| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書

2021年1月東北電力株式会社

VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書

目 次

1．概要1
2．基本方針 1
3．適用基準，適用規格等 2
4．脆性破壊防止に対する設計 2
5．評価対象と評価方法 2
6．記号の説明 5
7．最低使用温度に基づく評価 6
7． 1 評価箇所 6
7.2 最低使用温度 6
8．関連温度に基づく評価 7
8.1 評価箇所 7
8.2 関連温度の要求値 7
8.3 応力拡大係数の計算 7
8．3．1最大仮想欠陥 7
8．3．2 応力拡大係数の計算 8
8.4 中性子照射による関連温度の移行量 8
8.5 計算結果 10
8．5．1 応力拡大係数の計算結果 10
8．5．2 関連温度の要求値の計算結果 10
9．上部棚吸収エネルギーの評価 11
9． 1 評価箇所 11
9.2 上部棚吸収エネルギーの評価方法 11
9.3 上部棚吸収エネルギーの計算 11
9．3．1 上部棚吸収エネルギー減少率の推定 11
9．3．2 上部棚吸収エネルギー調整値の算出 12
9.4 上部棚吸収エネルギーの評価結果 12
10．結論 13
付録1 中性子照射による関連温度移行量 27

図表目次

図 7－1 破壊靭性評価箇所 14
図 8－1 最大仮想欠陥形状 15
表 5－1（1）重大事故シーケンスの影響確認 16
表 5－1（2）重大事故シーケンスの影響確認 17
表 5－1（3）重大事故シーケンスの影響確認 18
表 7－1 最低使用温度に基づく評価箇所 19
表 8－1（1）評価対象となる材料（胴板及び鏡板部） 20
表8－1（2）評価対象となる材料（ノズル） 21
表 8－2 原子炉圧力容器の 40 定格負荷相当年数の運転期間中の中性子束及び中性子 照射量 22
表 8－3（1）応力拡大係数及び関連温度の要求値の計算結果（胴板及び鏡板部） 23
表 8－3（2）応力拡大係数及び関連温度の要求値の計算結果（ノズル） 24
表 9－1 国内 USE 予測式の適用範囲及び評価対象の諸元 25
表 9－2 上部棚吸収エネルギーの評価結果 26

1．概要

本資料は，「実用発電用原子炉及びその附属施設の技術基準に関する規則」（以下「技術基準規則」という。）第 14 条第 2 項及び第 54 条第 1 項第 1 号並びにそれらの「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」（以下「解釈」という。） に基づき，設計基準対象施設としての原子炉圧力容器の破壊靭性及び想定される重大事故等が発生した場合に，原子炉圧力容器が重大事故等時に対処するために流路としての機能を有効に発揮できることを確認するため，破壊靭性に対する評価について説明する ものである。あわせて，技術基準規則第 17 条第 1 号及び第 55 条第 2 号並びにそれらの解釈に対して，原子炉圧力容器の材料が適切であることを説明する。

今回，設計基準対象施設としての原子炉圧力容器の材料については，平成 4 年 1 月 13日付け 3 資庁第 10518 号にて認可された工事計画から変更はないが，各供用状態及び試験状態に対する評価結果に影響を及ぼす脆化予測法が改訂されたため，改めて設計基準対象施設としての原子炉圧力容器の破壊靭性に対する評価について説明する。また，重大事故等対処設備としての原子炉圧力容器の破壊靭性に対する評価について説明する。

2．基本方針

原子炉圧力容器に使用する材料は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において使用される圧力，温度，放射線，荷重その他の使用条件に対して適切な破壊靭性を有する設計とする。

原子炉圧力容器に使用する材料は，中性子照射の影響を考慮し適切な破壊靭性を維持 できるよう，保安規定に監視試験片の評価結果に基づき原子炉冷却材温度及び圧力の制限範囲を設定することを定めて，原子炉圧力容器の脆性破壊を防止するよう管理する。

原子炉圧力容器に使用する材料は，重大事故等時における温度，圧力及び荷重に対し て適切な破壊勒性を有する設計とし，かつ，重大事故等時における温度，放射線，荷重 その他の使用条件において重大事故等時に対処するために流路としての機能を有効に発揮することができる設計とする。

原子炉圧力容器の脆性破壊防止以外の温度，放射線，荷重その他の使用条件に対して健全性を維持することについては，添付書類「VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書」に示している。

原子炉圧力容器の材料に対して施設時の評価として，中性子照射が及ぼす影響を評価 することから，評価時期については，「核原料物質，核燃料物質及び原子炉の規制に関す る法律」第 43 条の 3 の 32 に，発電用原子炉の運転できる期間が 40 年と定められてい ることを考慮し，40定格負荷相当年数を想定して，評価を実施する。

なお，原子炉圧力容器の炉心領域部の中性子照射による影響評価については，監視試験片によつて計画的に評価を行うとともに，施設後 40 定格負荷相当年数の運転期間後以降の評価については，高経年化対策として実施する。

3．適用基準，適用規格等
－実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 1 9 日 原規技発第1306194号原子力規制委員会決定）
－日本機械学会「発電用原子力設備規格 設計•建設規格（J S M E S N C $1-2$ 005 （2007年追補版含む））

- 日本電気協会「原子炉構造材の監視試験方法」（J E A C 4 2 0 1－2 00 7）
- 日本電気協会「原子炉構造材の監視試験方法」（J E A C 4 2 0 1－2007）［20 10 年追補版］
－日本電気協会「原子炉構造材の監視試験方法」（J E A C 4 2 0 1－2007）［20 13 年追補版］
－日本電気協会「原子力発電所用機器に対する破壊勒性の監視試験方法」（J E A C 42 $06-2007$ ）

