原子力規制委員会 殿

茨城県那珂郡東海村大字舟石川 765 番地 1国立研究開発法人日本原子力研究開発機構理事長 児玉 敏雄 （公印省略）

国立研究開発法人日本原子力研究開発機構原子力科学研究所 T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更認可申請書の一部補正について

令和 2 年 6 月 12 日付け令 02 原機（科保）0 3 8をもつて申請した国立研究開発法人日本原子力研究開発機構原子力科学研究所TRACY（過渡臨界実験装置）施設に係る廃止措置計画の変更認可申請書を下記のとおり一部補正い たします。

次の事項に関し，変更認可申請書の別紙を別紙1 のとおり改める。
（1）令和 2 年 8 月 21 日付け原子炉設置変更許可に伴う敷地図の変更
（2）記載の適正化

別紙1

国立研究開発法人日本原子力研究開発機構
 原子力科学研究所 T R A C Y（過渡臨界実験装置）施設に係る
 廃止措置計画の変更
 新旧対照表

令和 2 年 12 月

国立研究開発法人日本原子力研究開発機構

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
1．解体する試験研究用等原子炉施設及びその解体の方法 1．1 解体する原子炉施設 国立研究開発法人日本原子力研究開発機構（以下「原子力機構」という。）の原子力科学研究所では，「核原料物質，核燃料物質及び原子炉の規制に関する法律」 （昭和32年6月10日法律第166号。以下「原子炉等規制法」という。）に基づき許可 を受けた原子炉設置変更許可申請書（平成27年7月28日付け原規規発第1507285号） に記載しているとおり，複数の原子炉施設の設置許可を受けている。 本廃止措置計画により廃止措置を申請する原子炉施設は，昭和63年10月7日に設置変更許可を受けたTRACY（過渡臨界実験装置）施設（以下「TRACY」と いう。）である。T R A C Y の設置変更許可の経緯を表 1 ，主要な仕様を表 $\underline{\text { に示 }}$ す。 TRACYは，低濃縮ウラン硝酸水溶液体系での臨界を超える事象を模擬した過渡出力実験を行い，溶液燃料及びそれに内在する放射性物質の挙動を評価するとと もに，万一臨界を超える事象が起きても，放射性物質が施設内に閉じ込められるこ とを実証するための装置として建設された。T R A C Y は，平成7年12月20日に初臨界を達成した後，平成23年3月8日までの期間に445回の運転を行った。 TRACYの敷地内配置，建家配置，建家平面図，炉心概要及び系統概要をそれ ぞれ図 1 ，図 2 ，図 3 ，図 4 ，図 5 及び図 6 に示す。 T R A C Y は，同じ建家内に設置されているSTACY（定常臨界実験装置）施設（以下「S T A C Y 」という。）と一部の設備を共用している。T R A C Y の設備区分を表 3 及び図 7 に示す。	四 廃止措置の対象となる試験研究用等原子炉施設及びその敷地 1．廃止措置対象施設 国立研究開発法人日本原子力研究開発機構（以下「機構」という。）の原子力科学研究所では，「核原料物質，核燃料物質及び原子炉の規制に関する法律」（昭和 32年6月10日法律第166号。以下「原子炉等規制法」という。）に基づき許可を受け た原子炉設置変更許可申請書（平成27年7月28日付け原規規発第1507285号）に記載 しているとおり，複数の原子炉施設（J R R－3，J R R－4，N S R R 等）の設置許可を受けている。 本廃止措置計画により廃止措置を申請する原子炉施設は，昭和63年10月7日に設置変更許可を受けた T R A C Y（過渡臨界実験装置）施設（以下「 T R A C Y 」と いう。）である。T R A C Y の設置変更許可の経緯を表 $4-1$ に，廃止措置計画認可及び変更の経緯を表4－2に，主要な仕様を表 $4-3$ に示す。 T R A C Y は，低濃縮ウラン硝酸水溶液体系での臨界を超える事象を模擬した過渡出力実験を行い，溶液燃料及びそれに内在する放射性物質の挙動を評価するとと もに，万一臨界を超える事象が起きても，放射性物質が施設内に閉じ込められるこ とを実証するための装置として建設された。TRACYは，平成7年12月20日に初臨界を達成した後，平成23年3月8日までの期間に445回の運転を行った。 T R A C Y の建家配置，建家平面図，炉心概要及び系統概要をそれぞれ図4－1，図 $4-2$ ，図 $4-3$ ，図 $4-4$ 及び図 $4-5$ に示す。 T R A C Y は，同じ建家内に設置されているS T A C Y（定常臨界実験装置）施設（以下「 S T A C Y 」という。）と一部の設備を共用している。 T R A C Y の設備区分を表 $4-4$ 及び図 $4-6$ に示す。 2．廃止措置対象施設の敷地 敷地内には，正門の南東約 450 m に J R R -2 原子炉施設が設けられ，その周辺 にはJRR－3（南約 200 m ）及びJRR－4（南約 300 m ）の各施設がある。ま た，正門の東約 800 m の海岸寄りの位置にNSRRが設けられている。この周辺に はT C A（南約 300 m ），F C A（南約 350 m ），S T A C Y 及びT R A C Y（南約 900 m），並びに共通施設としての放射性廃棄物の廃棄施設である放射性廃棄物処理場 （南約 600 m ）の各施設がある。N S R R の北約 $1,000 \mathrm{~m}$ には，第 2 保管廃棄施設及 び使用済燃料貯蔵施設（J R R－ 3 原子炉附属施設）がある。また，正門の東約 250 mには，気象観測塔址がある。 主要な原子炬施設から西側敷地境界までの最短距離は，JRR－2が約 320 m ， JRR－3が約 340 m ，J R R－4 が約 330 m ，N S R R が約 580 m ，S T A C Y 及 びTRACYが約480mである。 N S R R の放水口はN S R R 建家の東側海岸にあり，その南方約 90 m の海岸に F C A及びT C Aが共用している放水口，さらに南方約 560 m の海岸にその他の原子炬施設の放水口がある。	法令改正に伴ら見直し 記載の適正化 記載の適正化 記載の適正化，廃止措置計画認可及び変更の経緯の追加 法令改正に伴う見直し，記載の適正化 記載の適正化 法令改正に伴う追加

