: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		VI-2-1-13-1 スカート支持たて置円筒形容器の	表現の相違
		耐震性についての計算書作成の基本方針	
		展性にプバーCの計算音IF成の基本分類	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		目 次	
		1. 概要	
		2. 一般事項······	
		2.1 評価方針	
		2.2 適用規格・基準等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		2.3 記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		2.4 計算精度と数値の丸め方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		3. 評価部位	
		4. 固有周期······	
		4.1 固有周期の計算方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		5. 構造強度評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		5.1 構造強度評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		5.2 設計用地震力	
		5.3 計算方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		5.3.1 応力の計算方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	表現の相違
		5.4 応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		5.4.1 胴の応力評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	表現の相違
		5.4.2 スカートの応力評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		5.4.3 基礎ボルトの応力評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		6. 耐震計算書のフォーマット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機 備	考
		1. 概要 本資料は、添付書類「VI-2-1-1 耐震設計の基本方針」に基づき、表現の相違 耐震性に関する説明書が求められているスカート支持たて置円筒形 容器(耐震重要度分類Sクラス又はSs機能維持の計算を行うもの) が、十分な耐震性を有していることを確認するための耐震計算の方法 について記載したものである。 解析の方針及び減衰定数については、添付書類「VI-2-1-6 地震応表現の相違 答解析の基本方針」に従うものとする。	
		ただし、本基本方針が適用できないスカート支持たて置円筒形容器 にあっては、個別耐震計算書にその耐震計算方法を含めて記載する。 2. 一般事項	
		2.1 評価方針 スカート支持たて置円筒形容器の応力評価は、添付書類「VI-2-1-9 表現の相違機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容	
		限界に基づき、「3. 評価部位」にて設定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。確認は思さい。 配信計算書のフォースのより	
		認することで実施する。確認結果を「6. 耐震計算書のフォーマット」にて示す。 スカート支持たて置円筒形容器の耐震評価フローを図 2-1 に示す。	
		計算モデルの設定	
		理論式による固有周期	
		地震時における応力	
		▼ スカート支持たて置円筒形容器の構造強度評価 図 2-1 スカート支持たて置円筒形容器の耐震評価フロー	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		2.2 適用規格・基準等	
		本評価において適用する規格・基準等を以下に示す。	
		(1) 原子力発電所耐震設計技術指針 <mark>重要度分類・許容応力編 (JE</mark>	表現の相違
		AG4601·補-1984)	
		(2) 原子力発電所耐震設計技術指針 <mark>(JEAG4601-1987)</mark>	表現の相違
		(3)原子力発電所耐震設計技術指針 <mark>(</mark> JEAG4601-1991 追補	表現の相違
		版)	
		(4) J SME S N C 1-2005/2007 発電用原子力設備規格 設計·建	表現の相違
		<mark>設規格</mark> (以下「設計・建設規格」という。)	

: 前回提出時からの変更箇所

 記号の説明 単析	
A 脚の軸断面積 Ab 基礎ボルトの軸断面積 Ac 関の有効せる断断面積 Ac スカートの軸断面積 Ac スカートの有効せん断断面積 Ec 基礎ボルト計算における保数 Cr 基礎ボルト計算における保数 Cr 基礎ボルト計算における保数 Cv 品商力向設計真度 Db ペースプレートの内径 Db ペースプレートの内径 Db ペースプレートの外径 Dc 基礎ボルトのビッド円直径 mm 内で	
A 脚の軸断面積 Ab 基礎ボルトの軸断面積 Ac 関の有効せる断断面積 Ac スカートの軸断面積 Ac スカートの有効せん断断面積 Ec 基礎ボルト計算における保数 Cr 基礎ボルト計算における保数 Cr 基礎ボルト計算における保数 Cv 品商力向設計真度 Db ペースプレートの内径 Db ペースプレートの内径 Db ペースプレートの外径 Dc 基礎ボルトのビッド円直径 mm 内で	
Ab 基礎ボルトの軸断面積 IIII Ac 限の有効せん断断面積 IIII Ac スカートの有効せん断断面積 IIII Cc 基礎ボルト計算における保数 一 Cc 基礎ボルト計算における保数 一 Cc 基礎ボルト計算における保数 ー Dai ベースプレートの内径 IIII Dai エースプレートの外径 IIII Dai 基礎ボルトのピッド円直径 IIII Dai 国の内径 IIII Dai スカートに設けられた各開口部の穴径()=1、2、3・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
A。 関の有効せん断断而積	
A 、 スカートの軸断面積 A 、 スカートの有効せん断断面積 C 、 基礎ポルト計算における保数 C 、 水平力向設計費度 C 、 基礎ポルト計算における保数 C 、 超商力向設計費度 D 、	
A:4 スカートの有効せん断断面積 C: 基礎ポルト計算における保数 C: 水平分向設計實度 C: 基礎ポルト計算における保数 C: 超点力向設計変度 D: ベースプレートの内径 D: 基礎ポルトのビッド円直径 D: 基礎ポルトのビッド円直径 D: 期の内径 D: スカートに設けられた各開口部の穴径()=1, 2, 3… j 。)	
C ₁ 基礎ポルト計算における保数 C ₁ 基礎ポルト計算における保数 C ₂ 基礎ポルト計算における保数 D ₃ ベースプレートの内径 D ₄ ベースプレートの外径 D ₄ 基礎ポルトのビッド円直径 D ₄ 展の内径 D ₄ スカートに設けられた各開口部の穴径()=1、2、3・・)。	
Cv 基礎ポルト計算における係数 - Cv 鉛度力向設計算度 - Da. ベースプレートの内径 mm Db. ベースプレートの外径 mm Dc. 基礎ポルトのビッド円直径 mm Di. 関の内径 mm Dr. スカートに設けられた各帯口部の穴径() = 1, 2, 3 j a) mm	
Cv 基礎ポルト計算における係数 Cv 鉛商力向設計資度 Ds. ベースプレートの内径 Db. ベースプレートの外径 Dc. 基礎ポルトのビッド円直径 Di 期の内径 Dr. スカートに設けられた各帯口部の穴径()=1, 2, 3)	n n n
D ₁ ペースプレートの内径 nu D ₂ ペースプレートの内径 nn D ₃ 基礎ポルトのビッ阡円直径 nu D ₄ 期の内径 nn スカートに設けられた各開口部の穴径()=1, 2, 3… j ₃) nn	na n
Db. ベースプレートの外径 D. 基礎ポルトのビッド円直径 D. 期の内径 D. スカートに設けられた各帯口部の穴径()=1, 2, 3… j 。) mm	n n
D ₄ 基礎ボルトのビッ ド 円直径 mm D ₄ 期の内径 mm D ₄ スカートに設けられた各開口部の穴径()=1, 2, 3) mm	n n
D ₄ 基礎ボルトのビッ ド 円直径 mm D ₄ 期の内径 mm D ₄ スカートに設けられた各開口部の穴径()=1, 2, 3) mm	n ·
D ₁ 期の内径 mm D ₁ スカートに設けられた各開口部の穴径()=1, 2, 3 j 。) mm	
D _p スカートの内径 mm	m
	m .
d ボルトの呼び径 mm	u
E 脚の能弾性係数 (III)	No.
E. スカートの凝弾性係数 MP	%
e 基礎ボルト計算における係数 -	
F 設計・建設規格 SSB-3121.1(1)に定める値 WP	ra .
F* 設計・建設規格 SSB-3121.3又はSSB-3133に定める値 WP	Sa :
F 。 基礎に作用する圧縮力 N	E
F: 基礎ボルトに作用する引張力	ki l
A 曲げモーメントに対する許容座層応力 WY	Sar .
が、 軸圧縮荷重に対する許容座形態力	ta.
you せん断力のみを受ける基礎ポルトの許容せん概応力 MP	Ta :
f: スカートの許容引張応力 MF	'a
/ta 有要力のみを受ける基礎ボルトの評容可能応力 MP	ia .
Zt。 引張力とせん断力を同時に受ける基礎ポルトの許容引張応力 MP	a a
G 順力せん断弾性停敷 Mr	ia .
だ。 スカートのせん断弾性係数 MP	er er
0 重力加速度 (=9,80665) m/s	5
E1 (4.39E)	1221
国の所第二次キーメント mm	n.
	対張力のみを受ける基礎ボルトの評案引張応力 引張力とせん断力を同時に受ける基礎ボルトの許容引振応力 関助せん断弾性経数 以カートのせん断弾性経数 重力加速度 (一年 80665) 水理

