本資料のうち、枠囲みの内容	女川原子力発電所第2号	号機 工事計画審査資料
は商業機密の観点から公開で	資料番号	02-工-B-02-0007_改 0
きません。	提出年月日	2021年1月15日

VI-2-4-2-2 使用済燃料貯蔵ラック(第1,2号機共用)の耐震性 についての計算書

2021年1月

東北電力株式会社

1. 概要	•
2. 一般事項	•
2.1 構造計画	•
2.2 評価方針	•
2.3 適用基準 ·····	•
2.4 記号の説明	•
2.5 計算精度と数値の丸め方	•
3. 評価部位	•
4. 地震応答解析及び構造強度評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・	•
4.1 地震応答解析及び構造強度評価方法	
4.2 荷重の組合せ及び許容応力	
4.2.1 荷重の組合せ及び許容応力状態	•
4.2.2 許容応力	•
4.2.3 使用材料の許容応力評価条件	
4.3 解析モデル及び諸元	
4.4 固有周期 ·····	
4.5 設計用地震力	
4.6 計算方法 ······	
4.6.1 部材の応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4.6.2 基礎ボルトの応力	
4.7 計算条件	
4.8 応力の評価 ・・・・・・・・・・・・・・・・・・・・・・	
4.8.1 部材の応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4.8.2 基礎ボルトの応力評価 ・・・・・・・・・・・・・・・・・・・・・・	
5. 評価結果	•

5.1 設計基準対象施設としての評価結果305.2 重大事故等対処設備としての評価結果30

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

1

1

3

4

5

6 7

7 7

11

11

11

11

16

20

23

25

25

27

29

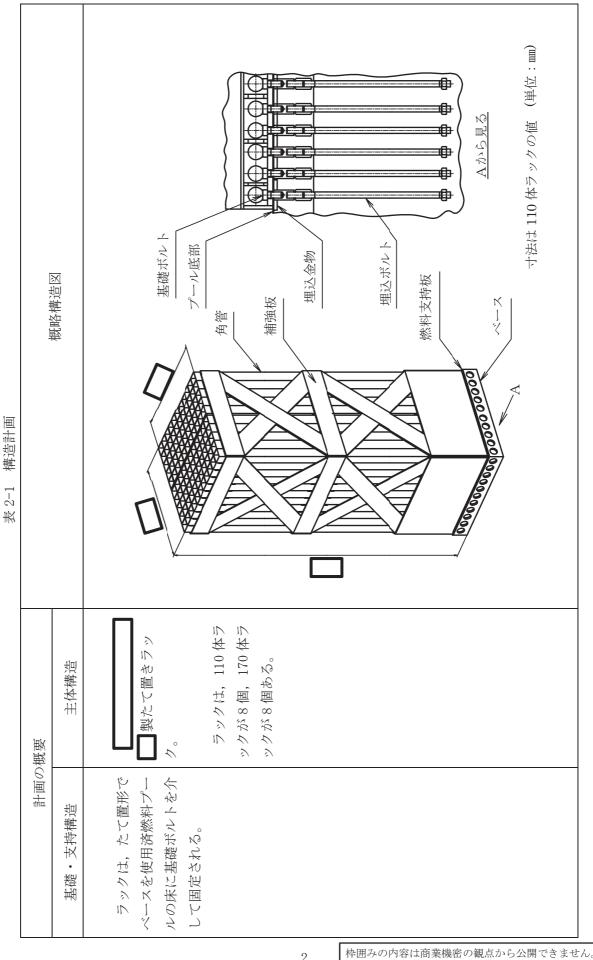
29

29

29

30

0


1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度の設計方 針に基づき、使用済燃料貯蔵ラック(以下「ラック」という。)が設計用地震力に対して十分な 構造強度を有していることを説明するものである。

ラックは,設計基準対象施設においてはSクラス施設に,重大事故等対処設備においては常設 耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下,設計基準対象施設及 び重大事故等対処設備としての構造強度評価を示す。

- 2. 一般事項
- 2.1 構造計画

ラックの構造計画を表 2-1 に示す。

2.2 評価方針

ラックの応力評価は、添付書類「VI-2-1-9 機能維持の基本方針」のうち「3.1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示すラックの部位を踏まえ「3. 評価部位」にて設定する箇所において、「4.3 解析モデル及び諸元」及び「4.4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「4. 地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5. 評価結果」に示す。

ラックの耐震評価フローを図 2-1 に示す。

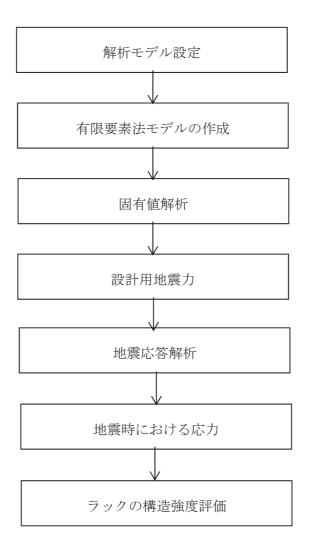


図 2-1 ラックの耐震評価フロー

2.3 適用基準

本評価において適用する規格・基準等を以下に示す。

- (1) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (2) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補一
 1984((社)日本電気協会)
- (3) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気 協会)
- (4) 発電用原子力設備規格 設計・建設規格 2005年版(2007年追補版含む。) JSM
 E S NC1-2005/2007((社)日本機械学会)(以下「設計・建設規格」という。)

記号	記号の説明	単位
A _b	基礎ボルトの軸断面積	mm^2
A _x	部材の断面積	mm^2
A _y , A _z	部材のせん断断面積	mm^2
Сн	水平方向設計震度	
C _v	鉛直方向設計震度	
Е	縦弾性係数	MPa
F	設計・建設規格 SSB-3121.1又はSSB-3131に定める値	MPa
F *	設計・建設規格 SSB-3121.3又はSSB-3133に定める値	MPa
F _x	部材に働く引張力	Ν
F _y , F _z	部材に働くせん断力	Ν
F i	ベース底部に働くせん断力(110体又は170体)	Ν
fji	基礎ボルトに働く引張力(1本当たり)	Ν
fs	部材の許容せん断応力	MPa
f _{sb}	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
$f_{ m t}$	部材の許容引張応力	MPa
$f_{ m t~o}$	引張力のみを受ける基礎ボルトの許容引張応力	MPa
$f_{ m t\ s}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
g	重力加速度(g=9.80665)	m/s^2
$\ell_{\rm g~i}$	ベース端から重心までの距離	mm
ℓ _{ji}	ベース端から基礎ボルトまでの距離	mm
M_{i}	ベース底部の転倒モーメント(110 体又は 170 体)	N•mm
M_y , M_z	部材に働く曲げモーメント	N•mm
m	使用済燃料貯蔵時のラック全質量(110体又は170体)	kg
$m_{ m F}$	燃料の質量	kg
m _R	ラックの質量	kg
m_{W}	ラックに含まれる水の質量	kg
n	基礎ボルトの全本数	—
n _{j i}	基礎ボルト各部の本数	—
S _u	設計・建設規格 付録材料図表 Part5 表9に定める値	MPa
S _y	設計・建設規格 付録材料図表 Part5 表8に定める値	MPa
S _y (RT)	設計・建設規格 付録材料図表 Part5 表 8 に定める材料	MPa
	の 40℃における値	
Z_y , Z_z	部材の断面係数	mm ³
σ _b	基礎ボルトに生じる引張応力	MPa
σ _x , σ _y	シェル部材に生じる引張応力	MPa
σ _{fa}	部材に生じる組合せ応力	MPa

2.4 記号の説明

記号	記号の説明	単位
σ _{ft}	はり部材に生じる引張応力	MPa
au b	基礎ボルトに生じるせん断応力	MPa
$ au_{ m f}$	はり部材に生じるせん断応力	MPa
τ _{ху}	シェル部材に生じるせん断応力	MPa

注1: F_i, f_{ji}, l_{gi}, l_{ji}, M_i及びn_{ji}の添字iの意味は,以下のとおりとする。

i=N:NS(短辺)方向

i = E : E W (長辺) 方向

注2: f_{ji}, l_{ji}及びn_{ji}の添字jはボルトの列番号を示すものとする。

2.5 計算精度と数値の丸め方

精度は6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

	表 2			
数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
設計震度	—	小数点以下第3位	切上げ	小数点以下第2位
最高使用温度	°C	小数点以下第1位	四捨五入	整数位
質量	kg			整数位
長さ	mm			整数位*1
面積	mm^2	有効数字5桁目	四捨五入	有効数字4桁*2
力	Ν	有効数字5桁目	四捨五入	有効数字4桁*2
モーメント	N•mm	有効数字5桁目	四捨五入	有効数字4桁*2
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*3	MPa	小数点以下第1位	切捨て	整数位

表 2-2 表示する数値の丸め方

注記*1:設計上定める値が小数点以下の場合は、小数点以下表示とする。

*2:絶対値が1000以上のときはべき数表示とする。

^{*3:}設計・建設規格 付録材料図表に記載された温度の中間における設計引張強さ及び設 計降伏点は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの 値とする。

3. 評価部位

ラックの耐震評価は、「4.1 地震応答解析及び構造強度評価方法」に示す条件に基づき、耐 震評価上厳しくなる角管、補強板、燃料支持板、ベース及び基礎ボルトについて実施する。 ラックの耐震評価部位については、表 2-1 の概略構造図に示す。

- 4. 地震応答解析及び構造強度評価
- 4.1 地震応答解析及び構造強度評価方法
 - (1) 地震応答解析には、はり要素及びシェル要素を用いた有限要素法モデルによるスペク トルモーダル解析を用いる。
 - (2) ラックは,原子炉建屋の使用済燃料プールの底部(OP. 21.38m)に基礎ボルトにより固定されるものとする。
 - (3) ラックの質量には、使用済燃料の質量及びラック自身の質量のほか、ラックに含まれ る水の質量及びラック外形の排除水質量*を考慮する。
 - (4) 地震力は、ラックに対して水平方向から作用するものとする。
 ここで、水平方向地震力は、ラックの長辺方向に作用する場合及び短辺方向に作用する場合を考慮する。
 また、鉛直方向地震力は、水平方向地震力と同時に不利な方向に作用するものとする。
 - (5) 構造概念図(110体ラックの例)を図 4-1に, 各ラックの構造概要図を図 4-2 及び図 4-3 に示す。
 - 注記*:排除水質量とは,水中の機器の形状により排除される機器周囲の流体の質量である。