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

\begin{tabular}{|c|c|c|}
\hline 変 更 前 \& 変 更 後 \& 備 考 \\
\hline \begin{tabular}{l}
1.2 廃止措置の基本方針 \\
T R A C Y の廃止措置における基本方針は，次のとおりである。 \\
（1）T R A C Y の廃止措置は，原子炉等規制法及び「試験研究の用に供する原子炉等の設置，運転等に関する規則」（昭和32年総理府令第 83 号。以下「試験炉規則」 という。）により，本廃止措置計画認可以降，本廃止措置計画に基づき実施する。 \\
（2）残存する各設備•施設について，廃止措置の各過程に応じて要求される機能を原子力科学研究所原子炉施設保安規定（以下「保安規定」という。）に基づき維持し，廃止措置期間中のTRACYの放射性物質の閉じ込め管理，放射線管理，廃棄物管理等を適切に行う。 \\
1．3 廃止措置計画の概要 \\
T R A C Y の廃止措置は，当面の間，解体撤去に着手せず，放射性物質の閉じ込 め管理を実施する。10年以上放射能を減衰させた後，T R A C Y 固有設備を解体撤去する。表 3 に T R A C Y の設備一覧及び解体範囲を示す。 \\
また，TRACYは，同じく溶液燃料を使用するSTACYとともにNUCEF （燃料サイクル安全工学研究施設）建家に設置されている。 \\
両施設共用の設備として核燃料物質取扱設備及び貯蔵設備，換気空調設備，放射線管理設備，廃棄物処理設備等がある。これら共用設備は，T R A C Y が廃止措置 に移行した後も，S T A C Y の運転•保守に必要な設備として継続使用される。こ のうち，T R A C Y の廃止措置に必要のない共用設備は，本廃止措置計画の認可を もって，S T A C Y 固有の設備とする。また，T R A C Y の廃止措置に必要な共用設備は，廃止措置の終了後に S T A C Y 固有の設備とする。以上のとおり，これら共用設備は，段階的に全て S T A C Y 固有の設備とするため，本廃止措置では解体 の対象としない。同様に，原子力科学研究所の原子炉施設の共通施設である放射線管理施設の屋外管理用の主要な設備のうちモニタリングポスト，モニタリングステ ーション，中央監視装置及び環境放射線観測車は，T R A C Y の廃止措置終了後も他の原子炉施設の共通施設として引き続き使用するため，解体の対象としない。ま た，原子力科学研究所の原子炉施設の共通施設である放射性廃棄物処理場（以下「処理場」という。）は，T R A C Y の廃止措置で発生する放射性廃棄物の引き渡しが全て完了することでT R A C Y の共通施設から解除し，処理場は他の原子炉施設の共通施設として管理する。また，処理場に引き渡した放射性廃棄物は，処理場が管理する。 \\
T R A C Y で使用した溶液燃料及び溶解前のウラン酸化物燃料は，S T A C Y と共用していたが，本廃止措置計画の申請に先立ち，S T A C Y に移管されている。
\end{tabular} \& \begin{tabular}{l}
なお，NSRRの北約 250 m には日本原子力発電株式会社の敷地が，正門の北東約 400 m には東京大学大学院工学系研究科原子力専攻の敷地がある。 \\
原子力科学研究所の敷地図を図4－7に示す。 \\
3．廃止措置の基本方針 \\
TRACYの廃止措置における基本方針は，次のとおりである。 \\
（1）TRACYの廃止措置は，原子灲等規制法及び「試験研究の用に供する原子炉等の設置，運転等に関する規則」（昭和32年総理府令第 83 号。以下「試験炉規則」 という。）により，本廃止措置計画認可以降，本廃止措置計画に基づき実施する。 \\
（2）残存する各設備•施設について，廃止措置の各過程に応じて要求される性能を原子力科学研究所原子炉施設保安規定（以下「保安規定」という。）に基づき維持し，廃止措置期間中のTRACYの放射性物質の閉じ込め管理，放射線管理，廃棄物管理等を適切に行う。 \\
4．廃止措置計画の概要 \\
TRACYの廃止措置は，当面の間，解体撒去に着手せず，放射性物質の閉じ込 め管理を実施する。10年以上放射能を減衰させた後，T R A C Y 固有設備を解体撤去する。表 \(4-4\) にTRACYの設備一覧及び解体範囲を示す。 \\
また，TRACYは，同じく溶液燃料を使用するSTACYとともにNUCEF （燃料サイクル安全工学研究施設）建家に設置されている。 \\
両施設共用の設備として核燃料物質取扱設備及び貯蔵設備，換気空調設備，放射線管理設備，廃棄物処理設備等がある。これら共用設備は，T R A C Y が廃止措置 に移行した後も，S T A C Y の運転•保守に必要な設備として継続使用される。こ のらち，T R A C Y の廃止措置に必要のない共用設備は，本廃止措置計画の認可を もって，S T A C Y 固有の設備とする。また，T R A C Y の廃止措置に必要な共用設備は，廃止措置の終了後に S T A C Y 固有の設備とする。以上のとおり，これら共用設備は，段階的に全てS T A C Y 固有の設備とするため，本廃止措置では解体 の対象としない。同様に，原子力科学研究所の原子炉施設の共通施設である放射線管理施設の屋外管理用の主要な設備のらちモニタリングポスト，モニタリングステ ーション，中央監視装置及び環境放射線観測車は，T R A C Y の廃止措置終了後も他の原子炉施設の共通施設として引き続き使用するため，解体の対象としない。ま た，原子力科学研究所の原子炉施設の共通施設である放射性廃棄物処理場（以下「処理場」という。）は，T R A C Y の廃止措置で発生する放射性廃棄物の引き渡しが全て完了することでT R A C Y の共通施設から解除し，処理場は他の原子炬施設の共通施設として管理する。また，処理場に引き渡した放射性廃重物は，処理場が管理する。 \\
T R A C Y で使用した溶液燃料及び溶解前のウラン酸化物燃料は，STACYと共用していたが，本廃止措置計画の申請に先立ち，S T A C Y に移管されている。
\end{tabular} \& 記載の適正化

