先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》䄸崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針	表現の相違

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		目 次 概要• 一般事項． 評価方針 適用規格•基準等 記号の説明• 計算精度と数値の丸め方 評価部位 固有周期 1 固有周期の計算方法 構造強度評価• 構造強度評価方法． 設計用地震力 計算方法 応力の計算方法 応力の評価． 胴の応力評価 スカートの応力評価 5．4．3 基礎ボルトの応力評価． 6．耐震計算書のフォーマット	表現の相違 表現の相違 表現の相違 表現の相違

2021年1月14日
02－工－B－19－0034＿改 1

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25提出版）	東海第二発電所	女川原子力発電所第2号機	備考

2021年1月14日
02－工－B－19－0034＿改

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機					備考 表現の相違 表現の相違
		2.4 計算精度と数値の丸め方計算精度は，有効数字 6 桁以上を確保する。表示する数値の丸め方は，表2－1 に示すとおりである。表2－1 表示する数値の丸め方					
		数值の種類	単位	处理标	处理方法	表示析	表現の相違 表現の相違 表現の相違
		固有周期	s	$\begin{gathered} \hline \text { 小数点以下第4 } \\ \text { 位 } \end{gathered}$	四唅五入	小数点以下第3位	
		震度	－	小数点以下第 3 位	切上げ	小数点以下第2位	
		最高使用圧力	MPa	－	－	小数点以下第2位	
		温度	${ }^{\circ} \mathrm{C}$	－	－	整数位	
		比重	－	$\begin{gathered} \text { 小数点以下第 } 3 \\ \text { 位 } \end{gathered}$	四唅五入	小数点以下第2位	
		質量	kg	－	－	整数位	
		下記以外の長 さ	mm	－	－	整数位＊1	
		長 を 朋板の厚を	mm	－	－	小数点以下第1 位	
		スカートの厚 d	mm	－	－	小数点以下第1 位	
		面積	mm²	有効数字 5 椎目	四括五入	有効数字 4 林＊2	
		モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 标目	四唅五入	有效数字 4 标＊${ }^{*}$	
		算出応力	MPa	小数点以下第 1位	切上げ	整数位	
		許容応力	MPa	小数点以下第 1 位	切括て	整数位＊3	
		注記 $* 1$ ：設計上定める值が小数点以下の場合は，小数点以下表示とする。 ＊2：絶対值が 1000 以上のときは，べき数表示とする。 ＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した值の小数点以下第 1 位 を切り捨て，整数位までの值とする。					