5× || ラック

図 4-1 構造概念図(110 体ラック)

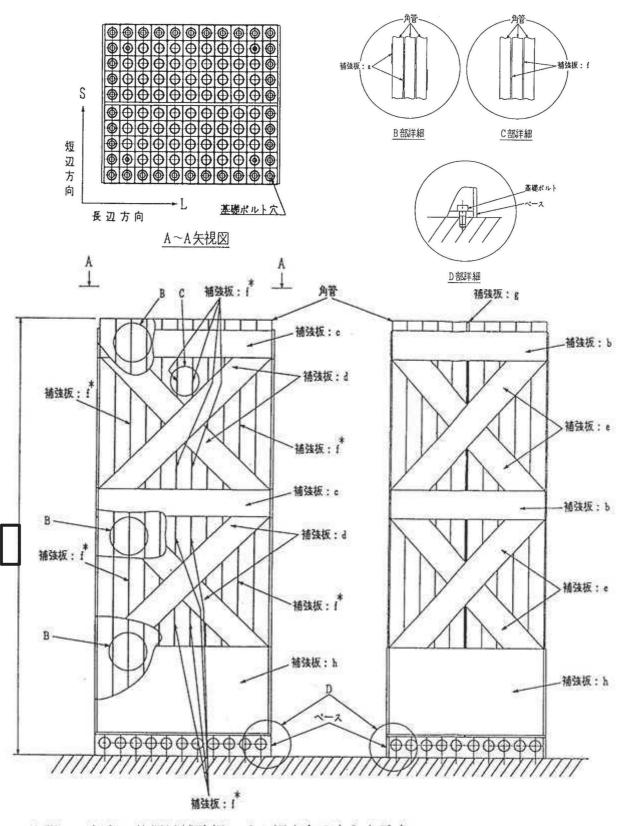
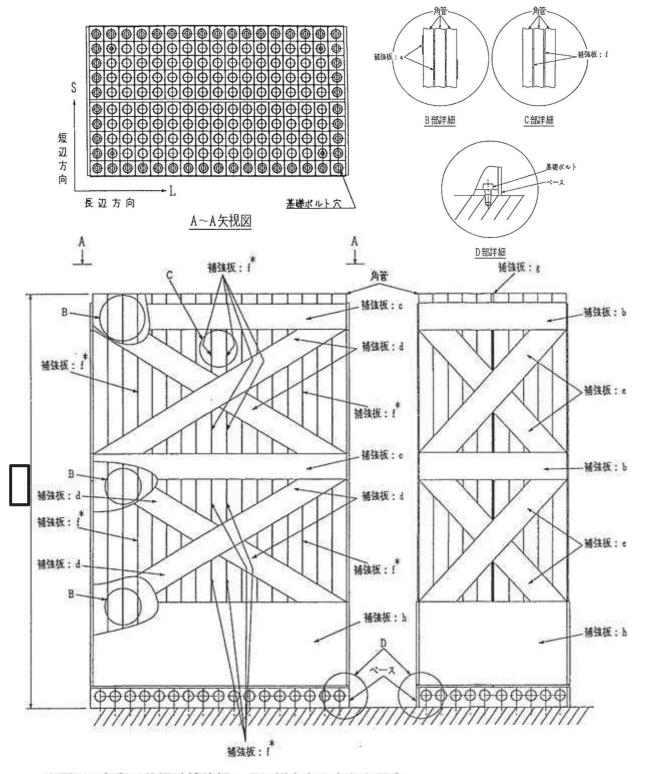



図 4-2 構造概要図(110 体ラック)

枠囲みの内容は商業機密の観点から公開できません。

Ο

注記*:矢印の位置は補強板:fの幅方向の中心を示す。

図 4-3 構造概要図(170 体ラック)

10

- 4.2 荷重の組合せ及び許容応力
 - 4.2.1 荷重の組合せ及び許容応力状態

ラックの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを 表 4-1 に,重大事故等対処設備の評価に用いるものを表 4-2 に示す。

4.2.2 許容応力

ラックの許容応力は,添付資料「VI-2-1-9 機能維持の基本方針」に基づき表 4-3 のとおりとする。

4.2.3 使用材料の許容応力評価条件

ラックの許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4-4 に,重 大事故等対処設備の評価に用いるものを表 4-5 に示す。 R 0 VI-2-4-2-2 \odot 02

	許容応力狀態	ШAS	$\mathrm{IV}_\mathrm{A}\mathrm{S}$	
リームサインシングライン	荷重の組合せ	$\mathrm{D} + \mathrm{P}_{\mathrm{D}} + \mathrm{M}_{\mathrm{D}} + \mathrm{S} \mathrm{d}^{*2}$	$\mathrm{D}+\mathrm{P}_\mathrm{D}+\mathrm{M}_\mathrm{D}+\mathrm{S}$ s	
まったり こべつ にっかいいい いたい さナシ みがいい	機器等の区分			
うくうちょう	耐震設計上の 重要度分類	S		
\ \	機器名称	使用済燃料 貯蔵ラック		
	次	使用済燃料	貯蔵設備	
	施設区分	核燃料物質の	取扱施設及び 貯蔵施設	

表 4-1 荷重の組合せ及び許容応力狀態(設計基進対象施設)

注記*1:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*2:S s との組み合わせ,ⅢASの評価を実施する。

表 4-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

	許容応力狀態	$IV_A S$	V _A S (V _A SとしてIV _A Sの 許容限界を用いる。)
ず以すれど以加し	荷重の組合せ	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}~\mathrm{s}~\mathrm{s}^{*3}$	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}$ s
す うくう うちょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し	機器等の区分		
同里い血口で入り口付心い小ぶ、重八ず以すりだ以加/	設備分類*1	啦設 ▲ 55 m	常設/緩和
<u>秋</u> 4 4 1	機器名称	伸 田 済 俠 粉	貯蔵ラック
	公	伸田落俠約	貯蔵設備
	施設区分	核燃料物質の	取扱施設及び 貯蔵施設

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*2:重大事故等その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*3:「D+P_{SAD}+M_{SAD}+Ss」の評価に包絡されるため,評価結果の記載を省略する。

	許容限	許容限界*1, *2	許容限界*1,*2	界*1,*2
	(ボルト	(ボルト等以外)	(ボルト等)	ト等)
許容応力状態	- 次	一次応力	— 狹応力	応力
	引張り	せん断	引張り	せん断
ΠAS	1. 5 · f _t	1.5 \cdot f $_{\rm s}$	1.5.f t	1. 5 · f _s
$ m IV_AS$				
V _A S (V _A SとしてIV _A Sの許容限界を用いる。)	1.5.f [*]	1.5.f ^s *	1.5.f ⁺	1.5.f ^s *
いいいい しょうしん いんちがせいじょ アはんごう ふんちたけい どうばほう (4)	/ - - - - - - - - - - - - -	ミニシャ 田 許 さ		

表 4-3 許容応力(その他の支持構造物及び重大事故等その他の支持構造物)

注記*1:応力の組合せが考えられる場合には,組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

③ VI-2-4-2-2 R 0 02

$\begin{array}{c c} & S_{u}^{*1} & S_{y} & (R T) \\ (MPa) & (MPa) \end{array}$	479*2 205*2	479 205	479 205	479 205		S 』の値は,SUS304 の規格値を上回っているが,安全側の評価とするため,SUS304 の値を使用す
S _y *1 (MPa)	188^{*2}	188	188	188		が,安全側の
S (MPa)	I	I	I	Ι		で上回ったいる
.11	66	66	66	66	66	14 の規格値 る
温度条件 (°C)	最高使用温度	最高使用温度	最高使用温度	最高使用温度	最高使用温度	
材料		SUS304	SUS304	SUS304		温度(66°C)で算出 のS _ッ ,
評価部材	角管	補強板	燃料支持板	К "\"	基礎ボルト	注記*1:最高使用温度 *2: る。

ら公開できません。

③ VI-2-4-2-2 R 0 02

								値を使用
	S_{y} (R T)	(MFa)	205* ²	205	205	205		か, SUS304 の
	S_{u}^{*1}	(MFa)	441^{*2}	441	441	441)評価とするた %
1.処設備)	S_{y}^{*1}	(MFa)	171^{*2}	171	171	171		るが,安全側の
(重大事故等为	S (AB2)	(MFa)	I	I	I	I	I	S _" の値は,SUS304 の規格値を上回っているが,安全側の評価とするため,SUS304 の値を使用
云力評価条件	件		100	100	100	100	100	S304 の規格(
使用材料の許容応力評価条件(重大事故等対処設備)	温度条件		最高使用温度	最高使用温度	最高使用温度	最高使用温度	最高使用温度	
表 4-5 1	材料			SUS304	SUS304	SUS304		最高使用温度(100°C)で算出 のSy, する。
	評価部材		角管	補強板	燃料支持板	К ?	基礎ボルト	注記*1:最高使用 *2 :
ļ							枠囲み	•の内容は商業機密

4.3 解析モデル及び諸元

ラックの解析モデルを図 4-4 及び図 4-5 に,解析モデルの概要を以下に示す。また,機器の 諸元を表 4-6 に示す。

ラックは、110体、170体ラック各々について、はり要素及びシェル要素を用いた有限要素 モデルとする。

角管はそれぞれ等価な断面特性を持つ1本のはり要素、補強板 a ~ e についてもそれぞれ同様にはり要素とし、補強板 f ~ h、燃料支持板及びベースはシェル要素とする。

ベースは基礎ボルトをモデル化したバネ要素を介して床に固定されているものとする。

また,ラックの質量には,使用済燃料の質量,ラック自身の質量,ラックに含まれる水の質 量及び排除水質量を考慮し,使用済燃料,ラックに含まれる水の質量及び排除水質量は,角管 全長にわたって等分布に与える。

