本資料のうち，枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －補－E－20－0710－1＿改 0
提出年月日	2020 年 12 月 25 日

補足－710－1【竜巻への配慮が必要な施設の強度に関する説明書の補足説明資料】

目 次

1．強度計算の方針に関する補足説明資料
1.1 風力係数について
1.2 強度計算時の施設の代表性について
1.3 構造強度評価における評価対象部位の選定について

2．竜巻より防護すべき施設を内包する施設の強度計算に関する補足説明資料
2.1 コンクリートの裏面剥離に対する設備対策の評価手法について
2.2 鉄筋コンクリートの衝突解析モデルにおける破断限界の設定について
2.3 原子炉建屋原子炉棟屋根スラブ変形評価の許容値の設定について
2.4 原子炉建屋原子炉棟屋根スラブの貫通及び裏面剥離評価について
2.5 鉄筋コンクリート部材の貫通評価及び裏面剥離評価について

3．屋外の重大事故等対処設備の固縛装置の強度計算に関する補足説明資料
3.1 固縛装置の設計における保守性について
3.2 固縛装置の設計における設備の代表性について
3.3 屋外の重大事故等対処設備の収納ラックに対する固縛対応について
3.4 固縛装置の評価対象部位について

4．防護対策施設の強度計算に関する補足説明資料
4.1 竜巻防護ネットの衝突解析について

4．2 飛来物のオフセット衝突の影響について
4．3金網の設計裕度の考え方
4． 4 ワイヤロープの変形を考恵したネットシステムのたわみについて
4． 5 ワイヤロープの初期張力について
4.6 補助金網の影響について

4．7衝突解析の解析手法の保守性について
5．排気筒の強度計算に関する補足説明資料
5.1 設計飛来物による構造欠損の想定箇所について
5.2 起因事象を竜巻とした場合の排気筒に求められる機能について
5.3 腐食代の考慮について

4．防護対策施設の強度計算に関する補足説明資料
4.1 竜巻防護ネットの衝突解析について

1．はじめに
竜巻防護ネットはネット，防護板及び支持部材で構成され，各構成要素の設計方針及 び評価方針について「VI－3－別添1－2 防護対策施設の強度計算の方針」に示している。 このうち，支持部材については，フレーム，大梁，ゴム支承，可動支承等により構成さ れており，フレームや大梁等の支持部材の主要部材は，認可実績プラントの竜巻防護対策施設における架構等と同様に鋼製であるが，フレームを支持する部材の一部材料にゴ ム（ゴム支承）を採用している点で，認可実績プラントの竜巻防護対策施設と異なる設計•構造を採用している。

ゴム支承を採用した目的は，ゴム支承のアイソレート機能により竜巻防護ネットの固有値をやや長周期化することにより，地震時の海水ポンプ室への反力を低減することで ある。一方，竜巻防護ネットの強度計算に関して，設計飛来物である鋼製材の衝突解析 においても，飛来物衝突時のゴム支承の影響について適切に考慮する必要がある。
竜巻防護ネットの構成要素のらち，支持部材の強度評価フロー図を図1－1 に示す。
本資料は，竜巻防護ネットの構造強度評価（衝突解析）の評価方針について，解析モ デルの設定の考え方及び評価に資するゴム支承の鉛直剛性に係る特性試験で得られた知見を踏まえた方針の妥当性について説明し，構造成立性の見通しについて示すものであ る。

図 1－1 支持部材の強度評価フロー図

2．構造概要

竜巻防護ネット全体及び各構成要素の構造概要について以下に示す。
（1）竜巻防護ネット全体
竜巻防護ネットは，ネット，防護板及び支持部材で構成し，海水ポンプ室補機ポン プエリア上面に設置することで，飛来物が外部事象防護対象施設へ衝突することを防止し，外部事象防護対象施設とネットの離隔を確保することなどにより，ネットにた わみが生じたとしても，外部事象防護対象施設に飛来物を衝突させない構造とする。 また，竜巻防護ネットは，海水ポンプ室躯体に支持される構造とする。

ネットは金網，ワイヤロープ及び接続冶具（支持部及び固定部）により構成され， ネットに作用する荷重をワイヤロープ及び接続治具を介してフレームに伝達し，フレ ームから海水ポンプ室躯体に伝達する構造とする。

金網は，らせん状の硬鋼線を 3 次元的に編み込み，編み込みの方向によって荷重を受け持つ展開方向と展開直角方向の異方性を持ち，支持部材の配置，金網に作用する荷重及び外部事象防護対象施設との離隔に応じて，金網の展開方向と展開直角方向の長さの比を考慮して，フレーム内に複数枚を重ねて設置する構造とする。また，金網 に飛来物が衝突した際，ワイヤロープに瞬間的な大荷重が作用するのを防ぐため，金網の外側の四隅には緩衝材を設置する構造とする。

防護板は，鋼板により構成され，防護板に作用する荷重は支持部材に伝達する構造 とする。

ネット及び防護板の支持部材は，フレーム，大梁，可動支承，ゴム支承により構成 され，上載するネット及び防護板を支持する構造とし，支持部材に作用する荷重は， アンカーボルトを介して，海水ポンプ室躯体に伝達する構造とする。また，外部事象防護対象施設に波及的影響を与えないために，支持部材を構成する部材自体の転倒及 び脱落を生じない構造とする。竜巻防護ネットの構造計画を表2－1に示す。また，竜巻防護ネットの概要図を図2－1に示す。

表 2－1 竜巻防護ネットの構造計画

構成	計画	の概要	説明図
要素	主体構造	支持構造	
【位置】 ネット，防護板及び支持部材は，飛来物が侵入した場合に，外部事象防護対象施設に衝突する可能性のある海水ポンプ室補機ポンプエリア上面に設置する設計としている。			
ネット	ネットは，金網，ワイヤロ ープ及び接続治具により構成する。	ネットに作用す る荷重は，ワイ ヤロープ及び接続冶具を介して支持部材に伝達	
防護板	防護板は鋼製 の鋼板により構成する。	し，支持部材か ら鉄筋コンクリ ート造の海水ポ ンプ室躯体に伝達する構造とす る。 また，防護板に作用する荷重	（平面図）
支持部材	支持部材は， フレーム，大梁，ゴム支承，可動支承によ り構成する。	は，支持部材に伝達し，支持部材から海水ポン プ室躯体に伝達 する構造とす る。	\square $(A \sim A$ 矢視）

竜巻防護ネット取付け状態

図 2－1 竜巻防護ネットの概要図
（2）ネットの構造概要
飛来物が衝突した際に局部的に生じる衝撃荷重に耐え，変形することにより飛来物 の持つ運動エネルギを吸収し，外部事象防護対象施設への衝突を防止する設計とする。 ネットは，金網，ワイヤロープ及び接続冶具により構成され，金網の 4 辺をワイヤロ ープにより支持し，ワイヤロープはフレームに設置した接続治具にて支持する構造と する。ワイヤロープの端部はターンバックル又はシャックルを設置し，ターンバック ル又はシャックルをフレームに設置した取付プレートに接続する構造とする。ネット の概要図を図2－2 に示す。

金網は， 50 mm 目合いの主金網 2 枚及び 40 mm 目合いの補助金網 1 枚で構成する。
金網は，電力中央研究所報告書「竜巻飛来物に対する防護ネットの評価手法と対策工法の提案」（研究報告：N13014）及び電力中央研究所報告書「高強度金網を用いた竜巻飛来物対策工の合理的な衝撃応答評価手法」（総合報告：O 01）（以下「電中研報告書」という。）にて適用性が確認されている評価式及び金網の物性値を用いた設計とす る。ネットを構成する金網，ワイヤロープ及び接続冶具についての構造設計を以下に示す。
a．金網
金網は，らせん状の硬鋼線を山形に折り曲げて列線とし， 3 次元的に交差させて編 み込んだものであり，編み込みの向きにより，展開方向とその直角方向の異方性を有 する。展開方向が主に荷重を受け持ち，展開方向と展開直角方向で剛性や伸び量が異 なるため，これらの異方性を考慮した設計とする。金網は，電中研報告書において， その剛性，最大たわみ時のたわみ角， 1 目合いの破断変位等が確認されている。

金網の寸法は，フレームの主桁及び横補強材の間隔並びに金網の展開方向と展開直角方向の剛性や伸び量の異方性を考慮して，展開方向と展開直角方向の寸法の比（以下「アスペクト比」という。）について，原則として電中研報告書にて適用性が確認さ れている範囲（ $1: 1 \sim 2: 1$ ）に入るように設計する。ただし，設定する寸法での限界吸収エネルギ量等を踏まえ，設置する金網の枚数を増やし，衝撃荷重に対する耐力を持 たせるととともにたわみ量を低減させる設計とする。
b．ワイヤロープ
ワイヤロープの取付部は，展開方向のワイヤロープと展開直角方向のワイヤロープ で荷重の伝達分布が異なり，さらにワイヤロープの巻き方によりワイヤロープ間の荷重伝達に影響を及ぼす可能性があるため，金網に対して 2 本を L 字に設置することに より，ワイヤロープに作用する荷重が均一となるような設計とする。
c．接続治具（支持部及び固定部）
電中研報告書の評価式を適用するため，衝突試験における試験体と同じ構造を採用 しており，飛来物衝突時に急激な大荷重が作用するのを抑制するために，緩衝装置を四隅に設置する設計とする。

接続治具は，金網への飛来物の衝突により金網からワイヤロープを介して直接作用 する荷重若しくは発生する応力に対して，破断することのない強度を有する設計とす る。接続治具（支持部）はワイヤロープを支持するターンバックル及びシャックルで あり，接続治具（固定部）は隅角部固定ボルト及びターンバックル又はシャックルを フレームに接続する取付けプレートである。

図 2－2 ネットのフレーム取付け概要図
（3）防護板の構造概要
竜巻防護ネットを構成する防護板は，地震時に発生する変位を踏まえて確保してい るフレーム間のクリアランス並びにフレーム及び海水ポンプ室補機ポンプエリア側壁間のクリアランスから設計飛来物である鋼製材が海水ポンプ室補機ポンプエリア内に侵入しない構造とし，飛来物による衝突に対し，貫通しない部材厚さを確保する設計 とする。防護板の配置概要図を図2－3に示す。

図 2－3 防護板の配置概要図

フレーム及び大梁の構造概要
竜巻防護ネットの支持部材は，フレーム，大梁，可動支承，ゴム支承等により構成 する。このうち，フレームは主桁，横補強材，ブレース等により構成し，上載するネ ット及び防護板を支持する構造とする。また，大梁は海水ポンプ室補機ポンプエリア の南側隔壁上に設置し，海水ポンプ室補機ポンプエリアの北側隔壁と大梁にて，フレ ームを支持する構造とする。フレーム及び大梁は，設計竜巻の風圧力による荷重，飛来物による衝撃荷重及びその他考慮すべき荷重に対し，飛来物が外部事象防護対象施設に衝突することを防止し，また，上載するネット及び防護板の自重並びにネット，防護板及び支持部材への飛来物の衝突時の荷重に対し，これらを支持する構造強度を有する設計とする。

また，ゴム支承及び可動支承に支持されているフレーム並びにゴム支承に支持され ている大梁は，地震力等によって水平方向の変位が生じることから，他の設備との干渉について考慮する必要がある。そのため，フレーム間及びフレームや大梁と海水ポ ンプ室補機ポンプエリア壁面との間に地震時に発生する変位を踏まえてクリアランス を確保する設計とする。

なお，フレームにはストッパーを取り付け，フレームを支持するゴム支承に期待し ない場合でも，フレームの水平方向移動を拘束し，竜巻防護ネットが落下せず，外部事象防護対象施設に波及的影響を与えない構造とする。フレーム及び大梁の配置概要図を図2－4に示す。

図 2－4 フレーム及び大梁の配置概要図

ゴム支承及び可動支承の構造概要

支持部材のらちゴム支承及び可動支承については，地震によるフレーム及び大梁の発生応力並びに海水ポンプ室補機ポンプエリア壁面への支点反力を低減•分散させる ことを目的として設置する。支持部材に作用する荷重は，アンカーボルトを介して，海水ポンプ室躯体に伝達する構造とする。

ゴム支承はフレームと北側隔壁の接続部及び大梁と南側隔壁の接続部に設置する。 フレームと北側隔壁の接続部には，フレーム 1 基に対して，北側隔壁の天面に 2 個の ゴム支承を取り付け，フレームを支持する構造とする。大梁と南側隔壁の接続部は，片側 1 箇所あたり 2 個のゴム支承を取り付けることで，ゴム支承によりフレーム及び大梁を支持する構造とする。

可動支承は大梁とフレームの接続部に設置する。可動支承は南北方向の水平変位に追従し，フレーム 1 基に対して， 2 個の可動支承を取り付けることで，温度変化によ るフレームの伸縮を吸収し，変形による荷重発生を防ぐ構造とする。

ゴム支承及び可動支承は，設計竜巻の風圧力による荷重，飛来物による衝撃荷重及 びその他考慮すべき荷重に対し，上載するネット及び防護板の自重並びにネット，防護板及び支持部材への飛来物の衝突時の荷重に対し，これらを支持する構造強度を有 する設計とする。竜巻防護ネットの支持構造模式図を図 2－5 に示す。

また，竜巻防護ネットに使用するゴム支承は道路橋用ゴム支承であり，地震時水平力分散型ゴム支承に分類される。ゴム支承は，「道路橋示方書•同解説 V 耐震設計編 （平成 14 年 3 月）」（以下「道路橋示方書」という。）に従い，「道路橋支承便覧（平成 16 年 4 月）」（以下「道路橋支承便覧」という。）に則り，設計•製作するものであり， ゴム支承の特性，評価式及び許容値は同規格•基準に従う。ゴム支承の構造図を図2－ 6 に，可動支承の構造図を図2－7に示す。

図 2－5 竜巻防護ネットの支持構造模式図

図2－6 ゴム支承の構造図

図2－7 可動支承の構造図

枠囲みの内容は商業機密の観点から公開できません。

4． $1-10$
（6）詳細設計による竜巻防護ネットの構造について
竜巻防護ネットの構造については，海水ポンプ室の補強部村配置及び非常用海水ポ ンプのメンテナンス性を考慮した配置設計を実施している。設置許可段階における構造概要との比較を図 2－8 及び表 2－1 にそれぞれ示す。また，表 2－1を踏まえ詳細設計 を反映した仕様比較について表 2－2 に示す。なお，これらの構造変更によって，設置許可段階で説明している竜巻防護ネットの設計方針を変更するものではない。

図 2－8 竜巻防護ネット構造概要比較

表 2－1 竜巻防護ネットの構造比較

	設置許可段階	詳細設計段階	備考
a．フレーム基数変更	$\begin{aligned} & \text { フレーム基数 } \\ & : 5 \text { 基 } \end{aligned}$	$\begin{aligned} & \text { フレーム基数 } \\ & : 4 \text { 基 } \end{aligned}$	東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映（フレ ーム幅を調整）した。
b．大梁の支持位置の変更	既設東西隔壁に ブラケットを設置し大梁を支持	海水ポンプ室補強計画に合わ せ，補強する南側隔壁にて大梁 を支持	東西側壁補強に伴い東西方向開口幅が狭くなったことで，ポンプ吊上げ等のメ ンテナンス性に影響を及ぼす可能性が あるため，既設東西側壁にブラケットを設置し大梁を支持するとしていた構造 から，補強する南側隔壁にて大梁を支持 する構造とした。

表 2－2 竜巻防護ネット主要仕様比較

項目		設置許可段階	詳細設計段階
総質量		約 500ton	約 358ton
全体形状		約 29 m （東西方向）\times 約 24 m （南北方向）高さ 約 1 m	約 26 m （東西方向）\times 約 23 m （南北方向）高さ 約 1 m
ネット （金網部）	構成	主ネット $\times 2$ 枚＋補助ネット $\times 1$ 枚	－（変更なし）
	寸法	線径：$\phi 4 \mathrm{~mm}$ 目合い寸法：主ネット 50 mm ，補助ネッ ト 40 mm	－（変更なし）
	$\begin{aligned} & \text { 主要 } \\ & \text { 材料 } \end{aligned}$	硬鋼線材，亜鉛めっき鋼線	－（変更なし）
フレーム	数量	5 組	4 組
	寸法	長さ×幅×高さ： 約 $23 \mathrm{~m} \times 4.3 \mathrm{~m} \times 1 \mathrm{~m}$	長さ×幅×高さ： 約 $23 \mathrm{~m} \times 5.4 \mathrm{~m} \times 1 \mathrm{~m}$ 約 $23 \mathrm{~m} \times 4.3 \mathrm{~m} \times 1 \mathrm{~m}$
	$\begin{aligned} & \hline \text { 主要 } \\ & \text { 材料 } \\ & \hline \end{aligned}$	SM490A，SM400A，SS400	－（変更なし）
大梁	寸法	長さ×幅×高さ： 約 $26 \mathrm{~m} \times 1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$	長さ×幅×高さ： 約 $25 \mathrm{~m} \times 1.6 \mathrm{~m} \times 1.3 \mathrm{~m}$
	主要 材料	SM520B，SM490A	SM490A
ゴム支承	仕様	水平力分散型	－（変更なし）
	数量	$\begin{aligned} & \text { 大梁用: } 4 \text { 個 (} 2 \text { 組 (} 2 \text { 個 /組)) } \\ & \text { 隔壁用: } 10 \text { 個 }(5 \text { 組 }(2 \text { 個 } / \text { 組 })) \end{aligned}$	$\begin{aligned} & \text { 大梁用: } 4 \text { 個 }(2 \text { 組 }(2 \text { 個 } / \text { 組 })) \\ & \text { フレーム用: } 8 \text { 個 }(4 \text { 組 }(2 \text { 個 } / \text { 組 })) \end{aligned}$
可動支承	数量	10 個（5 組（2 個／組））	8 個（4 組（2 個／組））
防護板	材料	SM400A，SS400	SM400A
$\begin{aligned} & \text { 耐震 } \\ & \text { クラス } \end{aligned}$	－	C（S s ）	－（変更なし）

