2021年1月14日
02－工－B－02－0004 改 0
先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

《参考》柏崎刈羽原子力発電所第7号機（2020年9月25日版）	東海第二発電所	女川原子力発電所第 2 号機	備考
		（1）	－図書番号の差異（以降，同様の差異につい ては理由を省略する）

2021年1月14日
02－工－B－02－0004 改 0

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

2021年1月14日
02－工－B－02－0004 改 0

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

《参考》柏崎刈羽原子力発電所第7号機（2020年9月25日版）	東海第二発電所	女川原子力発電所第2号機	備考
		原子炉圧力容器に使用する材料は，重大事故等時における温度，圧力及び荷重に対して適切な破壊靭性を有する設計とし，かつ，重大事故等時における温度，放射線，荷重その他の使用条件において重大事故等時に対処するために流路としての機能を有効に発揮す ることができる設計とする。 原子灲圧力容器の脆性破壊防止以外の温度，放射線，荷重その他 の使用条件に対して健全性を維持することについては，添付書類「VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件 の下における健全性に関する説明書」に示している。 原子炉圧力容器の材料に対して施設時の評価として，中性子照射 が及ぼす影響を評価することから，評価時期については，「核原料物質，核燃料物質及び原子炉の規制に関する法律」第 43 条の 3 の 32 に，発電用原子炉の運転できる期間が 40 年と定められているこ とを考慮し，40定格負荷相当年数を想定して，評価を実施する。 なお，原子炉圧力容器の灲心領域部の中性子照射による影響評価 については，監視試験片によって計画的に評価を行うとともに，施設後 40 定格負荷相当年数の運転期間後以降の評価については，高経年化対策として実施する。 3．適用基準，適用規格等 －実用発電用原子灲及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日 原規技発第 1306194 号 原子力規制委員会決定） －日本機械学会「発電用原子力設備規格 設計•建設規格（J S M E S NC1－2005（2007年追補版含む）） －日本電気協会「原子炉構造材の監視試験方法」（J E A C 4 2 0 1－2007） －日本電気協会「原子炉構造材の監視試験方法」（JEAC420 1－2007）［2010年追補版］ －日本電気協会「原子炬構造材の監視試験方法」（J E A C 4 20 1－2007）［2013年追補版］ －日本電気協会「原子力発電所用機器に対する破壊勒性の監視試験方法」（JEAC4206－2007）	＜柏崎刈羽 7 号機との比較＞ - 設備の差異 - 適用基準，規格等の明確化による差異（実質的な相違なし）

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

《参考》柏崎刈羽原子力発電所第7号機（2020 年 9 月 25 日版）	東海第二発電所	女川原子力発電所第2号機	備考
		4．脆性破壊防止に対する設計 技術基準規則第 17 条を踏まえ，原子炉圧力容器に使用する材料 は，強度と靭性に優れる低合金鋼の鋼板及び鍛鋼品で構成し，原子炉冷却材と接触する原子炉圧力容器内面部分はステンレス鋼及び高ニッケル合金で内張りし，耐食性を向上させた設計とする。原子炉圧力容器は脆性破壊防止の観点から，原子炉冷却材の最低温度を設定し，適切な温度で使用する。また，中性子照射脆化が予想され る材料に関しては，材料中の Cu 及びNi 含有量が多いほど中性子照射脆化に与える影響が大きいことから，材料調達時に各元素の含有量を管理する。 また，技術基準規則第55条を踏まえ，重大事故等対処設備とし ての原子炉圧力容器の材料は，重大事故等時の原子炉圧力容器の使用温度が崩壊熱による原子炉冷却材の加熱により設計基準対象施設としての最低使用温度を下回らず，想定される使用条件に対して適切な破壊勒牲を有する設計とする。 5．評価対象と評価方法 原子炉圧力容器に使用する材料は，発電用原子力設備規格（設計•建設規格J S ME S NC1－2005（2007年追補版含 む））（日本機械学会 2007 年）（以下「設計•建設規格」という。）に基づいて，評価対象となる材料を抽出する。評価対象となる材料は，原子炉圧力容器を構成する材料のらち，耐圧部を構成する材料であ り，かつ，設計•建設規格の PVB－2311 に示される脆性破壊が生じ にくい板厚，断面積，外径及び指定材料等の条件により，破壊靭性試験が必要となる材料をすべて抽出し，評価を行う。この抽出によ り，最低使用温度に対してスタッドボルト，関連温度に対して耐圧部を構成する材料，上部棚吸収エネルギーに対して炉心領域材料が評価対象となる。 技術基準規則第 14 条及び第 54 条への適合性を確認するため，技術基準規則第 14 条の解釈に示される「原子力発電所用機器に対す る破壊靭性の確認試験方法JEAC4206－2007（日本電気協会）」（以下「JEAC4206」という。），「原子炉構造材の監視試験方法JEAC4201－2007（日本電気協会）」，「原子炉構造材の監視試験方法JEAC4201－2007［2010年追補版］（日本電気協会）」及び「原子炬構造材の監視試験方法J E A	＜柏崎刈羽 7 号機との比較＞ - 設備の差異 - 管理項目の差異（温度変化率は熱サイクルに よる疲労破壊防止の観点のため） ＜柏崎刈羽 7 号機との比較＞ - 設備の差異 - 表現の差異