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》柏崎刈羾原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		図 4－4の（2）の場合 $\begin{align*} \delta^{\prime} & =\frac{Q^{\prime} \cdot\left(l+\ell_{\mathrm{r}}\right)^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}}+\frac{\mathrm{Q}^{\prime}}{3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{s}}} \\ & \cdot\left\{3 \cdot\left(\ell+\ell_{\mathrm{r}}\right)^{2} \cdot \ell_{\mathrm{s}}+3 \cdot\left(\ell+\ell_{\mathrm{r}}\right) \cdot \ell_{\mathrm{s}}^{2}+\ell_{\mathrm{s}}^{3}\right\} \\ & +\frac{Q^{\prime} \cdot\left(\ell+e_{\mathrm{r}}\right)}{\mathrm{G} \cdot \mathrm{~A}_{\mathrm{e}}}+\frac{Q^{\prime} \cdot \ell_{\mathrm{s}}}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~s}_{\mathrm{se}}} \quad \cdots \ldots \ldots . \tag{4.1.9} \end{align*}$ （4．1．8）式と（4．1．9）式を等しく置くことにより， $\begin{align*} & Q^{\prime}=Q \cdot\left\{\frac{e^{2} \cdot\left(2 \cdot l+3 \cdot \ell_{\mathrm{r}}\right)}{6 \cdot \mathrm{E} \cdot \mathrm{I}}\right. \\ & +\frac{2 \cdot \ell_{\mathrm{s}}^{3}+3 \cdot \ell_{\mathrm{s}}^{2} \cdot \ell_{\mathrm{r}}+6 \cdot \ell_{\mathrm{s}} \cdot \ell \cdot\left(\ell_{\mathrm{s}}+\ell+\ell_{\mathrm{r}}\right)}{6 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{s}}} \\ & \left.+\frac{\ell}{\mathrm{G} \cdot \mathrm{~A}_{\mathrm{e}}}+\frac{\ell_{\mathrm{s}}}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{se}}}\right\} /\left\{\frac{\left(\ell+\ell_{\mathrm{r}}\right)^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}}\right. \\ & +\frac{3 \cdot\left(\ell+\ell_{\mathrm{r}}\right)^{2} \cdot \ell_{\mathrm{s}}+3 \cdot\left(\ell+\ell_{\mathrm{r}}\right) \cdot \ell_{\mathrm{s}}^{2}+\ell_{\mathrm{s}}^{3}}{3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{s}}} \\ & \left.+\frac{\ell+\ell_{\mathrm{r}}}{\mathrm{G} \cdot \mathrm{~A}_{\mathrm{e}}}+\frac{\ell_{\mathrm{s}}}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{se}}}\right\} \quad \cdots \cdot \cdot \cdot \cdot \cdot \cdot \cdot \tag{4.1.10} \end{align*}$ したがって，図 4－4の（3）に示す重心位置での変位量 δ oは図 4－4 の（1）及び（2）の重心位置での変位量の重ね合せから求めることがで き，ばね定数 K_{H} は次式で求める。 $\begin{aligned} & \mathrm{K}_{\mathrm{H}}=\frac{\mathrm{Q}}{\delta_{0}}=1000 /\left\{\frac{\ell^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}}+\frac{3 \cdot \ell^{2} \cdot \ell_{\mathrm{s}}+3 \cdot \ell \cdot \ell_{\mathrm{s}}^{2}+\ell_{\mathrm{s}}^{3}}{3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{s}}}\right. \\ & +\left(1-\frac{\mathrm{Q}^{\prime}}{\mathrm{Q}}\right) \cdot\left(\frac{\ell}{\mathrm{G} \cdot \mathrm{~A}_{\mathrm{e}}}+\frac{\ell_{\mathrm{s}}}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{se}}}\right)-\frac{\mathrm{Q}^{\prime}}{\mathrm{Q}} \cdot\left(\frac{2 \cdot \ell^{3}+3 \cdot \ell^{2} \cdot \ell_{\mathrm{r}}}{6 \cdot \mathrm{E} \cdot \mathrm{I}}\right. \end{aligned}$ $\left.\left.+\frac{3 \cdot e_{\mathrm{s}}^{2} \cdot \ell+e_{\mathrm{s}}^{3}+3 \cdot e_{\mathrm{s}} \cdot e^{2}+3 \cdot e_{\mathrm{s}} \cdot e \cdot e_{\mathrm{r}}+\frac{3}{2} \cdot e_{\mathrm{s}}^{2} \cdot e_{\mathrm{r}}}{3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{s}}}\right)\right\}$	

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		固有周期は（4．1．7）式により求める。 （3）鉛直方向固有周期 軸方向変形によるばね定数 K は次式で求める。 $\begin{align*} & \mathrm{K}_{\mathrm{V}}=1000 /\left(\frac{\mathrm{e}}{\mathrm{E} \cdot \mathrm{~A}}+\frac{e_{\mathrm{s}}}{\mathrm{E}_{\mathrm{s}} \cdot A_{\mathrm{s}}}\right) \tag{4.1.12}\\ & \mathrm{A}=\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right) \cdot \mathrm{t} \quad \cdots \tag{4.1.13}\\ & \mathrm{~A}_{\mathrm{s}}=\left\{\pi \cdot\left(\mathrm{D}_{\mathrm{s}}+\mathrm{t}_{\mathrm{s}}\right)-\mathrm{Y}\right\} \cdot \mathrm{t} \tag{4.1.14} \end{align*}$ したがって，固有周期 TVは次式で求める。 $\begin{equation*} \mathrm{T}_{\mathrm{V}}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}_{0}}{\mathrm{~K}_{\mathrm{V}}}} \quad \cdots \cdots \cdots \cdot \cdots \cdot \cdot \cdot \tag{4.1.15} \end{equation*}$ 5．構造強度評価 5.1 構造強度評価方法 4．1（1）項 a．～e．のほか，次の条件で計算する。概要図を図 5－1 に示す。 （1）地震力は容器に対して水平方向及び鉛直方向から作用するもの とする。 図 5－1 概要図	