4．脆性破壊防止に対する設計
技術基準規則第 17 条を踏まえ，原子炉圧力容器に使用する材料は，強度と靭性に優れ る低合金鋼の鋼板及び鍛鋼品で構成し，原子炉泠却材と接触する原子炉圧力容器内面部分はステンレス鋼及び高ニッケル合金で内張りし，耐食性を向上させた設計とする。原子炉圧力容器は脆性破壊防止の観点から，原子炉泠却材の最低温度を設定し，適切な温度で使用する。また，中性子照射脆化が予想される材料に関しては，材料中の Cu 及び Ni含有量が多いほど中性子照射脆化に与える影響が大きいことから，材料調達時に各元素 の含有量を管理する。

また，技術基準規則第55条を踏まえ，重大事故等対処設備としての原子炉圧力容器の材料は，重大事故等時の原子炉圧力容器の使用温度が崩壊熱による原子炉泠却材の加熱 により設計基準対象施設としての最低使用温度を下回らず，想定される使用条件に対し て適切な破壊靭牲を有する設計とする。

5．評価対象と評価方法
原子炉圧力容器に使用する材料は，発電用原子力設備規格（設計•建設規格 J S M E S N C 1－2 0 0 5（ 2 0 0 7 年追補版含む））（日本機械学会 2007年）（以下「設計•建設規格」という。）に基づいて，評価対象となる材料を抽出する。評価対象となる材料 は，原子炉圧力容器を構成する材料のらち，耐圧部を構成する材料であり，かつ，設計•建設規格の PVB－2311 に示される脆性破壊が生じにくい板厚，断面積，外径及び指定材料等の条件により，破壊勒性試験が必要となる材料をすべて抽出し，評価を行う。この抽出により，最低使用温度に対してスタッドボルト，関連温度に対して耐圧部を構成する材料，上部棚吸収エネルギーに対して炉心領域材料が評価対象となる。

技術基準規則第 14 条及び第 54 条への適合性を確認するため，技術基準規則第 14 条

の解釈に示される「原子力発電所用機器に対する破壊靭性の確認試験方法 J E A C 42 06－2007（日本電気協会）」（以下「JEAC4206」という。），「原子炉構造材 の監視試験方法 J E A C 4 2 0 1－2 0 0 7（日本電気協会）」，「原子炉構造材の監視試験方法 J E A C 4 2 0 1－2 0 0 7［ 2 0 1 0 年追補版］（日本電気協会）」及び「原子炉構造材の監視試験方法 J E A C 4 2 0 1－2 0 0 7［ 2 0 1 3 年追補版］（日本電気協会）」 （以下「JEAC4201」という。）の手法を用いて，原子炉圧力容器の脆性破壊に対 する評価を行う。

J E A C 4 2 0 6 第 2 章クラス 1 機器の規定により，破壊靭性試験を行う場合に必要 とされる試験条件，すなわち最低使用温度を明確にすること，並びに関連温度の要求値及び J E A C 4 2 0 1 の規定により，上部棚吸収エネルギーが供用期間中の破壊靭性の要求を満足することを示す。また，重大事故等が発生した場合に，原子炉圧力容器が重大事故等時に対処するために流路としての機能を有効に発揮できることを示す。

破壊靭性の評価は，J E A C 4 2 0 6 の FB－2000 で規定されるように，最低使用温度以下での衝撃試験結果を判定基準と対比し評価する方法，J E A C 4206 の FB－4000並びに附属書 A 及び附属書 F で規定されるように，応力拡大係数と運転状態における材料の温度より求められる関連温度を用いて評価する方法，また，J E A C 4 2 0 1 のSA－ 3440 で規定されるように，高温時における靭性を示す上部棚吸収エネルギーの減少率を予測し，設計寿命末期における上部棚吸収エネルギーを評価する方法に区分される。

原子炉圧力容器材料で破壊靭性試験を要求される箇所に対し，最低使用温度を基準と する評価箇所と関連温度を基準とする評価箇所を区別して評価を行い，加えて炉心領域材料について上部棚吸収エネルギーを評価する。なお，関連温度を用いての評価は，供用期間中の耐圧•漏えい試験及び供用状態 A 及び B（耐圧•漏えい試験を除く）の運転条件において，原子炉圧力容器の材料の脆性破壊防止の観点で破壊靭性上最も厳しい運転条件は，低温高圧の運転管理となる耐圧•漏えい試験時であるため，供用状態 A 及びB の評価は耐圧•漏えい試験での評価で代表する。

供用状態 C 及び供用状態 D については，J E A C 4 2 0 6 解説－附属書 A－3120より，健全性評価上最も問題となる事象はPTS 事象＊ 1 である。沸騰水型原子炉圧力容器では相当運転期間での中性子照射量が低いこと，炉圧は蒸気温度の低下に伴い低下することか らPTS 事象は発生しない。そのため，供用状態C及び供用状態Dにおいては脆性破壊に対して厳しくなる事象はなく，耐圧•漏えい試験時に対する評価で代表される。

重大事故等時について炉心損傷防止対策の有効性評価における重大事故シーケンス及 び格納容器破損防止対策の有効性評価における評価事故シーケンスを表 5－1（1），表 5－ 1 （2）及び表 5－1（3）に示す。表 5－1（1），表 5－1（2）及び表 5－1（3）より重大事故等時（原子炉停止機能喪失［ATWS］を除く）の温度•圧力条件は従来想定されている設計基準事象に包絡される。原子炉停止機能喪失［ATWS］において設計基準事象の圧力を超えるが，飽和蒸気線図上で変化するため，破壊靭性上厳しい運転条件である低温高圧の運転状態とな

ることはない。このことから，重大事故等対処設備としての原子炉圧力容器の破壊勒性 に対する評価は，8章に示す設計基準事象における評価で代表できる。

具体的な破壊勒性の評価方法は，原子炉圧力容器の耐圧部材料に使用される低合金鋼 がフェライト鋼であり，脆性破壊が懸念される材料であることから，評価においては破壊力学を適用する。破壊力学では，欠陥の先端近傍の応力場の強さを応力拡大係数で表 し，応力拡大係数が破壊靭性を超えると破壊すると判断する。原子炉圧力容器の材料の評価に当たっては，保守的に欠陥が存在するものと仮定し，欠陥の先端に生じる欠陥の進展力（応力拡大係数）を，供用期間中に想定される圧力•温度条件等から算出する。破壊勒性については，落重試験及び衝撃試験から得られる関連温度（R T NDT）及び金属温度と関数の関係にあることから，関連温度を用いて各温度の破壊勒性を算出する。