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

《参考》柏崎刈羽原子力発電所第7号機（2020年9月25日版）	東海第二発電所	女川原子力発電所第 2 号機	備考
		重大事故等時について炉心損傷防止対策の有効性評価における重大事故シーケンス及び格納容器破損防止対策の有効性評価にお ける評価事故シーケンスを表 5－1（1），表 5－1（2）及び表 5－1（3）に示 す。表 5－1（1），表 5－1（2）及び表 5－1（3）より重大事故等時（原子炉停止機能喪失［ATWS］を除く）の温度•圧力条件は従来想定されてい る設計基準事象に包絡される。原子炉停止機能喪失［ATWS］において設計基準事象の圧力を超えるが，飽和蒸気線図上で変化するため，破壊靭性上厳しい運転条件である低温高圧の運転状態となること はない。このことから，重大事故等対処設備としての原子炉圧力容器の破壊勒性に対する評価は，8章に示す設計基準事象における評価で代表できる。 具体的な破壊勒性の評価方法は，原子炉圧力容器の耐圧部材料に使用される低合金鋼がフェライト鋼であり，脆性破壊が懸念される材料であることから，評価においては破壊力学を適用する。破壊力学では，欠陥の先端近傍の応力場の強さを応力拡大係数で表し，応力拡大係数が破壊靭性を超えると破壊すると判断する。原子炉圧力容器の材料の評価に当たっては，保守的に欠陥が存在するものと仮定し，欠陥の先端に生じる欠陥の進展力（応力拡大係数）を，供用期間中に想定される圧力•温度条件等から算出する。破壊勒性につい ては，落重試験及び㣫撃試験から得られる関連温度（R $\mathrm{T}_{\mathrm{NDT}}$ ）及び金属温度と関数の関係にあることから，関連温度を用いて各温度の破壊靭性を算出する。 また，経年劣化事象により破壊勒性の低下が懸念される部位につ いては，供用期間中における劣化を考慮した評価を行う。軽水炉に おける材料の破壊勒性の低下を伴う劣化事象としては，熱時効と中性子照射脆化が挙げられる。熱時効については，原子炉圧力容器の材料である低合金鋼に対する影響を，財団法人発電設備技術検査協会の研究＊2において検証されており，有意な劣化事象ではない。一方，中性子照射脆化については，J E A C 4 2 0 1 において監視試験の対象となる中性子照射量 $10^{17} \mathrm{n} / \mathrm{cm}^{2}(\mathrm{E}>1 \mathrm{MeV})$ 以上となる炉心領域が含まれるため，考慮が必要である。 中性子照射脆化は，中性子照射量及び材料の化学成分（Cu，Ni， P）に依存し，中性子照射量及びこれら化学成分の含有量が多いほど脆化は大きい傾向にある。原子炉圧力容器を構成する各部位の材料 については，板材と鍛造材の違いはあるものの，すべて低合金鋼を	- 表現の差異 - 重大事故等時の温度•圧力条件の差異