本ラックに使用する		であり,
	の縦弾性係数は	に従って漸増する傾向にあるため、
縦弾性係数は	の実験値を用	いるものとする。

また,計算に用いる設計条件,固有周期の算出及び部材と基礎ボルトの応力評価に用いる要 目を「4. 地震応答解析及び構造強度評価」及び「5. 評価結果」に示す。

解析コードは、「NASTRAN」を使用し、解析コードの検証及び妥当性確認等の概要については、「VI-5 計算機プログラム(解析コード)の概要」に示す。

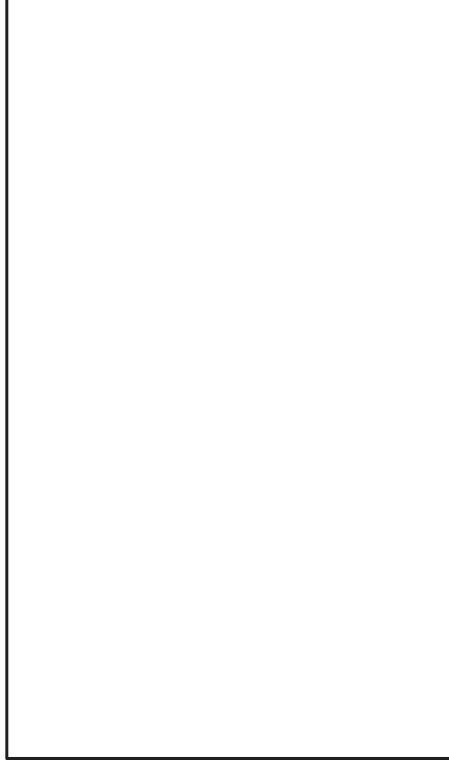


図 4-4 解析モデル(110 体ラック)

枠囲みの内容は商業機密の観点から公開できません。

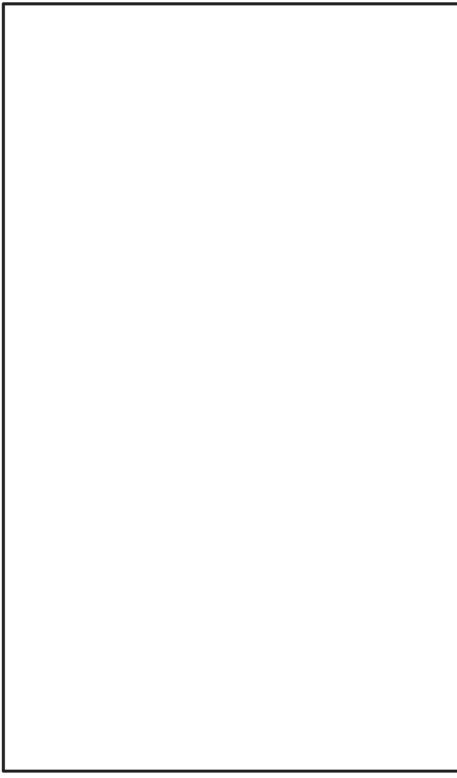
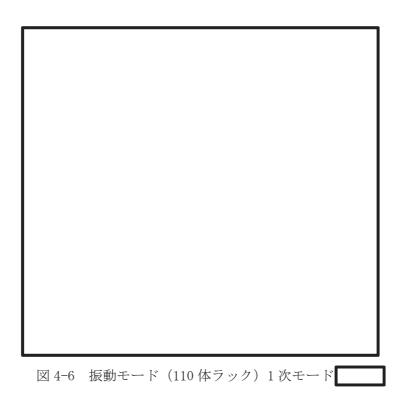


図 4-5 解析モデル(170 体ラック)

項目	1		
項日	記号	単位	入力値
材質	_	_	SUS304 (補強板, 燃料支持 板, ベース)
質量	m	kg	
温度条件 (最高使用温度)	Т	°C	66
縦弾性係数	E*1	MPa	192000(補強板,燃料支持 板,ベース) 192000(基礎ボルト)
ボアソン比	ν	_	
要素数	_	個	
節点数	_	個	

表 1-6 楼界接示

における実験値 *2:


③ VI-2-4-2-2 R 0 02

4.4 固有周期

固有値解析の結果を表 4-7 に,振動モード図を図 4-6~図 4-9 に示す。鉛直方向は、5 次モ ード以降で卓越し、固有周期は、0.05 秒以下であり、剛であることを確認した。

~ h	- 18	固有周期		刺激係数				
ラック	モード	(s)	卓越方向	Х	Y	Z		
	1次							
110 体	2 次							
ラック	3次							
	5 次							
	1次							
170 体	2 次							
ラック	3次							
	6次							

表 4-7 固有值解析結果

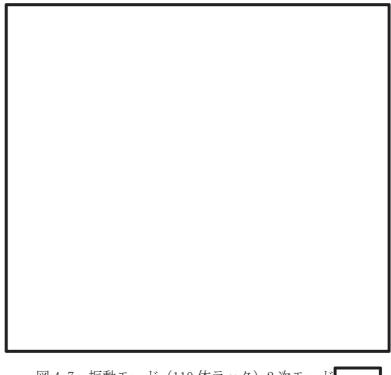


図 4-7 振動モード(110 体ラック)2次モード

図 4-8 振動モード(170 体ラック)1 次モード

図 4-9	振動モード	(170 体ラック)	2次モード	

4.5 設計用地震力

「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」による地震力は、添付書類 「VI-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。また、減衰定数は添付書類 「VI-2-1-6 地震応答解析の基本方針」に記載の減衰定数を用いる。

評価に用いる設計用地震力を表 4-8 及び表 4-9 に示す。

表 4-8 設計用地震力(設計基準対象施設)

a. 110 体ラック

据付け場所		同期	弾性設計用		基準地震	€動Ss	減衰	
及び	(s)	人は 伊	的震度			(%	o)
床面高さ	水平	鉛直	水平方向	鉛直方向	水平方向	鉛直方向	水平	鉛直
(m)	方向	方向	設計震度	設計震度	設計震度	設計震度	方向	方向
原子炉建屋 OP. 22.50 ^{*1}		0.05 以下* ²	*3	*3	C _H =2.12 又は*4	C _V =1.56	10.0^{*5}	_

注記*1:基準床レベルを示す。

*2:固有値解析により、0.05秒以下であり、剛であることを確認した。

*3:ⅢASについては、基準地震動Ssで評価する。

*4:基準地震動Ssに基づく設備評価用床応答曲線により得られる値。

*5:試験等により,妥当性が確認されている値。

b. 170 体ラック

据付け場所	固有	「周期	弾性設計用	地震動 S d	基準地震	፪動S s	減衰	定数
及び	(s)	又は静	的震度		21100	(%	,)
床面高さ	水平	鉛直	水平方向	鉛直方向	水平方向	鉛直方向	水平	鉛直
(m)	方向	方向	設計震度	設計震度	設計震度	設計震度	方向	方向
原子炉建屋 OP. 22.50 ^{*1}		0.05 以下* ²	*3	*3	C _H =2.12 又は*4	C _V =1.56	10.0^{*5}	_

注記*1:基準床レベルを示す。

*2:固有値解析により、0.05秒以下であり、剛であることを確認した。

*3:ⅢASについては、基準地震動Ssで評価する。

*4:基準地震動Ssに基づく設備評価用床応答曲線により得られる値。

*5:試験等により、妥当性が確認されている値。

枠囲みの内容は商業機密の観点から公開できません。

表 4-9 設計用地震力 (重大事故等対処設備)

a. 110 体ラック

据付け場所 及び		「周期 s)	弾性設計用 又は静	地震動Sd 的震度	基準地震	€動Ss	減衰 (%	
床面高さ	水平	鉛直	水平方向	鉛直方向	水平方向	鉛直方向	水平	鉛直
(m)	方向	方向	設計震度	設計震度	設計震度	設計震度	方向	方向
原子炉建屋 OP. 22.50 ^{*1}		0.05 以下* ²	_	_	C _H =2.12 又は*3	C _V =1.56	10.0^{*4}	_

注記*1:基準床レベルを示す。

*2:固有値解析により、0.05秒以下であり、剛であることを確認した。

*3:基準地震動Ssに基づく設備評価用床応答曲線により得られる値。

*4:試験等により、妥当性が確認されている値。

b. 170 体ラック

据付け場所 及び		「周期 s)	弾性設計用 又は静	地震動Sd 的震度	基準地震	€動Ss	減衰) (%	
床面高さ (m)	水平 方向	鉛直 方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	水平 方向	鉛直 方向
原子炉建屋 0P. 22.50 ^{*1}		0.05 以下* ²	_	_	C _H =2.12 又は*3	$C_{v} = 1.56$	10. 0*4	_

注記*1:基準床レベルを示す。

*2:固有値解析により、0.05秒以下であり、剛であることを確認した。

*3:基準地震動Ssに基づく設備評価用床応答曲線により得られる値。

*4:試験等により,妥当性が確認されている値。

4.6 計算方法

4.6.1 部材の応力

部材についての応力計算は,図4-4及び図4-5の解析モデルにて,角管,補強板,燃料 支持板及びベースから成る系全体での応力計算を解析コード「NASTRAN」を使用し て行い,本項に示す計算方法に従って引張応力,せん断応力及び組合せ応力を計算する。

(1) はり部材の応力

解析コード内では、各部材の局所座標系、引張力 F_x 、せん断力 F_y 、 F_z 、及び曲 げモーメント M_y 、 M_z の働く向きを図 4-10 に示すように設定している。

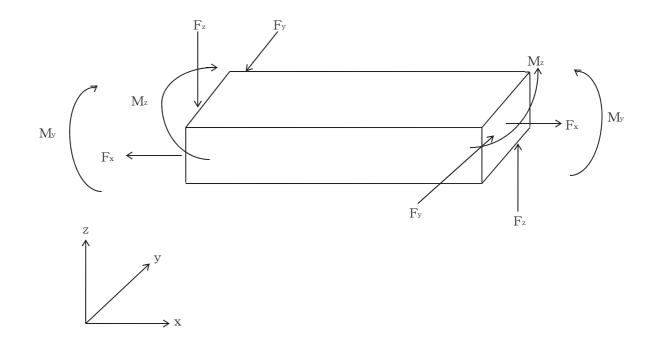


図 4-10 はり部材の応力計算モデル

引張力 F_x 及び曲げモーメント M_y , M_z によりはり部材に生じる引張応力 σ_{ft} は, (4.1) 式により求める。

$$\sigma_{ft} = \frac{F_x}{A_x} + \frac{M_y}{Z_y} + \frac{M_z}{Z_z} \qquad (4.1)$$