また，経年劣化事象により破壊勒性の低下が懸念される部位については，供用期間中 における劣化を考慮した評価を行ら。軽水炉における材料の破壊靭性の低下を伴ら劣化事象としては，熱時効と中性子照射脆化が挙げられる。熱時効については，原子炉圧力容器の材料である低合金鋼に対する影響を，財団法人発電設備技術検査協会の研究 ${ }^{* 2}$ に おいて検証されており，有意な劣化事象ではない。一方，中性子照射脆化については， J E A C 4 2 0 1 において監視試験の対象となる中性子照射量 $10^{17} \mathrm{n} / \mathrm{cm}^{2}(\mathrm{E}>1 \mathrm{MeV})$ 以上となる炉心領域が含まれるため，考慮が必要である。

中性子照射脆化は，中性子照射量及び材料の化学成分（Cu，Ni，P）に依存し，中性子照射量及びこれら化学成分の含有量が多いほど脆化は大きい傾向にある。原子炉圧力容器 を構成する各部位の材料については，板材と鍛造材の違いはあるものの，すべて低合金鋼を使用しており，化学成分に有意な差はない。一方，供用期間中に原子炉圧力容器の材料が受ける中性子照射量については，炉心領域のらち，炉心の有効高さを直接囲む胴板 3 及び胴板 4 の内表面が最も多い（ $1.7 \times 10^{18} \mathrm{n} / \mathrm{cm}^{2}(\mathrm{E}>1 \mathrm{MeV})$ 程度）ことから，中性子照射脆化を考慮した破壊靭性の評価は，当該事象が懸念される胴板 3 及び胴板 4 につい て実施する。なお，胴板 3 及び胴板 4 の溶接部は母材と同等以上の靭性を持つことを確認した施工法を用いて溶接を行うため，評価においては母材を対象とする。

中性子照射量を考慮する位置は，内表面及び表面からの仮想欠陥深さ $1 / 4 \mathrm{t}$（内表面か ら1／4t部）とする。

注記＊1：PTS（加圧熱衝撃）
加圧下の原子炉圧力容器内で急激な泠却が生じると，原子炉圧力容器内外間 の温度差により高い引張応力が容器内面に発生し，これと内圧による膜応力 が重畳して高い引張応力が容器内面に発生する現象。
＊2：プラント長寿命化技術開発 低合金鋼・ステンレス鋼等腐食環境材料試験（低合金鋼・ステンレス鋼）（BWR）（昭和 62 年度～平成 4 年度のまとめ）（平成 5 年 3 月財団法人 発電設備技術検查協会）

6．記号の説明

記号	記号の説明	単位
a	欠陷の深さ	mm
f	原子炉圧力容器内表面から深さ a における中性子照射量	$\mathrm{n} / \mathrm{cm}^{2}$
$F(\mathrm{a} / \mathrm{r} \mathrm{n}$ ）	補正係数で，J E A C 4 2 0 6 の附属書F の附属書図 F－ 4200－1 で有限要素法のデータを結んだ曲線により得られ	－
$\mathrm{K}_{\text {I }}$	る値 供用状態における材料の応力と応力係数との積 （以下「応力拡大係数」という。）	$\mathrm{MPa} \cdot \sqrt{\mathrm{m}}$
K I c	J E A C 4 2 0 6 の附属書 A により規定される静的破壊靭性値	$\mathrm{MPa} \cdot \sqrt{\mathrm{m}}$
$\mathrm{K}_{\text {I }}{ }^{\text {p }}$	一次応力による応力拡大係数	$\mathrm{MPa} \cdot \sqrt{\mathrm{m}}$
$\mathrm{K}_{\text {I }}{ }_{\text {q }}$	二次応力による応力拡大係数	$\mathrm{MPa} \cdot \sqrt{\mathrm{m}}$
l	欠陥の長さ	mm
Mm_{m}	J E A C 4206 の附属書 F の附属書図 F $-3100-1$ により得られる膜応力の応力補正係数	$\sqrt{\mathrm{m}}$
M_{b}	JEAC4206の附属書FのF－3100に示される曲げ応	$\sqrt{\mathrm{m}}$
	力の応力補正係数（ M_{m} の $\frac{2}{3}$ の値）	
R T $\mathrm{NDT}^{\text {T }}$	J E A C 4 2 0 6 のFB－2000 及び附属書 A により規定さ れる関連温度	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{R}^{\text {T }}$ NDT	関連温度の移行量	${ }^{\circ} \mathrm{C}$
r i	ノズルの内半径	mm
r c	ノズルコーナーの曲率半径	mm
r ${ }_{\text {n }}$	ノズルのみかけの半径	mm
$S_{\text {F }}$	安全係数	－
T	供用状態における材料の温度	${ }^{\circ} \mathrm{C}$
t	板厚	mm
U S E	上部棚吸収エネルギー	J
$\Delta \mathrm{USSE}$	上部棚吸収エネルギー減少率	\％
$\phi \mathrm{c}$	原子炉圧力容器内表面から深さ a における中性子束	$\mathrm{n} /\left(\mathrm{cm}^{2} \cdot \mathrm{~s}\right)$
σ	胴及び鏡板部の周方向応力	MPa
$\sigma \mathrm{m} 1$	一次膜応力	MPa
$\sigma \mathrm{m} 2$	二次膜応力	MPa
$\sigma \mathrm{b} 1$	一次曲げ応力	MPa
$\sigma \mathrm{b} 2$	二次曲げ応力	MPa