2021年1月14日
02－工－B－19－0034＿改 1

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		上部の胴について （3）水平方向地震による応力 水平方向の地震力により胴はスカート接合部で最大となる曲げモ ーメントを受ける。この曲げモーメントによる軸方向応力と地震力 によるせん断応力は次のように求める。 a．下端固定の場合 b．下端固定上端支持の場合 $\begin{align*} & \sigma_{\mathrm{x} 4}=\frac{4 \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m}_{0} \cdot g \cdot\left\|e-\frac{Q^{\prime}}{Q} \cdot\left(\ell+\mathrm{e}_{\mathrm{r}}\right)\right\|}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right)^{2} \cdot \mathrm{t}} \quad \cdots \cdots \cdot \tag{5.3.1.1.13}\\ & \tau=\frac{2 \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m}_{0} \cdot g \cdot\left(1-\frac{Q^{\prime}}{Q}\right)}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right) \cdot \mathrm{t}} \quad \cdots \cdots \cdot \tag{5.3.1.1.14} \end{align*}$ （4）組合せ応力 （1）～（3）によって求めた胴の応力は以下のように組み合わせる。 a．一次一般膜応力 （a）組合せ引張応力 $\begin{align*} & \sigma_{\phi}=\sigma_{\phi 1}+\sigma_{\phi 2} \quad \cdots \cdots(\text { (5.3.1.1.15) } \\ & \sigma_{0 t}=\frac{1}{2} \cdot\left\{\sigma_{\phi}+\sigma_{\mathrm{xt}}+\sqrt{\left(\sigma_{\phi}-\sigma_{\mathrm{xt}}\right)^{2}+4 \cdot \tau^{2}}\right\} \quad \text { (5.3.1.1.16 } \tag{5.3.1.1.16} \end{align*}$	

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》䄸崎刈羽原子力発電所第 7 号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		ここで， 【絶対值和】 $\sigma_{x t}=\sigma_{x 1}+\sigma_{x 2}+\sigma_{x 4}+\sigma_{x 5} \quad \cdots \cdots \text { (5.3.1.1.17) }$ 【SRSS 法】 $\begin{equation*} \sigma_{\mathrm{xt}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sqrt{\sigma_{\mathrm{x} 4}^{2}+\sigma_{\mathrm{x} 5}{ }^{2}} \tag{5.3.1.1.18} \end{equation*}$ （b）組合せ圧縮応力 $\sigma_{\phi}=-\sigma_{\phi 1}-\sigma_{\phi 2} \quad \cdots \cdots \text {. (5.3.1.1.19) }$ $\sigma_{\mathrm{x} \text { が正の値（圧縮側）のとき，次の組合せ圧縮応力を求める。 }}$ $\begin{equation*} \sigma_{0 \mathrm{c}}=\frac{1}{2} \cdot\left\{\sigma_{\phi}+\sigma_{\mathrm{xc}}+\sqrt{\left(\sigma_{\phi}-\sigma_{\mathrm{xc}}\right)^{2}+4 \cdot \tau^{2}}\right\} \tag{5.3.1.1.20} \end{equation*}$ ここで， 【絶対值和】 $\sigma_{\mathrm{xc}}=-\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 3}+\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 6} \quad \cdots \quad . \quad \text { (5.3.1.1.21) }$ 【SRSS 法】 $\begin{equation*} \sigma_{x c}=-\sigma_{x 1}+\sigma_{x 3}+{\sqrt{\sigma_{x 4}}{ }^{2}+\sigma_{x 6}}^{2} \quad \ldots . \tag{5.3.1.1.22} \end{equation*}$ したがって，胴の組合せ一次一般膜応力の最大值は，絶対值和， SRSS 法それぞれに対して， $\sigma_{0}=\operatorname{Max}\left[\right.$ 組合せ引張応力 $\left(\sigma_{0_{t}}\right)$ ，組合世圧䌅応力 $\left.\left(\sigma_{0 c}\right)\right]$（5．3．1．1．23） とする。 一次応力は一次一般膜応力と同じ值になるので省略する。 b．地震動のみによる一次応力と二次応力の和の変動値 （a）組合せ引張応力 $\begin{align*} & \sigma_{2_{\phi}}=\sigma_{\phi 2} \quad \cdots \cdots \cdots \cdots \cdots \cdot \tag{5.3,1.1.24}\\ & \sigma_{2 \mathrm{t}}=\sigma_{2 \phi}+\sigma_{2 \times \mathrm{t}}+\sqrt{\left(\sigma_{2 \phi}-\sigma_{2 \times t}\right)^{2}+4 \cdot \tau^{2}} \tag{5.3.1.1.25}\\ & \text { ここで, } \end{align*}$	