せん断力 F_y , F_z によりはり部材に生じるせん断応力 τ_f は, (4.2) 式により求める。

(2) シェル部材の応力

解析コード内では、各部材の局所座標系、せん断応力 τ_{xy} 及び引張応力 σ_x 、 σ_y の作用する向きを、図 4-11 に示すように設定している。

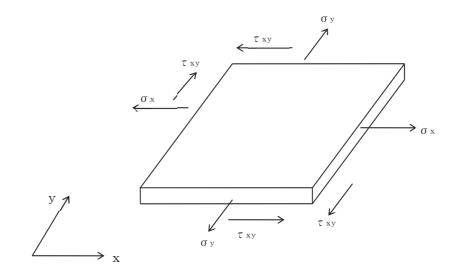


図 4-11 シェル部材の応力計算モデル

シェル部材の組合せ応力 σ_{fa} は、上記で計算したせん断応力 τ_{xy} 及び引張応力 σ_{x}, σ_{y} を用いて、(4.4)式より求める。 $\sigma_{fa} = \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2} - \sigma_{x} \cdot \sigma_{y} + 3 \cdot \tau_{xy}^{2}}$ (4.4)

4.6.2 基礎ボルトの応力

ラックの系全体での荷重計算を解析コード「NASTRAN」を使用して行い、求められた地震時のラックに作用する転倒モーメントM_i及びベース底部に作用するせん断力 F_iが、図 4-12 のように負荷されるものとして基礎ボルトの応力を求める。

基礎ボルトの荷重状態を図 4-12 に示す。なお、本計算例ではボルトの列数は、110 体ラックのNS方向として $\ell_{1i} \sim \ell_{10i}$ の 10 箇所までとしたが、最大で 17 列のボルト列数に対応する。

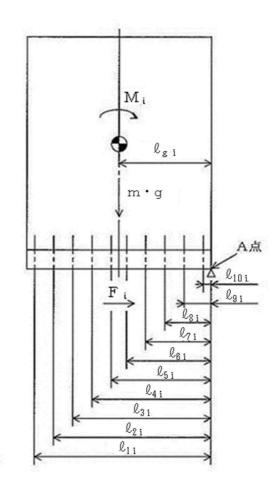


図 4-12 基礎ボルトの荷重状態(110 体ラックのNS方向)

(1) 引張応力

図 4-12 において支点まわりのモーメントの平衡により基礎ボルト1本当たりの引 張力 f_{1i} ~ f_{ji}を求める。 f_{1i} > f_{2i} > …… > f_{ji}の関係にあるので f_{1i}のみを (4.5) 式より求める。

したがって、引張力 f_{1i}により基礎ボルトに生じる引張応力 σ_b は、(4.6) 式に より求める。

$$\sigma_{\rm b} = \frac{f_{\rm 1\,i}}{A_{\rm b}} \qquad (4.6)$$

ただし, f_{1i}の値が負となった場合は, 引張力が生じないので以降の引張応力の計 算は省略する。

(2) せん断応力

せん断力 F_i により基礎ボルトに生じるせん断応力 τ_b は、(4.7)式により求める。

4.7 計算条件

応力解析に用いる自重及び荷重は、本計算書の【使用済燃料貯蔵ラックの耐震性についての 計算結果】の設計条件及び機器要目に示す。

- 4.8 応力の評価
- 4.8.1 部材の応力評価

4.6.1 項で求めた各部材の引張応力 σ_{ft} , σ_x , σ_y 及び組合せ応力 σ_{fa} が, 許容引張応力 f_t 以下であること。

また、4.6.1 項で求めた各部材のせん断応力 $\tau_{\rm f}$ 、 $\tau_{\rm xy}$ が、許容せん断応力 $f_{\rm s}$ 以下であること。

ただし、 f_t 及び f_s は下表による。

	弾性設計用地震動 S d 又は静的震度	基準地震動S s
許容引張応力 ft	$\frac{F}{1.5} \cdot 1.5 *1$	$\frac{F^{*}}{1.5} \cdot 1.5^{*1}$
許容せん断応力 fs	$\frac{\mathrm{F}}{1.5\cdot\sqrt{3}}\cdot1.5^{*1}$	$\frac{\mathrm{F}^{*}}{1.5\cdot\sqrt{3}}\cdot1.5^{*1}$

注記*1: の引張強さと降伏点(0.2 %耐力)の値は, SUS304 の規格値を上回っているので,安全側の評価とするため, F及びF*値は

SUS304 の値を使用する。

4.8.2 基礎ボルトの応力評価

4.6.2 項で求めた基礎ボルトの引張応力 σ_b が,次式より求めた許容引張応力 f_{ts} 以下であること。

また,4.6.2項で求めた基礎ボルトのせん断応力でbが,せん断力のみを受ける基礎ボルトの許容せん断応力 fsb以下であること。

 $f_{t s} = 1.4 \cdot f_{t o} - 1.6 \cdot \tau_{b}$ (4.8)

$f_{\mathrm{t\ s}} \leq f_{\mathrm{t\ o}}$		
ただし、 $f_{t,0}$ 及び	、f _{sb} は下表による。	

	弾性設計用地震動Sd 又は静的震度	基準地震動S s
許容引張応力 f _t 。	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f _{sb}	$\frac{\mathrm{F}}{1.5\cdot\sqrt{3}}\cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

枠囲みの内容は商業機密の観点から公開できません。

29

- 5. 評価結果
- 5.1 設計基準対象施設としての評価結果

ラックの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足 しており,設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。なお,弾性設計用地震動Sd及び静的震度は,基準地震動Ssを下回っており,基準地震動Ssによる発生値が,弾性設計用地 震動Sd又は静的震度に対する評価における許容限界を満足したため,弾性設計用地震動Sd及び静的震度による発生値の算出を省略した。

5.2 重大事故等対処設備としての評価結果

ラックの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容 限界を満足しており,設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

O 2 ③ VI-2-4-2-2 R 0

【使用済燃料貯蔵ラックの耐震性についての計算結果】. 設計基準対象施設

1.1 設計条件

機器名称	耐震設計上の 毛亜座ひ緪	据付場所及び 床面高さ	ラック) 美国	固有周期 (s)	弾性設計用地震動 又は静的震度	設計用地震動 S d 又は静的震度	基準地震動S	S S	最高使用圧力 (MDa)	最高使用温度 (20)	周囲環境温度 (*^)
	ダマル	(m)		水平方向	鉛直方向	水平方向	鉛直方向	水平方向	鉛直方向		$\hat{\mathcal{O}}$	$\hat{\boldsymbol{\Sigma}}$
한 2012년 1월	c	原子炉建屋	110 体ラック		0.05以下*2	8*	°° *	$C_{\rm H}{=}2.12 \mathrm{X} l \ddagger *4 C_{\rm V}{=}1.56$	$C_{\rm V} = 1.56$	I	99	l
(史川)済然や55廠フック	n	0P. 22.50* ¹	170 体ラック		0.05以下*2	**3	* * 	$C_{\rm H}{=}2.12{\rm \chi}{\rm k}{\rm t}{\rm +}4{\rm C}_{\rm V}{=}1.56$	$C_{V} = 1.56$	I	99	l

注記*1:基準床レベルを示す。

*2:固有値解析により 0.05 秒以下であり、剛であることを確認した。

*3:ⅢASについては、基準地震動Ssで評価する。

*4:基準地震動Ssに基づく設計用床応答曲線から得られる値

1.2 基礎ボルトの応力評価に用いる項目

$\ell_{12{ m E}}$	(mm)	I	921.5	n _{3E} (-)	2	2	
ℓ_{11E}	(mm)	101.5	1085.5	n _{2E} (-)	2	2	
$\ell_{10{ m E}}$	(mm)	265. 5	1249.5	n _{1E} (-)	10	10	
ℓ_{9E}	(mm)	429.5	1413.5	$\ell_{\rm g N}$ (mm)	835	835	
$\ell_{\rm 8E}$	(mm)	593.5	1577. 5	$\ell_{\rm g E}$ (mm)	921.5	1413.5	
ℓ_{TE}	(mm)	757.5	1741. 5	ℓ 10N (mm)	101.5	101.5	
$\ell_{\rm 6E}$	(mm)	921.5	1905.5	θ 9N (mn)	261.5	261.5	
$\ell_{\rm 5E}$	(mm)	1085.5	2069.5	ℓ _{8N} (mm)	421.5	421.5	
$\ell_{4{ m E}}$	(mm)	1249.5	2233. 5	θ 7N (mm)	581.5	581.5	
$\ell_{\rm 3E}$	(mm)	1413. 5	2397. 5	ℓ_{6N} (mm)	741.5	741.5	
$\ell_{\rm 2E}$	(mm)	1577.5	2561.5	ℓ_{5N} (mm)	928. 5	928. 5	
$\ell_{1\mathrm{E}}$	(mm)	1741.5	2725.5	ℓ_{4N} (mm)	1088. 5	1088.5	
C v	(-)	1.56	1.56	ε 3N (mn)	1248.5	1248.5	
A_b	(mm^2)	1590	1590	ℓ_{2N} (mm)	1408.5	1408.5	
m_{W}	(kg)			θ 1 _N (mm)	1568. 5	1568. 5	
m_R	(kg)			$\ell_{17 E}$ (mm)	I	101.5	
m_{F}	(kg)			<i>ℓ</i> ^{16 E} (mm)	I	265. 5	
ш	(kg)			<i>θ</i> ^{15E} (mm)	I	429.5	
t.	ノツク	110 体ラック	170 体ラック	$\ell_{14\mathrm{E}}$ (mm)	I	593.5	
1]		110 体	170 体	ℓ_{13E} (mm)	I	757.5	

