / \mathrm{rad})$	減衰定数 $(\%)$
K_{θ}	トラス端部回転拘束ばね	3.278×10^{6}	5.0

表 3－24 解析に用いる建屋の物性値（NS 方向）

名称	縦弾性係数 E $\left(\times 10^{4} \mathrm{t} / \mathrm{m}^{2}\right)$	ポアソン比 v	減衰定数 $(\%)$
原子炉建屋	202.5	0.167	5.0
原子炉建屋（オペフロ上部）	81.0	0.167	5.0
原子炉建屋（補強耐震壁）	257.0	0.2	5.0
原子炉建屋（鉄骨ブレース）	2100.0	0.3	2.0

表 3－25 解析に用いる建屋の物性値（EW 方向）

名称	縦弾性係数 E $\left(\times 10^{4} \mathrm{t} / \mathrm{m}^{2}\right)$	ポアソン比v	減衰定数 $(\%)$
原子炉建屋	216.0	0.167	5.0
原子炉建屋（オペフロ上部）	135.0	0.167	5.0
原子炉建屋（補強耐震壁）	257.0	0.2	5.0

表 3－26 解析に用いる建屋の物性値（鉛直方向）

| 名称 | $\begin{array}{c}\text { 縦弾性係数 } \mathrm{E} \\ \left(\times 10^{4} \mathrm{t} / \mathrm{m}^{2}\right)\end{array}$ | ポアソン比 v |
| :--- | :---: | :---: | :---: | \(\left.\begin{array}{c}減衰定数

(\%)\end{array}\right]\)

表 3－27 解析に用いる大型機器系の物性値（水平方向）

名称	縦弾性係数E $\left(\times 10^{7} \mathrm{t} / \mathrm{m}^{2}\right)$	ポアソン比 v	減衰定数 （\％）
原子炉しやへい壁			5.0
原子炉本体の基礎			5.0
原子炉圧力容器			1.0
原子炉圧力容器スカート			1.0
原子炉格納容器			1.0

表 3－28 解析に用いる大型機器系の物性値（鉛直方向）

名称	減衰定数 $(\%)$
原子炉しやへい壁	5.0
原子炉本体の基礎	5.0
原子炉圧力容器	1.0
原子炉格納容器	1.0

3．2．2 炉内構造物系

3．2．2．1 水平方向

水平方向地震応答解析モデルは図 3－6 及び図 3－7に示すように，原子炉建屋，原子炉 しゃへい壁，原子炉本体の基礎，原子炉圧力容器，炉心シュラウド，燃料集合体，制御棒案内管及び制御棒駆動機構ハウジング等の各質点間を等価な曲げ，せん断剛性を有す る無質量のはり又は無質量のばねにより結合する。
原子炉しやへい壁は5質点，原子炉本体の基礎は 4 質点，原子炉圧力容器は 18 質点 でモデル化する。原子炉圧力容器は原子炉圧力容器スタビライザ及び原子炉本体の基礎 を介して原子炉建屋に支持される。
炉心シュラウドは，下部胴下端がシュラウドサポートプレート及びシュラウドサポー トレグの回転ばねにより原子炉圧力容器と結合され，上部胴上端が炉心シュラウド支持 ロッドの回転ばねによりシュラウドサポートプレートと結合される。また，上部胴は上部サポートの水平ばねにより，中間胴下端は下部スタビライザの水平ばねにより原子炉圧力容器と結合される。
気水分離器及びスタンドパイプは 3 質点，炉心シュラウドは 10 質点，燃料集合体は 7質点，制御棒案内管は 4 質点，制御棒駆動機構ハウジングは 6 質点でモデル化する。こ れらを 0．P．\square でシュラウドサポートと等価な回転ばねを介して，原子炉圧力容器 と結合する。

なお，ジェットポンプ，中性子束計測案内管，中性子束計測ハウジングについては，質量が小さく炉内の構造物の振動に与える影響は小さいため質量のみを考慮する。また，原子炉圧力容器内の燃料集合体，炉心シュラウド等のモデル化においては，炉水による付加質量効果を模擬するため仮想質量を考慮する。

図 3－6及び図 3－7に示した炉内構造物系の水平方向地震応答解析モデルの各質点質量，部材長，断面二次モーメント，有効せん断断面積，ばね定数等を表 3－29～表3－50に示 す。また，解析に用いる各構造物の物性値を表 3－62，表 3－63 及び表 3－65に示す。

図 3－8 及び図 3－9に示す誘発上下動を考慮する場合の地震応答解析モデルについては，大型機器系の地震応答解析モデルと同様に，水平加振により励起される上下応答を評価 するために，鉛直方向モデルの諸元及び接地率に応じて変化する回転•鉛直連成ばねに ついても考慮している。
原子炉本体の基礎の復元力特性は，建屋の方向別に，原子炉本体の基礎の要素を単位 とした水平断面形状より設定する。
シュラウド，炉心シュラウド支持ロッド，上部サポート及び下部スタビライザにおい て考慮すべき地震荷重が最大となるケースとして，以下の 4 通りのモデルを想定する。

- シュラウド健全モデル
- 上部胴上端（H1）き裂ケース
- 下部胴上端（H6b）き裂ケース
－全溶接線（周方向）分離時モデル

3．2．2．2 鉛直方向

鉛直方向地震応答解析モデルは図 3－10 に示すように，原子炉建屋，原子炉しやへい壁，原子炉本体の基礎，原子炉圧力容器，炉心シュラウド，制御棒案内管及び制御棒駆動機構ハウジング，炉心シュラウド支持ロッド等の各質点間を等価な軸剛性を有する無質量のばねにより結合する。また，屋根トラスは，各質点間を等価な曲げ，せん断剛性 を有する無質量のはりで結合し，支持端部の回転拘束と等価な回転ばねで結合する。
原子炉しゃへい壁は5質点，原子炉本体の基礎は 4 質点，原子炉圧力容器は 19 質点 でモデル化する。原子炉圧力容器は原子炉本体の基礎を介して原子炉建屋に支持される。

気水分離器及びスタンドパイプは 3 質点，炉心シュラウドは 11 質点，制御棒案内管は 3 質点，制御棒駆動機構ハウジングは 6 質点でモデル化する。

ジェットポンプ，中性子束計測案内管，中性子束計測ハウジングについては，水平方向と同様に質量のみを考慮する。

炉内構造物の質点は原則として，水平方向と同一とし，部材の端点及び剛性の変化す る点，応力評価点等に設けるが，全体の振動特性が把握できるよう，質点間隔について は，工学的判断を加えて定めるものとする。ただし，灲心シュラウドについては，シュ ラウドサポートレグ上下端に質点を設け，原子炉圧力容器下部鏡板に結合する。

また，水平方向解析モデルで考慮している水平ばね（原子炉圧力容器スタビライザ等） については，鉛直方向に対しては拘束効果がない構造となっているか，拘束効果があっ ても本体部材の鉛直剛性に対して無視できる程度に小さい値であるため，鉛直方向地震応答解析モデルでは考慮しない。

なお，鉛直方向地震応答解析モデルでは，炉水による付加質量効果は小さいため仮想質量は考慮しない。

図 3－10に示した鉛直方向地震応答解析モデルの各質点質量，部材長，ばね定数等を表 3－51～表3－61 に示す。また，解析に用いる各構造物の物性値を表3－64 及び表3－66に示す。

$\begin{aligned} & \text { 煴 } \end{aligned}$	
碞	

K_{1}	原子炉格納容器スタビライザ
K_{2}	原子炉圧力容器スタビライザ
K_{3}	制御棒駆動機構ハウジング Vストレントビーム
K_{4}	シュラウドサポート
K_{5}	上部サポート
K_{6}	下部スタビライザ
K_{7}	炉心シュラウド支持ロッド

等
\cdots ∞ ？

泉子加更力客器
図 3－6 炉内構造物系地震応答解析モデル（NS 方向，誘発上下動を考慮しない場合）
0．P． 50.500
0．P． 41.200
0．P． 33.200
0．P． 22.500
0．P． 15.000
$000{ }^{\circ} 9 \mathrm{~d} 0$
0．P．－ 0.800
0．P．-8.100

記号	内容
-	質点
－	はり
- －9	水平ばね
回転ばね	

K_{1}	原子炉格納容器スタビライザ
K_{2}	原子炉土圧容器スタビライザ
K_{3}	制御棒駆動機構ハウジング Vストレトビーム
K_{1}	シュラウドサポート
K_{5}	上部サポート
K_{6}	下部スタビライザ
K_{7}	灲心シュラウド支持ロッド

記号	内容
$\begin{gathered} 1 \\ - \\ \varnothing \\ \frac{1}{4} \end{gathered}$	質点 軸ばね（構造物） はり（屋根トラス部） 回転ばね 鉛直ばね（地盤）

$00 Z^{\circ} \varepsilon \varepsilon \cdot d * 0$
0．P． 48.725
0．P． 41.200
0．P． 33.200
0．P． 22.500
0．P． 15.000
0．P．$\quad 6.000$
0．P．－ 0.800
0．P．－8． 100
0．P．-14.100
図 3－10 炉内構造物系地震応答解析モデル（鉛直方向）
0

表 3－29 原子炉建屋のモデル諸元（NS 方向）

	質点 番号	標高 0．P．（m）	質量 （t）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \\ \hline \end{gathered}$	有効せん断断面積 （ m^{2} ）	$\begin{gathered} \text { 回転慣性 } \\ \left(\times 10^{6} \mathrm{t} \cdot \mathrm{~m}^{2}\right) \end{gathered}$
	89	33.200		10． 70	29． 20	30.8	1． 410
	88	22.500					2.510
	87	15.000		7.50	59．40	59.2	2． 560
	86	6． 000		9.00	73． 40	75.0	3.410
	85	－0． 800		6.80	108.90	107.8	3.520
	2	－8．100		7． 30	114． 40	107.8	－
	84	50.500		9． 30	3． 84	10.0	0.141
	83	41.200		8.00	6.35	18.2	0． 252
	82	33.200		8.00	6． 35	18.2	6.120
	81	22.500		10． 70	54． 30	59.4	9． 430
	80	15.000		7.50	101． 20	85.8	8.580
	79	6.000		9． 00	159.50	123.2	9． 940
	78	－0．800		6.80	211.10	165.2	10.61
\bigcirc	2	－8．100		7． 30	216． 10	165.2	－
	77	33.200		10． 70	3.83	50.6	0.412
\bigcirc	76	22.500		7.50	9.63	72.7	0.932
	74	15.000		9.50	9.63	72.7	1． 150
	73	6.000		9.00	11． 20	71.0	0． 761
©	3	1． 150		4． 85	10.50	66.8	－
\sim	72	50.500		9． 30	3.90	10.0	0． 141
\bigcirc	71	41.200					0． 309
	70	33.200		8.00	6.82	18． 2	5.090
	69	22.500		10． 70	50． 70	59.8	6． 840
	68	15.000		7.50	105． 30	90.0	7.100
	67	6.000		9． 00	132． 10	118.7	7． 870
	66	－0． 800		6.80	184． 10	155.3	7.140
	2	－8． 100		7． 30	188． 30	159.8	－
	65	33.200		10． 70	22． 40	28.4	0.872
	64	22.500		750	46.50	52.0	1． 350
	63	15.000		9.50	46.50	77.0	2． 250
	62	6． 000		6.80	84.80	107.8	2． 700
	61	－0．800		6． 80	84.00	107.8	3.040
	2	－8．100		7． 30	81.60	107.8	－
	3	1． 150		9． 25	15． 70	108.0	0.921
	2	－8．100					38． 16
	1	－14．100		6.00	3195.70	6468.0	23． 06

表 3－30 原子炉建屋（補強部材）のモデル諸元（NS 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）	回転慣性 $\left(\times 10^{6} \mathrm{t} \cdot \mathrm{~m}^{2}\right)$
72	50.500	－	9． 30	0.0794	0.1844	－
71	41． 200	－				－
70	33.200	－	8． 00	0． 4001	7.56	－
84	50.500	－	9． 30	0.0794	0.1844	－
83	41.200	－				－
82	33． 200	－	8． 00	0． 7001	7.56	－

表 3－31 原子炉建屋（床ばね）のモデル諸元（NS 方向）

質点 番号		ばね定数 $(\mathrm{t} / \mathrm{m})$	減衰 $(\%)$
65	70	3.570×10^{6}	5.0
64	69	3.614×10^{6}	5.0
63	68	3.820×10^{6}	5.0
62	67	4.613×10^{6}	5.0
61	66	8.792×10^{6}	5.0
72	84	1.365×10^{5}	5.0
70	77	2.457×10^{6}	5.0
69	76	2.871×10^{6}	5.0
68	74	5.825×10^{6}	5.0
67	73	3.840×10^{6}	5.0
66	78	8.208×10^{5}	5.0
77	82	3.199×10^{6}	5.0
76	81	3.335×10^{6}	5.0
74	80	5.723×10^{6}	5.0
73	79	4.043×10^{6}	5.0
82	89	2.233×10^{6}	5.0
81	88	2.704×10^{6}	5.0
80	87	2.125×10^{6}	5.0
79	86	2.557×10^{6}	5.0
78	85	1.711×10^{6}	5.0

表 3－32 原子炉しやへい壁のモデル諸元（NS 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
60					
59					
58					
57					
56					
7					

表 3－33 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（NS 方向）

質点番号	標高 0. P. (m)	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m）
24					
23					
22					
21					
20					
19					
18					
17					
16					
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
90 （3）					

表 3－34 原子炉圧力容器下部鏡板のモデル諸元（NS 方向）

質点 番号	標高 $0 . \mathrm{P} .(\mathrm{m})$	質量 (t)	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
8					
38					

表 3－35 気水分離器，スタンドパイプ及び炉心シュラウドのモデル諸元（NS 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）
37					
36					
35					
34					
33					
32					
31					
30					
29					
28					
27					
26					
25					
51					

表 3－36 燃料集合体のモデル諸元（NS 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （t）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m）
55					
50					
49					
48					
47					
46					
54					

表 3－37 制御棒案内管のモデル諸元（NS 方向）

質点 番号	標高 0．P．(m)	質量 (t)	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
53					
45					
44					
52					

表 3－38 制御棒駆動機構ハウジングのモデル諸元（NS 方向）

質点 番号	標高 0. P. (m)	質量 （ t ）	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
43					
38					
39					
40					
41					
42					

表 3－39 炉内構造物系のばね定数（NS 方向）

No．	名称	ばね定数	減衰定数 （\％）
K_{1}	原子炉格納容器スタビライザ	（t／m）	1． 0
K_{2}	原子炉圧力容器スタビライザ	（t／m）	1． 0
K_{3}	制御棒駆動機構ハウジング レストレントビーム	（t／m）	1.0
K ${ }_{4}$	シュラウドサポート	$(\mathrm{t} \cdot \mathrm{m} / \mathrm{rad})$	1.0
K_{5}	上部サポート	（t／m）	1.0
K_{6}	下部スタビライザ	（t／m）	1． 0
K_{7}	炉心シュラウド支持ロッド	$(t \cdot m / r a d)$	1.0

表 3－40 原子炉建屋のモデル諸元（EW 方向）

	質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）	回転慣性 $\left(\times 10^{6} \mathrm{t} \cdot \mathrm{~m}^{2}\right)$
	91	33.200		10.70	29． 90	32.4	1． 130
	90	22.500					1． 900
	89	15.000		7.50	60.50	54.7	2． 790
	88	6． 000		9.00	80.30	84.0	3． 740
	87	－0． 800		6.80	105． 80	109． 2	3． 760
	2	－8．100		7． 30	105.90	117.6	－
	86	50.500		9． 30	6． 49	13． 3	0． 247
	85	41.200		8.00	10， 30	21.2	0.285
	84	33.200		8.00	10． 30	21.2	6.640
	83	22.500		10.70	27． 30	53.0	9． 240
	82	15.000		7.50	107． 30	79.8	9． 010
	81	6.000		9.00	152.30	121.4	10． 12
	80	－0．800		6.80	216.90	170.0	10．12
\bigcirc	2	－8．100		7． 30	213.80	167.2	－
\sim	79	33.200		10.70	3.07	63.3	0． 720
\uparrow	78	22.500		7.50	9.63	72.7	1． 610
\uparrow	76	15.000		7． 50	9.63	72.7	1． 050
P	75	6． 000		9． 00	11.20	71.0	0． 761
（2）	3	1． 150		4． 85	10.50	66.8	－
～	74	50.500		9． 30	6． 49	13． 3	0． 247
\bigcirc	73	41.200					0． 475
	72	33.200		8.00	12.50	17.4	5.610
	71	22.500		10． 70	29． 50	51.8	5.830
	70	15.000		7.50	34.00	36.5	0． 099
	69	22.500		7.50	66.10	76.6	3.900
	68	15.000		9.00	9270	107.1	9． 890
	67	6． 000		9.00	219.90	107.1	11.43
	66	－0． 800		6.80	219.90	163.7	11.15
	2	－8．100		7． 30	227.80	169.0	－
	65	33.200		10． 70	37.60	41.0	2.590
	64	22.500					2． 860
	63	15． 000		7.50	65.30	57.4	2.580
	62	6． 000		9.00	85.90	84.0	3.080
	61	－0．800		6． 80	110.90	114.8	3.120
	2	－8．100		7． 30	113.10	117.6	－
	3	1． 150		9． 25	15． 70	108.0	0.921
	2	－8． 100					45.39
	1	－14．100		6.00	3803． 20	6468.0	27． 44

表 3－41 原子炉建屋（補強部材）のモデル諸元（EW 方向）

質点番号	標高 0．P．（m）	質量 （ t ）	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）	$\begin{gathered} \text { 回転慣性 } \\ \left(\times 10^{6} \mathrm{t} \cdot \mathrm{~m}^{2}\right) \end{gathered}$
73	41.200	－	8.00	1． 8883	8.58	－
72	33． 200	－				－

