本資料のうち,枠囲みの内容	女川原子力発電所第2号	号機 工事計画審查資料
は商業機密の観点から公開で きません。	資料番号	02-工-B-02-0006_改 0
	提出年月日	2021年1月15日

VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに 原子炉格納容器及び原子炉本体の基礎の地震応答計算書

2021年1月 東北電力株式会社

1. 概要 1
2. 基本方針 1
2.1 構造概要 1
2.2 解析方針 4
2.3 適用規格·基準等 4
3. 解析方法 4
3.1 入力地震動
3.2 地震応答解析モデル 7
3.2.1 大型機器系7
3.2.2 炉内構造物系26
3.3 解析方法
3.3.1 動的解析
3.3.2 静的解析
3.4 解析条件
3.4.1 耐震壁の復元力特性
3.4.2 地盤の回転ばねの復元力特性
3.4.3 原子炉本体の基礎の復元力特性
3.4.4 誘発上下動を考慮する場合の基礎浮上り評価方法53
3.4.5 材料物性の不確かさ等53
4. 解析結果
4.1 固有値解析
4.1.1 大型機器系55
4.1.2 炉内構造物系55
4.2 地震応答解析及び静的解析152
4.2.1 大型機器系152
4.2.2 炉内構造物系
5. 設計用地震力
5.1 弾性設計用地震動Sd
5.2 基準地震動Ss

目次

1. 概要

本計算書は、添付書類「VI-2-1-6 地震応答解析の基本方針」に基づく炉心、原子炉圧力容器 及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答解析について説明 するものである。

地震応答解析により算出した各種応答値及び静的地震力は,添付書類「VI-2-1-9 機能維持の 基本方針」に示す建物・構築物及び機器・配管系の設計用地震力として用いる。

- 2. 基本方針
- 2.1 構造概要

原子炉建屋内の原子炉格納容器,原子炉圧力容器,原子炉しゃへい壁及び原子炉本体の基礎 等の大型機器,構築物は,その支持構造上から建屋との連成が無視できないため,図 3-1~図 3-10に示すように原子炉建屋と連成で解析する。

原子炉格納容器は、円筒形の鋼製のドライウェル及び円環形の鋼製のサプレッションチェン バからなり、水平地震力は 0. P. 22. 500m で原子炉格納容器シヤラグを介して原子炉建屋に伝達 され、下端は 0. P. 1. 150m で原子炉建屋基礎版に支持される。

原子炉しゃへい壁は原子炉圧力容器を取り囲む二重円筒鋼板の壁であり,内部にモルタルが 充てんされる。また,原子炉格納容器スタビライザを介して原子炉格納容器に結ばれ,さらに 原子炉圧力容器スタビライザを介して原子炉圧力容器に結ばれる。

原子炉圧力容器は,鋼製の円筒形容器であり,0.P. で原子炉圧力容器スタビライザに より水平方向に支持され,その下部は原子炉圧力容器支持スカートを介して 0.P. で原 子炉本体の基礎により支持される。

原子炉本体の基礎は円筒形の鋼製(無筋コンクリート充てん)構造物で原子炉圧力容器基礎 ボルトにより原子炉圧力容器支持スカートを介して原子炉圧力容器を支持するとともに原子炉 しゃへい壁を支持しており,原子炉本体の基礎の下端は原子炉建屋基礎版に固定する。

原子炉圧力容器内には,気水分離器及びスタンドパイプ,炉心シュラウド,燃料集合体,制 御棒,制御棒案内管,制御棒駆動機構ハウジング,ジェットポンプ等が収納される。

炉心シュラウドは薄肉円筒形で,鉛直方向は下部胴下端でシュラウドサポートレグにより原 子炉圧力容器に支持され,また上部胴上端とシュラウドサポートプレートが炉心シュラウド支 持ロッドにより支持される。水平方向は、上部胴は上部サポートにより,中間胴下端は下部ス タビライザにより,また下部胴下端はシュラウドサポートプレートにより原子炉圧力容器に支 持される構造である。炉心シュラウド上部には,さら形のシュラウドヘッドがあり(以下,炉 心シュラウド及びシュラウドヘッドを「炉心シュラウド」と総称する。),その上に163本のスタ ンドパイプが立ち,その上の気水分離器を支持している。炉心シュラウド内部には560本の燃 料集合体が収納され,下端を炉心支持板,上端を上部格子板で支持されることにより正確に位 置が定められている。燃料集合体に加わる荷重は,水平方向は上部格子板及び炉心支持板を支 持する炉心シュラウド,鉛直方向は制御棒案内管及び制御棒案内管を支持する制御棒駆動機構

1

O 2 ③ VI-2-3-2 R

 \bigcirc

ハウジングを介し,原子炉圧力容器に伝達される。

制御棒駆動機構は,原子炉圧力容器下部鏡板を貫通し取り付けられる137本の制御棒駆動機 構ハウジング内に納められ,その上端に取り付けられる制御棒を炉心に挿入する機能を有して いる。

また、炉心シュラウドと原子炉圧力容器の間には、ジェットポンプがシュラウドサポート上 に 20 個据付けられているが、質量が小さく、炉内の構造物の振動に与える影響は小さいため質 量のみを考慮する。

同様に中性子束計測案内管及び中性子束計測ハウジングについても炉内の構造物の振動に与 える影響は小さいため質量のみを考慮する。これらの構造概要を図 2-1 及び図 2-2 に示す。

図 2-1 原子炉格納容器,原子炉しゃへい壁,原子炉本体の基礎 及び原子炉圧力容器等の構造概要図

図 2-2 原子炉圧力容器内部の構造概要図

2.2 解析方針

大型機器系の地震応答解析は、添付書類「VI-2-1-6 地震応答解析の基本方針」に基づいて 行う。

地震応答解析は、「3.2 地震応答解析モデル」において設定した地震応答解析モデル及び「3.1 入力地震動」において設定した入力地震動を用いて直接積分法による解析を実施し、各種応答 値を算出する。

2.3 適用規格·基準等

大型機器系及び炉内構造物系の地震応答解析において適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 JEAG4601-1987 ((社) 日本電気協会)
- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984 ((社) 日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
 (以下「JEAG4601-1991 追補版」という。)
- 3. 解析方法
- 3.1 入力地震動

地震応答解析モデルへの入力地震動は、添付書類「VI-2-1-2 基準地震動Ss及び弾性設計 用地震動Sdの策定概要」に示す解放基盤表面で定義された基準地震動Ss及び弾性設計用地 震動Sdを用いて、添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」で建屋基礎底面レベ ルでの地盤の応答として評価されたものを使用する。基準地震動Ss及び弾性設計用地震動S dの最大加速度を表 3-1 及び表 3-2 に示す。

	表 3-1 基準地震動 S s の 敢 入 加 速 度	最大加速	\mathbf{r} (\mathbf{r} / \mathbf{r}^2)
	基準地震動		
		水平方向	鉛直方向
S s-D 1	プレート間地震の応答スペクトルに基づく手法による基準地震動	640	430
S s - D 2	海洋プレート内地震(SMGA*マントル内)の応答スペクトルに基 づく手法による基準地震動	1,000	600
S s - D 3	海洋プレート内地震(SMGA*地殻内)の応答スペクトルに基づく 手法による基準地震動	800	500
S s-F 1	プレート間地震の断層モデルを用いた手法による基準地震動 (応力降下量(短周期レベル)の不確かさ)	717	393
S s-F 2	プレート間地震の断層モデルを用いた手法による基準地震動 (SMGA*位置と応力降下量(短周期レベル)の不確かさの重畳)	722	396
S s-F 3	海洋プレート内地震(SMGA*マントル内)の断層モデルを用いた 手法による基準地震動(SMGA*マントル内集約)	835	443
S s-N 1	2004 年北海道留萌支庁南部地震(K-NET 港町)の検討結果に 保守性を考慮した地震動	620	320

表 3-1 基準地震動 S s の最大加速度

注記*:強震動生成域

表 3-2 弾性設計用地震動	15 0 の取入	加速度
巡 州:11:11:11:11:11:11:11:11:11:11:11:11:11	最大加速	度(cm/s²)
弹性設計用地震動 	水平方向	鉛直方向
S d-D 1	371	249
S d-D 2	580	348
S d-D 3	464	290
S d-F 1	359	197
S d-F 2	361	198
S d-F 3	418	222
S d-N 1	310	160

表 3-2 弾性設計用地震動 S d の最大加速度

3.2 地震応答解析モデル

地震応答解析モデルは,添付書類「VI-2-1-6 地震応答解析の基本方針」に記載の解析モデルの設定方針に基づき,水平方向及び鉛直方向についてそれぞれ設定する。

3.2.1 大型機器系

3.2.1.1 水平方向

水平方向地震応答解析モデルは図 3-1 及び図 3-2 に示すように,原子炉建屋,原子炉 格納容器,原子炉圧力容器,原子炉しゃへい壁及び原子炉本体の基礎は,それぞれの質 点間を等価な曲げ,せん断剛性を有する無質量のはり又は無質量のばねにより結合する。

原子炉格納容器は 12 質点でモデル化し,原子炉格納容器シヤラグと等価なばねで建 屋モデルと結合し,下端は原子炉建屋基礎版と剛に結合する。

原子炉圧力容器,原子炉しゃへい壁及び原子炉本体の基礎はそれぞれ8質点,5質点,4 質点でモデル化する。原子炉圧力容器は原子炉圧力容器スタビライザと等価なばねで, 原子炉しゃへい壁上端と結び,さらに原子炉格納容器スタビライザと等価なばねにより 原子炉格納容器を介し,原子炉建屋に結合する。原子炉圧力容器の下端は,原子炉本体 の基礎の上端に剛に結合し,原子炉本体の基礎の下端は原子炉建屋基礎版上端と剛に結 合する。

原子炉建屋は質点系でモデル化し,地盤を等価なばねで評価した建屋-地盤連成モデ ルとする。

建屋底面下の地盤は、水平ばね及び回転ばねで置換する。また、基礎版底面における 地盤の水平及び回転ばねは、それ以深の地盤を等価な半無限地盤とみなして、波動論に より評価する。

図 3-1 及び図 3-2 に示した大型機器系の水平方向地震応答解析モデルの各質点質量, 部材長,断面二次モーメント,有効せん断断面積,ばね定数等を表 3-3~表 3-16 に示す。 また,解析に用いる各構造物の物性値を表 3-24,表 3-25 及び表 3-27 に示す。なお,原 子炉建屋のスケルトンカーブ及び地盤ばね定数については,添付書類「VI-2-2-1 原子 炉建屋の地震応答計算書」に記載の値を使用する。

図 3-3 及び図 3-4 に示す,誘発上下動を考慮する場合の地震応答解析モデルについて は、「原子力発電所耐震設計技術規程 JEAC4601-2008((社)日本電気協会)」 を参考に、水平加振により励起される上下応答を評価するために、鉛直方向モデルの諸 元及び接地率に応じて変化する回転・鉛直連成ばねについても考慮している。

原子炉本体の基礎の復元力特性は,建屋の方向別に,原子炉本体の基礎の要素を単位 とした水平断面形状より設定する。

3.2.1.2 鉛直方向

鉛直方向地震応答解析モデルは図 3-5 に示すように,原子炉建屋,原子炉格納容器, 原子炉圧力容器,原子炉しゃへい壁及び原子炉本体の基礎等の各質点間を等価な軸剛性 を有する無質量のばねにより結合する。また,屋根トラスは,各質点間を等価な曲げ, せん断剛性を有する無質量のはりで結合し,支持端部の回転拘束と等価な回転ばねで結 合する。

原子炉格納容器,原子炉圧力容器,原子炉しゃへい壁及び原子炉本体の基礎はそれぞ れ10 質点,8 質点,5 質点,4 質点でモデル化する。原子炉格納容器の下端は,原子炉建 屋と剛に結合される。原子炉圧力容器支持スカートの下端は,原子炉本体の基礎の上端 に剛に結合されており,原子炉本体の基礎の下端は,原子炉建屋と剛に結合される。

大型機器系の質点は原則として,水平方向と同一とし,部材の端点及び剛性の変化す る点,応力評価点等に設けるが,全体の振動特性が把握できるよう,質点間隔について は,工学的判断を加えて定めるものとする。

また,水平方向地震応答解析モデルで考慮している水平ばね(原子炉格納容器スタビ ライザ等)については,鉛直方向に対しては拘束効果がない構造となっているか,拘束 効果があっても本体部材の鉛直剛性に対して無視できる程度に小さい値であるため,鉛 直方向地震応答解析モデルでは考慮しない。

図 3-5 に示した鉛直方向地震応答解析モデルの各質点質量,部材長,ばね定数等を表 3-17~表 3-23 に示す。また,解析に用いる各構造物の物性値を表 3-26 及び表 3-28 に 示す。

なお,原子炉建屋の地盤ばね定数については,添付書類「VI-2-2-1 原子炉建屋の地 震応答計算書」に記載の値を使用する。

(闻仁:m) 水平ばね 回転ばね 原子炉圧力容器及び 原子炉本体の基礎 内谷 質点 はり <u>////</u> 15 0. F 14 0. P 9 0.1 8 0.1 5 0.1 0.1 0.1 13 0.1 12 0.1 11 00.1 10001 62(3) 原子何しゃくい壁 記号 Ø 19+0. F 18• 0. P. 17.0.P. 16•0.P. 0. P Y 20 ≷ 原子炉格納容器スタビライザ 原子炉圧力容器スタビライザ 原子炉格納容器 29 0. P. 28 0. P. 27 0. P. 30 **0**. P. 26 O. P. 原子炉格納容器シャラグ 31 K₆ 22 0. H 32 K₅ 25 0. F 23 0.1 240.1 燃料交換ベローズ 所員用エアロック ¥ N ベント価 28 60 59 61 57 K₆ K1 \mathbf{K}_2 K_3 \mathbf{K}_{4} $\mathbf{K}_{\overline{\mathbf{b}}}$ 54 m 52 MM-1 51 MM-53 w 50 MM-1.150 56 55 0. P. 1<u>48</u> _____ 46 MM- \mathbb{N} ¥ 原子炉建屋 -6 45 49 3 2 × 1 4<u>2</u>_____ 40 MM-139 MM-138 MM-1 41 MM-44 43 37 ····· 1 <u>36 mm</u> 1<u>35 ww</u>-1<u>33 </u>MM- \mathbb{A} 34 50.500 22.500 15.000 6.000 33.200 41.200 0. P. - 0. 800 0. P. - 8. 100 0. P. -14. 100 0. P. 0. P. 0. P. 0. P. 0. P. 0. P.

図 3-1 大型機器系地震応答解析モデル(NS 方向,誘発上下動を考慮しない場合)

図 3-4 大型機器系地震応答解析モデル(EW 方向, 誘発上下動を考慮する場合)

R 0

VI-2-3-2

 \odot

02

	-	表 3-3 原	子炉運産のモ			
質点	標高	質量	部材長	断面二次	有効せん断	回転慣性
番号	0.P. (m)	(t)	(m)	モーメント (×10 ³ m ⁴)	断面積 (m ²)	$(\times 10^6 t \cdot m^2)$
61	33.200		10.70	29.20	30.8	1.410
60	22. 500		7.50	59.40	59.2	2.510
59	15.000		9.00	73.40	75.0	2.560
58	6.000		6.80	108.90	107.8	3.410
57	-0.800					3. 520
2	-8.100		7.30	114.40	107.8	—
56	50.500		9.30	3.84	10.0	0.141
55	41.200		8.00	6.35	18.2	0.252
54	33.200		10.70	54.30	59.4	6. 120
53	22.500		7.50	101.20	85.8	9.430
52	15.000		9.00	159.50	123. 2	8.580
51	6.000		6.80	211.10	165.2	9.940
50	-0.800					10.61
2	-8.100		7.30	216.10	165.2	—
49	33.200		10.70	3.83	50.6	0.412
48	22.500		7.50	9.63	72.7	0.932
46	15.000		9.00	11. 20	71.0	1.150
45	6.000					0.761
3	1.150		4.85	10.50	66.8	—
44	50.500		9.30	3.90	10.0	0.141
43	41.200		8.00	6.82	18.2	0.309
42	33.200		10.70	50.70	59.8	5.090
41	22. 500		7.50	105.30	90.0	6.840
40	15.000		9.00	132.10	118.7	7.100
39	6.000		6.80	184.10	155.3	7.870
38	-0.800		7.30	188.30	159.8	7.140
2	-8.100		7.30	188.30	159.0	—
37	33.200		10.70	22.40	28.4	0.872
36	22.500		7.50	46.50	52.0	1.350
35	15.000		9.00	62.80	77.0	2.250
34	6.000		6.80	84.00	107.8	2.700
33	-0.800		7.30	81.60	107.8	3.040
2	-8.100		1.00	01.00	107.8	—
3	1.150		9.25	15.70	108.0	0. 921
2	-8.100		6.00	3195.70	6468.0	38.16
1	-14.100		0.00	0100.10	0100.0	23.06

表 3-3 原子炉建屋のモデル諸元 (NS 方向)

衣马子 亦于》注注(開风印码)。)C/// 開记(15//FI)							
質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積	回転慣性	
番号	0.P. (m)	(t)	(m)	$(\times 10^3 \text{m}^4)$	四	$(\times 10^6 t \cdot m^2)$	
44	50.500	—	9.30	0.0794	0.1844	—	
43	41.200	_				—	
42	33.200	—	8.00	0.4001	7.56	—	
56	50.500	—	9.30	0.0794	0.1844	—	
55	41.200	—				—	
54	33.200	—	8.00	0.7001	7.56	—	

表 3-4 原子炉建屋(補強部材)のモデル諸元(NS 方向)

表 3-5 原子炉建屋(床ばね)のモデル諸元(NS方向)

質	点	ばね定数	減衰	
番	番号		(%)	
37	42	3.570×10^{6}	5.0	
36	41	3.614×10^{6}	5.0	
35	40	3.820 $\times 10^{6}$	5.0	
34	39	4.613 $\times 10^{6}$	5.0	
33	38	8.792 $\times 10^{6}$	5.0	
44	56	1.365×10^{5}	5.0	
42	49	2. 457×10^{6}	5.0	
41	48	2.871 $\times 10^{6}$	5.0	
40	46	5.825 $\times 10^{6}$	5.0	
39	45	3.840 $\times 10^{6}$	5.0	
38	50	8. 208×10^5	5.0	
49	54	3. 199×10^{6}	5.0	
48	53	3. 335×10^{6}	5.0	
46	52	5.723 $\times 10^{6}$	5.0	
45	51	4. 043×10^{6}	5.0	
54	61	2.233 $\times 10^{6}$	5.0	
53	60	2.704 $\times 10^{6}$	5.0	
52	59	2. 125×10^{6}	5.0	
51	58	2.557 $\times 10^{6}$	5.0	
50	57	1.711×10^{6}	5.0	