法令改正に伴ら見
直し

記載の適正化

記載の適正化

\hline
\end{tabular}

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
TRACY固有の設備のらち，炉室（T），炉下室（T）及び炉室（T）換気空調設備 については，S TACYの原子炉建家及び管理区域の一部であるため，解体の対象 としない。これらの設備は，廃止措置の終了に合わせてS T A C Y 設置変更許可申請によりS T A C Y 固有の設備とする。 以上を踏まえ，TRACY廃止措置の工程は，下記に示すとおり，2段階に分け て計画する。 （第 1 段階） （1）TRACYで使用した溶液燃料及び溶解前のウラン酸化物燃料は，本廃止措置 に先立ちSTACYに移管されているため，STACYと共用している核燃料物質取扱設備及び貯蔵設備等は，以後S T A C Y 固有設備となる。（表 $\underline{3}$ 参照） （2）T R A C Y の原子炉機能停止措置として原子灲運転に不可欠な溶液燃料の移送 を不可とするため，T R A C Y 固有の溶液燃料貯槽を含む供給設備（II）と核燃料物質取扱設備及び貯蔵設備とを接続している配管を切断し，閉止する。また， STACYとTRACYの系統隔離のため，両者を接続する配管を切断閉止す る。（図5及び図 $\underline{\text { 参照）}}$ （3）T R A C Y 固有設備として残存する機器配管の汚染拡大防止のため，系統の閉 じ込め管理を行う。また，第2段階の解体工事に従事する作業員の被ばく低減 のため，放射化物及び核分裂生成物の放射能を減衰させる期間（10年以上）を設ける。 （第2段階） （4）T R A C Y 固有設備を解体撤去する。なお，S T A C Y と共用しているNU C EF建家（格納施設である炉室（T）及び炉下室（T）を含む。），換気空調設備，放射線管理施設，放射性廃安物の廃棄施設（T R A C Y 固有の槽ベント設備C を除く。）等の解体は行わない。（表 $\underline{\text { 参照）}}$ 上記 2 段階の廃止措置期間中に機能を維持すべき設備については，その機能を維持する期間を定め，適切に管理する。 この 2 段階による廃止措置計画の認可申請に当たり，今回，廃止措置計画の基本方針及び全体工程，並びに，第1段階（原子炉の機能停止措置及びSTACYとの系統隔離）に係る詳細事項を記載する。第 2 段階に係る詳細事項については，解体撤去の工程等を碓定次第，本廃止措置計画の変更認可申請を行うこととする。	TRACY固有の設備のうち，炉室（T），炉下室（T）及び炉室（T）換気空調設備 については，S TACYの原子炉建家及び管理区域の一部であるため，解体の対象 としない。これらの設備は，廃止措置の終了に合わせてSTACY設置変更許可申請によりS T A C Y 固有の設備とする。 以上を踏まえ，T R A C Y 廃止措置の工程は，下記に示すとおり，2段階に分け て計画する。 （第1段階） （1）TRACYで使用した溶液燃料及び溶解前のウラン酸化物燃料は，本廃止措置 に先立ちS T A C Y に移管されているため，S T A C Y と共用している核燃料物質取扱設備及び貯蔵設備等は，以後 S T A C Y 固有設備となる。（表 $4-4$参照） （2）TRACYの原子炉機能停止措置として原子炉運転に不可欠な溶液燃料の移送 を不可とするため，T R A C Y 固有の溶液燃料貯槽を含む供給設備（II）と核燃料物質取扱設備及び貯蔵設備とを接続している配管を切断し，閉止する。また， STACYとTRACYの系統隔離のため，両者を接続する配管を切断閉止す る。（図4－4及び図 $4-5$ 参照） （3）T R A C Y 固有設備として残存する機器配管の污染拡大防止のため，系統の閉 じ込め管理を行う。また，第2段階の解体工事に従事する作業員の被ばく低減 のため，放射化物及び核分裂生成物の放射能を減衰させる期間（10年以上）を設ける。 （第2段階） （4）T R A C Y 固有設備を解体撤去する。なお，S T A C Y と共用しているNUC EF建家（格納施設である炉室（T）及び炉下室（T）を含む。），換気空調設備，放射線管理施設，放射性廃棄物の廃棄施設（T R A C Y 固有の槽ベント設備C を除く。）等の解体は行わない。（表 $4-4$ 参照） 上記 2 段階の廃止措置期間中に性能を維持すべき施設については，その性能を維持する期間を定め，適切に管理する。 この 2 段階による廃止措置計画の認可申請に当たり，今回，廃止措置計画の基本方針及び全体工程，並びに，第1段階（原子炉の機能停止措置及びS T A C Y との系統隔離）に係る詳細事項を記載する。第2段階に係る詳細事項については，解体撤去の工程等を確定次第，本廃止措置計画の変更認可申請を行うこととする。 五 解体の対象となる施設及びその解体の方法 1．解体の対象となる施設 解体対象施設は，「四 廃止措置の対象となる試験研究用等原子炬施設及びその	記載の適正化 記載の適正化 記載の適正化 法令改正に伴う見直し 法令改正に伴う追加

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

敷地」に示すとおり，T R A C Y 固有の設備である。なお，S T A C Y と共用して いるNUCEF建家（格納施設である炉室（T）及び炉下室（T）を含む。），換気空調設備，放射線管理施設，放射性廃棄物の廃棄施設（T R A C Y 固有の槽ベント設備Cを除く。）等の解体は行わず，廃止措置の終了に合わせてS T A C Y 設置変更許可申請によりS T A C Y 固有の設備とする。