表 3－42 原子炉建屋（床ばね）のモデル諸元（EW 方向）

質点 番号		ばね定数 $(\mathrm{t} / \mathrm{m})$	回転ばね定数 （ $\mathrm{t} \cdot \mathrm{m} / \mathrm{rad}$ ）	減衰 （\％）
65	72	1． 790×10^{6}	－	5.0
64	69	6． 941×10^{6}	－	5.0
63	68	5． 216×10^{6}	－	5.0
62	67	5． 952×10^{6}	－	5.0
61	66	6． 932×10^{6}	－	5.0
69	71	4.589×10^{6}	－	5.0
68	70	4． 898×10^{6}	－	5.0
67	75	4． 147×10^{6}	－	5.0
66	80	6． 961×10^{5}	－	5.0
74	86	2． 427×10^{5}	－	5.0
72	79	5． 404×10^{6}	3.62×10^{8}	5.0
71	78	7． 870×10^{6}	3.62×10^{8}	5.0
70	76	6． 680×10^{6}	－	5.0
79	84	2． 019×10^{6}	3.62×10^{8}	5.0
78	83	2． 367×10^{6}	3.62×10^{8}	5.0
76	82	2.522×10^{6}	－	5.0
75	81	3． 962×10^{6}	－	5.0
84	91	4． 150×10^{6}	－	5.0
83	90	4.530×10^{6}	－	5.0
82	89	4． 206×10^{6}	－	5.0
81	88	4． 926×10^{6}	－	5.0
80	87	7.985×10^{6}	－	5.0
67	70	－	9.90×10^{9}	5.0

表 3－43 原子炉しやへい壁のモデル諸元（EW 方向）

質点 番号	標高 0．P．（m）	質量 （t）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
60					
59					
58					
57					
56					
7					

表 3－44 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（EW 方向）

質点番号	標高 0．P．（m）	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
24					
23					
22					
21					
20					
19					
18					
17					
16					
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
92 （3）					

表 3－45 原子炉圧力容器下部鏡板のモデル諸元（EW 方向）

質点 番号	標高 $0 . \mathrm{P} .(\mathrm{m})$	質量 (t)	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
8					
38					

表 3－46 気水分離器，スタンドパイプ及び炉心シュラウドのモデル諸元（EW 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）
37					
36					
35					
34					
33					
32					
31					
30					
29					
28					
27					
26					
25					
51					

表 3－47 燃料集合体のモデル諸元（EW 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 $\left(\mathrm{m}^{2}\right)$
55					
50					
49					
48					
47					
46					
54					

表 3－48 制御棒案内管のモデル諸元（EW 方向）

質点 番号	標高 0．P．(m)	質量 (t)	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
53					
45					
44					
52					

表 3－49 制御棒駆動機構ハウジングのモデル諸元（EW 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
43					
38					
39					
40					
41					
42					

表 3－50 炉内構造物系のばね定数（EW 方向）

No．	名称	ばね定数	減衰定数 （\％）
K_{1}	原子炉格納容器スタビライザ	（t／m）	1.0
K_{2}	原子炉圧力容器スタビライザ	（t／m）	1． 0
K_{3}	制御棒駆動機構ハウジング レストレントビーム	（t／m）	1.0
K_{4}	シュラウドサポート	$(\mathrm{t} \cdot \mathrm{m} / \mathrm{rad})$	1.0
K_{5}	上部サポート	（t／m）	1.0
K_{6}	下部スタビライザ	（t／m）	1． 0
K_{7}	炉心シュラウド支持ロッド	$(\mathrm{t} \cdot \mathrm{m} / \mathrm{rad})$	1.0

表 3－51 原子炉建屋のモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 $\left(\times 10^{6} \mathrm{t} / \mathrm{m}\right)$
1	48.725		7.525	20.81
2	41.200		8． 000	49． 21
3	33.200		8． 000	49.21
4	22.500		10．700	140.00
5			7.500	284.60
5	15.000		9.000	284． 40
6	6． 000		6． 800	509． 30
7	－0．800			
8	－8． 100		7． 300	486.60
9	-14.100		6． 000	2910.60

表 3－52 原子炉建屋（屋根トラス部）のモデル諸元（鉛直方向）

質点 番号	標高 $0 . P . ~(m)$	質量 (t)	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
1	48.725	-	6.400	6.99	1.11
10	48.725	333	6.300	6.99	1.12
11	48.725	326	6.300	6.99	0.773
12	48.725	163	6	2	

表 3－53 原子炉しやへい壁のモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 $(\mathrm{t} / \mathrm{m})$
23				
22				
21				
20				
19				
18				

表 3－54 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばねる定数 $(\mathrm{t} / \mathrm{m})$
40				
39				
38				
37				
36				
35				
34				
33				
32				
31				
30				
29				
28				
27				
26				
25				
24				
18				
17				
16				
15				
14				

表 3－55 インナーコンクリートのモデル諸元（鉛直方向）

質点 番号	標高 0. P．(m)	質量 (t)	部材長 (m)	ばね定数 $(\mathrm{t} / \mathrm{m})$
14				
8				

表 3－56 原子炉圧力容器下部鏡板のモデル諸元（鉛直方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 （t／m）
24				
41				
60				

表 3－57 気水分離器，スタンドパイプ及び炉心シュラウドのモデル諸元（鉛直方向）

質点番号	標高 0．P．（m）	質量 （ t ）	部材長 （m）	ばね定数 $(\mathrm{t} / \mathrm{m})$
55				
54				
53				
52				
51				
50				
49				
48				
47				
46				
45				
44				
43				
42				
41				

表 3－58 炉心シュラウド支持ロッドのモデル諸元（鉛直方向）

質点 番号	標高 0．P．(m)	質量 (t)	部材長 (m)	ばね定数 $(\mathrm{t} / \mathrm{m})$
51				
25				

表 3－59 制御棒案内管のモデル諸元（鉛直方向）

質点 番号	標高 0．P．(m)	質量 (t)	部材長 (m)	ばね定数 $(\mathrm{t} / \mathrm{m})$
64				
63				
62				
61				

表 3－60 制御棒駆動機構ハウジングのモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 $(\mathrm{t} / \mathrm{m})$
61				
60				
59				
58				
57				
56				

表 3－61 原子炉建屋屋根トラス部のばね定数

No．	名称	ばね定数 $(\mathrm{t} \cdot \mathrm{m} / \mathrm{rad})$	減衰定数 $(\%)$
K_{θ}	トラス端部回転拘束ばね	3.278×10^{6}	5.0

表 3－62 解析に用いる建屋の物性値（NS 方向）

名称	縦弹性係数 E $\left(\times 10^{4} \mathrm{t} / \mathrm{m}^{2}\right)$	ポアソン比 v	減衰定数 （\％）
原子炉建屋	202.5	0． 167	5.0
原子炉建屋（オペフロ上部）	81.0	0． 167	5.0
原子炉建屋（補強耐震壁）	257.0	0.2	5.0
原子炉建屋（鉄骨ブレース）	2100.0	0.3	2.0

表 3－63 解析に用いる建屋の物性値（EW 方向）

| 名称 | $\begin{array}{c}\text { 縦弹性係数 } \mathrm{E} \\ \left(\times 10^{4} \mathrm{t} / \mathrm{m}^{2}\right)\end{array}$ | ポアソン比 v |
| :--- | :---: | :---: | :---: | \(\left.\begin{array}{c}減衰定数

(\%)\end{array}\right]\)

表 3－64 解析に用いる建屋の物性値（鉛直方向）

| 名称 | $\begin{array}{c}\text { 縦弾性係数 } \mathrm{E} \\ \left(\times 10^{4} \mathrm{t} / \mathrm{m}^{2}\right)\end{array}$ | ポアソン比 v |
| :--- | :---: | :---: | :---: | \(\left.\begin{array}{c}減衰定数

(\%)\end{array}\right]\)

表 3－65 解析に用いる大型機器系の物性値（水平方向）

名称	縦弾性係数 E $\left(\times 10^{7} \mathrm{t} / \mathrm{m}^{2}\right)$	ポアソン比v	減衰定数 $(\%)$
原子炉しやへい壁		5.0	
原子炉本体の基礎		5.0	
原子炉圧力容器		1.0	
原子炉圧力容器支持スカート		1.0	
炉心シュラウド		1.0	
原子炉圧力容器下部鏡板		1.0	
制御棒案内管		1.0	
制御棒駆動機構ハウジング		3.5	
燃料集合体		7.0	

表 3－66 解析に用いる大型機器系の物性値（鉛直方向）

名称	減衰定数 $(\%)$
原子炉しやへい壁	5.0
原子炉本体の基礎	5.0
原子炉圧力容器	1.0
炉心シュラウド	1.0
原子炉圧力容器下部鏡板	1.0
制御棒案内管	1.0
制御棒駆動機構ハウジング	1.0
炉心シュラウド支持ロッド	1.0

3.3 解析方法

「3．2 地震応答解析モデル」において設定した地震応答解析モデルを用いて，電子計算機に より，剛性マトリックス，質量マトリックスを作り，固有振動数，固有モードマトリックス等 を求める。次に，入力地震動に対する各質点の加速度，変位，せん断力（軸力）等を時刻歴応答解析法により時間の関数として求め，地震継続時間中のこれらの最大値を求める。

以上の計算は，解析コード「T D A P III」を使用し，時刻歴応答解析を実施する。評価に用い る解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム （解析コード）の概要」に示す。

3．3．1 動的解析

大型機器系の地震応答計算書の動的解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の解析方法に基づき，時刻歴応答解析により実施する。

3．3．2 静的解析

（1）水平地震力
水平地震力は「VI－2－2－1 原子炉建屋の地震応答計算書」に記載の方法に基づき，算出する。水平地震力算定用の基準面は地表面（0．P．14．8m）とし，基準面より上の部分（地上部分）の地震力は，地震層せん断力係数を用いて，次式により算出する。なお，機器•配管系につい ては，算出した値を 1.2 倍して用いる。
$\mathrm{Q}_{\mathrm{i}}=\mathrm{n} \cdot \mathrm{C}_{\mathrm{i}} \cdot \mathrm{W}_{\mathrm{i}}$
$\mathrm{C}_{\mathrm{i}}=\mathrm{Z} \cdot \mathrm{R}_{\mathrm{t}} \cdot \mathrm{A}_{\mathrm{i}} \cdot \mathrm{C}_{\circ}$
ここで,
Q_{i} ：第 i 層に生じる水平地震力
n ：施設の重要度分類に応じた係数（3．0）
C_{i} ：第 i 層の地震層せん断力係数
W_{i} ：第 i 層が支える重量
Z ：地震地域係数（1．0）
R_{t} ：振動特性係数（0．8）
A_{i} ：第 i 層の地震層せん断力係数の高さ方向の分布係数
C_{\circ} ：標準層せん断力係数（0．2）

基準面より下の部分（地下部分）の地震力は，当該部分の重量に，次式によって算定する地下震度を乗じて定める。なお，機器•配管系については，算出した値を 1.2 倍して用いる。
$\mathrm{K}=0.1 \times \mathrm{n} \times(1-\mathrm{H} / 40) \times \alpha$
ここで，
K ：地下部分の水平震度
n ：施設の重要度分類に応じた係数（3．0）

H ：地下の各部分の基準面からの深さ（m）
α ：建物•構築物側方の地盤の影響を考慮した水平地下震度の補正係数（1．0）
（2）鉛直地震力
鉛直地震力は，鉛直震度 0.3 を基準とし，建物•構築物の振動特性及び地盤の種類等を考慮 して，次式によって算定する鉛直震度を用いて定める。なお，機器•配管系については，算出 した値を 1.2 倍して用いる。ここで，鉛直方向の静的地震力は，一律に同じ値を適用する。
$C_{v}=0.3 \cdot R_{v}$
ここで，
C_{v} ：鉛直震度
R_{v} ：鉛直方向振動特性係数（ 0.8 ）

3.4 解析条件

3．4．1 耐震壁の復元力特性

耐震壁の復元力特性については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す。

3．4．2 地盤の回転ばねの復元力特性
地盤の回転ばねの復元力特性については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す。

3．4．3 原子炉本体の基礎の復元力特性

（1）原子炉本体の基礎のせん断力－せん断変形角関係（ $Q^{-} \gamma$ 関係）
原子炉本体の基礎のせん断力－せん断変形角関係（Q－γ 関係）は，コンクリートのひび割 れを表す第1折点と鋼板の降伏を表す第2折点までを設定する。原子炉本体の基礎のせん断力ーせん断変形角関係を図3－11に示す。

Q_{1} ：第 1 折点のせん断力
Q_{2} ：第 2 折点のせん断力
γ_{1} ：第1折点のせん断変形角
γ_{2} ：第 2 折点のせん断変形角
図 3－11 原子炉本体の基礎のせん断力ーせん断変形角関係
（2）原子炉本体の基礎のせん断力－せん断変形角関係の履歴特性
原子炉本体の基礎のせん断力ーせん断変形角関係の履歴特性は，最大点指向型モデルとす る。原子炉本体の基礎のせん断力ーせん断変形角関係の履歴特性を図 3－12 に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大
（3）原子炉本体の基礎の曲げモーメント－曲率関係（M－ϕ 関係）
原子炉本体の基礎の曲げモーメント－曲率関係（M－ϕ 関係）は，コンクリートのひび割れ を表す第 1 折点と鋼板の降伏を表す第 2 折点までを設定する。原子炉本体の基礎の曲げモ ーメントー曲率関係を図3－13に示す。

M_{1} ：第 1 折点の曲げモーメント
M_{2} ：第2折点の曲げモーメント

$$
\phi_{1} \text { : 第 } 1 \text { 折点の曲率 }
$$

ϕ_{2} ：第 2 折点の曲率
図 3－13 原子炉本体の基礎の曲げモーメント－曲率関係
（4）原子炉本体の基礎の曲げモーメント－曲率関係の履歴特性
原子炉本体の基礎の曲げモーメントー曲率関係の履歴特性は，最大点指向型モデルとする。原子炉本体の基礎のせん断力ーせん断変形角関係の履歴特性を図 3－14に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が第 1 折点を超えていなければ，負側第 1 折点に向かう。
c．各最大点は，スケルトン上を移動することにより更新される。
d．安定ループは面積を持たない。
図 3－14 原子炉本体の基礎の曲げモーメントー曲率関係の履歴特性
（5）スケルトンカーブの諸数値
原子炉本体の基硙の各要素について算定したせん断力及び曲げモーメントのスケルトン カーブの諸数値を表 3－67～表3－70に示す。なお，曲げモーメントのスケルトンカーブの算定には，解析コード「SCC」を使用する。評価に用いる解析コードの検証及び妥当性確認等 の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

表 3－67 せん断力のスケルトンカーブ（ $\mathrm{Q}-\gamma$ 関係）（NS 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{Q}_{1} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{1} \\ \left(\times 10^{-4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{2} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{2} \\ \left(\times 10^{-4}\right) \end{gathered}$
7	6	5． 042	1． 775	34.90	32.51
6					
	5	2． 867	1． 859	24.63	27.17
	4	5． 343	1． 808	29． 06	33.23
62 （90）＊	3	5． 428	1． 837	29． 06	33.23

注記 $~$ ：（ ）内は炉内構造物モデルの質点番号を示す。

表 3－68 曲げモーメントのスケルトンカーブ（M一 －関係）（NS 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{M}_{1} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{1} \\ \left(\times 10^{-5} 1 / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{2} \\ \left(\times 10^{-5} 1 / \mathrm{m}\right) \end{gathered}$
7	6	1． 032	1． 036	16． 81	38.53
	5	1． 107	1． 151	15． 98	38.49
	4	1． 740	1． 721	16． 36	38． 39
62 （90）＊	3	1． 738	1． 799	15． 73	38.50

注記＊：（ ）内は炉内構造物モデルの質点番号を示す。

表 3－69 せん断力のスケルトンカーブ（ $\mathrm{Q}-\gamma$ 関係）（EW 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{Q}_{1} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{1} \\ \left(\times 10^{-4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{2} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{2} \\ \left(\times 10^{-4}\right) \end{gathered}$
7	6	5． 042	1． 775	34.90	32.51
6					
	5	5． 400	1． 859	39． 48	31.21
	4	5． 343	1． 808	29． 06	33.23
64 （92）＊	3	5． 032	1． 837	27． 23	33.20

注記＊：（ ）内は炉内構造物モデルの質点番号を示す。

表 3－70 曲げモーメントのスケルトンカーブ（M－ϕ 関係）（EW 方向）

質点番号	要素番号	M_{1} $\left(\times 10^{8} \mathrm{kN} \cdot \mathrm{mm}\right)$	ϕ_{1} $\left(\times 10^{-5} 1 / \mathrm{m}\right)$	M_{2} $\left(\times 10^{8} \mathrm{kN} \cdot \mathrm{mm}\right)$	ϕ_{2} $\left(\times 10^{-5} \mathrm{l} / \mathrm{m}\right)$
7	6	1.032	1.036	16.81	38.53

注記＊：（ ）内は炉内構造物モデルの質点番号を示す。

3．4．4 誘発上下動を考慮する場合の基礎浮上り評価方法

誘発上下動を考慮する場合の基礎浮上り評価方法については，添付書類「VI－2－2－3
制御建屋の地震応答計算書」に示す。

3．4．5 材料物性の不確かさ等
解析においては，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」にて考慮する材料物性の不確かさに加え，原子炉本体の基礎のコンクリート剛性を低下させたケース考慮す る。材料物性の不確かさを考慮する解析ケースを表3－71に示す。
表 3－71 建屋－機器連成解析において材料物性の不確かさを考慮する解析ケース