	衣 3-6 店	尽于炉格納谷奋(
質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積
番号	0.P. (m)	(t)	(m)	(m ⁴)	(m^2)
32					
31					
30					
29					
28					
27					
26					
25					
24					
23					
22					
21					
62(3)					

表 3-6 原子炉格納容器のモデル諸元(NS 方向)

表 3-7 原子炉しゃへい壁のモデル諸元 (NS 方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)
20					
19					
18					
17					
16					
7					

衣 3-8	表 3-8 原于炉圧刀谷畚及び原于炉本体の基礎のモアル諸元(NS 万回)					
質点	標高	質量	部材長	断面二次 モーメント	有効せん断	
番号	0.P. (m)	(t)	(m)	(m^4)	断面積 (m ²)	
15						
14						
13						
12						
11						
10						
9						
8						
7						
6						
5						
4						
62(3)						

表 3-8 原子炉圧力容器及び原子炉本体の基礎のモデル諸元(NS 方向)

表 3-9 大型機器系のばね定数(NS 方向)

Nc).	名称	ばね定数 (t/m)	減衰定数 (%)
К	• 1	原子炉格納容器シャラグ		1.0
K	2	原子炉格納容器スタビライザ		1.0
K	. 3	原子炉圧力容器スタビライザ		1.0
K	4	燃料交換ベローズ		1.0
K	5	所員用エアロック		1.0
K	- 6	ベント管		1.0

		き 3-10 原子炉	「建産のモアル	′ 諸元(EW 万回,)	T
質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積	回転慣性
番号	0.P. (m)	(t)	(m)	$(\times 10^{3} \text{m}^{4})$	的	$(\times 10^6 t \cdot m^2)$
63	33.200		10.70	29.90	32.4	1.130
62	22.500		7.50	60.50	54.7	1.900
61	15.000		9.00	80.30	84.0	2.790
60	6.000		6.80	105.80	109.2	3.740
59	-0.800					3.760
2	-8.100		7.30	105.90	117.6	—
58	50.500		9.30	6.49	13.3	0.247
57	41.200		8.00	10.30	21.2	0.285
56	33.200		10.70	27.30	53.0	6.640
55	22.500		7.50	107.30	79.8	9.240
54	15.000		9.00	152.30	121. 4	9.010
53	6.000		6.80	-	170.0	10.12
52	-0.800			216.90		10.91
2	-8.100		7.30	213.80	167.2	_
51	33.200		10.70	3.07	63.3	0.720
50	22.500		7.50	9.63	72.7	1.610
48	15.000		9.00	11. 20	71.0	1.050
47	6.000					0.761
3	1.150		4.85	10.50	66.8	—
46	50.500		9.30	6.49	13.3	0.247
45	41.200		8.00	12.50	17.4	0.475
44	33.200		10.70	29.50	51.8	5.610
43	22.500					5.830
42	15.000		7.50	34.00	36.5	0.099
41	22.500		7.50	66.10	76.6	3.900
40	15.000		9.00	92.70	107.1	9.890
39	6.000		6.80	219.90	163.7	11.43
38	-0.800					11.15
2	-8.100		7.30	227.80	169.0	—
37	33.200		10.70	37.60	41.0	2.590
36	22.500		7.50	65.30	57.4	2.860
35	15.000		9.00	85.90	84.0	2.580
34	6.000		6.80	110.90	114.8	3. 080
33	-0.800					3.120
2	-8.100		7.30	113.10	117.6	—
3	1.150		9.25	15.70	108.0	0.921
2	-8.100					45.39
1	-14.100		6.00	3803.20	6468.0	27.44

表 3-10 原子炉建屋のモデル諸元(EW 方向)

	20 11	叭1 // 之庄 ·			10 20 1: 17	
質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積	回転慣性
番号	0.P. (m)	(t)	(m)	$(\times 10^{3} \text{m}^{4})$	四 (m ²)	$(\times 10^6 t \cdot m^2)$
45	41.200		8.00	1.8883	8.58	_
44	33.200	_	8.00	1.0000	0.00	_

表 3-11 原子炉建屋(補強部材)のモデル諸元(EW 方向)

表 3-12 原子炉建屋(床ばね)のモデル諸元(EW 方向)

質	点	ばね定数	回転ばね	減衰
番	号	(t/m)	定数 (t·m/rad)	(%)
37	44	1.790×10^{6}	—	5.0
36	41	6.941 $\times 10^{6}$	—	5.0
35	40	5. 216×10^{6}	—	5.0
34	39	5.952 $\times 10^{6}$	—	5.0
33	38	6. 932×10^{6}	—	5.0
41	43	4. 589×10^{6}	—	5.0
40	42	4.898 $\times 10^{6}$	—	5.0
39	47	4. 147×10^{6}	—	5.0
38	52	6.961 $\times 10^{5}$	—	5.0
46	58	2. 427×10^5	—	5.0
44	51	5. 404×10^{6}	3. 62×10^8	5.0
43	50	7.870 $\times 10^{6}$	3. 62×10^8	5.0
42	48	6. 680×10^{6}	—	5.0
51	56	2. 019×10^{6}	3. 62×10^8	5.0
50	55	2. 367×10^{6}	3. 62×10^8	5.0
48	54	2. 522×10^{6}	—	5.0
47	53	3. 962×10^{6}	—	5.0
56	63	4. 150×10^{6}	—	5.0
55	62	4.530 $\times 10^{6}$	—	5.0
54	61	4. 206×10^{6}	_	5.0
53	60	4. 926×10^{6}	—	5.0
52	59	7.985 $\times 10^{6}$	—	5.0
39	42	—	9.90 $\times 10^{9}$	5.0

	AX 3-13)	京于炉格納谷 奋		(EW /ノ [円])	
質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積
番号	0.P. (m)	(t)	(m)	(m ⁴)	(m^2)
32					
31					
30					
29					
28					
27					
26					
25					
24					
23					
22					
21					
64(3)					

表 3-13 原子炉格納容器のモデル諸元(EW 方向)

表 3-14 原子炉しゃへい壁のモデル諸元 (EW 方向)

質点 番号	標高 O.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)
20					
19					
18					
17					
16					
7					

表 3-1	5 原于炉庄刀4	谷畚及ひ原于炉	半半の 基礎の モ	コン ル 珀 兀 (EW	刀円)
質点	標高	質量	部材長	断面二次	有効せん断
番号	0.P. (m)	(t)	(m)	モーメント (m ⁴)	断面積 (m ²)
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
64(3)					

表 3-15 原子炉圧力容器及び原子炉本体の基礎のモデル諸元(EW 方向)

表 3-16 大型機器系のばね定数(EW 方向)

No.	名称	ばね定数 (t/m)	減衰定数 (%)
K_1	原子炉格納容器シャラグ		1.0
K_2	原子炉格納容器スタビライザ		1.0
K_3	原子炉圧力容器スタビライザ		1.0
K_4	燃料交換ベローズ		1.0
K_5	所員用エアロック		1.0
K_6	ベント管		1.0

質点	標高	質量	部材長	ばね定数
番号	0.P. (m)	(t)	(m)	$(\times 10^6 { m t/m})$
1	48.725		7.525	20.81
2	41.200		0.000	40.01
3	33.200		8.000	49.21
			10.700	140.00
4	22.500		7.500	284.60
5	15.000			
6	6.000		9.000	284.40
			6.800	509.30
7	-0.800		7.300	486.60
8	-8.100		1.300	100.00
9	-14.100		6.000	2910.60

表 3-17 原子炉建屋のモデル諸元(鉛直方向)

表 3-18 原子炉建屋(屋根トラス部)のモデル諸元(鉛直方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)
1	48.725	—	6.400	6.99	1.11
10	48.725	333	6.300	6.00	1 1 9
11	48.725	326	0.300	6.99	1.12
12	48.725	163	6. 300	6.99	0.773

表 3-19 原子炉格納容器のモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
貝示	惊向			
番号	0.P. (m)	(t)	(m)	(t/m)
41				
40				
39				
38				
37				
36				
35				
34				
33				
32				
14				

質点標高質量部材長ばね定数番号0. P. (m)(t)(m)(t/m)	
番号 0.P.(m) (t) (m) (t/m)	夊
23	
22	
21	
20	
19	
18	

表 3-20 原子炉しゃへい壁のモデル諸元(鉛直方向)

表 3-21 原子炉圧力容器及び原子炉本体の基礎のモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0.P. (m)	(t)	(m)	(t/m)
31				
30				
29				
28				
27				
26				
25				
24				
18				
17				
16				
15				
14				

表 3-22 インナーコンクリートのモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0.P. (m)	(t)	(m)	(t/m)
14				
8				

NI -	友 升	ばね定数	減衰定数
No.	名称	(t•m/rad)	(%)
Кθ	K _θ トラス端部回転拘束ばね		5.0

表 3-23 原子炉建屋屋根トラス部のばね定数

表 3-24 解析に用いる建屋の物性値(NS 方向)

名称	縦弾性係数E (×10 ⁴ t/m ²)	ポアソン比ν	減衰定数 (%)	
原子炉建屋	202.5	0.167	5.0	
原子炉建屋(オペフロ上部)	81.0	0.167	5.0	
原子炉建屋(補強耐震壁)	257.0	0.2	5.0	
原子炉建屋(鉄骨ブレース)	2100.0	0.3	2.0	

表 3-25 解析に用いる建屋の物性値(EW 方向)

名称	縦弾性係数E (×10 ⁴ t/m ²)	ポアソン比ぃ	減衰定数 (%)
原子炉建屋	216.0	0.167	5.0
原子炉建屋(オペフロ上部)	135.0	0.167	5.0
原子炉建屋(補強耐震壁)	257.0	0.2	5.0

表 3-26 解析に用いる建屋の物性値(鉛直方向)

名称	縦弾性係数E (×10 ⁴ t/m ²)	ポアソン比ぃ	減衰定数 (%)
原子炉建屋(鉄筋コンクリート造)	_	_	5.0
原子炉建屋(屋根トラス部)	270.0	0.3	2.0

名称	縦弾性係数E (×10 ⁷ t/m ²)	ポアソン比v	減衰定数 (%)
<u>原子炉しゃへい壁</u> 原子炉本体の基礎	-		5.0 5.0
原子炉圧力容器	-		1.0
原子炉圧力容器スカート			1.0
原子炉格納容器			1.0

表 3-27 解析に用いる大型機器系の物性値(水平方向)

表 3-28 解析に用いる大型機器系の物性値(鉛直方向)

名称	減衰定数 (%)
原子炉しゃへい壁	5.0
原子炉本体の基礎	5.0
原子炉圧力容器	1.0
原子炉格納容器	1.0

3.2.2 炉内構造物系

3.2.2.1 水平方向

水平方向地震応答解析モデルは図 3-6 及び図 3-7 に示すように,原子炉建屋,原子炉 しゃへい壁,原子炉本体の基礎,原子炉圧力容器,炉心シュラウド,燃料集合体,制御 棒案内管及び制御棒駆動機構ハウジング等の各質点間を等価な曲げ,せん断剛性を有す る無質量のはり又は無質量のばねにより結合する。

原子炉しゃへい壁は5 質点,原子炉本体の基礎は4 質点,原子炉圧力容器は18 質点 でモデル化する。原子炉圧力容器は原子炉圧力容器スタビライザ及び原子炉本体の基礎 を介して原子炉建屋に支持される。

炉心シュラウドは、下部胴下端がシュラウドサポートプレート及びシュラウドサポー トレグの回転ばねにより原子炉圧力容器と結合され、上部胴上端が炉心シュラウド支持 ロッドの回転ばねによりシュラウドサポートプレートと結合される。また、上部胴は上 部サポートの水平ばねにより、中間胴下端は下部スタビライザの水平ばねにより原子炉 圧力容器と結合される。

気水分離器及びスタンドパイプは3質点,炉心シュラウドは10質点,燃料集合体は7 質点,制御棒案内管は4質点,制御棒駆動機構ハウジングは6質点でモデル化する。こ れらを0.P. でシュラウドサポートと等価な回転ばねを介して,原子炉圧力容器 と結合する。

なお,ジェットポンプ,中性子束計測案内管,中性子束計測ハウジングについては, 質量が小さく炉内の構造物の振動に与える影響は小さいため質量のみを考慮する。また, 原子炉圧力容器内の燃料集合体,炉心シュラウド等のモデル化においては,炉水による 付加質量効果を模擬するため仮想質量を考慮する。

図3-6及び図3-7に示した炉内構造物系の水平方向地震応答解析モデルの各質点質量, 部材長,断面二次モーメント,有効せん断断面積,ばね定数等を表 3-29~表 3-50 に示 す。また,解析に用いる各構造物の物性値を表 3-62,表 3-63 及び表 3-65 に示す。

図3-8及び図3-9に示す誘発上下動を考慮する場合の地震応答解析モデルについては、 大型機器系の地震応答解析モデルと同様に、水平加振により励起される上下応答を評価 するために、鉛直方向モデルの諸元及び接地率に応じて変化する回転・鉛直連成ばねに ついても考慮している。

原子炉本体の基礎の復元力特性は,建屋の方向別に,原子炉本体の基礎の要素を単位 とした水平断面形状より設定する。

シュラウド, 炉心シュラウド支持ロッド, 上部サポート及び下部スタビライザにおい て考慮すべき地震荷重が最大となるケースとして, 以下の4通りのモデルを想定する。

- ・シュラウド健全モデル
- ・上部胴上端(H1)き裂ケース
- ・下部胴上端(H6b)き裂ケース

・全溶接線(周方向)分離時モデル

3.2.2.2 鉛直方向

鉛直方向地震応答解析モデルは図 3-10 に示すように,原子炉建屋,原子炉しゃへい 壁,原子炉本体の基礎,原子炉圧力容器,炉心シュラウド,制御棒案内管及び制御棒駆 動機構ハウジング,炉心シュラウド支持ロッド等の各質点間を等価な軸剛性を有する無 質量のばねにより結合する。また,屋根トラスは,各質点間を等価な曲げ,せん断剛性 を有する無質量のはりで結合し,支持端部の回転拘束と等価な回転ばねで結合する。

原子炉しゃへい壁は5 質点,原子炉本体の基礎は4 質点,原子炉圧力容器は19 質点 でモデル化する。原子炉圧力容器は原子炉本体の基礎を介して原子炉建屋に支持される。

気水分離器及びスタンドパイプは3質点, 炉心シュラウドは11質点, 制御棒案内管は 3質点, 制御棒駆動機構ハウジングは6質点でモデル化する。

ジェットポンプ,中性子束計測案内管,中性子束計測ハウジングについては,水平方 向と同様に質量のみを考慮する。

炉内構造物の質点は原則として,水平方向と同一とし,部材の端点及び剛性の変化す る点,応力評価点等に設けるが,全体の振動特性が把握できるよう,質点間隔について は,工学的判断を加えて定めるものとする。ただし,炉心シュラウドについては,シュ ラウドサポートレグ上下端に質点を設け,原子炉圧力容器下部鏡板に結合する。

また,水平方向解析モデルで考慮している水平ばね(原子炉圧力容器スタビライザ等) については,鉛直方向に対しては拘束効果がない構造となっているか,拘束効果があっ ても本体部材の鉛直剛性に対して無視できる程度に小さい値であるため,鉛直方向地震 応答解析モデルでは考慮しない。

なお,鉛直方向地震応答解析モデルでは,炉水による付加質量効果は小さいため仮想 質量は考慮しない。

図 3-10 に示した鉛直方向地震応答解析モデルの各質点質量,部材長,ばね定数等を表 3-51~表 3-61 に示す。また,解析に用いる各構造物の物性値を表 3-64 及び表 3-66 に 示す。

図 3-6 炉内構造物系地震応答解析モデル(NS 方向,誘発上下動を考慮しない場合)

		€ 3-29 原子炉	達座のモアル	商儿(NS万円)	
質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積	回転慣性
番号	0.P. (m)	(t)	(m)	$(\times 10^{3} \text{m}^{4})$	四	$(\times 10^6 t \cdot m^2)$
89	33.200		10.70	29.20	30.8	1.410
88	22.500		7.50	59.40	59.2	2.510
87	15.000		9.00	73.40	75.0	2.560
86	6.000		6.80	108.90	107.8	3. 410
85	-0.800					3. 520
2	-8.100		7.30	114.40	107.8	—
84	50.500		9.30	3.84	10.0	0.141
83	41.200		8.00	6.35	18.2	0.252
82	33.200		10.70	54.30	59.4	6. 120
81	22.500		7.50	101.20	85.8	9. 430
80	15.000		9.00	159.50	123. 2	8.580
79	6.000		6.80	211.10	165.2	9.940
78	-0.800					10.61
2	-8.100		7.30	216.10	165.2	—
77	33.200		10.70	3.83	50.6	0. 412
76	22.500		7.50	9.63	72.7	0.932
74	15.000		9.00	11. 20	71.0	1.150
73	6.000					0.761
3	1.150		4.85	10.50	66.8	—
72	50.500		9.30	3.90	10.0	0.141
71	41.200		8.00	6.82	18.2	0.309
70	33.200		10.70	50.70	59.8	5.090
69	22.500		7.50	105.30	90.0	6.840
68	15.000		9.00	132.10	118.7	7.100
67	6.000		6.80	184.10	155.3	7.870
66	-0.800					7.140
2	-8.100		7.30	188.30	159.8	—
65	33.200		10.70	22.40	28.4	0.872
64	22.500		7.50	46.50	52.0	1.350
63	15.000		9.00	62.80	77.0	2.250
62	6.000		6.80	84.00	107.8	2.700
61	-0.800					3.040
2	-8.100		7.30	81.60	107.8	—
3	1.150		9.25	15.70	108.0	0.921
2	-8.100		6.00	2105 70	6469 0	38.16
1	-14.100		6.00	3195.70	6468.0	23.06

表 3-29 原子炉建屋のモデル諸元 (NS 方向)

私3.30 床手炉建产(袖强的树)。为127万的几(13万间)						
質点	標高	質量	部材長	断面二次 モーメント	有効せん断	回転慣性
番号	0.P. (m)	(t)	(m)	$(\times 10^3 \text{m}^4)$	断面積 (m ²)	$(\times 10^6 t \cdot m^2)$
72	50.500	—	9.30	0.0794	0.1844	—
71	41.200	_				—
70	33.200	—	8.00	0.4001	7.56	—
84	50.500	—	9.30	0.0794	0.1844	_
83	41.200	—				—
82	33.200	—	8.00	0.7001	7.56	—