3．設置許可段階における主な説明事項
（1）竜巻防護ネットの各部位の設計方針
竜巻防護ネット各部位に対する設計方針については，表3－1 のとおり説明している。 また，別紙1に示すとおり，先行プラントとの設計方針についても比較し，支持構造 に相違はあるが，「竜巻に対する設計の基本方針」，「竜巻防護ネットの設計方針」，「支持部材の設計方針」及び「評価項目」に対して，先行プラントとの相違はないことを確認している。

表 3－1 竜巻防護ネット各部位に対する設計方針＊

	部位の名称	設計方針	評価項目	
$\begin{gathered} \text { ネット } \\ \text { (金網部) } \end{gathered}$		ネットは，設計竜巻の風圧力による荷重，飛来物によ る衝撃荷重及びその他の荷重に対し，飛来物が非常用海水ポンプ等へ衝突することを防止するために，主要な部材が破断せず，たわみが生じても，非常用海水ポンプ等の機能喪失に至る可能性がある飛来物が非常用海水ポンプ等と衝突しないよう捕捉できる設計とする。	$\begin{aligned} & \text { 吸 収エ ネ ル } \\ & \text { ギ評価 } \end{aligned}$	
		破断評価		
		たわみ評価		
	防護板		防護板は，設計竜巻の風圧力による荷重，飛来物によ る衝撃荷重及びその他の荷重に対し，飛来物が非常用海水ポンプ等へ衝突することを防止するために，飛来物が防護板を貫通せず，非常用海水ポンプ等に波及的影響を与えない設計とする。	貫通評価
支 持 部 材			支持部材は設計竜巻の風圧力による荷重，飛来物に よる衝撃荷重及びその他の荷重に対し，飛来物が非常用海水ポンプ等へ衝突することを防止するため に，飛来物が支持部材を構成する主要な構造部材を貫通せず，上載するネット及び防護板を支持する機能を維持可能な構造強度を有し，非常用海水ポンプ等に波及的影響を与えないために，支持部材を構成 する部材自体の転倒及び脱落を生じない設計とす る。	貫通評価
	大梁	支持機能評価		
	ブラケット			
	$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$			
	大梁ゴム支承			
	可動支承			
	ストッパー			

注記＊：本表はEPまとめ資料 6 条（竜巻）－別添1－添付 3．7－10 表6抜粋
（2）衝撃荷重に対するゴム支承•可動支承の影響
設置許可段階では，構造成立性の見通しを確認するため，竜巻防護ネットを構成す る支持部材に対し，代表的な飛来物衝突の解析評価を以下の 2 ステップで実施した。各ステップの評価フロー図を図3－1 に示す。

【STEP1】

ゴム支承に支持されるフレームに飛来物が衝突した際の挙動を確認するため，ゴ ム支承の剛性を考慮した衝突解析を実施した。衝突解析は，フレームゴム支承によ る影響が最も大きくなると想定される条件（飛来物姿勢，衝突位置，飛来方向）で実施し，ゴム支承の影響を考慮した場合において，フレームゴム支承，可動支承が フレームを支持する機能を維持可能な構造強度を有することを確認した。

【STEP2】

衝突時の竜巻防護ネットを構成する支持部材の構造成立性を確認するため，以下 の評価を実施した。
STEP2－1：竜巻防護ネットを構成する支持部材（ストッパーを除く）とゴム剛性の結合条件を3方向固定（衝撃荷重のピーク値が大きくなると推測される条件）にて衝突解析を行い，構造成立性の確認を行った。
STEP2－2：STEP2－1 はフレームゴム支承に対し非常に厳しい条件であるため，STEP2－ 1 の条件で評価を実施した結果，許容値を満足しない場合には，詳細評価 としてゴム支承の実剛性を考慮した解析条件にて評価を実施した。
STEP2－3：STEP2－2 のフレームゴム支承の評価結果を踏まえて，ストッパーの評価を実施した。ストッパーの評価はゴム剛性の結合条件を自由（ゴム支承によ る荷重の負担は期待せずストッパーに全ての荷重を伝達する条件）とし て衝突解析を行い，構造成立性の確認を行った。

図 3－1 各ステップの評価フロー図＊
（注記＊：本図はEPまとめ資料 6 条（竜巻）一別添1－添付3．7－28 図14抜粋）

また，衝突解析における耐震評価時に用いるせん断剛性の適用性（別紙 2 参照）や，構造成立性の見通し（別紙 3 参照）を踏まえ，詳細設計段階における設計方針（説明事項）について，設置許可段階で以下のとおり整理している（別紙 4 参照）。
（1）詳細設計段階では現実に即した解析モデルとして，ゴム支承の特性を考慮し た解析モデルを適用し，評価を実施する方針とする。
（2）設置許可段階での構造成立性の見通し時に用いた評価フローを組み替え，詳細設計段階の評価フローを設定する。

③可動支承について，設置許可段階における構造成立性の見通し確認において，可動支承近傍へ飛来物が衝突した場合，許容値を超える結果となったため，詳細設計段階では，可動支承のサイズアップやボルトの仕様変更等の対応を行うことで，許容値を満足させる方針とする。
（4）基本ケースによる各部材の設計を実施した後に，不確かさケースの確認とし て，ゴム支承の剛性のばらつきを考慮した解析モデルの設定，衝突姿勢の影響を考慮した衝突解析（飛来物の長辺衝突）を実施し，評価を実施する方針 とする。

4．詳細設計段階における設計方針
（1）設置許可段階の設計方針との比較
設置許可段階で説明している設計方針に対する，詳細設計段階での設計方針との相違について，支持部材の一部変更はあるものの，設計方針に変更がないことを確認し た。確認した結果について表4－1に示す。

表 4－1 設置許可段階の設計方針に対する比較

設置許可段階の設計方針				詳細設計段階 における方針 との相違	
	部位の名称	設計方針	評価項目		
ネット （金網部）		ネットは，設計竜巻の風圧力による荷重，飛来物 による衝撃荷重及びその他の荷重に対し，飛来物 が非常用海水ポンプ等へ衝突することを防止す るために，主要な部材が破断せず，たわみが生じ ても，非常用海水ポンプ等の機能喪失に至る可能性がある飛来物が非常用海水ポンプ等と衝突し ないよう捕捉できる設計とする。	吸収エネル ギ評価	無し	
		破断評価	無し		
		たわみ評価	無し		
	防護板		防護板は，設計竜巻の風圧力による荷重，飛来物 による衝撃荷重及びその他の荷重に対し，飛来物 が非常用海水ポンプ等へ衝突することを防止す るために，飛来物が防護板を貫通せず，非常用海水ポンプ等に波及的影響を与えない設計とする。	貫通評価	無し
$\begin{aligned} & \text { 支 } \\ & \text { 持 } \\ & \text { 部 } \\ & \text { 材 } \end{aligned}$			支持部材は設計竜巻の風圧力による荷重，飛来物 による衝撃荷重及びその他の荷重に対し，飛来物 が非常用海水ポンプ等へ衝突することを防止す るために，飛来物が支持部材を構成する主要な構造部材を貫通せず，上載するネット及び防護板を支持する機能を維持可能な構造強度を有し，非常用海水ポンプ等に波及的影響を与えないために，支持部材を構成する部材自体の転倒及び脱落を生じない設計とする。	貫通評価	無し
		支持機能評価		無し	
	大梁			無し	
	ブラケット			＊ 1	
	$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$			無し	
	大梁ゴム支承			無し	
	可動支承			無し	
	ストッパー			無し	

注記＊1：「2．（6）詳細設計による竜巻防護ネットの構造について」に示す構造により， ブラケットは設置しない。
（2）詳細設計段階における設計フロー
詳細設計段階での説明事項を踏まえ，竜巻防護ネットの衝突解析において基本ケー ス及び不確かさケースを設定し評価を実施する。詳細設計段階における竜巻防護ネッ トの支持部材の評価フロー図を図4－1 に示す。また，詳細設計段階における説明事項 に対する対応方針について，別紙5に示す。

支持部材の評価に当たり，解析モデルの設定においては，現実に即したゴム支承の特性を踏まえたゴム支承の剛性を設定することとし，特性試験の実施及び試験により得られた知見を踏まえた剛性の設定の考え方について次章に示す。

注記＊：衝突解析において，以下を考慮し解析ケースを設定する。

考慮する事項	基本ケース における設定	不確かさケース におけ設定	
解析モデルにおける ゴム支承の剛性	設計値を設定	不確かさ ケース（1）	剛性のばらつきを考慮 Lた値を設定
衝突解析における 衝突姿勢	短辺衝突	不確かさ ケース（2）	長辺衝突による影響を

図 4－1 詳細設計における竜巻防護ネット支持部材の評価フロー図

5．衝突解析に係るゴム支承の剛性の設定
5.1 ゴム支承剛性の設定方針

衝突解析におけるゴム支承の剛性は，道路橋支承便覧より算出する設計値を基に設定することとする。ここで，支持部材のモデル化については，ゴム支承をばね要素と してモデル化し，ゴム支承の荷重一変位の関係である剛性をばね定数として設定して いる。また，竜巻防護ネット周囲の構造物の設置状況や防護板の設置の考慮により，飛来物はゴム支承には直接衝突せず，フレームに衝突し，ゴム支承に荷重が伝達する。竜巻防護ネットへの飛来物衝突のイメージを図5－1に示す。

ゴム支承のせん断剛性については，各種依存性試験を実施し，衝突解析への適用性 について設置許可段階にて説明している（別紙 2 参照）。詳細設計段階においても，構造変更による影響は軽微であることから，設置許可段階で適用した条件と同様の設定方針とする。

なお，せん断剛性に係る各種依存性試験については「補足－600－12 竜巻防護ネット の耐震構造設計（支承構造）についての補足説明資料」に示す。

一方，鉛直剛性については，竜巻影響評価の特徴を踏まえ，道路橋支承便覧に基づ く設計値の適用性及び支承の不確かさとして考慮すべきばらつきについて検討する必要がある。そのため，鉛直剛性に係る特性試験を実施し，設計値を適用することの妥当性及びばらつき範囲を確認する。衝突解析における鉛直剛性の設定フロー図につい て図 5－2に示す。特性試験の実施及びゴム支承の鉛直剛性の設定に当たつては，飛来物の衝突による影響が大きいと想定する衝突位置•方向を考慮する観点から，図 5－1 に示すゴム支承直上のフレームに飛来物が鉛直衝突するケースについて検討する。

図 5－1 竜巻防護ネットへの飛来物衝突のイメージ

図 5－2 衝突解析における鉛直剛性の設定フロー図
5.2 道路橋支承便覧に基づくせん断剛性及び鉛直剛性の設計値

竜巻防護ネットに採用しているゴム支承の構造諸元を表5－1に示す。ここで，表5－ 1 に示しているせん断剛性及び鉛直剛性は，道路橋支承便覧に基づき，以下の式によ り算出する設計値である。

表 5－1 ゴム支承の構造諸元

項目	諸元
支承種類	地震時水平力分散型ゴム支承
ゴム体種類	天然ゴム (NR)
ゴム体有効平面寸法	$800 \mathrm{~mm} \times 800 \mathrm{~mm}$
総ゴム厚 $(コ ゙ ム$ 厚 \times 層数）	192 mm $(24 \mathrm{~mm} \times 8$ 層）
せん断弾性係数	$1.0 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{Gl} 10)$
一次形状係数	8.33
二次形状係数	4.17
せん断剛性	$3.33 \mathrm{kN} / \mathrm{mm}$
鉛直剛性	$972 \mathrm{kN} / \mathrm{mm}$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{s}}=\frac{\mathrm{G}_{\mathrm{e}} \cdot \mathrm{~A}_{\mathrm{e}}}{\sum \mathrm{t}_{\mathrm{e}}} \tag{5.1}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{K}_{\mathrm{v}}=\frac{\mathrm{E} \cdot \mathrm{~A}_{\mathrm{e}}}{\sum \mathrm{t}_{\mathrm{e}}} \tag{5.2}\\
& \mathrm{E}=\alpha \cdot \beta \cdot \mathrm{S}_{1} \cdot \mathrm{G}_{\mathrm{e}} \tag{5.3}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{S}_{1}=\frac{\mathrm{A}_{\mathrm{e}}}{2 \cdot(\mathrm{a}+\mathrm{b}) \cdot \mathrm{t}_{\mathrm{e}}} \quad\left(0.5 \leqq \frac{\mathrm{~b}}{\mathrm{a}} \leqq 2.0 \text { のとき }\right) \tag{5.4}
\end{equation*}
$$

ここで，
K_{s} ：ゴム支承のせん断剛性（ N / mm ）
K_{v} ：ゴム支承の鉛直剛性（圧縮ばね定数）（ N / mm ）
G_{e} ：ゴムのせん断弾性係数 $\left(=1.0 \mathrm{~N} / \mathrm{mm}^{2}\right)$
A_{e} ：ゴム支承本体の側面被覆ゴムを除く面積 $\left(\mathrm{mm}^{2}\right)$
$\Sigma \mathrm{t}{ }_{\mathrm{e}}$ ：総ゴム厚（mm）
E：ゴム支承の縦弾性係数（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\alpha \quad:$ ゴム支承の種類による係数 $\quad(=35)$
β ：ゴム支承の平面形状による係数（ $=1.0$ ）
S_{1} ：一次形状係数
a ：橋軸方向の有効寸法（mm）
b ：橋軸直角方向の有効寸法（mm）
$t \mathrm{e}$ ：ゴム一層の厚さ（mm）

上記のとおり，剛性値はゴム支承の形状によって定まる値であるが，鉛直剛性につ いては，ゴム支承の圧縮性を考慮して定められたものであることが道路橋支承便覧か ら読み取れる。また，ゴム支承の性能の検証として，道路橋支承便覧では圧縮ばね定数が設計値に対して $\pm 30 \%$ 以内であることの確認を要求しており，竜巻防護ネットで用 いるゴム支承においても，製品検査時に圧縮ばね定数の初期ばらつきが設計値の $\pm 30 \%$以内であることを確認することから，この製品初期ばらつきの $\pm 30 \%$ について，鉛直剛性のばらつき範囲設定条件の1つとして考慮することとする。

5.3 鉛直剛性に係る特性試験項目整理及び試験方法

「5．1 ゴム支承剛性の設定方針」及び「5．2 道路橋支承便覧に基づくせん断剛性及び鉛直剛性の設計値」を踏まえ，ゴム支承の鉛直剛性に係る特性試験を実施する。試験は，「道路橋免震用ゴム支承に用いる積層ゴム一試験方法（JISS K 6 4 1 1 ： 2 0 1 2 ）」（以下「 J I S K 6 4 1 1 」という。）及びせん断剛性の各種依存性試験を参考に，設計における適用条件を踏まえて試験項目及び試験条件を設定する。試験項目の比較整理を表5－2に，鉛直剛性に係る特性試験項目を表5－3にそれぞれ示す。 また，各試験の実施フロー図について図 5－3 に示す。

試験体は，J I S K 6 4 1 1 に従い，各試験項目に対応した標準試験体を用い る。ゴム材料の種別は，実機に適用するG10に対して実施する。試験体諸元を表5－4 に示す。
表 5－2 試験項目の比較

J I S K 6411			せん断剛性に係る特性試験		鉛直剛性に係る特性試験	
特性	試験項目	原理	試験内容	備考	試験内容	備考
圧縮及びせ ん断特性	圧縮特性	試験体に一定の圧縮力を載荷し た状態での圧縮力ー鉛直変位特性から圧縮剛性を求める。	－	せん断剛性に関する試験で ないため対象外	試験体に一定の圧縮力又は引張力を載荷した状態で荷重－変位曲線から圧縮又は引張剛性 を算出する。また，基準値に対 する測定値の変化率（初期ばら つき）を求める。	－
	せん断特性	試験体に一定の圧縮力を載荷し た状態でせん断変形を与え，せん断特性を求める。	－	道路橋支承便覧の基準値を適用するため省略	－	$\begin{aligned} & \text { 鉛直剛性に関 } \\ & \text { する試験でな } \\ & \text { いため対象外 } \end{aligned}$
せん断特性 の各種依存性	せん断ひず み依存性	試験体に一定圧縮力を載荷した状態で複数水準のせん断変位を与え，せん断特性のせん断ひずみ依存性を求める。	圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態で複数水準の せん断ひずみにおける正負繰返し加振を行い，せん断剛性を算出する。せん断ひずみ 175\％ の測定値を基準として各測定値との変化率を求める。	－	試験体に複数水準のせん断ひ ずみを与え保持した状態で，圧縮力又は引張力を載荷し，鉛直荷重－変位曲線から圧縮剛性又	－
	圧縮応力度依存性	試験体に複数水準の圧縮力を載荷した状態でせん断変位を与え， せん断特性の圧縮応力度依存性 を求める。	複数水準の圧縮力を載荷した状態でせん断ひずみ 175% によ る正負繰返し加振を行い，せん断剛性を算出する。圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力時の測定値を基準として，各測定値との変化率を求める。	－	は引張剛性を算出する。せん断 ひずみ 0% の測定値を基準と し，各測定値との変化率を求め る。	－
	振動数依存性	試験体に一定圧縮力を載荷した状態で複数水準の水平振動数の せん断変形を与え，せん断特性の振動数依存性を求める。	圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態で各振動数に てせん断ひずみ 175% による正負繰返し加振を行い，せん断剛性を算出する。振動数 0.5 Hz の測定値を基準として各測定値 との変化率を求める。	－	試験体に複数水準の速度を有 した錘によって圧縮力又は引張力を載荷し，荷重－変位曲線 から圧縮又は引張剛性を算出 する。静的な圧縮又は引張剛性 を基準として，各速度における圧縮又は引張剛性の変化率を求める。	（以下「速度依存性試験」 という。）