検討ケース	建屋初期剛性	地盤物性		原子炉本体の基礎 の初期剛性	備考
		入力地震動	底面地盤ばね		
ケース1	3.11 地震シミュレーション	表層上部非線形非線形表層下部 Vs $900 \mathrm{~m} / \mathrm{s}$	標準地盤	標準	基本ケース
ケース 2	同上	表層上部非線形非線形表層下部 Vs $900+100 \mathrm{~m} / \mathrm{s}$	標準地盤＋σ	標準	
ケース 3	同上	表層上部非線形非線形表層下部 Vs 900－100m／s	標準地盤－σ	標準	
ケース 4	基本ケースの 0.78 倍	表層上部非線形非線形表層下部 Vs $900 \mathrm{~m} / \mathrm{s}$	標準地盤	標準	基準地震動 S s 固有の解析ケース
ケース 5	同上	表層上部非線形非線形表層下部 Vs $900+100 \mathrm{~m} / \mathrm{s}$	標準地盤＋σ	標準	基準地震動 S s 固有の解析ケース
ケース 6	同上	表層上部非線形非線形表層下部 Vs 900－100m／s	標準地盤－σ	標準	基準地震動 S s 固有の解析ケース
ケース 7	3.11 地震シミュレーション	表層上部非線形非線形表層下部 Vs $900 \mathrm{~m} / \mathrm{s}$	標準地盤	3.11 地震シミュレーション＊	建屋－機器連成解析固有のケース

注記＊：原子炉建屋の耐震壁の初期剛性の設計値に対する補正係数（地下 3 階から地上 2 階，NS 方向：0．75，EW 方向：0．80）を適用する。

4．解析結果
本章では，代表として，弾性設計用地震動 Sd 及び基準地震動 S s の基本ケースの地震応答解析結果を示す。なお，炉内構造物系については，シュラウド健全ケースの結果を示す。
4． 1 固有値解析
4．1．1 大型機器系
計算の結果得られた固有値の中で，固有周期 0.050 s までの次数についてまとめた結果を表 4－1～表4－3に示す。また，図 4－1～図 4－41 に振動モード図を示す。
4．1．2 炉内構造物系
計算の結果得られた固有値の中で，固有周期 0.050 s までの次数についてまとめた結果を表 4－4～表 4－6に示す。また，図 4－42～図 4－92 に振動モード図を示す。

表 4－1 大型機器系の固有値解析結果＊（NS 方向）

次数	固有周期（s）	刺激係数	卓越部位
1	0． 236	2． 222	原子炉建屋
2	0． 123	－2． 741	原子炉建屋
3	0.116	－1．113	原子炉建屋
4	0． 097	2． 048	原子炉建屋
5	0.093	－1．037	原子炉建屋
6	0． 090	－1． 774	原子炉圧力容器
7	0.089	－0． 033	原子炉建屋
8	0． 082	－0． 001	原子炉建屋
9	0． 074	－0． 614	原子炉建屋
10	0． 071	0． 445	原子炉建屋
11	0.068	－0． 374	原子炉建屋
12	0． 065	－0． 596	原子炉建屋
13	0． 063	－0．668	原子炉建屋
14	0． 060	0.047	原子炉建屋
15	0.058	0.475	原子炉建屋
16	0.055	－0． 590	原子炉圧力容器
17	0． 052	1． 558	原子炉建屋
18	0． 051	0． 438	原子炉建屋
19	0.050	0.173	原子炉建屋

注記＊：固有周期 0.050 s 以上の次数について記載した。

表 4－2 大型機器系の固有値解析結果＊（EW 方向）

次数	固有周期（s）	刺激係数	卓越部位
1	0． 228	2． 197	原子炉建屋
2	0.125	1．928	原子炉建屋
3	0.116	0.066	原子炉建屋
4	0.098	0.619	原子炉建屋
5	0.091	－0． 782	原子炉建屋
6	0.090	－1．793	原子炉圧力容器
7	0.086	2． 182	原子炉建屋
8	0.077	1． 023	原子炉建屋
9	0.074	0． 369	原子炉建屋
10	0.070	－0． 244	原子炉建屋
11	0.067	－0． 521	原子炉建屋
12	0． 064	0． 549	原子炉建屋
13	0． 062	－0． 256	原子炉建屋
14	0． 060	1． 549	原子炉建屋
15	0． 059	0． 109	原子炉建屋
16	0． 055	－0． 329	原子炉建屋
17	0． 055	0． 558	原子炉圧力容器
18	0． 052	－2． 456	原子炉建屋

注記＊：固有周期 0.050 s 以上の次数について記載した。

表 4－3 大型機器系の固有値解析結果＊（鉛直方向）

次数	固有周期 (s)	刺激係数	卓越部位
1	0.339	1.458	原子炉建屋
2	0.100	1.584	原子炉建屋
3	0.079	1.360	原子炉建屋
4	0.051	-0.381	原子炉建屋

注記 $*$ ：固有周期 0.050 s 以上の次数について記載した。

図 4－1 大型機器系の振動モード図（1 次）（NS 方向）

$$
\begin{aligned}
& \text { 固有周期 (s): } 0.123 \\
& \text { 刺激係数 } \quad:-2.741
\end{aligned}
$$

$$
\begin{aligned}
& \text { 固有周期 }(\mathrm{s}): 0.116 \\
& \text { 刺激係数 } \quad:-1.113
\end{aligned}
$$

原子炉建屋原子炉圧力容器及び

図 4－3 大型機器系の振動モード図（3 次）（NS 方向）

$\mathrm{VI}-2-3-2 \quad \mathrm{R} 0$
 （a）
 O 2

固有周期 $(\mathrm{s}): 0.097$
刺激係数 $: 2.048$

図 4－4 大型機器系の振動モード図（4 次）（NS 方向）

原子炉建屋

$$
\begin{aligned}
& \\
& \text { 固有周期 (s): } 0.093 \\
& \text { 刺激係数 }:-1.037
\end{aligned}
$$

原子炉

原子炉圧力容器及び
$\theta--\theta--\theta-\theta--\theta-\cdots-\cdots-\theta-\theta-\theta-\theta-\theta-\theta$

図 4－5 大型機器系の振動モード図（5 次）（NS 方向）
O2（3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機

プラント名：女川原子力発電所第 2 号機

O2（3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機

固有周期 $(\mathrm{s}): 0.071$
刺激係数 $: 0.445$

プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第 2 号機
固有周期（ s ）： 0.065
刺激係数 $\quad:-0.596$

プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.060$
刺激係数 $: 0.047$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.058$
刺激係数 $: 0.475$

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.055$
刺激係数 $: ~: ~-0.590 ~$

プラント名：女川原子力発電所第2号機
固有周期（ s ）： 0.052
刺激係数 $: 1.558$
O 2 （3） $\mathrm{V}-2-3-2 \mathrm{R} \mathrm{O}$
プラント名：女川原子力発電所第2号機

図 4－17 大型機器系の振動モード図（17 次）（NS 方向）
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.051$
刺激係数 $: 0.438$
プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.050$
刺激係数 $: 0.173$

図 4－19 大型機器系の振動モード図（19 次）（NS 方向）
プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.125$
刺激係数 $: ~: 1.928$

図 4－21 大型機器系の振動モード図（2 次）（EW 方向）
プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.116$
刺激係数 $\quad: 0.066$

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.098$
刺激係数 $: 0.619$

$$
\begin{aligned}
& \begin{array}{r}
782^{\circ} 0- \\
160^{\circ} 0
\end{array} \\
& \begin{array}{l}
\text { 固有周期 (s): } \\
\text { 刺激係数 : }
\end{array}
\end{aligned}
$$

プラント名：女川原子力発電所第2号機
固有周期（ s ）：0．090
刺激係数 $: ~: ~-~$.793

固有周期 $(\mathrm{s}): 0.086$
刺激係数 $\quad: 2.182$
原子炉建屋

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.077$
刺激係数 $: 1.023$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.074$
刺激系数 $\quad: 0.369$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.070$
刺激係数 $\quad:-0.244$
プラント名：女川原子力発電所第 2 号機

図 4－29 大型機器系の振動モード図（10 次）（EW 方向）
プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.064$
刺激係数 $\quad: 0.549$
プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.062$
刺激係数 $: ~: ~-0.256 ~$

図 4－32 大型機器系の振動モード図（13 次）（EW 方向）
プラント名：女川原子力発電所第 2 号機

$$
\begin{aligned}
& \text { 固有周期 }(\mathrm{s}): ~: ~ 0.060 \\
& \text { 刺激係数 } \quad: 1.549
\end{aligned}
$$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.059$
刺激係数 $\quad: 0.109$

プラント名：女川原子力発電所第 2 号機

図 4－35 大型機器系の振動モード図（16 次）（EW 方向）
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.055$
刺激係数 $: 0.558$
原子炉建屋
プラント名：女川原子力発電所第 2 号機

O 2 （3） $\mathrm{VI}-2-3-2$ R 0

O 2 （3）VI－2－3－2
R 0

プラント名：女川原子力発電所第 2 号機

原子炉建屋
O2（3）VI－2－3－2 R 0
プラント名：女川原子力発電所第 2 号機

原子炉建屋
$\mathrm{O} 2 \mathrm{VI}-2-3-2 \mathrm{R} 0$
プラント名：女川原子力発電所第2号機

表 4－4 炉内構造物系の固有値解析結果＊（NS 方向）

次数	固有周期（s）	刺激係数	卓越部位
1	0． 237	9． 023	原子炉建屋
2	0． 229	7． 968	燃料集合体
3	0． 123	2． 705	原子炉建屋
4	0.118	－1． 519	炉心シュラウド
5	0.116	－3． 848	原子炉建屋
6	0． 097	－2． 066	原子炉建屋
7	0． 093	1． 039	原子炉建屋
8	0． 090	2． 070	原子炉圧力容器
9	0.089	－0． 091	原子炉建屋
10	0.082	0.001	原子炉建屋
11	0． 074	－0．717	原子炉建屋
12	0． 071	－0． 527	原子炉建屋
13	0.068	－0．372	原子炉建屋
14	0.066	2． 206	制御棒案内管
15	0． 065	－1． 729	原子炉建屋
16	0.063	1． 077	原子炉建屋
17	0． 060	－0． 084	原子炉建屋
18	0.059	－0．364	原子炉建屋
19	0． 058	－0．771	燃料集合体
20	0.056	－3．586	炉心シュラウド
21	0.053	-5.222	原子炉圧力容器
22	0． 052	－7． 672	原子炉建屋
23	0.051	－0．434	原子炉建屋
24	0.050	0.311	原子炉建屋

注記＊：固有周期 0.050 s 以上の次数について記載した。

表 4－5 炉内構造物系の固有値解析結果＊（EW 方向）

次数	固有周期（s）	刺激係数	卓越部位
1	0． 231	18.712	燃料集合体
2	0． 227	17． 658	原子炉建屋
3	0.125	2． 617	原子炉建屋
4	0.117	2． 888	炉心シュラウド
5	0.116	－0． 130	原子炉建屋
6	0． 098	0． 630	原子炉建屋
7	0.091	－0． 820	原子炉建屋
8	0.090	－1．751	原子炉圧力容器
9	0.086	2． 243	原子炉建屋
10	0.077	1． 120	原子炉建屋
11	0． 074	－0． 379	原子炉建屋
12	0.070	0． 238	原子炉建屋
13	0.067	0.505	原子炉建屋
14	0． 066	－0． 366	制御棒案内管
15	0． 064	－0． 599	原子炉建屋
16	0． 062	－0． 271	原子炉建屋
17	0． 060	2． 781	原子炉建屋
18	0.059	0.114	原子炉建屋
19	0． 058	－1． 209	燃料集合体
20	0.056	－3． 214	炉心シュラウド
21	0． 055	1． 326	原子炉建屋
22	0． 053	－5． 150	原子炉圧力容器
23	0.052	7． 104	原子炉建屋

注記＊：固有周期 0.050 s 以上の次数について記載した。

表 4－6 炉内構造物系の固有値解析結果＊（鉛直方向）

次数	固有周期 (s)	刺激係数	卓越部位
1	0.339	1.458	原子炉建屋
2	0.100	1.584	原子炉建屋
3	0.079	1.360	原子炉建屋
4	0.051	-0.380	原子炉建屋

注記 $*: ~$ 固有周期 0.050 s 以上の次数について記載した。
固有周期 $(\mathrm{s}): 0.237$
刺激係数 $\quad: 9.023$

プラント名：女川原子力発電所第 2 号機
刺激係数 $\quad: 7.968$

図 4－44 炉内構造物系の振動モード図（3 次）（NS 方向）
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.118$
刺激係数 $\quad:-1.519$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.116$
刺激係数 $\quad:-3.848$

固有周期 $(\mathrm{s}): 0.097$
刺激係数 $\quad:-2.066$

[^0]
原子炉圧力容器及び 原子炉本体の基礎

ラウド

制御棒駆動機構
図 4－47 炉内構造物系の振動モード図（6 次）（NS 方向）
プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.093$
刺激係数 $: ~: 1.039$
プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第2号機
固有周期（ s ）： 0.090
刺激係数 $: 2.070$
原子炉建屋
原子炉圧力容器及び
ラウド
燃料集合体
制御棒駆動機構
ハウジング
図 4－49 炉内構造物系の振動モード図（8 次）（NS 方向）

$$
\begin{aligned}
& \text { 固有周期 }(\mathrm{s}): 0.089 \\
& \text { 刺激係数 } \quad:-0.091
\end{aligned}
$$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.082$
刺激係数 $: 0.001$

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.074$
刺激係数 $\quad:-0.717$
原子炉建屋

原子炉圧力容器及び 原子炉本体の基礎

＂
000000000000
制御棒駆動機構

O 2 （3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機
原子炉建屋
原子炬圧力容器及び
制御棒案内管
制御棒駆動機構
図 4－54 炉内構造物系の振動モード図（13 次）（NS 方向）

固有周期 $(\mathrm{s}): 0.066$
刺激係数 $\quad: 2.206$
固有周期 $(\mathrm{s}): 0.065$
刺激係数 $\quad:-1.729$
原子炉建屋

原子炉圧力容器及び 原子炉本体の硣

ラウド
図 4－56 炉内構造物系の振動モード図（15 次）（NS 方向）
プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.063$
刺激係数 $: ~: 1.077$
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.060$
刺激係数 $\quad:-0.084$

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.059$
刺激係数 $: ~:-0.364$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.058$
刺激係数 $\quad:-0.771$

固有周期 $(\mathrm{s}): 0.056$
刺激係数 $\quad: ~-3.586$

原子炉建屋

原子炉圧力容器及び 巷炉本体

ラウド
$00000000-000000$ 萑：

$\stackrel{2}{2}$

固有周期 $(\mathrm{s}): 0.051$
刺激係数 $\quad:-0.434$
原子炉建屋
原子炉圧力容器及び
原子炉本体の基礎
制御棒案内管

固有周期（s）：0． 050
刺激係数 ：0．311
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.231$
刺激係数 $\quad: 18.712$

図 4－66 炉内構造物系の振動モード図（1 次）（EW 方向）
固有周期 $(\mathrm{s}): 0.227$
刺激係数 $\quad: 17.658$

図 4－67 炉内構造物系の振動モード図（2 次）（EW 方向）

固有周期 $(\mathrm{s}): 0.117$
刺激係数 $\quad .2 .888$

図 4－71 炉内構造物系の振動モード図（6 次）（EW 方向）
固有周期 $(\mathrm{s}): 0.091$
刺激係数 $\quad: ~-0.820$

プラント名：女川原子力発電所第2号機

固有周期 $(\mathrm{s}): 0.090$
刺激係数 $: ~:-1.751$
原子炉建屋
図 4－73 炉内構造物系の振動モード図（8 次）（EW 方向）
O 2 （3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.077$
刺激係数 $\quad: 1.120$
固有周期 $(\mathrm{s}): 0.074$
刺激係数 $\quad:-0.379$
固有周期 $(\mathrm{s}): 0.070$
刺激係数 $\quad .0 .238$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.067$
刺激係数 $: 0.505$

固有周期 $(\mathrm{s}): 0.064$
刺激係数 $\quad: ~-0.599$
O 2 （3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機
原子炉建屋

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.060$
刺激係数 $\quad: 2.781$

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.059$
刺激係数 $\quad: 0.114$
O 2 （3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機

原子炉建屋
原子炉圧力容器及び
炉心シュラウド
固有周期 $(\mathrm{s}): 0.055$
刺激係数 $: ~: ~ 1.326$
制御棒案内管制御棒駆動機構
ハウジング図 4－86 炉内構造物系の振動モード図（21 次）（EW 方向）
原子炉建屋

O 2 （3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.339$
刺激係数 $\quad: 1.458$
原子炉建屋

O2（3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.100$
刺激係数 $: ~: ~ 1.584$
プラント名：女川原子力発電所第2号機

原子炉建屋
O 2 （3） $\mathrm{VI}-2-3-2 \quad \mathrm{R} 0$
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.079$
刺激係数 $: ~: ~ 1.360 ~$
プラント名：女川原子诗発电所第2号機

O 2 （3） $\mathrm{VI}-2-3-2 \quad \mathrm{R} 0$
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.051$
刺激係数 $\quad:-0.380$原子炉建屋

4．2 地震応答解析及び静的解析

4．2．1 大型機器系

（1）弾性設計用地震動 S d 及び静的解析
水平方向の弾性設計用地震動 S d による地震応答解析及び静的解析より得られた各点の最大応答加速度，最大応答変位，最大応答せん断力及び最大応答モーメントを図 4－93～図 4－ 116 に，算定したスケルトンカーブと最大応答値の関係を図 4－117～図4－120に，原子炉圧力容器スタビライザ，原子炉格納容器スタビライザ，原子炉格納容器シヤラグ，ベント管，燃料交換ベローズ及び所員用エアロックに加わる力（ばね反力）を表4－1に示す。