表 3-30 原子炉建屋(補強部材)のモデル諸元(NS 方向)

表 3-31 原子炉建屋(床ばね)のモデル諸元(NS

督	点	ばね定数	減衰
	号	(t/m)	(%)
65	70	3. 570×10^{6}	5.0
64	69	3.614×10^{6}	5.0
63	68	3.820 $\times 10^{6}$	5.0
62	67	4. 613×10^{6}	5.0
61	66	8.792 $\times 10^{6}$	5.0
72	84	1.365×10^{5}	5.0
70	77	2. 457×10^{6}	5.0
69	76	2.871 $\times 10^{6}$	5.0
68	74	5.825 $\times 10^{6}$	5.0
67	73	3.840 $\times 10^{6}$	5.0
66	78	8. 208×10^5	5.0
77	82	3. 199×10^{6}	5.0
76	81	3. 335×10^{6}	5.0
74	80	5.723 $\times 10^{6}$	5.0
73	79	4. 043×10^{6}	5.0
82	89	2.233 $\times 10^{6}$	5.0
81	88	2.704 $\times 10^{6}$	5.0
80	87	2. 125×10^{6}	5.0
79	86	2.557 $\times 10^{6}$	5.0
78	85	1.711×10^{6}	5.0

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)		
60							
59							
58							
57							
56							
7							

表 3-32 原子炉しゃへい壁のモデル諸元 (NS 方向)

表 3-33 原子炉圧力容器及び原子炉本体の基礎のモデル諸元 (NS 方向)

質点	標高	質量	部材長	断面二次	有効せん断
番号	0.P. (m)	(t)	(m)	モーメント (m ⁴)	断面積 (m ²)
24				·	
23					
22					
21					
20					
19					
18					
17					
16					
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
90(3)					

断面二次 有効せん断 質点 部材長 標高 質量 モーメント 断面積 番号 0.P. (m) (t) (m) (m^4) (m^2) 8 38

表 3-34 原子炉圧力容器下部鏡板のモデル諸元 (NS 方向)

表 3-35 気水分離器,スタンドパイプ及び炉心シュラウドのモデル諸元(NS 方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント	有効せん断 断面積
37	0.1. (m)		(111)	(m^4)	(m^2)
36					
35					
34					
33					
32					
31					
30					
29					
28					
27					
26					
25					
51					

表 3-36 燃料集合体のモデル諸元(NS方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)
55					
50					
49					
48					
47					
46					
54					

枠囲みの内容は商業機密の観点から公開できません。

	20 0 0				
質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)
53					
45					
44					
52					

表 3-37 制御棒案内管のモデル諸元(NS 方向)

表 3-38 制御棒駆動機構ハウジングのモデル諸元 (NS 方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)
43					
38					
39					
40					
41					
42					

No.	名称	ばね定数		減衰定数 (%)
K1	原子炉格納容器スタビライザ		(t/m)	1.0
K ₂	原子炉圧力容器スタビライザ		(t/m)	1.0
K ₃	制御棒駆動機構ハウジング レストレントビーム		(t/m)	1.0
K4	シュラウドサポート		(t•m/rad)	1.0
K 5	上部サポート		(t/m)	1.0
K ₆	下部スタビライザ		(t/m)	1.0
K ₇	炉心シュラウド支持ロッド		(t•m/rad)	1.0

表 3-40 原子炉建屋のモデル諸元 (EW 方向)								
質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積	回転慣性		
番号	0.P. (m)	(t)	(m)	$(\times 10^{3} \text{m}^{4})$	四 面 作員 (m ²)	$(\times 10^6 t \cdot m^2)$		
91	33.200		10.70	29.90	32.4	1.130		
90	22.500		7.50	60.50	54.7	1.900		
89	15.000		9.00	80.30	84.0	2.790		
88	6.000		6.80	105.80	109.2	3.740		
87	-0.800					3.760		
2	-8.100		7.30	105.90	117.6	—		
86	50.500		9.30	6.49	13.3	0.247		
85	41.200		8.00	10.30	21.2	0. 285		
84	33.200		10.70	27.30	53.0	6. 640		
83	22.500		7.50	107.30	79.8	9.240		
82	15.000		9.00	152.30	121.4	9.010		
81	6.000		6.80	216.90	170.0	10.12		
80	-0.800					10.91		
2	-8.100		7.30	213.80	167.2	—		
79	33.200		10.70	3.07	63.3	0.720		
78	22.500		7.50	9.63	72.7	1.610		
76	15.000		9.00	11. 20	71.0	1.050		
75	6.000					0.761		
3	1.150		4.85	10.50	66.8	—		
74	50.500		9.30	6.49	13.3	0.247		
73	41.200		8.00	12.50	17.4	0.475		
72	33.200		10.70	29.50	51.8	5.610		
71	22.500					5.830		
70	15.000		7.50	34.00	36.5	0.099		
69	22.500		7.50	66.10	76.6	3.900		
68	15.000		9.00	92.70	107.1	9.890		
67	6.000		6.80	219.90	163.7	11.43		
66	-0.800		7.30	227.80	169.0	11.15		
2	-8.100		1.30	221.80	109.0	—		
65	33.200		10.70	37.60	41.0	2. 590		
64	22.500		7.50	65.30	57.4	2.860		
63	15.000		9.00	85.90	84.0	2. 580		
62	6.000		6.80	110.90	114.8	3.080		
61	-0.800					3. 120		
2	-8.100		7.30	113.10	117.6	—		
3	1.150		9.25	15.70	108.0	0.921		
2	-8.100		6.00	3802 20	6169 0	45.39		
1	-14.100		6.00	3803.20	6468.0	27.44		

表 3-40 原子炉建屋のモデル諸元 (EW 方向)

枠囲みの内容は商業機密の観点から公開できません。

質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積	回転慣性
番号	0.P. (m)	(t)	(m)	$(\times 10^{3} \text{m}^{4})$	四百百百 (m ²)	$(\times 10^6 t \cdot m^2)$
73	41.200	—	8.00	1.8883	8. 58	—
72	33.200	—	0.00	1.0000	0.00	—

表 3-41 原子炉建屋(補強部材)のモデル諸元(EW 方向)

質	点	ばね定数	回転ばね	減衰
番	号	(t/m)	定数 (t・m/rad)	(%)
65	72	1.790×10^{6}	_	5.0
64	69	6.941 $\times 10^{6}$		5.0
63	68	5. 216×10^{6}	_	5.0
62	67	5.952 $\times 10^{6}$	_	5.0
61	66	6. 932×10^{6}	_	5.0
69	71	4. 589×10^{6}	_	5.0
68	70	4.898 $\times 10^{6}$	_	5.0
67	75	4. 147×10^{6}	_	5.0
66	80	6.961×10^{5}	_	5.0
74	86	2. 427×10^5	_	5.0
72	79	5. 404×10^{6}	3. 62×10^8	5.0
71	78	7.870×10^{6}	3. 62×10^8	5.0
70	76	6.680 $\times 10^{6}$	_	5.0
79	84	2.019×10^{6}	3. 62×10^8	5.0
78	83	2. 367×10^{6}	3. 62×10^8	5.0
76	82	2. 522×10^{6}	_	5.0
75	81	3. 962×10^{6}		5.0
84	91	4. 150×10^{6}	—	5.0
83	90	4.530 $\times 10^{6}$	_	5.0
82	89	4. 206×10^{6}	_	5.0
81	88	4. 926×10^{6}	—	5.0
80	87	7.985 $\times 10^{6}$	_	5.0
67	70	_	9.90 $\times 10^{9}$	5.0

表 3-42 原子炉建屋(床ばね)のモデル諸元(EW方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)	
60						
59						
58						
57						
56						
7						

表 3-43 原子炉しゃへい壁のモデル諸元 (EW 方向)

表 3-44 原子炉圧力容器及び原子炉本体の基礎のモデル諸元(EW 方向)

質点	標高	質量	部材長	断面二次	有効せん断
番号	0.P. (m)	(t)	(m)	モーメント (m ⁴)	断面積 (m ²)
24					
23					
22					
21					
20					
19					
18					
17					
16					
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
92(3)					

断面二次 有効せん断 質点 部材長 標高 質量 モーメント 断面積 番号 0.P. (m) (t) (m) (m^4) (m^2) 8 38

表 3-45 原子炉圧力容器下部鏡板のモデル諸元(EW 方向)

表 3-46 気水分離器,スタンドパイプ及び炉心シュラウドのモデル諸元(EW 方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (-4)	有効せん断 断面積 (²)
37				(m^4)	(m^2)
36					
35					
34					
33					
32					
31					
30					
29					
28					
27					
26					
25					
51					

表 3-47 燃料集合体のモデル諸元(EW 方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)
55					
50					
49					
48					
47					
46					
54					

枠囲みの内容は商業機密の観点から公開できません。

_						
	質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)
	53					
	45					
	44					
	52					

表 3-48 制御棒案内管のモデル諸元(EW 方向)

表 3-49 制御棒駆動機構ハウジングのモデル諸元(EW 方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)
43					
38					
39					
40					
41					
42					

表 3-50	炉内構造物系のばね定数	(EW 方向)

No.	名称	ばね	定数	減衰定数 (%)
K_1	原子炉格納容器スタビライザ		(t/m)	1.0
K_2	原子炉圧力容器スタビライザ		(t/m)	1.0
K ₃	制御棒駆動機構ハウジング レストレントビーム		(t/m)	1.0
K_4	シュラウドサポート		(t•m/rad)	1.0
K ₅	上部サポート		(t/m)	1.0
K ₆	下部スタビライザ		(t/m)	1.0
K ₇	炉心シュラウド支持ロッド		(t•m/rad)	1.0

質点	標高	質量	部材長	ばね定数	
番号	0.P. (m)	(t)	(m)	$(\times 10^6 { m t/m})$	
1	48.725		7.525	20.81	
2	41.200		0.000	40, 91	
3	33.200		8.000	49.21	
4			10.700	140.00	
	22.500		7.500	284.60	
5	15.000		9.000	284.40	
6	6.000				
7	-0.800		6.800	509.30	
-			7.300	486.60	
8	-8.100			<u> </u>	
9	-14.100		6.000	2910.60	

表 3-51 原子炉建屋のモデル諸元(鉛直方向)

表 3-52 原子炉建屋(屋根トラス部)のモデル諸元(鉛直方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)
1	48.725	—	6.400	6.99	1.11
10	48.725	333	6 200	6.00	1 10
11	48.725	326	6.300	6.99	1.12
12	48.725	163	6.300	6.99	0.773

表 3-53 原子炉しゃへい壁のモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0.P. (m)	(t)	(m)	(t/m)
23				
22				
21				
20				
19				
18				

X001 /// //	アル刀谷硝及い	床] 炉本座の屋	礎のモデル諸テ	11、1111月月月月月月月月月月月月月月月月月月月月月月月月月月月月月月1日日月月1日日月月1日日月月1日日月月1日日月月1日日月月1日日月月1日日月月1日日月月1日日月月1日日月月1日日月月1日日月月1日日月1日月1
質点	標高	質量	部材長	ばね定数
番号	0.P. (m)	(t)	(m)	(t/m)
40				
39				
38				
37				
36				
35				
34				
33				
32				
31				
30				
29				
28				
27				
26				
25				
24				
18				
17				
16				
15				
14				

表 3-54 原子炉圧力容器及び原子炉本体の基礎のモデル諸元(鉛直方向)

表 3-55 インナーコンクリートのモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0. P. (m)	(t)	(m)	(t/m)
14				
8				

表 3-56 原子炉圧力容器下部鏡板のモデル諸元(鉛直方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	ばね定数 (t/m)
24				
41				
60				

-57	风小万厢布	F, <i>ヘグ /</i> トハイ	「ノ及い炉心ン	ュノリトのモリ	ル諸元(鉛直人
	質点	標高	質量	部材長	ばね定数
	番号	0.P. (m)	(t)	(m)	(t/m)
	55				
	54				
	53				
	52				
	51				
	50				
	49				
	48				
	47				
	46				
	45				
	44				
	43				
	42				
	41				

表 3-57 気水分離器,スタンドパイプ及び炉心シュラウドのモデル諸元(鉛直方向)

表 3-58 炉心シュラウド支持ロッドのモデル諸元(鉛直方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	ばね定数 (t/m)
51				
25				

表 3-59 制御棒案内管のモデル諸元(鉛直方向)

質点 番号	標高 0.P.(m)	質量 (t)	部材長 (m)	ばね定数 (t/m)
64				
63				
62				
61				

衣 3-60	衣 3-60 前仰俸船期機構パリシングのモアル 商工 (
質点	標高	質量	部材長	ばね定数	
番号	0.P. (m)	(t)	(m)	(t/m)	
61					
60					
59					
58					
57					
56					

表 3-60 制御棒駆動機構ハウジングのモデル諸元(鉛直方向)

表 3-61 原子炉建屋屋根トラス部のばね定数

No.	名称	ばね定数 (t・m/rad)	減衰定数 (%)
К _θ	トラス端部回転拘束ばね	3.278×10^{6}	5.0

表 3-62 解析に用いる建屋の物性値(NS 方向)

名称	縦弾性係数E (×10 ⁴ t/m ²)	ポアソン比ぃ	減衰定数 (%)
原子炉建屋	202.5	0.167	5.0
原子炉建屋(オペフロ上部)	81.0	0.167	5.0
原子炉建屋(補強耐震壁)	257.0	0.2	5.0
原子炉建屋(鉄骨ブレース)	2100.0	0.3	2.0

表 3-63 解析に用いる建屋の物性値(EW 方向)

名称	縦弾性係数E (×10 ⁴ t/m ²)	ポアソン比ぃ	減衰定数 (%)
原子炉建屋	216.0	0.167	5.0
原子炉建屋(オペフロ上部)	135.0	0.167	5.0
原子炉建屋(補強耐震壁)	257.0	0.2	5.0

表 3-64 解析に用いる建屋の物性値(鉛直方向)

名称	縦弾性係数E (×10 ⁴ t/m ²)	ポアソン比ν	減衰定数 (%)
原子炉建屋(鉄筋コンクリート造)	—	—	5.0
原子炉建屋(屋根トラス部)	270.0	0.3	2.0

枠囲みの内容は商業機密の観点から公開できません。

名称	縦弾性係数E (×10 ⁷ t/m ²)	ポアソン比ぃ	減衰定数 (%)
原子炉しゃへい壁原子炉本体の基礎原子炉圧力容器原子炉圧力容器支持スカート炉心シュラウド原子炉圧力容器下部鏡板制御棒案内管制御棒駆動機構ハウジング燃料集合体			5.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 3.5 7.0 $ 7.0 $

表 3-65 解析に用いる大型機器系の物性値(水平方向)

表 3-66 解析に用いる大型機器系の物性値(鉛直方向)

名称	減衰定数 (%)
原子炉しゃへい壁	5.0
原子炉本体の基礎	5.0
原子炉圧力容器	1.0
炉心シュラウド	1.0
原子炉圧力容器下部鏡板	1.0
制御棒案内管	1.0
制御棒駆動機構ハウジング	1.0
炉心シュラウド支持ロッド	1.0

3.3 解析方法

「3.2 地震応答解析モデル」において設定した地震応答解析モデルを用いて、電子計算機に より、剛性マトリックス、質量マトリックスを作り、固有振動数、固有モードマトリックス等 を求める。次に、入力地震動に対する各質点の加速度、変位、せん断力(軸力)等を時刻歴応 答解析法により時間の関数として求め、地震継続時間中のこれらの最大値を求める。

以上の計算は,解析コード「TDAPⅢ」を使用し,時刻歴応答解析を実施する。評価に用いる解析コードの検証及び妥当性確認等の概要については,添付書類「VI-5 計算機プログラム (解析コード)の概要」に示す。

3.3.1 動的解析

大型機器系の地震応答計算書の動的解析は,添付書類「VI-2-1-6 地震応答解析の基本方 針」に記載の解析方法に基づき,時刻歴応答解析により実施する。

- 3.3.2 静的解析
- (1) 水平地震力

水平地震力は「VI-2-2-1 原子炉建屋の地震応答計算書」に記載の方法に基づき,算出する。 水平地震力算定用の基準面は地表面(0.P. 14.8m)とし,基準面より上の部分(地上部分)の 地震力は,地震層せん断力係数を用いて,次式により算出する。なお,機器・配管系につい ては,算出した値を1.2倍して用いる。

 $Q_i = n \cdot C_i \cdot W_i$

 $C_i = Z \cdot R_t \cdot A_i \cdot C_o$

ここで,

- Q_i:第 i 層に生じる水平地震力
- n : 施設の重要度分類に応じた係数(3.0)
- C_i:第i層の地震層せん断力係数
- Wi: : 第i層が支える重量
- Z : 地震地域係数 (1.0)
- R_t:振動特性係数(0.8)
- A_i:第i層の地震層せん断力係数の高さ方向の分布係数
- C。:標準層せん断力係数(0.2)

基準面より下の部分(地下部分)の地震力は、当該部分の重量に、次式によって算定する地 下震度を乗じて定める。なお、機器・配管系については、算出した値を1.2倍して用いる。

K = 0.1 \times n \times (1-H/40) \times α

ここで,

- K : 地下部分の水平震度
- n:施設の重要度分類に応じた係数(3.0)

- H:地下の各部分の基準面からの深さ(m)
- α : 建物・構築物側方の地盤の影響を考慮した水平地下震度の補正係数(1.0)
- (2) 鉛直地震力

鉛直地震力は,鉛直震度 0.3 を基準とし,建物・構築物の振動特性及び地盤の種類等を考慮 して,次式によって算定する鉛直震度を用いて定める。なお,機器・配管系については,算出 した値を 1.2 倍して用いる。ここで,鉛直方向の静的地震力は,一律に同じ値を適用する。 $C_{y} = 0.3 \cdot R_{y}$

- ここで,
- Cv : 鉛直震度
- R_v:鉛直方向振動特性係数(0.8)
- 3.4 解析条件
- 3.4.1 耐震壁の復元力特性

耐震壁の復元力特性については,添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」に示す。

3.4.2 地盤の回転ばねの復元力特性

地盤の回転ばねの復元力特性については,添付書類「VI-2-2-1 原子炉建屋の地震応答計 算書」に示す。

- 3.4.3 原子炉本体の基礎の復元力特性
 - (1) 原子炉本体の基礎のせん断力-せん断変形角関係(Q-γ関係)

原子炉本体の基礎のせん断力-せん断変形角関係(Q-γ関係)は、コンクリートのひび割 れを表す第1折点と鋼板の降伏を表す第2折点までを設定する。原子炉本体の基礎のせん 断力-せん断変形角関係を図3-11に示す。