1． 4 解体の方法
（第1段階）
原子炉機能停止措置として，T R A C Y の溶液燃料を移送•一時貯留する供給設備（II）と，溶液燃料を調製•貯蔵する核燃料物質取扱設備及び貯蔵設備を接続して いる配管の一部を切断及び閉止する。また，S T A C Y と T R A C Y の系統隔離の ため，両者を接続する配管を切断閉止する。これら対象配管の切断閉止箇所を図5及び図6に示す。また，対象配管リストを表4 に示す。
切断閉止作業は，下記（1）③に示す方法又はこれらの組合せにより行う。
（1）閉止フランジの取付けが可能な箇所については，閉止フランジにより閉止する。
（粉塵発生無し）
（2）小口径配管は，パイプカッター等で切断し，双方の配管を溶接等により閉止する。 （粉塵発生量小）
（3）大口径配管その他パイプカッター等による作業が困難な箇所については，電動工具等により切断し，双方の配管を溶接等により閉止する。（粉塵発生量大）

また，作業前に汚染拡大防止のための措置を講じるとともに，必要に応じて集塵装置により，切断作業で発生する粉塵を捕集する。集塵装置の使用時は，排気流量又はフィルタ差圧を監視することにより，集塵機能の維持を図る。

（第2段階）

廃止措置の第 2 段階における T R A C Y 固有設備全体（機器の総重量約 220 t，こ のうち放射性廃棄物でない廃棄物の重量は約 45 t ，図 $4 ~ 6$ 参照）の解体撤去につ いては，既存の一般的な工法及び従来の保守管理の範囲内で実施することが可能で ある。第2段階に係る詳細事項については，解体撤去の方法等を確定次第，本廃止措置計画の変更認可申請を行うこととする。

その他，TRACYの解体対象機器が設置されている炉室（T）及び炉下室（T） は，S T A C Y の炉心が設置されている炉室（ S ）及び減速材を炉心に供給するため の機器が設置されている炉下室（S）と隣接して設置されている。このため，解体工事により発生するノイズや振動がS T A C Y の運転に影響を及ぼすことがないよ う，S T A C Y の運転中は，ノイズや振動が発生するおそれのある電動工具等を用 いた解体工事は行わない。

2．解体の方法

（第1段階）
原子炉機能停止措置として，T R A C Y の溶液燃料を移送•一時貯留する供給設備（II）と，溶液燃料を調製•貯蔵する核燃料物質取扱設備及び貯蔵設備を接続して いる配管の一部を切断及び閉止する。また，S T A C Y と T R A C Y の系統隔離の ため，両者を接続する配管を切断閉止する。これら対象配管の切断閉止箇所を図 4 － 4 及び図 $4-5$ に示す。また，対象配管リストを表 $5-1$ に示す。
切断閉止作業は，下記①～③に示す方法又はこれらの組合せにより行う。
（1）閉止フランジの取付けが可能な箇所については，閉止フランジにより閉止する。 （粉塵発生無し）
（2）小口径配管は，パイプカッター等で切断し，双方の配管を溶接等により閉止する。 （粉塵発生量小）
③大口径配管その他パイプカッター等による作業が困難な箇所については，電動工具等により切断し，双方の配管を溶接等により閉止する。（粉塵発生量大）

また，作業前に汚染拡大防止のための措置を講じるとともに，必要に応じて集塵装置により，切断作業で発生する粉塵を捕集する。集塵装置の使用時は，排気流量又はフィルタ差圧を監視することにより，集塵機能の維持を図る。

（第2段階）

廃止措置の第 2 段階における T R A C Y 固有設備全体（機器の総重量約 220 t，こ のうち放射性廃棄物でない廃棄物の重量は約 45 t ，図 $4-3 \sim 4-5$ 参照）の解体撤去については，既存の一般的な工法及び従来の保守管理の範囲内で実施すること が可能である。第2段階に係る詳細事項については，解体撤去の方法等を確定次第，本廃止措置計画の変更認可申請を行うこととする。

その他，TRACYの解体対象機器が設置されている炉室（T）及び炉下室（T） は，S T A C Y の炉心が設置されている炉室（S）及び減速材を炉心に供給するため の機器が設置されている炉下室（S）と隣接して設置されている。このため，解体工事により発生するノイズや振動がSTACYの運転に影響を及ぼすことがないよ う，S T A C Y の運転中は，ノイズや振動が発生するおそれのある電動工具等を用 いた解体工事は行わない。