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	直所第7号機 (2020. 9. 25 提出版)			
		記号 証券の説明 単位		
		1 メカートの新届二次モーメント mm*		
		j1 スカートに設けられた開口部の穴の値数 -		
		K _H 水平方向ばね定数 N/m		
		N/u 超直方向はお定数 N/u		
		k 基礎ボルト計算における中立軸の荷重係数 -		
		e 脳のメカート接合点から重心までの距離 nm		
		Rs. Ra 基礎ボルト計算における中立軸から荷重作用点までの距離 mm		
		(図5~2に示す距離)		
		#: 容器の重心から上端支持部までの距離 mm		
		Va メカートの長さ mm		
		M _k スカートに作用する転倒モーメント N·mm		
		M-4 スカートの上端部に作用する転倒モーメント N-mm		
		M+2 スカートの下端部に作用する転倒モーメント N-mm		
		mg 容器の運転時質量 kg		
		m。 容器のスカート接合部から上部の空質量 kg		
		n 基礎ポルトの本数 -		
		P, 最高使用压力 MFa		
		Q 重心に作用する任意の水平力 N		
		Q により上端の支持部に作用する反力 N		
		S 設計・建設規格 付線材料図表 Part5 表5に定める値 MPa		
		8。 順の許容応力		
		Su 設計・建設規格 付録材料図表 Part5 表9に定める値 MPa		
		The state of the s		
		Sympa 設計・建設規格 付録材料図表 Part5 表8に定める値 MPa Sympa 設計・建設規格 付録材料図表 Part5 表8に定める材料の MPa		
		40.0Cにおける荷 2人はより 呼吸し、後間が使いない。 1977年 20.0分析 1970年 20.00		
		s 基礎ボルトと基礎の能弾性係数比 一		
		TH 水平方向固有周期 5		
		Tv 鉛直方向固有關聯 s		
		II 順板の厚き IIII		
		1.1 基礎ボルト面積担当板幅 mm		
		t z 压缩侧基礎相当幅 nm		
		(* 大力一下の厚を mm		
		X: スカート開口部の水平衡面における最大円周長き mm		
		2 基礎ポルト計算における経数 -		
		a 基礎ポルト計算における中立軸を定める角度 rad		
		14. PROPERTY (1) (1) PROPERTY (2) (1) 15 THE SECTION (1) 16		

: 前回提出時からの変更箇所

参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		記号の説明	単位
		が	N.M.
		δ' 備重Q'による容器の上端での変化量	and a
		δο 備重Q, Q'による容器の重心での変位量	mm
		η 座補応力に対する安全率	
		五 円周率	
		n * 液体の密度 (=比重×19~*)	kar/mm
		ag 鰤の一次一般鎮応力の最大値	MPa
		o.ga 瞬の組合せ圧縮応力	WPa
		out 順の組合せ引張応力	MI ³ œ
			MPa
			MPa
		0 21 地裏動のみによる胴の一次応力と二次応力の和の変動値 (引張側)	MP de .
		の sks 地質動のみによる間の軸左向一次応力を二次応力の和 (圧着	(iii) MPa
		#2** 地震動のみによる側の軸方向一次応力と二次応力の和(引張	0.00
		0 基礎ポルトに生じる引張応力	MPa
		o と 基礎に生じる圧縮応力	MPax
		a。 スカートの組合せ応力	MPa
		AND	MPa
		 σ **	- The state of the
		9*** スカートの鉛直方向地裏による軸方向応力	MPa
		σ *** σ ** 静水頭叉は内圧により胴に生じる軸方向及び周方向応力	MPa
		σ x = 順の運転時質量による輸方向引張応力	MP a
		g x 3 順の空間量による軸方向圧縮応力	MPa
		σ=4 水平方向地震により胴に生じる曲げモーメントによる軸方向	10.00
		U *** 胴の鉛直が向地震による軸方向引張応力	MPa
			MPo
		Martine and the street of the state of the state of	MPa
			MPa
		The state of the s	MPa
		ma 膜の周左向応力の和	
		の*2 静水頭に鉛直方向地震が加わり順に生じる周方向応力	MP (r
		+ 地震により胴に生じるせん断応力	MPa
		まも 基礎ポルトに生じるせん断応力	MP de
		証号 記号の説明	単位
		ま。 地裏によりスカートに生じるせん断応力	MP:a
		るi(x) 圧縮荷重に対する許容座側応力の関数	MPa
		◆₂(x) 曲げモーメレトに対する許容座程応力の襲撃	MP o