7．最低使用温度に基づく評価
7.1 評価箇所

J E AC 4 2 0 6 のFB－2400の規定により，最低使用温度以下の温度で衝撃試験を行う箇所を表7－1 及び図7－1に示す。

7．2 最低使用温度

表 7－1 に示した箇所の最低使用温度を同表中に示す。最低使用温度は，平成4年1月 13 日付 3 資庁第 10518 号にて認可された工事計画添付書類に示す熱サイクル図を もとに，原子炉の運転状態又は試験状態において原子炉圧力容器の内外にて接する液体の最低温度を考慮して定めた。

8．関連温度に基づく評価

8． 1 評価箇所

J E A C 4 2 0 6 のFB－2100の規定により，関連温度に基づいた評価を行う箇所を表 8－1（1），表 8－1（2）及び図 7－1 に示す。

8．2 関連温度の要求値

原子炉圧力容器に欠陥を想定した場合，欠陥に発生する応力拡大係数 K_{I} が，J E AC4206の附属書AのA－3222に基づく静的破壊靭性値 $\mathrm{K}_{\mathrm{I}} \mathrm{C}$ を超えなければ脆性破壊は生じない。

K I c は関連温度 R T NDTを基準とした温度の関数として示される。

$$
\mathrm{K}_{\mathrm{IC}}=36.48+22.78 \exp \left[0.036\left(\mathrm{~T}-\mathrm{R}_{\mathrm{NDT}}\right)\right]
$$

ここで，関連温度 R T NDTを関連温度の要求値として計算するため，上式をRTND тについての式とする。
（関連温度）
$R T_{\text {ND T }}=T-\frac{1}{0.036} \ln \left(\frac{\left.\mathrm{~K}_{\mathrm{ICC}-36.48}^{22.78}\right), ~(1)}{}\right.$
K I が K I C を超えないR T NDTの最大値として，関連温度の要求値を定義すると以下の式により求められる。
（関連温度の要求値）
$\mathrm{R} \mathrm{T}_{\text {ND T }} \leqq \mathrm{T}-\frac{1}{0.036} \ln \left(\frac{\mathrm{~K}_{\mathrm{I}}-36.48}{22.78}\right)$
応力拡大係数 K_{I} の計算は，J E A C 4 2 0 6 の附属書 A 及び附属書 F により，8．3節に示すように行う。

8．3 応力拡大係数の計算

8．3．1 最大仮想欠陥

応力拡大係数の計算に用いる最大仮想欠陷は，胴及び鏡板部にあっては，板厚 の $1 / 4$ 倍の深さ，板厚の 1.5 倍の長さの表面欠陥を用いる。ただし，板厚 t が t $<100.0 \mathrm{~mm}$ の場合， 100.0 mm 厚断面に対する欠陥を用いる。

ノズル部にあっては，ノズルが取り付く部分の胴及び鏡板部板厚の $1 / 4$ 倍の深 さの欠陥を用いる。ただし，最大仮想欠陥の大きさは胴部の最大仮想欠陥寸法を超えないものとする。

図8－1 に最大仮想欠陥の形状を示す。

8．3．2 応力拡大係数の計算

応力拡大係数は，材料に欠陥の存在を想定した場合，過渡時の温度•圧力変化 による欠陥の進展力を係数で表す。
耐圧•漏えい試験時における応力拡大係数は，有限要素法又は理論式より算出 した膜応力及び曲げ応力をもとに算出する。
（1）形状不連続部を含めた胴及び鏡板部
形状不連続部を含めた胴及び鏡板部の応力拡大係数の計算は次式による。

$$
\mathrm{K}_{\mathrm{I}}=\mathrm{S}_{\mathrm{F}} \cdot \mathrm{~K}_{\mathrm{Ip}}+\mathrm{K}_{\mathrm{Iq}}
$$

a．一次応力に対する安全係数
$\mathrm{S}_{\mathrm{F}}=1.5$（耐圧•漏えい試験における係数）
b．一次応力に対する応力拡大係数
$\mathrm{K}_{\mathrm{Ip}}=\mathrm{M}_{\mathrm{m}} \cdot \sigma_{\mathrm{m}} 1+\mathrm{M}_{\mathrm{b}} \cdot \sigma_{\mathrm{b}}{ }_{1}$
M_{m} は，J E AC 4 2 0 6 の附属書Fの附属書図 F－3100－1 により得られる。 M_{b} は， M_{m} の $2 / 3$ の値。
c．二次応力に対する応力拡大係数

$$
\mathrm{K}_{\mathrm{Iq}}=\mathrm{M}_{\mathrm{m}} \cdot \sigma_{\mathrm{m} 2}+\mathrm{M}_{\mathrm{b}} \cdot \sigma_{\mathrm{b} 2}
$$

（2）ノズル部
ノズル部の応力拡大係数の計算は次式による。

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{I}}= \frac{\mathrm{S}_{\mathrm{F}} \cdot \mathrm{~F}\left(\mathrm{a} / \mathrm{r}_{\mathrm{n}}\right) \cdot \sigma \cdot \sqrt{\pi \cdot \mathrm{a}}}{\sqrt{1000}} \\
& \text { ここで, } \\
& \mathrm{S}_{\mathrm{F}}=1.5 \\
& \mathrm{r}_{\mathrm{n}}=\mathrm{r}_{\mathrm{i}}+0.29 \cdot \mathrm{r}_{\mathrm{c}}
\end{aligned}
$$

8.4 中性子照射による関連温度の移行量

炬心領域材料は，中性子照射による脆化を受けると予想されることから，中性子照射による関連温度の移行量 $\Delta R^{2} T_{\text {NDTを見込む。 }}$

中性子束及び中性子照射量は，第2回監視試験結果から得られた値を評価に用いる。 40 定格負荷相当年数の運転期間中に原子炉圧力容器の材料が受ける中性子照射量 は，原子炉圧力容器の胴板 3 ，胴板 4 の内表面，板厚の $1 / 4 \mathrm{t}$ 部の中性子照射量を算出 する。各位置における最大中性子束を解析コード「DORT」を用いて算出し，リー ドファクタ＊及び照射期間を用いて，中性子照射量を算出する。