記載の適正化

記載の適正化記載の適正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	
	廃止措置期間中に性能を維持すべき試験研究用等原子炬施設（以下「性能維持施設」という。）については，原子炬施設外への放射性物質の放出抑制，放射性廃妻物 の処理処分及び放射線業務従事者が受ける放射線被ばくの低減といった観点から決定し，保安規定に基づき，廃止措置の各過程に応じて要求される性能を維持する こととする。 七 性能維持施設の位置，構造及び設備並びにその性能並びにその性能を維持すべき期間 性能維持施設の位置，構造及び設備並びにその性能並びにその性能を維持すべき期間を表 7－1に，また，TRACY固有設備を図4－4に，S TACYとの共用設備である核燃料物質取扱設備及び販蔵設備を含む全系統を図 $4-5$ に示す。 処理場，放射線管理施設の屋外管理用の主要な設備のらちモニタリングポスト， モニタリングステーション，中央監視装置及び䍗境放射線観測車は，廃止措置期間中維持管理し，TRACYの廃止措置終了後も他の原子炬施設の共通施設として維持管理する。 また，解体撒去工事を実施するに当たって，専ら廃止措置のために使用する施設又は設備を導入する場合においては，当該施設又は設備の設計及び工事の方法に関 することを第2段階に入るまでに，本廃止措置計画の変更認可申請を行うことによ り示すこととする。	法令改正に伴う見直し（添付書類 1 か ら移動） 法令改正に伴う追加
2．核燃料物質の譲渡しの方法 TRACYの溶液燃料及びその原料となる溶解前のウラン酸化物燃料は，S T A C Y と共用していたが，第1．3節で述べたとおりS T A C Y に移管が完了し，以後 S T A C Y 固有の燃料として管理する。	入 核燃料物質の管理及び䆡渡し T R A C Y の溶液燃料及びその原料となる溶解前のウラン酸化物燃料は，S T A CYと共用していたが，「四 廃止措置の対象となる試験研究用等原子炉施設及び その敷地」で述べたとおりSTACYに移管が完了し，以後 S T A C Y 固有の燃料 として管理する。	法令改正に伴ら見直し 法令改正に伴う見直し
3．核燃料物質による污染の除去の方法 3.1 汚染の状況 原子炉施設に残存する放射性物質は，放射化污染物質と二次汚染物質に分けられ る。	九 核燃料物質による汚染の除去 1．汚染の状況 原子炉施設に残存する放射性物質は，放射化汚染物質と二次汚染物質に分けられ る。	記載の適正化記載の適正化
3．1．1 放射化污染物質 放射化汚染物質は，主として，原子炉運転時の中性子照射により設備機器が放射化したものであり，その対象機器は，炉室内に設置されている原子炉本体（炉心夕 ンク及び灲心タンク上部機器類），架台，配管及び塔槽類である。 このらち，放射化汚染物質の放射能量及び放射能濃度が最も大きい機器は，灲心夕 ンクである。これらの主要放射性核種は，ステンレス鋼に由来するCo－60，Fe－55等 である。放射能量が大きい主要機器の総重量は約 54 t ，原子炉停止後 3.7 年経過時	1.1 放射化污染物質 放射化汚染物質は，主として，原子炉運転時の中性子照射により設備機器が放射化したものであり，その対象機器は，炉室内に設置されている原子炉本体（灲心夕 ンク及び炉心タンク上部機器類），架台，配管及び塔槽類である。 このうち，放射化污染物質の放射能量及び放射能濃度が最も大きい機器は，炉心 タンクである。これらの主要放射性核種は，ステンレス鋼に由来するCo－60，Fe－55等である。放射能量が大きい主要機器の総重量は約 54 t ，原子炉停止後 3.7 年経過	記載の適正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
（平成 26 年 12 月現在）の総放射能量及び放射能濃度（全体平均）はそれぞれ 3.9×10 ${ }^{11} \mathrm{~Bq}$ 程度， $4.0 \times 10^{3} \mathrm{~Bq} / \mathrm{g}$ 程度と見積もられる。これら放射化污染物質は，機器配管の内部に残存する放射性物質の閉じ込め管理期間（10年以上）における時間減衰 により，放射能の低減を図る。なお，原子炉停止後 10 年経過時（平成 33 年 3 月時点） の総放射能量及び放射能濃度（全体平均）はそれぞれ $1.1 \times 10^{11} \mathrm{~Bq}$ 程度（ 71% 減）， $1.1 \times 10^{3} \mathrm{~Bq} / \mathrm{g}$ 程度（ 72% 減）となる。 3．1．2 二次污染物質 核燃料物質等（溶液燃料及び核分裂生成物）により汚染され二次污染物質となる解体機器は，主として，原子炉本体（炉心タンク及び炉心タンク上部機器類），気体廃棄物処理設備の槽ベント設備C，それらの配管及び塔槽類である。これらの主要放射性核種は，ウラン並びに核分裂生成物のCs－137及びSr－90である。二次汚染物質 となる解体機器の総重量は約 21 t ，原子炉停止後 3.7 年経過時（平成 26 年 12 月現在） の総放射能量及び放射能浱度（全体平均）はそれぞれ $1.1 \times 10^{10} \mathrm{~Bq}$ 程度， 5.0×10^{2} Bq / g 程度と見積もられる。これら二次污染物質は，機器配管の内部に残存する放射性物質の閉じ込め管理期間（ 10 年以上）における時間減衰により，放射能の低減を図る。なお，原子炉停止後 10 年経過時（平成 33 年 3 月時点）の総放射能量及び放射能濃度（全体平均）はそれぞれ $9.8 \times 10^{9} \mathrm{~Bq}$ 程度（ 10% 減）， $4.6 \times 10^{2} \mathrm{~Bq} / \mathrm{g}$ 程度（ 8%減）となる。 3.2 汚染の除去の方法 設備の解体に先立って実施する污染の除去は，解体に着手するまでの間の時間減衰による放射能の低減，又は，必要に応じて解体時に拭取り等による除染を行う。 4．核燃料物質によって污染された物の廃棄の方法 4． 1 放射性気体廃重物 廃止措置期間中（第 1 段階及び第 2 段階）に発生する放射性気体廃棄物は，主と して，機器配管の切断時に発生する粉塵を含む排気である。この放射性気体廃棄物 は，従来の廃重の方法と同様，必要に応じて集塵装置及び局所排気装置の設置，汚染拡大防止の養生等の対策を講じるとともに，換気空調設備の高性能エアフィルタ でろ過した後，排気筒モニタにより，放射性物質の濃度が「核原料物質又は核燃料物質の製鍊の事業に関する規則等の規定に基づく線量限度等を定める告示」（平成 28 年 4 月 1 日原子力規制委員会告示第 8 号。以下「線量告示」という。）に定める排気中の濃度限度以下であることを連続監視しながら，排気筒から放出する。排気筒はSTACYと共用であるが，STACYで放射性物質の放出を伴ら作業を行ら際は，T R A C Y 機器配管の切断を行わないこととする。このため，万一，排気筒 モニタで警報が発生した場合においても，作業状況を確認することにより，TRA C Y に起因する事象か否かの判断が可能である。	時（平成 26 年 12 月現在）の総放射能量及び放射能濃度（全体平均）はそれぞれ $3.9 \times$ $10^{11} \mathrm{~Bq}$ 程度， $4.0 \times 10^{3} \mathrm{~Bq} / \mathrm{g}$ 程度と見積もられる。これら放射化汚染物質は，機器配管の内部に残存する放射性物質の閉じ込め管理期間（10年以上）における時間減衰により，放射能の低減を図る。なお，原子炉停止後 10 年経過時（令和 3 年 3 月時点）の総放射能量及び放射能濃度（全体平均）はそれぞれ $1.1 \times 10^{11} \mathrm{~Bq}$ 程度（ 71%減）， $1.1 \times 10^{3} \mathrm{~Bq} / \mathrm{g}$ 程度（ 72% 減）となる。 1.2 二次污染物質 核燃料物質等（溶液燃料及び核分裂生成物）により汚染され二次汚染物質となる解体機器は，主として，原子炉本体（灲心タンク及び炬心タンク上部機器類），気体廃棄物処理設備の槽ベント設備C，それらの配管及び塔槽類である。これらの主要放射性核種は，ウラン並びに核分裂生成物のCs－137及びSr－90である。