(2) 原子炉本体の基礎のせん断力-せん断変形角関係の履歴特性

原子炉本体の基礎のせん断力-せん断変形角関係の履歴特性は、最大点指向型モデルとする。原子炉本体の基礎のせん断力-せん断変形角関係の履歴特性を図 3-12 に示す。

- a. 0-A 間: 弾性範囲
- b. A-B 間: 負側スケルトンが経験した最大点に向かう。ただし, 負側最大 点が第1折点を超えていなければ, 負側第1折点に向かう。
- c. 各最大点は、スケルトン上を移動することにより更新される。
- d. 安定ループは面積を持たない。

図 3-12 原子炉本体の基礎のせん断力-せん断変形角関係の履歴特性

(3) 原子炉本体の基礎の曲げモーメント-曲率関係(M-φ関係)

原子炉本体の基礎の曲げモーメント-曲率関係(M-φ関係)は、コンクリートのひび割れ を表す第1折点と鋼板の降伏を表す第2折点までを設定する。原子炉本体の基礎の曲げモ ーメント-曲率関係を図 3-13 に示す。

(4) 原子炉本体の基礎の曲げモーメント-曲率関係の履歴特性

原子炉本体の基礎の曲げモーメントー曲率関係の履歴特性は,最大点指向型モデルとする。 原子炉本体の基礎のせん断力-せん断変形角関係の履歴特性を図 3-14 に示す。

- a. 0-A 間:弾性範囲
- b. A-B 間:負側スケルトンが経験した最大点に向かう。ただし,負側最大 点が第1折点を超えていなければ,負側第1折点に向かう。
- c. 各最大点は、スケルトン上を移動することにより更新される。
- d. 安定ループは面積を持たない。
- 図 3-14 原子炉本体の基礎の曲げモーメント-曲率関係の履歴特性
- (5) スケルトンカーブの諸数値

原子炉本体の基礎の各要素について算定したせん断力及び曲げモーメントのスケルトン カーブの諸数値を表 3-67~表 3-70 に示す。なお、曲げモーメントのスケルトンカーブの算 定には、解析コード「SCC」を使用する。評価に用いる解析コードの検証及び妥当性確認等 の概要については、添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。

衣 3-67 セん刷刀のスケルトンカーノ(Q-γ 関係)(NS 万间)					
質点番号	要素番号	Q_1 (×10 ⁴ kN)	γ_{1} (×10 ⁻⁴)	$egin{array}{c} Q_2 \ (imes 10^4 \ { m kN}) \end{array}$	γ 2 $(imes 10^{-4})$
7	6	5.042	1.775	34.90	32. 51
6	5	2.867	1.859	24.63	27.17
5	4	5. 343	1.808	29.06	33. 23
- 62 (90) *	3	5. 428	1.837	29.06	33. 23

表 3-67 せん断力のスケルトンカーブ (Q-γ関係) (NS 方向)

注記*:()内は炉内構造物モデルの質点番号を示す。

表 3-68 曲げモーメントのスケルトンカーブ (M-φ関係) (NS 方向)

質点番号	要素番号	M_1 (×10 ⁸ kN·mm)	ϕ_{1} (×10 ⁻⁵ 1/m)	M_2 (×10 ⁸ kN·mm)	ϕ_{2} (×10 ⁻⁵ 1/m)
7	6	1.032	1.036	16. 81	38. 53
6					
5	5	1.107	1.151	15.98	38.49
	4	1.740	1.721	16.36	38. 39
4					
62(90)*	3	1.738	1.799	15. 73	38.50

注記*:()内は炉内構造物モデルの質点番号を示す。

要素番号	$\begin{array}{c} Q_1 \\ (\times 10^4 \text{ kN}) \end{array}$	γ_{1} (×10 ⁻⁴)	$egin{array}{c} {\sf Q}_2 \ (imes 10^4 \ { m kN}) \end{array}$	γ_{2} (×10 ⁻⁴)
6	5.042	1.775	34.90	32. 51
5	5.400	1.859	39. 48	31. 21
4	5.343	1.808	29.06	33. 23
3	5.032	1.837	27.23	33. 20
	6 5 4	要素番号 (×10 ⁴ kN) 6 5.042 5 5.400 4 5.343	要素番号 (×10 ⁴ kN) (×10 ⁻⁴) 6 5.042 1.775 5 5.400 1.859 4 5.343 1.808	要素番号 (×10 ⁴ kN) (×10 ⁻⁴) (×10 ⁴ kN) 6 5.042 1.775 34.90 5 5.400 1.859 39.48 4 5.343 1.808 29.06

表 3-69 せん断力のスケルトンカーブ (Q-γ関係) (EW 方向)

注記*:()内は炉内構造物モデルの質点番号を示す。

表 3-70 曲げモーメントのスケルトンカーブ (M- o 関係) (EW 方向)

質点番号	要素番号	$\begin{array}{c} M_1 \\ (\times 10^8 \text{ kN} \cdot \text{mm}) \end{array}$	ϕ_{1} (×10 ⁻⁵ 1/m)	M_2 (×10 ⁸ kN·mm)	ϕ_2 (×10 ⁻⁵ 1/m)
7	6	1.032	1.036	16. 81	38. 53
6	5	0.8983	1.441	10.66	38.90
5	- 4	1.740	1.721	16.36	38.39
4 64 (92) *	3	1.767	1.794	16.01	38.49

注記*:()内は炉内構造物モデルの質点番号を示す。

3.4.4 誘発上下動を考慮する場合の基礎浮上り評価方法

誘発上下動を考慮する場合の基礎浮上り評価方法については,添付書類「VI-2-2-3 制御 建屋の地震応答計算書」に示す。

3.4.5 材料物性の不確かさ等

解析においては、添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」にて考慮する材料 物性の不確かさに加え、原子炉本体の基礎のコンクリート剛性を低下させたケース考慮す る。材料物性の不確かさを考慮する解析ケースを表 3-71 に示す。

R 0 VI - 2 - 3 - 2 \odot 0

1 上 十手 今年	中国	地盤物性		原子炉本体の基礎	本型
() () () () () () () () () ()	建度初期間注	入力地震動	は割盥地面気	の初期剛性	第
た 1 1	11 幸曇シン・1 こ 「シュン	表層上部非線形非線形	命世 州计 邦长 亜汗	また 単子	東木ゲーフ
	o. II 地成ノベイフーノコノ	表層下部 Vs 900m/s	派书店街	井浜	英キンー~
7 0	بـ ۱۱	表層上部非線形非線形	1 下台到本下中兴 里子	親王	
		表層下部 Vs 900+100m/s	\示 ^中 地`脸`⊤ 0	法中	
い し し し		表層上部非線形非線形	一一句堂 4竹 尹公 里子	親、 里十	
0 	LH.T.	表層下部 Vs 900-100m/s	你平远净-0	土地	
オーフィ	<u> </u>	表層上部非線形非線形	合世 小叶 尹沃 里子	₩/ Ⅲ	基準地震動Ss固有の
√√4	英本ン ― ~ ~ ~ ~ ~ ~ ~	表層下部 Vs 900m/s	宗中四角	土地	解析ケース
7 7 7		表層上部非線形非線形	一 工 句供 小什 爭於 里子	親、 里千	基準地震動Ss固有の
		表層下部 Vs 900+100m/s	() 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	法	解析ケース
7 C	بـ ۱۱	表層上部非線形非線形	一一句钟 小竹 尹公 里子	親、 里千	基準地震動Ss固有の
		表層下部 Vs 900-100m/s	\示 [□] □.0	法中	解析ケース
		表層上部非線形非線形	日本 141 年5	*// - // - // - // - // - // - // - //	建屋-機器連成解析
	o. II 地成く ミゴマー ノゴノ	表層下部 Vs 900m/s	你牛地鱼	o. 11 旭辰ノミゴアーノゴノ	固有のケース

表 3-71 建屋-機器連成解析において材料物性の不確かさを考慮する解析ケース

注記*:原子炉建屋の耐震壁の初期剛性の設計値に対する補正係数(地下 3 階から地上 2 階, NS 方向:0.75, EW 方向:0.80) を適用する。

4. 解析結果

本章では、代表として、弾性設計用地震動Sd及び基準地震動Ssの基本ケースの地震応答解析 結果を示す。なお、炉内構造物系については、シュラウド健全ケースの結果を示す。

- 4.1 固有值解析
- 4.1.1 大型機器系

計算の結果得られた固有値の中で,固有周期0.050sまでの次数についてまとめた結果を 表 4-1~表 4-3 に示す。また,図 4-1~図 4-41 に振動モード図を示す。

4.1.2 炉内構造物系

計算の結果得られた固有値の中で,固有周期0.050sまでの次数についてまとめた結果を 表 4-4~表 4-6 に示す。また,図 4-42~図 4-92 に振動モード図を示す。

	表 4-1 大型	型機器 糸の固有値解析結	采(NS 万问)
次数	固有周期(s)	刺激係数	卓越部位
1	0.236	2.222	原子炉建屋
2	0.123	-2.741	原子炉建屋
3	0.116	-1.113	原子炉建屋
4	0.097	2.048	原子炉建屋
5	0.093	-1.037	原子炉建屋
6	0.090	-1.774	原子炉圧力容器
7	0.089	-0.033	原子炉建屋
8	0.082	-0.001	原子炉建屋
9	0.074	-0.614	原子炉建屋
10	0.071	0.445	原子炉建屋
11	0.068	-0.374	原子炉建屋
12	0.065	-0.596	原子炉建屋
13	0.063	-0.668	原子炉建屋
14	0.060	0.047	原子炉建屋
15	0.058	0.475	原子炉建屋
16	0.055	-0.590	原子炉圧力容器
17	0.052	1.558	原子炉建屋
18	0.051	0.438	原子炉建屋
19	0.050	0.173	原子炉建屋

表 4-1 大型機器系の固有値解析結果*(NS 方向)

注記*:固有周期 0.050s 以上の次数について記載した。

	表 4-2 大陸	型機器糸の固有値解析 結	i朱 ^{**} (EW 方问)
次数	固有周期(s)	刺激係数	卓越部位
1	0.228	2.197	原子炉建屋
2	0.125	1.928	原子炉建屋
3	0.116	0.066	原子炉建屋
4	0.098	0.619	原子炉建屋
5	0.091	-0.782	原子炉建屋
6	0.090	-1.793	原子炉圧力容器
7	0.086	2.182	原子炉建屋
8	0.077	1.023	原子炉建屋
9	0.074	0.369	原子炉建屋
10	0.070	-0.244	原子炉建屋
11	0.067	-0.521	原子炉建屋
12	0.064	0.549	原子炉建屋
13	0.062	-0.256	原子炉建屋
14	0.060	1.549	原子炉建屋
15	0.059	0.109	原子炉建屋
16	0.055	-0.329	原子炉建屋
17	0.055	0.558	原子炉圧力容器
18	0.052	-2.456	原子炉建屋

表 4-2 大型機器系の固有値解析結果*(EW 方向)

注記*:固有周期 0.050s 以上の次数について記載した。

表 4-3 大型機器系の固有値解析結果*(鉛直方向)

次数	固有周期(s)	刺激係数	卓越部位
1	0.339	1.458	原子炉建屋
2	0.100	1.584	原子炉建屋
3	0.079	1.360	原子炉建屋
4	0.051	-0.381	原子炉建屋

注記*:固有周期 0.050s 以上の次数について記載した。

固有周期(s):0.236

刺激係数 : 2.222

図 4-1 大型機器系の振動モード図(1次)(NS 方向)

プラント名:女川原子力発電所第2号機

固有周期(s):0.123

刺激係数 :-2.741

プラント名:女川原子力発電所第2号機

固有周期(s):0.116

刺激係数 :-1.113

図 4-3 大型機器系の振動モード図(3次)(NS 方向)

固有周期(s):0.097

刺激係数 : 2.048

図 4-4 大型機器系の振動モード図(4次)(NS 方向)

固有周期(s):0.093

刺激係数 :-1.037

図 4-5 大型機器系の振動モード図(5次)(NS 方向)

プラント名:女川原子力発電所第2号機

固有周期(s):0.090

刺激係数 :-1.774

図 4-6 大型機器系の振動モード図(6次)(NS 方向)

プラント名:女川原子力発電所第2号機

固有周期(s):0.089

刺激係数 :-0.033

固有周期(s):0.082

刺激係数 :-0.001

65

固有周期(s):0.074

刺激係数 :-0.614

プラント名:女川原子力発電所第2号機

固有周期(s):0.071

刺激係数 : 0.445

固有周期(s):0.068

刺激係数 :-0.374

固有周期(s):0.065

刺激係数 :-0.596

69

固有周期(s):0.063

刺激係数 :-0.668

70

刺激係数 : 0.047

図 4-14 大型機器系の振動モード図(14次)(NS 方向)

刺激係数 : 0.475

固有周期(s):0.055

刺激係数 :-0.590

図 4-16 大型機器系の振動モード図(16次)(NS 方向)

刺激係数 : 0.438

図 4-20 大型機器系の振動モード図(1次)(EW 方向)

0

0-----

刺激係数 :-0.782

81

固有周期(s):0.090

: 2. 182 刺激係数

84

図 4-28 大型機器系の振動モード図(9次)(EW 方向)

固有周期(s):0.070

刺激係数 :-0.521

刺激係数 : 0.549

刺激係数 :-0.256

刺激係数 : 0.109

刺激係数 :-0.329

刺激係数 : 0.558

刺激係数 :-2.456

固有周期(s):0.339

固有周期(s):0.100

固有周期(s):0.079

固有周期(s):0.051 刺激係数 :-0.381

図 4-41 大型機器系の振動モード図(4次)(鉛直方向)

次数	固有周期(s)	刺激係数	卓越部位
1	0.237	9.023	原子炉建屋
2	0.229	7.968	燃料集合体
3	0.123	2.705	原子炉建屋
4	0.118	-1.519	炉心シュラウド
5	0.116	-3.848	原子炉建屋
6	0.097	-2.066	原子炉建屋
7	0.093	1.039	原子炉建屋
8	0.090	2.070	原子炉圧力容器
9	0.089	-0.091	原子炉建屋
10	0.082	0.001	原子炉建屋
11	0.074	-0.717	原子炉建屋
12	0.071	-0.527	原子炉建屋
13	0.068	-0.372	原子炉建屋
14	0.066	2.206	制御棒案内管
15	0.065	-1.729	原子炉建屋
16	0.063	1.077	原子炉建屋
17	0.060	-0.084	原子炉建屋
18	0.059	-0.364	原子炉建屋
19	0.058	-0.771	燃料集合体
20	0.056	-3.586	炉心シュラウド
21	0.053	-5.222	原子炉圧力容器
22	0.052	-7.672	原子炉建屋
23	0.051	-0.434	原子炉建屋
24	0.050	0.311	原子炉建屋

表 4-4 炉内構造物系の固有値解析結果*(NS 方向)

注記*:固有周期 0.050s 以上の次数について記載した。

表 4-5 炉内構造物系の固有値解析結果* (EW 方向)					
次数	固有周期(s)	刺激係数	卓越部位		
1	0.231	18.712	燃料集合体		
2	0.227	17.658	原子炉建屋		
3	0.125	2.617	原子炉建屋		
4	0.117	2.888	炉心シュラウド		
5	0.116	-0.130	原子炉建屋		
6	0.098	0.630	原子炉建屋		
7	0.091	-0.820	原子炉建屋		
8	0.090	-1.751	原子炉圧力容器		
9	0.086	2.243	原子炉建屋		
10	0.077	1.120	原子炉建屋		
11	0.074	-0.379	原子炉建屋		
12	0.070	0.238	原子炉建屋		
13	0.067	0.505	原子炉建屋		
14	0.066	-0.366	制御棒案内管		
15	0.064	-0.599	原子炉建屋		
16	0.062	-0.271	原子炉建屋		
17	0.060	2. 781	原子炉建屋		
18	0.059	0.114	原子炉建屋		
19	0.058	-1.209	燃料集合体		
20	0.056	-3.214	炉心シュラウド		
21	0.055	1.326	原子炉建屋		
22	0.053	-5.150	原子炉圧力容器		
23	0.052	7.104	原子炉建屋		

表 4-5 炉内構造物系の固有値解析結果*(EW 方向)

注記*:固有周期0.050s以上の次数について記載した。

表 4-6 炉内構造物系の固有値解析結果*(鉛直方向)

次数	固有周期(s)	刺激係数	卓越部位
1	0.339	1.458	原子炉建屋
2	0.100	1.584	原子炉建屋
3	0.079	1.360	原子炉建屋
4	0.051	-0.380	原子炉建屋

注記*:固有周期 0.050s 以上の次数について記載した。

固有周期(s):0.237

刺激係数 :9.023

固有周期(s):0.229

刺激係数 : 7.968

図 4-43 炉内構造物系の振動モード図(2次)(NS 方向)

固有周期(s):0.123

刺激係数 : 2.705

固有周期(s):0.118

刺激係数 :-1.519

104

固有周期(s):0.116

刺激係数 :-3.848

刺激係数 :-2.066

固有周期(s):0.093

刺激係数 :1.039

固有周期(s):0.090

刺激係数 : 2.070

固有周期(s):0.089

固有周期(s):0.082

刺激係数 : 0.001

固有周期(s):0.074

刺激係数 :-0.717

図 4-52 炉内構造物系の振動モード図(11 次)(NS 方向)

固有周期(s):0.071

固有周期(s):0.068

固有周期(s):0.066

刺激係数 : 2.206

固有周期(s):0.065

刺激係数 :-1.729

固有周期(s):0.063

刺激係数 :1.077

固有周期(s):0.060

固有周期(s):0.059

固有周期(s):0.058

119

固有周期(s):0.056

刺激係数 :-3.586

固有周期(s):0.053

刺激係数 :-5.222

固有周期(s):0.052

刺激係数 :-7.672

固有周期(s):0.051

固有周期(s):0.050

固有周期(s):0.231

刺激係数 :18.712

図 4-66 炉内構造物系の振動モード図(1次)(EW 方向)

固有周期(s):0.227

刺激係数 :17.658

図 4-67 炉内構造物系の振動モード図(2次)(EW 方向)