表 5－2 試験項目の比較

J I S K 64411			せん断剛性に係る特性試験		鉛直剛性に係る特性試験	
特性	試験項目	原理	試験内容	備考	試験内容	備考
せん断特性 の各種依存性	繰返し数依存性	試験体に一定圧縮力を載荷した状態で繰返しせん断変位を連続 して与え，せん断特性の繰返し数 に対する依存性を求める。	圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態でせん断ひず み 175% による正負繰返し加振 を行い，せん断剛性を算出す る。その後，せん断ひずみ 175% による正負繰返し加振を 50 回行い，せん断剛性を算出する。 50 回加振前の測定値を基準と して 50 回加振後の測定値との変化率を求める。	－	せん断ひずみ 175% による正負繰返し加振を行う前及び行っ た後の試験体に圧縮力又は引張力を載荷し，荷重－変位曲線 から圧縮又は引張剛性を算出 する。50 回加振前の測定値を基準として 50 回加振後の測定値との変化率を求める。	－
	温度依存性	試験体を複数水準の温度に保持 して，一定圧縮力を載荷した状態 でせん断変位を与え，せん断特性 の環境温度の変化に対する依存性を求める。	各温度で加熱された試験体に圧縮応力 $1 \mathrm{~N} / \mathrm{mm}^{2}$ 相当の圧縮力 を載荷した状態でせん断ひず み 175% による正負繰返し加振 を行い，せん断剛性を算出す る。 $23^{\circ} \mathrm{C}$ の測定値を基準として各温度におけるせん断剛性と の変化率を求める。	－	各温度で加熱された試験体に圧縮力又は引張力を載荷し，荷重－変位曲線から圧縮又は引張剛性を算出する。 $23^{\circ} \mathrm{C}$ の測定値 を基準として各温度における圧縮又は引張剛性との変化率 を求める。	－
終局特性	せん断変形性能	試験体に一定の圧縮力を載荷し た状態でせん断変形を与え，積層 ゴムが破断又はせん断力ーせん断変位曲線において，せん断力が急激に低下するなどの安定性が失われる限界を求める。	－	依存性を求め る試験でない ため対象外	－	鉛直剛性に関 する試験でな いため対象外
	引張特性	試験体にせん断変位 0 又は一定の せん断変形を与えた状態で引張力を加え，その引張力ー引張変位曲線において降伏又は破断が生 じる時点の引張力及びせん断変位を求める。	－	道路橋支承便覧の中で確認 されているた め省略	－	道路橋支承便覧の中で確認 されているた め省略

表 5－2 試験項目の比較

	$\begin{aligned} & \text { 甛 } \\ & \text { 舁 } \end{aligned}$	1		 元，ッド 出 Ω 肫处	
		 视等㴗區扫舞 6 	I	I	I
	$\begin{aligned} & \text { 抑 } \\ & \text { 汧 } \end{aligned}$	1	上飞杪进䋥寝畐裉 0氣心が さが中眼处	 HS想和多	
			I	－	I
		进䅎进溢 保心中，き訤 	 持出 \＃ 	岷，㤩好心㗪 본 6炶，䢒 6熼中場 录㨫甚 上先荌栄 移水 $\#$ 。	为出 8恣尔㥪 \pm in x 㨞心断睍っ 華 6进海扣人㘳抽 5 㓠筎 4 蒾 413 a 6置 \ddagger的长
$\begin{aligned} & n \\ & \curvearrowleft \\ & \curvearrowleft \end{aligned}$			$\begin{aligned} & i \\ & 1 \\ & - \\ & i \end{aligned}$		
					㮦 $\stackrel{\text {＂}}{\text {＂}}$ 首 些 燓

表 5－3 鉛直剛性に係る特性試験項目

試験	項目	試験内容	試験条件
圧縮／引張剛性確認試験	（1）圧縮／引張剛性確認	圧縮／引張剛性の実剛性及び初期ばらつきを求め る。	試験体数：10体 圧縮力： $0.5 \sim 8.0 \mathrm{~N} / \mathrm{mm}^{2}$ 引張力： $0.5 \sim-2.0 N / \mathrm{mm}^{2}$
各種依存性 試験	（2）せん断ひ ずみ依存性	複数のせん断ひずみを与 えたときの圧縮／引張剛性の依存性を求める。	試験体数：1体 せん断ひずみ： $\pm 0, ~ 50 \%, ~ 75 \%, ~ 100 \%$ の 4 水準
	（3）繰返し数依存性	繰返し荷重に対する圧縮 ／引張剛性の依存性を求 める。	試験体数： 1 体 繰返し数： 50 回
	（4）温度依存性	使用環境の温度変化に対 する圧縮／引張剛性の依存性を求める。	試験体数：1体 温度：$-20,-10,0,10,23,40^{\circ} \mathrm{C}$ の 6 水準
	（5）熱老化特性	熱老化試験により熱老化前後の圧縮／引張剛性の経年変化を求める。	試験体数：1体 熱老化： $23^{\circ} \mathrm{C} \times 60$ 年相当
	（6）速度依存性	ゴム支承が高速で変形し たときの圧縮／引張剛性 を確認する。	試験体数：1体 ゴム変形速度：1．0， $1.5,2.0 \mathrm{~m} / \mathrm{s}$ の 3 水準

図 5－3 鉛直剛性に係る特性試験の実施フロー図

表 5－4 試験体の諸元

試験	測定項目	試験体		
		適用規格	形状	せん断弾性係数
（1）圧縮／引張剛性確認 （2）せん断ひずみ依存性 （3）繰返し数依存性 （4）温度依存性 （6）速度依存性	圧縮剛性引張剛性	$\text { J I S K } 6411$ 標準試験体 No．3＊	$\begin{aligned} & \text { 有効平面寸法 } \\ & 400 \mathrm{~mm} \times 400 \mathrm{~mm} \\ & \text { 総ゴム厚 } \\ & 54 \mathrm{~mm} \\ & (9 \mathrm{~mm} \times 6 \text { 層 }) \end{aligned}$	G10
（5）熱老化特性		$\begin{aligned} & \text { J I S K } 64111 \\ & \text { 標準試験体 No. } 2^{*} \end{aligned}$	$\begin{aligned} & \text { 有効平面寸法 } \\ & 240 \mathrm{~mm} \times 240 \mathrm{~mm} \\ & \\ & \text { 総ゴム厚 } \\ & 30 \mathrm{~mm} \\ & (5 \mathrm{~mm} \times 6 \text { 層 }) \end{aligned}$	1． $0 \mathrm{~N} / \mathrm{mm}^{2}$

注記＊：J I S K 6411で寸法等が規定されている試験体
（1）圧縮／引張剛性確認試験
試験体に鉛直方向の圧縮及び引張荷重を与えたときの鉛直剛性を求める。試験方法は，圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ 程度に相当する鉛直荷重を原点として，圧縮応力度 8． $0 \mathrm{~N} / \mathrm{mm}^{2}$ による圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を行う。それぞれ の試験において 3 回載荷し， 3 回目の鉛直荷重－鉛直変位曲線から，圧縮及び引張剛性を求める。剛性を算出する応力範囲は，圧縮側は，J I S K 6 4 1 1 及び道路橋支承便覧を参考に $1.5 \sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値を基 に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ とする。試験結果は，（4）温度依存性試験より求めた温度補正式によ って基準温度（ $23^{\circ} \mathrm{C}$ ）相当に補正したものを測定値とする。
（2）せん断ひずみ依存性試験
試験体に複数のせん断ひずみを与え保持した状態で，圧縮方向及び引張方向の鉛直剛性を測定する。試験方法は，せん断ひずみを与えた状態で，圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$程度に相当する鉛直荷重を原点として，圧縮応力度 $8.0 \mathrm{~N} / \mathrm{mm}^{2}$ による圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を実施し，これを各せん断ひずみに対して行う。 それぞれの試験において3回載荷し，3回目の鉛直荷重一鉛直変位曲線から圧縮及 び引張剛性を求める。また，試験に用いる鉛直荷重は，各せん断ひずみにおける試験体の有効支圧面積より算出した圧縮／引張応力度相当の荷重とする。剛性を算出 する応力範囲は，圧縮側は，J I S K 6 4 1 1 及び道路橋支承便覧を参考に1．5 $\sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値を基に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ とする。試験結果は，（4）温度依存性試験より求めた温度補正式によって基準温度（ $23^{\circ} \mathrm{C}$ ）相当に

補正したものを測定値とする。圧縮及び引張剛性は，せん断ひずみ 0% の測定値を基準として，各せん断ひずみにおける測定値との変化率を求める。

（3）繰返し数依存性試験

試験体に繰返し水平加振 50 回を与えたときの鉛直剛性の依存性を求める。試験方法は 50 回加振試験の前に圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ 程度に相当する鉛直荷重を原点と して，圧縮応力度 $8.0 \mathrm{~N} / \mathrm{mm}^{2}$ による圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を行う。それぞれの試験において 3 回載荷し， 3 回目の鉛直荷重一鉛直変位曲線 から鉛直剛性を求める。その後，50回加振試験後に同様の試験を実施し，圧縮及び引張剛性を求める。剛性を算出する応力範囲は，圧縮側は，J I S K 6411及び道路橋支承便覧を参考に $1.5 \sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値 を基に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ とする。試験結果は，（4）温度依存性試験より求めた温度補正式 によって基準温度（ $23^{\circ} \mathrm{C}$ ）相当に補正したものを測定値とする。圧縮及び引張剛性 は， 50 回繰返し加振前の測定値を基準として， 50 回繰返し加振後における測定値と の変化率を求める。
（4）温度依存性試験
試験体に複数の温度条件を与えたときの鉛直剛性の依存性を求める。試験方法は，試験体を試験温度になるまで恒温槽で保持したのち，迅速に二軸試験機へ取付け，圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ 程度に相当する鉛直荷重を原点として，圧縮応力度 $8.0 \mathrm{~N} / \mathrm{mm}^{2}$ に よる圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を行う。それぞれの試験にお いて 3 回載荷し， 3 回目の鉛直荷重 一 鉛直変位曲線から圧縮及び引張剛性を求める。剛性を算出する応力範囲は，圧縮側は，J I S K 6 4 1 1 及び道路橋支承便覧 を参考に $1.5 \sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値を基に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ と する。圧縮及び引張剛性は，基準温度（ $23^{\circ} \mathrm{C}$ ）時の測定値を基準として，各温度条件における測定値との変化率を求める。

なお，各温度条件における恒温槽での保持時間（試験体を恒温槽に入れてから取 り出すまでの時間）は，8時間以上とする。
（5）熱老化特性試験
熱老化前後の鉛直剛性の変化を確認する。熱老化は基準温度（ $23^{\circ} \mathrm{C}$ ）で 60 年に相当する試験条件とする。試験方法は，試験体の熱老化を行ら前に，圧縮応力度 $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ 程度に相当する鉛直荷重を原点として，圧縮応力度 $8.0 \mathrm{~N} / \mathrm{mm}^{2}$ による圧縮試験及び引張応力度 $2.0 \mathrm{~N} / \mathrm{mm}^{2}$ による引張試験を行う。それぞれの試験において 3 回載荷し， 3 回目の鉛直荷重 一 鉛直変位曲線から圧縮及び引張剛性を求める。その後，恒温槽で試験条件の熱老化をさせ，熱老化前と同様の試験を実施し，圧縮及び引張

剛性を求める。圧縮側は，J I S K 6 4 1 1 及び道路橋支承便覧を参考に1．5 $\sim 6.0 \mathrm{~N} / \mathrm{mm}^{2}$ とし，引張側は，引張応力度の許容値を基に $0 \sim 2.0 \mathrm{~N} / \mathrm{mm}^{2}$ とする。試験結果は，（4）温度依存性試験より求めた温度補正式によって基準温度（ $23^{\circ} \mathrm{C}$ ）相当に補正したものを測定値とする。圧縮及び引張剛性は，熱老化前の測定値を基準とし て，熱老化後の測定値との変化率を求める。

（6）速度依存性試験

試験体を高速で変形させたときの鉛直剛性の速度依存性について確認する。試験方法は，試験装置上に設置した供試体上に錘を落下し衝突させ，衝撃力を与える。負荷された荷重値，変位時刻履歴を計測し，荷重一変位曲線から圧縮及び引張剛性 を求める。

なお，速度は計測された変位時刻履歴から速度時刻履歴に変換し，最大荷重到達時までの平均速度を当該試験の速度条件とする。

ここで，速度依存性を確認する試験範囲については，運動量保存則に基づくゴム支承の変形速度及び衝突解析によってゴム支承が変形するときの最大鉛直変形速度 を基に設定する。以下に，運動量保存則及び衝突解析によるゴム支承の変形速度の評価について示す。衝突解析によるゴム支承の変形速度は解析時の鉛直剛性の影響 を受け，鉛直剛性が小さいほど変形速度が大きくなると考えられるため，剛性値を パラメータにした衝突解析により，鉛直剛性に対するゴム支承変形速度の傾向を踏 まえて試験条件を設定する。
a．運動量保存則によるゴム支承の変形速度の評価
竜巻防護ネットのフレームに飛来物が衝突した際のフレームの移動速度を，衝突前後の運動量保存則から算出する。算出にあたって，ゴム支承のばね剛性はフレ ームの移動に対し抵抗となり得るが，この影響はないものとして扱う。また，フレ ームを剛体と仮定し，簡便に一次元の衝突問題として，飛来物はゴム支承直上のフ レーム北側に衝突し，衝突後はフレームと飛来物が一体となって移動を始めるも のとする。（図 5－4 参照）

以上の条件から，運動量保存則から以下の式が成り立つ。

$$
m \mathrm{v}=(\mathrm{m}+\mathrm{M}) \quad \mathrm{V} \cdots(1)
$$

ここで，
m ：飛来物（鋼製材）重量（ $\mathrm{m}=135 \mathrm{~kg}$ ）
v ：飛来物（鋼製材）衝突速度（ $\mathrm{v}=16.7 \mathrm{~m} / \mathrm{s}$ ）
M：フレーム重量（ $\mathrm{M}=60000 \mathrm{~kg}$ ）
V：衝突後のフレーム移動速度（m／s）

図 5－4 飛来物衝突前後のイメージ
（1）式より，

$$
\begin{aligned}
\mathrm{V} & =\mathrm{mv} /(\mathrm{m}+\mathrm{M}) \\
& =135 \times 16.7 /(135+60000) \\
& \fallingdotseq 0.04(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

上記のとおり，フレームの質量が飛来物に比べて著しく大きいことから，衝突後のフレームの変形速度は最大でも約 $0.04 \mathrm{~m} / \mathrm{s}$ となる。フレームはゴム支承に支持されていることから，ゴム支承の変位速度はフレームの移動速度と同等の速度 になると想定される。
b．衝突解析によるゴム支承の変形速度の評価
（a）解析モデル
速度依存性試験条件を確認するために実施した衝突解析のモデル図を図 5－5に示す。

図 5－5 解析モデル図
（b）飛来物諸元
飛来部諸元を表5－5に示す。

表 5－5 飛来物諸元

	鋼製材
寸法 (m)	$4.2 \times 0.3 \times 0.2$
質量 (kg)	135
水平方向の飛来速度 $(\mathrm{m} / \mathrm{s})$	46.6
鉛直方向の飛来速度 $(\mathrm{m} / \mathrm{s})$	16.7

（c）荷重条件
本解析はゴム支承の鉛直方向変形速度の評価を目的としていることから，荷重条件としては，飛来物の衝撃荷重のみを考慮した。
（d）拘束条件
拘束条件を表5－6に示す。ゴム支承のせん断剛性は道路橋支承便覧に基づく設計値を入力し，鉛直剛性については，設計値に対して $1 / 100 \sim 100$ 倍までの範囲で パラメータスタディを実施した。

表 5－6 拘束条件

方向	フレームゴム支承	可動支承
X	設計値 $(3.33 \mathrm{kN} / \mathrm{mm})$	自由
Y	設計値 $(3.33 \mathrm{kN} / \mathrm{mm})$	拘束
Z	設計値 $(972 \mathrm{kN} / \mathrm{mm})$ を基準に， 「（f）解析ケース」に示す条件で実施	拘束

（e）材料物性等
イ．材料の応力ーひずみ関係
材料の応力ーひずみ関係は，バイリニア型とした。
材料に適用する応力ーひずみ関係の概念図を図5－6に示す。

図 5－6 応力ーひずみ関係の概念図

ロ，ひずみ速度依存性
竜巻による飛来物に対する解析は，衝撃問題で変形速度が大きいため，衝突時 の鋼材のひずみ速度による影響をCowper－Symonds 式により考慮する。
$\sigma_{\mathrm{D}}=\sigma_{\mathrm{S}} \cdot\left\{1+\left(\frac{\dot{\varepsilon}}{\mathrm{C}}\right)^{\frac{1}{\mathrm{p}}}\right\}$
ここで，σ_{D} は動的応力，$\sigma \mathrm{s}$ は静的応力，$\dot{\varepsilon}$ はひずみ速度， C 及び p はひずみ速度依存性のパラメータである。

ひずみ速度依存性パラメータを表 5－7 に示す。

表 5－7 ひずみ速度依存性パラメータ

	飛来物 （鋼製材）	竜巻防護ネット （フレーム）	
C材質	SS400	SM400	SM490
$\mathrm{C}(1 / \mathrm{s})$			
p			

八。破断ひずみ
衝突解析における許容限界は，鋼材の破断ひずみを設定する。破断ひずみにつ いては，J I S に規定されている伸びの下限値を基に設定するが，「NEI07－13： Methodology for Performing Aircraft Impact Assessments for New Plant Designs」においてTF（多軸性係数）を \square とすることが推奨されていることを踏 まえ，安全余裕として $\mathrm{TF}=\square$ を考慮して設定する。
（f）解析ケース
解析ケースを表5－8に示す。