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所		女儿	原子力発電所第	2 号機		備考
			有効数字 の丸め方	れめ方 6桁以上を確保 [*] は,表 2-1 に示 [*] L 表示する数値	すとおり <mark>では</mark>	<mark>ხ</mark> გ.	表現の相違表現の相違
		数値の種類	単位	処理桁	処理方法	表示桁	
		固有周期	S	小数点以下第4 位	四捨五入	小数点以下第3位	
		震度	_	小数点以下第3 位	切上げ	小数点以下第2位	
		最高使用圧力	MPa	_	_	小数点以下第2位	
		温度	$^{\circ}$	_	_	整数位	
		比重	_	小数点以下第3 位	四捨五入	小数点以下第2位	
		質量	kg	_	_	整数位	
		下記以外のさ	長 mm	_	_	整数位*1	
		長胴板の厚さ	s mm	_	_	小数点以下第1 位	
		スカートの	厚 mm	_	_	小数点以下第1 位	
		面積	mm^2	有効数字5桁目	四捨五入	有効数字4桁*2	
		モーメント	N•mm	有効数字5桁目	四捨五入	有効数字4桁*2	
		算出応力	MPa	小数点以下第1 位	切上げ	整数位	
		許容応力	MPa	小数点以下第1 位	切捨て	整数位*3	表現の相違
		注記 *1: 設計上	定める値か	- バ小数点以下の場合(は,小数点以	下表示とする。	表現の相違
		*3:設計・	建設規格		己載された温度	度の中間における引	
				点は,比例法により 数位までの値とする		D小数点以下第 1 位	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		3. 評価部位	
		スカート支持たて置円筒形容器の耐震評価は「5.1 構造強度評価	
		方法」に示す条件に基づき、耐震評価上厳しくなる胴、スカート及	
		び基礎ボルトについて評価を実施する。	
		4. 固有周期	
		4.1 固有周期の計算方法	
		スカート支持たて置円筒形容器の固有周期の計算方法を以下に示	
		す。	
		(1) 計算モデル	
		モデル化に当たっては次の条件で行う。	
		a. 容器及び内容物の質量は重心に集中するものとする。	
		b. 容器はスカートで支持され, スカート下端のベースプレートを円	
		周上等ピッチの多数の基礎ボルトで基礎に固定されており, 固定端	
		とする。	
		c. 胴とスカートをはりと考え,変形モードは曲げ及びせん断変形を	
		考慮する。	
		d. スカート部材において,マンホール等の開口部があって補強をし	
		ていない場合は、欠損の影響を考慮する。	
		e. 耐震計算に用いる寸法は、公称値を使用する。	
		本容器は、前記の条件より図4-1に示す下端固定の1質点系振動モデ	
		ルあるいは下端固定上端支持の1質点系振動モデルとして考える。	
		(1+ C _V)・mo・g (1+ C _V)・mo・g 下端固定の場合 下端固定上端支持の場合 図 4-1 固有周期の計算モデル	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		(2) 水平方向固有周期	
		a. 下端固定の場合	
		曲げ及びせん断変形によるばね定数K _H は次式で求める。	
		$K_{H} = 1000 / \left\{ \frac{\ell^{3}}{3 \cdot E \cdot I} + \frac{1}{3 \cdot E_{s} \cdot I_{s}} \cdot \left(3 \cdot \ell^{2} \cdot \ell_{s} + 3 \cdot \ell \cdot \ell_{s}^{2} + \ell_{s}^{3} \right) + \right\}$	
		$\left \frac{\ell}{G \cdot A_e} + \frac{\ell_s}{G_s \cdot A_{se}} \right \qquad \cdot $	
		ここで,スカートの開口部(図4-2参照)による影響を考慮し,胴及	
		びスカートの断面性能は次のように求める。	
		胴の断面性能は次式で求める。	
		$I = \frac{\pi}{8} \cdot \left(D_i + t\right)^3 \cdot t \qquad \cdot \cdot$	
		$A_{e} = \frac{2}{3} \cdot \pi \cdot \left(D_{i} + t\right) \cdot t \qquad \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (4.1.3)$	
		スカートの断面性能は次式で求める。	
		$I_{s} = \frac{\pi}{8} \cdot \left(D_{s} + t_{s}\right)^{3} \cdot t_{s} - \frac{1}{4} \cdot \left(D_{s} + t_{s}\right)^{2} \cdot t_{s} \cdot Y \qquad (4.1.4)$	
		スカート開口部の水平断面における最大円周長さは次式で求める。 (図4-2及び図4-3参照)	
		$Y = \sum_{j=1}^{j1} \left(D_s + t_s \right) \cdot \sin^{-1} \left(\frac{D_j}{D_s + t_s} \right) \qquad \cdot \cdot \cdot \cdot \cdot \qquad (4.1.5)$	
		$A_{se} = \frac{2}{3} \cdot \left\{ \pi \cdot \left(D_s + t_s \right) - Y \right\} \cdot t_s \qquad \cdot \cdot \cdot \cdot \qquad (4.1.6)$	
		したがって, 固有周期T _H は次式で求める。	
		_	
		$T_{\mathrm{H}} = 2 \cdot \pi \cdot \sqrt{\frac{m_0}{K_{\mathrm{H}}}} \qquad \cdots \qquad (4.1.7)$	
		D ₂ D _j	
		ℓ_s D_1 D_3	
		図4-2 スカート開口部の形状	