固有周期(s):0.125

刺激係数 : 2.617

固有周期(s):0.117

刺激係数 : 2.888

固有周期(s):0.116

固有周期(s):0.098

刺激係数 : 0.630

固有周期(s):0.091

刺激係数 :-0.820

131

固有周期(s):0.090

刺激係数 :-1.751

固有周期(s):0.086

刺激係数 : 2.243

固有周期(s):0.077

刺激係数 :1.120

134

固有周期(s):0.074

固有周期(s):0.070

刺激係数 : 0.238

固有周期(s):0.067

刺激係数 : 0.505

固有周期(s):0.066

固有周期(s):0.064

固有周期(s):0.062

固有周期(s):0.060

刺激係数 : 2.781

固有周期(s):0.059

刺激係数 : 0.114

固有周期(s):0.058

固有周期(s):0.056

刺激係数 :-3.214

固有周期(s):0.055

固有周期(s):0.053

刺激係数 :-5.150

固有周期(s):0.052

刺激係数 :7.104

固有周期(s):0.339

固有周期(s):0.100

固有周期(s):0.079

固有周期(s):0.051

刺激係数 :-0.380

- 4.2 地震応答解析及び静的解析
- 4.2.1 大型機器系
 - (1) 弾性設計用地震動Sd及び静的解析

水平方向の弾性設計用地震動Sdによる地震応答解析及び静的解析より得られた各点の最 大応答加速度,最大応答変位,最大応答せん断力及び最大応答モーメントを図4-93~図4-116に,算定したスケルトンカーブと最大応答値の関係を図4-117~図4-120に,原子炉圧力 容器スタビライザ,原子炉格納容器スタビライザ,原子炉格納容器シヤラグ,ベント管,燃 料交換ベローズ及び所員用エアロックに加わる力(ばね反力)を表4-1に示す。

鉛直方向の弾性設計用地震動Sdによる地震応答解析より得られた各点の最大応答加速度, 最大応答変位及び最大応答軸力を図4-121~図4-129に示す。また,鉛直方向の静的解析は 実施せず,一律に算定することから,表4-2に鉛直方向の静的震度を示す。

(2) 基準地震動 S s

水平方向の基準地震動Ssによる地震応答解析より得られた各点の最大応答加速度,最大 応答変位,最大応答せん断力及び最大応答モーメントを図4-130~図4-153に,算定したス ケルトンカーブと最大応答値の関係を図4-154~図4-157に,原子炉圧力容器スタビライザ, 原子炉格納容器スタビライザ,原子炉格納容器シヤラグ,ベント管,燃料交換ベローズ及び 所員用エアロックに加わる力(ばね反力)を表4-3に示す。

鉛直方向の基準地震動Ssによる地震応答解析より得られた各点の最大応答加速度,最大応答変位及び最大応答軸力を図4-158~図4-166に示す。

燃料交換ベローズ位置 原子炉格納容器頂部 原子炉格納容器基部 備考 シャラグ位置 静的解析 9.13 9.13 9.13 7.44 5.53 5.53 5.53 9.13 7.44 6.48 6.48 Sd-N1 7.58 7.35 7.19 6.86 5.004.45 4.23 4.06 6.11 5.637.83 Sd-F3 8.22 7.64 7.03 6.65 5.95 5.164.04 4.44 4.65 4.72 4.24 Sd-F2 最大応答加速度(m/s²) 7.35 6.90 6.61 5.98 4.74 4.01 4.06 4.03 7.81 3.83 4.21 Sd-F1 3.17 3.36 3.46 3.50 5.34 5.05 4.854.46 3.95 5.643.63 Sd-D3 4.10 8.40 8.02 3.94 4.04 4.15 8.91 5.87 9.44 7.23 5.05 Sd-D2 10.7 10.19.69 7.19 4.23 4.42 4.46 11.3 5.03 8.87 6.38 Sd-D1 4.18 3.97 3.82 9.75 9.32 8.89 8.62 4.67 8.01 6.78 5.95 15.00 → Sd-F3 10.00 加速度(m/s2) ବ -- 静的解析 -X-D2 Q V A Que way 8 5.00 44- A 8 230 0 0 Id-bS-O-I3-bs · Sd-F1 IN-bS -0.00

0.P. (m)

最大応答加速度 弹性設計用地震動 S d 及び静的解析 (NS 方向 原子炉格納容器) 奚 4-93

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

153

0

R

VI - 2 - 3 - 2

 \odot

02

図 4-94 最大応答変位 弹性設計用地震動 S d 及び静的解析 (NS 方向 原子炉格納容器)

154

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-∳· Sd-F1						最大応答せん断力(×10 ³	断力(×10 ³ N)				市市
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		静的解析		Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				147	171	140	85.9	119	124	119	137	原子炉格納容器頂部
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				287	332	272	168	231	239	234	274	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1590	1800 2240	1890 2280	873 1120	1210 1460	1130 1440	1300 1670	1650 2100	燃料交換ベローズ位置
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0 ⊗ √·	×	12300	12800	10500	7270	10600	10700	12300	13800	シヤラグ位置
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_\$		13200	13400	11200	7740	11200	11400	13100	14800	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		· 4 ·		13800	13900	11700	8030	11500	11800	13600	15400	
1500 15100 12400 8570 12100 14900 17200 1500 15700 12700 8800 12100 13700 15400 18400 15500 15700 12700 8800 12100 13700 15400 18400 15500 15700 12700 8800 12100 13700 18400		· _ { -		14700	14800	12200	8440	12000	12600	14600	16700	
Cont × Cont ×<		- 0		15000	15100	12400	8570	12100	12900	14900	17200	
		- 0 0 ⊲⊲		15500	15700 15700	12700 12700	8800 8800	12100 12100	13700 13700	15700 15700	18400 18400	原子炉格納容器

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

155

156

R 0 VI - 2 - 3 - 2 \bigcirc 0

原子炉しゃ~い壁基部 原子炉しゃへい壁頂部 備考 静的解析 7.44 6.487.44 6.48 6.48 7.44 Sd-N1 6.72 5.804.99 7.206.92 6.39 Sd-F3 5.425.67 5.70 5.345.79 5.63最大応答加速度(m/s²) Sd-F2 4.43 6.045.905.39 6.74 6.01 Sd-F1 4.255.08 4.854.77 5.08 4.81Sd-D3 10.6 9.47 8.23 7.16 5.93 4.72 Sd-D2 9.75 8.88 8.33 6.69 5.687.73 Sd-D1 8.22 7.79 7.38 9.26 5.348.04 15.00→ - Sd-D3 8 10.00 X -- 静的解析 dx> dxv 8 0 × 5.00 4 4 Id-bS-0-IA-bS · ∕▲ IN-b2 - S-00

(m) .9.0

加速度(m/s²)

157

O 2 ③ VI-2-3-2 R 0

O 2 ③ VI-2-3-2 R 0

図 4-98 最大応答変位 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉しゃへい壁)

158

図 4-99 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉しゃへい壁)

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

O 2 ③ VI-2-3-2 R 0

160

→· Sd-F1 → Sd-F2 → Sd-F3				長/////1/10/10/10/10/10/10/10/10/10/10/10/					一般
静的解析	Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	今間
x d d x d a	15.5	18.0	18.0	8.67	13.3	11.8	8.65	11.0	原子炉压力容器頂部
x x x x	13.7	15.8	15.9	7.55	11.5	9.76	8.01	11.0	燃料交換ベローズ位置
	12.2	14.0	14.2	6, 65	9.99	8.21	7.54	11.0	
× × × ×	10.9	12.3	12.7	5.83	8.64	7.29	7.17	8.93	原子炉圧力容器スタビライザ位置
	8.86	9.95	10.6	4.99	6.75	6.63	6.72	8.93	
	7.41	8.43	8.27	5.28	5.46	6.01	6.35	7.77	
	7.12	7.08	6.04	5.13	5.09	6.25	5.85	77.77	
	6.63	6.23	5.20	4.89	4.89	6.11	5.52	7.77	原子炉圧力容器支持スカート位置
	5.34	5.68 5.53 5.53	4. 72 4. 68	4. 25 4. 15	4. 43 4. 34	5.34 5.26		6.48 6.48 7 7	原子炉本体の基礎頂部
	4.37	5.06 4.75	4.4' 4.31	3. 89 3. 67	4.14	4. 98 4. 80	4. 71 4. 43	5. 53 5. 53	
	3.82	4.46	4.15	3.50	4.03	4.65	4.06	5.53	原子炉本体の基礎基部

図 4-101 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉圧力容器及び原子炉本体の基礎)

161

R 0 W - 2 - 3 - 2 \odot 0 2

O 2 ③ VI-2-3-2 R 0

弾性設計用地震動Sd及び静的解析 (NS方向 原子炉圧力容器及び原子炉本体の基礎) 図 4-102 最大応答変位

162

R 0	
щ	
-2 - 3 - 2	
-2-	
М	
\odot	
0	

· 小湖여蝶 IN-PS - ◆						/			14F - PC
	Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	伽ろ
	0	0	0	0	0	0	0	0	原子炉压力容器頂部
	716	844	838	405	612	549	413	515	燃料交換ベローズ位置
	2840	3300	3280	1840	2480	2570	1780	2280	
	6890	1990	0667	4230	5910	5690	4310	5830	原子炉圧力容器スタビライザ位置
	7680	11000	7520	6150	8630	8900	6270	0269	
	14300	18600	12700	10700	15200	14500	12000	13700	
	25500	27500	24900	17400	23400	21100	22900	28000	
	33800	37000	34800	21700	28600	26400	30900	39200	原子炉圧力容器支持スカート位置
	45400 116000 128000	50100 124000 136000	$\begin{array}{c} 48300 \\ 116000 \\ 129000 \end{array}$	27200 71500 77300	$37500 \\ 97200 \\ 106000$	$34600 \\ 92800 \\ 103000$	$\begin{array}{c} 42600\\ 113000\\ 125000\end{array}$	55800 143000 158000	原子炉本体の基礎頂部
	146000	157000	149000	87200	122000	120000	147000	186000	
D N N N N N N N N N N N N N N N N N N N	176000	190000	181000	104000	148000	148000	181000	229000	
	207000	225000	214000	123000	176000	178000	218000	276000	原子炉本体の基礎基部

図 4-104 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉圧力容器及び原子炉本体の基礎)

164

O 2 ③ VI-2-3-2 R 0

燃料交換ベローズ位置 原子炉格納容器頂部 原子炉格納容器基部 備考 シヤラグ位置 静的解析 9.28 9.28 5. 53 5. 53 5. 53 9.28 9.28 7.48 6.49 6.49 7.48 Sd-N1 7.16 7.03 4.44 4.20 4.01 5.70 5.047.37 6.77 6.11 7.58 Sd-F3 6.45 6.13 5.92 3.75 4.01 4.08 4.03 6.77 5.46 4.58 4.04 Sd-F2 最大応答加速度(m/s²) 7.24 6.98 6.404.01 3.46 3.41 3.38 7.63 8.01 5.284.62 Sd-F1 3.17 3.15 3.06 5.415.17 4.97 4.86 3.35 4.61 4.043.71 Sd-D3 10.19.64 10.6 5.96 4.46 4.08 4.36 4.46 11.2 8.81 7.08 Sd-D2 9.05 8.65 4.82 4.36 4.68 4.65 8.00 6.70 5.9210.3 9.64 Sd-D1 9.54 9.04 8.69 4.47 4.37 4.22 5.5210.1 7.95 6.454.66 15.00 ¥−Sd-F3 0 0 10.00 加速度(m/s²) 000 - 静的解析 - Sector ** × 8 · dxp 5.00 8 I-J-bS · · ▲ Id-bS-0-IN-bS - 🔶 00

(m) .9.0

165

原子炉格納容器) 弹性設計用地震動Sd及び静的解析(EW方向 図 4-105 最大応答加速度

O 2 ③ VI-2-3-2 R 0

語来	6 里	原子炉格納容器頂部		燃料交換ベローズ位置		シャラグ位置							原子炉格納容器基部		
	静的解析	11.6	11.1	10.6	10.3	9.54		7.94	6.89	5.21	3.60	2.96	2.50		
	Sd-N1	10.4	9.92	9.49	9.21	8.60		7.21	6.30	4.83	3.42	2.86	2.46		
	Sd-F3	8.14	7.78	7.44	7.21	6.74		5.63	4.91	3.76	2.67	2.24	1.93		
变位 (mm)	Sd-F2	8.79	8.39	8.01	7.76	7.23		5.98	5.18	3.88	2.66	2.18	1.84		
最大応答変位 (mm)	Sd-F1	6.25	5.98	5.73	5.56	5.20		4.38	3.84	2.96	2.12	1.79	1.55		
	Sd-D3	9.91	9.46	9.03	8.73	8.11		6.74	5.84	4.40	3.06	2.54	2.18		
	Sd-D2	11.3	10.8	10.3	9.93	9.26		7.73	6.74	5.14	3.62	3.02	2.60		
	Sd-D1	11.1	10.6	10.1	9.73	9.04		7.47	6.44	4.79	3.23	2.61	2.20		
Sd-F2	静的解析	X ×0 × 0×	× × ×						A ACCOUNT OF A		C C C C C C C C C C C C C C C C C C C			0 5. 00 10. 00 15. 00	変位 (mn)
	L					(ш) .	9.0							

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

166

Id-ps -		• - Sd-D3				最大応答せん断力(×10 ³ N)	斩力(×10 ³ N)				
		c.I. nc	Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	贏光
_0			150	153	166	82.4	118	101	115	140	原子炉格納容器頂部
-0			292	297	324	161	230	196	226	279	
ŏ			1760 2190	2070 2500	1890 2360	934 1140	1350 1690	1300 1590	1340 1690	1680 2150	燃料交換ベローズ位置
	× 00 × 1	8	13300	13700	11700	6940	10600	9380	11600	14200	シャラグ位置
			14200	14500	12700	7470	11300	0266	12400	15100	
	×0× ×		14700	15000	13200	7830	11700	10400	13000	15800	
			15400	15700	14000	8440	12200	11000	13900	17000	
			15600	15800	14300	8700	12400	11300	14400	17600	
	₹× 80		16000 16000	16000 16000	$\begin{array}{c} 14700\\ 14700\end{array}$	9270 9270	13000 13000	11700 11700	15300 15300	18800 18800	原子炉格納容器基部
0 5000	10000	15000 20000	(法:要素)	要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。	置にせん断力	1を記載。なま	3. 最下端の1	要素は要素下	「端の質点位」	置にもせん働	所力を記載。
	せん断力(×10 ³ N)	(0 ³ N)	1		1	2				, i	

(m) .9.0

R 0 VI - 2 - 3 - 2 \bigcirc 0 2

枠囲みの内容は商業機密の観点から公開できません。

167

Sd-F1 Sd-F2	-X-F3			取	最大応答モーメント(×10 ⁶ N・mm)	V LU X IU N I	nm/			本部
		Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	備ろ
		0	0	0	0	0	0	0	0	原子炉格納容器頂部
		346	353	383	190	272	232	264	321	
		696	986	1080	533	763	649	747	916	燃料交換ベローズ位置
		3420	3870	3690	1750	2630	2440	2600	3260	
		9780	11200	10600	5050	7540	7060	7500	9500	シヤラグ位置
		68300	67200	62100	34800	53000	46900	58300	71600	
V V		109000	108000	98100	56100	85000	75300	93700	115000	
		180000	181000	163000	94000	142000	126000	157000	191000	
A X O W	Ø	255000	257000	230000	135000	201000	179000	224000	274000	
A A A A A A A A A A A A A A A A A A A	8	286000 309000	288000 311000	259000 280000	153000 166000	225000 244000	201000 218000	253000 275000	309000 336000	原子炉格納容器基部

168

O 2 ③ VI-2-3-2 R 0

原子炉しゃへい壁頂部 原子炉しゃ~い壁基部 備考 静的解析 6.497.48 6.496.49 7.48 7.48 Sd-N1 7.16 6.75 6.43 4.826.16 5.64Sd-F3 6.47 7.10 6.505.77 5.32 4.69 Sd-F2 最大応答加速度(m/s²) 7.63 7.16 6.55 5.323.90 7.23 Sd-F1 5.16 5.364.605.53 5.07 3.71 Sd-D3 7.49 9.83 7.36 6.605.28 8.21 Sd-D2 10.1 11.8 9.96 9.60 8.18 5.94Sd-D1 9.16 8.07 5.548.46 7.18 9.91 15.00-Y-Sd-F3 × 10.00 加速度(m/s2) - 静的解析 →--Sd-D2 0 0 8 �-5.00 4 4 0 0 -O-Sd-DI IN-bS - 🔶 00

0.P. (m)

169

O 2 ③ VI-2-3-2 R 0

原子炉しゃへい壁基部 原子炉しゃへい壁頂部 備考 静的解析 7.75 3.97 9.93 8.89 6.68 5.47Sd-N1 5.11 3.78 7.08 6.16 8.93 8.05 Sd-F3 6.05 5.313.87 2.91 6.76 4.64 Sd-F2 5.76 2.936.59 4.067.36 4.96最大応答変位(mm) Sd-F1 5.36 4.86 4.313.77 3.14 2.33Sd-D3 6.808.75 7.81 5.844.763.44 Sd-D2 8.93 7.83 6.77 9.93 5.55 4.04 Sd-D1 8.50 7.34 9.56 6.26 5.05 3.58 15.0010.00 Et a ● 静的解析 **-X-** Sd-D2 **-0-** Sd-F2 ÷ Š A 2 4 A defendence 5.00 1 ∕. 1 **Add** Id-bS-O--▲· Sd-F1 IN-bS - 🔶 00 (m) .9.0

図 4-110 最大応答変位 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉しゃへい壁)

変位 (mm)

170

O 2 ③ VI-2-3-2 R 0

(m) .9.0

図 4-111 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉しゃへい壁)

O 2 ③ VI-2-3-2 R 0

	Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	€ HII.
	0	0	0	0	0	0	0	0	原子炉しゃへい壁頂部
	9540	11900	8920	6480	9180	7430	4970	3540	
	17800	21900	15600	12100	19100	15100	10300	11800	,
×	24900	33700	23800	18400	27000	23000	18900	26700	
	44600	47300	42300	26300	37500	35100	36100	49000	
0000 × ∇	75400	75000	70700	43700	61700	52500	66000	86400	原子炉しゃ~い壁基部