なお，評価に用いる解析コード「DORT」の検証及び妥当性確認等の概要につい ては，「VI－5 計算機プログラム（解析コード）の概要」に示す。

算出した中性子束及び中性子照射量を表 8－2 に示す。

内表面から深さ $1 / 4 \mathrm{t}$ 位置での中性子束 $\phi \mathrm{c}$ は以下となる。

$$
\phi \mathrm{c}=9.62 \times 10^{8} \mathrm{n} /\left(\mathrm{cm}^{2} \cdot \mathrm{~s}\right)
$$

中性子照射量 f は，中性子束 ϕ c に 40 定格負荷相当年数を乗ずることにより求め る。

$$
\mathrm{f}=9.62 \times 10^{8} \times(40 \times 365 \times 24 \times 60 \times 60)=1.22 \times 10^{18} \mathrm{n} / \mathrm{cm}^{2}
$$

付録1より，炉心領域材料の化学成分を用いて，安全側に中性子照射による関連温度の移行量を，$\Delta \mathrm{R} \mathrm{T}_{\mathrm{NDT}}=25.4^{\circ} \mathrm{C}$ とする。

注記 $*: ~$ 監視試験片の照射位置における中性子束の，原子炉容器内表面あるいは他の位置における最大中性子束に対する比で表す。

8． 5 計算結果

8．5．1 応力拡大係数の計算結果
応力拡大係数の計算条件及び計算結果を表 8－3（1）及び表8－3（2）に示す。
表 8－3（1）には胴及び鏡板部に対する計算結果を，表 8－3（2）にはノズル部に対 する計算結果を示す。

8．5．2 関連温度の要求値の計算結果

応力拡大係数及び耐圧試験の温度より，8．2 節に示した関係を満足する関連温度の要求値を求めた結果を，胴及び鏡板部に対して表8－3（1）に，ノズル部に対し て表 8－3（2）に示す。また，同表中に使用する材料の実測値を示す。

なお，表 8－3（1）及び表 8－3（2）において使用した耐圧試験温度 $54^{\circ} \mathrm{C}$ は，中性子照射による関連温度の移行量を設計段階で予測しっこれをもとに定めた温度であ り，平成 4 年 1 月 13 日付 3 資庁第 10518 号にて認可された工事計画認可申請書添付書類IV－3－1－1－1「原子炉圧力容器の応力解析の方針」の原子炉圧力容器の運転条件に示される。

9．上部棚吸収エネルギーの評価

9． 1 評価箇所

J E A C 4 2 0 6 のFB－2200の規定により，上部棚吸収エネルギーの評価は，中性子照射による脆化を受けると予想される炉心領域材料について行う。評価を行う箇所 を図7－1に示す。
9.2 上部棚吸収エネルギーの評価方法

上部棚吸収エネルギーは，高温時における鋼材の粘り強さ（靭性）の程度を示す指標 であり，中性子照射が進むと低下する。

上部棚吸収エネルギーの要求値は，J E A C 4 2 0 6 の FB－4200において，68J 以上と規定されており，J E A C 4 2 0 1 附属書 B の B－3100に基づき，供用期間中の中性子照射を考慮しても，原子炉圧力容器内表面から $1 / 4 \mathrm{t}$ 位置において，上部棚吸収 エネルギー調整値が 68 J 以上であることを確認する。

上部棚吸収エネルギーの算出に当たつては，評価対象の材料中の元素含有量，中性子照射量及び温度について，J E A C 4 2 0 1 附属書 B で国内 USE予測式の適用範囲として規定されており，今回の評価に用いる材料，中性子照射量及び温度について は，すべて適用範囲を満足しているため，国内USE予測式を用いる。表9－1 に国内 USE予測式の適用範囲及び評価対象の諸元を示す。
9.3 上部棚吸収エネルギーの計算

9．3．1 上部棚吸収エネルギー減少率の推定
中性子照射による上部棚吸収エネルギーの減少率（ Δ USE（\％））を，次式を用 いて推定する。
$\Delta \mathrm{USEE}_{\mathrm{S}}=\mathrm{C}_{0}+\left[\mathrm{CFF}_{\mathrm{U}}\right] \cdot\left[\mathrm{FF}_{\mathrm{U}}\right]_{(\mathrm{f})}+\mathrm{M}_{\mathrm{U}}$

ここで，
$\mathrm{C}_{0} \quad: ~$ 係数

$$
-0.95
$$

［C F U ］：化学成分による係数

$$
\left[\mathrm{C} \mathrm{~F}_{\mathrm{U}}\right]=5.23+9.36 \cdot\left\{0.5+0.5 \cdot \tanh \left(\frac{\mathrm{Cu}-0.087}{0.034}\right)\right\} \times(1+0.59 \cdot \mathrm{Ni})
$$

［FF $\left.\mathrm{F}_{\mathrm{U}}\right]_{\text {（f）}}$ 中性子照射量 f による係数（ 1 og は常用対数を表す）
$\left[\mathrm{FF}_{\mathrm{U}}\right]_{(\mathrm{f})}=\mathrm{f} \quad(0.349-0.068 \cdot \log \mathrm{f})$

f
：40 定格負荷相当年数での原子炉圧力容器内表面から $1 / 4 \mathrm{t}$ 部 の中性子照射量

$$
1.22\left(\times 10^{18} \mathrm{n} / \mathrm{cm}^{2}, \quad \mathrm{E}>1 \mathrm{MeV}\right)
$$

$\mathrm{M}_{\mathrm{U}} \quad: \quad$ マージン（\％）
13.8%
$\mathrm{M}_{\mathrm{U}}=2 \sigma_{\Delta \mathrm{U}} \quad \sigma_{\Delta \mathrm{U}}$ は $\Delta \mathrm{US}$ S E に対する標準偏差： 6.9%（母材）