: 前回提出時からの変更箇所

図 4-3 スカート開口部の水平断面における最大円周長さ b. 下端園産上端支持の場合
図4-4 下端固定上端支持の場合の変形モデル

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		図 4-4 の(2)の場合	
		$\delta' = \frac{Q' \cdot (\ell + \ell_r)^3}{3 \cdot E \cdot I} + \frac{Q'}{3 \cdot E_s \cdot I_s}$	
		$\cdot \left\{ 3 \cdot \left(\ell + \ell_{r} \right)^{2} \cdot \ell_{s} + 3 \cdot \left(\ell + \ell_{r} \right) \cdot \ell_{s}^{2} + \ell_{s}^{3} \right\}$	
		$+\frac{Q'\cdot\left(\varrho+\varrho_{r}\right)}{G\cdot A_{e}}+\frac{Q'\cdot\varrho_{s}}{G_{s}\cdot A_{se}}\qquad \cdot \cdot \cdot \cdot \cdot \cdot \cdot (4.1.9)$	
		(4.1.8)式と(4.1.9)式を等しく置くことにより,	
		$Q' = Q \cdot \left\{ \frac{\ell^2 \cdot \left(2 \cdot \ell + 3 \cdot \ell_r \right)}{6 \cdot E \cdot I} \right\}$	
		$+\frac{2 \cdot \ell_{s}^{3} + 3 \cdot \ell_{s}^{2} \cdot \ell_{r} + 6 \cdot \ell_{s} \cdot \ell \cdot \left(\ell_{s} + \ell + \ell_{r}\right)}{6 \cdot E_{s} \cdot I_{s}}$	
		$+\frac{\varrho}{G \cdot A_{e}} + \frac{\varrho_{s}}{G_{s} \cdot A_{se}} \left\{ \frac{\left(\varrho + \varrho_{r}\right)^{3}}{3 \cdot E \cdot I} + \frac{3 \cdot \left(\varrho + \varrho_{r}\right)^{2} \cdot \varrho_{s} + 3 \cdot \left(\varrho + \varrho_{r}\right) \cdot \varrho_{s}^{2} + \varrho_{s}^{3}}{3 \cdot E_{s} \cdot I_{s}} \right\}$	
		$+\frac{3 \cdot \left(\ell + \ell_{r}\right)^{2} \cdot \ell_{s} + 3 \cdot \left(\ell + \ell_{r}\right) \cdot \ell_{s}^{2} + \ell_{s}^{3}}{3 \cdot E_{s} \cdot I_{s}}$	
		$+\frac{\ell+\ell_{\rm r}}{\rm G\cdot A_{\rm e}}+\frac{\ell_{\rm s}}{\rm G_{\rm s}\cdot A_{\rm se}}$	
		したがって, 図 4-4 の(3)に示す重心位置での変位量 δ ₀ は図 4-4	
		の (1) 及び (2) の重心位置での変位量の重ね合せから求めることができ、ばね定数 K_H は次式で求める。	
		$K_{H} = \frac{Q}{\delta_{0}} = 1000 / \left\{ \frac{\ell^{3}}{3 \cdot E \cdot I} + \frac{3 \cdot \ell^{2} \cdot \ell_{s} + 3 \cdot \ell \cdot \ell_{s}^{2} + \ell_{s}^{3}}{3 \cdot E_{s} \cdot I_{s}} \right\}$	
		$+\left(1-\frac{\mathbf{Q'}}{\mathbf{Q}}\right)\cdot\left(\frac{\ell}{\mathbf{G}\cdot\mathbf{A}_{\mathrm{e}}}+\frac{\ell_{\mathrm{s}}}{\mathbf{G}_{\mathrm{s}}\cdot\mathbf{A}_{\mathrm{s}\mathrm{e}}}\right)-\frac{\mathbf{Q'}}{\mathbf{Q}}\cdot\left(\frac{2\cdot\ell^{3}+3\cdot\ell^{2}\cdot\ell_{\mathrm{r}}}{6\cdot\mathbf{E}\cdot\mathbf{I}}\right)$	
		$+\frac{3 \cdot \ell_{s}^{2} \cdot \ell + \ell_{s}^{3} + 3 \cdot \ell_{s} \cdot \ell^{2} + 3 \cdot \ell_{s} \cdot \ell \cdot \ell_{r} + \frac{3}{2} \cdot \ell_{r}}{3 \cdot E_{s} \cdot I_{s}}\right\} \qquad \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (4.1.11)$	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		固有周期は(4.1.7)式により求める。	
		(3) 鉛直方向固有周期	
		軸方向変形によるばね定数Kvは次式で求める。	
		$K_{V} = 1000 / \left(\frac{\ell}{E \cdot A} + \frac{\ell_{s}}{E_{s} \cdot A_{s}}\right)$ (4. 1. 12)	
		$A = \pi \cdot (D_i + t) \cdot t \qquad \cdot \cdot$	
		$A_{s} = \{ \pi \cdot (D_{s} + t_{s}) - Y \} \cdot t_{s} \qquad \cdot \cdot \cdot \cdot \cdot \cdot (4.1.14)$	
		したがって、固有周期 Tvは次式で求める。	
		$T_{V}=2 \cdot \pi \cdot \sqrt{\frac{m_{0}}{K_{V}}} \cdots (4.1.15)$	
		5. 構造強度評価	
		5.1 構造強度評価方法	
		4.1(1)項 a.∼e.のほか,次の条件で計算する。概要図を図 5−1	
		に示す。	
		(1) 地震力は容器に対して水平方向及び鉛直方向から作用するもの	
		とする。	
		別板 スカート 関 ロ 部 ペースブレート 基礎ボルト	
		図 5-1 概要図	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		5.2 設計用地震力	
		「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」	
		による地震力は、添付書類「VI-2-1-7 設計用床応答曲線の作成方	表現の相違
		針」に基づき設定する。	
		5.3 計算方法	
		5.3.1 応力の計算方法	
		応力計算における水平方向と鉛直方向の組合せについて, 静的地震	
		力を用いる場合は絶対値和を用いる。動的地震力を用いる場合は、絶	
		対値和又は SRSS 法を用いる。	
		5.3.1.1 胴の計算方法	
		(1) 静水頭又は内圧による応力	
		静水頭による場合(鉛直方向地震時を含む。)	
		$\sigma_{\phi 1} = \frac{\rho' \cdot g \cdot H \cdot D_i}{2 \cdot t} \cdot $	
		$\sigma_{\phi 2} = \frac{\rho' \cdot g \cdot H \cdot D_i \cdot C_V}{2 \cdot t} \cdot $	
		$\sigma_{x1} = 0 \qquad \cdots \qquad \cdots \qquad \cdots \qquad (5.3.1.1.3)$	
		内圧による場合	
		$\sigma_{\phi 1} = \frac{P_{r} \cdot \left(D_{i} + 1.2 \cdot t\right)}{2 \cdot t} \qquad \cdot $	
		$\sigma_{\phi 2} = 0 \qquad \cdot \cdot$	
		$\sigma_{x1} = \frac{P_r \cdot (D_i + 1.2 \cdot t)}{4 \cdot t} \qquad \cdot $	
		(2) 運転時質量及び鉛直方向地震による応力	
		胴がスカートと接合する点を境界として, 上部には胴自身の質量に	
		よる圧縮応力が,下部には下部の胴自身の質量と内容物の質量による	
		引張応力が生じる。	
		下部の胴について	
		$\sigma_{x2} = \frac{\left(m_0 - m_e\right) \cdot g}{\pi \cdot \left(D_i + t\right) \cdot t} \qquad \cdot $	
		$\sigma_{x5} = \frac{\left(m_0 - m_e\right) \cdot g \cdot C_V}{\pi \cdot \left(D_i + t\right) \cdot t} \qquad (5.3.1.1.8)$	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		上部の胴について	
		$\sigma_{x3} = \frac{m_e \cdot g}{\pi \cdot (D_i + t) \cdot t} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (5.3.1.1.9)$	
		$\sigma_{x6} = \frac{m_e \cdot g \cdot C_V}{\pi \cdot (D_i + t) \cdot t} \qquad \cdot \cdot \cdot \cdot \cdot \cdot (5.3.1.1.10)$	
		(3) 水平方向地震による応力	
		水平方向の地震力により胴はスカート接合部で最大となる曲げモ	
		ーメントを受ける。この曲げモーメントによる軸方向応力と地震力	
		によるせん断応力は次のように求める。	
		a. 下端固定の場合	
		$\sigma_{x4} = \frac{4 \cdot C_{H} \cdot m_{0} \cdot g \cdot \ell}{\pi \cdot \left(D_{i} + t\right)^{2} \cdot t} \cdot $	
		$\tau = \frac{2 \cdot C_{H} \cdot m_{0} \cdot \mathbf{g}}{\pi \cdot (D_{i} + t) \cdot t} $ (5. 3. 1. 1. 12)	
		b. 下端固定上端支持の場合	
		$\sigma_{x4} = \frac{4 \cdot C_{H} \cdot m_{0} \cdot g \cdot \left \ell - \frac{Q'}{Q} \cdot \left(\ell + \ell_{r} \right) \right }{\pi \cdot \left(D_{i} + t \right)^{2} \cdot t} \qquad (5.3.1.1.13)$	
		$\tau = \frac{2 \cdot C_{H} \cdot m_{0} \cdot g \cdot \left(1 - \frac{Q'}{Q}\right)}{\pi \cdot \left(D_{i} + t\right) \cdot t} \qquad \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (5.3.1.1.14)$	
		(4) 組合せ応力	
		(1)~(3)によって求めた胴の応力は以下のように組み合わせる。	
		a. 一次一般膜応力	
		(a) 組合せ引張応力	
		$\sigma_{\phi} = \sigma_{\phi 1} + \sigma_{\phi 2} \qquad \cdot $	
		$\sigma_{0t} = \frac{1}{2} \cdot \left\{ \sigma_{\phi} + \sigma_{xt} + \sqrt{\left(\sigma_{\phi} - \sigma_{xt}\right)^{2} + 4 \cdot \tau^{2}} \right\} $ (5. 3. 1. 1. 16)	