表 5－8 解析ケース

No．	鉛直剛性		飛来物の衝突条件			
	入力値 $(\mathrm{kN} / \mathrm{mm})$	設計値から の比率	衝突位置	衝突 姿勢	衝突 方向	衝突速度 （m／s）
1	9.72	1／100	$\begin{aligned} & \text { 主桁 } \\ & \text { (ゴム支承 } \\ & \text { の直上) } \end{aligned}$	短辺	鉛直	16.7
2	97.2	1／10				
3	972	1				
4	9720	10				
5	97200	100				

枠囲みの内容は商業機密の観点から公開できません。
（g）解析結果
飛来物が衝突した直下にあるゴム支承の鉛直方向変形速度履歴を図5－7に示す。最大速度はおおむね衝突直後の圧縮側で生じている。また，各解析ケースにおけ る鉛直剛性と最大速度の関係を表 5－9 及び図 5－8に示す。ゴム支承の変形速度は鉛直剛性が小さいほど大きくなり，鉛直剛性が大きくなると変形速度は小さくな る傾向となった。

図 5－7 飛来物衝突位置直下のゴム支承変形速度履歴

表 5－9 ゴム支承の鉛直剛性と最大変形速度の関係

解析ケース		No． 1	No． 2	No． 3	No． 4	No． 5
鉛直剛性（kN／mm）		9． 72	97.2	972	9720	97200
ゴム支承変形速度$(\mathrm{m} / \mathrm{s})$	最大（引張側）	0． 44	0． 41	0． 48	0． 42	0.23
	最小（圧縮側）	－0．83	－0．82	－0．72	－0．46	－0．20
	絶対値最大	0.83	0.82	0． 72	0． 46	0.23

図 5－8 ゴム支承の鉛直剛性と最大変形速度の関係

c．試験条件

速度依存性が存在する場合，一般的には速度が速くなると剛性が大きくなること から，上記予備解析の結果より，変形速度の最大値（ $0.83 \mathrm{~m} / \mathrm{s}$ ）を包絡するよう，目標とするゴム支承の変形速度を $1.0 \mathrm{~m} / \mathrm{s}$ として試験を実施する。その際，参考として より大きな速度である $1.5 \mathrm{~m} / \mathrm{s}$ 及び $2.0 \mathrm{~m} / \mathrm{s}$ についても試験を実施することとする。

なお，運動量保存則より，飛来物がフレームに衝突した際のゴム支承の変形速度 は $0.04 \mathrm{~m} / \mathrm{s}$ 程度であり，この速度は今回設定した試験条件に十分包絡される。

5.4 試験装置

（1）～（5）の試験には 2 MN 二軸試験機，（6）の試験には落錘式衝撃試験装置を用い る。試験装置の主な仕様を表5－10及び表5－11に，試験装置の概要を図 5－9～図5－ 11 に示す。

表 5－10 2MN 二軸試験機の主な仕様

項目		2MN 二軸試験機	制御系	計測
鉛直方向	最大荷重	$\begin{aligned} & 2000 \mathrm{kN} \text { (圧縮) } \\ & 1000 \mathrm{kN} \text { (引張) } \end{aligned}$	荷重制御変位制御	荷重変位
	最大変位	300 mm		
水平方向	最大荷重	$\pm 400 \mathrm{kN}$	変位制御 （正弦波，矩形波，三角波）	荷重変位
	最大変位	$\pm 200 \mathrm{~mm}$		
	最大速度	$630 \mathrm{~mm} / \mathrm{s}$		

表 5－11 落錘式衝撃試験装置の主な仕様

種類	落錘式衝撃試験装置
最大衝撃力	圧縮方向 $: 2000 \mathrm{kN}$
引張方向 $: 500 \mathrm{kN}$	
最大衝突速度	$3 \mathrm{~m} / \mathrm{s}$
錘最大落下重量	3000 lg

図 5－9 試験装置（2MN二軸試験機）の外観

図 5－10 試験装置（落錘式衝撃試験装置）の外観（圧縮側）

図 5－11 試験装置（落錘式衝撃試験装置）の外観（引張側）

5.5 試験結果

各種試験より得られた鉛直剛性特性結果を図 5－12～図5－18に示す。以下にその結果を記載する。
（1）圧縮／引張剛性確認試験
図 5－12 に示す結果より，圧縮剛性は式（5．2）から求める設計値とほぼ同等であ ることを確認した。一方，引張剛性は，圧縮剛性の設計値の 20% 程度であることを確認した。この結果を踏まえ，圧縮剛性の基準値は式（5．2）から求める設計値とし，引張剛性の基準値は本試験結果の平均値とした。

上記基準値を基に初期ばらつきを評価した結果，図 5－13に示す結果より，圧縮剛性のばらつきはプラス側で最大 $+2 \%$ 程度，マイナス側で最大 -15% 程度であること，引張剛性のばらつきはプラス側で最大 16% 程度，マイナス側で最大 -21% 程度であり，道路橋支承便覧に規定されている製品初期ばらつき $\pm 30 \%$ 以内であることを確認し た。

図 5－12 圧縮／引張剛性確認試験結果（算出値）

図 5－13 圧縮／引張剛性確認試験結果（変化率）
（2）せん断ひずみ依存性試験
竜巻防護ネットの強度評価に用いる荷重及び荷重の組合せを考慮し，水平方向に竜巻による風荷重が負荷された状態でのゴム支承に生じるせん断ひずみを想定し， せん断ひずみ 0% を基準に，せん断ひずみ 100% までの範囲を確認している。

図 5－14に示す結果より，圧縮剛性はせん断ひずみの増加により最大で -11% 程度 の変化率となることが分かった。一方，引張剛性については最大で -2% 程度であり， せん断ひずみの増加によらずほぼ一定の傾向を示すことが分かった。

図 5－14 せん断ひずみ依存性試験結果
（3）繰返し数依存性試験
図 5－15に示す結果より，50 回の正負繰返し加振後の圧縮及び引張剛性の変化率 について，圧縮剛性は－7\％程度，引張剛性は－13\％程度となることが分かった。

図 5－15 繰返し数依存性試験結果
（4）温度依存性試験
図 5－16に示す結果より，低温になるほど剛性が大きくなることが分かる。基準温度 $23^{\circ} \mathrm{C}$ に対する圧縮及び引張剛性の変化率は，女川 2 号機の環境条件を踏まえて， $-15^{\circ} \mathrm{C}$ から $40^{\circ} \mathrm{C}$ までの範囲を確認しており，圧縮剛性について，$-15^{\circ} \mathrm{C}$ では $+27 \%$ 程度， $40^{\circ} \mathrm{C}$ では－8\％程度となること，引張剛性については，$-15^{\circ} \mathrm{C}$ では $+14 \%$ 程度， $40^{\circ} \mathrm{C}$ では -4% 程度となることが分かった。

注記 $*:-15^{\circ} \mathrm{C}$ の結果は補正式より算出

図 5－16 温度依存性試験結果
（5）熱老化特性試験
図 5－17に示す結果より，使用期間 60 年相当の熱老化に対する圧縮及び引張剛性 の変化率は，圧縮剛性は $+5 \%$ 程度，引張剛性は -18% 程度となることが分かった。

図 5－17 熱老化特性試験結果
（6）速度依存性試験
図 5－18 より，圧縮剛性の速度依存性試験について，「5．3（6）c．試験条件」にて設定した試験条件（ゴムの変形速度）を満足していることを確認した。また，結果 のばらつきや変形速度が大きくなるにしたがい，剛性が低下する傾向が見られるが，一般に速度依存性は変形速度の増加により剛性が高くなることから，錘の落下距離 が大きくなるにしたがって，鋀切り離し時のわずかな回転力により錘衝突時に傾斜角が増えたことが要因と考えられ，速度依存性がないと判断した。

一方，引張剛性の速度依存性試験については，変形速度の増加に伴い剛性が高く なり，速度依存性があることを確認した。

なお，引張剛性の速度依存性試験において，ゴム支承の変形速度が圧縮側に対し て小さいが，圧縮側と同様の外力を負荷しており，ゴムの速度依存性により変形が抑制されたものと考えられる。

図 5－18 速度依存性試験結果
5.6 試験結果を踏まえた剛性の設定

竜巻防護ネットの衝突解析においては，設置許可段階で実施したせん断剛性の各種依存性試験及び鉛直剛性に係る特性試験結果より得られたばらつきについて，飛来物衝突解析に反映し，剛性のばらつきを考慮したケースにおいても竜巻防護ネットの構造健全性が損なわれないことを確認する。適用するばらつきの設定方針を以下に示す。
（1）せん断剛性
各種依存性試験結果を適用し，道路橋支承便覧から求める設計値（ $3.33 \mathrm{kN} / \mathrm{mm}$ ） に対するばらつきをプラス側とマイナス側それぞれ考慮する。せん断剛性のばらつ きを表5－12に示す。

なお，試験結果については，「補足－600－12 竜巻防護ネットの耐震構造設計（支承構造）についての補足説明資料」に示す。

表 5－12 せん断剛性のばらつき設定

項目	変化率	
	剛性変化（＋側）	剛性変化（一側）
基準値 $(\mathrm{kN} / \mathrm{mm})$	3.33	3.33
繰返し数依存性	-	-10%
温度依存性	$+25 \%$	-5%
熱老化依存性	$+10 \%$	-
初期ばらつき	$+10 \%$	-10%
積算値	$+45 \%$	-25%
考慮する ばらき範囲	$+50 \%$	-30%
ばらつきを 考慮した剛性値 $(\mathrm{kN} / \mathrm{mm})$	5.00	2.33

（2）鉛直剛性
「5．5 試験結果」の試験結果を踏まえ，圧縮剛性については，道路橋支承便覧か ら求める設計値（ $972 \mathrm{kN} / \mathrm{mm}$ ）と同程度の剛性であることを確認したことから，せん断剛性と同様に，設計値に対するばらつきをプラス側とマイナス側それぞれ考慮す る。また，引張剛性については，圧縮剛性とは異なる特性が試験により得られたこ とから，これらを包含するようなばらつき範囲を設定する。具体的には，「5．5（1）圧縮／引張剛性確認試験」の引張剛性試験において，低い剛性を示したことから， マイナス側は，この静的な引張剛性試験結果を踏まえたばらつきを考慮する。また，
「5．5（6）速度依存性試験」において，静的な引張剛性試験結果より大きい剛性を示したことを踏まえ，プラス側は速度依存性試験結果を踏まえたばらつき考慮する。鉛直剛性のばらつきを表5－13に示す。

表 5－13 鉛直剛性のばらつき設定

項目	変化率			
	剛性変化（＋側）		剛性変化（ 一 側）	
	圧縮剛性	引張剛性	圧縮剛性	引張剛性
基準値（ $\mathrm{kN} / \mathrm{mm}$ ）	972	1130＊1	972	171＊2
初期ばらつき＊3	＋30\％	＋30\％	－30\％	－30\％
せん断ひずみ依存性	－	－	－15\％	－
繰返し数依存性	－	－	－10\％	－15\％
温度依存性	＋30\％	＋15\％	－10\％	-5%
熱老化特性	＋5\％	－	－	－20\％
積算値	＋65\％	＋45\％	－65\％	－70\％
$\begin{gathered} \text { 考慮する } \\ \text { (剛性値 }(\mathrm{kN} / \mathrm{mm}) \text {) } \end{gathered}$	$\begin{gathered} +70 \% \\ (1660) \end{gathered}$	$\begin{gathered} +50 \% \\ (1700) \end{gathered}$	$\begin{aligned} & -70 \% \\ & (291) \end{aligned}$	$\begin{gathered} -75 \% \\ (42.7) \end{gathered}$
$\begin{gathered} \text { ばらつきを } \\ \text { 考慮した剛性値 } \\ (\mathrm{kN} / \mathrm{mm}) \end{gathered}$	1700 ＊${ }^{\text {d }}$		42．7＊5	

注記＊1：速度依存性試験結果を，以下のとおり基準値として考慮する。

$$
\begin{aligned}
& \text { (実機ゴム支承の圧縮剛性の基準値) } \times \frac{(\mathrm{J} \text { I S 試験体の速度依存性試験結果の平均値) }}{(\mathrm{J} \text { I S 試験体の圧縮剛性の基準値) }} \\
& =972 \times \frac{1338}{1152} \\
& =1128 \fallingdotseq 1130(\mathrm{kN} / \mathrm{mm})
\end{aligned}
$$

＊2：引張剛性試験結果を，以下のとおり基準値として考慮する。
（実機ゴム支承の圧縮剛性の基準値）$\times \frac{(\mathrm{J} \text { I S 試験体の引張剛性試験結果の平均値）}}{(\mathrm{J} \text { I S 試験体の圧縮剛性の基準値）}}$

$$
\begin{aligned}
& =972 \times \frac{202.9}{1152} \\
& =171.1 \fallingdotseq 171(\mathrm{kN} / \mathrm{mm})
\end{aligned}
$$

＊3：5．2 項に示す初期ばらつきを考慮する。
＊4：圧縮剛性及び引張剛性のばらつきの大きい方を考慮する。 ＊ 5 ：圧縮剛性及び引張剛性のばらつきの小さい方を考慮する。
（3）衝突解析におけるゴム支承の剛性設定
以上を踏まえ，竜巻防護ネットの構造強度評価（衝突解析）におけるゴム支承の剛性の基本ケース及び不確かさケースについて表5－14に示す。

表 5－14 衝突解析におけるゴム支承の剛性値

	剛性値（kN／mm）		
	基本ケース	不確かさケース	
		剛性変化（ + 側）	剛性変化（－側）
せん断剛性	3.33	5.00	2.33
鉛直剛性	972	1700	42.7
備考	道路橋支承便覧に基づく設計値	各種依存性試験を踏まえたばらつき を考慮した値	

6．評価ケースの設定方針及び構造成立性の確認
設置許可段階での説明事項（別紙3参照）を踏まえ，衝突解析の評価ケースの設定方針を整理する。評価ケースの設定に当たっては，「原子力発電所の竜巻影響評価ガイド」 を踏まえ，飛来物の衝突する方向が安全側の設計となるように設定する。また，前章ま でに説明した衝突解析におけるゴム支承の剛性設定を踏まえ，代表的な評価ケースに対 して構造成立性を確認する。
（1）評価ケースの設定
竜巻防護ネットの支持部材の衝突解析における評価ケースは，飛来物の衝突を考慮 する部材の検討，構造及び荷重伝達経路を考慮して飛来物衝突により影響を受ける部材の検討を踏まえて，飛来物の衝突位置及び評価対象部位を設定する。また，各評価 ケースにおける衝突解析結果を踏まえて，ゴム支承の剛性の不確かさや飛来物の姿勢 の不確かさの影響について評価する。
a．飛来物の衝突を考慮する部材の検討
支持部材のらち飛来物が衝突しうる部材としては，フレームのらち主桁，横補強材及びブレース並びに大梁が考えられるが，ブレースはネットの上部に設置してお り，ネットの吸収エネルギ評価及び破断評価に包含されるため，主桁，横補強材及 び大梁を対象とする。
b．飛来物衝突により影響を受ける部材（評価対象）の検討
支持部材を構成する主桁，横補強材，大梁，フレームゴム支承，大梁ゴム支承，可動支承を評価対象とし，a．項に示した部材に飛来物が衝突した際の荷重の伝達経路を考慮して評価ケースを設定する。

表 6－1 に竜巻防護ネットの支持部材の衝突解析における評価ケースを示す。また， これを踏まえ，衝突解析における解析モデルは，3次元 FEM によりフレーム，大梁及 び鋼製材をシェル要素でモデル化する。解析モデル図を図 6－1 に示す。また，フレー ム配置図を図6－2に，飛来物衝突位置を示した解析モデル図を図6－3 にそれぞれ示す。表 6－1 に示す評価ケースを基本ケースとし，評価結果については「VI－3－別添1－2－1－1竜巻防護ネットの強度計算書」にて説明する。また，不確かさケースとしてゴム支承 の剛性の不確かさ及び飛来物の姿勢の不確かさの影響について評価した結果について「補足説明資料 710－1 竜巻への配慮が必要な施設の強度に関する説明書の補足説明資料」にて説明する。

a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
$\begin{gathered} \text { 主桁 } \\ (フ レ ー ム G 1) \end{gathered}$	【構造】 主桁は，北側はフレーム ゴム支承により支持さ れ，ゴム支承はアンカー ボルトにて海水ポンプ室躯体に固定されている。南側は可動支承及び大梁 により支持されており，大梁は大梁ゴム支承によ り支持され，ゴム支承は アンカーボルトにて海水 ポンプ室躯体に固定され ている。また， 2 つの主桁 は横補強材により連結し ている。 【荷重伝達経路】 北側：主桁 \Rightarrow フレームゴ ム支承 \Rightarrow アンカーボルト \Rightarrow 海水ポンプ室躯体 南側：主桁 \Rightarrow 可動支承 \Rightarrow大梁 \Rightarrow 大梁ゴム支承 \Rightarrow ア ンカーボルト \Rightarrow 海水ポン プ室躯体 また，水平方向衝突によ る西側主桁から東側主桁 への荷重伝達は，横補強材を経由する。	主桁	主桁自身への影響を確認するため，曲げ の影響が大きい主桁中央と衝突荷重が集中する主桁端部への水平／鉛直方向の衝突を考慮する。ただし，設置許可段階 での評価結果を踏まえて，ケース G1－EW－ 3 を評価ケースとして選定する。	G1－EW－1	端部 （南側）	水平 EW	$\begin{aligned} & \text { (別紙 } 3 \text { (5) 水平 (EW) - } \\ & 1 \text { に対応) } \end{aligned}$
				G1－EW－2	中央	$\begin{gathered} \text { 水平 } \\ \text { EW } \end{gathered}$	$\begin{aligned} & \text { (別紙3 ⑥水平 (EW) - } \\ & 2 \text { に対応) } \end{aligned}$
				G1－EW－3	端部 （北側）	水平 EW	$\begin{aligned} & \text { (別紙3-77水平 (EW) - } \\ & 3 \text { に対応) } \end{aligned}$
				G1－NS－1	端部	水平 NS	$\begin{aligned} & \text { (別紙3 (4)水平 (NS) - } \\ & 1 \text { に対応) } \end{aligned}$
				G1－V－1	端部 （南側）	鉛直	（別紙3（1）鉛直－1に対応）
				G1－V－2	中央	鉛直	（別紙3対応） （2）鉛直－2に
				G1－V－3	端部 （北側）	鉛直	（別紙3（3）鉛直－3に対応）
		横補強材	横補強材への影響を確認するため，横補強材に近い位置で衝突荷重が集中する よう，横補強材取付位置近傍の主桁中央及び主桁端部への水平方向の衝突を考慮する。 なお，鉛直衝突に対しては，主桁の方が十分に曲げ剛性が高く，横補強材には有意な荷重が伝達されないと考えられる ため対象外とする。	G1－EW－1	端部 （南側）	水平 EW	－
				G1－EW－2	中央	水平 EW	－
				G1－EW－3	端部 （北側）	水平 EW	－
		大梁	大梁に対しての影響を確認するため，大梁に近い位置で衝突荷重が集中するよ ら，可動支承近傍の主桁端部への水平／鉛直方向の衝突を考慮する。ただし，設置許可段階での評価結果を踏まえて，ケ ース G1－V－1 を評価ケースとして選定す る。	G1－EW－1	端部 （南側）	水平 EW	$\begin{aligned} & \text { (別紙 } 3 \text { (5)水平 (EW) - } \\ & 1 \text { に対応) } \end{aligned}$
				G1－NS－1	端部	水平 NS	$\begin{aligned} & \text { (別紙 } 3 \text { (4)水平 (NS) - } \\ & 1 \text { に対応) } \end{aligned}$
				G1－V－1	端部 （南側）	鉛直	（別紙3（1）鉛直－1に対応）