鉛直方向の弾性設計用地震動 S d による地震応答解析より得られた各点の最大応答加速度，最大応答変位及び最大応答軸力を図 4－121～図4－129 に示す。また，鉛直方向の静的解析は実施せず，一律に算定することから，表 4－2 に鉛直方向の静的震度を示す。
（2）基準地震動 S s
水平方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度，最大応答変位，最大応答せん断力及び最大応答モーメントを図 4－130～図4－153 に，算定したス ケルトンカーブと最大応答値の関係を図 4－154～図4－157に，原子炉圧力容器スタビライザ，原子炉格納容器スタビライザ，原子炉格納容器シヤラグ，ベント管，燃料交換ベローズ及び所員用エアロックに加わる力（ばね反力）を表 4－3 に示す。

鉛直方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度，最大応答変位及び最大応答軸力を図 4－158～図4－166に示す。

最大応答加速度（m／s s^{2} ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
9． 75	11.3	9.44	5.64	7.81	8.22	7.83	9． 13	原子炉格納容器頂部
9.32	10.7	8.91	5.34	7.35	7.64	7.58	9.13	
8.89	10.1	8.40	5.05	6． 90	7.03	7.35	9． 13	然料交換べローズ位置
8.62	9.69	8.02	4.85	6.61	6.65	7． 19	9． 13	
8.01	8.87	7.23	4.46	5.98	5． 95	6.86	7.44	シャラグ位置
6． 78	7． 19	5.87	3.95	4． 74	5． 16	6.11	7.44	
5.95	6.38	5.05	3.63	4.21	4． 72	5.63	6． 48	
4.67	5.03	4． 10	3.17	3.83	4.24	5.00	6． 48	
4． 18	4.23	3.94	3.36	4.01	4.04	4.45	5.53	
$\begin{aligned} & 3.97 \\ & 3.82 \end{aligned}$	$\begin{aligned} & 4.42 \\ & 4.46 \end{aligned}$	$\begin{aligned} & 4.04 \\ & 4.15 \end{aligned}$	$\begin{aligned} & 3.46 \\ & 3.50 \end{aligned}$	$\begin{aligned} & 4.06 \\ & 4.03 \end{aligned}$	$\begin{aligned} & 4.44 \\ & 4.65 \end{aligned}$	$\begin{aligned} & 4.23 \\ & 4.06 \end{aligned}$	$\begin{aligned} & 5.53 \\ & 5.53 \end{aligned}$	原子炬格納容器基部

図 4－93 最大応答加速度 弹性設計用地震動 Sd 及び静的解析（NS 方向 原子炉格納容器）

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
11.2	11.5	9.71	6.36	9.07	9.65	11.5	11.9	原子炉格納容器頂部
10.7	11.0	9.24	6． 07	8.64	9.22	11.0	11.3	
10.2 9.82	10.5 10.2	8.80 8.50	5.79 5.61	8.23 7.96	8.82 8.56	10.5 10.2	$\begin{aligned} & 10.8 \\ & 10.5 \end{aligned}$	燃料交換べローズ位直
9． 15	9． 44	7.87	5.22	7.38	8.00	9.45	9.76	シヤラグ位置
7.62	7.87	6． 50	1.38	6． 08	6． 69	7.91	8． 14	
6． 63	6． 84	5． 62	3.84	5.23	5.85	6.91	7.08	
5.01	5． 22	4． 19	2.96	3.86	4.48	5.28	5.36	
3.47	3.71	2.94	2.11	2.58	3． 19	3.73	3.71	
2.86 2.43	3.11 2.69	2.45 2.10	$\begin{aligned} & 1.77 \\ & 1.53 \end{aligned}$	$\begin{aligned} & 2.07 \\ & 1.77 \end{aligned}$	2.68 2.32	$\begin{aligned} & 3.11 \\ & 2.67 \end{aligned}$	$\begin{aligned} & 3.06 \\ & 2.59 \end{aligned}$	原子炬格納容器基部

図 4－94 最大応答変位 弾性設計用地震動 Sd 及 ひ び静的解析（NS 方向 原子炉格納容器）

（Wi） $\mathrm{d}^{\circ} 0$

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
147	171	140	85.9	119	124	119	137	原子炉格納容器頂部
287	332	272	168	231	239	234	274	
1590 1930	1800 2240	$\begin{aligned} & 1890 \\ & 2280 \end{aligned}$	$\begin{aligned} & 873 \\ & 1120 \end{aligned}$	$\begin{aligned} & 1210 \\ & 1460 \end{aligned}$	$\begin{aligned} & 1130 \\ & 1440 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1670 \end{aligned}$	$\begin{aligned} & 1650 \\ & 2100 \end{aligned}$	燃料交換べローズ位置
12300	12800	10500	7270	10600	10700	12300	13800	シャラグ位置
13200	13400	11200	7740	11200	11400	13100	14800	
13800	13900	11700	8030	11500	11800	13600	15400	
14700	14800	12200	8440	12000	12600	14600	16700	
15000	15100	12400	8570	12100	12900	14900	17200	
$\begin{aligned} & 15500 \\ & 15500 \end{aligned}$	$\begin{aligned} & 15700 \\ & 15700 \end{aligned}$	$\begin{aligned} & 12700 \\ & 12700 \end{aligned}$	$\begin{aligned} & 8800 \\ & 8800 \end{aligned}$	$\begin{aligned} & 12100 \\ & 12100 \end{aligned}$	$\begin{aligned} & 13700 \\ & 13700 \end{aligned}$	$\begin{aligned} & 15700 \\ & 15700 \end{aligned}$	$\begin{aligned} & 18400 \\ & 18400 \end{aligned}$	原子炉格納容器基部

[^1]原子炉格納容器）
NS 方向
1000

(iㅣ) $d^{\prime} 0$

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
9． 26	9.75	10.6	4.81	6.74	5.79	7.20	7． 44	原子炉しゃへい壁頂部
8.22	8． 88	9.47	4.77	6.01	5.67	6.92	7． 44	
7.79	8.33	8.23	5.08	6.04	5． 42	6.72	7．44	
8.04	${ }^{7.73}$	7． 16	5.08	5.90	5.63	6． 39	6.48	
7.38	6． 69	5.93	4． 85	5.39	5.70	5.80	6.48	
5.34	5.68	4.72	4． 25	4.43	5.34	4.99	6． 48	原子炉しゃへい壁基部

図 4－97 最大応答加速度 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉しやへい壁）

加速度（m／s ${ }^{2}$ ）

00	5.00	10.00	15.00

（ii） $\mathrm{d}^{\prime} 0$

$\begin{array}{lll} & \\ \text { 変位（min）} & 10.00 & 15.00 \\ & \end{array}$

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
9.23	9． 90	8.53	5.27	7． 42	7.76	9． 75	10.2	原子炬しやへい壁頂部
8.23	8.89	7.63	4.71	6.61	6． 95	8.78	9.11	
7． 15	7． 79	6． 63	4． 14	5.74	6． 10	7.73	7.97	
6.16	6． 76	5.67	3.61	4.94	5.33	6． 74	6.89	
5.09	5． 60	4． 57	3.03	4.03	4.48	5.61	5.68	
3.80	4． 18	3.26	2.31	2.91	3.43	4.20	4． 18	原子炉しやへい壁基部

図 4－98 最大応答変位 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉しやへい壁）

最大応答せん断力（ $\times 10^{3} \mathrm{~N}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
3640	3540	3530	1800	2780	2910	1350	1300	原子炬しゃへい壁頂部
3060	4210	2700	2170	3420	3230	2560	2910	
4980	5180	4820	3190	4360	3980	4730	5820	
6600	7060	6840	3990	5720	5510	6680	7950	
8410	9060	8870	5210	7180	7320	8930	10600	
8410	9060	8870	5210	7480	7320	8930	10600	原子炬しやへい壁基部

[^2]
図 4－99 最大応答せん断力 弾性設計用地震動 S d 及び静的解析（NS 方向

 せん断力（ $\times 10^{3} \mathrm{~N}$ ）
5000
（ㄸi） $\mathrm{d} \cdot 0$

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
15.5	18.0	18.0	8.67	13.3	11.8	8.65	11.0	原子炉圧力容器頂部
13.7	15.8	15.9	7.55	11.5	9.76	8.01	11.0	燃料交換べローズ位置
12.2	14.0	14.2	6． 65	9.99	8.21	7.54	11.0	
10.9	12.3	12.7	5.83	8.64	7.29	7． 17	8.93	原子炉圧力容器スタビライザ位置
8.86	9.95	10.6	4． 99	6． 75	6.63	6.72	8.93	
7.41	8.43	8.27	5.28	5.46	6.01	6． 35	7.77	
7． 12	7.08	6.04	5.13	5.09	6.25	5． 85	7.77	
6.63	6.23	5.20	4.89	4.89	6.11	5． 52	7.77	原子炉圧力容器支持スカート位置
5.34	$\begin{aligned} & 5.68 \\ & 5.53 \end{aligned}$	4.72 4.68	4.25	4.43 4.34	5． 54	4.99	6． 68	原子炉本体の基硞頂部
4.37	5.06	4.47	3.89	4． 14	4.98	4.71	5.53	
4.01	4.75	4.31	3.67	4.05	4.80	4． 43	5． 53	
3.82	4.46	4． 15	3.50	4.03	4.65	4.06	5.53	原子炉本体の基䂾基部

[^3]（II） $\mathrm{d}^{\prime} 0$

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
12.2	13.5	12.0	7.03	9.80	9.83	12.7	13.6	原子炉圧力容器頂部
11.1	12.3	10.8	6． 36	8.89	8． 98	11.6	12.4	鿭料交換べローズ位置
10.2	11.3	9.87	5． 83	8.16	8.31	10.8	11.4	
9.41	10.4	9． 05	5.36	7.52	7． 73	9.95	10.5	原子炉圧力容器スタビライザ位置
8.07	8.91	7.72	4.61	6． 43	6． 70	8.63	9.05	
6． 63	7.38	6． 26	3.84	5． 26	5.61	7.19	7.47	
5.31	5.91	4.87	3.13	4． 18	4.60	5.83	5.98	
4.61	5.12	4.11	2． 75	3． 60	4.06	5.09	5.17	原子炉圧力容器支持スカート位置
3.80 3.59	4．${ }^{\text {3．}} 95$	3.26 3.09	2． 31	2.91	$\begin{aligned} & 3.43 \\ & 3.26 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 3.97 \end{aligned}$	4.18 3.95	原子炬本体の基硞頂部
3.22	3.53	2.77	1.98	2． 40	2． 96	3.55	3． 49	
2.79	3.07	2.41	1.74	2.04	2.61	3.07	3.00	
2.43	2.69	2． 10	1.53	1.77	2． 32	2.67	2.59	原子炉本体の基䃠基部

図 4－102 最大応答変位 弾性設計用地震動 Sd 及び静的解析（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

${ }^{15.0}$

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
261	308	306	148	224	201	151	188	原子炉圧力容器頂部
971	1180	1120	658	853	923	622	806	燃料交換ベローズ位置
2140	2480	2490	1260	1810	1650	1340	1880	
1590	1790	1680	963	1200	1350	585	339	原子炉圧力容器スタビライザ位置
1810	2080	1540	1240	1800	1600	1590	1840	
3430	3820	3810	1980	2840	2680	3270	4130	
4410	4930	4980	2660	3630	3670	4380	5660	
5450	5940	5950	3640	4520	4600	5480	7270	原子炉圧力容器支持スカート位置
15000 16100	16100 17400	15700 16600	$\begin{aligned} & 9790 \\ & 10900 \end{aligned}$	12800 13700	$\begin{aligned} & 12800 \\ & 13900 \end{aligned}$	15700 17000	19500 21300	原子炬本体の基碮頂部
17200	18600	17400	12000	14500	15000	18300	23000	
18100	19700	18100	12900	15200	16100	19500	24500	
18100	19700	18100	12900	15200	16100	19500	24500	原子炬本体の基碳基部

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－103 最大応答せん断力 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

100002000030000
せん断力（ $\times 10^{3}$ N）

最大応答モーメント（ $\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0	0	0	0	0	0	0	0	原子炉圧力容器頂部
716	844	838	405	612	549	413	515	燃料交換べローズ位置
2840	3300	3280	1840	2480	2570	1780	2280	
6890	7990	7990	4230	5910	5690	4310	5830	原子炉圧力容器スタビライザ位置
7680	11000	7520	6150	8630	8900	6270	6970	
14300	18600	12700	10700	15200	14500	12000	13700	
25500	27500	24900	17400	23400	21100	22900	28000	
33800	37000	34800	21700	28600	26400	30900	39200	原子炉圧力容器支持スカート位置
$\begin{aligned} & 45400 \\ & 116000 \\ & 128000 \end{aligned}$	$\begin{array}{r} 50100 \\ 124000 \\ 136000 \end{array}$	$\begin{aligned} & 48300 \\ & 116000 \\ & 129000 \end{aligned}$	$\begin{aligned} & 27200 \\ & 71500 \\ & 77300 \end{aligned}$	$\begin{array}{r} 37500 \\ 97200 \\ 106000 \end{array}$	$\begin{gathered} 34600 \\ 92800 \\ 103000 \end{gathered}$	$\begin{gathered} 42600 \\ 113000 \\ 125000 \end{gathered}$	$\begin{gathered} 55800 \\ 143000 \\ 158000 \end{gathered}$	原子炉本体の基硞頂部
146000	157000	149000	87200	122000	120000	147000	186000	
176000	190000	181000	104000	148000	148000	181000	229000	
207000	225000	214000	123000	176000	178000	218000	276000	原子炬本体の基礎基部

弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
10.1	10.3	11.2	5.41	8.01	6.77	7.58	9． 28	原子炉格納容器頂部
9.54	9.64	10.6	5． 17	7.63	6． 45	7.37	9.28	
$\begin{aligned} & 9.04 \\ & 8.69 \end{aligned}$	9． 05 8.65	$\begin{aligned} & 10.1 \\ & 9.64 \end{aligned}$	4.97 4.86	$\begin{aligned} & 7.24 \\ & 6.98 \end{aligned}$	$\begin{aligned} & 6.13 \\ & 5.92 \end{aligned}$	$\begin{aligned} & \text { 7. } 16 \\ & \text { 7.03 } \end{aligned}$	$\begin{aligned} & 9.28 \\ & 9.28 \end{aligned}$	燃料交換ベローズ位置
7.95	8.00	8.81	4.61	6.40	5.46	6.77	7.48	シヤラグ位置
6． 45	6． 70	7.08	4.04	5.28	4.58	6.11	7.48	
5． 52	5.92	5． 96	3.71	4． 62	4.04	5． 70	6． 49	
4.66	4.82	4． 46	3.35	4.01	3． 75	5.04	6.49	
4.47	4． 36	4.08	3.17	3.46	4.01	4.44	5.53	
$\begin{aligned} & 4.37 \\ & 4.22 \end{aligned}$	$\begin{aligned} & 4.68 \\ & \text { 4. } 65 \end{aligned}$	$\begin{aligned} & \text { 4. } 36 \\ & \text { 4. } 46 \end{aligned}$	$\begin{aligned} & 3.15 \\ & 3.06 \end{aligned}$	$\begin{aligned} & 3.41 \\ & 3.38 \end{aligned}$	$\begin{aligned} & 4.08 \\ & 4.03 \end{aligned}$	$\begin{aligned} & \text { 4. } 20 \\ & 4.01 \end{aligned}$	$\begin{aligned} & 5.53 \\ & 5.53 \end{aligned}$	原子炉格納容器基部

図 4－105 最大応答加速度 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉格納容器）

加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
11.1	11.3	9.91	6.25	8.79	8.14	10.4	11.6	原子炉格納容器頂部
10.6	10.8	9.46	5.98	8.39	7.78	9.92	11.1	
10.1 9.73	10.3 9.93	9.03 8.73	5.73 5.56	8.01 7.76	7.44 7.21	9.49 9.21	10.6	燃料交換べローズ位置
9.04	9.26	8.11	5． 20	7.23	6． 74	8.60	9.54	シャラグ位置
7.47	7.73	6． 74	4.38	5.98	5.63	7.21	7.94	
6． 44	6． 74	5.84	3.84	5.18	4.91	6.30	6.89	
4.79	5.14	4.40	2.96	3.88	3.76	4.83	5.21	
3.23	3.62	3.06	2.12	2.66	2.67	3.42	3.60	
2.61 2.20	3.02 2.60	2.54 2.18	1.79 1.55	2.18 1.84	$\begin{aligned} & 2.24 \\ & 1.93 \end{aligned}$	2.86	$\begin{aligned} & 2.96 \\ & 2.50 \end{aligned}$	原子炬格納容器基部

子炉格納容器）
枠囲みの内容は商

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
150	153	166	82.4	118	101	115	140	原子炉格納容器頂部
292	297	324	161	230	196	226	279	
$\begin{aligned} & 1760 \\ & 2190 \end{aligned}$	$\begin{aligned} & 2070 \\ & 2500 \end{aligned}$	1890 2360	934 1140	$\begin{aligned} & 1350 \\ & 1690 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1690 \end{aligned}$	$\begin{aligned} & 1680 \\ & 2150 \end{aligned}$	燃料交換ベローズ位置
13300	13700	11700	6940	10600	9380	11600	14200	シャラグ位置
14200	14500	12700	7470	11300	9970	12400	15100	
14700	15000	13200	7830	11700	10400	13000	15800	
15400	15700	14000	8440	12200	11000	13900	17000	
15600	15800	14300	8700	12400	11300	14400	17600	
$\begin{aligned} & 16000 \\ & 16000 \end{aligned}$	$\begin{aligned} & 16000 \\ & 16000 \end{aligned}$	$\begin{aligned} & 14700 \\ & 14700 \end{aligned}$	$\begin{aligned} & 9270 \\ & 9270 \end{aligned}$	$\begin{aligned} & 13000 \\ & 13000 \end{aligned}$	$\begin{aligned} & 11700 \\ & 11700 \end{aligned}$	$\begin{aligned} & 15300 \\ & 15300 \end{aligned}$	$\begin{aligned} & 18800 \\ & 18800 \end{aligned}$	原子炬格納容器基部