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	 女川原子力発電所第2号機	備考
	ここで,	
	【絶対値和】	
	$\sigma_{xt} = \sigma_{x1} + \sigma_{x2} + \sigma_{x4} + \sigma_{x5} \qquad \cdot \cdot \cdot \cdot \cdot \qquad (5.3.1.1.17)$	
	【SRSS 法】	
	$\sigma_{xt} = \sigma_{x1} + \sigma_{x2} + \sqrt{\sigma_{x4}^2 + \sigma_{x5}^2} $ (5. 3. 1. 1. 18)	
	(b) 組合せ圧縮応力	
	$\sigma_{\phi} = -\sigma_{\phi 1} - \sigma_{\phi 2} \qquad (5.3.1.1.19)$	
	φ φ1 φ2	
	σ _{xc} が正の値(圧縮側)のとき,次の組合せ圧縮応力を求める。	
	$\sigma_{0c} = \frac{1}{2} \cdot \left\{ \sigma_{\phi} + \sigma_{xc} + \sqrt{\left(\sigma_{\phi} - \sigma_{xc}\right)^{2} + 4 \cdot \tau^{2}} \right\} $ (5. 3. 1. 1. 20)	
	【絶対値和】	
	$\sigma_{xc} = -\sigma_{x1} + \sigma_{x3} + \sigma_{x4} + \sigma_{x6} $ (5. 3. 1. 1. 21)	
	【SRSS 法】	
	$\sigma_{xc} = -\sigma_{x1} + \sigma_{x3} + \sqrt{\sigma_{x4}^2 + \sigma_{x6}^2} \qquad (5.3.1.1.22)$	
	xc x1 x3 √ x4 x6 したがって、胴の組合せ一次一般膜応力の最大値は、絶対値和、	
	SRSS 法それぞれに対して,	
	$\sigma_0 = \text{Max} \left[組合せ引張応力 \left(\sigma_{0t} \right), 組合せ圧縮応力 \left(\sigma_{0c} \right) \right] (5.3.1.1.23)$	
	とする。 一次応力は一次一般膜応力と同じ値になるので省略する。	
	b. 地震動のみによる一次応力と二次応力の和の変動値	
	(a) 組合せ引張応力	
	$\sigma_{2\phi} = \sigma_{\phi 2} \qquad \cdots \qquad \cdots \qquad \cdots \qquad (5.3.1.1.24)$	
	$\sqrt{2}$	
	$\sigma_{2t} = \sigma_{2\phi} + \sigma_{2xt} + \sqrt{\left(\sigma_{2\phi} - \sigma_{2xt}\right)^2 + 4 \cdot \tau^2} (5.3.1.1.25)$	
	ここで、	