31

R 0
2 - 4 - 2 - 2
3 M-2
020

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
n n	
n _{13E} n _{14E} (-) (-) (-) 2 2 2	
22 22	
n _{12E} (-) - 2	
n 11E (-) 2	
n _{10E} (-) 2 2	
n _{9E} (-) 2 2	
n _{8E} (-) 2 2	
n _{7E} (-) 2 2	
n _{6E} (-) 2 2	
n _{5E} (-) 2 2	
n _{4E} (-) 2 2	

u (-)	38	50	
$n_{10N}(-)$	11	17	
(-)	2	2	
n _{8N} (-)	2	2	
n _{7N} (-)	2	2	

F* (MPa)		
F (MPa)		
S _u *1 (MPa)		
S _y (RT) (MPa)		
S _y *1 (MPa)		
基礎ボルト材料		

注記*1:最高使用温度(66°C)で算出

ラック	地震の種類	F_N (N)	F _E (N)	M_N (mm)	$M_{\rm E}$ (N · mm)
110 休 三 六 カ	弾性設計用地震動 S d 又は静的震度		I	Ι	
	基準地震動S s	1.614×10^{6}	1. 614×10^6 1. 435×10^6	5. 138×10^9 4. 098×10^9	4. 098×10^9
170 休 二 … カ	弾性設計用地震動 S d 又は静的震度		I	l	
	基準地震動S s	2.518×10 ⁶	2.518×10 ⁶ 2.071×10 ⁶ 7.836×10 ⁹ 6.659×10 ⁹	7.836 $\times 10^{9}$	6. 659×10^9

1.3 計算数値

1.3.1 部材に生じる応力

(1) 角管

(単位:MPa)

ラック 材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s		
		NS方向	EW方向	NS方向	EW方向	
		引張りσ _{ft}	_	_	101	79
110体ラック		せん断τ _f	_	_	40	21
	組合せσ _{fa}	_	_	122	87	
		引張りσ _{ft}	_	_	134	57
170体ラック		せん断τ _f	—	_	55	41
		組合せ σ _{fa}			164	91

(2) 補強板 a

(単位:MPa)

ラック 材料	材料	材料 応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
		NS方向	EW方向	NS方向	EW方向	
		引張りσ _{ft}	_	_	60	19
110体ラック SUS304	SUS304	せん断τ _f	_	_	46	35
		組合せσ _{fa}	_	_	100	63
		引張りσ _{ft}	_	_	104	20
170体ラック	SUS304	せん断τ _f			62	37
		組合せσ _{fa}	—	—	149	67

(3) 補強板 b

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
		NS方向	EW方向	NS方向	EW方向	
		引張りσ _{ft}	_	—	37	21
110体ラック SUS304	SUS304	せん断τ _f	_	_	32	13
		組合せσ _{fa}	_	_	67	30
		引張りσ _{ft}	_	—	57	19
170体ラック	SUS304	せん断τ _f	_	_	54	13
		組合せ σ _{fa}	_	_	110	29

(4) 補強板 c

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
		NS方向	EW方向	NS方向	EW方向	
		引張りσ _{ft}	_	_	75	70
110体ラック SUS304	SUS304	せん断τ _f	_	_	32	48
		組合せσ _{fa}	_	_	93	108
		引張りσ _{ft}	—	—	116	53
170体ラック	SUS304	せん断τ _f	_	_	47	39
		組合せ $\sigma_{\rm fa}$	—	—	141	86

(5) 補強板 d

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
		NS方向	EW方向	NS方向	EW方向	
		引張りσ _{ft}	_	_	99	135
110体ラック SUS304	SUS304	せん断τ _f	_	_	26	22
	組合せσ _{fa}	_	_	109	140	
170体ラック SL		引張りσ _{ft}	_	_	149	116
	SUS304	せん断τ _f		_	45	23
		組合せσ _{fa}	_	_	168	123

(6) 補強板 e

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
		NS方向	EW方向	NS方向	EW方向	
		引張りσ _{ft}	_	_	73	30
110体ラック SUS304	SUS304	せん断τ _f	_	_	5	9
		組合せσ _{fa}	_	_	73	33
		引張りσ _{ft}	_	—	99	28
170体ラック	SUS304	せん断τ _f			8	8
		組合せ σ _{fa}			100	31

(7) 補強板 f

(単位:MPa)

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向
110体ラック SUS304	引張り σ x	_	_	18	13	
	引張り σ ,	_	_	2	2	
110/4 / 9 /	SUS304	せん断 τ _{x y}	_	—	29	2
		組合せ σ _{f a}	_	_	52	12
		引張り σ _x	_	_	16	11
170体ラック	SUS304	引張り σ ,	—	—	1	3
17044797 303304	505304	せん断 τ _{x y}		_	49	5
		組合せ σ _{fa}		_	86	12

(8) 補強板 g

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s		
	1411		NS方向	EW方向	NS方向	EW方向	
		引張り σ _x	_	_	1	1	
110体ラック		引張り σ ,	—	—	1	4	
110/4 / 9 /	SUS304	せん断 τ _{x y}	—	—	2	1	
		組合せ σ _{fa}	_	_	3	3	
		引張り σ _x	_	_	2	1	
170体ラック	SUCOOA	引張り σ ,	_	_	2	3	
17074797	170体ラック SUS304	せん断 τ x y			3	0	
	組合せ σ _{f a}	_	_	5	3		

(9) 補強板h

(単位:MPa)

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向
110体ラック SUS304	引張り σ x	_	_	7	22	
	引張り σ ,	_	_	47	18	
110/4 / 9 /	SUS304	せん断 τ _{x y}	_	_	12	28
		組合せ σ _{f a}	_	_	49	52
		引張り σ _x	_	_	5	20
170体ラック	SUS304	引張り σ ,	—	_	5	16
17014797 505304	505304	せん断 τ _{x y}			38	31
		組合せ σ _{fa}			66	56

(10) 燃料支持板

(単位:MPa)

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向
		引張り σ _x	_	_	13	17
110体ラック		引張り σ ,	—	—	41	26
110 1 99	SUS304	せん断 τ _{x y}	—	_	2	4
		組合せ σ _{f a}	_	_	36	23
		引張り σ _x	—	—	28	12
170体ラック	SUS304	引張り σ ,	—	—	92	29
11014 7 9 7	505304	せん断 τ x y	_	_	2	7
		組合せ σ _{fa}	_	_	82	28

ラック	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向
110体ラック SUS304	引張り σ _x	_	_	20	13	
	SUS304	引張り σ ,	—	—	59	39
110/47 9 9	505504	せん断 τ _{x y}	_	_	1	5
		組合せ σ _{fa}	_	_	52	36
		引張り σ x	_	_	27	7
170体ラック	CUC204	引張り σ ,	_	_	69	37
17014 7 9 7 SUS304	SUS304	せん断 τ x y	_	_	2	4
		組合せ σ _{f a}			60	35

1.3.2 基礎ボルトに生じる応力

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
		NS方向	EW方向	NS方向	EW方向	
110体ラック		引張りσ _b	_	_	115	83
110 14 7 9 7		せん断τ _b	_	_	27	24
170体ラック	170 +	引張りσ _b	—	_	129	66
1701-2799		せん断τ _b		_	32	26

1.4 応力

1.4.1 部材に生じる応力

(1) 角管

(単位:MPa)

ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
	引張り	$\sigma_{ft} = 101^*$	$f_{\rm t} = 205$	$\sigma_{ft} = 101$	$f_{\rm t} = 205$	
110体ラック		せん断	$\tau_{\rm f} = 40^*$	$f_{\rm s} = 118$	$\tau_{\rm f}=40$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 122^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 122$	$f_{\rm t} = 205$
		引張り	$\sigma_{ft} = 134^*$	$f_{\rm t} = 205$	$\sigma_{ft} = 134$	$f_{\rm t} = 205$
170体ラック		せん断	τ f = 55*	$f_{\rm s} = 118$	$\tau_{\rm f} = 55$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 164^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 164$	$f_{\rm t} = 205$

注記*:基準地震動Ssによる算出応力の値

すべて許容応力以下である。

(2) 補強板 a

(単位:MPa)

ラック 杉	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
	引張り	$\sigma_{ft} = 60^*$	$f_{\rm t} = 205$	$\sigma_{\rm ft} = 60$	$f_{\rm t} = 205$	
110体ラック	SUS304	せん断	$\tau_{\rm f} = 46^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 46$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 100^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 100$	$f_{\rm t} = 205$
		引張り	$\sigma_{\rm ft} = 104^*$	$f_{\rm t} = 205$	$\sigma_{ft} = 104$	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	$\tau_{\rm f} = 62^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 62$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 149^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 149$	$f_{\rm t} = 205$

注記*:基準地震動Ssによる算出応力の値

すべて許容応力以下である。

枠囲みの内容は商業機密の観点から公開できません。

R 0

VI-2-4-2-2

 \odot

02

ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
	引張り	$\sigma_{ft} = 37^*$	$f_{\rm t} = 205$	$\sigma_{\rm ft} = 37$	$f_{\rm t} = 205$	
110体ラック	SUS304	せん断	$\tau_{\rm f} = 32^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 32$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 67^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 67$	$f_{\rm t} = 205$
		引張り	$\sigma_{\rm ft} = 57^*$	$f_{\rm t} = 205$	$\sigma_{\rm ft} = 57$	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	$\tau_{\rm f} = 54^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 54$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 110^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 110$	$f_{\rm t} = 205$

注記*:基準地震動Ssによる算出応力の値

すべて許容応力以下である。

(4) 補強板 c

(単位:MPa)