注：要素上端の質点位置にせん断力を記載。なおふ，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－107 最大応答せん断力 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉格納容器）

最大応答モーメント（ $\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0	0	0	0	0	0	0	0	原子炬格納容器頂部
346	353	383	190	272	232	264	321	
$\begin{gathered} 969 \\ 3420 \end{gathered}$	$\begin{gathered} 986 \\ 3870 \end{gathered}$	$\begin{aligned} & 1080 \\ & 3690 \end{aligned}$	$\begin{gathered} 533 \\ 1750 \end{gathered}$	$\begin{gathered} 763 \\ 2630 \end{gathered}$	$\begin{gathered} 649 \\ 2440 \end{gathered}$	$\begin{gathered} 747 \\ 2600 \end{gathered}$	$\begin{aligned} & 916 \\ & 3260 \end{aligned}$	鴙料交換べローズ位置
9780	11200	10600	5050	7540	7060	7500	9500	シャラグ位置
68300	67200	62100	34800	53000	46900	58300	71600	
109000	108000	98100	56100	85000	75300	93700	115000	
180000	181000	163000	94000	142000	126000	157000	191000	
255000	257000	230000	135000	201000	179000	224000	274000	
$\begin{aligned} & 286000 \\ & 309000 \end{aligned}$	$\begin{aligned} & 288000 \\ & 311000 \end{aligned}$	$\begin{aligned} & 259000 \\ & 280000 \end{aligned}$	$\begin{aligned} & 153000 \\ & 166000 \end{aligned}$	$\begin{aligned} & 225000 \\ & 244000 \end{aligned}$	$\begin{aligned} & 201000 \\ & 218000 \end{aligned}$	$\begin{aligned} & 253000 \\ & 275000 \end{aligned}$	$\begin{aligned} & 309000 \\ & 336000 \end{aligned}$	原子炬格納容器基部

最大応答加速度（m／s ${ }^{2}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
9.91	11.8	9.83	5.53	7.63	7.10	7.16	7.48	原子炬しやへい壁頂部
9． 16	9．96	8.21	5.36	7.23	6.50	6.75	7.48	
8． 46	10.1	7.49	5． 16	7． 16	6． 47	6． 43	7． 48	
8.07	9.60	7.36	5.07	6． 55	5.77	6． 16	6． 49	
7.18	8． 18	6． 60	4.60	5． 32	5．32	5.61	6． 19	
5.54	5.94	5.28	3.71	3.90	4． 69	4.82	6． 49	原子炬しやへい壁基部

図 4－109 最大応答加速度 弾性設計用地震動S d 及び静的解析（EW 方向 原子炉しやへい壁）
図 $4-109$
（II） $\mathrm{d} \cdot 0$

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
9． 56	9.93	8． 75	5.36	7.36	6.76	8.93	9． 93	原子炉しゃへい壁項部
8.50	8.93	7.81	4.86	6.59	6.05	8.05	8． 89	
7.34	7.83	6.80	4.31	5.76	5.31	7.08	7． 75	
6.26	6.77	5.84	3.77	4.96	4.64	6． 16	6． 68	
5． 05	5.55	4.76	3.14	4.06	3.87	5.11	5.47	
3.58	4.04	3.44	2.33	2.93	2.91	3.78	3.97	原子炬しゃへい壁基部

[^4]（II） $\mathrm{d} \cdot 0$

最大虑答世ん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								殿考
sd－D1	Sd－D2	Sd－p3	Sd－F1	Sd－F2	sd－F3	Sd－M1	静的絁析	
3460	4310	3230	2350	3330	2690	1810	1280	
2920	4160	2760	2300	3500	2780	2120	2900	
5360	5300	5140	3880	4310	3750	4130	5830	
7100	7770	6730	${ }_{4310}$	5900	4840	6380	7960	
9210	10300	8590	6000	7710	6760	8570	10600	
9210	10300	8590	6000	7710	${ }_{6760}$	8570	10600	原子师しかんに碚甚部

図 4－111 最大応答せん断力 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉しやへい壁）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0	0	0	0	0	0	0	0	原子炉しやへい壁頂部
9540	11900	8920	6480	9180	7430	4970	3540	
17800	21900	15600	12100	19100	15100	10300	11800	
24900	33700	23800	18400	27000	23000	18900	26700	
44600	47300	42300	26300	37500	35100	36100	49000	
75400	75000	70700	43700	61700	52500	66000	86400	原子炬しやへい壁基部

図 4－112 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉しやへい壁）

最大応答加速度（m／s s^{2} ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
16.9	23.8	16.3	9.88	13.2	14.6	9.95	11.2	原子炉圧力容器頂部
14.0	20.5	14.1	8.47	11.5	12.5	9.02	11.2	鿭料交換べローズ位置
12.9	17.9	12.3	7.48	10.2	10.8	8.26	11.2	
11.8	15.4	10.8	6.83	9.21	9． 16	7． 59	8.98	原子炉圧力容器スタビライザ位置
10.3	11.9	8.53	6． 16	7.90	7.71	6.68	8.98	
8.35	8.64	6.89	5.50	6.42	6.05	5.88	7.79	
7.11	7.43	6.07	4.83	5.16	4.89	5.36	7． 79	
6.50	7.06	5.74	4.35	4.64	4.94	5． 12	7． 79	原子炉圧力容器支持スカート位置
$\begin{aligned} & 5.54 \\ & 5.32 \end{aligned}$	5． 54	$\begin{aligned} & 5.28 \\ & 5.20 \end{aligned}$	3.71 3.58	3.90 3.75	4.69 4.61	4.82 4.69	6． 49	原子炉本体の基硞頂部
4.98	5.64	5.04	3.43	3.63	4． 47	4． 59	5． 53	
4.56	5． 19	4.76	3.21	3.46	4.25	4． 28	5． 53	
4.22	4． 65	4． 46	3.06	3.38	4.03	4.01	5． 53	原子炉本体の基硞基部

図 4－113 最大応答加速度 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉圧力容器及び原子炉本体の基礎）

$\begin{array}{cc}10.00 & 20.00 \\ \text { 加速度 }\left(\mathrm{mm} / \mathrm{s}^{2}\right)\end{array}$
（II）${ }^{\circ} \mathrm{d} \times 0$

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
13.2	13.5	12.2	7.04	9.62	8.91	11.7	13.4	原子炉圧力容器頂部
11.9	12.3	11.0	6． 43	8.72	8.10	10.7	12.1	䖮料交換べローズ位置
10.9	11.3	10.1	5.95	8.02	7.46	9.84	11.2	
9． 95	10.4	9． 18	5． 52	7.41	6.89	9． 13	10.3	原子炉圧力容器スタビライザ位置
8.45	8.90	7.82	4.81	6． 36	5.94	7.91	8.83	
6.83	7.31	6.35	4． 02	5． 24	4.94	6.57	7． 26	
5.32	5.81	5． 00	3.26	4． 19	4． 02	5.31	5． 77	
4.51	5． 00	4． 28	2.84	3.62	3.51	4.61	4.96	原子炉圧力容器支持スカート位置
3． 38	4.04 3.80	3． $\begin{aligned} & \text { 3．} \\ & \text { 3．} \\ & \text { 2 }\end{aligned}$	2.33 2.20	2． 2.93	2.91	3． 38	3．${ }^{\text {3．}} 73$	原子炉本体の基赞頂部
2.99	3.44	2.91	2.01	2.48	2.51	3.24	3.37	
2.55	2． 99	2． 52	1． 76	2.14	2.20	2.82	2.91	
2． 20	2.60	2． 18	1． 55	1.84	1.93	2.46	2． 50	原子炬本体の基䃯基部

図 4－114 最大応答変位 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉圧力容器及び原子炉本体の基礎）

15． 00

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
289	402	278	170	224	248	173	191	原子炬圧力容器頂部
1240	1610	1110	670	928	976	658	808	燃料交換べローズ位置
2370	3230	2280	1380	1890	2020	1480	1900	
1550	1870	1500	1200	1100	1560	699	333	原子炉圧力容器スタビライザ位置
1840	2110	1760	1140	1650	1480	1390	1840	
3670	4130	3510	2330	3020	2820	3130	4140	
4940	5250	4400	3260	3930	3660	4170	5680	
6180	6070	5310	4130	4820	4330	5180	7280	原子炉圧力容器支持スカート位置
16500 17500	16200 17100	15000 16100	11100 12000	13300 14300	11800 12800	15000 16200	19600 21400	原子炬本体の基䃟頂部
18800	18000	17200	13000	15300	13900	17500	23000	
20000	19100	18200	13800	16100	14900	18700	24600	
20000	19100	18200	13800	16100	14900	18700	24600	原子炉本体の基啱基部

注：要素上端の質点位置にせん断力を記載。なおふ，最下端の要素は要素下端の質点位置にもせん断力を記載。
弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉圧力容器及び原子炉本体の基礎）

せん断力（ $\times 10^{3} \mathrm{~N}$ ）
図 4－115 最大応答せん断力

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0	0	0	0	0	0	0	0	原子炬圧力容器頂部
791	1100	763	466	613	678	474	523	燃料交換ベローズ位置
3510	4590	3140	1940	2650	2820	1920	2300	
7990	10600	7460	4540	6230	6640	4710	5880	原子炉圧力容器スタビライザ位置
8750	9700	8480	5980	8780	7710	5410	7000	
15400	16700	14800	10200	14400	12500	10400	13700	
28000	29600	26900	16000	22900	20300	21100	28000	
36900	39900	35400	21600	29500	25800	29200	39300	原子炉圧力容器支持スカート位置
$\begin{gathered} 48900 \\ 125000 \\ 136000 \end{gathered}$	$\begin{aligned} & 53880 \\ & 128000 \\ & 140000 \end{aligned}$	$\begin{gathered} 47000 \\ 118000 \\ 129000 \end{gathered}$	$\begin{aligned} & 29100 \\ & 72800 \\ & 80100 \end{aligned}$	$\begin{gathered} 395000 \\ 96900 \\ 107000 \end{gathered}$	$\begin{aligned} & 35600 \\ & 85400 \\ & 92300 \end{aligned}$	$\begin{gathered} 40900 \\ 107000 \\ 119000 \end{gathered}$	$\begin{gathered} 55990 \\ 143000 \\ 158000 \end{gathered}$	原子炉本体の基䃛頂部
156000	161000	148000	95300	124000	106000	139000	186000	
185000	193000	178000	120000	151000	131000	172000	230000	
217000	226000	209000	146000	180000	159000	208000	276000	原子炬本体の基嘅基部

容器及び原子炉本体の基礎）
：S d 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表3－67に対応

図 4－117 $\mathrm{Q}-\gamma$ 関係と最大応答値（弹性設計用地震動 S d ，NS 方向）

凡例

$\square: \mathrm{Sd}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表3－68 に対応

図 4－118 M－ϕ 関係と最大応答値（弾性設計用地震動 Sd d，NS 方向）
$\square: ~ \mathrm{~S} \mathrm{~d}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－69 に対応

図 4－119 Q－γ 関係と最大応答値（弾性設計用地震動 S d ，EW 方向）

凡例

$\square: \mathrm{Sd}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－70 に対応

図 4－120 M－ϕ 関係と最大応答値（弹性設計用地震動S d，EW 方向）
表 4－1 弾性設計用地震動 S d 及び静的解析によるばね反力

名称	方向	最大地震応答値 $\left(\times 10^{3} \mathrm{~N}\right)$							
		Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析
原子炉格納容器 シヤラグ	NS	10900	13100	12200	7260	9130	10300	7900	8020
	EW	10600	14600	10300	7970	8410	10500	7050	8270
原子炉格納容器スタビライザ	NS	7130	7750	7180	4070	4310	5490	2360	2450
	EW	7030	8560	7140	4510	4760	5860	2520	2500
原子炉圧力容器スタビライザ	NS	3470	4250	4250	2090	2990	2900	1760	2480
	EW	3840	5810	3990	2520	3010	3300	2090	2520
燃料交換ベローズ	NS	746	886	894	409	585	601	451	564
	EW	854	1060	752	494	655	645	503	584
$\begin{gathered} \text { 所員用 } \\ \text { エアロック } \end{gathered}$	NS	146	157	121	84.8	101	109	132	157
	EW	137	145	150	85.8	112	98.4	130	157
ベント管	NS	677	782	697	560	634	689	543	624
	EW	764	1210	760	555	829	693	548	624

最大応答加速度（m／s s^{2} ）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
4.26	5． 42	5.01	2． 45	2.77	3.26	2． 19	原子炬格納容器頂部
4． 23	5.36	5.00	2． 43	2.76	3.25	2． 19	
4． 15 4.12	5.27 5.20	4.97 4.93	2.39 2.37	2.76 2.75	$\begin{aligned} & 3.25 \\ & 3.25 \end{aligned}$	$\begin{aligned} & 2.18 \\ & 2.18 \end{aligned}$	燃料交換べローズ位置
4.05	5． 00	4.77	2． 30	2.72	3.22	2． 18	シャラグ位置
3.87	4． 70	4.23	2． 16	2． 62	3.04	2． 16	
3． 69	4.44	3.97	2． 06	2.52	2.87	2． 14	
3.35	4.05	3.54	1.91	2.36	2.64	2． 10	
3． 09	3.65	2.98	1.88	2． 17	2.40	2.01	
$\begin{array}{r} 3.01 \\ 2.93 \end{array}$	$\begin{array}{r} 3.44 \\ 3.20 \end{array}$	$\begin{aligned} & 2.71 \\ & 2.52 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 1.86 \end{aligned}$	$\begin{aligned} & 2.07 \\ & 1.99 \end{aligned}$	$\begin{aligned} & 2.29 \\ & 2.19 \end{aligned}$	$\begin{aligned} & 1.96 \\ & 1.91 \end{aligned}$	原子炬格納容器基部

（納容器）
枠囲みの内

最大応答変位（mm）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
0.593	0． 458	0.111	0.265	0.346	0.303	0.301	原子炉格納容器頁部
0． 592	0． 458	0.411	0.264	0.346	0． 302	0． 301	
$\begin{aligned} & 0.590 \\ & 0.589 \end{aligned}$	$\begin{aligned} & 0.456 \\ & 0.455 \end{aligned}$	$\begin{aligned} & 0.409 \\ & 0.408 \end{aligned}$	$\begin{aligned} & 0.264 \\ & 0.263 \end{aligned}$	$\begin{aligned} & 0.345 \\ & 0.345 \end{aligned}$	$\begin{aligned} & 0.301 \\ & 0.301 \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.300 \end{aligned}$	燃料交換べローズ位置
0.586	0． 451	0． 404	0.261	0.343	0.299	0.298	シャラグ位置
0.576	0． 441	0.393	0.257	0.339	0.294	0.294	
0.567	0． 433	0． 383	0.253	0.335	0.289	0． 290	
0.550	0.418	0.365	0.244	0.328	0.280	0.282	
0.530	0． 400	0.343	0． 234	0.318	0.269	0.272	
0.520 0.511	$\begin{aligned} & 0.399 \\ & 0.398 \end{aligned}$	$\begin{aligned} & 0.335 \\ & 0.328 \end{aligned}$	$\begin{aligned} & 0.229 \\ & 0.224 \end{aligned}$	$\begin{aligned} & 0.313 \\ & 0.308 \end{aligned}$	$\begin{aligned} & 0.263 \\ & 0.259 \end{aligned}$	$\begin{aligned} & 0.268 \\ & 0.263 \end{aligned}$	原子炉格納容器基部

図 4－122 最大応答変位 弾性設計用地震動 S d（鉛直方向 原子炉格納容器）

最大応答軸力 $\left(\times 10^{3} \mathrm{~N}\right)$							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
63.7	81.0	74.8	36.8	11.1	19.5	32.6	原子炉格納容器頂部
127	161	150	73.2	82.2	98.7	65.2	
$\begin{aligned} & 491 \\ & 695 \end{aligned}$	$\begin{aligned} & 619 \\ & 875 \end{aligned}$	$\begin{aligned} & 584 \\ & 828 \end{aligned}$	$\begin{aligned} & 284 \\ & 403 \end{aligned}$	$\begin{aligned} & 324 \\ & 460 \end{aligned}$	$\begin{aligned} & 387 \\ & 550 \end{aligned}$	$\begin{aligned} & 257 \\ & 366 \end{aligned}$	燃料交換ベローズ位置
1350	1680	1600	778	901	1080	721	シャラグ位置
1850	2260	2150	1060	1250	1480	1010	
2210	2690	2520	1260	1490	1760	1210	
2840	3440	3130	1610	1940	2260	1600	
3120	3770	3410	1760	2140	2480	1780	
$\begin{aligned} & 3730 \\ & 3730 \end{aligned}$	$\begin{aligned} & 4500 \\ & 4500 \end{aligned}$	$\begin{aligned} & 3990 \\ & 3990 \end{aligned}$	$\begin{aligned} & 2110 \\ & 2110 \end{aligned}$	$\begin{aligned} & 2600 \\ & 2600 \end{aligned}$	$\begin{aligned} & 2990 \\ & 2990 \end{aligned}$	$\begin{aligned} & 2210 \\ & 2210 \end{aligned}$	原子炉格納容器基部