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		【絶対値和】	
		$\sigma_{2 \times t} = \sigma_{\times 4} + \sigma_{\times 5} \qquad \cdots \qquad (5.3.1.1.26)$	
		【SRSS 法】	
		$\sigma_{2 \times t} = \sqrt{\sigma_{\times 4}^{2} + \sigma_{\times 5}^{2}} \cdot \cdot \cdot \cdot \cdot (5.3.1.1.27)$	
		$\sigma_{2\phi} = -\sigma_{\phi2} \qquad \cdots \qquad \cdots \qquad (5.3.1.1.28)$	
		$\sigma_{2c} = \sigma_{2\phi} + \sigma_{2xc} + \sqrt{\left(\sigma_{2\phi} - \sigma_{2xc}\right)^2 + 4 \cdot \tau^2} $ (5. 3. 1. 1. 29)	
		【絶対値和】	
		$\sigma_{2 \times c} = \sigma_{\times 4} + \sigma_{\times 6} \qquad \cdots \qquad (5.3.1.1.30)$	
		【SRSS 法】	
		$\sigma_{2 \times c} = \sqrt{\sigma_{\times 4}^{2} + \sigma_{\times 6}^{2}} \cdot \cdot \cdot \cdot \cdot \cdot (5.3.1.1.31)$	
		したがって、胴の地震動のみによる一次応力と二次応力の和の変	
		動値の最大値は、絶対値和、SRSS 法それぞれに対して、	
		$\sigma_2 = \text{Max} \left[組合せ引張応力 \left(\sigma_{2t} \right), 組合せ圧縮応力 \left(\sigma_{2c} \right) \right]$ (5. 3. 1. 1. 32)	
		とする。	
		5.3.1.2 スカートの計算方法	
		(1) 運転時質量及び鉛直方向地震による応力	
		スカート底部に生じる運転時質量及び鉛直方向地震による圧縮応	
		力は次式で求める。	
		$\sigma_{s1} = \frac{m_0 \cdot g}{\left\{\pi \cdot \left(D_s + t_s\right) - Y\right\} \cdot t_s} \qquad \cdot $	
		$\sigma_{s3} = \frac{m_0 \cdot g \cdot C_V}{\left\{\pi \cdot \left(D_s + t_s\right) - Y\right\} \cdot t_s} \qquad \cdot $	
		(" (=s -s) -) s	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		(2) 水平方向地震による応力	
		水平方向の地震力によりスカートに作用する曲げモーメントによ	
		り生じる軸方向応力及び水平方向地震力によるせん断応力は次のよ	
		うに求める。	
		a. 下端固定の場合	
		$\sigma_{s2} = \frac{M_s}{(D_s + t_s) \cdot t_s \cdot \{\frac{\pi}{4} \cdot (D_s + t_s) - \frac{Y}{2}\}} (5.3.1.2.3)$	
		$\tau_{s} = \frac{2 \cdot C_{H} \cdot m_{0} \cdot g}{\left\{\pi \cdot \left(D_{s} + t_{s}\right) - Y\right\} \cdot t_{s}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot (5.3.1.2.4)$	
		ここで,	
		$M_{s} = C_{H} \cdot m_{0} \cdot g \cdot (\ell_{s} + \ell) \qquad \cdot \cdot \cdot \cdot \cdot (5.3.1.2.5)$	
		b. 下端固定上端支持の場合	
		軸方向応力は(5.3.1.2.3)式で表されるが,曲げモーメントMsは次の	
		M_{s1} 又は M_{s2} のいずれか大きい方の値とする。	
		$M_{s1} = C_{H} \cdot m_{0} \cdot g \cdot \left \ell - \frac{Q'}{Q} \cdot \left(\ell + \ell_{r} \right) \right \qquad \cdot \cdot \cdot \cdot (5.3.1.2.6)$	
		$\mathbf{M_{s2}} = \mathbf{C_H \cdot m_0 \cdot g \cdot \left \ell_s + \ell - \frac{Q'}{Q} \cdot \left(\ell_s + \ell + \ell_r \right) \right \qquad \cdot \qquad (5.3.1.2.7)$	
		$\tau_{s} = \frac{2 \cdot C_{H} \cdot m_{0} \cdot g \cdot \left(1 - \frac{Q'}{Q}\right)}{\left\{\pi \cdot \left(D_{s} + t_{s}\right) - Y\right\} \cdot t_{s}} \qquad (5.3.1.2.8)$	
		(3) 組合せ応力	
		組合せ応力は次式で求める。	
		【絶対値和】	
		$\sigma_{s} = \sqrt{(\sigma_{s1} + \sigma_{s2} + \sigma_{s3})^{2} + 3 \cdot \tau_{s}^{2}} $ (5. 3. 1. 2. 9)	
		【SRSS 法】	
		$\sigma_{s} = \sqrt{\left(\sigma_{s1} + \sqrt{\sigma_{s2}^{2} + \sigma_{s3}^{2}}\right)^{2} + 3 \cdot \tau_{s}^{2}} \cdot \cdot \cdot (5.3.1.2.10)$	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		5.3.1.3 基礎ボルトの計算応力	
		(1) 引張応力	
		基礎に作用する転倒モーメントM _s は、下端固定の場合、	
		(5.3.1.2.5)式を,下端固定上端支持の場合は(5.3.1.2.6)式又は	
		(5.3.1.2.7)式のいずれか大きい方を用いる。	
		転倒モーメントが作用した場合に生じる基礎ボルトの引張荷重と	
		基礎部の圧縮荷重については, 荷重と変位量の釣合い条件を考慮する	
		ことにより求める (図 5-2 参照)。	
		以下にその手順を示す。	
		$a.$ σ_b 及び σ_c を仮定して基礎ボルトの応力計算における中立軸の	
		荷重係数kを求める。	
		$k = \frac{1}{1 + \frac{\sigma_b}{s \cdot \sigma_c}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	
		b. 基礎ボルトの応力計算における中立軸を定める角度 α を求め	
		る。	
		$\alpha = \cos^{-1} (1 - 2 \cdot k)$	
		$\begin{array}{c} t_1 \\ F_t \\ \hline \\ z \cdot D_c \\ \hline \\ k \cdot D_c \\ \end{array}$	
		図 5-2 基礎の荷重説明図	