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》䄸崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		【絶対值和】 $\sigma_{2 \times \mathrm{t}}=\sigma_{\times 4}+\sigma_{\times 5} \quad \cdots \cdots \cdots \cdot(\text { (5. 3. 1. 1. 26) }$ 【SRSS 法】 $\sigma_{2 \times t}={\sqrt{\sigma_{\times 4}{ }^{2}+\sigma_{\times 5}}{ }^{2}}_{\cdots \cdots(5.3 .1 .1 .27)}$ （b）組合せ圧縮応力 $\begin{align*} & \sigma_{2 \phi}=-\sigma_{\phi 2} \quad \cdots \cdots \cdots \cdots \cdot \tag{5.3.1.1.28}\\ & \sigma_{2 \mathrm{c}}=\sigma_{2 \phi}+\sigma_{2 \times \mathrm{c}}+\sqrt{\left(\sigma_{2 \phi}-\sigma_{2 \times c}\right)^{2}+4 \cdot \tau^{2}} \tag{5.3.1.1.29}\\ & \text { ここで, } \end{align*}$ 【絶対值和】 $\sigma_{2 \times \mathrm{c}}=\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 6} \quad \cdots \cdots \cdot \cdots \cdot(\text { (5.3.1.1.30) }$ 【SRSS 法】 $\begin{equation*} \sigma_{2 \times c}=\sqrt{\sigma_{\times 4}{ }^{2}+\sigma_{x 6}}{ }^{2} \quad \cdots \cdots \cdot \tag{5.3.1.1.31} \end{equation*}$ したがって，胴の地震動のみによる一次応力と二次応力の和の変動値の最大值は，絶対值和，SRSS 法それぞれに対して， $\sigma_{2}=\operatorname{Max}\left[\right.$ 組合せ引張応力 $\left(\sigma_{2 t}\right)$ ，組合せ压縮応力 $\left.\left(\sigma_{2 c}\right)\right]$ （5．3．1．1．32） とする。 5．3．1．2 スカートの計算方法 （1）運転時質量及び鉛直方向地震による応力 スカート底部に生じる運転時質量及び鋁直方向地震による圧縮応力は次式で求める。 $\begin{align*} & \sigma_{\mathrm{s} 1}=\frac{\mathrm{m}_{0} \cdot g}{\left\{\pi \cdot\left(\mathrm{D}_{\mathrm{s}}+\mathrm{t}_{\mathrm{s}}\right)-\mathrm{Y}\right\} \cdot \mathrm{t}_{\mathrm{s}}} \tag{5.3.1.2.1}\\ & \sigma_{\mathrm{s} 3}=\frac{\mathrm{m}_{0} \cdot g \cdot \mathrm{C}_{\mathrm{v}}}{\left\{\pi \cdot\left(\mathrm{D}_{\mathrm{s}}+\mathrm{t}_{\mathrm{s}}\right)-\mathrm{Y}\right\} \cdot \mathrm{t}_{\mathrm{s}}} \tag{5.3.1.2.2} \end{align*}$	