[^5]最大応答軸力 弹性設計用地震動 Sd （鉛直方向 原子炉格納容器）

図 $4-123$

最大応答加速度（m／s ${ }^{2}$ ）							備考
Sd－D1	Sd－D2	Sd－I3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
6． 54	8.87	7.43	4.01	4． 12	7.21	2． 23	原子炬しやへい壁頂部
6． 44	8． 70	7.13	3.94	4． 02	6． 99	2． 22	
6． 14	8． 19	6． 58	3.75	3.77	6． 47	2.21	
5.63	7． 27	5.83	3.43	3.38	5． 79	2． 19	
4.89	6． 09	4.89	2.92	2． 76	4.82	2.14	
3.63	4． 35	3． 42	2． 15	2.30	3.17	2.03	原子炬しやへい壁基部

加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
（II） $\mathrm{d} \cdot 0$
図 4－124 最大応答加速度 弾性設計用地震動 S d（鉛直方向 原子炉しやへい壁）

最大応答変位 (mm)							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
0.675	0.585	0． 483	0.380	0． 400	0.419	0.336	原子炉しやへい壁頂部
0.670	0.576	0．476	0.375	0． 396	0． 414	0.334	
0.658	0.549	0．458	0．363	0． 387	0． 400	0.328	
0.638	0.511	0． 437	0． 344	0． 373	0． 380	0.320	
0.608	0．451	0． 409	0.314	0． 352	0.349	0.307	
0.557	0.417	0． 362	0.264	0． 325	0． 298	0． 284	原子炉しやへい壁基部

$\begin{array}{ccc}0.400 & 0.600 & 0.800 \\ \text { 変位 }(\mathrm{mm}) & & \end{array}$

0． 200
（iv） $\mathrm{d}^{\prime} 0$

最大応答軸力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
1100	1500	1230	674	687	1210	375	原子炉しやへい壁頂部
2500	3360	2740	1530	1550	2720	857	
4900	6510	5220	3000	3010	5230	1730	
6720	8830	7130	4110	4120	7120	2450	
8570	11100	9010	5250	5200	9030	3290	
8570	11100	9010	5250	5200	9030	3290	原子炉しやへい壁基部

注：要素上端の質点位置に軸力を記載。な抽，最下緛の要素は要素下端の質点位置にも軸力を記載。
原子炉しゃへい壁）
図 4－126 最大応答軸力 弹性設計用地震動S d（鉛直方向
軸力 $\left(\times 10^{3} \mathrm{~N}\right)$

（iw）${ }^{\circ} \mathrm{d} 0$

最大応答加速度（m／s ${ }^{2}$ ）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
5.15	6． 41	6． 16	3.01	3.03	5.00	2.20	原子炉圧力容器頂部
5.13	6． 39	6． 13	3.00	3.02	4.98	2． 20	燃料交換べローズ位置
5． 10	6． 34	6.03	2.96	2.99	4.92	2． 19	
5.04	6． 27	5.84	2． 89	2.94	4.80	2． 18	原子炉圧力容器スタビライサ位置
4.93	6． 11	5.44	2.75	2.84	4． 55	2． 15	
4.81	5． 94	4.95	2． 58	2.71	4.21	2.13	
4.65	5． 72	4.41	2． 49	2． 59	3.85	2.12	
4.53	5． 56	4.11	2． 45	2.52	3.64	2.11	原子炉圧力容器支持スカート位置
3.63 3.50	4． 35 4.18	3.42 3.29	2． 15	2.30 2.26	3.17 3.05	2． 2.03 2.02	原子炉本体の基碳頂部
3． 22	3.84	3.00	2.04	2.18	2.78	1.99	
2.94	3． 47	2．70	1.96	2.09	2.49	1.95	
2.93	3． 20	2． 52	1． 86	1． 99	2.19	1.91	原子炬本体の基硞基部

$\begin{array}{cll}\text { 4．} 00 & 6.00 & 8.00 \\ \text { 加速度 }\left(\mathrm{m} / \mathrm{s}^{2}\right) & & \\ \text { 図 } 4-127 & \text { 最大応答加速度 }\end{array}$

び原子炉本体の基礎）
枠囲みの内容は商業機密の

最大応答変位（mm）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
0.628	0． 479	0． 420	0.319	0.362	0.353	0.318	原子炉圧力容器頂部
0.627	0． 479	0.419	0.318	0.361	0.352	0.317	燃料交換ベローズ位置
0.626	0． 477	0.418	0.317	0.361	0． 351	0.317	
0.623	0． 474	0.416	0.315	0.359	0.349	0.315	原子炉圧力容器スタビライザ位置
0.616	0． 468	0.410	0.310	0.355	0.343	0.312	
0.607	0． 460	0.403	0.303	0.350	0.336	0.308	
0.596	0． 450	0． 395	0.295	0.344	0． 328	0． 303	
0.588	0． 444	0． 389	0． 290	0.340	0． 322	0． 300	原子炉圧力容器支持スカート位置
0.557 0.552	$\begin{aligned} & 0.417 \\ & 0.414 \end{aligned}$	$\begin{aligned} & 0.362 \\ & 0.357 \end{aligned}$	0.264 0.259	$\begin{aligned} & 0.325 \\ & 0.322 \end{aligned}$	$\begin{aligned} & 0.298 \\ & 0.293 \end{aligned}$	0.284 0.282	原子炬本体の基碩頂部
0.540	0． 406	0．347	0.249	0.318	0． 283	0． 277	
0.526	0.398	0.336	0.237	0.313	0.271	0.270	
0.511	0.398	0． 328	0． 224	0.308	0.259	0.263	原子炬本体の基喽基部

（II） $\mathrm{d} \cdot 0$
原子炉本体の基礎）

最大応答軸力 $\left(\times 10^{3} \mathrm{~N}\right)$							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
89.4	112	105	51.6	51.7	85.4	37.8	原子炉圧力容器頂部
652	814	760	376	377	621	276	燃料交換べローズ位置
1140	1410	1320	651	654	1080	480	
1460	1800	1680	832	838	1380	617	原子炉圧力容器スタビライサ位置
1880	2320	2150	1070	1080	1770	803	
2270	2790	2550	1280	1300	2120	977	
2660	3270	2930	1480	1520	2450	1160	
5570	6830	5570	2970	3120	4810	2540	原子炉圧力容器支持スカート位置
15100 16000	18700 19800	15500 16400	8720 9250	$\begin{aligned} & 8230 \\ & 8840 \end{aligned}$	14600 15500	$\begin{aligned} & 6340 \\ & 6880 \end{aligned}$	原子炉本体の基䃝頂部
16900	20800	17300	9780	9480	16300	7450	
17600	21700	18000	10300	10100	17000	7980	
17600	21700	18000	10300	10100	17000	7980	原子炬本体の基整基部

注：要素上端の質点位置に軸力を記載。なむふ，最下端の要素は要素下端の質点位置にも軸力を記載。
弾性設計用地震動 S d（鉛直方向 原子炉圧力容器及び原子炉本体の基礎）

O 2 (3) $\mathrm{VI}-2-3-2$ R 0

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right.$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
15.4	19.0	17.0	10.9	14.0	14.4	13.0	原子炬格納容器頂部
14.5	18.0	16.0	10.5	13.0	13.4	12.8	
13.6	17.0	15.0	10.1	12.3 11.9	12.4	12.5	燃料交換ベローズ位置
13.1 12.4	16.3 14.8	14.3 12.7	9.81 9.23	11.9 11.1	11.7 10.2	12.3 11.8	シャラグ位置
10.3	11.7	10.4	8． 10	9.71	9.36	11.2	
9.38	9.72	9.01	7.33	8.84	9.04	10.7	
8.50	8.23	7.17	6.11	7.50	8.40	9.79	
7.64	7.28	6.57	6.28	7.89	8.74	8.63	
7.30 7.12	$\begin{aligned} & 7.56 \\ & 7.51 \end{aligned}$	$\begin{aligned} & 6.89 \\ & 7.25 \end{aligned}$	6.54 6.64	$\begin{aligned} & 8.00 \\ & 7.96 \end{aligned}$	9．41 9.85	8.19 7.84	原子炉格納容器基部

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	$\mathrm{Ss}-\mathrm{N} 1$	
24.3	23.2	17.9	12.9	19.5	18.7	25.0	原子炬格納容器頂部
23.2	22.1	17.1	12.4	18.6	17.9	23.9	
22.1	21.1	16.3	11.8	17.7	17.1	22.8	燃料交換ベローズ位置
21.4	20.4	15.7	11.5	17.1	16.6	22.1	
19.9	19.0	14.5	10.7	15.9	15.5	20.6	シャラグ位置
16.5	15.9	12.0	8.97	13.1	13.0	17.2	
14.3	13.8	10.4	7.85	11.3	11.3	15.0	
10.8	10.5	7.69	6.04	8.42	8． 63	11.5	
7.37	7.29	5.27	4.30	5.72	6． 08	8.04	
$\begin{aligned} & 6.03 \\ & 5.09 \end{aligned}$	$\begin{aligned} & 6.02 \\ & 5.13 \end{aligned}$	4.36	$\begin{aligned} & 3.60 \\ & 3.11 \end{aligned}$	$\begin{aligned} & \text { 4. } 67 \\ & \text { 3. } 95 \end{aligned}$	5． 06 4． 33	$\begin{aligned} & 6.70 \\ & 5.76 \end{aligned}$	原子炬格納容器基部

最大応答変位 基準地震動 S s (NS 方向 原子炉格納容器)

図 4－131

最大応答せん断力 $\left(\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
228	286	250	165	211	220	187	原子炬格納容器頂部
443	556	485	324	407	423	371	
$\begin{aligned} & 2850 \\ & 3400 \end{aligned}$	$\begin{aligned} & 3100 \\ & 3920 \end{aligned}$	$\begin{aligned} & 3390 \\ & 4080 \end{aligned}$	$\begin{aligned} & 1850 \\ & 2300 \end{aligned}$	$\begin{aligned} & 2340 \\ & 2790 \end{aligned}$	$\begin{aligned} & 2320 \\ & 2880 \end{aligned}$	$\begin{aligned} & 2270 \\ & 2840 \end{aligned}$	燃料交換べローズ位置
26000	25100	19600	13900	22100	21800	26700	シャラグ位置
27300	26500	20800	14800	23100	22600	27900	
28200	27400	21500	15500	23700	23200	28700	
29500	28700	22500	16600	24600	24500	30200	
30000	29200	22700	17100	24900	25100	30800	
$\begin{aligned} & 31000 \\ & 31000 \end{aligned}$	$\begin{aligned} & 30200 \\ & 30200 \end{aligned}$	$\begin{aligned} & 23200 \\ & 23200 \end{aligned}$	$\begin{aligned} & 18000 \\ & 18000 \end{aligned}$	$\begin{aligned} & 25000 \\ & 25000 \end{aligned}$	$\begin{aligned} & 27200 \\ & 27200 \end{aligned}$	$\begin{aligned} & 32300 \\ & 32300 \end{aligned}$	原子炬格納容器基部

[^6]最大応答せん断力 基準地震動 S s（NS 方向 原子炉格納容器）

図 $4-132$

O 2 （3） $\mathrm{VI}-2-3-2 \quad \mathrm{R} 0$

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
19.9	20.1	16.1	10.7	16.5	15.1	20.8	原子炬しやへい壁頂部
17.7	18.1	14.5	9． 55	14.8	13.6	18.7	
15.4	15.9	12.6	8． 35	13.0	12.0	16.4	
13.4	13.9	10.8	7.26	11.2	10.5	14.3	
11.1	11.5	8.73	6.07	9.17	8.75	12.0	
8． 25	8． 49	6． 18	4.65	6． 66	6． 63	9.03	原子炉しやへい壁基部

図 4－135 最大応答変位 基準地震動S s（NS 方向 原子炉しやへい壁）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0	0	0	0	0	0	0	原子炉しやへい壁頂部
18800	18900	15700	9340	17300	17700	10100	
32300	32200	27000	19100	33000	36100	24500	
47500	50900	37800	31300	44800	49600	43800	
73800	76800	56600	48900	67200	63700	70900	
118000	122000	108000	76200	106000	101000	116000	原子炉しやへい壁基部

図 4－137 最大応答モーメント 基準地震動S s（NS 方向 原子炉しやへい壁）

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	$\mathrm{Ss}-\mathrm{N} 1$	
28.5	29.7	29.1	17.4	24.3	25.9	16.6	原子炉圧力容器頂部
24.9	26.2	26.2	14.9	21.4	22.0	15.4	燃料交換べローズ位置
22.1	23.3	23.9	12.9	19.1	19.4	14.5	
19.4	20.7	21.9	11.6	16.9	17.0	14.0	原子炉圧力容器スタビライザ位置
17.0	17.2	19.0	10.3	14.0	14.1	13.5	
14.9	13.6	14.8	10.6	11.8	13.4	12.4	
12． 6	11.4	11.1	9． 98	9.89	13.4	10.8	
11.4	10.2	10.1	9.43	9.50	12.9	9.94	原子炉圧力容器支持スカート位置
$\begin{aligned} & 9.90 \\ & 9.52 \end{aligned}$	$\begin{aligned} & 9.20 \\ & 8.91 \end{aligned}$	$\begin{aligned} & 8.80 \\ & 8.63 \end{aligned}$	$\begin{aligned} & 8.10 \\ & 7.88 \end{aligned}$	$\begin{aligned} & 8.72 \\ & 8.57 \end{aligned}$	$\begin{aligned} & 11.2 \\ & 11.0 \end{aligned}$	$\frac{9.15}{8.84}$	原子炉本体の基䂾頂部
9.00	8.47	8.08	7.37	8.22	10.5	8.37	
8． 15	8.01	7.64	6.95	8.03	10.1	8.10	
7． 12	7.51	7． 25	6． 64	7． 96	9.85	7.84	原子炉本体の基桹基部

子炉本体の基礎）

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
25.8	26.6	22.4	14.1	21.8	19.3	26.8	原子炉圧力容器頂部
23.5	24.3	20.3	12.8	19.9	17.6	24.5	然料交換ベローズ位置
21.7	22.4	18.6	11.8	18.3	16.3	22.7	
20.1	20.8	17.1	10.9	16.9	15.1	21.1	原子炉圧力容器スタビライザ位置
17.3	18.0	14.6	9.42	14.6	13.1	18.4	
14.3	15.0	11.9	7.81	12.0	11.0	15.4	
11.5	12． 1	9.27	6． 32	9． 56	8.99	12.5	
10.0	10.5	7.85	5．54	8.24	7.91	10.9	原子炉圧力容器支持スカート位置
8． 25	${ }^{8} \mathbf{8} .99$	$\begin{aligned} & \text { 6. } 18 \\ & 5.74 \end{aligned}$	4.65 4.41	$\begin{aligned} & 6.66 \\ & 6.24 \end{aligned}$	6.63 6.28	9.03 8.51	
6.90	7.04	5． 03	4． 00	5． 49	5.65	7.62	
5.91	5.99	4.31	3.52	4． 64	4.93	6.59	
5． 09	5.13	3.72	3.11	3.95	4.33	5.76	原子炉本体の基磽基部

（III） $\mathrm{d} \cdot 0$

子炉本体の基礎）
枠囲みの内容は商業

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
482	510	495	301	410	445	281	原子炉圧力容器頂部
1690	1890	1780	1230	1490	1890	974	燃料交換べローズ位置
3800	3960	3990	2380	3200	3540	2330	
3200	3050	2790	1860	3000	3040	1970	原子炉圧力容器スタビライザ位置
3020	3270	2330	2110	2850	2770	2920	
5850	6150	6360	3870	5440	4570	5620	
8270	8260	8310	5210	7280	5960	7700	
10600	10200	9950	6990	8920	8450	9660	原子炬圧力容器支持スカート位置
28700 31200	28300 30200	25900 27100	18700 20600	24500 26100	21800 23700	27300 29600	原子炉本体の基碷頂部
33700	32200	28000	22600	27500	26300	31800	
36000	34100	28800	24300	28700	28600	34000	
36000	34100	28800	24300	28700	28600	34000	原子炉本体の基碇基部

[^7]図 4－140 最大応答せん断力 基準地震動S s（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0	0	0	0	0	0	0	原子炉圧力容器頂部
1320	1400	1360	824	1130	1220	769	燃料交換べローズ位置
5020	5400	5130	3410	4350	5330	2840	
12300	12700	12700	7810	10400	12100	7250	原子炉圧力容器スタビライザ位置
13000	16100	12200	10800	12700	16900	10700	
23600	27500	19000	18400	23000	26800	21200	
42000	46700	38500	29300	38600	38200	37000	
55900	59500	54900	37800	49800	46200	49900	原子炉圧力容器支持スカート位置
$\begin{array}{r} 74660 \\ 190000 \\ 1906000 \end{array}$	$\begin{gathered} 7780 \\ 199000 \\ 1922000 \\ 2200 \end{gathered}$	$\begin{array}{r} 77700 \\ 185000 \\ \hline 206000 \end{array}$	$\begin{aligned} & 50100 \\ & 126000 \\ & 138000 \end{aligned}$	$\begin{gathered} 69200 \\ 172000 \\ 190000 \end{gathered}$	$\begin{gathered} 60100 \\ 157000 \\ 173000 \end{gathered}$	$\begin{gathered} 70990 \\ 185000 \\ 205000 \end{gathered}$	原子炉本体の基磫頂部
240000	261000	240000	161000	222000	202000	243000	
301000	321000	293000	197000	272000	248000	303000	
369000	385000	347000	237000	326000	297000	368000	原子炉本体の基䃏基部