弾性設計用地震動Sd及び静的解析(EW方向 原子炉しゃへい壁) 図 4-112 最大応答モーメント

172

R 0 VI - 2 - 3 - 2 \bigcirc 0 2

朱 卿	通	原子炉圧力容器頂部	燃料交換ベローズ位置		原子炉圧力容器スタビライザ位置				原子炉圧力容器支持スカート位置	原子炉本体の基礎頂部		原子炉本体の基礎基部		
	静的解析	11.2	11.2	11.2	8.98	8.98	7.79	7.79	7.79	6.49 6.49 5.53	5.53	5.53		
	Sd-N1	9.95	9.02	8.26	7.59	6.68	5.88	5.36	5.12	4.82 4.69 4.59	4.28	4.01		
	Sd-F3	14.6	12.5	10.8	9.16	7.71	6.05	4.89	4.94	4. 69 4. 61 4. 47	4.25	4.03		
≢度 (m/s²)	Sd-F2	13.2	11.5	10.2	9.21	7.90	6.42	5.16	4.64	3.90 3.75 3.63	3.46	3.38	-	
最大応答加速度(m/s ²)	Sd-F1	9.88	8.47	7.48	6.83	6.16	5.50	4.83	4.35	3. 71 3. 58 3. 43	3.21	3.06	-	
	Sd-D3	16.3	14.1	12.3	10.8	8.53	6.89	6.07	5.74	5.28 5.20 5.04	4.76	4.46	-	
	Sd-D2	23.8	20.5	17.9	15.4	11.9	8.64	7.43	7.06	5.94 5.87 5.64	5.19	4.65	-	
	Sd-D1	16.9	14.0	12.9	11.8	10.3	8.35	7.11	6.50	5.54 5.32 4.98	4.56	4.22	-	
		×	X	`~									20.00 30.00	52)
	静的解析	& XQ PA	k X X X	~ 600 9	X	×dot			0				10.00	加速度 (m/s ²)
-O-Sd-F1	IN-PS - 🔶			7							8		. 00	

173

O 2 ③ VI-2-3-2 R 0

				最大应答	最大応答変位 (mm)				
●-Sd-Fi2 ★-Sd-Fi3 ●●● 静的解析	Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	備考
X X X	13.2	13.5	12.2	7.04	9.62	8.91	11.7	13.4	原子炉压力容器顶部
Xo di gl	11.9	12.3	11.0	6.43	8.72	8.10	10.7	12.1	燃料交換ベローズ位置
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10.9	11.3	10.1	5.95	8.02	7.46	9.84	11.2	
bid p	9.95	10.4	9.18	5.52	7.41	6.89	9.13	10.3	原子炉圧力容器スタビライザ位置
	8.45	8.90	7.82	4.81	6.36	5.94	7.91	8.83	
	6.83	7.31	6.35	4.02	5.24	4.94	6.57	7.26	
	5.32	5.81	5.00	3.26	4.19	4.02	5.31	5.77	
	4.51	5.00	4.28	2.84	3.62	3.51	4.61	4.96	原子炉圧力容器支持スカート位置
	3.58 3.34	$\frac{4}{3.80}$	3. 44 3. 23	2. 33 2. 20	2.93 2.75	$2.91 \\ 2.75$	3. 78 3. 56	3.97 3.73	原子炉本体の基礎頂部
	2.99	3.44	2.91	2.01	2.48	2.51	3.24	3.37	
	2.55	2.99	2.52	1.76	2.14	2.20	2.82	2.91	
	2.20	2.60	2.18	1.55	1.84	1.93	2.46	2.50	原子炉本体の基礎基部

(ш) .9.0

変位 (mm)

174

R 0 VI - 2 - 3 - 2 \odot 0 2

枠囲みの内容は商業機密の観点から公開できません。

図 4-115 最大応答せん断力 弾性設計用地震動Sd及び静的解析(EW方向)原子炉圧力容器及び原子炉本体の基礎)

供表	C., 194	原子炉圧力容器頂部	燃料交換ベローズ位置		原子炉圧力容器スタビライザ位置				原子炉圧力容器支持スカート位置	原子炉本体の基礎頂部		原子炉本体の基礎基部	所力を記載。
	静的解析	161	808	1900	333	1840	4140	5680	7280	$ \begin{array}{c} 19600 \\ 21400 \\ 23000 \end{array} $	24600	24600	置にもせん惨
	Sd-N1	173	658	1480	669	1390	3130	4170	5180	15000 16200 17500	18700	18700	下端の質点位
	Sd-F3	248	976	2020	1560	1480	2820	3660	4330	11800 12800 13900	14900	14900	最下端の要素は要素下端の質点位置にもせん断力を記載。
斩力 (×10 ³ N)	Sd-F2	224	928	1890	1100	1650	3020	3930	4820	13300 14300 15300	16100	16100	3, 最下端の
最大応答せん断力(×10 ³ N)	Sd-F1	170	670	1380	1200	1140	2330	3260	4130	11100 12000 13000	13800	13800	を記載。なお,
	Sd-D3	278	1110	2280	1500	1760	3510	4400	5310	15000 16100 17200	18200	18200	置にせん断力
	Sd-D2	402	1610	3230	1870	2110	4130	5250	6070	16200 17100 18000	19100	19100	:要素上端の質点位置にせん断力を記載。
	Sd-D1	289	1240	2370	1550	1840	3670	4940	6180	16500 17500 18800	20000	20000	注:要素上

R WI - 2 - 3 - 2 \odot 02

0

175

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

注記*:各図上に記載の要素番号は表 3-67 に対応

図 4-117 Q-γ関係と最大応答値(弾性設計用地震動Sd,NS方向)

O 2 ③ VI-2-3-2 R 0

注記*:各図上に記載の要素番号は表 3-68 に対応

図 4-118 M- φ関係と最大応答値(弾性設計用地震動 Sd, NS 方向)

O 2 ③ VI-2-3-2 R

0

注記*:各図上に記載の要素番号は表 3-69 に対応

図 4-119 Q-γ関係と最大応答値(弾性設計用地震動Sd, EW 方向)

注記*:各図上に記載の要素番号は表 3-70 に対応

図 4-120 M- φ関係と最大応答値(弾性設計用地震動 Sd, EW 方向)

O 2 ③ VI-2-3-2 R

R VI - 2 - 3 - 2 \odot

	「単	• HIA.	
		Sd-N1	
		Sd-F3	
	s ²)	Sd-F2	
	最大応答加速度(m/s²)	Sd-F1	
	围	Sd-D3	
		Sd-D2	
		Sd-D1	
			_
91 F3 - 🗸	Sd-F3		

R 0

VI - 2 - 3 - 2

 \bigcirc

2

0

図 4-121 最大応答加速度 弹性設計用地震動 S d (鉛直方向 原子炉格納容器)

筆		原子炉格納容器頂部		燃料交換ベローズ位置		シヤラグ位置					原子炉格納容器基部	
	Sd-N1	0.301	0.301	0.300	0.300	0.298	0.294	0.290	0.282	0.272	0. 268 0. 263	
	Sd-F3	0.303	0.302	0.301	0.301	0.299	0.294	0.289	0.280	0.269	0.263 0.259	
	Sd-F2	0.346	0.346	0.345	0.345	0.343	0.339	0.335	0.328	0.318	0.313 0.308	
最大応答変位(mm)	Sd-F1	0.265	0.264	0.264	0.263	0.261	0.257	0.253	0.244	0.234	0.229 0.224	
	Sd-D3	0.411	0.411	0.409	0.408	0.404	0.393	0.383	0.365	0.343	0. 335 0. 328	
-	Sd-D2	0.458	0.458	0.456	0.455	0.451	0.441	0.433	0.418	0.400	0. 399 0. 398	
	Sd-D1	0.593	0.592	0.590		0.586	0.576	0.567	0.550	0.530	0.520 0.511	
→ - Sd-D3			-0-	-0-	0-	-0-		-0-				0. 600 0. 800
-X- Sd-D2 -0- Sd-F2		*	× < < <	∆ <mark>⇔</mark> ¢	400 0 **	×< 0 ×	- * 0 * *			A A A A	~~~ *** ***	0.400 変位 (mm)
I-l-b2 - ∂ - I-l-b3 - √ -	IN-PS - 🔶											0. 000 0. 200

図 4-122 最大応答変位 弹性設計用地震動 S d (鉛直方向 原子炉格納容器)

183

O 2 ③ VI-2-3-2 R 0

184

O 2 ③ VI-2-3-2 R 0

原子炉しゃへい壁頂部 原子炉しゃへい壁基部 備考 Sd-N1 2.23 2.22 2.21 2.14 2.03 2.19 Sd-F3 7.21 6.99 4.82 3.17 6.47 5.79Sd-F2 4.12 4.02 3.38 2.76 2.303.77 最大応答加速度(m/s²) Sd-F1 3.43 2.92 2.154.01 3.94 3.75 Sd-D3 7.43 7.13 5.834.89 3.42 6.58Sd-D2 8.87 8.70 60.09 4.35 8.19 7.27 Sd-D1 6.14 5.634.89 3.63 6.546.4410.00 → - Sd-D3 × 8.00 ¢ 0 0 6.00 加速度(m/s2) **-X-** Sd-D2 -O- Sd-F2 4.00 8 Id-bs - **d**-2.00 IN-b2-00.00

(ш) .Ч.О

図 4-124 最大応答加速度 弾性設計用地震動 S d (鉛直方向 原子炉しゃへい壁)

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

O 2 ③ VI-2-3-2 R 0

原子炉しゃへい壁頂部 原子炉しゃ~い壁基部 備考 注:要素上端の質点位置に軸力を記載。なお,最下端の要素は要素下端の質点位置にも軸力を記載。 Sd-N1 Sd-F3 Sd-F2 最大応答軸力(×10³ N) Sd-F1 Sd-D3 Sd-D2 Sd-D1 → - Sd-D3 $-\times$ ¥ 軸力(×10³ N) ð * * → Sd-D2 ж Id-bS-O--∳· Sd-F1 IN-b2 - 🔶 ò

0.P. (m)

К VI - 2 - 3 - 2 \odot 枠囲みの内容は商業機密の観点から公開できません。

O 2 ③ VI-2-3-2 R 0

弾性設計用地震動 S d (鉛直方向 原子炉圧力容器及び原子炉本体の基礎) 最大応答加速度 奚 4-127

188

原子炉圧力容器スタビライザ位置 原子炉圧力容器支持スカート位置 燃料交換ベローズ位置 原子炉本体の基礎頂部 原子炉本体の基礎基部 備考 原子炉压力容器頂部 Sd-N1 0.318 0.3150.300 0.263 0.317 0.317 0.312 0.308 0.303 $\begin{array}{c} 0.284 \\ 0.282 \\ 0.277 \end{array}$ 0.270 Sd-F3 0.352 0.3530.351 0.3490.322 0.3430.336 $\begin{array}{c} 0.298\\ 0.293\\ 0.283\end{array}$ 0.271 0.259 0.328 Sd-F2 0.362 0.340 $\begin{array}{c} 0.325\\ 0.322\\ 0.318 \end{array}$ 0.313 0.361 0.361 0.359 0.355 0.350 0.3440.308 最大応答変位 (mm) Sd-F1 0.319 0.318 0.310 $\begin{array}{c} 0.264 \\ 0.259 \\ 0.249 \end{array}$ 0.2370.317 0.3150.303 0.2950.2900.224Sd-D3 0.4200.4190.418 0.4160.4100.395 0.389 $\begin{array}{c} 0.362 \\ 0.357 \\ 0.347 \end{array}$ 0.3360.328 0.403Sd-D2 0.468 0.479 0.477 $\begin{array}{c} 0.\ 417\\ 0.\ 414\\ 0.\ 406\end{array}$ 0.398 0.479 0.474 0.4600.4500.444 0.398 Sd-D1 0.627 0.626 0.616 0.588 $\begin{array}{c} 0.557\\ 0.552\\ 0.540 \end{array}$ 0.526 0.628 0.623 0.607 0.596 0.511 0.800 ► Sd-F3 0.600 0 0 0 -C O ωģ 0 0 × ×× -×-→→−Sd-D2 ----------Sd-F2 変位(mm) 0.400 < < < ~ 0 00 000 d d \$\$ 0 8 8 8 \$\$ \$\$ ŝ ∆ & d 0.200 I-Ps · · Sd−F1 Id-bS-0-IN-PS - -0.000

0.P. (m)

189

弾性設計用地震動 S d (鉛直方向 原子炉圧力容器及び原子炉本体の基礎) 図 4-128 最大応答変位

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

				取、	嵌 不 心 浴 軸 刀 (× 10 ⁻ N)	(N)			本型
		Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	た * 田和
		89.4	112	105	51.6	51.7	85.4	37.8	原子炉圧力容器頂部
		652	814	760	376	377	621	276	燃料交換ベローズ位置
		1140	1410	1320	651	654	1080	480	
		1460	1800	1680	832	838	1380	617	原子炉圧力容器スタビライザ位置
		1880	2320	2150	1070	1080	1770	803	
		- 2270	2790	2550	1280	1300	2120	977	
		2660	3270	2930	1480	1520	2450	1160	
		5570	6830	5570	2970	3120	4810	2540	原子炉圧力容器支持スカート位置
	**	15100 16000 16900	$ \begin{array}{c} 18700 \\ 19800 \\ 20800 \end{array} $	15500 16400 17300	8720 9250 9780	8230 8840 9480	$14600 \\ 15500 \\ 16300$	6340 6880 7450	原子炉本体の基礎頂部
_×	_¥ _&	17600	21700	18000	10300	10100	17000	7980	
^	-× -⊗	17600	21700	18000	10300	10100	17000	7980	原子炉本体の基礎基部

R 0 VI - 2 - 3 - 2 \bigcirc 0 2

表 4-2 静的震度(鉛直方向)

鉛直方向静的震度	0. 24 (1. 0Cv)	0. 29 (1. 2Cv)
種別	建物・構築物	機器・配管系

外 期	Ss-F3 Ss-N1	14.4 13.0 原子炉格納容器頂部	13.4 12.8	12.4 12.5 燃料交換ベローズ位置	11.7 12.3	10.2 11.8 シャラグ位置	 9.36 11.2	9.04 10.7	8.40 9.79	8.74 8.63	9.41 8.19	
(7	Ss-F2	14.0	13.0	12.3	11.9	11.1	9.71	8.84	7.50	7.89	8.00	7.96
最大応答加速度(m/s*)	Ss-F1	10.9	10.5	10.1	9.81	9.23	8.10	7.33	6.11	6.28	6.54	6.64
愚	Ss-D3	17.0	16.0	15.0	14.3	12.7	10.4	9.01	7.17	6.57	6.89	7.25
	Ss-D2	19.0	18.0	17.0	16.3	14.8	11.7	9.72	8. 23	7.28	7.56	7.51
	Ss-D1	15.4	14.5	13.6	13.1	12.4	10.3	9.38	8.50	7.64	7.30	7.12

図 4-130 最大応答加速度 基準地震動 S a (NS 方向 原子炉格納容器)

枠囲みの内容は商業機密の観点から公開できません。

O 2 ③ VI-2-3-2 R 0

	生型	调与	原子炉格納容器頂部		燃料交換ベローズ位置		シャラグ位置								原子炉格納容器基部		
		Ss-N1	25.0	23.9	22.8	22.1	20.6		17.2	15.0		11.5	8.04	6.70	5.76		
		Ss-F3	18.7	17.9	17.1	16.6	15.5		13.0	11.3		8.63	6.08	5.06	4.33		
		Ss-F2	19.5	18.6	17.7	17.1	15.9		13.1	11.3		8.42	5.72	4.67	3.95		
	最大応答変位(mm)	Ss-F1	12.9	12.4	11.8	11.5	10.7		8.97	7.85		6.04	4.30	3.60	3.11		
	-4	Ss-D3	17.9	17.1	16.3	15.7	14.5		12.0	10.4		7.69	5.27	4.36	3.72		
		Ss-D2	23.2	22.1	21.1	20.4	19.0		15.9	13.8		10.5	7.29	6.02	5.13		
		Ss-D1	24.3	23.2	22.1	21.4	19.9		16.5	14.3		10.8	7.37	6.03	5.09		
- C- D9	Se-F3		×													30.0	
	- X- 2/1-20-4		 ×	X X X X X X X X X X X X X X X X X X X			× ×	111 11	XXX XXX			Side and a second se				10.0 20.0	変位(mm)
		-Ss-NI								Ý.	- · ·	Ø∕ √	VOX BO	Notes -	VQ KK	0.0	

(m) .9.0

193

図 4-131 最大応答変位 基準地震動 S a (NS 方向 原子炉格納容器)

O 2 ③ VI-2-3-2 R 0

0 R VI - 2 - 3 - 2 \odot 2 0

枠囲みの内容は商業機密の観点から公開できません。

194

10000

₹\$

\$

\\$ 8

4

0.P. (m)

-A· Ss-FI -O-Ss-DI

IN-SS-

	_		_					_	_						
		で思		原子炉格納容器頂部		燃料交換ベローズ位置	シャラグ位置						原子炉格納容器基部		
		Ss-N1		0	431	$1230 \\ 4350$	12600		128000	207000	346000	492000	553000 600000		
		Ss-F3		0	506	1410 4580	13000		103000	167000	279000	397000	446000 485000		
	N • mm)	Ss-F2		0	486	1360 4420	12500		1 09000	174000	289000	408000	458000 494000		
	最大応答モーメント(×10 ⁶ N・mm)	Ss-F1		0	381	1080 3560	10300		69500	112000	186000	267000	301000 327000		
	最大応行	Ss-D3		0	576	1620 6330	18300		103000	163000	266000	375000	420000 454000		
		Ss-D2		0	657	1850 6160	17600		124000	200000	332000	471000	529000 573000		
		Ss-D1		0	525	1470 5230	15200		127000	205000	342000	484000	544000 589000		
	Sic-F3													600000 800000	モーメント(×10° N・m)
C DO	Sc-F2	2										A A A		00 40000	モーメン

<

(m) .9.0

図4-133 最大応答モーメント 基準地震動 S NS 方向 原子炉格納容器)

O 2 ③ VI-2-3-2 R 0

-O- Ss-D1 -Ss-F1 -Ss-N1 枠囲みの内容は商業機密の観点から公開できません。

195

O 2 ③ VI-2-3-2 R 0

図 4-134 最大応答加速度 基準地震動 S NS 方向 原子炉しやへい壁)

原子炉しゃへい壁頂部 原子炉しゃへい壁基部 備考 Ss-N1 20.8 12.09.03 18.7 16.414.3 Ss-F3 13.6 12.010.5 8.75 6.63 15.1 Ss-F2 11.29.17 6.66 16.513.014.8 最大応答変位(mm) Ss-F1 10.7 9.55 7.26 6.07 4.65 8.35 Ss-D3 16.114.5 12.610.88.73 6.18 Ss-D2 20.1 15.9 13.9 11.5 8.49 18.1 Ss-D1 19.9 17.7 15.4 13.4 11.1 8.25 25.0 → - Ss-1)3 20.0 8 8 dy 15.0 → Ss-D2 -Se -1 -20 10.0 4 < -...⊅ 8 4 4 -O-Ss-DI -Ss-FI -Ss-NI 5.0 1 0.0

0.P. (m)

図 4-135 最大応答変位 基準地震動 S s (NS 方向 原子炉しゃへい壁)

変位(mm)