(半位:Mr a)							
ラック 材料	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動S s		
	, , , , , , , , , , , , , , , , , , , ,	算出応力	許容応力	算出応力	許容応力		
		引張り	$\sigma_{ft} = 70^*$	$f_{\rm t} = 205$	$\sigma_{\rm ft} = 70$	$f_{\rm t} = 205$	
110体ラック	SUS304	せん断	$\tau_{\rm f} = 48^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 48$	$f_{\rm s} = 118$	
		組合せ	$\sigma_{fa} = 108^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 108$	$f_{\rm t} = 205$	
		引張り	$\sigma_{ft} = 116^*$	$f_{\rm t} = 205$	$\sigma_{ft} = 116$	$f_{\rm t} = 205$	
170体ラック SUS304	SUS304	せん断	$\tau_{\rm f} = 47^*$	$f_{\rm s} = 118$	$\tau_{\rm f}=47$	$f_{\rm s} = 118$	
	組合せ	$\sigma_{fa} = 141^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 141$	$f_{\rm t} = 205$		

注記*:基準地震動Ssによる算出応力の値

(5) 補強板 d

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
	引張り	$\sigma_{ft} = 135^*$	$f_{\rm t} = 205$	$\sigma_{\rm ft} = 135$	$f_{\rm t} = 205$	
110体ラック	SUS304	せん断	$\tau_{\rm f} = 22^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 22$	$f_{\rm s} = 118$
		組合せ	$\sigma_{\text{fa}} = 140^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 140$	$f_{\rm t} = 205$
		引張り	$\sigma_{\rm ft} = 149^*$	$f_{\rm t} = 205$	$\sigma_{ft} = 149$	$f_{\rm t} = 205$
170体ラック SUS304	SUS304	せん断	$\tau_{\rm f} = 45^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 45$	$f_{\rm s} = 118$
		組合せ	$\sigma_{\text{fa}} = 168^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 168$	$f_{\rm t} = 205$

注記*:基準地震動Ssによる算出応力の値

すべて許容応力以下である。

(6) 補強板 e

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
		算出応力	許容応力	算出応力	許容応力	
	引張り	$\sigma_{ft} = 73^*$	$f_{\rm t} = 205$	$\sigma_{ft} = 73$	$f_{\rm t} = 205$	
110体ラック	SUS304	せん断	$\tau_{\rm f} = 5^*$	$f_{\rm s} = 118$	$\tau_{\rm f} = 5$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 73^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 73$	$f_{\rm t} = 205$
		引張り	$\sigma_{ft} = 99^*$	$f_{\rm t} = 205$	$\sigma_{\rm ft} = 99$	$f_{\rm t} = 205$
170体ラック 5	SUS304	せん断	$\tau_{\rm f}=8^*$	$f_{\rm s} = 118$	$\tau_{\rm f}=8$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 100*$	$f_{\rm t} = 205$	$\sigma_{fa} = 100$	$f_{\rm t} = 205$

注記*:基準地震動Ssによる算出応力の値

ラック	材料	材料 応力		弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力	
		引張り	$\sigma_x = 18^*$	$f_{\rm t} = 205$	$\sigma_x = 18$	$f_{\rm t} = 205$	
110体ラック	SUS304	引張り	$\sigma_y = 2^*$	$f_{\rm t} = 205$	$\sigma_y = 2$	$f_{\rm t} = 205$	
11014 / 9 / 505304	せん断	$\tau_{xy} = 29^*$	$f_{\rm s} = 118$	$\tau_{xy} = 29$	$f_{\rm s} = 118$		
		組合せ	$\sigma_{fa} = 52^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 52$	$f_{\rm t} = 205$	
		引張り	$\sigma_x = 16^*$	$f_{\rm t} = 205$	$\sigma_x = 16$	$f_{\rm t} = 205$	
170体ラック	CUCDO 4	引張り	$\sigma_y = 1^*$	$f_{\rm t} = 205$	$\sigma_y = 1$	$f_{\rm t} = 205$	
	SUS304	せん断	$\tau_{xy} = 49^*$	$f_{\rm s} = 118$	$\tau_{xy} = 49$	$f_{\rm s} = 118$	
		組合せ	$\sigma_{\rm fa} = 86^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 86$	$f_{\rm t} = 205$	

注記*:基準地震動Ssによる算出応力の値

すべて許容応力以下である。

(8) 補強板 g

(単位:MPa)

ラック材料		応力	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
		引張り	$\sigma_x = 1^*$	$f_{\rm t} = 205$	$\sigma_x = 1$	$f_{\rm t} = 205$
 110体ラック		引張り	$\sigma_y = 4^*$	$f_{\rm t} = 205$	$\sigma_y = 4$	$f_{\rm t} = 205$
110体ラック SUS304	505504	せん断	$\tau_{xy} = 1^*$	$f_{\rm s} = 118$	$\tau_{xy} = 1$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 3^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 3$	$f_{\rm t} = 205$
		引張り	$\sigma_x = 2^*$	$f_{\rm t} = 205$	$\sigma_x = 2$	$f_{\rm t} = 205$
170体ラック	CUC 204	引張り	$\sigma_y = 2^*$	$f_{\rm t} = 205$	$\sigma_y = 2$	$f_{\rm t} = 205$
	SUS304	せん断	$\tau_{xy} = 3^*$	$f_{\rm s} = 118$	$\tau_{xy} = 3$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 5^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 5$	$f_{\rm t} = 205$

注記*:基準地震動Ssによる算出応力の値

(9) 補強板h

(単位:MPa)

ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
		引張り	$\sigma_x = 22^*$	$f_{\rm t} = 205$	$\sigma_x = 22$	$f_{\rm t} = 205$
110体ラック		引張り	$\sigma_y = 18^*$	$f_{\rm t} = 205$	$\sigma_y = 18$	$f_{\rm t} = 205$
110体ラック SUS304	505504	せん断	$\tau_{xy} = 28^*$	$f_{\rm s} = 118$	$\tau_{xy} = 28$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 52^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 52$	$f_{\rm t} = 205$
		引張り	$\sigma_x = 5^*$	$f_{\rm t} = 205$	$\sigma_x = 5$	$f_{\rm t} = 205$
170体ラック	SUS304	引張り	$\sigma_y = 5^*$	$f_{\rm t} = 205$	$\sigma_y = 5$	$f_{\rm t} = 205$
	505304	せん断	$\tau_{xy} = 38^*$	$f_{\rm s} = 118$	$\tau_{xy} = 38$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 66^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 66$	$f_{\rm t} = 205$

注記*:基準地震動Ssによる算出応力の値

すべて許容応力以下である。

(10) 燃料支持板

(単位:MPa)

						(平位, ma)
ラック材料		応力	弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
		引張り	$\sigma_x = 13^*$	$f_{\rm t} = 205$	$\sigma_x = 13$	$f_{\rm t} = 205$
 110体ラック		引張り	$\sigma_y = 41^*$	$f_{\rm t} = 205$	$\sigma_y = 41$	$f_{\rm t} = 205$
110体ラック SUS304	505504	せん断	$\tau_{xy} = 2^*$	$f_{\rm s} = 118$	$\tau_{xy} = 2$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 36^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 36$	$f_{\rm t} = 205$
		引張り	$\sigma_x = 28^*$	$f_{\rm t} = 205$	$\sigma_x = 28$	$f_{\rm t} = 205$
170体ラック	CUC204	引張り	$\sigma_y = 92^*$	$f_{\rm t} = 205$	$\sigma_y = 92$	$f_{\rm t} = 205$
	SUS304	せん断	$\tau_{xy} = 2^*$	$f_{\rm s} = 118$	$\tau_{xy} = 2$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 82^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 82$	$f_{\rm t} = 205$

注記*:基準地震動Ssによる算出応力の値

ラック	ラック 材料		弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
		応力	算出応力	許容応力	算出応力	許容応力
		引張り	$\sigma_x = 20^*$	$f_{\rm t} = 205$	$\sigma_x = 20$	$f_{\rm t} = 205$
110体ラック		引張り	$\sigma_y = 59^*$	$f_{\rm t} = 205$	$\sigma_y = 59$	$f_{\rm t} = 205$
110体ラック SUS304	せん断	$\tau_{xy} = 1^*$	$f_{\rm s} = 118$	$\tau_{xy} = 1$	$f_{\rm s} = 118$	
		組合せ	$\sigma_{fa} = 52^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 52$	$f_{\rm t} = 205$
		引張り	$\sigma_x = 27^*$	$f_{\rm t} = 205$	$\sigma_x = 27$	$f_{\rm t} = 205$
170体ラック		引張り	$\sigma_y = 69^*$	$f_{\rm t} = 205$	$\sigma_y = 69$	$f_{\rm t} = 205$
	SUS304	せん断	$\tau_{xy} = 2^*$	$f_{\rm s} = 118$	$\tau_{xy} = 2$	$f_{\rm s} = 118$
		組合せ	$\sigma_{fa} = 60^*$	$f_{\rm t} = 205$	$\sigma_{fa} = 60$	$f_{\rm t} = 205$

注記*:基準地震動Ssによる算出応力の値

すべて許容応力以下である。

1.4.2 基礎ボルトに生じる応力

(単位:MPa)

						(<u> </u> m a)
ラック	材料	弾性設計用地震動Sd応力又は静的震度		基準地	基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック		引張り	$\sigma_{b} = 115^{*1}$	$f_{\rm t\ s} = 455^{*2}$	$\sigma_{\rm b} = 115$	$f_{\rm t\ s} = 455^{*2}$
110/		せん断	$\tau_{b} = 27^{*1}$	$f_{\rm s\ b} = 350$	τ _b = 27	$f_{\rm s \ b} = 350$
170体ラック		引張り	$\sigma_{b} = 129^{*1}$	$f_{t s} = 455^{*2}$	$\sigma_{\rm b} = 129$	$f_{t s} = 455^{*2}$
110747 7 9 7		せん断	$\tau_{b} = 32^{*1}$	$f_{\rm s \ b} = 350$	$\tau_{\rm b} = 32$	$f_{\rm s \ b} = 350$