二次汚染物質 となる解体機器の総重量は約 21 t ，原子炉停止後 3.7 年経過時（平成 26 年 12 月現在） の総放射能量及び放射能濃度（全体平均）はそれぞれ $1.1 \times 10^{10} \mathrm{~Bq}$ 程度， 5.0×10^{2} Bq / g 程度と見積もられる。これら二次汚染物質は，機器配管の内部に残存する放射性物質の閉じ达め管理期間（ 10 年以上）における時間減衰により，放射能の低減を図る。なお，原子炉停止後 10 年経過時（令和 3 年 3 月時点）の総放射能量及び放射能濃度（全体平均）はそれぞれ $9.8 \times 10^{9} \mathrm{~Bq}$ 程度（ 10% 減）， $4.6 \times 10^{2} \mathrm{~Bq} / \mathrm{g}$ 程度（ 8%減）となる。 2．汚染の除去の方法 設備の解体に先立って実施する汚染の除去は，解体に着手するまでの間の時間減衰による放射能の低減，又は，必要に応じて解体時に拭取り等による除染を行う。 ＋核燃料物質又は核燃料物質によって汚染された物の廃棄 1．放射性気体廃㐮物 廃止措置期間中（第 1 段階及び第 2 段階）に発生する放射性気体廃妻物は，主と して，機器配管の切断時に発生する粉塵を含む排気である。この放射性気体廃棄物 は，従来の廃棄の方法と同様，必要に応じて集塵装置及び局所排気装置の設置，汚染拡大防止の養生等の対策を講じるとともに，換気空調設備の高性能エアフィルタ でろ過した後，排気筒モニタにより，放射性物質の濃度が「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」（平成 28 年 4 月 1 日原子力規制委員会告示第 8 号。以下「線量告示」という。）に定める排気中の濃度限度以下であることを連続監視しながら，排気筒から放出する。排気筒はS TACYと共用であるが，STACYで放射性物質の放出を伴ら作業を行ら際は，TRACY機器配管の切断を行わないこととする。このため，万一，排気筒 モニタで警報が発生した場合においても，作業状況を確認することにより，TRA C Y に起因する事象か否かの判断が可能である。	記載の適正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	
4． 2 放射性液体廃棄物 廃止措置期間中（第 1 段階及び第 2 段階）に発生する放射性液体廃棄物は，主とし て，保守点検や解体撤去等を行う作業員が管理区域から退出する際の手洗い水であ る。これらの放射性液体廃棄物は，従来の廃棄の方法と同様，液体廃棄物の廃棄設備の廃液貯槽に一時貯留した後，放射性物質の濃度を確認し，線量告示に定める排水中の濃度限度以下のものについては，原子力科学研究所の一般排水溝に排出す る。排水中の濃度限度を超えるものについては，処理場に運搬して処理する。	2．放射性液体廃棄物 廃止措置期間中（第1段階及び第2段階）に発生する放射性液体廃軍物は，主と して，保守点検や解体撤去等を行ら作業員が管理区域から退出する際の手洗い水で ある。これらの放射性液体廃棄物は，従来の廃棄の方法と同様，液体廃葉物の廃棄設備の廃液貯槽に一時貯留した後，放射性物質の濃度を碓認し，線量告示に定める排水中の濃度限度以下のものについては，原子力科学研究所の一般排水溝に排出す る。排水中の濃度限度を超えるものについては，処理場に運搬して処理する。 廃止措置の第2段階において実施する解体撤去作業の詳細及び放射性液体廃棄物の発生量については，設備の解体撤去に着手するまでに検討•確定し，本廃止措置計画の変更認可申請を行う。	記載の適正化 法令改正に伴う見直し（添付書類 2 か ら移動）
4.3 放射性固体廃棄物 廃止措置のうち第1段階（原子炉の機能停止措置及び系統の閉じ込め管理）で発生する放射性固体廃棄物は，主として，保守管理及び配管の一部切断に伴い発生す る少量かつ汚染レベルの低いもの（表 4 に示す 10 箇所，各数 10 cm 程度，線量率 0.2 $\mu \mathrm{Sv} / \mathrm{h}$ 以下）である。これらの放射性固体廃重物は，保安規定で定める廃棄物保管場所であるNUCEF建家内の $\beta \cdot \gamma$ 固体廃棄物保管室で保管し，順次処理場に引 き渡す。引き渡した廃妻物は，処理場が管理する。 廃止措置の第 2 段階（T R A C Y 固有設備の解体撤去）で解体する機器（総重量約 220 t ，このうち放射性廃棄物でない廃重物の重量は約 45 t ，図 $\underline{4} ~ \underline{6}$ 参照）は，保安規定で定める廃棄物保管場所であるNUCEF建家内の $\beta \cdot \gamma$ 固体廃棄物保管室のほか，$\beta \cdot \gamma$ 固体廃棄物保管室に搬入できない大型の機器は炉室（T）及び炉下室（T）で保管し，順次処理場に引き渡す。引き渡した廃革物は，処理場が管理する。保管に当たっては，炉室（T）及び炉下室（T）を廃革物保管場所として保安規定で指定するとともに，対象とする固体廃妄物の管理方法を保安規定，運転手引又は廃葉物管理要領に定め，安全上必要な措置を講じた上で適切に管理する。また，放射性固体廃棄物は材質，性状及び放射能レベルに応じて区分し，放射性物質として扱う必要のない物として認められた物は，再利用又は産業廃重物として処理処分を行う など，放射性固体廃棄物の低減を図る。 炉室（T）及び炉下室（T）に保管する廃妻物は当該室内に設置されている解体対象機器のみとし，他の廃革物は保管しない。これらの機器は，処理場の保管容量を確保した上で，順次引き渡されるため，当該室の保管容量を超えることはない。また，当該室は原子炉運転を考慮して設計されているため，廃止措置期間中の解体廃妻物 の保管に必要な遮蔽及び閉じ込めの機能を有しており，これらの機能は廃止措置期間中も維持される。さらに，解体対象機器の放射能量は施設利用中の量を超えるお それはない。以上の理由から，炉室（T）及び炉下室（T）は廃棄物を安全に保管する ことが可能である。	3．放射性固体廃棄物 廃止措置のらち第1段階（原子炉の機能停止措置及び系統の閉じ込め管理）で発生する放射性固体廃棄物は，主として，保守管理及び配管の一部切断に伴い発生す る少量かつ汚染レベルの低いもの（表5－1 に示す 10 箇所，各数 10 cm 程度，線量当量率 $0.2 \mu \mathrm{~Sv} / \mathrm{h}$ 以下）である。これらの放射性固体廃重物は，保安規定で定める廃棄物保管場所であるNUCEF建家内の $\beta \cdot \gamma$ 固体廃棄物保管室で保管し，順次処理場に引き渡す。引き渡した廃衰物は，処理場が管理する。 廃止措置の第 2 段階（T R A C Y 固有設備の解体撤去）で解体する機器（総重量約 220 t ，このうち放射性廃棄物でない廃棄物の重量は約 45 t ，表 $10-1$ 及び図 4 － $\underline{3} \sim 4-5$ 参照）は，保安規定で定める廃棄物保管場所であるNUCEF建家内の $\beta \cdot \gamma$ 固体廃重物保管室のほか，$\beta \cdot \gamma$ 固体廃棄物保管室に搬入できない大型の機器は炉室（T）及び炉下室（T）で保管し，順次処理場に引き渡す。引き渡した廃棄物 は，処理場が管理する。保管に当たつては，炉室（T）及び炉下室（T）を廃棄物保管場所として保安規定で指定するとともに，対象とする固体廃棄物の管理方法を保安規定，運転手引又は廃妻物管理要領に定め，安全上必要な措置を講じた上で適切に管理する。また，放射性固体廃革物は材質，性状及び放射能レベルに応じて区分し，放射性物質として扱ら必要のない物として認められた物は，再利用又は産業廃棄物 として処理処分を行うなど，放射性固体廃棄物の低減を図る。 炉室（T）及び炉下室（T）に保管する廃寁物は当該室内に設置されている解体対象機器のみとし，他の廃棄物は保管しない。これらの機器は，処理場の保管容量を確保した上で，順次引き渡されるため，当該室の保管容量を超えることはない。また，当該室は原子炉運転を考慮して設計されているため，廃止措置期間中の解体廃安物 の保管に必要な遮蔽及び閉じ込めの性能を有しており，これらの性能は廃止措置期間中も維持される。さらに，解体対象機器の放射能量は施設利用中の量を超えるお それはない。以上の理由から，炉室（T）及び炉下室（T）は廃棄物を安全に保管する ことが可能である。	記載の適正化 記載の適正化 法令改正に伴ら見直し（添付書類 2 か ら移動），記載の適正化 法令改正に伴う見直し