9．3．2 上部棚吸収エネルギー調整値の算出

9．3．1 項にて推定した上部棚吸収エネルギーの減少率（ Δ USE）及び照射前 の上部棚吸収エネルギー（USE（初期値））を用いて，上部棚吸収エネルギー調整値（USE（調整値））を，次式を用いて算出する。

評価に当たつては，初期条件確認試験の結果をUSE（初期値）としてUSE （調整値）の算出を行う。

USE（調整値）$=$ USE（初期値）$\times(1-\Delta$ USE／100）
USE（調整値）：照射後の上部棚吸収エネルギー（J）
USE（初期値）：照射前の上部棚吸収エネルギー（J）

9．4 上部棚吸収エネルギーの評価結果
供用期間中の中性子照射を考慮した，上部棚吸収エネルギー調整値の計算結果を表 9－2 に示す。

表 9－2より，40定格負荷相当年数での上部棚吸収エネルギー調整値は，J E A C 4 206 に規定される要求値の68J以上を満足している。

10．結論

原子炉圧力容器の材料に対して，J E A C 4 2 0 6 第 2 章クラス1 機器の規定によ り破壊靭性の評価を必要とされる箇所について，J E A C 4 2 0 6 の FB－2000 により最低使用温度以下の温度で衝撃試験を行う箇所は流体の最低温度を考慮した最低使用温度を定めるとともに，J E A C 4 2 0 6 の FB－4000 並びに附属書 A 及び附属書 F に より関連温度を決定する必要のある箇所については関連温度の要求値を示し，J E A C 4 2 0 6 のFB－2100により求めた関連温度が要求値を満足することを確認した。 また，設計寿命末期における上部棚吸収エネルギー調整値が，J E A C 4 2 0 6 の FB－4200に規定されている要求値， 68 J 以上を満足することを確認した。

注記＊1：最低使用温度を基準とする評価箇所
＊2：関連温度を基準とする評価箇所
＊3：上部棚吸収エネルギーの評価箇所

図 7－1 破壊勒性評価箇所

a．胴板及び鏡板

b．ノズル

図 8－1 最大仮想欠陥形状

表 5－1（1）重大事故シーケンスの影響確認

	$\begin{gathered} \text { 重要事故 } \\ \text { シーケンス等 } \end{gathered}$	事象の概要及び考察
1－1	高圧•低圧注水 機能喪失 （高圧代替注水系による 注水） ［TQUV］	給水喪失により原子炉水位は低下し，高圧代替注水系が運転開始して原子炉水位は維持される。その後，逃がし安全弁（自動減圧機能）2弁を手動開放させ，低圧代替注水系（常設）により注水する。本挙動は設計熱サイクルで想定している「原子炉冷却材䨤失事故」に包絡される。
1－2	高圧•低圧注水機能喪失 （高圧代替注水系の機能 喪失） ［TQUV］	給水喪失により原子炉水位は徐々に低下する。その後，逃がし安全升（自動減圧機能）6 弁を手動開放さ せ，低圧代替注水系（常設）により注水する。本挙動 は設計熱サイクルで想定している「原子炉冷却材喪失事故」に包絡される。
2	高圧注水•減圧機能喪失 ［TQUX］	給水喪失により原子炉水位は徐々に低下する。その後，代替自動減圧機能による自動減圧が行われ，低圧炉心スプレイ等により注水される。本挙動は設計熱 サイクルで想定している「原子炉冷却材喪失事故」に包絡される。
3－1	全交流動力電源喪失 ［長期 TB／TBU／TBD］	外部電源喪失により原子炉水位は低下し，原子炉隔離時冷却系又は高圧代替注水系が運転開始して原子炉水位は維持される。その後，逃がし安全弁（自動減圧機能）2 弁を手動開放させ，直流駆動低圧注水系又 は低圧代替注水系（常設）等により注水する。本挙動 は設計熱サイクルで想定している「原子炬冷却材喪失事故」に包絡される。
3－2	全交流動力電源喪失 ［TBP］	外部電源喪失及び逃がし安全弁の1弁開固着により原子炉水位は低下し，原子炉隔離時冷却系が運転開始する。その後，逃がし安全弁（自動減圧機能）1弁 を手動開放させ，直流駆動低圧注水系又は低圧代替注水系（常設）により注水する。本挙動は設計熱サイ クルで想定している「原子炉冷却材袋失事故」に包絡 される。

表 5－1（2）重大事故シーケンスの影響確認

	重要事故 シーケンス等	事象の概要及び考察
4	崩懐熱除去機能喪失 （取水機能喪失） ［TW］	給水喪失により原子炉水位は低下し，原子炬隔離時泠却系が運転開始して原子炉水位が維持される。 その後，逃がし安全弁（自動減圧機能）2弁を手動開放させ，低圧代替注水系（常設）により注水する。本挙動は設計熱サイクルで想定している「原子炉冷却材喪失事故」に包絡される。
5	崩壊熱除去機能喪失 （残留熱除去系機能喪 失） ［TW］	給水喪失により原子炉水位は低下し，原子炬隔離時泠却系及び高圧炉心スプレイ系が運転開始して原子炉水位が維持される。その後，逃がし安全弁（自動減圧機能）2 弁を手動開放させ，高圧炉心スプレイ系に より注水する。本挙動は設計熱サイクルで想定して いる「原子炉冷却材喪失事故」に包絡される。
6	原子炉停止機能喪失 ［ATWS］	主蒸気隔離弁誤閉止の発生後，原子炉スクラムに失敗する。主蒸気隔離弁が閉止されると原子炉圧力が上昇し，原子炉圧力高信号で再循環ポンプがトリッ プする。主蒸気隔離弁の閉止により，タービン駆動原子炉給水ポンプはトリップするが，電動機駆動原子炉給水ポンプにより給水が継続される。圧力上昇の挙動は設計熱サイクルで想定している「過大圧力」の圧力を超えるが，飽和蒸気線図上で変化するため，破壊勒性上厳しい運転条件である低温高圧の運転状態 となることはない。
7	LOCA 時注水機能喪失 （中小破断） ［SE］	給水喪失及び LOCA 発生により原子炉水位は徐々に低下する。その後，逃がし安全弁（自動減圧機能）6 弁 を手動開放させ，低圧代替注水系（常設）による注水 を開始する。本事象は設計熱サイクルで想定してい る「原子炉冷却材喪失事故」に包絡される。