図 4－141 最大応答モーメント 基準地震動 S s（NS 方向 原子炉圧力容器及び原子炉本体の基礎）
（w） $\mathrm{d} \cdot 0$

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
16.5	18.5	19.4	10.9	15.5	14.1	14.0	原子炬格納容器頂部
15.5	17.5	18.4	10.4	14.8	13.4	13.6	
14.7	16.4	17.3	9． 99	14.1	12.8	13.2	燃料交換ベローズ位置
13.2	14.2	15.0	9． 23	12.8	11.3	12.4	シャラグ位置
11.5	12．3	12.0	8.13	11.2	9． 38	11.3	
11.2	10.8	10.5	7.44	10． 2	8． 06	10.6	
9.93	8.07	8.86	6． 47	8.42	7． 46	9.75	
7． 58	8.63	6． 65	6.31	6.89	8.17	8.88	
$\begin{aligned} & 7.23 \\ & 6.88 \end{aligned}$	$\begin{aligned} & 8.82 \\ & 8.71 \end{aligned}$	$\begin{aligned} & \text { 6. } 91 \\ & \text { 6. } 96 \end{aligned}$	$\begin{aligned} & 6.25 \\ & 6.05 \end{aligned}$	$\begin{aligned} & 6.55 \\ & 6.69 \end{aligned}$	$\begin{aligned} & 8.35 \\ & 8.25 \end{aligned}$	$\begin{aligned} & 8.38 \\ & 8.17 \end{aligned}$	原子炬格納容器基部

図 4－142

最大応答変位 基準地震動 S s（EW 方向 原子炉格納容器）
図 $4-143$图

[^8] 4

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
244	269	288	168	229	209	207	原子炉格納容器頂部
475	522	560	323	446	408	407	
$\begin{aligned} & 3060 \\ & 3670 \end{aligned}$	$\begin{aligned} & 3220 \\ & 3980 \end{aligned}$	$\begin{aligned} & 3190 \\ & 3990 \end{aligned}$	$\begin{aligned} & 2050 \\ & 2460 \end{aligned}$	$\begin{aligned} & 2700 \\ & 3260 \end{aligned}$	$\begin{aligned} & 2740 \\ & 3340 \end{aligned}$	$\begin{aligned} & 2380 \\ & 3020 \end{aligned}$	燃料交換べローズ位置
28900	26200	22100	14400	22300	18300	25100	シャラグ位置
30300	27300	23600	15400	23500	19500	26300	
31200	28100	24600	16100	24400	20200	27200	
32800	29400	26100	17400	25700	21400	28600	
33400	29800	26700	17900	26200	21800	29200	
$\begin{aligned} & 34300 \\ & 34300 \end{aligned}$	$\begin{aligned} & 31400 \\ & 31400 \end{aligned}$	$\begin{aligned} & 27800 \\ & 27800 \end{aligned}$	$\begin{aligned} & 18900 \\ & 18900 \end{aligned}$	$\begin{aligned} & 27800 \\ & 27800 \end{aligned}$	$\begin{aligned} & 22700 \\ & 22700 \end{aligned}$	$\begin{aligned} & 30400 \\ & 30400 \end{aligned}$	原子炉格納容器基部

[^9]最大応答せん断力 基準地震動S s（EW 方向 原子炉格納容器）

図 $4-144$

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0	0	0	0	0	0	0	原子炬格納容器頂部
563	619	663	386	527	481	476	
1580 5670	1740 6210	$\begin{aligned} & 1860 \\ & 6270 \end{aligned}$	$\begin{aligned} & 1080 \\ & 3760 \end{aligned}$	$\begin{aligned} & 1480 \\ & 5070 \end{aligned}$	$\begin{aligned} & 1360 \\ & 5140 \end{aligned}$	$\begin{aligned} & 1350 \\ & 4660 \end{aligned}$	燃料交換べローズ位置
16300	17800	17900	11000	14600	14900	13500	シャラグ位置
142000	129000	115000	72100	111000	91900	123000	
228000	207000	183000	116000	178000	148000	198000	
379000	343000	302000	194000	296000	246000	329000	
538000	484000	428000	278000	420000	349000	468000	
$\begin{aligned} & 604000 \\ & 654000 \end{aligned}$	$\begin{aligned} & 543000 \\ & 587000 \end{aligned}$	$\begin{aligned} & 481000 \\ & 520000 \end{aligned}$	$\begin{aligned} & 314000 \\ & 341000 \end{aligned}$	$\begin{aligned} & 472000 \\ & 512000 \end{aligned}$	$\begin{aligned} & 392000 \\ & 425000 \end{aligned}$	$\begin{aligned} & 526000 \\ & 570000 \end{aligned}$	原子炬格納容器基部

図 4－145 最大応答モーメント 基準地震動S s（EW 方向 原子炬格納容器）

最大応答加速度（m／s ${ }^{\text {a }}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
17.2	16.6	16.1	11.6	15.3	13.9	12.9	原子炬しゃへい壁頂部
16.3	14.6	13.6	11.3	15.3	13.4	12.7	
15.9	14.6	13.0	11.5	14.9	13.1	12.2	
15.1	13.9	12.5	11.3	13.3	11.6	11.4	
12.7	12.1	11.1	10.1	10.7	11.1	10.7	
9． 45	10.0	9． 27	7.91	8.07	9． 72	9． 28	原子炬しやへい壁基部

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
20.2	18.3	16.1	11.5	16.3	13.5	18.6	原子师しやへい壁頂部
18.0	16.4	14.4	10.5	14.7	12.1	16.8	
15.6	14.4	12.5	9.30	12.9	10.6	14.7	
13.4	12.5	10.7	8． 15	11.2	9． 27	12.8	
10.9	10.3	8.68	6． 79	9． 23	7.77	10.6	
7.93	7． 49	6.17	5.01	6.73	5.85	7.83	原子炬しやへい壁基部

図 4－147 最大応答変位 基準地震動S s（EW 方向 原子炉しやへい壁）

（III）${ }^{\mathrm{d}} \mathrm{d} 0$
O 2 （3） $\mathrm{VI}-2-3-2 \quad \mathrm{R} \mathrm{O}$

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0	0	0	0	0	0	0	原子炉しゃへい壁頂部
13800	16700	16100	12900	12700	16000	9380	
25000	35300	27300	24500	28300	32000	20500	
45400	53300	38700	34400	43600	43400	38200	
77400	75300	63700	45900	63700	59400	64700	
128000	121000	110000	76700	106000	89800	113000	原子炉しやへい壁基部

図 4－149 最大応答モーメント 基準地震動S s（EW 方向 原子炉しゃへい壁）

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
27.4	31.7	27.3	23.8	26.2	31.2	18.1	原子炬圧力容器頂部
23.7	26.3	23.3	20.6	22.9	26.6	15.9	燃料交換べローズ位置
21.9	22.8	20.6	17.9	20.4	22.9	14.4	
20.2	20.0	18.3	15.5	18.1	19.5	13.0	原子炉圧力容器スタビライザ位置
18.2	18.3	15.1	12.4	15.2	15.4	12.4	
16.3	16.0	13.5	11.0	12.5	12.4	11.6	
13.2	12.4	11.0	10.2	10.5	9． 84	11.0	
11.4	10.6	9.88	9． 23	9． 62	10.2	10.2	原子炉圧力容器文持スカート位置
9．45	${ }^{10.0} 9$	8． 8.27	7．91	8． 7.67	9．72	${ }^{9 .} 8.88$	原子炉本体の基酰頂部
8.39	9.71	8.11	6.96	7.03	9． 25	8.58	
7.68	9.24	7.20	6． 46	6． 76	8.75	8.65	
6.88	8.71	6.96	6.05	6.69	8.25	8.17	原子师本体の基磱基部

炉本体の基礎）

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
26.8	24.2	22． 1	15.0	21.1	17.9	24.3	原子炉圧力容器頂部
24.4	22.0	20.0	13.8	19.3	16.2	22.2	燃料交換べローズ位置
22.4	20.2	18.4	12.8	17.8	14.9	20.5	
20.6	18.7	16.9	11.9	16.6	13.8	19.0	原子炉圧力容器スタビライザ位置
17.7	16.1	14.4	10.4	14.4	11.9	16． 5	
14.5	13.4	11.8	8． 70	12.0	9.90	13.8	
11.5	10.7	9.20	7.07	9． 60	8.07	11.1	
9.81	9.25	7.82	6． 15	8.31	7.07	9.60	原子炉圧力容器支持スカート位置
7.93 7.41	7． 49	6．${ }^{6} 74$	5． 01	$\begin{aligned} & 6.73 \\ & 6.31 \end{aligned}$	5．85	7.83 7.35	原子炬本体の基啱頂部
6． 65	6． 30	5.11	4.27	5.68	5.03	6.63	
5． 70	5.41	4.32	3.71	4． 89	4． 40	5.72	
4.93	4.68	3.69	3.24	4.24	3.86	4.98	原子炉本体の基䂾基部

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
468	536	463	399	441	530	320	原子炉圧力容器頂部
1890	2130	1880	1550	1730	2060	1230	燃料交換べローズ位置
3760	4210	3770	3250	3500	4260	2520	
2560	2550	2770	2300	1950	2780	1720	原子炉圧力容器スタビライザ位置
3130	3200	2600	2120	2770	2490	2600	
5970	6480	5700	4260	5140	5190	5500	
8550	8930	7850	6200	7040	6940	7490	
10900	11100	9870	8030	8950	8340	9540	原子炉圧力容器支持スカート位置
29100 31600	27000 29100	26200 28000	21700 23700	25300 27400	21800 23900	$\begin{aligned} & 26900 \\ & 29300 \end{aligned}$	原子炉本体の基磑頂部
34000	31200	29700	25600	29500	26200	31700	
36000	32800	31000	27200	31200	28100	33800	
36000	32800	31000	27200	31200	28100	33800	原子师本体の基硞基部

[^10]子炉本体の基礎）

（ii） $\mathrm{d}^{\circ} 0$

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0	0	0	0	0	0	0	原子炉圧力容器頂部
1290	1470	1270	1100	1210	1460	878	燃料交換べローズ位置
5410	6120	5380	4480	4990	5950	3570	
12600	14100	12600	10700	11500	14100	8350	原子炉圧力容器スタビライザ位置
15600	16900	14300	12800	16000	14400	10500	
25200	27900	21900	20100	26000	22500	19900	
45200	45000	40700	29900	39000	35900	36800	
59700	57500	54700	38700	49300	47500	49700	原子炉圧力容器支持スカート位置
$\begin{gathered} 79600 \\ 207000 \\ 2226000 \end{gathered}$	$\begin{gathered} 77800 \\ \begin{array}{c} 195000 \\ \hline \end{array} 14000 \end{gathered}$	$\begin{array}{r} 74400 \\ 184000 \\ 203000 \end{array}$	$\begin{gathered} 53300 \\ 129000 \\ 144000 \end{gathered}$	$\begin{array}{r} 66400 \\ 167000 \\ 186000 \end{array}$	$\begin{gathered} 64000 \\ 148000 \\ 164000 \end{gathered}$	$\begin{gathered} 69800 \\ 188000 \\ 1803000 \end{gathered}$	原子炬本体の基䃈頂部
259000	246000	236000	174000	220000	191000	239000	
311000	298000	291000	222000	275000	232000	298000	
368000	360000	349000	273000	333000	277000	362000	原子炉本体の基碎基部

図 4－153 最大応答モーメント 基準地震動 S s（EW 方向 原子炉圧力容器及び原子炉本体の基礎）

凡例

$\square: \mathrm{S}$ s 基本ケース全 7 波の最大値 （図中の応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－67 に対応

図 4－154 $\mathrm{Q}-\gamma$ 関係と最大応答値（基準地震動 $\mathrm{S} s$ ，NS 方向）

凡例

$\square: ~ \mathrm{~S} \mathrm{~s}$ 基本ケース全 7 波の最大値
（図中の応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表3－68 に対応

図 4－155 $\mathrm{M}-\phi$ 関係と最大応答値（基準地震動 s s，NS 方向）

凡例

$\square: \mathrm{Ss}$ 基本ケース全 7 波の最大値

（図中の応答が最大となる地震動を示す）

注記 $*$ ：各図上に記載の要素番号は表 3－69 に対応

図 4－156 $\mathrm{Q}-\gamma$ 関係と最大応答値（基準地震動 $\mathrm{S} \mathrm{s}, ~ \mathrm{EW}$ 方向）
$\square: ~ \mathrm{~S} \mathrm{~s}$ 基本ケース全 7 波の最大値
（図中の応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－70に対応

図 4－157 $\mathrm{M}-\phi$ 関係と最大応答値（基準地震動 S s，EW 方向）
O 2 （3） $\mathrm{VI}-2-3-2$ R 0

名称	方向	最大地震応答値 $\left(\times 10^{3} \mathrm{~N}\right)$						
		Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
原子炉格納容器 シヤラグ	NS	24700	24200	21900	13100	22600	20700	24800
	EW	22500	25800	21600	15500	15900	20000	21300
原子炉格納容器スタビライザ	NS	14800	13300	13200	8260	10900	13600	6160
	EW	13200	12800	13200	9050	10600	12900	6650
原子炉圧力容器スタビライザ	NS	6690	7700	7420	4450	6260	6870	3770
	EW	7200	7350	6770	5630	6090	6980	4280
燃料交換 ベローズ	NS	1500	1660	1620	891	1310	1440	1020
	EW	1640	1500	1340	1110	1380	1410	965
$\begin{gathered} \text { 所員用 } \\ \text { エアロック } \end{gathered}$	NS	229	261	223	176	204	208	257
	EW	261	281	251	180	231	209	231
ベント管	NS	1140	1630	1150	1020	1230	1610	1020
	EW	1280	1820	1320	1150	1220	1510	1050

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
7.35	9.35	8.64	4.90	5.53	6.52	4． 38	原子炬格納容器頂部
7.28	9． 24	8.62	4.86	5． 52	6． 49	4． 37	
7.10 6.98	8.97 8.62	8.49 8.22	4.73 4.60	5.49 5.44	6.49 6.43	4.35 4.35	シャラグ位置
6.66	8． 09	7.29	4.31	5.23	6． 07	4.31	
6． 36	7． 65	6.84	4.11	5.04	5.74	4． 27	
5． 78	6． 98	6． 10	3.82	4.71	5． 28	4． 19	
5． 33	6． 29	5.14	3.75	4.33	4.80	4.02	
$\begin{aligned} & 5.19 \\ & 5.05 \end{aligned}$	5． 93 5.51	4.67 4.35	$\begin{aligned} & 3.75 \\ & 3.71 \end{aligned}$	$\begin{aligned} & 4.14 \\ & 3.97 \end{aligned}$	$\begin{aligned} & 4.57 \\ & 4.37 \end{aligned}$	$\begin{aligned} & 3.92 \\ & 3.81 \end{aligned}$	原子炉格納容器基部

[^11]
（ii）$\cdot \mathrm{d} \cdot 0$

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
1． 03	0.790	0． 709	0.529	0.692	0.605	0.602	原子炉格納容器頂部
1． 02	0.789	0． 707	0.528	0.691	0.604	0． 602	
1.02 1.02	0.786 0.784	$\begin{aligned} & 0.705 \\ & 0.703 \end{aligned}$	$\begin{aligned} & 0.527 \\ & 0.526 \end{aligned}$	$\begin{aligned} & 0.690 \\ & 0.689 \end{aligned}$	$\begin{aligned} & 0.602 \\ & 0.601 \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.599 \end{aligned}$	燃料交換べローズ位置
1.01	0.778	0.696	0.522	0.686	0.597	0.596	シヤラグ位置
0.993	0.761	0． 677	0.513	0.678	0． 587	0． 587	
0.978	0.746	0.661	0.505	0.670	0.577	0． 579	
0.948	0.720	0． 629	0． 488	0.655	0． 560	0． 564	
0.913	0.690	0.592	0． 467	0.635	0． 537	0． 544	
$\begin{aligned} & 0.896 \\ & 0.881 \end{aligned}$	$\begin{aligned} & 0.687 \\ & 0.686 \end{aligned}$	$\begin{aligned} & 0.577 \\ & 0.565 \end{aligned}$	$\begin{aligned} & 0.457 \\ & 0.448 \end{aligned}$	$\begin{aligned} & 0.625 \\ & 0.616 \end{aligned}$	$\begin{aligned} & 0.526 \\ & 0.517 \end{aligned}$	$\begin{aligned} & 0.535 \\ & 0.526 \end{aligned}$	原子炉格納容器基部

最大応答変位 基準地震動 S s（鉛直方向 原子炉格納容器）

変位（mm）
図 $4-159$
（ii）${ }^{\mathrm{d}} \mathrm{d} \circ$

最大応答軸力 $\left(\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
110	140	129	73.5	82.2	99.0	65.2	原子炉格种容器頂部
219	278	258	147	165	198	131	
$\begin{aligned} & 846 \\ & 1200 \end{aligned}$	$\begin{aligned} & 1070 \\ & 1510 \end{aligned}$	$\begin{aligned} & 1010 \\ & 1430 \end{aligned}$	$\begin{aligned} & 568 \\ & 805 \\ & 805 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 647 \\ 920 \end{array} \end{aligned}$	$\begin{gathered} 774 \\ 1100 \\ \end{gathered}$	$\begin{aligned} & 513 \\ & 731 \end{aligned}$	燃料交換べローズ位置
2330	2900	2760	1560	1810	2160	1450	シャラグ位置
3190	3900	3710	2120	2490	2950	2010	
3810	4640	4340	2510	2980	3520	2420	
4900	5930	5380	3210	3870	4510	3190	
5380	6500	5870	3520	4280	4960	3560	
$\begin{aligned} & 6430 \\ & 6430 \\ & 640 \end{aligned}$	$\begin{aligned} & 7760 \\ & 7760 \end{aligned}$	$\begin{aligned} & 6880 \\ & 6880 \\ & \hline 6 \end{aligned}$	$\begin{aligned} & 4220 \\ & 4220 \\ & 420 \end{aligned}$	$\begin{aligned} & 5200 \\ & 5200 \\ & 50 \end{aligned}$	$\begin{aligned} & 5980 \\ & 5980 \\ & 5980 \end{aligned}$	$\begin{aligned} & 4420 \\ & 4420 \end{aligned}$	原子炉格納容器基部