4. 1-48

表 6－1 竜巻防護ネットの支持部材の衝突解析における評価ケース（3／7）							\square ：評価ケース
a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
$\begin{gathered} \text { 横補強材 } \\ \text { (フレームG1) } \end{gathered}$	【構造】 横補強材は主桁に取り付 いている。 主桁は，北側はフレーム ゴム支承により支持さ れ，ゴム支承はアンカー ボルトにて海水ポンプ室躯体に固定されている。南側は可動支承及び大梁 により支持されており，大梁は大梁ゴム支承によ り支持され，ゴム支承は アンカーボルトにて海水 ポンプ室躯体に固定され ている。 また， 2 つの主桁は横補強材により連結している。	主桁	横補強材への衝突により，主桁へ伝達さ れる荷重は両側の主桁に分散されるた め，主桁衝突時の主桁評価に包絡され る。	－	－	－	－
		横補強材	横補強材自身への影響については，横補強材の上フランジが BRL式による貫通限界板厚以上であることを確認する。	－	－	－	－
		大梁	大梁に対しての影響を確認するため，大梁に近い，可動支承近傍の横補強材への鉛直方向の衝突を考慮する。	G1－V－4	中央	鉛直	－
				G1－V－5	端部	鉛直	－
		$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	フレームゴム支承に対しての影響を確認するため，フレームゴム支承近傍に位置する横補強材への鉛直方向の衝突を考慮する。	G1－V－6	中央	鉛直	－
				G1－V－7	端部	鉛直	－
	【荷重伝達経路】北側：横補強材 \Rightarrow 主桁 \Rightarrow フレームゴム支承 \Rightarrow アン カーボルト \Rightarrow 海水ポンプ室躯体 南側：横補強材 \Rightarrow 主桁 \Rightarrow可動支承 \Rightarrow 大梁 \Rightarrow 大梁ゴ ム支承 \Rightarrow アンカーボルト \Rightarrow 海水ポンプ室躯体	$\begin{gathered} \text { 大梁ゴム } \\ \text { 支承 } \end{gathered}$	大梁ゴム支承に対しての影響を確認す るため，大梁に近い，可動支承近傍の横補強材への鉛直方向の衝突を考慮する。	G1－V－4	中央	鉛直	－
				G1－V－5	端部	鉛直	－
		可動支承	可動支承に対しての影響を確認するた め，可動支承近傍に位置する横補強材へ の鉛直方向の衝突を考慮する。	G1－V－4	中央	鉛直	－
				G1－V－5	端部	鉛直	－

4．1－49

a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
$\begin{gathered} \text { 主桁 } \\ (フ レ ー ム G 2) \end{gathered}$	主桁（フレームG1）と同様	主桁	主桁自身への影響を確認するため，曲げ の影響が大きい主桁中央と衝突荷重が集中する主桁端部への水平／鉛直方向の衝突を考慮するが，主桁自身の仕様はフ レームG1と同じため，G1の評価に包絡 される。	－	－	－	－
		横補強材	横補強材への影響を確認するため，横補強材に近い位置で衝突荷重が集中する よう，横補強材取付位置近傍の主桁中央及び主桁端部への水平方向の衝突を考慮するが，G2 には隣接するフレームが配置されていることから対象となる評価 ケースは無い。 なお，鉛直衝突に対しては，主桁の方が十分に曲げ剛性が高く，横補強材には有意な荷重が伝達されないと考えられる ため対象外とする。	－	－	－	－
		大梁	大梁に対しての影響を確認するため，大梁に近い位置で衝突荷重が集中するよ ら，可動支承近傍の主桁端部への水平／鉛直方向の衝突を考慮する。 また，大梁の曲げモーメントが大きくな るように，大梁中央に近い方の東側主桁 に衝突させる。	G2－NS－1	端部	水平 NS	－
				G2－V－1	端部 （南側）	鉛直	－

4．1－50

4. 1-51

a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
$\begin{gathered} \text { 横補強材 } \\ (\text { フレーム G2) } \end{gathered}$	【構造】 横補強材は主桁に取り付 いている。 主桁は，北側はフレーム ゴム支承により支持さ れ，ゴム支承はアンカー ボルトにて海水ポンプ室躯体に固定されている。南側は可動支承及び大梁 により支持されており，大梁は大梁ゴム支承によ り支持され，ゴム支承は アンカーボルトにて海水 ポンプ室躯体に固定され ている。 また， 2 つの主桁は横補強材により連結している。	主桁	横補強材への衝突により，主桁へ伝達さ れる荷重は両側の主桁に分散されるた め，主桁衝突時の主桁評価に包絡され る。	－	－	－	－
		横補強材	横補強材自身への影響については，横補強材の上フランジが BRL式による貫通限界板厚以上であることを確認する。	－	－	－	－
			大梁に対しての影響を確認するため，大	G2－V－3	中央	鉛直	－
			衝突を考慮する。	G2－V－4	端部	鉛直	－
		$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	フレームゴム支承に対しての影響を確認するため，フレームゴム支承近傍に位置する横補強材への水平／鉛直方向の衝突を考慮する。	G2－V－5	中央	鉛直	－
				G2－V－6	端部	鉛直	－
	【荷重伝達経路】北側：横補強材 \Rightarrow 主桁 \Rightarrow フレームゴム支承 \Rightarrow アン カーボルト \Rightarrow 海水ポンプ室躯体 南側：横補強材 \Rightarrow 主桁 \Rightarrow可動支承 \Rightarrow 大梁 \Rightarrow 大梁ゴ ム支承 \Rightarrow アンカーボルト \Rightarrow 海水ポンプ室躯体	$\begin{gathered} \text { 大梁ゴム } \\ \text { 支承 } \end{gathered}$	大梁に対しての影響を確認するため，大梁に近い，可動支承近傍の横補強材への衝突を考慮する。	G2－V－3	中央	鉛直	－
				G2－V－4	端部	鉛直	－
		可動支承	可動支承に対しての影響を確認するた め，可動支承近傍に位置する横補強材へ の鉛直方向の衝突を考慮する。	G2－V－3	中央	鉛直	－
				G2－V－4	端部	鉛直	－

4．1－52

a．飛来物衝突部材	構造及び荷重伝達経路	b．評価対象	評価に対する考え方	ケース	衝突位置	衝突方向	備考
大梁	【構造】 大梁は大梁ゴム支承を介 してアンカーボルトにて海水ポンプ室躯体に固定 されている。 【荷重伝達経路】大梁 \Rightarrow 大梁ゴム支承 \Rightarrow ア ンカーボルト \Rightarrow 海水ポン プ室躯体	主桁	構造上，有意な荷重が伝達されないため対象外とする。	－	－	－	－
		横補強材	構造上，有意な荷重が伝達されないため対象外とする。	－	－	－	－
		大梁	大梁自身への影響については，BRL式に よる貫通限界板厚以上であることを確認する。	－	－	－	－
		$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	構造上，有意な荷重が伝達されないため対象外とする。	－	－	－	－
				$B-V-1$	中央	鉛直	－
				$B-V-2$	端部	鉛直	－
		可動支承	構造上，有意な荷重が伝達されないため対象外とする。	－	－	－	－

4．1－53

図6－1 解析モデル図

図6－2 フレーム配置図

（主桁への飛来物衝突）

（横補強材への飛来物衝突）

\longrightarrow ：評価ケース
\cdots ：評価ケースに包絡されるケース
（大梁への飛来物衝突）

図 6－3 飛来物衝突位置図
（2）構造成立性の確認
前項で整理した評価ケースのうち，設置許可段階で評価結果が厳しくなることが明 らかとなった（別紙 3 参照），フレームゴム支承及び可動支承を対象として，構造健全性を確認する。確認に当たっては，ゴム支承の剛性のばらつきも考慮する。
a．解析モデル
図 6－1 に示す解析モデルとする。
b．飛来物諸元
飛来物諸元については，表 5－5 と同様である。
c．荷重条件
自重，風圧力及び飛来物の衝撃荷重を考慮する。
d．拘束条件
可動支承の拘束条件については表 5－6と同様とする。また，ゴム支承については，表5－14に示す剛性を持つばね要素としてモデル化する。
e．材料物性等
（a）材料定数
飛来物及び竜巻防護ネットの材料定数を表6－2に示す。
材料定数は，「発電用原子力設備規格設計•建設規格 J S M E S N C 1－ 2005／2007」に基づき設定する。

表6－2 材料定数

	材質	降伏応力 $\sigma \mathrm{y}$ (MPa)	縦弾性係数 E (MPa)
飛来物 （鋼製材）	SS 400 $(\mathrm{t} \leqq 16)$	245	202000
竜巻防護ネット （フレーム及び大梁）	SM490 $(16<\mathrm{t} \leqq 40)$	315	202000

（b）材料の応力ーひずみ関係
材料の応力ーひずみ関係は，バイリニア型とする。
材料に適用する応力ーひずみ関係の概念図を図6－4に示す。

図 6－4 応力ーひずみ関係の概念図
（c）ひずみ速度依存性
竜巻による飛来物に対する解析は，衝撃問題で変形速度が大きいため，衝突時 の鋼材のひずみ速度による影響をCowper－Symonds 式により考慮する。
$\sigma_{\mathrm{D}}=\sigma_{\mathrm{S}} \cdot\left\{1+\left(\frac{\dot{\varepsilon}}{\mathrm{C}}\right)^{\frac{1}{\mathrm{p}}}\right\}$
ここで，σ_{D} は動的応力，σ_{S} は静的応力，$\dot{と}$ はひずみ速度， C 及び p はひずみ速度依存性のパラメータである。

ひずみ速度依存性パラメータを表6－3に示す。

表 6－3 ひずみ速度依存性パラメータ

	飛来物 （鋼製材）	竜巻防護ネット （フレーム及び大梁）
材質	SS400	SM490
$\mathrm{C}(1 / \mathrm{s})$		
p		

（d）破断ひずみ
衝突解析における許容限界は，鋼材の破断ひずみを設定する。破断ひずみにつ いては，J I S に規定されている伸びの下限値を基に設定するが，「NEI07－13： Methodology for Performing Aircraft Impact Assessments for New Plant Designs」においてTF（多軸性係数）を \square とすることが推奨されていることを踏 まえ，安全余裕として $\mathrm{TF}=\square$ を考慮して設定する。

枠囲みの内容は商業機密の観点から公開できません。
f．解析ケース
解析ケースを表6－4に示す。衝突位置及び衝突方向は，設置許可段階でフレーム ゴム支承及び可動支承の評価結果が厳しかった，図6－5に示す位置及び方向とする。

表 6－4 解析ケース

No．	評価ケース	ゴム支承剛性値		飛来物の衝突条件			
		水平剛性 （ $\mathrm{kN} / \mathrm{mm}$ ）	鉛直剛性 $(\mathrm{kN} / \mathrm{mm})$	衝突位置	衝突姿勢	衝突 方向	衝突速度 $(\mathrm{m} / \mathrm{s})$
1	$\begin{array}{\|l\|l} \text { G1-V-3 } \\ \text {-基本 } \end{array}$	3.33	972	主桁 （フレームゴ ム支承近傍）	短辺	鉛直	16． 7
2		5.00	1700				
3	$\begin{array}{\|l\|} \hline \text { G1-V-3 } \\ \text {-不確かさ (-) } \end{array}$	2． 33	42.7				
4	$\begin{array}{\|l} \text { G1-EW-3 } \\ \text {-基本 } \end{array}$	3.33	972			水平	46.6
5	$\begin{array}{\|l\|} \hline \text { G1-EW-3 } \\ \text {-不確かさ (+) } \end{array}$	5.00	1700				
6	$\begin{array}{\|l\|l} \hline \text { G1-EW-3 } \\ \text {-不確かさ (-) } \\ \hline \end{array}$	2． 33	42.7				
7	$\begin{array}{\|l} \text { G1-EW-1 } \\ \text {-基本 } \end{array}$	3.33	972	主桁 （可動支承近 傍）	短辺	水平	46.6
8	$\begin{array}{\|l\|} \hline \text { G1-EW-1 } \\ \text {-不確かさ (+) } \end{array}$	5.00	1700				
9	$\begin{array}{\|l\|} \mathrm{G} 1-\mathrm{EW}-1 \\ \text {-不確かさ(-) } \end{array}$	2． 33	42.7				

図 6－5 飛来物衝突位置及び衝突方向

g．解析結果

フレームゴム支承の衝突解析結果を表 6－5 に，可動支承の衝突解析結果を表 6－6 にそれぞれ示す。全ての解析ケースにおいて，フレームゴム支承及び可動支承の部材に発生する応力等は許容値を超えず，構造強度上の評価方針を満足することを確認した。

表 6－5 フレームゴム支承の衝突解析結果＊1

評価対象部位		評価項目	No． 1		No． 2		No． 3		No． 4		No． 5		No． 6		許容値	
		発生値	発生値													
		西側	東側													
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	ゴム体		応力度 （引張）	0.7	0.5	0.6	0.4	0.2	0.2	0.4	0.3	0.4	0.3	0.2	0.2	2．0 MPa
			せん断 ひずみ	60	66	40	44	85	94	65	70	44	48	91	99	250 \％
		応力度 （圧縮）	2	1	2	1	1	1	1	1	1	1	1	1	23 MPa	
	内部鋼板	応力度 （引張）	12	5	14	5	3	2	3	4	3	4	2	3	280 MPa	
	取付 ボルト	応力度 （組合せ）	72	96	75	98	71	73	89	89	94	92	72	77	420 MPa	
	$\begin{gathered} \text { アンカー } \\ \text { ボルト } \end{gathered}$	応力度 （組合せ）	59	55	60	57	45	48	54	56	57	58	48	51	257 MPa	

注記 $* 1$ ：本表に記載の結果は暫定値。
また，評価項目については裕度が小さい項目を代表して記載している。

表 6－6 可動支承の衝突解析結果＊1

評価対象部位		評価項目	No． 7		No． 8		No． 9		許容値	
		発生値	発生値		発生値					
		西側	東側	西側	東側	西側	東側			
可動支承	構造部材		水平荷重	1276	726	1249	752	1316	721	2900 kN
			鉛直荷重 （圧縮）	364	269	372	265	332	268	5600 kN
		鉛直荷重 （引張）	442	420	356	419	448	322	1800 kN	

注記 $~$ 1：本表に記載の結果は暫定値。
また，評価項目については裕度が小さい項目を代表して記載している。

7．まとめ
本資料では，竜巻防護ネットのらち支持部材の強度評価に係る設計方針及び評価方針を示し，構造成立性について確認した。
－詳細設計段階において，設置許可段階の説明事項から方針変更がないことを確認し た。
－ゴム支承の鉛直剛性に係る特性試験を実施し，衝突解析におけるゴム支承剛性の設定方針，解析モデルの設定及び評価ケースの考え方を示した。
－試験結果を踏まえたゴム支承の剛性の不確かさも考慮し，衝突解析の代表的な評価 ケースに対して，構造成立性が確保できることを確認した。

なお，詳細設計段階における対応事項について，別紙5に示す。

以上

先行プラントとの設計方針の比較（EPまとめ資料抜粋）

竜巻防護ネットの設計方針に関する先行プラントとの比較

竜巻防護ネットの設計方針等について，先行ブラントと比較した結果を表1に整理する。構成部材のうち，ネット（金網部）と防護板は先行プラントと構造設計の相違がないが，ゴム支承及び可動支承を用いることで先行プラントと支持部材が異 なることを踏まえて，支持部材に対する設計方針について比較を実施した。