表 5－1（3）重大事故シーケンスの影響確認

	重要事故 シーケンス等	事象の概要及び考察
8	$\begin{gathered} \text { 格納容器バイパス } \\ \text { (インターフェイスシス } \\ \text { テム LOCA) } \\ \text { [ISLOCA] } \end{gathered}$	ISLOCA 時は，高圧炉心スプレイのポンプの吸込み配管からの漏えいを想定し，破断口からの冷却材流出 による水位低下により，原子炉隔離時冷却系が運転開始する。その後，逃がし安全弁（自動減圧機能）2弁を手動開放させ，低圧炉心スプレイ系等による注水を開始する。本事象は設計熱サイクルで想定して いる「原子炉泠却材喪失事故」に包絡される。
9	雰囲気圧力•温度による 静的負荷 （格納容器過圧•過温破 損）	大破断 LOCAにより原子炉水位は低下し，炉心が損傷•溶融する。その後，低圧代替注水系（常設）や代替循環冷却系による注水を開始し，溶融炉心を泠却する ことで，原子炉圧力容器は破損しない。本事象は設計
10	水素燃焼	熱サイクルで想定している「原子炉泠却村喪失事故」 に包絡される。
11	高圧溶融物放出／格納容器雰囲気直接加熱， 原子炉圧力容器外の溶融燃料—冷却材相互作用， 溶融炉心・コンクリート相互作用	原子炉圧力容器が破損するシーケンスであり，原子炉圧力容器の破壊勒性に対する評価は不要である。

表 7－1 最低使用温度に基づく評価箇所

評 価 箇 所	材料	最低使用温度 $\left({ }^{\circ} \mathrm{C}\right)$
スタッドボルト	SNB24－3	\square

表 8－1（1）評価対象となる材料（胴板及び鏡板部）

評 価 対 象 箇 所	材 料	備
考		
上部 鏡 板 1	SQV2A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
上部 鏡 板 2	SQV2A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
胴 板 1	SQV2A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
胴 板 2	SQV2A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
胴 板 3	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
胴 板 4	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
下 部 鏡 板 1	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
下 部 鏡 板 2	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
鏡 板 フ ラ ン ジ	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
胴 板 フ ラ ン ジ	SFVQ1A	

表 8－1（2）評価対象となる材料（ノズル）

評 価 対 象 箇 所	材	料	備
考			
再循環水出ロノズル	$(\mathrm{N} 1)$	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
再循環水入口ノズル	$(\mathrm{N} 2)$	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
主蒸気出ロノズル	$(\mathrm{N} 3)$	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
給水ノズル	$(\mathrm{N} 4)$	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
低圧炉心スプレイノズル	$(\mathrm{N} 5)$	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
低圧注水ノズル	$(\mathrm{N} 6)$	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
上蓋スプレイノズル	$(\mathrm{N} 7)$	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
ベントノズル	$(\mathrm{N} 8)$	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
ジェットポンプ計測管貫通部ノズル	$(\mathrm{N} 9)$	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$
高圧炉心スプレイノズル	$(\mathrm{N} 16)$	SFVQ1A	$\mathrm{t} \geqq 16 \mathrm{~mm}$

表 8－2 原子炉圧力容器の 40 定格負荷相当年数の運転期間中の中性子束及び中性子照射量

部 位	中性子束 $\left(\mathrm{n} / \mathrm{cm}^{2} / \mathrm{s}, \mathrm{E}>1 \mathrm{MeV}\right)$	中性子照射量 $\left(\mathrm{n} / \mathrm{cm}^{2}, \mathrm{E}>1 \mathrm{MeV}\right)$
内表面	1.33×10^{9}	1.68×10^{18}
$1 / 4 \mathrm{t}$	9.62×10^{8}	1.22×10^{18}

表 8－3（1）応力拡大係数及び関連温度の要求値の計算結果（胴板及び鏡板部）
耐圧試験（最高使用圧力以下）$\quad \mathrm{T}=54^{\circ} \mathrm{C} \quad \mathrm{a}=\mathrm{t} / 4$

名称	材料	$\begin{gathered} \mathrm{K}_{\mathrm{I}} \\ (\mathrm{MPa} \sqrt{\mathrm{~m}}) \end{gathered}$	関連温度（ ${ }^{\circ} \mathrm{C}$ ）	
			要求値	実測値
上部 鏡 板 1	SQV2A	69.6	43.6	－45
上部 鏡 板 2	SQV2A	118.8	18.3	－45
胴 板 1	SQV2A	110.4	21.3	－40
胴 板 2	SQV2A	87.1	31.8	－35
胴 板 3	SFVQ1A	87.1	$6.4 *$	－40
胴 板 4	SFVQ1A	87.1	6． 4^{*}	－40
下 部 鏡 板 1	SFVQ1A	38.8	117.4	－45
下 部 鏡 板 2	SFVQ1A	72.6	41.1	－40
鏡板フランジ	SFVQ1A	118.8	18.3	－45
胴板フランジ	SFVQ1A	110.4	21.3	－45

注記＊：中性子照射による関連温度の移行量を考慮した値。

表 8－3（2）応力拡大係数及び関連温度の要求値の計算結果（ノズル部）耐圧試験（最高使用圧力以下）$\quad \mathrm{T}=54^{\circ} \mathrm{C} \quad \mathrm{a}=\mathrm{t} / 4$