2021年1月14日
02－工－B－02－0004 改 0

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

2021年1月14日
02－工－B－02－0004 改 0

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

《参考》柏崎刈羽原子力発電所第 7 号機（2020年9月25日版）	東海第二発電所	女川原子力発電所第2号機	備考
		8．関連温度に基づく評価 8.1 評価箇所 J EAC4206のFB－2100の規定により，関連温度に基づい た評価を行ら箇所を表 8－1（1），表 8－1（2）及び図 7－1 に示す。 8．2 関連温度の要求値 原子炉圧力容器に欠陥を想定した場合，欠陥に発生する応力拡大係数 K_{I} が，J E A C 4 2 0 6 の附属書AのA－3222 に基づく静的破壊勒性値 $\mathrm{K}_{\mathrm{I}} \mathrm{C}$ を超えなければ脆性破壊は生じない。 K_{I} C は関連温度 $\mathrm{R} \mathrm{T}_{\mathrm{NDT}}$ を基準とした温度の関数として示さ れる。 $\mathrm{K}_{\mathrm{IC}}=36.48+22.78 \exp \left[0.036\left(\mathrm{~T}-\mathrm{R} \mathrm{~T}_{\mathrm{ND} \mathrm{~T}}\right)\right]$ ここで，関連温度 R T NDTを関連温度の要求値として計算する ため，上式をRTNDTについての式とする。 （関連温度） $\mathrm{R} \mathrm{~T}_{\mathrm{ND} \mathrm{~T}}=\mathrm{T}-\frac{1}{0.036} \ln \left(\frac{\mathrm{~K}_{\mathrm{IC}}-36.48}{22.78}\right)$ K_{I} が K_{IC} を超えないR $\mathrm{T}_{\mathrm{NDT}}$ の最大値として，関連温度の要求値を定義すると以下の式により求められる。 （関連温度の要求値） $\mathrm{R} \mathrm{~T}_{\mathrm{NDT}} \leqq \mathrm{~T}-\frac{1}{0.036} \ln \left(\frac{\mathrm{~K}_{\mathrm{I}}-36.48}{22.78}\right)$ 応力拡大係数 K_{I} の計算は，J E A C 4 2 0 6 の附属書 A 及び附属書Fにより， 8.3 節に示すように行う。 8.3 応力拡大係数の計算 8．3．1 最大仮想欠陥 応力拡大係数の計算に用いる最大仮想欠陥は，胴及び鏡板部にあっては，板厚の $1 / 4$ 倍の深さ，板厚の 1.5 倍の長さの表面欠陥を用いる。ただし，板厚 t が $\mathrm{t}<100.0 \mathrm{~mm}$ の場合， 100． 0 mm 厚断面に対する欠陷を用いる。 ノズル部にあっては，ノズルが取り付く部分の胴及び鏡板部板厚の $1 / 4$ 倍の深さの欠陥を用いる。ただし，最大仮想欠	＜柏崎刈羽 7 号機との比較＞ －設備の差異

《参考》柏崎刈羽原子力発電所第7号機（2020年9月25日版）	東海第二発電所	女川原子力発電所第2号機	備考
		陥の大きさは胴部の最大仮想欠陥寸法を超えないものとす る。 図 8－1 に最大仮想欠陥の形状を示す。 8．3．2 応力拡大係数の計算 応力拡大係数は，材料に欠陥の存在を想定した場合，過渡時の温度•圧力変化による欠陥の進展力を係数で表す。 耐圧•漏えい試験時における応力拡大係数は，有限要素法又は理論式より算出した膜応力及び曲げ応力をもとに算出 する。 （1）形状不連続部を含めた胴及び鏡板部 形状不連続部を含めた胴及び鏡板部の応力拡大係数の計算は次式による。 $\mathrm{K}_{\mathrm{I}}=\mathrm{S}_{\mathrm{F}} \cdot \mathrm{~K}_{\mathrm{Ip}}+\mathrm{K}_{\mathrm{Iq}}$ a．一次応力に対する安全係数 $\mathrm{S}_{\mathrm{F}}=1.5 \text { (耐圧•漏えい試験における係数) }$ b．一次応力に対する応力拡大係数 $\mathrm{K}_{\mathrm{Ip}}=\mathrm{M}_{\mathrm{m}} \cdot \sigma_{\mathrm{m} 1}+\mathrm{M}_{\mathrm{b}} \cdot \sigma_{\mathrm{b} 1}$ M_{m} は，JEAC4206の附属書Fの附属書図 $\mathrm{F}-$ 3100－1 により得られる。 M_{b} は， M_{m} の $2 / 3$ の値。 c．二次応力に対する応力拡大係数 $\mathrm{K}_{\mathrm{Iq}}=\mathrm{M}_{\mathrm{m}} \cdot \sigma_{\mathrm{m} 2}+\mathrm{M}_{\mathrm{b}} \cdot \sigma_{\mathrm{b} 2}$ （2）ノズル部 ノズル部の応力拡大係数の計算は次式による。 $\mathrm{K}_{\mathrm{I}}=\frac{\mathrm{S}_{\mathrm{F}} \cdot \mathrm{~F}\left(\mathrm{a} / \mathrm{r}_{\mathrm{n}}\right) \cdot \sigma \cdot \sqrt{\pi \cdot \mathrm{a}}}{\sqrt{1000}}$	- 表現の差異 - 記載内容の差異 （新たに応力解析は実施していないため。） －記載の差異