197

O 2 ③ VI-2-3-2 R 0

∆

(m) .9.0

2=

a

-A· Ss-FI IN-SS - 🔶

-O-Ss-DI

注:要素上端の質点位置にせん断力を記載。なお,最下端の要素は要素下端の質点位置にもせん断力を記載。

20000

15000

10000

5000

C

R 0 VI - 2 - 3 - 2 \bigcirc 0 2 枠囲みの内容は商業機密の観点から公開できません。

O 2 ③ VI-2-3-2 R 0

図4-137 最大応答モーメント 基準地震動Ss (NS方向 原子炉しゃへい壁)

原子炉圧力容器スタビライザ位置 原子炉圧力容器支持スカート位置 燃料交換ベローズ位置 原子炉本体の基礎頂部 原子炉本体の基礎基部 原子炉圧力容器頂部 備考 16.6 15.414.514.07.84 Ss-N1 13.5 12.4 10.8 9.94 9.15 8.84 8.37 8.10 Ss-F3 25.9 22.0 19.417.011.2
 11.0
 11.0
 10.510.1 14.1 13.49.85 13.412.9 Ss-F2 24.3 16.921.419.1 14.0 9.50 8.72 8.57 8.22 8.03 7.96 11.8 9.89 最大応答加速度(m/s²) Ss-F1 $\begin{array}{c}
 8.10 \\
 7.88 \\
 7.37
 \end{array}$ 6.956.64 17.4 14.9 12.9 11.6 9.98 9.43 10.3 10.6 Ss-D3 29.1 26.223.9 21.9 11.1 8.80 8.63 8.08 8.08 7.64 7.25 19.0 14.8 10.1 Ss-D2 29.7 26.2 23. 3 20. 7 17.211.4 $9.20 \\ 8.91 \\ 8.47 \\ 8.47 \\ end{tabular}$ 13.6 10.2 8.01 7.51 Ss-D1 24.9 22. 1 19. 4 17.0 12.611.4 $9.90 \\ 9.52 \\ 9.00$ 8. 15 7. 12 28.5 14.9 40.00 → Ss-F3 30.00 æ. B à. **----** Ss-F2 20.00 8 8 Ø \$ N 2 **♦ ♦** 10.00 1 P-SS-FI -O-Ss-DI IN-SS-00.0

(m) .9.0

加速度(m/s²)

200

O 2 ③ VI-2-3-2 R 0

原子炉圧力容器スタビライザ位置 原子炉圧力容器支持スカート位置 燃料交換ベローズ位置 原子炉本体の基礎頂部 原子炉本体の基礎基部 原子炉圧力容器頂部 備考 Ss-N1 21.1 10.9 9. 03 8. 51 7. 62 6.59 5.76 26.8 24.522.7 18.4 12.5 15.4 Ss-F3 8.99 6. 63 6. 28 5. 65 4.93 4.33 19.3 17.6 16.3 15.1 11.0 13.1 7.91 Ss-F2 21.8 9.56 $6.66 \\ 6.24 \\ 5.49$ 3.95 19.9 18.3 16.9 12.0 14.6 8.24 4.64 最大応答変位(mm) Ss-F1 4.65 4.41 4.00 3.52 12.8 11.8 10.9 9.42 7.81 6.32 5.543.11 14.1 Ss-D3 22.4 20.3 18.6 11.9 9.277.85 $\begin{array}{c} 6.18\\ 5.74\\ 5.03 \end{array}$ 4.31 3.72 17.1 14.6Ss-D2 22.4 20.8 26.6 24.3 15.010.5 $\begin{array}{c}
 8.49 \\
 7.97 \\
 7.04
 \end{array}$ 5.99 5.13 18.0 12.1 Ss-D1 25.8 23.5 21.7 20.1 14.3 11.5 10.0 8.25 7.76 6.90 5.91 5.09 17.3 30.00 → Ss-F3 8.8 8 B 8 3 20.00 0 8 → Ss-D2 → Ss-F2 Ô 変位(mm) × NO NO 8 ₄.. X 4 <u>ک</u>. ک 10.00 ⊲. 4 4 JA-Ss-FI IN-SS-0.00

0.P. (m)

201

基準地震動S s (NS 方向 原子炉圧力容器及び原子炉本体の基礎) 図 4-139 最大応答変位

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

原子炉圧力容器支持スカート位置 原子炉圧力容器スタビライザ位置 燃料交換ベローズ位置 原子炉本体の基礎頂部 原子炉本体の基礎基部 原子炉压力容器頂部 備考 注:要素上端の質点位置にせん断力を記載。なお,最下端の要素は要素下端の質点位置にもせん断力を記載。 $\begin{array}{c} 27300\\ 29600\\ 31800\end{array}$ Ss-N1 Ss-F3 $\begin{array}{c} 21800\\ 23700\\ 26300\end{array}$ $\begin{array}{c} 24500\\ 26100\\ 27500\end{array}$ Ss-F2 最大応答せん断力(×10³N) $\begin{array}{c}
 18700 \\
 20600 \\
 22600
 \end{array}$ Ss-F1 $25900 \\ 27100 \\ 28000$ Ss-D3 Ss-D2 $28300 \\ 30200 \\ 32200 \\ 32200 \\$ Ss-D1 $28700 \\ 31200 \\ 3370$ C

O 2 ③ VI-2-3-2 R

1		-		_								_	-	
	希期	通行	原子炉压力容器頂部	燃料交換ベローズ位置		原子炉圧力容器スタビライザ位置				原子炉压力容器支持スカート位置	原子炉本体の基礎頂部			原子炉本体の基礎基部
		Ss-N1	0	769	2840	7250	10700	21200	37000	49900	$\begin{array}{c} 70900\\ 185000\\ 205000\end{array}$	243000	303000	368000
		Ss-F3	0	1220	5330	12100	16900	26800	38200	46200	60100 157000 173000	202000	248000	297000
	N • mm)	Ss-F2	0	1130	4350	10400	12700	23000	38600	49800	69200 172000 190000	222000	272000	326000
	最大応答モーメント(×10 ⁶ N・mm)	Ss-F1	0	824	3410	7810	10800	18400	29300	37800	50100 126000 138000	161000	197000	237000
	最大応	Ss-D3	0	1360	5130	12700	12200	19000	38500	54900	$77700 \\ 185000 \\ 206000 \\ 00$	240000	293000	347000
		Ss-D2	0	1400	5400	12700	16100	27500	46700	59500	77800 199000 222000	261000	321000	385000
		Ss-D1	0	1320	5020	12300	13000	23600	42000	55900	$\begin{array}{c} 74600\\ 190000\\ 206000\end{array}$	240000	301000	369000
CU.	년 11 12													ě

203

O 2 ③ VI-2-3-2 R 0

O 2 ③ VI-2-3-2 R 0

図 4-142 最大応答加速度 基準地震動 S S (EW 方向 原子炉格納容器)

204

燃料交換ベローズ位置 原子炉格納容器頂部 備考 原子炉格納容器基部 シャラグ位置 Ss-N1 21.5 20.6 19.7 19.1 9.87 6.95 5.80 4.98 14.9 13.017.9 Ss-F3 16.0 15.3 14.6 14.2 9.65 5.304.473.8613.27.41 11.1 Ss-F2 5.97 4.96 4.24 18.9 18.1 17.3 16.8 15.6 13.0 11.38.54 最大応答変位 (mm) Ss-F1 13.0 12.4 11.9 11.6 6.15 4.43 3.74 3.24 9.07 7.96 10.8 Ss-D3 18.2 17.4 16.6 16.1 14.9 5.414.403.6912.410.7 7.96 Ss-D2 21.5 20.5 19.6 19.0 17.7 14.8 12.8 6.68 5.51 4.68 9.64 Ss-D1 24.0 23.021.921.219.8 16.4 14.2 7.19 5.86 4.93 10.6 30.00 → - Ss-D3 C 20.00 8 **×** - Ss-D2 - Ss-F2 da dix v 変位(mm) Ô × 1 d d 10.00 4 -O-Ss-DI -B··Ss-FI IN-SS - 0. 00

0.P. (m)

205

図 4-143 最大応答変位 基準地震動 S s (EW 方向 原子炉格納容器)

O 2 ③ VI-2-3-2 R 0

		 					_			 _		-
弁理	いまた	原子炉格納容器頂部		燃料交換ベローズ位置	シャラグ位置						原子炉格納容器基部	所力を記載。
	Ss-N1	207	407	2380 3020	25100	26300	0.7900	71200	28600	29200	30400 30400	立置にもせんり
	Ss-F3	209	408	2740 3340	18300	19500	00606	0.0707	21400	21800	22700 22700	素下端の質点
0 ³ N)	Ss-F2	229	446	2700 3260	22300	23500	00006	0014.7	25700	26200	27800 27800	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
最大応答せん断力(×10 ³ N)	Ss-F1	168	323	2050 2460	14400	15400	16100	OOTOT	17400	17900	18900 18900	なお, 最1
最大応答	Ss-D3	288	560	3190 3990	22100	23600	24600	00077	26100	26700	27800 27800	注:要素上端の質点位置にせん断力を記載。
	Ss-D2	269	522	3220 3980	26200	97300	98100	00107	29400	29800	31400 31400	るでのではない。
	Ss-D1	244	475	3060 3670	28900	30300	21900	00710	32800	33400	34300 34300	□ (注:要素上端)

* 注: 要素上端の買点位直にせん)が力を記載。なお, 歳 小端の要素は 40000 <u>80</u> 30000 8 Q C **×-××** ⊲-⊲⊲ 20000 _**≹**-- ₹ ⋬ ধ্ব

4

Q **QQ**

(m) .9.0

→ - Ss-D3 → Ss-F3

→ Ss-h2

-o-Ss-DI IN-SS - �-

せん断力(×103 N)

10000

			最大応答	最大応答モーメント(×10 ⁶ N・mm)) ⁶ N • mm)			備老
	Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	C+ H/
	0	0	0	0	0	0	0	原子炉格納容器頂部
	563	619	663	386	527	481	476	
	1580 5670	1740 6210	1860 6270	1080 3760	1480 5070	1360 5140	1350 4660	燃料交換ベローズ位置
	16300	17800	17900	11000	14600	14900	13500	シャラグ位置
	142000	129000	115000	72100	111000	91900	123000	
	228000	207000	183000	116000	178000	148000	198000	
O	379000	343000	302000	194000	296000	246000	329000	
A X X X	538000	484000	428000	278000	420000	349000	468000	
∆ × o	604000	543000 5 27000	481000 590000	314000	472000 519000	392000 495000	526000 570000	间子后核納农哭其並
	000400	00100	000070	MATLA	000710	000075	000010	
400000 600000 800000	000							
モーメント(×10º N・mm)								

Ś

(m) .9.0

図4-145 最大応答モーメント 基準地震動Ss(EW方向)原子炉格納容器)

200000

C

207

R 0 VI - 2 - 3 - 2 \bigcirc 0 2

> → Ss-Fl IN-SS - 🔶

原子炉しゃへい壁頂部 原子炉しゃへい壁基部 備考 Ss-N1 9.28 12.7 12.2 11.412.9 10.7 Ss-F3 13.413.1 11.611.1 9.72 13.9 Ss-F2 14.9 13.310.7 8.07 15.3 15.3 最大応答加速度(m/s²) Ss-F1 11.611.3 11.511.3 10.17.91 Ss-D3 13.6 13.012.511.1 9.27 16.1 Ss-D2 16.614.6 14.6 13.9 12.1 10.0 Ss-D1 16.3 15.9 12.7 9.45 17.2 15.120.00 ◆ - Ss-1)3 000 Road And Contraction of the second se 15.00 ×× * \$ \$ \$._ \\ 加速度(m/s2) **X**-Ss-D2 10.00 5.00 H-Ss-DI IN-SS - 🔶 00 d

(m) .9.0

208

図 4-146 最大応答加速度 基準地震動 S S (EW 方向 原子炉しゃへい壁)

O 2 ③ VI-2-3-2 R 0

原子炉しゃへい壁基部 原子炉しゃへい壁頂部 備考 Ss-N1 18.6 14.7 12.8 10.67.83 16.8 Ss-F3 13.5 12.1 10.6 77.77 9.27 5.85Ss-F2 16.312.9 11.214.7 9.23 6.73 最大応答変位(mm) Ss-F1 11.5 10.5 9.30 8.15 6.79 5.01Ss-D3 14.4 12.5 16.1 10.7 8.68 6.17 Ss-D2 14.4 18.3 16.412.5 10.3 7.49 Ss-D1 18.0 15.6 13.420.210.9 7.93 25.00→ - Ss-1)3 20.00 0 8 Q. 0 15.00 Q Q Q **---** Ss-D2 --- Ss-F2 × 1 dy 10.00 ♣. × A DAY X ĝ 1 I(l−SS – **O**– Is-SS – **S**– Ss−NI 5.00 0.00

0.P. (m)

図 4-147 最大応答変位 基準地震動 S (EW 方向 原子炉しゃへい壁)

変位(mm)

209

O 2 ③ VI-2-3-2 R 0

(m) .9.0

せん断力(×10³N)

O 2 ③ VI-2-3-2 R 0

O 2 ③ VI-2-3-2 R 0

原子炉圧力容器スタビライザ位置 原子炉压力容器支持スカート位置 燃料交換ベローズ位置 原子炉本体の基礎基部 原子炉本体の基礎頂部 原子炉压力容器頂部 備考 Ss-N1 13.09.28 8.88 8.58 11.08.17 14.4 10.28.65 18.1 15.9 12.4 11.6Ss-F3 31.2 22.9 19.5 9.84 9.72 9.57 9.25 8.75 8.25 26.6 15.412.4 10.2Ss-F2 22.9 20.4 18.1 8.07 7.66 7.03 6. 76 6. 69 26.2 9.62 15.2 12.5 10.5 最大応答加速度(m/s²) Ss-F1 23.8 17.9 15.5 $7.91 \\ 7.41 \\ 6.96$ 6.4620.6 11.0 10.29.23 6.05 12.4 Ss-D3 20.6 27.3 11.0 9.27 8.64 8.11 7.2023.3 18.3 15.1 13.5 9.88 6.96 Ss-D2 31.7 22.8 20.0 18.3 12.410.6 $\begin{array}{c}
 10.0 \\
 9.93 \\
 9.71
 \end{array}$ 26.3 16.0 9.24 8.71 Ss-D1 21.9 20.2 13.211.4 $9.45 \\ 9.03 \\ 8.39$ 6.88 23.7 18.2 7.68 27.4 16.3 40.00 -◆ - Ss-D3 ➡ Ss-F3 30.00 8√√ 加速度(m/s2) 20.00 × N O 2 8 Ø 0 0 10.00 -Ss-NI I(l-sS-O IA-sS · Ss-F1 00

(m) .9.0

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

原子炉圧力容器支持スカート位置 原子炉圧力容器スタビライザ位置 原子炉本体の基礎頂部 燃料交換ベローズ位置 原子炉本体の基礎基部 原子炉圧力容器頂部 備考 19.0 Ss-N1 24.3 22.2 20.5 16.511.1 9.60 $\frac{7}{7}$. 83 7. 35 6. 63 4.98 5.72 13.8 Ss-F3 16.2 14.911.9 $5.85 \\ 5.52 \\ 5.03$ 4.40 17.9 13.8 8.07 7.07 3.86 9.90 Ss-F2 17.8 12.021.1 19.3 16.6 14.4 9.60 $6.73 \\ 6.31 \\ 5.68$ 4.89 8.31 4.24 最大応答変位 (mm) Ss-F1 15.013.8 12.8 11.9 8.70 7.07 6.15 $5.01 \\
 4.72 \\
 4.27$ 3.71 10.43.24 Ss-D3 22.1 20.0 18.4 16.9 11.8 7.82 $\frac{6}{5}, \frac{17}{74}$ 5, 11 4.32 3.69 14.4 9.20Ss-D2 22.0 24.2 20.218.7 13.4 9.25 $7.49 \\ 7.01 \\ 6.30$ 5.414.68 16.1 10.7 Ss-D1 22.4 20.6 14.5 26.8 24.4 11.5 9.81 $7.93 \\ 7.41 \\ 6.65$ 5.70 4.93 17.7 30.00 -X-Ss-F3 0 ~ C 8 0 20.00 0 % 0 8 **×** Ss-D2 × Dox d <u>م.</u> 変位(mm) XX 10.00 → Ss-PII IN-SS-00 0.P. (m)

原子炉圧力容器及び原子炉本体の基礎) 最大応答変位 基準地震動 S s (EW 方向 図 4-151

213

O 2 ③ VI-2-3-2 R 0

原子炉圧力容器スタビライザ位置 原子炉圧力容器支持スカート位置 燃料交換ベローズ位置 原子炉本体の基礎頂部 原子炉本体の基礎基部 原子炉压力容器頂部 備考 注:要素上端の質点位置にせん断力を記載。なお,最下端の要素は要素下端の質点位置にもせん断力を記載。 26900
 29300
 31700Ss-N1 Ss-F3 $21800 \\ 23900 \\ 26200$ Ss-F2 $25300 \\ 27400 \\ 2950$ 最大応答せん断力(×10³N) Ss-F1 $21700 \\ 23700 \\ 25600$ Ss-D3 $\begin{array}{c} 26200\\ 28000\\ 29700 \end{array}$ 2770 Ss-D2 $\begin{array}{c} 27000\\ 29100\\ 31200 \end{array}$ 2550 Ss-D1 $29100 \\ 31600 \\ 34000$ CHARLE S せん断力(×10³N) -X-Ss-D2 -O-Ss-F2

図 4-152 最大応答せん断力 基準地震動Ss(EW 方向 原子炉圧力容器及び原子炉本体の基礎)

O 2 ③ VI-2-3-2 R 0

Id−Ss−D1 IS-Ss−F1

ð

0.P. (m)

(m) .9.0

図 4-153 最大応答モーメント 基準地震動 S S (EW 方向 原子炉圧力容器及び原子炉本体の基礎)

O 2 ③ VI-2-3-2 R 0

注記*:各図上に記載の要素番号は表 3-67 に対応

図 4-154 Q-γ関係と最大応答値(基準地震動Ss,NS方向)

注記*:各図上に記載の要素番号は表 3-68 に対応

図 4-155 M- φ関係と最大応答値(基準地震動Ss,NS方向)

0

Ч

VI - 2 - 3 - 2

 \odot

2

注記*:各図上に記載の要素番号は表 3-69 に対応

図 4-156 Q-γ関係と最大応答値(基準地震動Ss, EW 方向)

注記*:各図上に記載の要素番号は表 3-70 に対応

図 4-157 M- φ関係と最大応答値(基準地震動Ss, EW 方向)

表 4-3 基準地震動Ssによるばね反力

図 4-158 最大応答加速度 基準地震動 S S (鉛直方向 原子炉格納容器)