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
	十一 廃止措置の工程 T R A C Y の廃止措置全体工程を表 $11-1$ に示す。各工程の概要は，以下のとおり である。 （第1段階） ① T R A C Y の原子炉機能停止措置として原子炉運転に不可欠な溶液燃料の移送 を不可とするため，T R A C Y 固有の溶液燃料貯槽を含む供給設備（II）と核燃料物質取扱設備及び貯蔵設備とを接続している配管の一部及びT R A C Y 固有設備と接続している共用設備（気体廃棄物処理設備，真空設備，圧縮空気設備）の配管の一部（図 $4-4$ 及び図 $4-5$ に×印で示す 10 箇所，各数 10 cm 程度）を切断し，閉止する。なお，同様の配管切断工事は，核燃料物質取扱設備（調整附属設備）のU溶解槽から Pu 溶解槽への配管接続切替工事（平成 12 年度）にて実績 がある。 （2）T R A C Y 固有設備として残存する機器配管（図 4－4の炉室（T）及び炉下室 （T）内の機器配管の全部）の汚染拡大防止のため，系統の閉じ込め管理を行う。 また，この間，第2段階の解体撤去工事に従事する作業員の被ばく低減のため，放射化物及び核分裂生成物の放射能を減衰させる期間（10年以上）を設ける。 （第2段階） （3）TRACY固有設備（総重量約 220 t ，このうち放射性廃棄物でない廃棄物の重量約 45 t ，図 4－4の炉室（ T ）及び炉下室（ T ）内の機器配管の全部）を解体撤去 する。なお，解体撤去に当たつては，S T A C Y の溶液燃料取扱設備の解体撤去 と合わせて同時に行うことにより，解体撤去を合理的かつ効率的に行うことを考慮する。（令和 $12 \sim 16$ 年度を目途）その具体的な手順については，設備の解体撤去に着手するまでに詳細な検討を行い，本廃止措置計画の変更認可申請を行う。 その他，STACYと共用しているNUCEF建家（格納施設である炉室（T）及 び炉下室（T）を含む。），換気空調設備，放射線管理施設（排気筒モニタ，室内モニ夕，放射線エリアモニタ，放射線サーベイ設備），放射性廃棄物の廃棄施設（槽ベン ト設備D）等はS T A C Y に移管するため，解体は行わない。また，原子力科学研究所の原子炉施設の共通施設である処理場，放射線管理施設の屋外管理用の主要な設備のうちモニタリングポスト，モニタリングステーション，中央監視装置及び環境放射線観測車は，廃止措置期間中維持管理し，T R A C Y の廃止措置終了後も他 の原子炉施設の共通施設として維持管理するため，解体は行わない。 十二 廃止措置に係るマネジメントシステム 廃止措置については，以下に示す品質マネジメントシステムに基づき実施する。試験研究用等原子炬施設の保安のための業務に係る品質管理に必要な体制の整備	法令改正に伴う見直し（添付書類 1 か ら移動） 法令改正に伴う見直し（許可より転記）