名称		材料	$\begin{gathered} \mathrm{K}_{\mathrm{I}} \\ (\mathrm{MPa} \sqrt{\mathrm{~m}}) \end{gathered}$	関連温度（ ${ }^{\circ} \mathrm{C}$ ）		
		要求値		実測値		
再循環水出口ノズル	（N1）		SFVQ1A	151.0	9.1	－60
再循環水入口ノズル	（N2）	SFVQ1A	134.3	13.5	－50	
主蒸気出口ノズル	（N3）	SFVQ1A	151.1	9． 1	－65	
給水ノズル	（N4）	SFVQ1A	128． 7	15.1	－50	
低圧炉心スプレイノズル	（N5）	SFVQ1A	131.1	14.4	－55	
低圧注水ノズル	（N6）	SFVQ1A	131.1	14.4	－55	
上蓋スプレイノズル	（N7）	SFVQ1A	92.7	28.9	－60	
ベントノズル	（N8）	SFVQ1A	79.3	36.4	－50	
ジェットポンプ計測管貫通部ノズル	（N9）	SFVQ1A	95.4	27.6	－55	
高圧炉心スプレイノズル	（N16）	SFVQ1A	131.1	14． 4	－50	

表 9－1 国内 USE 予測式の適用範囲及び評価対象の諸元

項目	適用範囲 （JEAC4201）	評価対象の諸元
材料の Cu 含有量（mass\％）	0.25 以下	］ 1
材料の Ni 含有量（mass\％）	$0.5 \sim 1.0$	＊1
材料の P 含有量（mass\％）	0.020 以下	${ }^{* 1}$
中性子照射量 $\left(\mathrm{n} / \mathrm{cm}^{2}, \quad \mathrm{E}>1 \mathrm{MeV}\right)$	$1.0 \times 10^{17} \sim 1.2 \times 10^{20}$	表 8－2 参照
公称照射温度（ ${ }^{\circ} \mathrm{C}$ ）	$274 \sim 310$	＊

注記 $* 1$ ：材料調達時における試験による実測値
＊2：ダウンカマの原子炉冷却材温度の公称値

表 9－2 上部棚吸収エネルギーの評価結果

評価箇所	上部棚吸収エネルギー（J）		
	U S E （初期値）	U S E （調整値）	要求値 （必要下限値）
炉 心 領 域 材 料		203	68

付録1 中性子照射による関連温度移行量

J E A C 4 2 0 1 により，関連温度移行量の予測値を求める。J E A C 4 2 0 1 によ ると，関連温度移行量の予測値は評価対象の材料中の元素含有量，中性子照射量，中性子束及び温度について，J E A C 4 2 0 1－2 0 0 7 附属書 B で国内脆化予測法の適用範囲として規定されており，今回の評価に用いる材料，中性子照射量，中性子束及び温度については，すべて適用範囲を満足しているため，国内脆化予測法を用いる。付表－1 に国内脆化予測法の適用範囲及び評価対象の諸元を示す。
$\Delta \mathrm{R}_{\mathrm{NDT}}$ 予測値 $=\Delta \mathrm{R}_{\mathrm{NDT}}$ 計算値 $+\mathrm{M}_{\mathrm{R}}$

ここで，
Δ R T NDT計算値：J E A C 4 2 0 1 のB－2100（2）に規定される手順により，附属書表 B－2100－2を用いて計算する，関連温度の移行量の計算値（ ${ }^{\circ} \mathrm{C}$ ）

$$
\mathrm{M}_{\mathrm{R}} \text { : J E A C } 4201 \text { の B-2100 3 (} \mathrm{B} \text { に規定されるマージン } 22\left({ }^{\circ} \mathrm{C}\right)
$$

$\phi \mathrm{c}$ ：計算に使用する中性子束 $\left(\mathrm{n} /\left(\mathrm{cm}^{2} \cdot \mathrm{~s}\right)\right)$
Cu ：銅の含有量（mass\％）
Ni ：ニッケルの含有量（mass\％）

上式により，以下の値に対して関連温度の移行量を求める。材料の化学成分は，材料調達時における試験による実測値を用いて算出する。

$$
\phi_{\mathrm{c}}=9.62 \times 10^{8} \quad\left(\mathrm{n} /\left(\mathrm{cm}^{2} \cdot \mathrm{~s}\right)\right)
$$

上式に対して関連温度の移行量は， $3.4^{\circ} \mathrm{C}$ と求まる。
ただし，中性子照射による関連温度の移行量は，マージン $22^{\circ} \mathrm{C}$ を見込んで， $25.4^{\circ} \mathrm{C}$ と して関連温度の検討を行う。

なお，中性子照射による関連温度の移行量を監視するために，付図－1に示す位置に監視試験片を取り付けている。

付表－1 国内脆化予測法の適用範囲及び評価対象の諸元

項目	適用範囲 （JEAC4201）	評価対象の諸元
材料の Cu 含有量（mass\％）	0.25 以下	＊1
材料の Ni 含有量（mass\％）	$0.5 \sim 1.1$	＊1
材料の P 含有量（mass\％）	0.025 以下	$\square 1$
中性子照射量 $\left(\mathrm{n} / \mathrm{cm}^{2}, \quad \mathrm{E}>1 \mathrm{MeV}\right)$	$1.0 \times 10^{17} \sim 1.2 \times 10^{20}$	1． 22×10^{18}
中性子束 $\left(\mathrm{n} / \mathrm{cm}^{2} \cdot \mathrm{~s}, \quad \mathrm{E}>1 \mathrm{MeV}\right)$	$1 \times 10^{7} \sim 1 \times 10^{12}$	9． 62×10^{8}
公称照射温度（ ${ }^{\circ} \mathrm{C}$ ）	$270 \sim 290$	$\square{ }^{*}{ }^{2}$

注記 $* 1$ ：材料調達時における試験による実測値
＊2：ダウンカマの原子炉冷却材温度の公称値

付図－1 監視試験片取付図