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25提出版）	東海第二発電所	女川原子力発電所第 2 号機	備考
		（5．3．1．3．9）式に代入し，得られる F_{t} の値によって引張力の有無 を次のように判定する。 $\mathrm{F}_{\mathrm{t}} \leqq 0$ ならば引張力は作用しない。 $\mathrm{F}_{\mathrm{t}}>0$ ならば引張力が作用しているので次の計算を行う。 e．σ_{b} 及び σc を求める。 σ_{b} 及び σ_{c} が a 項にて仮定した値と十分に近似していることを確認する。この場合の σ_{b} 及び $\sigma_{\mathrm{c}} \mathrm{c}$ を基礎ボルトと基礎に生じる応力と する。 （2）せん断応力 a．下端固定の場合 $\begin{equation*} \tau_{\mathrm{b}}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m}_{0} \cdot \mathrm{~g}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.3.1.3.16} \end{equation*}$ b．下端固定上端支持の場合 $\tau_{\mathrm{b}}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m}_{0} \cdot \mathrm{~g} \cdot\left(1-\frac{\mathrm{Q}^{\prime}}{\mathrm{Q}}\right)}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \quad \cdots \cdots \cdot \text { (5.3.1.3.17) }$	

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》 柏崎刈羽原子力発電所第 7 号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		（座屈の評価） ただし，$\phi_{1}(\mathrm{x})$ は次の関数とする。 $\begin{equation*} \phi_{1}(\mathrm{x})=0.6 \cdot \frac{\mathrm{E}_{\mathrm{s}}}{\mathrm{x}} \cdot\left[1-0.901 \cdot\left\{1-\exp \left(-\frac{1}{16} \cdot \sqrt{\mathrm{x}}\right)\right\}\right] \tag{5.4.2.5} \end{equation*}$ また，f_{b} は次による。 $\begin{aligned} & \frac{\mathrm{D}_{\mathrm{s}}+2 \cdot \mathrm{t}_{\mathrm{s}}}{2 \cdot \mathrm{t}_{\mathrm{s}}} \leqq \frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}} \text { のとき } \\ & \boldsymbol{f}_{\mathrm{b}}=\mathrm{F} \quad \cdots \cdot \cdots \cdots \cdots \cdot \cdots \cdot(5.4 .2 .6) \\ & \frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}}<\frac{\mathrm{D}_{\mathrm{s}}+2 \cdot \mathrm{t}_{\mathrm{s}}}{2 \cdot \mathrm{t}_{\mathrm{s}}}<\frac{9600 \cdot \mathrm{~g}}{\mathrm{~F}} \text { のとき } \\ & f_{\mathrm{b}}=\mathrm{F} \cdot\left[1-\frac{1}{8400 \cdot \mathrm{~g}} \cdot\left\{\mathrm{~F}-\phi_{2}\left(\frac{9600 \cdot \mathrm{~g}}{\mathrm{~F}}\right)\right\} \cdot\left(\frac{\mathrm{D}_{\mathrm{s}}+2 \cdot \mathrm{t}_{\mathrm{s}}}{2 \cdot \mathrm{t}_{\mathrm{s}}}-\frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}}\right)\right] \end{aligned}$	

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》䄸崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		5．4．3 基礎ボルトの応力評価 5．3．1．3 項で求めた基礎ボルトの引張応力 σ_{b} は次式より求めた許容引張応力 f_{t} 以下であること。ただし f_{t} 。は下表による。 $f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \quad \cdots \text { (5.4.3.1) }$ せん断応力 τ 。はせん断力のみを受ける基礎ボルトの許容せん断応 	

2021年1月14日
02－工－B－19－0034＿改 1

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25提出版）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

《参考》柏崎对羽原子力発電所第 7 号機（2020．9．25提出版）
《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25提出版）
《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25提出版）

先行審査プラントの記載との比較表（VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針）