注：要素上端の質点位置に軸力を記載。なわっ，最下端の要素は要素下端の質点位置にも軸力を記載。
最大応答軸力 基準地震動 S S（鉛直方向 原子炉格納容器）

軸力 $\left(\times 10^{3} \mathrm{~N}\right)$

[^12]（II） $\mathrm{d} \cdot 0$

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
11.3	15.3	12.9	8． 01	8． 23	14.5	4.45	原子炬しやへい壁頂部
11.1	15.0	12.3	7.87	8.04	14.0	4．44	
10.6	14.2	11.4	7.49	7.53	13.0	4.41	
9.70	12.6	10.1	6.86	6.76	11.6	4.37	
8.43	10.5	8.42	5.83	5.51	9.64	4.27	
6． 26	7.50	5.89	4．30	4.59	6． 34	4.05	原子㫙しやへい壁基部

最大応答加速度 基準地震動 S s（鉛直方向 原子炉しやへい壁）

O 2 （3） $\mathrm{VI}-2-3-2 \quad \mathrm{R} 0$

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
1． 17	1.01	0.832	0． 759	0.799	0.837	0.671	原子炬しやへい壁頂部
1． 16	0． 992	0． 820	0． 750	0.792	0.827	0.667	
1． 14	0.946	0． 790	0． 725	0.773	0.800	0.656	
1． 10	0.880	0．753	0.687	0.745	0.760	0.639	
1.05	0.777	0． 704	0.627	0.703	0.697	0.613	
0.960	0.719	0.623	0.528	0.649	0.595	0.568	原子炉しやへい壁基部

図 4－162 最大応答変位 基準地震動 S s（鉛直方向 原子炉しやへい壁）
O 2 (3) $\mathrm{VI}-2-3-2$ R 0

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
8.87	11.1	10.7	6.02	6.05	10.0	4.40	原子炉圧力容器頂部
8.85	11.1	10.6	5.99	6.03	9.95	4． 39	燃料交換ベローズ位置
8.79	11.0	10.4	5.91	5.98	9.84	4． 37	
8.69	10.8	10.1	5.78	5.88	9.60	4． 35	原子炉圧力容器スタビライザ位置
8.50	10.6	9.38	5.50	5.67	9.09	4． 29	
8.29	10.3	8.52	5.16	5.41	8.41	4． 26	
8.01	9.85	7.60	4.97	5.17	7.70	4． 24	
7.80	9.58	7.09	4． 90	5.03	7． 28	4.22	原子炉圧力容器支持スカート位置
6.26 6.04	7. 7. 7. 1	$\begin{aligned} & \text { 5. } 89 \\ & 5.66 \end{aligned}$	4.30 4.23	$\begin{aligned} & 4.59 \\ & 4.52 \end{aligned}$	$\begin{aligned} & 6.34 \\ & 6.09 \end{aligned}$	4.05 4.03	原子炉本体の基硞頂部
5.55	6.62	5． 16	4.08	4.36	5.56	3.97	
5．06	5.97	4.66	3.91	4． 18	4.97	3.90	
5． 05	5.51	4.35	3.71	3.97	4.37	3.81	原子炉本体の基硞基部

図 4－164 最大応答加速度 基準地震動 S s（鉛直方向 原子炉圧力容器及び原子炉本体の基礎）

加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
図 $4-164$

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－13	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
1.09	0.826	0.723	0.637	0.723	0.705	0.635	原子炉圧力容器頂部
1． 09	0.825	0.722	0.636	0.722	0.704	0.634	燃料交換べローズ位置
1.08	0.823	0.720	0． 634	0.721	0.701	0． 633	
1.08	0.818	0.716	0．630	0.717	0.697	0.630	原子炉圧力容器スタビライザ位置
1． 07	0．807	0． 707	0． 620	0.710	0.686	0． 624	
1． 05	0.792	0.695	0.606	0.699	0.671	0.615	
1． 03	0.776	0.680	0． 590	0.687	0.655	0.605	
1． 02	0.765	0.671	0． 579	0.679	0.644	0． 599	原子炉圧力容器支持スカート位置
$\begin{aligned} & 0.960 \\ & 0.951 \end{aligned}$	0.719 0.713	$\begin{aligned} & 0.623 \\ & 0.615 \end{aligned}$	0.528 0.518	0.649 0.644	0.595 0.585	0.568 0.564	原子炬本体の基矿頂部
0.930	0.699	0.599	0． 498	0.636	0.565	0． 553	
0.907	0.686	0.579	0． 474	0.626	0.542	0.540	
0.881	0.686	0.565	0． 448	0.616	0.517	0.526	原子炬本体の基整基部

炉本体の基礎）

最大応答軸力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
155	193	181	104	104	171	75.6	原子炉圧力容器頂部
1130	1410	1310	751	753	1250	552	燃料交換べローズ位置
1960	2430	2270	1310	1310	2160	960	
2510	3100	2900	1670	1680	2760	1240	原子炉圧力容器スタビライザ位置
3240	4000	3700	2140	2160	3540	1610	
3910	4810	4390	2550	2600	4230	1960	
4580	5640	5040	2950	3040	4890	2320	
9600	11800	9590	5930	6240	9610	5070	原子炉圧力容器支持スカート位置
$\begin{aligned} & 25900 \\ & 27500 \end{aligned}$	$\begin{aligned} & 32200 \\ & 34000 \end{aligned}$	$\begin{aligned} & 26600 \\ & 28200 \end{aligned}$	17500 18500	16500 17700	$\begin{aligned} & 29200 \\ & 30900 \end{aligned}$	12700 13800	原子炬本体の基碐頂部
29000	35800	29700	19600	19000	32600	14900	
30400	37400	31000	20500	20200	34000	16000	
30400	37400	31000	20500	20200	34000	16000	原子炉本体の基碟基部

注：要素上端の質点位置に軸力を記載。なお」，最下端の要素は要素下端の質点位置にも軸力を記載。
図 4－166 最大応答軸力 基準地震動 S s（鉛直方向 原子炉圧力容器及び原子炉本体の基礎）

4．2．2 炉内構造物系

（1）弾性設計用地震動 S d 及び静的解析
水平方向の弾性設計用地震動 S d による地震応答解析及び静的解析より得られた各点の最大応答加速度，最大応答変位，最大応答せん断力及び最大応答モーメントを図 4－167～図4－ 198 に，制御棒駆動機構ハウジングレストレントビーム，シュラウドサポート，上部格子板，炉心支持板，炉心シュラウド支持ロッド，上部サポート及び下部スタビライザに加わる力（ば ね反力，せん断力）を表 4－4 に示す。燃料集合体の最大応答相対変位については，図 4－172及び図 4－188に示す。

鉛直方向の弾性設計用地震動 S d による地震応答解析より得られた各点の最大応答加速度，最大応答変位及び最大応答軸力を図 4－199～図4－207に示す。また，鉛直方向の静的解析は実施せず，一律に算定することから，表 4－5に鉛直方向の静的震度を示す。
（2）基準地震動 S s
水平方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度，最大応答変位，最大応答せん断力及び最大応答モーメントを図 4－208～図 4－239に，制御棒駆動機構ハウジングレストレントビーム，シュラウドサポート，上部格子板，炉心支持板，炉心 シュラウド支持ロッド，上部サポート及び下部スタビライザに加わる力（ばね反力，せん断力）を表 4－6に示す。燃料集合体の最大応答相対変位については，図 4－213 及び図 4－229に示す。

鉛直方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度，最大応答変位及び最大応答軸力を図 4－240～図4－248に示す。

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
30.9	30.4	26.3	15.7	18.7	21.7	12.1	11.0	気水分離器頂部
17.3	18.7	14.9	9． 06	11.4	14.0	9.01	8.93	
11.8	13.2	10.8	6.46	8.67	10.8	8． 28	8.93	
10.5	10.8	9.23	6.03	7． 58	9.34	7.81	8.93	シュラウドヘッド上部鏡板頂部
9.82	9． 79	8.61	5.80	7.02	8.95	7.62	8． 93	
9.34	9.28	8.21	5． 64	6． 59	8.65	7.41	8.93	上部格子板
8.84	8.77	7.90	5． 46	6.32	8.31	7.24	8.93	
8.34	8.24	7.59	5.25	6． 10	7.95	7.08	8.93	
7.96	7.76	7.29	5． 02	5.86	7.56	6.91	7.77	
7.79	7.32	6． 98	4.77	5． 61	7． 16	6． 72	7.77	
7.62	7.03	6． 66	4.61	5.32	6.74	6． 48	7． 77	
7.46	6.82	6.35	4.67	5． 16	6.35	6． 29	7.77	炉心支持板
7.03	6． 52	5.77	4． 79	4． 90	5． 96	5． 93	7． 77	
6.69	6.24	5.48	4． 86	4． 69	6． 03	5． 62	7.77	炬心シュラウド下部同

図 4－167 最大応答加速度 弾性設計用地震動 S d 及び静的解析（NS 方向 炉心シュラウド）

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
14.2	15.4	13.1	7.86	10.2	12.8	13.5	14.7	気水分離器頂部
12.6	13.5	11.4	6.97	9.21	11.5	12.3	13.2	
11.4	12． 1	10.2	6． 33	8.47	10.4	11.3	12.0	
10.2	10.9	9． 05	5． 72	7.67	9.28	10.3	10.9	シュラウドヘッド上部鏡板頂部
9． 63	10.4	8.52	5． 42	7． 27	8．76	9． 75	10.3	
9.21 8.71	9.90 9.39	8.12 7.67	5． 19 4.94	6.96 6.61	8.37 7.91	9.37 8.94	9.86 9.38	上部格子板
8.23	8.89	7.23	4． 69	6． 26	7.46	8.51	8.91	
7.76	8.41	6.80	4． 44	5.91	7.02	8.08	8． 44	
7.30	7.95	6． 38	4． 19	5． 58	6． 60	7． 67	7.97	
6.86	7.51	5.97	3.95	5.25	6． 18	7.26	7.52	
6． 44	7.08	5.58	3.71	4.92	5.78	6.86	7． 07	炬心支持板
5.68	6． 29	4.93	3.31	4.36	5.08	6． 16	6． 29	
4． 99	5.54	4． 34	2.93	3.83	4． 43	5． 49	5． 56	炬心シュラウド下部胴

図 4－168 最大応答変位 弾性設計用地震動 Sd 及び静的解析（NS 方向 炉心シュラウド）

[^13]| 最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$ | | | | | | | | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sd－D1 | Sd－D2 | Sd－D3 | Sd－F1 | Sd－F2 | Sd－F3 | Sd－N1 | 静的解析 | |
| 236 | 233 | 201 | 126 | 149 | 172 | 95.0 | 87.1 | 気水分離唯頂部 |
| 498 | 507 | 427 | 269 | 328 | 367 | 221 | 229 | |
| 750 | 829 | 605 | 434 | 521 | 637 | 287 | 387 | |
| 924 | 1060 | 778 | 532 | 659 | 814 | 336 | 488 | シュラウドヘッド上部銑板頂部 |
| 1170 | 1350 | 1060 | 655 | 845 | 1050 | 399 | ${ }^{626}$ | |
| 1630 | 1840 | 1460 | 1130 | 1340 | 1410 | 1130 | 968 | 上部格子板 |
| 1590 | 1900 | 1530 | 1120 | 1330 | 1450 | 1090 | 1020 | |
| 1530 | 1840 | 1500 | 1030 | 1290 | 1410 | 1010 | 1070 | |
| 1520 | 1710 | 1450 | 912 | 1240 | 1340 | 912 | 1120 | |
| 1550 | 1690 | 1430 | 908 | 1200 | 1310 | 811 | 1160 | |
| 1600 | 1850 | 1550 | 976 | 1200 | 1420 | 813 | 1210 | |
| 2510 | 3030 | 2290 | 1700 | 2080 | 2500 | 1960 | 2160 | 炬心支持板 |
| 2500 | 3090 | 2350 | 1730 | 2120 | 2540 | 1970 | 2230 | |
| 2500 | 3090 | 2350 | 1730 | 2120 | 2540 | 1970 | 2230 | 炉心シュラウド下部同 |

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0.00	0． 00	0.00	0.00	0.00	0.00	0.00	0.00	気水分睢器湏部
303	299	257	162	190	220	122	112	
941	946	804	506	611	679	401	406	
$\begin{gathered} 2170 \\ 29960 \\ 29505 \end{gathered}$	$\begin{aligned} & 2300 \\ & 32020 \\ & 27200 \end{aligned}$	$\begin{aligned} & 1840 \\ & \begin{array}{l} 1840 \\ 2140 \end{array} \end{aligned}$	$\begin{aligned} & 1240 \\ & 17700 \\ & 1 \end{aligned}$	$\begin{aligned} & 140 \\ & 2010 \\ & 1605 \end{aligned}$	$\begin{aligned} & 1740 \\ & \hline 2450 \\ & 2450 \end{aligned}$	$\begin{aligned} & 881 \\ & 1180 \end{aligned}$	$\begin{aligned} & 1060 \\ & 1400 \\ & 14090 \end{aligned}$	シュラウド～ッド上部鎳板頂部
2550 3250	2720 3570	2160 2700	1400 1820	1660 2190	2060 2740	938 1200	1130 1540	上部格子板
4050	4330	3140	2610	2990	3320	1870	2220	
4910	5220	4040	3380	3810	4010	2580	2940	
5900	6220	5080	4070	4600	4800	3260	3690	
6900	7320	6090	4670	5340	5670	3860	4470	
7830	8500	7080	5180	6030	6600	4390	5290	
8750	9750	8080	5660	6700	7600	4910	6130	炬恶支持板
11500	12700	10700	7490	9100	10200	7170	8650	
14300	16300	13400	9360	11600	13100	9470	11300	炬ぶシラウド下部胴

炉心シュラウド）

最大応答加速度（ $\mathrm{m} / \mathrm{s}^{2}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
9.34	9． 28	8.21	5.64	6.59	8.65	7.41	8.93	上部格子板
13.6	16.4	10.6	8.79	10.9	12.2	10.5	8.93	
19.0	22.7	14.9	12.1	14.5	14.9	13.4	8.93	
21.0	25.1	16.2	13.0	16.4	15.7	14.7	7.77	㷦料集合体中央
18.8	22.3	14.1	11.4	14.7	14.3	13.0	7．77	
12.5	15.9	9.86	8． 23	10.5	11.0	${ }^{9.68}$	7． 77	
7.46	6.82	6． 35	4.67	5． 16	6.35	6． 29	7.77	炉心支持板

燃料集合体）
枠囲みの内容は

図 4－171 最大応答加速度 弾性設計用地震動 $\mathrm{S} d$ 及び静的解析（NS 方向

最大大応答相対変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0． 00	上部格子板
12.3	15.1	9.57	7.31	9.91	9.30	8.50	4.53	
21.2	26.1	16.6	12.7	17.2	16.1	14.7	7． 75	
24.5	30.1	19.1	14.6	19.9	18.6	17.0	8． 89	燃料集合体中央
21.2	26.0	16.5	12.7	17.2	16.2	14.7	7.69	
12.3	15.0	9.50	7.28	9.94	9.34	8.48	4.47	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板

図 4－172 最大応答相対変位 弾性設計用地震動 S d 及び静的解析（NS 方向 燃料集合体）

O 2 （3） $\mathrm{VI}-2-3-2 \quad \mathrm{R} 0$

最大応答せん断力（ $\times 10^{3} \mathrm{~N}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
1660	2060	1320	1010	1340	1260	1170	665	上部格子板
1200	1480	927	725	969	905	823	389	
436	515	330	267	360	339	292	106	
439	560	358	278	344	355	306	141	燃料集合体中央
1200	1480	930	721	967	901	822	387	
1670	2010	1280	989	1360	1280	1150	633	
1670	2010	1280	989	1360	1280	1150	633	炬心支持板

[^14]注：要素上端の質点位置にせん断力を記載。なおう，最下端の要素は要素下端の質点位置にもせん断力を記載。

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	上部格子板
1170	1450	${ }_{9} 93$	708	939	882	817	468	
2000	2480	1580	1210	1620	1520	1400	741	
2310	2840	1800	1390	1880	1760	1600	815	你料集合体中央
2010	2450	1550	1200	1630	1540	1390	717	
1180	1420	895	695	951	900	809	445	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板

図 4－174 最大応答モーメント 弾性設計用地震動S d及び静的解析（NS 方向 燃料集合体）

[^0]: プラント名：女川原子力発電所第2号機

[^1]: 注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^2]: 注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^3]: 図 4－101 最大応答加速度 弾性設計用地震動 Sd 及び静的解析（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

[^4]: 15.00

 図 4－110 最大応答変位

[^5]: 注：要素上端の質点位置に軸力を記載。なおふ，最下端の要素は要素下端の質点位置にも軸力を記載。

[^6]: 注：要素上端の質点位置にせん断力を記載。なおふ，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^7]: 注：要素上端の質点位置にせん断力を記載。なおふ，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^8]:[^9]: 注：要素上端の質点位置にせん断力を記載。な未ろ，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^10]: 注：要素上端の質点位置にせん断力を記載。なおふ，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^11]: 最大応答加速度 基準地震動 S s（鉛直方向 原子炉格納容器）

[^12]: 図 $4-160$
 0

[^13]:

[^14]: 燃料集合体）