注記*1:基準地震動Ssによる算出応力の値

*2: f_{t s}=Min[1.4・f_{t o}-1.6・τ_b, f_{t o}] より算出

すべて許容応力以下である。

枠囲みの内容は商業機密の観点から公開できません。

 $^{\circ}$

【使用済燃料貯蔵ラックの耐震性についての計算結果】

2. 重大事故等对処設備

2.1 設計条件

□ 国政 (℃)			
最高使用温.	$\tilde{\mathcal{O}}$	100	100
最高使用圧力 (MDc)	(ML d)		
S s	鉛直方向	$C_{v} = 1.56$	$C_{\rm V} = 1.56$
S傾鬘疵寭꿏	水平方向	$C_{\rm H}{=}2.12 \chi l \ddagger *3 C_{\rm V}{=}1.56$	$C_{H} = 2.12 X l \ddagger *3$ $C_{V} = 1.56$
弾性設計用地震動 S d 又は静的震度	鉛直方向		
弾性設計用 又は静	水平方向		
固有周期 (s)	鉛直方向	0.05以下*2	0.05以下*2
■ ● ■	水平方向		
ブック		110 体ラック	170 体ラック
据付場所及び 床面高さ (m)		原子炉建屋	0P. 22.50* ¹
設備分類		常設耐震/防止	常設/緩和
機器名称		~ ~ 왜무머리 이렇게 수도 더 무기	(史用)済然や町廠フック

注記*1:基準床レベルを示す。

*2:固有値解析により 0.05 秒以下であり, 剛であることを確認した。

*3:基準地震動Ssに基づく設計用床応答曲線から得られる値

2.2 基礎ボルトの応力評価に用いる項目

		. 1		1	1
I	921.5		n _{3E} (-)	5	2
101.5	1085.5		n _{2E} (–)	2	2
265. 5	1249.5		n _{1E} (-)	10	10
429.5	1413. 5		$\ell_{\rm g N}$ (mm)	835	835
593.5	1577. 5		$\ell_{\rm g E}$ (mm)	921.5	1413.5
757.5	1741. 5		ℓ_{10N} (mm)	101.5	101.5
921.5	1905. 5		θ 9.N (mm)	261.5	261.5
			ℓ_{8N} (mm)	421.5	421.5
			β _{7N} (mm)	581.5	581.5
1413.5			ℓ _{6N} (mm)	741.5	741.5
1577.5			ℓ_{5N} (mm)	928. 5	928. 5
1741.5	2725.5		ℓ_{4N} (mm)		1088.5
1.56	1.56		ℓ_{3N} (mm)	2	1248.5
1590	1590		ℓ_{2N} (mm)	-	1408. 5
			ℓ_{1N} (mm)	1568. 5	1568. 5
			ℓ_{17E} (mm)	I	101.5
			$\ell_{16\mathrm{E}}$ (mm)	I	265. 5
			ℓ_{15E} (mm)	I	429.5
ラック	ラック		$\ell_{14\mathrm{E}}$ (mm)	I	593.5
110体	170 体		ℓ _{13E} (mm)	I	757.5
	1.56 1741.5 1577.5 1413.5 1249.5 1085.5 921.5 757.5 593.5 429.5 265.5 101.5	1590 1.56 1741.5 1577.5 1413.5 1249.5 1085.5 591.5 593.5 429.5 265.5 101.5 - 1590 1.56 2725.5 2561.5 2337.5 2069.5 1905.5 1577.5 1413.5 1249.5 101.55 -	1590 1.56 1741.5 1577.5 1413.5 1249.5 1085.5 921.5 593.5 429.5 265.5 101.5 - 1590 1.56 2725.5 2561.5 2397.5 2233.5 2069.5 1905.5 1741.5 1413.5 1249.5 1085.5 921.55 1577.5 1413.5 1249.5 1085.5 921.5	$(k \neq > > > > > > > > > > > > > > > > > > $	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$

44

0
Ľ
VI-2-4-2-2
\odot
02

n _{6N} (-)	2	2
n _{5N} (-)	2	2
n _{4N} (-)	2	2
n _{3N} (-)	2	2
n _{2N} (-)	2	2
n _{1N} (-)	11	17
n _{17E} (-)	I	10
n _{16 E} (-)	I	2
n _{15E} (-)	I	2
n _{14E} (-)	I	2
n _{13E} (-)	I	2
n _{12E} (-)	I	2
n _{11E} (-)	10	2
n _{10E} (-)	2	2
n _{9E} (-)	2	2
n _{8E} (-)	2	2
n _{7E} (-)	2	2
n _{6E} (-)	2	2
n _{5E} (-)	2	2
n _{4E} (-)	2	2

·		
u (-)	38	50
$n_{10N}(-)$	11	17
(-)	2	2
n _{8N} (-)	2	2
n ₇ N (-)	2	2

F * (MPa)	
F (MPa)	
Su ^{*1} (MPa)	
S _y (RT) (MPa)	
${ m S_y}^{*1}$ (MPa)	
基礎ボルト材料	

1

注記*1:最高使用温度(100°C)で算出

${ m M_E}$ (N·mm)	Ι	4. 098×10^{9}	-	6. 659×10^{9}
${ m M}_{ m N}$ (N \cdot mm)	I	5. 138 $\times 10^{9}$	I	7.836 $\times 10^{9}$
F _E (N)	I	1.614×10 ⁶ 1.435×10 ⁶ 5.138×10 ⁹ 4.098×10 ⁹	I	2.518×10 ⁶ 2.071×10 ⁶ 7.836×10 ⁹ 6.659×10 ⁹
F_N (N)	I	1.614×10^{6}	I	2.518×10 ⁶
地震の種類	弹性設計用地震動 S d 又は静的震度	z S 他震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
ラック	110 年与 方	110 14 1011	170 休马 … 万	C C C ++ 011

2.3 計算数値

2.3.1 部材に生じる応力

(1) 角管

(単位:MPa)

ラック 材料	材料	材料 応力	弾性設計用地震動S d 又は静的震度		基準地震動S s	
		NS方向	EW方向	NS方向	EW方向	
	引張りσ _{ft}	_	—	101	79	
110体ラック		せん断τ _f	_	_	40	21
		組合せσ _{fa}	_	—	122	87
		引張りσ _{ft}	_	_	134	57
170体ラック		せん断τ _f	_	_	55	41
		組合せ σ _{fa}	—	—	164	91

(2) 補強板 a

(単位:MPa)

ラック 材料	材料	材料 応力	弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
	, , , , , ,	NS方向	EW方向	NS方向	EW方向	
	引張りσ _{ft}	_	_	60	19	
110体ラック	SUS304	せん断τ _f	_	_	46	35
		組合せσ _{fa}	_	_	100	63
		引張りσ _{ft}	_	_	104	20
170体ラック SUS304	SUS304	せん断τ _f	_	_	62	37
		組合せ σ _{fa}	_	_	149	67

(3) 補強板 b

(単位:MPa)

ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向
	引張りσ _{ft}	—	—	37	21	
110体ラック	SUS304	せん断τ _f	_	_	32	13
		組合せσ _{fa}	_	_	67	30
		引張りσ _{ft}	_	_	57	19
170体ラック	SUS304	せん断τ _f	_	_	54	13
		組合せ σ _{fa}	_	_	110	29

46

(4) 補強板 c

(単位:MPa)

ラック 材料	材料	材料 応力	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
		NS方向	EW方向	NS方向	EW方向	
	引張りσ _{ft}	—	—	75	70	
110体ラック	SUS304	せん断τ _f	_	—	32	48
		組合せ σ _{fa}	_	_	93	108
		引張りσ _{ft}	_	_	116	53
170体ラック SUS	SUS304	せん断τ _f	_	_	47	39
		組合せσ _{fa}			141	86

(5) 補強板 d

(単位:MPa)

ラック	材料	応力	弾性設計用 又は静		基準地震	통動S s
	μu·2 J	NS方向	EW方向	NS方向	EW方向	
		引張りσ _{ft}	_	_	99	135
110体ラック	SUS304	せん断τ _f	_	_	26	22
		組合せ σ _{fa}	_	_	109	140
		引張りσ _{ft}	_	_	149	116
170体ラック	SUS304	せん断τ _f	_	_	45	23
		組合せ σ _{fa}	_	_	168	123

(6) 補強板 e

(単位:MPa)

ラック 材料	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
		NS方向	EW方向	NS方向	EW方向	
	引張りσ _{ft}	_	_	73	30	
110体ラック	SUS304	せん断τ _f	_	_	5	9
		組合せσ _{fa}	_	—	73	33
		引張りσ _{ft}	_	_	99	28
170体ラック SUS304	SUS304	せん断τ _f		_	8	8
		組合せ σ _{fa}			100	31

47

ラック	材料	応力		弾性設計用地震動S d 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向	
110体ラック SUS304	引張り σ x	—	—	18	13		
	SUS304	引張り σ ,	_	_	2	2	
110/4 / 9 /	505304	せん断 τ _{x y}	—	—	29	2	
		組合せ σ _{f a}	_	_	52	12	
		引張り σ _x	_	_	16	11	
170体ラック	SUS304	引張り σ ,	_	_	1	3	
17014797	505304	せん断 τ x y	_	_	49	5	
		組合せ σ _{fa}	—	_	86	12	

(8) 補強板 g

(単位:MPa)

ラック	材料	応力	弾性設計用 又は静		基準地震動 S s	
	1411		NS方向	EW方向	NS方向	EW方向
		引張り σ x	_	_	1	1
 110体ラック SUS	SUS304	引張り σ _y	_	_	1	4
110 1 99	505304	せん断 τ _{x y}	_	—	2	1
		組合せ σ _{f a}	_	_	3	3
		引張り σ x	_	_	2	1
 170体ラック	SUS304	引張り σ ,	_	_	2	3
17074 7 9 9	303304	せん断 τ x y	_	_	3	0
		組合せ σ _{f a}	_	_	5	3

(9) 補強板h

(単位:MPa)

ラック	材料	応力	弾性設計用地震動S d 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向
110体ラック SUS304	引張り σ x	_	—	7	22	
	SUS304	引張り σ ,	_	_	47	18
110/47 9 9	505304	せん断 τ _{x y}	_	—	12	28
		組合せ σ _{f a}	_	_	49	52
		引張り σ _x	_	_	5	20
170体ラック	SUS304	引張り σ ,	_	_	5	16
17014 7 9 7	505304	505504 せん断τ _{xy} 組合せσ _{fa}		_	38	31
				—	66	56

(10) 燃料支持板

(単位:MPa)

ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
			NS方向	EW方向	NS方向	EW方向
110体ラック SUS304	引張り σ _x	_	_	13	17	
	SUS304	引張り σ _ッ	_	_	41	26
110 1 99	505504	せん断 τ _{x y}	_	—	2	4
		組合せ σ _{f a}	_	_	36	23
		引張り σ _x	_	_	28	12
 170体ラック	SUS304	引張り σ ,	_	_	92	29
17014 7 9 7 505304	303304	せん断 τ x y	_	_	2	7
		組合せ σ _{fa}	—		82	28

ラック	材料	応力	弾性設計用地震動S d 又は静的震度		基準地震動S s	
			NS方向	EW方向	NS方向	EW方向
110体ラック SUS304	引張り σ x	_	_	20	13	
	SUS304	引張り σ ,	_	_	59	39
110/47 9 9	505304	せん断 τ _{x y}	_	_	1	5
		組合せ σ _{fa}	_	_	52	36
		引張り σ _x	_	_	27	7
170体ラック	SUS304	引張り σ ,	_	_	69	37
17014797 5055	303304	505304 せん断 τ _{x y}	_	_	2	4
		組合せ σ _{f a}	_	_	60	35

1.3.2 基礎ボルトに生じる応力

(単位:MPa)

ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
			NS方向	EW方向	NS方向	EW方向
110体ラック		引張りσ _b	_	_	115	83
110/4799		せん断τ _b	—	_	27	24
170体ラック		引張りσ _b	_	_	129	66
170座ノソク		せん断τ _b	—	_	32	26

2.4 応力

2.4.1 部材に生じる応力

(1) 角管

(単位:MPa)

r	1						
ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動S s		
			算出応力	許容応力	算出応力	許容応力	
		引張り	_	—	$\sigma_{ft} = 101$	$f_{\rm t} = 205$	
110体ラック		せん断	_	_	$\tau_{\rm f}=40$	$f_{\rm s} = 118$	
		組合せ	_	_	$\sigma_{fa} = 122$	$f_{\rm t} = 205$	
		引張り	_	—	$\sigma_{ft} = 134$	$f_{\rm t} = 205$	
170体ラック		せん断	_	—	$\tau_{\rm f} = 55$	$f_{\rm s} = 118$	
		組合せ	_	_	$\sigma_{fa} = 164$	$f_{\rm t} = 205$	

すべて許容応力以下である。

(2) 補強板 a

(単位:MPa)

ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
		引張り	_	—	$\sigma_{\rm ft} = 60$	$f_{\rm t} = 205$
110体ラック	SUS304	せん断	_	—	$\tau_{\rm f} = 46$	$f_{\rm s} = 118$
		組合せ	_	—	$\sigma_{fa} = 100$	$f_{\rm t} = 205$
		引張り	_	—	$\sigma_{ft} = 104$	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	_	_	$\tau_{\rm f} = 62$	$f_{\rm s} = 118$
		組合せ		_	$\sigma_{fa} = 149$	$f_{\rm t} = 205$

すべて許容応力以下である。

ラック	材料	応力	弾性設計用地震動S d 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
		引張り	_	_	$\sigma_{\rm ft} = 37$	$f_{\rm t} = 205$
110体ラック	SUS304	せん断	—	—	$\tau_{\rm f} = 32$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 67$	$f_{\rm t} = 205$
		引張り	—	_	$\sigma_{ft} = 57$	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	—	_	$\tau_{\rm f} = 54$	$f_{\rm s} = 118$
		組合せ			$\sigma_{fa} = 110$	$f_{\rm t} = 205$

すべて許容応力以下である。

(4) 補強板 c

(単位:MPa)

ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
		引張り	_	_	$\sigma_{\rm ft} = 70$	$f_{\rm t} = 205$
110体ラック	SUS304	せん断	—	—	$\tau_{\rm f} = 48$	$f_{\rm s} = 118$
		組合せ	—	—	$\sigma_{fa} = 108$	$f_{\rm t} = 205$
		引張り	—	—	$\sigma_{\rm ft} = 116$	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	_	_	$\tau_{\rm f}=47$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 141$	$f_{\rm t} = 205$

すべて許容応力以下である。

52

(5) 補強板 d

(単位:MPa)

ラック	材料	応力	弾性設計用地震動S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
		引張り	_	—	$\sigma_{\rm ft} = 135$	$f_{\rm t} = 205$
110体ラック	SUS304	せん断	_	_	$\tau_{\rm f} = 22$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 140$	$f_{\rm t} = 205$
		引張り	_	_	$\sigma_{ft} = 149$	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	_	—	$\tau_{\rm f} = 45$	$f_{\rm s} = 118$
		組合せ		—	$\sigma_{fa} = 168$	$f_{\rm t} = 205$

すべて許容応力以下である。

(6) 補強板 e

(単位:MPa)

	ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動 S s		
				算出応力	許容応力	算出応力	許容応力	
		SUS304	引張り	_	_	$\sigma_{\rm ft} = 73$	$f_{\rm t} = 205$	
	110体ラック		せん断	_	_	$\tau_{\rm f} = 5$	$f_{\rm s} = 118$	
			組合せ	_	_	$\sigma_{fa} = 73$	$f_{\rm t} = 205$	
			引張り	_	_	$\sigma_{\rm ft} = 99$	$f_{\rm t} = 205$	
	170体ラック	SUS304	せん断	_	_	$\tau_{\rm f}=8$	$f_{\rm s} = 118$	
			組合せ	_	_	$\sigma_{fa} = 100$	$f_{\rm t} = 205$	

ラック	材料	応力	弾性設計用地震動S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
		引張り	_	—	$\sigma_x = 18$	$f_{\rm t} = 205$
	SUS304	引張り	_	—	$\sigma_y = 2$	$f_{\rm t} = 205$
110体ラック		せん断	_	—	$\tau_{xy} = 29$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 52$	$f_{\rm t} = 205$
		引張り	_	_	$\sigma_x = 16$	$f_{\rm t} = 205$
170体ラック	CUC204	引張り	_	—	$\sigma_y = 1$	$f_{\rm t} = 205$
17014 7 9 9	SUS304	せん断	_	_	$\tau_{xy} = 49$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 86$	$f_{\rm t} = 205$

すべて許容応力以下である。

(8) 補強板 g

(単位:MPa)

ラック	材料	応力		弾性設計用地震動Sd 又は静的震度		통動Ss
			算出応力	許容応力	算出応力	許容応力
		引張り	_	_	$\sigma_x = 1$	$f_{\rm t} = 205$
110体ラック	SUS304	引張り	—	_	$\sigma_y = 4$	$f_{\rm t} = 205$
110/4 / 9 /		せん断	—	_	$\tau_{xy} = 1$	$f_{\rm s} = 118$
		組合せ	—	_	$\sigma_{fa} = 3$	$f_{\rm t} = 205$
		引張り	—	_	$\sigma_x = 2$	$f_{\rm t} = 205$
170休ラック	CUC 204	引張り	—	_	$\sigma_y = 2$	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	_	_	$\tau_{xy} = 3$	$f_{\rm s} = 118$
		組合せ	_		$\sigma_{fa} = 5$	$f_{\rm t} = 205$

(9) 補強板h

(単位:MPa)

ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
11045 6		引張り	_	_	$\sigma_x = 22$	$f_{\rm t} = 205$
	SUS304	引張り	—	_	$\sigma_y = 18$	$f_{\rm t} = 205$
110体ラック		せん断	—	_	$\tau_{xy} = 28$	$f_{\rm s} = 118$
		組合せ	—	_	$\sigma_{fa} = 52$	$f_{\rm t} = 205$
		引張り	_	_	$\sigma_{\rm x} = 5$	$f_{\rm t} = 205$
170体ラック	SUS304	引張り	—	_	$\sigma_y = 5$	$f_{\rm t} = 205$
11014 ノツク	505304	せん断	_	_	$\tau_{xy} = 38$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 66$	$f_{\rm t} = 205$

すべて許容応力以下である。

(10) 燃料支持板

(単位:MPa)

ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
		引張り	—	—	$\sigma_{\rm x} = 13$	$f_{\rm t} = 205$
	SUS304	引張り	—	—	$\sigma_y = 41$	$f_{\rm t} = 205$
110体ラック		せん断	—	—	$\tau_{xy} = 2$	$f_{\rm s} = 118$
		組合せ	—	—	$\sigma_{fa} = 36$	$f_{\rm t} = 205$
		引張り	—	—	$\sigma_{\rm x} = 28$	$f_{\rm t} = 205$
170休三、万	CUC 204	引張り	—	—	$\sigma_y = 92$	$f_{\rm t} = 205$
170体ラック	SUS304	せん断	_	_	$\tau_{xy} = 2$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 82$	$f_{\rm t} = 205$

ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
		引張り	_	_	$\sigma_x = 20$	$f_{\rm t} = 205$
	SUS304	引張り	—	—	$\sigma_y = 59$	$f_{\rm t} = 205$
110体ラック		せん断	—	—	$\tau_{xy} = 1$	$f_{\rm s} = 118$
		組合せ	—	—	$\sigma_{fa} = 52$	$f_{\rm t} = 205$
		引張り	—	—	$\sigma_x = 27$	$f_{\rm t} = 205$
170体ラック	SUS304	引張り	—	—	$\sigma_y = 69$	$f_{\rm t} = 205$
17014-292	303304	せん断	_	_	$\tau_{xy} = 2$	$f_{\rm s} = 118$
		組合せ	_	_	$\sigma_{fa} = 60$	$f_{\rm t} = 205$

すべて許容応力以下である。

2.4.2 基礎ボルトに生じる応力

(単位:MPa)

ラック	材料	応力	弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック		引張り	—	—	$\sigma_{b} = 115$	$f_{\rm t\ s} = 444^*$
		せん断	_	_	τ _b = 27	$f_{\rm s\ b} = 341$
170体ラック		引張り	_	_	$\sigma_{b} = 129$	$f_{\rm t\ s} = 444^{*}$
		せん断			$\tau_{b} = 32$	$f_{\rm s\ b} = 341$

注記*: f_t = Min[1.4・f_t - 1.6・ τ_b, f_t] より算出

すべて許容応力以下である。