表1 竜巻に対する設計の基本方針，竜巻防護ネットの設計方針等の比較

ブラント	女川	（ ${ }^{\text {b 考）東海第二 }}$	琙異理由
奄巻に対する設計の基本方針	ト，防護銅板等から僄成L，承来物から外部事象防護对象旅設を防護できる設計とす る． （まとめ资料：1．8．2．1設計方針（1）竜卷 に対する段旪の基本方针より捄梿）	僙銅板等から棈成し，灰来物から外部車象防萑対象施設を防渃できる設計とする。 （段㩖変贾畋可申静薈（一部補正）1．7．2．1設計方猃（1）竜巻に対する設計の基本方针 より技牶）	差異焦L
竜㐘防檴ネット の設計方針	において，設計竜巻省重及びその他考建す べき荷重に対し，内包する非㗬用海ホボン ブ等䚮安全機能を䱋なわないよう，設計辰来物が非管用潅木ボンブ等に衙突すること布防止可能な設計とする。 れる自然現象に对して，非常用海水ボンブ等に波及的韹遙を及ぼきない設計とする。	 き花重に対し，内包する外部車解防㯖対奥竞段が安全機能を椇なわないよう，設計哌 ことを防止可能な設計とする。 また，防喓対亦旅設は，その他考えられ る自然現象（地展等）に对して，外部事觖 計とする。 （工認 V－1－1－2－3－1 竜巻への䙢に闌する基本方針 2.1 .3 竜卷の龍䇾を考庫する㴰設の竜类施醩酸計方針 c．防誰対策施設）	設峢名称の相䢒
支样部林の設計方針	支挟部析は設計竜巻の風圧力による荷重， 対し，飛来物が非鷘用海术がング等へ重突 すること在防止するために，承来物が支掅部村を構成なる主要な構造䛠材を堇通せ 機能を椎持可能な㙞造强庶を有L，非荋用海水ボンブ等に被及的影監を与えないため に，交持証材を構成なる部材自体の転刨度 ひ脂营を生しない設計とする。	 することを防止するために，飛来物が㭃構 を樮成まる主要な構造部枋を兄通せず，上 機能を維持可能な構造强度を有 L．外話然 服筑を生じない設計とする （工認 V－3－別添 1－2 防護対䇿旅設の誩度計算の方針 2.2 槚造強度の㹲計方針（3）架褈）	部朴各称の相違設侑名标の相違
支共機能を担保寸る部材	フレーム，大梁，ブラケット，ゴム支承，可帾支京，ストッドー	准輠	支舟偁㵆の相连
支挴部林に对する咭価項目		貫通辝価及已支持機能矿侕	

女川 2 号炬の竜巻防護ネットは，先行プラントと支持構造に相違はあるが，「竜巻に対する設計の基本方針」，「竜巻防護ネットの設計方針」，「支持部材の設計方針」，「評価項目」に対して，先行ブラントとの相違はないことを確認した。

以上

6 条（竜巻）－別添 1 －添付 3.7 －別紙 1 － 1

ゴム支承のせん断剛性の衝突解析への適用性（EP まとめ資料抜粋）

別紙3（補足1）

衝突解析に対するゴム支承の影響に対する検討

竜巻防護ネットに採用する地震時水平力分散型ゴム支承は，ゴム支承のせん断剛性を利用して，上部構造の慣性力を複数の下部構造に分散させる機能を持 つ。耐震設計については「道路橋示方書•同解説（（社）日本道路協会，平成 14年 3 月）」及び「道路橋支承便覧（（社）日本道路協会，平成16年4月）」に則 り，線形ばね要素でモデル化し，ゴム支承による荷重の低減効果を見込んだ耐震評価を実施する。（竜巻防護ネットの耐震評価方針については，設置許可基準規則第 4 条に対する適合状況説明資料『設計基準対象施設について（第 4 条地震による損傷の防止）』で説明）

一方，飛来物の衝撃荷重によるゴム支承の影響•評価については，先行プラ ントにおいて審査実績がないことや，評価に関わる規格類が制定されていない ことを踏まえ，衝突解析におけるゴム支承の影響について，以下のとおり検討 を実施した。

1．飛来物衝突時と地震時におけるゴム支承変位速度の比較
（1）検討方法
竜巻防護ネットのフレームはゴム支承に支持されているため，飛来物が衝突した場合や地震時にはフレームが移動する。フレームの移動速度が飛来物衝突時と地震時で異なる場合，ゴム支承の挙動が異なることが考えら れる。

この影響を検討するため，飛来物衝突後のフレーム移動速度から想定さ れるゴム支承の変位速度と，耐震評価において想定するゴム支承の変位速度を比較し検討する。
（2）飛来物衝突時のフレーム速度の算出
竜巻防護ネットのフレームに飛来物が衝突した際のフレームの移動速度 は，衝突前後の運動量保存則から算出する。算出にあたつて，ゴム支承のば ね剛性はフレームの移動に対し抵抗となり得るが，この影響はないものとし て扱う。飛来物はフレームの南側に衝突し，衝突後はフレームと飛来物が一体となって移動を始めるものとする。（図 1 参照）

以上の条件から，運動量保存則から以下の式が成り立つ

$$
\mathrm{mv}=(\mathrm{m}+\mathrm{M}) \quad \mathrm{V} \cdots(1)
$$

ここで， m ：設計飛来物（鋼製材）重量（ $\mathrm{m}=135 \mathrm{~kg}$ ）
v ：設計飛来物（鋼製材）衝突速度（ $\mathrm{v}=46.6 \mathrm{~m} / \mathrm{s}$ ）
M ：フレーム重量（ $\mathrm{M}=62000 \mathrm{~kg}$ ）
V ：衝突後のフレーム移動速度（m／s）

6 条（竜巻）—別添 1 —添付 3.7 —別紙 3－5

図1 飛来物衝突前後のイメージ
（1）式より，

$$
\begin{aligned}
\mathrm{V} & =\mathrm{m} \mathrm{v} /(\mathrm{m}+\mathrm{M}) \\
& =135 \times 46.6 /(135+62000) \\
& \fallingdotseq 0.1(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

上記のとおり，フレームの質量が飛来物に比べて著しく大きいことから，衝突後のフレームの移動速度は最大でも約 $0.1 \mathrm{~m} / \mathrm{s}$ となる。フレームはゴム支承に支持されていることから，ゴム支承の変位速度はフレームの移動速度と同等の速度になると想定される。
（3）ゴム支承特性試験について
ゴム支承の動的特性を把握するための試験のらち振動数依存性試験を実施している。本試験は，ゴム支承を振幅 95 mm の単振動（ $0.1 \sim 1 \mathrm{~Hz}$ の振動数） でせん断変形させた際の剛性を実測したものである。試験結果を図 2 に示す。
（図2 は「設置許可基準規則第4条に対する適合状況説明資料『設計基準対象施設について（第4条 地震による損傷の防止）』」より抜粋）

ここで，変位 $\mathrm{x}=\mathrm{A} \sin \omega \mathrm{t}$ より（ $\mathrm{A}=95 \mathrm{~mm}, \omega=2 \pi \mathrm{f}, \mathrm{f}=0.1,0.5,1.0 \mathrm{~Hz}$ ）変位速度 $\mathrm{x}=\mathrm{A} \omega \cos \omega \mathrm{t}$ であるから，変位速度の最大値は $\mathrm{A} \omega$ となる。

$$
\begin{aligned}
& \mathrm{f}=0.1 \mathrm{~Hz} \text { のとき, } \mathrm{A} \omega=95 \times 2 \pi \times 0.1 \fallingdotseq 0.06 \mathrm{~m} / \mathrm{s} \\
& \mathrm{f}=1.0 \mathrm{~Hz} \text { のとき, } \mathrm{A} \omega=95 \times 2 \pi \times 1.0 \fallingdotseq 0.60 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

よって振動数依存性試験における変位速度の最大値は約 $0.06 \sim 0.60 \mathrm{~m} / \mathrm{s}$ の範囲となる。試験結果から，この速度範囲において，せん断剛性の変化は無視できるものであることを確認している。

6 条（竜巻）一別添 1 —添付 3.7 －別紙 3－6

＊ $2 \mathrm{~Hz}, ~ 4 \mathrm{~Hz}$ の結果は補正式より算出
（c）振動数依存性試験

図2 せん断特性試験結果

6 条（竜巻）一別添 1 —添付 3.7 —別紙 3－7
（4）検討結果
飛来物衝突後のフレーム移動速度から想定されるゴム支承の変位速度は約 $0.1 \mathrm{~m} / \mathrm{s}$ 程度である。一方，振動数依存性試験結果から，ゴム支承の変位速度が約 $0.06 \sim 0.60 \mathrm{~m} / \mathrm{s}$ の速度範囲において，せん断剛性の変化は無視できる ものであることを確認している。
よって，飛来物衝突時のゴム支承の変位速度は，振動数依存性試験で確認 している速度範囲内であることから，飛来物衝突時においてもゴム支承のせ ん断剛性は適用できると考える。

2．衝突解析におけるゴム支承境界条件の影響確認
前項の検討を踏まえて，耐震評価に使用したせん断剛性を考慮した衝突解析を実施し，衝突解析におけるゴム支承せん断剛性の影響を確認する。
（1）検討方法
ゴム支承に支持される竜巻防護ネットに飛来物が衝突した場合，飛来物に よる衝撃荷重がフレームや大梁を介しとゴム支承に伝わり変形することに より，衝撃荷重が低減されることが考えられる。

この影響について，衝突解析におけるゴム支承の境界条件を耐震評価に使用した線形ばねモデルと同等としたものと，ゴム支承の影響を排除する観点 で 3 方向固定としてモデル化したものでそれぞれ衝突解析を実施し，ゴム支承と可動支承へ伝達される衝撃荷重の差を比較する。
（2）検討における解析条件
衝突解析は，解析コード「LS－DYNA」を用いて3次元 FEM モデルによりフ レームをモデル化し評価を実施する。フレームはシェル要素でモデル化し，境界条件は端部を固定条件としたものと，ゴム支承を線形ばねモデルとし，水平剛性を考慮したものでそれぞれ解析を実施する。可動支承の境界条件は，可動方向はフリー，固定方向は固定の条件とする。飛来物の衝突方向につい ては，ゴム支承の剛性が小さく，変形が大きい水平方向からの水平衝突とし，衝突位置はフレームの中央に衝突したケースを代表として実施する。検討に おける解析条件を表1に，検討に用いる衝突位置や解析モデルを図3に示す。

6 条（竜巻）一別添 1 －添付 3.7 —別紙 3－8

表1 検討における解析条件

検討ケース		（1）フレームゴム支承部を固定 としてモデル化	②）フレームゴム支承部を線形ばねモデル化
解析モデル		LS－DYNA による 3 次元 FEM モデル	
$\begin{aligned} & \text { 境 } \\ & \text { 界 } \\ & \text { 条 } \\ & \text { 件 } \end{aligned}$	ゴム支承	固定条件	線形ばねモデル＊1 水平剛性： $2.689 ~(k N / m m)$ 鉛直方向：863（kN／mm）
	可動支承	可動方向は拘束なし非可動方向は固定条件	
衝突方向		ゴム支承の剛性が小さく，変形量が大きい水平方向（西から東）からの衝突	
衝突位置		フレーム中央	

＊ 1 ：耐震評価モデルと同様の水平剛性を設定

図 3 ゴム支承の影響検討における飛来物衝突位置及び解析モデル図

6 条（竜巻）－別添 1 －添付 3.7 －別紙 3－10
（3）検討結果
検討の結果，ゴム支承と可動支承へ伝達される衝撃荷重は，ゴム支承の境界条件を固定条件とした場合に大きな反力が発生する結果となることを確認した。特にゴム支承における衝撃荷重に大きな差が生じており，ゴム支承 のせん断剛性を固定条件とすると，ゴム支承自体に発生する衝撃荷重が非常 に大きくなることを確認した。検討結果を表2に示す。
なお，今回の検討は水平方向からの衝突に対する結果であるが，ばね剛性 を考慮することによる影響は鉛直方向についても同様であり，境界条件を固定とした場合，衝撃荷重は大きくなることが想定される。

表2 ゴム支承せん断剛性影響の検討結果

評価対象			衝撃荷重（ピーク値）（kN） ゴム支承境界条件	
			固定	せん断剛性有
ゴム支承 （東側）	X 方向	＋側	456	2
		－側	－478	－4
	Y 方向	＋側	229	1
		－側	－265	－24
ゴム支承 （西側）	X 方向	＋側	429	4
		－側	－415	－2
	Y 方向	＋側	224	1
		－側	－260	－24
可動支承 （東側）	X 方向	＋側	0	0
		－側	0	0
	Y 方向	＋側	454	424
		－側	－508	－392
可動支承 （西側）	X 方向	＋側	0	0
		－側	0	0
	Y 方向	＋側	300	265
		－側	－375	－355

3．まとめ
衝突時と地震時においてゴム支承の変位速度について有意な差がないことか ら，衝突解析においても耐震評価と同等条件でゴム支承をモデル化した評価が適用可能と考えられる。
そこで，ゴム支承のせん断剛性を考慮したものと，考慮しない固定条件とし たものでそれぞれ衝突解析を実施し，衝突時におけるゴム支承のせん断剛性の影響を確認した。解析の結果から，ゴム支承を固定条件とすると特にゴム支承自体に発生する衝撃荷重が非常に大きくなることを確認した。この場合，ゴム支承の下部構造に伝達される荷重も大きくなるため，下部構造に対しても厳し い条件となることを確認した。

6 条（竜巻）一別添 1 －添付 3．7－別紙 3－11

竜巻防護ネットの構造成立性確認結果について（STEP1）

（ゴム支承の㓲性を耐震評価時に用いるせん断剛性とする場合）

1．解析条件

ゴム支承に支持されるフレームに飛来物が衝突した際の挙動を確認するため，図 1 に示すフローのとおり，ゴム支隹の剛性を考濾した衝突解析を実施する。

衝突解析は，ゴム支承による影響が最も大きくなると想定される条件（飛来物姿勢，衔突位置，飛来方向）で実施し，ゴム支承の影響を考慮した場合において，フ レームゴム支承，可動支承がフレームを支持する機能を維持可能な構造強度を有す ることを確認する。

評価対象は支持機能に大きな影響を与える部材であるフレームゴム支承と可動支承とする。解析条件とその考え方を表1， 2 及び図 2 に示す。

図 1 STEP1 構造成立性確認フロー

6 条（竜卷）－別添1—添付 3．7－別紙 3－1

表1 STEP1 の解析条件

設定項目	設定条许	考え方
$\begin{gathered} =1 \text { ム支乘 } \\ \text { の腩性 } \end{gathered}$	前辰評価で用い るせん断䨛性 （表2考共）	設計飛来物がフレームに衔突した場合に想定されるごム支承の整位速度 は，約 $0.1 \mathrm{~m} / \mathrm{s}$ と考えられる（別新 3 （䋠足 1）参照）。 この変位速度は，地震時のゴム支承の躭的特性を把握するために実施し た撕顿数依存性試験におけるごム支承の变位速度（ $0.06 \sim 0.6 \mathrm{~m} / \mathrm{s}$ ）に包絡きえることかっら，飛来物衔突にきるいても，酎鹿泙偳＂用いるごム支秉のせん断刚性を適用する。
衝姿方向	水平方向	配䒸及ひ形状から水平方审から衝突する可能珄は極めて低いと考えられ るが，鉛直速度よりも最大速度が大きく，こム支承のせん断腩性への影響が大きい方向。
㣫交位咀	フ支支承近傍	
飛来物晏颉	長辺全面で衝基	フレームには防譏板や補魥用のリブが設置をれることから，平面となる面皘櫌限られておるり，長辺全面が部材に垂亩に衝突する可能性は樓めて低いと考えるが，最もゴム支我に対し䉷しい姿勏による举動を础照する絸点からら，長辺全面が菙咨すると設定。

表2 フレームゴム支承，可動支承の結合条件

方苘	フレームごム支承	可㷲交承
X	弾性	自由
Y	弾性	刚
z	用	用

図2 飛来物衝突位直及び解析モテル図（STEP1）

6 条（竜卷）一別添 1 －添付 3.7 －別紙 3－2

2．解析結果
ワレームゴム支承の㣫突解析結果を表3；可動支承の衝突解析結果在表4に示小。 フレームゴム支承の評価対谄部材に発生する応力等は計容値を超えず，14．1．2支持部材（4）」に定みる棤造强度上の評仾方針を满足する。

可動支承についでは，評価奶象部材のうち，「レール」「レール取付ボルト」「エント プレート接合ボルト」についで竍哭值を超える結果となった。

 でもフレームゴム支承は構造強度上の評仾方針を満足し，フレームを支持する機能を維持可能な構造強度を有することを確認した。可禹支承については一部部材が并容値 を超える結果となったが，詳細設計段階では，可䡃支承めサイズアップやボルトの住㤸変吏等の対応を行うことて，䛨容值を満足させる方針とする。

䉽価対俊		評留項目	涨生值		许容供	
		酉偩	東傊			
$\begin{aligned} & 7 レ ー ム \\ & \text { ¥゙ム支冰 } \end{aligned}$	（1）\ddagger 込体		去力度（引张）	1．2 2 MPa	0． 7 MPa	$2.0 \mathrm{MPa}^{\text {\％} 1}$
		せん断ひずみ	61\％	60\％	250．\％${ }^{\text {\％}}$	
		不力度（圧榿）	2．3MPa	2． 1 MPa	$29.8 \mathrm{NPa}^{\frac{\rightharpoonup}{21}}$	
		成力度（引张）	22 MPa	2019a	$280 \mathrm{MPa}^{-62}$	
	（2）取付ばルト	具力度（組合せ）	63 MPa	5619a	$420 \mathrm{MPa}^{2 / 2}$	
	$\begin{aligned} & \text { (4)フンカーボ } \\ & \text { ルト } \end{aligned}$	它力度（組合を）	86 MPa	6819 a	$294 \mathrm{MPa}{ }^{\text {鞃 }}$	