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		c. 各定数 e , z , C _t 及び C _c を求める。	
		$e = \frac{1}{2} \cdot \left\{ \frac{(\pi - \alpha) \cdot \cos^2 \alpha + \frac{1}{2} \cdot (\pi - \alpha) + \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha}{(\pi - \alpha) \cdot \cos \alpha + \sin \alpha} \right\}$	
		$(\pi - \alpha) \cdot \cos \alpha + \sin \alpha$	
		$+\frac{\frac{1}{2} \cdot \alpha - \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha + \alpha \cdot \cos^{2} \alpha}{\sin \alpha - \alpha \cdot \cos \alpha}\right\} \qquad \cdot \cdot \cdot \cdot \cdot (5.3.1.3.3)$	
		$z = \frac{1}{2} \cdot \left(\cos \alpha + \frac{\frac{1}{2} \cdot \alpha - \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha + \alpha \cdot \cos^2 \alpha}{\sin \alpha - \alpha \cdot \cos \alpha} \right)$	
		$C_{t} = \frac{2 \cdot \{(\pi - \alpha) \cdot \cos \alpha + \sin \alpha\}}{1 + \cos \alpha} \qquad (5.3.1.3.5)$	
		$C_{c} = \frac{2 \cdot (\sin \alpha - \alpha \cdot \cos \alpha)}{1 - \cos \alpha} \qquad \cdot $	
		d. 各定数を用いてF _t 及びF _c を求める。	
		【絶対値和】 $F_{t} = \frac{M_{s} - (1 - C_{v}) \cdot m_{0} \cdot g \cdot z \cdot D_{c}}{e \cdot D_{c}} \qquad (5.3.1.3.7)$	
		$F_{c} = F_{t} + (1 - C_{v}) \cdot m_{0} \cdot g \qquad \cdot \cdot \cdot \cdot \cdot \cdot (5.3.1.3.8)$	
		【SRSS 法】	
		$F_{t} = \frac{\sqrt{M_{s}^{2} + (C_{V} \cdot m_{0} \cdot g \cdot z \cdot D_{c})^{2}}}{e \cdot D_{c}} - \frac{z}{e} \cdot m_{0} \cdot g \qquad \cdot \cdot \cdot (5.3.1.3.9)$	
		$F_{c} = \frac{\sqrt{M_{s}^{2} + (C_{V} \cdot m_{0} \cdot g \cdot (z - e) \cdot D_{c})^{2}}}{e \cdot D_{c}} + (1 - \frac{z}{e}) \cdot m_{0} \cdot g (5.3.1.3.10)$	
		基礎ボルトに引張力が作用しないのは, αがπに等しくなったと	
		きであり、 $(5.3.1.3.3)$ 式及び $(5.3.1.3.4)$ 式において α を π に	
		近づけた場合の値 e = 0.75 及び z = 0.25 を (5.3.1.3.7) 式又は	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		(5.3.1.3.9) 式に代入し,得られるF _t の値によって引張力の有無	
		を次のように判定する。	
		F t≤0 ならば引張力は作用しない。	
		$F_t>0$ ならば引張力が作用しているので次の計算を行う。	
		e . σ_b 及び σ_c を求める。	
		$\sigma_{b} = \frac{2 \cdot F_{t}}{t_{1} \cdot D_{c} \cdot C_{t}} \cdot \cdot$	
		$\sigma_{c} = \frac{2 \cdot F_{c}}{\left(t_{2} + s \cdot t_{1}\right) \cdot D_{c} \cdot C_{c}} \cdot $	
		ここで、	
		$t_1 = \frac{n \cdot A_b}{\pi \cdot D_c} \qquad \cdot $	
		$t_2 = \frac{1}{2} \cdot (D_{bo} - D_{bi}) - t_1 \cdot \cdot \cdot \cdot \cdot \cdot (5.3.1.3.14)$	
		$A_{b} = \frac{\pi}{4} \cdot d^{2}$	
		σ _ь 及びσ _c が a 項にて仮定した値と十分に近似していることを確	
		認する。この場合の σ 。及び σ 。を基礎ボルトと基礎に生じる応力と	
		する。	
		(2) せん断応力	
		a. 下端固定の場合	
		$\tau_{b} = \frac{C_{H} \cdot m_{0} \cdot g}{n \cdot A_{b}} \qquad \cdot \cdot$	
		b. 下端固定上端支持の場合	
		$\tau_{b} = \frac{C_{H} \cdot m_{0} \cdot g \cdot \left(1 - \frac{Q'}{Q}\right)}{n \cdot A_{b}} \qquad \cdot \cdot$	
		D .	

: 前回提出時からの変更箇所

考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		5.4 応力の評価	
		5.4.1 胴の応力評価	
		5.3.1.1 項で求めた組合せ応力が胴の最高使用温度における許容	
		応力Sa以下であること。ただし、Saは下表による。	
		許容応力 Sa	
		弾性設計用地震動Sd又は静 基準地震動Ssによ	
		応力の種類 的震度による荷重との組合せ る荷重との組合せの	
		の場合場合	
		設計降伏点 S y と設計引張強 設計引張強さ S uの 0.6	
		さSuの0.6倍のいずれか小さ 倍。	
		い方の値。ただし、オーステ	
		一次一般膜応 ナイト系ステンレス鋼及び高	
		カニッケル合金にあっては許容	
		引張応力Sの1.2倍の方が大	
		きい場合は、この大きい方の	
		値とする。	
		一次応力と 地震動のみによる一次応力と二次応力の和の変動値	
		二次応力の和 が設計降伏点Syの2倍以下であれば、疲労解析は不	
		要とする。	
		一次応力の評価は算出応力が一次一般膜応力と同じ値であるので省	
		略する。	
		5.4.2 スカートの応力評価	
		(1) 5.3.1.2項で求めたスカートの組合せ応力が許容引張応力 <mark>√</mark> t以	
		下であること。ただし、 $f_{\rm t}$ は下表による。	
		弾性設計用地震動Sd又 基準地震動Ssによる	
		は静的震度による荷重と荷重との組合せの場合	
		の組合せの場合	
		許容引張応力 $\frac{F}{1.5} \cdot 1.5$ $\frac{F}{1.5} \cdot 1.5$	
		$f_{\rm t}$ $\overline{1.5}$ $\overline{1.5}$ $\overline{1.5}$ $\overline{1.5}$	
		(2) 圧縮膜応力 (圧縮応力と曲げによる圧縮側応力の組合せ) は次	
		(2) 圧縮膜応力(圧縮応力と曲)による圧縮側応力の組合も)は次 式を満足すること。	