枠囲みの内容は商業機密の観点から公開できません。

田田	€ 豊	原子炉格納容器頂部		燃料交換ベローズ位置	シャラグ位置							原子炉格納容器基部			
	Ss-N1	0.602	0.602	0.600 0.599	0. 596		0.587	0.579	0.564	0.544	0.535	0.526			
	Ss-F3	0.605	0.604	0.602 0.601	0.597		0.587	0.577	0.560	0.537	0.526	0.517			
	Ss-F2	0.692	0.691	0.690	0.686		0.678	0.670	0.655	0.635	0.625	0.616			
最大応答変位 (mm)	Ss-F1	0.529	0.528	0.527 0.526	0.522		0.513	0.505	0.488	0.467	0.457	0.448			
当	Ss-D3	0.709	0.707	0.705 0.703	0.696		0.677	0.661	0.629	0.592	0.577	0.565			
	Ss-D2	0.790	0.789	0.786 0.784	0.778		0.761	0.746	0.720	0.690	0.687	0.686			
	Ss-D1	1.03	1.02	1.02	1.01		0.993	0.978	0.948	0.913	0.896	0.881			
		0	-0	-00									1. 000 1. 500		
		×0\$	* 0 *		<× >> ⊱> 1- <		×- ×- ×-		 4 44	 Δ xoox Δ			0.500 1.0	変位(mm)	
Ss-F1	IN-ss-											7	0.000		
	L		Notes 1		(u	n) .4	.0						P		

図 4-159 最大応答変位 基準地震動 S S (鉛直方向 原子炉格納容器)

222

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

図 4-160 最大応答軸力 基準地震動 S S (鉛直方向 原子炉格納容器)

O 2 ③ VI-2-3-2 R 0

最大応答軸力(×10³ N)

原子炉しゃへい壁頂部 備考 4.45Ss-N1 4.41 4.37 4.27 4.44 Ss-F3 14.514.0 13.011.69.64 Ss-F2 8.23 7.53 6.76 5.518.04 最大応答加速度(m/s²) Ss-F1 7.87 7.49 6.86 5.83 8.01 Ss-D3 11.410.1 12.9 12.3 8.42 Ss-D2 10.5 14.2 15.315.0 12.6 Ss-D1 11.1 10.69.70 8.43 11.3 → - Ss-D3 → Ss-F3 × * 0 0 → Ss-D2 \$ 0 → Ss-D1

原子炉しゃへい壁基部

4.05

6.34

4.59

4.30

5.89

7.50

6.26

10

.0

(m) .q.0

0

0

IN-SS-

0

0

20.00

15.00

10.00

5.00

00.00

加速度(m/s²)

枠囲みの内容は商業機密の観点から公開できません。

224

0 Ч VI - 2 - 3 - 2 \odot 2 0

原子炉しゃへい壁頂部 原子炉しゃへい壁基部 備考 0.671 0.656 0.613 0.568 Ss-N1 0.639 0.667 Ss-F3 0.837 0.827 0.800 0.760 0.697 0.595Ss-F2 0.773 0.745 0.703 0.799 0.792 0.649最大応答変位(mm) Ss-F1 0.759 0.750 0.7250.687 0.6270.528 Ss-D3 0.790 0.832 0.8200.753 0.7040.623Ss-D2 0.992 0.9460.880 0.719 0.7771.01Ss-D1 1.17 1.16 1.14 1.10 1.05 0.960

225

O 2 ③ VI-2-3-2 R 0

図 4-163 最大応答軸力 基準地震動 S (鉛直方向 原子炉しゃへい壁)

226

基準地震動Ss(鉛直方向 原子炉圧力容器及び原子炉本体の基礎) 図 4-164 最大応答加速度

Se-F1 Se-F9	Sc-F3			~~	最大応答変位 (mm)				科型
		Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備ろ
* &	0-	1.09	0.826	0.723	0.637	0.723	0.705	0.635	原子炉圧力容器頂部
* * *	-0	1.09	0.825	0.722	0.636	0.722	0.704	0.634	燃料交換ベローズ位置
- * *	-0	1.08	0.823	0.720	0.634	0.721	0.701	0.633	
*- *-	-0	1.08	0.818	0.716	0.630	0.717	0.697	0.630	原子炉圧力容器スタビライザ位置
*	-0-	1.07	0.807	0.707	0.620	0.710	0.686	0.624	
- * -		1.05	0.792	0.695	0.606	0.699	0.671	0.615	
		1.03	0.776	0.680	0.590	0.687	0.655	0.605	
×	4	1.02	0.765	0.671	0.579	0.679	0.644	0.599	原子炉圧力容器支持スカート位置
××	0	0.960 0.951 0.930	0.719 0.713 0.699	0.623 0.615 0.599	0.528 0.518 0.498	$\begin{array}{c} 0.649\\ 0.644\\ 0.636 \end{array}$	0.595 0.585 0.565	0.568 0.564 0.553	原子炉本体の基礎頂部
X	2	0.907	0.686	0.579	0.474	0.626	0.542	0.540	
	~	0.881	0.686	0.565	0.448	0.616	0.517	0.526	原子炉本体の基礎基部

図 4-165 最大応答変位 基準地震動 S (鉛直方向 原子炉圧力容器及び原子炉本体の基礎)

228

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

図 4-166 最大応答軸力 基準地震動 S (鉛直方向 原子炉圧力容器及び原子炉本体の基礎)

推	C III	原子炉圧力容器頂部	燃料交換ベローズ位置		原子炉圧力容器スタビライザ位置				原子炉圧力容器支持スカート位置	原子炉本体の基礎頂部			原子炉本体の基礎基部	Â
	Ss-N1	75.6	552	960	1240	1610	1960	2320	5070	$12700\\13800$	14900	16000	16000	こも軸力を記す
	Ss-F3	171	1250	2160	2760	3540	4230	4890	9610	29200 30900	32600	34000	34000	端の質点位置
N)	Ss-F2	104	753	1310	1680	2160	2600	3040	6240	$16500\\17700$	19000	20200	20200	最下端の要素は要素下端の質点位置にも軸力を記載。
最大応答軸力(×10 ³ N)	Ss-F1	104	751	1310	1670	2140	2550	2950	5930	$17500\\18500$	19600	20500	20500	なお、最下端の
最大	Ss-D3	181	1310	2270	2900	3700	4390	5040	9590	26600 28200	29700	31000	31000	
	Ss-D2	193	1410	2430	3100	4000	4810	5640	11800	$32200 \\ 34000$	35800	37400	37400	要素上端の質点位置に軸力を記載。
	Ss-D1	155	1130	1960	2510	3240	3910	4580	0096	25900 27500	29000	30400	30400	注:要素上端
														000

O 2 ③ VI-2-3-2 R 0

- 4.2.2 炉内構造物系
- (1) 弾性設計用地震動Sd及び静的解析

水平方向の弾性設計用地震動Sdによる地震応答解析及び静的解析より得られた各点の最 大応答加速度,最大応答変位,最大応答せん断力及び最大応答モーメントを図4-167~図4-198に,制御棒駆動機構ハウジングレストレントビーム,シュラウドサポート,上部格子板, 炉心支持板,炉心シュラウド支持ロッド,上部サポート及び下部スタビライザに加わる力(ば ね反力,せん断力)を表4-4に示す。燃料集合体の最大応答相対変位については,図4-172 及び図4-188に示す。

鉛直方向の弾性設計用地震動Sdによる地震応答解析より得られた各点の最大応答加速度, 最大応答変位及び最大応答軸力を図4-199~図4-207に示す。また,鉛直方向の静的解析は 実施せず,一律に算定することから,表4-5に鉛直方向の静的震度を示す。

(2) 基準地震動 S s

水平方向の基準地震動Ssによる地震応答解析より得られた各点の最大応答加速度,最大 応答変位,最大応答せん断力及び最大応答モーメントを図4-208~図4-239に,制御棒駆動 機構ハウジングレストレントビーム,シュラウドサポート,上部格子板,炉心支持板,炉心 シュラウド支持ロッド,上部サポート及び下部スタビライザに加わる力(ばね反力,せん断 力)を表4-6に示す。燃料集合体の最大応答相対変位については,図4-213及び図4-229に 示す。

鉛直方向の基準地震動Ssによる地震応答解析より得られた各点の最大応答加速度,最大応答変位及び最大応答軸力を図4-240~図4-248に示す。

炉心シュラウド) 弹性設計用地震動Sd及び静的解析(NS方向 最大応答加速度 図 4-167

231

-O-Sd-D1 -X-Sd-D2 -> - Sd-D3				10					
- Sd-F1 - Sd-F2 - Sd-F3				承天心谷	最大心答炎仏 (mm)				備表
静的解析	Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	C., HIA
							1		ану 2000 на 11 година III година I
	14.2	15.4	13.1	7.86	10.2	12.8	13.5	14.7	気水分離器県部
X d	12.6	13.5	11.4	6.97	9.21	11.5	12.3	13.2	
	11.4	12.1	10.2	6.33	8.47	10.4	11.3	12.0	
	10.2	10.9	9.05	5.72	7.67	9.28	10.3	10.9	シュラウドヘッド上部鏡板頂部
	9.63	10.4	8.52	5.42	7.27	8.76	9.75	10.3	
	9.21	9.90	8.12	5.19	6.96	8.37	9.37	9.86	上部格子板
	8.71	9.39	7.67	4.94	6.61	7.91	8.94	9.38	
	8.23	8.89	7.23	4.69	6.26	7.46	8.51	8.91	
	7.76	8.41	6.80	4.44	5.91	7.02	8.08	8.44	
	7.30	7.95	6.38	4.19	5.58	6.60	7.67	7.97	
	6.86	7.51	5.97	3.95	5.25	6.18	7.26	7.52	
	6.44	7.08	5.58	3.71	4.92	5.78	6.86	7.07	炉心支持板
∆ Que	5.68	6.29	4.93	3.31	4.36	5.08	6.16	6.29	
A ON ON	4.99	5.54	4.34	2.93	3.83	4.43	5.49	5.56	炉心シュラウド下部胴
0.00 5.00 10.00 15.00 20.00	00								
変位 (mm)									

(m) .9.0

R 0 VI - 2 - 3 - 2 \odot 2 0 枠囲みの内容は商業機密の観点から公開できません。

ou Fa A	64-b9									
	-X				最大応答せん断力(×10 ³ N)	斩力 (×10 ³ N)				推恭
		Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	IN-bS	静的解析	通る
ß		236	233	201	126	149	172	95.0	87.1	気水分離器頂部
Ő		498	507	427	269	328	367	221	229	
		750	829	605	434	521	637	287	387	
		924	1060	778	532	659	814	336	488	シュラウドヘッド上部鏡板頂部
<pre>% Depty // Complex // Comple</pre>		1170	1350	1060 1460	655 1130	845 1340	1410	399 1130	626 968	上部格子板
		1590	1900	1530	1120	1330	1450	1090	1020	
*		1530	1840	1500	1030	1290	1410	1010	1070	
		1520	1710	1450	912	1240	1340	912	1120	
XCXC) (S		1550	1690	1430	908	1200	1340	841	1160	
XXQXXQ XXX		1600	1850	1550	976	1200	1420	813	1210	
	×	2510	3030	2290	1700	2080	2500	1960	2160	炉心支持板
	*	2500	3090	2350	1730	2120	2540	1970	2230	
	-x	2500	3090	2350	1730	2120	2540	1970	2230	炉心シュラウド下部胴
0 1000 2000	3000 4000	· 北		「「「」」、「「」」、「「」」、「」、「」、「」、「」、「」、「」、「」、「」、	キャチ 特にな	の報上書	工業に画業工	鹿の南古谷	第7七キン署	L インショ 部
せん断力(×10 ³ N)	3 N)			見にでいり 1/1	άφ, oxtent D.		X X 1 A X X 1			

R 0 VI - 2 - 3 - 2 \odot 0 2

0.P. (m)

233

- Sd-FI - Sd-F2	A Sd-F3			最.	大応答モーメン	最大応答モーメント(×10 ⁶ N・mm)	m)			推进
		Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	C. HA
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	気水分離器頂部
		303	299	257	162	190	220	122	112	
		941	946	804	506	611	679	401	406	
		2170 2960 2550	2300 3220 770	1820 2440 2160	1240 1710 1400	1440 2010 1660	1740 2450 2060	881 1180 938	1060 1490 1130	シュラウドヘッド上部鏡板頂部
		3250	3570	2700	1820	2190	2740	1 070	1540	上部格子板
X		4910	5220	4040	3380	3810	4010	2580	2940	
XXXXX		5900	6220	5080	4070	4600	4800	3260	3690	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		0069	7320	6090	4670	5340	5670	3860	4470	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		7830	8500	7080	5180	6030	6600	4390	5290	
too		8750	9750	8080	5660	6700	7600	4910	6130	炉心支持板
CON CON	×	11500	12700	10700	7490	9100	10200	7170	8650	
A A	×, ox	14300	16300	13400	9360	11600	13100	9470	11300	炉心シュラウド下部胴
0 5000 10000	15000 20000									
モーメント(ポーメント(×10º N・m)									
-	from a first state of the state									

(m) .9.0

図4-170 最大応答モーメント 弾性設計用地震動 Sd 及び静的解析 (NS 方向 炉心シュラウド)

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

備考 燃料集合体中央 上部格子板 炉心支持板 静的解析 8.93 8.93 77.77 8.93 7.77 77.77 77.77 Sd-N1 10.513.09.68 7.4114.7 6.29 13.4Sd-F3 8.65 14.3 11.0 6.35 14.9 12.2 15.7 最大応答加速度(m/s²) Sd-F2 6.59 14.7 10.5 5.16 10.9 14.5 16.4 Sd-F1 5.6411.48.23 4.67 8.79 13.0 12.1 Sd-D3 6.35 9.86 10.6 14.9 16.2 14.1 8.21 Sd-D2 22.3 15.916.425.1 9.28 22.7 6.82 Sd-D1 21.0 18.8 12.5 13.6 19.0 9.347.46 30.00 ► Sd-D3 Y 20.00 C -- 静的解析 Ø Ø A Ø 10.00 Id-bs-**o**-IN-bS - 🕎

0.P. (m)

図 4-171 最大応答加速度 弹性設計用地震動 S d 及び静的解析 (NS 方向 燃料集合体)

0 Я VI - 2 - 3 - 2 \odot 2 0

枠囲みの内容は商業機密の観点から公開できません。

235

0.00

加速度(m/s²)

Sd-D1 Sd-D2 Sd-D3 Sd-F1 Sd-F2 Sd-N1 静的解析 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.51 12.3 15.1 9.57 7.31 9.91 9.30 8.50 4.53 21.2 26.1 16.6 12.7 17.2 16.1 14.7 7.75 21.2 26.0 19.1 14.6 19.9 18.6 17.0 8.89 約% 21.2 26.0 16.1 14.6 19.9 18.6 17.0 8.89 % 21.2 26.0 16.5 12.7 16.1 14.7 7.75 21.2 26.0 16.5 12.7 16.2 16.7 7.69 21.2 26.0 7.89 9.99 9.84 9.84 4.47 21.3 15.0 7.28 9.94 9.34 8.48 4.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00<						最大応答相対変位(m)	×117 /mm/				141 HZ
0.00 0.00 <th< th=""><th></th><th></th><th>Sd-D1</th><th>Sd-D2</th><th>Sd-D3</th><th>Sd-F1</th><th>Sd-F2</th><th>Sd-F3</th><th>Sd-N1</th><th>静的解析</th><th>御名</th></th<>			Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	御名
0.00 0.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
15.1 9.57 7.31 9.91 9.30 8.50 4.53 26.1 16.6 12.7 17.2 16.1 14.7 7.75 30.1 19.1 14.6 19.9 18.6 17.0 8.89 26.0 16.5 12.7 17.2 16.1 14.7 7.75 30.1 19.1 14.6 19.9 18.6 17.0 8.89 26.0 16.5 12.7 17.2 16.2 14.7 7.69 15.0 9.50 7.28 9.94 9.34 8.48 4.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	上部格子板
26.1 16.6 12.7 17.2 16.1 14.7 7.75 30.1 19.1 14.6 19.9 18.6 17.0 8.89 26.0 16.5 12.7 17.2 16.2 14.7 7.75 26.0 16.5 12.7 17.2 16.2 14.7 7.69 15.0 9.50 7.28 9.94 9.34 8.48 4.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	* PPA		12.3	15.1	9.57	7.31	9.91	9.30	8.50	4. 53	
30.1 19.1 14.6 19.9 18.6 17.0 8.89 26.0 16.5 12.7 17.2 16.2 14.7 7.69 15.0 9.50 7.28 9.94 9.34 8.48 4.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	X D D X		21.2	26.1	16.6	12.7	17.2	16.1	14.7	7.75	
26.0 16.5 12.7 17.2 16.2 14.7 7.69 15.0 9.50 7.28 9.94 9.34 8.48 4.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		×.	24.5	30.1	19.1	14.6	19.9	18.6	17.0	8.89	燃料集合体中央
15.0 9.50 7.28 9.94 9.34 8.48 4.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00	X 0 0 X		21.2	26.0	16.5	12.7	17.2	16.2	14.7	7.69	
0.00 0.00 0.00 0.00 0.00 0.00	-++0		12.3	15.0	9.50	7.28	9.94	9.34	8.48	4.47	
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板

図 4-172 最大応答相対変位 弹性設計用地震動 S d 及び静的解析 (NS 方向 燃料集合体)

O 2 ③ VI-2-3-2 R 0

枠囲みの内容は商業機密の観点から公開できません。

0.P. (m)

図 4-173 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (NS 方向 燃料集合体)

O 2 ③ VI-2-3-2 R 0

備考 燃料集合体中央 上部格子板 炉心支持板 静的解析 0.00 0.00 468 815 741 717 445 Sd-N1 0.00 0.00 140016001390 817 809 Sd-F3 0.00 1540 0.00 1520 1760882 006 最大応答モーメント(×10⁶ N・mm) Sd-F2 0.00 0.0016201880 1630 939 951 Sd-F1 0.00 0.00 1210 1390 1200 708 695 Sd-D3 0.00 0.00 15801800 1550 923 895 Sd-D2 0.00 2450 0.00 1450 24802840 1420 Sd-D1 0.00 0.00 1170 2000 2310 2010 1180 4000 -◆ - Sd-D3 モーメント(×10⁶ N・mm) 3000 × × -- 静的解析 →→−Sd-D2 2000 **₹**\$. ▼ 1 1000 **−o−** Sd-D1 IN-bS - 🔶 3 0.P. (m)

弹性設計用地震動 S d 及び静的解析 (NS 方向 燃料集合体) 図 4-174 最大応答モーメント

238

O 2 ③ VI-2-3-2 R 0