※2：JEAG4601 に基－らく故察応力欮能IV／S の許容応力
注）上䟕の砰作項目については﨏度が小さい項目を代表して配載している。

国3フレームゴム支承の㯖造図

6 条（竜卷）一別添 1 —添付 3.7 －刮紙 3－3

表 4 STEP1 における可動支承の評価結果（注）本胓佂結果は整定値

※ 1：メーカー値でないものは，JEAG4601 に基つく許容底力犾態V $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ の許容応力
※2：組合せ応力の許容値については（ ）内に許容引張応力を記䡅
$\square:$ 支持機能に係る部材
：支持機能に係る部材のうち許容値を超えるもの
注）上記の評価項目については裕度が小さい項目を代表して記載している。

図4 可動支承の構造図

6 条（竜巻）－別添 1—添付 3．7－別紙 3－4

別紙 4

> 童巻防護ネット構造成立性確認結果について (STEP2)
> (支持部材全体の構造成立性)

1．評価方法
飛来物衝突時の竜巻防護ネット童構成する支持部材全体の構造成立性を確認す るため，図1に示すフローで評価を実施する。

STEP2－1 の条件セ，支持部材全体に対し評価を実施する。STEP2－1 の条件で評価 を実施した結果，フレームゴム支承が許容値を満足しない場合，詳細評価として STEP2－2 てコム支承のせん断剛性を考慮した解析条件にて評価を実施する。STEP2－ 2の結果を踏まえて，STEP2－3としでストッバーの評価を実施する。

図 1 STEP2 評価フロー

$$
6 \text { 条 (竜巻) 一別添 1-添付 3.7-別紙 4-1 }
$$

2．ゴム剛性の結合条件を 3 方向固定（STEP2－1）
（1）解析条件
評価はフレームに飛来物が衝突したときに，直接荷重を受けるフレーム及びそ の荷重が伝達されるフレームゴム支承，可動支隶，大梁，大梁ゴム支承，プラケ ットに対して実施する。解析条件とその考え方を表1，2 及び図 2 に示す。

表 1 STEP2－1 解析条件

設定項目	設定条件	考え，方
コム支承の劋性	3 方向周定 （表2参照）	下部構造物に伝達する衝慗荷重のビーク僆が大きくなるため
衝突方向	水平艾ひ鉛淔	
衝突位堛	7バターン	一偅突方向忙衝突面䅡が大きい鉛㨁（1）～（3），㜔害物がないNS方向南側かららの水平（4）に玑えて，榢害物があり飛来物衝突の可能性が低いと考えられるEW方向からの水平（5）～（7）も考慮する - 各部材に対する影響が大きいと考えられる率所を抽出 - フレームの曲げモーメントが最大になるフレームの中央部人の衝突 （2），（6）） －可動支承，大梁ゴム支承，ソララットかか影響を受けるように，当該部林の近傍に衝突（1）（5） －ゴム支承が大きな影響を受けるように，当該部材の近傍に衝突（3） （7）） －可動支承のスライドによるフレームの変位によりざム支承が大きな影響を受ける部位への衝突（4）
旅来物愛勢	矤边全面を衝突	竜巻防護ネットの形状，術笑時の影蕳，先行プラントの審査実紿を踈ま えて設定

表2 フレームゴム支承，可動支承の結合条件

施向	フレームゴム交事	可陲支事
X	刪	自由
Y	副	刚
Z	腩	㓮

図2 飛来物衝突位置及び解析モデル図（STEP2－1）

6 条（竜巻）一別添 1 －添付 3．7－別紙4－2
（2）解析結果
各部材の衝突解析結果を表3に示す。
全ての衝突ケースにおふて，フレーム，大梁，プラケット，大梁ゴム支承は許容値を超えず，構造強度上の評価方針を満足することを確認した。

また，フレームゴム支承は表 4 に示すとおうり，（1）（6）の衝突位置の評価条件にお。 いて，構造強度上の評価方針を満足することを確認した。（7）の衝突位置の場合には， 2 つのゴム支承が許容値を満足しないことから，詳細評価（STEP2－2）としてゴム剛性を考慮した衝突解析を行い，構造成立性の確認を行う。

可動支承については一部部材が許容値を超える結果とならたが，詳細設計段階で は，可動支隶のサイズアッブやボルトの仕様変更等の対応を行うことで，許容值を満足させる方針をする。

表3 STEP2－1 における解析結果
（注）本砰前結果は曹定値

評価処象部位		評価項目（単位）	飛来物衝突位受														袘容傜	
			（2）		（2）		（4）		（5）		（6）		（7）					
		鉊真－1	称真－2		攷洨－3		水平（NS）－ 1		本平（EW）－ 1		水平（EW）－2		水平（EX）－3					
	フレーム			23		0.46		1.66		1.41		1． 12		1.83		9．05 ${ }^{\text {\％}}$		7.0
	大葲		応力度（組合せ）（MPa）	$\begin{aligned} & \hline 260 \\ & (364) \\ & \hline \end{aligned}$		$\begin{array}{r} 160 \\ (364) \\ \hline \end{array}$		$\begin{gathered} 110 \\ (364) \end{gathered}$		$\begin{gathered} 120 \\ (364) \end{gathered}$		$\begin{gathered} 150 \\ (364) \end{gathered}$		$\begin{aligned} & \hline 130 \\ & (364) \end{aligned}$		$\begin{aligned} & \hline 120 \\ & (364) \end{aligned}$		蔡 2
ブラ	本体	虑力度（祖合せ）（ $\mathrm{MPa}_{\text {）}}$	$\begin{gathered} \hline 100 \\ (343) \\ \hline \end{gathered}$		$\begin{array}{r} 64 \\ (343) \\ \hline \end{array}$		$\begin{gathered} 45 \\ (343) \\ \hline \end{gathered}$		$\begin{gathered} 47 \\ (343) \\ \hline \end{gathered}$		$\begin{gathered} \hline 63 \\ (343) \\ \hline \end{gathered}$		$\begin{gathered} \hline 53 \\ (343) \\ \hline \end{gathered}$		$\begin{gathered} 46 \\ (343) \\ \hline \end{gathered}$		＊2	
		发力度（引强）（ SPa）$^{\text {a }}$	140		100		79		84		130		100		84		294	
			西㑡	東側	西側	東溉	西側	東側	西溉	東側	西㑡	東睹	西㑡	東側	西側	束例		
	$コ ゙ \triangle$ 体		0	0	1.4	0.9	14	0.6	0.3	0.2	0.1	0	1.2	0.9	23	3.2	2.0	
		せん斯びずみ（\％）	58	56	190	200	310	98	170	140	130	190	230	240	360	310	250	
			1.2	1.2	3.4	2.6	42.5	2.1	2.2	1.8	1.6	2.2	3.8	3.4	25	7.7	29.8	
	内部制肘	応力度（引哭）（ MPa ）	11	11	32	24	450	20	21	17	15	21	36	32	240	72	280	
	取付戈 4 个	応力度（組合せ）（MPa）	$\begin{array}{\|c\|} \hline 45 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 44 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 160 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 160 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 660 \\ \hline(392) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 95 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 140 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 120 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 100 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 160 \\ \hline 420 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 200 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 210 \\ \hline(420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 420 \\ \hline 8499 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 310 \\ (392) \\ \hline \end{array}$	\％2	
		応力夷（縕合せ）OPPa）	$\begin{array}{\|c\|} \hline 40 \\ (294) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 38 \\ (294) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 170 \\ (259) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 160 \\ (253) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 370 \\ (163) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 93 \\ (294) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 130 \\ (272) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 110 \\ (294) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 100 \\ (294) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 130 \\ (255) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 180 \\ (230) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 180 \\ (220) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 310 \\ 1102 \end{array}$	$\begin{array}{\|c\|} \hline 210 \\ (163) \\ \hline \end{array}$	产2	
	$3{ }^{\text { }}$ 体	泌力度（引强） 9 Mag ）	1.2		0.7		0.2		0.3		0.8		0.6		0.2		2.0	
		せん斯ひずみ（\％）	110		96		89		95.		170		120		91		250	
			4.7		2.8		1.8		1.9		3.2		2.3		1.9		23.1	
	内部洓板	虑力度（引弶）(MPa)	50		30		19		20		34		25		20		280	
	取付む \downarrow	応力夷（組合せ） 0 OPa）	$\begin{gathered} \hline 110 \\ (420) \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline 130 \\ (420) \\ \hline \end{array}$		$\begin{gathered} 100 \\ (420) \\ \hline \end{gathered}$		$\begin{gathered} \hline 110 \\ (420) \\ \hline \end{gathered}$		$\begin{gathered} \hline 180 \\ (420) \\ \hline \end{gathered}$		$\begin{gathered} \hline 140 \\ (420) \\ \hline \end{gathered}$		$\begin{gathered} \hline 100 \\ (420) \\ \hline \end{gathered}$		蔡2	
$\left\lvert\, \begin{aligned} & \text { 可坋 } \\ & \text { 支承 } \end{aligned}\right.$	ールブレート	応力（任㮁）（MPa）	82	23	33	22	13	13	15	14	22	24	19	18	15	14	351	
	すくさり材	店力（压縮）（MPa）	100	28	40.	27	16	16	18	17	27	30	23	22	18	17	60	
	压縮ブム		$\underline{82}$	23	33	22	13	13	15	14	22	24	19	18	15	14	50	
	ビストン	布力（曲げ） 0 Pa）	$\underline{290}$	81	120	79	48	46	54	49	80	86	66	65	53	48	280	
	座金	応力（任祍）（MPa）	260	70	100	69	41	40	47	43	70	75	58	57	46	40	335	
		応力（せんん断）（MPa）	43	20	21	12	3.5	0.1	3.8	3.3	20	10	14	11	2.7	0.4	148	
			91	43	45	24	7.3	0.2	7.9	6．9	42	21	30	23	5． 5	0.8	268	
			190	89	92	50	15	0.3	16	14	85	44	61	47	11	1.5	351	
		去力（压緰）（MPa）	93	82	62	68	51	52	61	63	160	230	95	110	54	56	351	
	v－6	広力（曲げ）（MPa）	430	320	260	250	170	160	200	210	550	740	340	390	180	180	343	
		広力（引费）（MPa）	25	12	12	6.6	2.0	0．1	2.2	1.9	11	5.8	8． 1	6.2	1.5	0.2	343	
		応力（せん䉼）（MPa）	49	40	30	33	25	25	30	31	77	110	47	56	26	28	198	
	V－取付む゙ 4 ＋	充力（引張）（MPa）	500	440	340	360	270	280	330	340	840	1220	510	610	290	300	525	
	さッドプワート挼合む゙が	底力（引根） 0 OPa）	520	380	310	280	190	170	220	230	620	810	390	430	190	190	420	
	上部接合む゙外	応力（世ん斯）（MPa）	190	160	120	140	100	100	120	130	310	460	190	230	110	110	323	
	下部接合も ${ }^{\text {d }}$ 外	応力度（組合せ）（0MPG）	$\begin{array}{\|l\|} \hline 320 \\ (273) \\ \hline \end{array}$	$\begin{array}{\|c} 200 \\ (309) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 180 \\ (376) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 140 \\ (358) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 77 \\ (416) \\ \hline \end{array}$	$\begin{array}{\|c\|} 62 \\ (412) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 91 \\ (379) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 91 \\ (374) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 280 \\ (56) \\ \hline \end{array}$	$\begin{array}{\|} \hline 320 \\ (183) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 180 \\ (264) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 190 \\ (202) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 76 \\ (405) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 70 \\ (397) \\ \hline \end{array}$	\％2	
	$\wedge^{*}-x^{\prime}$	応力（せん䉼）（ $\mathrm{MPa}_{\text {a }}$	16	10	9.1	7.0	4.0	3.2	4.7	4.7	14	16	9.3	9.5	3.9	3.5	198	
		必力（曲げ）（4Pa）	270	170	150	120	65	52	77	77	240	270	150	150	64	58	343	

※1：フレーム部材端部に生じる最大ひすみが破断ひすみを上回るが，全断面欠損に至らず部材は支
持されることを確認
※2：組合せ応力の許容値については（ ）内に許容引張応力を記機
日：支持機能に係る部材
：支持機能に倸る部材以外－を許容値を超えるるの
：支持機能に係る部材のらち許容値を超える もの
注）上記の評価項目については裕度が小さい項目を代表して記載している。また，可動支承について は一部部材が許容値を超える結果となったが，詳細設計段階では，可動支承のサイステッップや必 ルトの仕様変更等の対応を行うことで，許容値を満足させる方針とする。

6 条（竜巻）一別添 1 －添付 3.7 －別紙 4－4
表4 STEP2－1における支承部の評価

衝突位置				成来物䡓突位置						
				（1）	（2）	（3）	（4）	（5）	（6）	（7）
				結直－1	给直－2	纷直－3	水平（NS）－1	水平（EW）－1	水平（EW）－ 2	水平（EW）-3
				$\begin{gathered} \text { フレーム } \\ \text { 可動支承近傍 } \end{gathered}$	$\begin{gathered} \text { フレーム } \\ \text { 中央部 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { フレーム } \\ & \text { コム支承近俗 } \end{aligned}$	$\begin{aligned} & \text { フレーム } \\ & \text { 南側湍部 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { フレーム } \\ \text { 可動支承近傍 } \\ \hline \end{gathered}$	$\begin{gathered} \text { フレーム } \\ \text { 中央部 } \\ \hline \end{gathered}$	$\begin{gathered} \text { フレーム } \\ \text { コム支承近傍 } \end{gathered}$
衝突方向				鉛直	鉛正	给证	水平（NS）	水平（EW）	水平（EW）	水豆（EW）
評価結吴	評価対榘	構造強度上の評価方針	位置			－				
	$\begin{aligned} & \text { フレーム } \\ & \text { ョム支永 } \\ & \quad * 1 \end{aligned}$	竜巻の風王力による茄重及 ひ設計飛来物によう衝掔荷重 に対し，支持機能を維寺する ため，作用ける応力等か！「道路稿示方書•司解説 V 耐震設計雼（H14．3）」又は許容応力状㴰 IVAS の許容応力に基づく基復値を超えないことを碓認す る。	西㑡束㑡	\bigcirc	\bigcirc	許客倠を造える部材 - コム作 - 内部销板 - 取付ボルト －なかーボは	\bigcirc	\bigcirc	\bigcirc	哜察攸を超える部材 - コム体 - 取付木水 －フカカーボい
				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
		竜巻の風圧力による荷重及 び設計来来物による衝整荷重 に対し，上载するフレーム等	西侀	許察偅を超える部相 ＊2 －レーノ - シドフレート核合がハー - 下暗接合が小	\bigcirc	\bigcirc	\bigcirc	許客值を超える語材＊2 －レール - V－s取付む゙い - エドフレート㤝合だルト - 下部挍合ボハト	\bigcirc	\bigcirc
	可動支录	を文持ける機能に係る部林が支採機能を淮持するため，作用する応力が許容応力㧋態V ${ }_{A} \mathrm{~S}$ の許詹応力を超えないこと を哐認十る。	東㑡	\bigcirc	\bigcirc	\bigcirc	\bigcirc	話察㯖を短える部材 22 －レール - V－N取付ました - エトドフレー㤥合だい - 上部挍合む゙が - 下部挍合お㖇	 1才＊2 －レール - V－取付ボ性 - エンドブ V－ト接合末 叔	\bigcirc

＊1：フレームゴム支承は， 2 つのらち 1 つ以上の支承が構造強度上の評価方針を満足することを確認する
＊2：一部部材が許容値を超える結果となったが，詳細設計段階では，可動支承のサイズアップやボルトの仕様変更等の対応を行う
ことで，許容値を満足させる方針とする

6 条（竜巻）一別添 1 —添付 3.7 —別紙 4－5

3．詳細評価（ゴム支承のせん断剛性を考慮した解析）（STEP2－2）
（1）解析条件
STEP2－1における（7）の衝突位置の場合には，2つのゴム支承が許容値を満足し ないことを踏まえて，詳細評価としてざム隔性を考慮した衝突解析を行い，構造成立性の確認を行う。解析条件とをの考え方を表5，6及び図3に示す。

表5 STEP2－2解析条件

設定項目	設定条件	考え方
』ム支承の 用性	耐葻評価－c用いるせ人䉼剛性 （表6參照）	実現象に近いを考えられる条件せ砰䌁を行う韹点から，STEP1
珩突方向	水平	
衝突位粗	ご我支承近傍	STEP2－1 の（7）の衝突位置と同栐
兆来物姿勢	備边全面－て衝突	

表6フレームゴム支承，可動支承の結合条件

方向	フレームコム支承	可動支承
X	単性	白由
Y	产性	刷
z	腩	腩

飛来物
㣫突方向
（7）水平（EW）－ 3

図3 飛来物衝突位置及び解析モデル図（STEP2－2）

$$
6 \text { 条(竜巻) 一別添 1-添付 3.7-別紙 4-6 }
$$

（2）解析結果
フレームゴム支承の衝突解析結果を表7に示す。
フレームゴム支承の部材に発生する応力等は許容値を超えず，構造強度上の評価方針を満足することを碓認した。
（注）本砰伓結果は
表 7 STEP2－2におンけるフレームゴム支承の解析結果 注 撃定供

評価対象		㲕偳項目	発生䛧		许容健	
		西側	東側			
$\begin{aligned} & \text { フレーム } \\ & \exists コ \text { 支事 } \end{aligned}$			応力度（引張）	1．1 MPa	0.8 MPa	$2.0 \mathrm{MPa}^{\text {en }}$
		せん断びすみ	62 \％	62 \％	$250 \%{ }^{\text {\％}}$	
		応力度（圧縮）	2． 0 MPa	2.0 MPa	$29.8 \mathrm{MPa}^{\text {a }}$ 1	
	（2）内部備板	応力度（弓張）	19 MPa	19 MPa	$280 \mathrm{MPa}^{\text {W2 }}$	
		応力度（組合せ）	61 MPa	60 MPa	$420 \mathrm{MPa}^{\text {\％2 }}$	
	（4）アンカーボルト	応力度（組合せ）	98 MPa	82 MPa	$294 \mathrm{MPa}^{\text {\％20 }}$	