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		(座屈の評価)	
		$\frac{\eta \cdot (\sigma_{s1} + \sigma_{s3})}{\mathbb{I}_{c}} + \frac{\eta \cdot \sigma_{s2}}{\mathbb{I}_{b}} \le 1 \qquad \cdots \qquad (5. 4. 2. 1)$	
		ここで、 <mark>f</mark> 。は次による。	
		$D_s + 2 \cdot t_{s-1200 \cdot a}$	
		$\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \le \frac{1200 \cdot g}{F} \mathcal{O} $	
		$\mathbf{f}_{c} = F$ $\cdots \cdots \cdots$	
		D 12.4	
		$\frac{1200 \cdot g}{F} < \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} < \frac{8000 \cdot g}{F} \mathcal{O} \succeq \tilde{\Xi}$	
		$\frac{8000 \cdot g}{F} \le \frac{D_s + 2 \cdot t}{2 \cdot t} \le 800 \text{ Obs}$	
		$\mathbf{f}_{c} = \phi_{1} \left(\frac{D_{s} + 2 \cdot t_{s}}{2 \cdot t_{s}} \right) \qquad \cdot $	
		ただし、 $\phi_1(\mathbf{x})$ は次の関数とする。	
		$\phi_1(\mathbf{x}) = 0.6 \cdot \frac{E_s}{\mathbf{x}} \cdot \left[1 - 0.901 \cdot \left\{ 1 - \exp\left(-\frac{1}{16} \cdot \sqrt{\mathbf{x}}\right) \right\} \right] $ (5.4.2.5)	
		また、 f 。は次による。	
		$\frac{D_s + 2 \cdot t_s}{\sum_{s}} \leq \frac{1200 \cdot g}{O} \geq 3$	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$\frac{1200 \cdot g}{F} < \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} < \frac{9600 \cdot g}{F} $ ෙ ද පි	
		(5. 4. 2. 7)	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		$9600 \cdot g$ $D_s + 2 \cdot t$	
		$\frac{9600 \cdot g}{F} \le \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \le 800 \text{OEE}$	
		$\mathbf{f}_{b} = \phi_{2} \left(\frac{\mathbf{D}_{s} + 2 \cdot \mathbf{t}_{s}}{2 \cdot \mathbf{t}_{s}} \right) \qquad \cdot $	
		ψ_2 ψ_2 ψ_2 ψ_2 ψ_3 ψ_4 ψ_2 ψ_2 ψ_3 ψ_4 ψ_4 ψ_5 ψ_4 ψ_5 ψ_4 ψ_5 ψ_4 ψ_5 ψ_5 ψ_4 ψ_5 ψ_6 ψ_6 ψ_6 ψ_6 ψ_7 ψ_8 $\psi_$	
		$\phi_{2}(\mathbf{x}) = 0.6 \cdot \frac{E_{s}}{\mathbf{x}} \cdot \left[1 - 0.731 \cdot \left\{ 1 - \exp\left(-\frac{1}{16} \cdot \sqrt{\mathbf{x}}\right) \right\} \right]$ (5.4.2.9)	
		ηは安全率で次による。	
		$\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \le \frac{1200 \cdot g}{F} \mathcal{O} \mathcal{E}^{\frac{1}{2}}$	
		$\eta = 1$ $\cdot \cdot \cdot$	
		$\frac{1200 \cdot g}{F} < \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} < \frac{8000 \cdot g}{F} \mathcal{O} \succeq \mathfrak{F}$	
		$\eta = 1 + \frac{0.5 \cdot F}{6800 \cdot g} \cdot \left(\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} - \frac{1200 \cdot g}{F} \right) \cdot \cdot \cdot \cdot \cdot \cdot (5.4.2.11)$	
		$\eta = 1 + \frac{1}{6800 \cdot g} \cdot \left(\frac{2 \cdot t_s}{2 \cdot t_s} - \frac{1}{F} \right)$	
		$\frac{8000 \cdot g}{F} \le \frac{D_s + 2 \cdot t}{2 \cdot t} \circ \mathcal{E}$	
		5	
		$\eta = 1.5$ $\cdots \cdots \cdots$	
		5.4.3 基礎ボルトの応力評価	
		5.3.1.3 項で求めた基礎ボルトの引張応力σβは次式より求めた許	
		容引張応力 f_{ts} 以下であること。ただし f_{to} は下表による。 f_{ts} f_{to} $f_$	
		ts-min[1.4.7 to 1.0.7 b, 7 to] (3.4.5.1)	
		せん断応力τβはせん断力のみを受ける基礎ボルトの許容せん断応	
		力 <mark>f</mark> s b以下であること。ただし, <mark>f</mark> s bは下表による。	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		弾性設計用地震動Sd又 は静的震度による荷重 との組合せの場合 基準地震動Ssによる 荷重との組合せの場合	
		許容引張応力 $\frac{\mathbf{f}_{\text{t o}}}{\mathbf{f}_{\text{t o}}} \circ \frac{\mathbf{F}}{2} \cdot 1.5 \qquad \frac{\mathbf{F}^*}{2} \cdot 1.5$	
		許容せん断応 力 $\frac{F}{1.5 \cdot \sqrt{3}} \cdot 1.5$ $\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$	
		6. 耐震計算書のフォーマット スカート支持たて置円筒形容器の耐震計算書のフォーマットは、 以下のとおりである。 〔設計基準対象施設及び重大事故等対処設備の場合〕	
		フォーマット I 設計基準対象施設としての評価結果 フォーマット II 重大事故等対処設備としての評価結果	
		 〔重大事故等対処設備単独の場合〕 フォーマットⅡ 重大事故等対処設備としての評価結果* 注記 *: 重大事故等対処設備単独の場合は,設計基準対象施設及び 重大事故等対処設備に示すフォーマットⅡを使用するもの 	
		とする。ただし、評価結果表に記載の章番を「2.」から「1.」とする。	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		Cy cy	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		15.3 計算機能	表現の相違

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		1.4.1 開係関係 (明化:s) (明化	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		COCONGROENDING Cocongroup Cocongroup	表現の相違

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		2 正元(2007年30年30日 日本) (1 日本)	表現の相違

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
(2020.9.23 (定山似)	米 · 西 尔 电 /	文川原士刀発電削第 2 写機 (a W : 2 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を) (a W : 3 M を)	表現の相違
		世人権応力 周方向応力	
		本立方向応力	
		関方向応力	
		2.3 計算数値 2.3.1 Pilitzとび応力 (1) 一次一般地応力 が直方向地震による圧縮広力 発電力向地震による圧縮広力 が直方向地震による圧縮広力 が直方向地震による圧縮広力 水平方向地震による圧縮広力 が直方向地震による圧縮広力 水平方向地震によるボカと の地震動の外による一次応力と が立方向地震によるボカ が立方向地震による広力 が重転時質量による広力 が重大向地震による広力 が重大向地震による広力 が重大向地震による広力 が平方向地震による広力 が平方向地震による広力 が平方向地震による広力 が平方向地震による広力 が平方向地震 が平方向地震による広力 が平方向地震	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第 7 号機 (2020. 9. 25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		基準地震動 S s 事権が方 S a = S a = $\frac{r_{\rm t}}{r_{\rm t}}$ $\frac{r_{\rm t}}{r_{\rm t}}$ = $\frac{r_{\rm t}}{r_{\rm b}}$ = $\frac{r_{\rm t}}{r_{\rm$	
		基準地震 $\sigma_0 = \sigma_2 = \sigma_2 = \sigma_2 = \sigma_3 = \sigma_4 = \sigma_5 = \sigma_5$	
			表現の相違
		(単位:s)	
		開題 TH= TV= 対力以下であ、	
		2.4 結論 2.4.1 固有国 方 向 水平方向 松平方向 総直方向 3.4.2 応力 部 材 調板 オスカート オスカート オスケート	

: 前回提出時からの変更箇所

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版) 東海第二発電所 女川原子力発	電所第2号機	備考
	k-∢	表現の相違