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

2021年1月14日
02－工－B－02－0004 改 0

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

《参考》柏崎刈羽原子力発電所第 7 号機（2020年9月25日版）	東海第二発電所	女川原子力発電所第2号機	備考
		10．結論 原子炉圧力容器の材料に対して，J E A C 4 2 0 6 第 2 章クラ ス 1 機器の規定により破壊靭性の評価を必要とされる箇所につい て，J E A C 4 2 0 6 の FB－2000 により最低使用温度以下の温度 で衝撃試験を行ら箇所は流体の最低温度を考慮した最低使用温度 を定めるとともに，J E A C 4 2 0 6 の FB－4000 並びに附属書A及び附属書 F により関連温度を決定する必要のある箇所について は関連温度の要求値を示し，J E A C 4 2 0 6 の FB－2100 により求めた関連温度が要求値を満足することを確認した。 また，設計寿命末期における上部棚吸収エネルギー調整値が， J EAC4206のFB－4200に規定されている要求値，68 J以上 を満足することを確認した。	

2021年1月14日
02－工－B－02－0004 改 0
先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

《参考》柏崎刈羽原子力発電所第 7 号機（2020 年 9 月 25 日版）	東海第二発電所	女川原子力発電所第2号機	備考
		注記＊1：最低使用温度を基準とする評価箇所 ＊2：関連温度を基準とする評価箇所 ＊ 3 ：上部棚吸収エネルギーの評価箇所 図 7－1 破壊勒性評価箇所	－設備の差異 （評価部位の違い）

2021年1月14日

《参考》柏崎刈羽原子力発電所第 7 号機（2020年9月25日版）	東海第二発電所	女川原子力発電所第2号機			備考
		表 8－1（1）	評価対象となる材料（胴板及び鏡板部）		＜柏崎刈羽 7 号機との比較＞ －設備の差異 （評価部位の差異）
		評価対象箇所	材 料	備 考	
		上部篭板 1	SQV2A	$t \geqq 16 \mathrm{~mm}$	－表現の差異
		上部篭板 2	SqV2A	$t \geqq 16 \mathrm{~mm}$	－材料の差異
		胜板 1	SQV2A	$t \geqq 16 \mathrm{~mm}$	
		胴板 2	SqV2A	$t \geqq 16 \mathrm{~mm}$	
		胴 板 3	SFVQ1A	$t \geq 16 \mathrm{~mm}$	
		胴板 4	SFVQ1A	$t \geqq 16 \mathrm{~mm}$	
		下部笽板 1	SFVQ1A	$t \geqq 16 \mathrm{~mm}$	
		下部篭板 2	SFVq1A	$t \geqq 16 \mathrm{~mm}$	
		篭板フランジ	SFVq1A	$t \geqq 16 \mathrm{~mm}$	
		胴板フラシジ	SFVQ1A	$t \geqq 16 \mathrm{~mm}$	

2021年1月14日
02－工－B－02－0004 改 0
先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

2021年1月14日
02－工－B－02－0004 改 0

2021年1月14日

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

2021年1月14日
02－工－B－02－0004 改 0

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

2021年1月14日

先行審査プラントの記載との比較表（VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書）

《参考》柏崎刈羽原子力発電所第 7 号機（2020年9月25日版）	東海第二発電所	女川原子力発電所第2号機	備考
		A～A断面 付図－1 監視試験片取付図	－設備の差異