$\% 1: 「$ 道路譑示方書•同解説V耐震設計編（H14．3）」に基つく道路橋支承使览による許容値

図 4 飛来物衝突位惪及 評価対争（STEP2－2）

3．ストッズーの評価（ゴム剛性の結合条件を自由とした解析）（STEP2－3）
（1）解析条件
今回実施した（1）～（7）の衝突ケースでは，フレームゴム支承が許容値を満足しない場合は確認されなかったことから，ストッバーに支持機能が必要な状況てはないか， STEP2－2の評価で許容値を満足しない場合を想定し，ストッパーの評価を゙実施する。

飛来物の衝撃荷重に対して，コム支承による荷重を負担せずに，ストッパーに全 ての荷重を伝達する条件で評価する。解析条件とその考え方を表8， 9 及び图 5 に示す。

表 8 STEP2－3解析条件

設定項目	設定条件	考之方
さん支承の前性	自由 （表9参照）	飛来物がフレームに衝突した場合の荷重をすべて伝達し，ゴ ム支承による荷重の負担を期待せす゚，ストッバー～かっかる衝繋僻重が大きくなる条件とするため
街笑方向	水平	フレームの水平移動によるストッバーへの影響方大きい方向
衛突位涪	1バターシ	可動支承の拘束が期待せきない可動方向（NS 側）として，南側端部への衝突を考攄
旅来物姿勢	緛迅全面で衝突	竜巻㕫護ネットの形状，衝突時の影䇾，先行ブラントの審査実續を踏まえて設定

表9フレームゴム支承，可動支隶の結合条件

方向	フレームゴム支承	可钪支承
X	自由	自由
Y	自由	剛
Z	自由	滆

龱 5 可動支承の挙動確認における飛来物衝突位置及び解析モデル図（STEP2－3）

6 条（竜巻）一別添 1 －添付 3.7 －別紙 4－8
（2）解析結果
ストッパーの評価結果を図 6 及び表 10 に示す。発生する応力は許容值を満足す る。

図6 設計飛来物衝突時のフレーム変位イメージ
表10 ストッパー応力評価結果

	発生値（MPa）	許察値（ MPa ）
せん断応力	19	198
曲げ応力	228	343
組合せ応力	230	343

4．飛来物衝突後の童巻風荷重に対する評価
飛来物衝突後の竜巻による風荷重に対して，竜巻防護ネットは非常用海水ボンフ等に波及的影響を与えないことが要求される。

STEP2－1 及びSTEP2－2 の評価結果から，許容値を超えないゴム支承が少なくとも 1 つは残るため，フレーム全体が受ける竜巻による風荷重が，ゴム支承1つに対し て作用する条件で評価を実施した。評価条件は以下のとおり。

- 風速 $100 \mathrm{~m} / \mathrm{s}$（設計竜巻風速）
- 風力係数C は 2.1 とする
- 受圧面積は形状を考慮した投影面積
- フレームコム支承（西側）のみが残存し風荷重を受ける場合を代表とした
- 評侕もデル図は図7のとおり

図7 竜巻風荷重に対する評価モデル図

以上の条件で評価を行ったところ，フレームゴム支承1つが残存すえじは，竜巻風荷重を受けても当該支承に生じる応力等は許容値以下となり，竜巻風荷重に対する支持機能を維持することを確認した。評価結果を表11に示す。
（注）本群侕結果杜
表11 童巻風荷重に対するフレームコム支承の評価結果軗定植

評価対象		評価項目	発生値	許容值	
		東側			
$\begin{aligned} & -7 レ ー ム \\ & -1 \Delta \text { 支窂 } \end{aligned}$	（1）\ddagger 体		店力度（引根）	0.4 MPa	$2.0 \mathrm{MPa}^{\%{ }^{\text {\％}}}$
		せん断びずみ	130%	$250 \%{ }^{\text {\％1 }}$	
		応力度（圧綋）	1.2 MPa	$29.8 \mathrm{MPa}^{\text {\％}}$	
	（2）内部鋼板 （3）取付ボルト （4）アンカーボルト	応力度（引張）	11 MPa	$280 \mathrm{MPa}^{\text {as }}$	
		応力度（組合せ）	100 MPa	$420 \mathrm{MPa}{ }^{* 2}$	
		応力度（組合せ）	73 MPa	$294 \mathrm{MPs}^{\text {\％}}$	

※1：「道路橋示方書•同解説V耐震設計緹（H14．3）」に基らく道路橋支承便䙿による許客値

$$
6 \text { 条(竜巻) - 別添 1-添付 3.7-別紙 4-10 }
$$

5．STEP2 における構造成立性見通し
（1）～（7）全ての衝突位置において，フレーム，大梁，プラケット，大梁ゴム支承 は許容値を超えず，構造強度上の評価方針を満足することを確認した。

フレームゴム支承については，STEP2－1 においてフレームゴム支承近傍に設計飛来物が水平に衝突する場合のみ（7 の の衝突位置），フレームゴム支承が 2 つ許容値 を満足しない結果となったが，STEP2－2 において詳細評価を実施し，フレームゴム支承が構造強度上の評価方針を満足すること在確認した。

また，飛来物衝突後には，構造健全性を保つゴム支承が少なくとも1つ残存する ことから， 1 つのゴム支承にて竜巻による風荷重及び常時作用する荷重に対し，フ レームの支持機能を維持することを確認した。

さらに，STEP2－1 及ぴSTEP2－2 の評価において，許容値を超えないゴム支承が 1 つ残存するため，ストッバーに支持機能が必要な状況ではないが，STEP2－3として飛来物の衝撃荷重に対してフレームコム支承による荷重を負担せずに，ストッパー に全ての荷重を伝洼する条件で評価を実施し，構造強度上の評価方針を満足するこ とを確認した。

可動支承につけては一部部材が許容値を超える結果とならたが，詳細設計段階で は，可動支承のサイズアッブやボルトの仕様変更等の対応を行うことで，許容値を満足させる方針とする。

以上より，竜巻防護ネットの支持部材は構造強度上の評価方針を満足する方針で ある。よつて，飛束物衝突時及び衝突後におい，て竜巻防護ネットの支持機能を維持吋るため，構造成立性の見通しがあることを確認した。

詳細設計段階における説明事項（EPまとめ資料抜粋）

別紙 6
設置許可段階と詳細設計段階での説明事項
3 項の説明事項 No．に対応
設置許可段階では，【STEP1】及び【STEP2】の評価のとおり，竜巻防護ネットの構造成立性にかかわる代表的な評価結果をもつて，構造成立性の見通しを説明した。

詳細設計段階では現実に即した解析モデルとして，フレームゴム支承の特性を考慮 した解析モデルを適用し，評価を実施する方針とする。

設置許可段階での構造成立性の見通し時に用いた評価フローを組み替え，詳細設計段階の評価フロー（基本ケース）を以下のとおり設定する。

可動支承の評価対象部材について，設置許可段階における構造成立性の見通し確認 において，可動支承近傍へ飛来物が衝突した場合，許容値を超える結果となっている が，詳細設計段階では，吅動支承のサイズアッブやボルトの仕様爱更等の対応を行う ことで，許容値を満足させる方針とする。
基本ケースによる各部材の設計を実施した後に，不確かさケースの確認として，ゴ ム支承の剛性のばらつきを考慮した解析モデルの設定，衝突姿勢の影響を考慮した衝突解析（飛来物の長辺衝突）を実施し，評価を実施する方針とする。

図1 詳細設計段階における評価フロー
6 条（竜巻）一別添 1—添付 3．7－別紙 6－1

表1 設置許可段階及び詳細設計段階での説明事項（1／3）										
評価対象	支持部材の設計方針	構造強度上の性能目標	構造強度上の評価方針	評価部材	主な機能損傷モード		許容限界	説明段階		
					作用荷重	限界状態		E P（溝造成立性見通し）		C P
								STEP 1	STEP2	
	支持部材は設計竜巻 の風圧力による荷重，飛来物による衝撃荷重及びその他の荷重に対し，飛来物 が非常用海水ボンプ等人衝突することを防止するために，飛来物が支持部材を構成する主要な構造部材を貫通せず，上載 するネット及び防護板を支持する機能を維持可能な構造強度 を有し，非常用海水 ポンブ等に波及的影響を与えないため に，支持部材を構成 する部材自体の転倒及び脱落を生じない設計とする。	［貫通】 設計飛来物の支持部材～の衝突に対 して，衝突箇所で貫通させない。 【支持機能】	設計飛来物が支持部材に衝突し た場合に，衝突箇所に発生する衝撃荷重によって貫通が生じな いように，フレームの鋼材が終局状態に至るようなひずみを生 じないことを確認する。 竜巻の風圧力による荷重及び設計飛来物による衝撃荷重に対 し，上載するネットを支持する ため，フレームの棡材が終局状態に至るようなひずみを生じな いことを確認する。	フレーム	- 自重 - 上載荷亘 （ネット） - 竜巻風荷重 - 衝撃荷亘	衝突面の全断面欠損	NEI07－13 に TF （多軸性係数） を考慮して設定 した破断ひずみ以下（LS－DYNA による衝突解析 によりひずみ量 を算出）	－	(STEP2-1)	\bigcirc （基本ケース及び 不陮かさケース）
		【支持機能】支持部材は設計竜巻の風圧力による荷重，飛来物によ る衝撃荷重及びそ の他の荷重に対 し，上載するネッ ト及び防護板を支持する機能を維持可能な構造強度を有する。	竜巻の風圧力による荷重及び設計飛来物による衝䊖荷重に対 し，上載するフレーム等を支持 する構造強度を維時するため，作用する応力が許容応力状態IV S の許容応力を超えないことを確認する。	大梁	- 自重 - 上載荷亘（ネ ット，フレー ム） - 竜巻風荷重 - 衝撃荷亘	終局状態	発生する応力が JEAG 4601 のIV AS 以下			－
				$\begin{gathered} \text { ブラケット } \\ \hline \begin{array}{c} \text { ブラケット } \\ \text { アンカー } \\ \text { ボルト } \end{array} \end{gathered}$	- 自重 - 上載荷亘 （ネット，フ レーム，大梁） - 竜卷風荷重 - 衝撃荷亘			－	(STEP2-1)	$\begin{aligned} & \text { (基木本ケース及び } \\ & \text { 不椎かさケーズ) } \end{aligned}$

※ EP：設置許可段階 CP：詳細設計段階
6 条（竜巻）一別添 1 －添付 3.7 －別紙 6－2
表1 設置許可段階及び詳細設計段階での説明事項（2／3）

評価対象	支持部材の設計方針	構造強度上の 性能E標	構造強度上の評価方針	評価部材		主な機能損傷モード		許容限界	説明段階＊			
						EP（構造成立性見通し）			C P			
						作用荷重	限界状態					
						STEP1				STEP2		
$\begin{aligned} & \text { 童 } \\ & \text { 表 } \\ & \text { 護 } \end{aligned}$	支持部材は設計竜巻の風圧力による荷重，飛来物による衝撃荷重及びその他の荷重に対し，飛来物が非常用海水 ポンプ等へ衝突す ることを防止する ために，飛来物が支持部材を構成する	【支持機能】支持部材に設計竜巻の風圧力による荷重，飛来物によ	竜巻の風圧力による荷重及 び設計飛来物による衝撃荷重に対し，支持機能を維持す		ゴム体 内部鋼板 大梁ゴム支 承取付ボル ト		- 自重 - 上載荷 （ネット，フ レーム，大梁） - 竜巻風荷重 - 衝撃荷重	終局状態	－発生する引張応力が道路橋支承便覧の許容値以下 －発生するせ ん断ひずみが道路橋支承便覧の許容侹以下 －発生する応力が JEAG 4601 の $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ 以下	-	(STEP2-1)	3 （基本ケース及び 不確かさケース）
$\begin{aligned} & \text { 兴 } \\ & \text { 荿 } \\ & \text { 持 } \\ & \text { 部 } \\ & \text { 材 } \end{aligned}$	主要な構造部材を貫通せず，上載する ネット及び防護板 を支持する機能を維持可能な構造強度を有し，非常用海水ポンプ等に波及的影響を与えない ために，支持部材を構成する部材自体 の転倒及び脱落を生じない設計とす る。	る衝撃荷重及びそ の他の荷重に対 し，上載するネッ ト及び防譩板を支持する機能を維持可能な構造強度を有する。	るため，作用する応力等が「道路橋示方書•同解説V耐震設計編（H14．3）」又は許容応力状態 $V_{A} S$ の許容応力に基づく基準値を超えないこ とを確認する。		ゴム体 内部鋼板 取付ボルト アンカーボルト	- 自重 - 上載荷 （ネット，フ レーム） - 竜巻風荷重 - 衝撃荷重	終局状態	－発生する引張応力が道路橋支承便覧の許容値以下 －発生するせ ん断ひずみが道路橋支承便覧の許容狿以下 －発生する応力が JEAG 4601 のIVAS 以下	\bigcirc	$\begin{gathered} \bigcirc \\ (\text { STEP2-1) } \\ (\text { STEP2-2) } \end{gathered}$	0 （基本ケース及び 不確かさケース）	

＊1：フレームゴム支承は， 2 つのうち 1 つ以上の支承が構造強度上の評価方針を満足することを確認する。許容限界を満足しない結果となつた場合，二次的影響評価を実施する。
＊2：不確かさケースではストッパーに支持機能を期待する場合があり得る

[^0]6 条（竜巻）一別添 1 —添付 3.7 －別紙 6－3
表 1 設置許可段階及び詳細設計段階での説明事項（3／3）

[^1]注）可動支承については一部部材が許容値を超える結果となったが，詳細設計段階では，可動支承のサイズアップやボルトの仕様変更等の対応を行うことで，許容値を満足させる方針とする。
以上

6 条（竜巻）一別添 1 —添付 3.7 —別紙 6－4

詳細設計段階での説明事項及び申送り事項への対応方針

竜巻防護ネットの支持部材の評価フロー図に対して，詳細設計段階における説明事項及び申送り事項への対応方針を整理した結果について図1及び表1に示す。

注記＊1：衝突解析において，以下を考慮し解析ケースを設定する。

考慮する事項	$\begin{gathered} \text { 基本ケース } \\ \text { における設定 } \\ \text { 【(2)】*2 } \end{gathered}$	不確かさケース における設定【（4】 】 ${ }^{2}$	
解析モデルにおける ゴム支承の剛性 【（1）${ }^{* 2}$	設計値を設定	不確かさ ケース（1）	剛性のばらつきを考慮 した値を設定【c】＊2
衝突解析における衝突姿勢【b】 ${ }^{2}$	短辺衝突	不確かさ ケース（2）	長辺衝突による影響を確認

＊2：【】内は表1に示す各No．に対応

図1 竜巻防護ネットの支持部材の評価フロー図
表1 詳細設計段階における対応事項整理結果（1／2）

	N xto to っ怅䍚相装快地觜入入议祸紧 6 境虾莘ふ海害皆 6 ․ ．葉 華 蝟收量蚻 行分華 ふ6 势迷 6込坝庰 温行行达犬行北 		न x^{6} 対。路 山墲 水进怅純入 6 崄 将－苪Nの一11标NNN条政，つ 䙂 N 6 H 6 踻 <6 」回步似 进瞺双回爰絡 岡 －人 ※ 叫	
		，蒝 㴆㳨 㥸 6 小N 林罧郎 4（a）x x 挜ロロ ${ }_{6} \wedge \wedge$ 䫁宛 筑思 6 满苗嬶 䋂縕䋂	む回路絰 \＆ひ ふ进く心带好 さ状然水边 噮 	
$\stackrel{\circ}{2}$	Θ	（1）	（a）	\oplus
舞			楊 肺	

表1 詳細設計段階における対応事項整理結果 $(2 / 2)$

分類	No．	内容	対応方針	資料等への反映
$\begin{gathered} \text { 申送り } \\ \text { 事項 } \end{gathered}$	a	飛来物衝突時の上向反力に対して，フレ ームが浮き上がらないことを詳細設計段階で説明する。	「6．評価ケースの設定方針及び構造成立性の確認」 にて，設置許可段階において厳しい評価結果となった フレームゴム支承近傍への飛来物衝突に対して，衝撃荷重による上向きの反力によりフレームゴム支承に生 じる引張応力度が許容値を満足し，フレームの浮き上 がりによる損傷が生じないことを示した。	「補足－710－1 $4.16 . \quad$ 評価 ケースの設定方針及び構造成立性の確認」
	b	衝突方向に対する影響について，ガイド の考え方を踏まえて詳細設計段階で説明する。	「6．評価ケースの設定方針及び構造成立性の確認」 にて，「原子力発電所の竜巻影響評価ガイド」を踏まえ た衝突解析の評価ケースの設定の考え方について示し た。 なお，結果については，「VI－3－別添 1－2－1－1 竜巻防護ネットの強度計算書」及び「補足－710－1 竜巻への配慮が必要な施設の強度に関する説明書の補足説明資料」に整理し説明する。	「VI－3－別添 1－2－1－1 竜巻防護ネットの強度計算書」及 び「補足－710－1 竜巻への配慮が必要な施設の強度に関 する説明書の補足説明資料」
	c	ゴム支承の衝撃荷重に対する試験内容 について，詳細設計段階で説明する。	「5．衝突解析に係るゴム支承の剛性の設定方針」に て，衝突解析に資するゴム支承の鉛直剛性に係る特性試験を実施し，試験を踏まえたゴム支承の剛性の設定方針を示した。	「補足－710－14．15．衝突解析に係るゴム支承の剛性 の設定方針」

[^0]: ＊2：不確かさケースではストッパーに支持機能を期待する場合があり得る
 ※ EP：設置許可段階 \quad CP：詳細設計段階

[^1]: ※ EP：設置許可段階 CP：詳細設計段階