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
	理事長は，原子力の安全の確保を最優先に位置付け，組織の意思決定の際には，業務•原子炬施設に対する要求事項に適合し，かつ，原子力の安全がその他の事由 によって損なわれないようにすることを確実にする。 5.3 品質方針 （1）理事長は，次に掲げる事項を満たす品質方針を設定する。これには，安全文化 を育成し維持することに関するものを含む。 a）組織の目的及び状況に対して適切である。 b）要求事項への適合及び品質マネジメントシステムの有効性の継続的な改善に対 して責任を持って関与することを含む。 c）品質目標の設定及びレビューのための枠組みを与える。 d）組織全体に伝達され，理解される。 e）品質マネジメントシステムの継続的な改善に責任を持って関与することを含 む。 5.4 計 画 5．4．1 品質目標 （1）理事長は，保安に係る組織において，毎年度，品質目標（業務•原子炉施設に対する要求事項を満たすために必要な目標を含む。）が設定されていることを確実 にする。また，保安活動の重要度に応じて，品質目標を達成するための計画が作成 されることを確実にする。 （2）品質目標は，その達成度が判定可能で，品質方針と整合がとれていることを確実にする。 5．4．2 品質マネジメントシステムの計画 （1）理事長は，4．1項に規定する要求事項を満たすために，品質マネジメントシステ ムの実施に当たつての計画を策定する。 （2）理事長は，プロセス，組織等の変更を含む品質マネジメントシステムの変更を計画し，実施する場合には，管理責任者を通じて，その変更が品質マネジメントシ ステムの全体の体系に対して矛盾なく，整合性が取れていることをレビューするこ とにより確実にする。この場合において，保安活動の重要度に応じて，次の事項を適切に考慮する。 a）変更の目的及びそれによって起こり得る結果（原子力の安全への影響の程度及 び必要な処置を含む。） b）品質マネジメントシステムの有効性の維持 c）資源の利用可能性 d）責任及び権限の割当て 5．5 責任，権限及びコミュニケーション 5．5．1 責任及び権限 理事長は，保安に係る組織の責任及び権限を明確にする。また，保安活動に係る業務のプロセスに関する手順となる文書を定めさせ，関係する要員が責任を持って	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
	ステムの有効性に関する情報交換が行われることを確実にする。 5.6 マネジメントレビュー 5．6．1 一般 （1）理事長は，品質マネジメントシステムが，引き続き適切で，妥当で，かつ有効 であることを確実にするために，年1回以上（年度末及び必要に応じて），マネジメ ントレビューを実施する。 （2）このレビューでは，品質マネジメントシステムの改善の機会の評価及び品質方針を含む品質マネジメントシステムの変更の必要性の評価も行う。 5．6．2 マネジメントレビューへのインプット 管理責任者は，マネジメントレビューへのインプット情報として，次の事項を含 め報告する。 a）内部監查の結果 b）組織の外部の者からの意見 c）保安活動に関するプロセスの成果を含む実施状況（品質目標の達成状況を含 む。） d）使用前事業者検查，定期事業者検查及び使用前検查（以下「使用前事業者検查等」という。）並びに自主検査等の結果 e）安全文化を育成し，維持するための取組の実施状況（安全文化について強化す べき分野等に係る自己評価の結果を含む。） f）関係法令の遵守状況 g）不適合並びに是正処置及び未然防止処置の状況 h）前回までのマネジメントレビューの結果に対する処置状況のフォローアップ i）品質マネジメントシステムに影響を及ぼす可能性のある変更 j）改善のための提案 k）資源の妥当性 1）保安活動の改善のために実施した処置の有効性 5．6．3 マネジメントレビューからのアウトプット （1）理事長は，マネジメントレビューのアウトプットには，次の事項に関する決定及び処置を含め，管理責任者に必要な改善を指示する。 a）品質マネジメントシステム及びそのプロセスの有効性の改善 b）業務の計画及び実施に関連する保安活動の改善 c）品質マネジメントシステムの実効性の維持及び継続的な改善のために必要な資源 d）健全な安全文化の育成及び維持に関する改善 e）関係法令の遵守に関する改善 （2）マネジメントレビューの結果の記録を作成し，これを管理する（4．2．4参照）。 （3）管理責任者は，（1）項で改善の指示を受けた事項について必要な処置を行う。	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
	c）業務•原子炉施設に特有なプロセス及び文書の確立の必要性，並びに資源の提供の必要性 d）業務•原子炉施設のための使用前事業者検查等，検証，妥当性碓認，監視及び測定並びにこれらの合否判定基準 e）業務•原子炉施設のプロセス及びその結果が要求事項を満たしていることを実証するために必要な記録 （4）保安に係る組織は，業務の計画を，個別業務の運営方法に適した形式で分かり やすいものとする。 7.2 業務•原子炬施設に対する要求事項に関するプロセス 7．2．1 業務•原子炉施設に対する要求事項の明確化 保安に係る組織は，次に掲げる事項を要求事項として明確にする。 a）業務•原子炉施設に関連する法令•規制要求事項 b）明示されてはいないが，業務•原子炬施設に必要な要求事項 c）組織が必要と判断する追加要求事項 7.2 .2 業務•原子炉施設に対する要求事項のレビュー （1）保安に係る組織は，業務•原子炉施設に対する要求事項をレビューする。この レビューは，その要求事項を適用する前に実施する。 （2）保安に係る組織は，業務•原子炉施設に対する要求事項のレビューでは，次の事項について確認する。 a）業務•原子炉施設に対する要求事項が定められている。 b）業務•原子炉施設に対する要求事項が以前に提示されたものと異なる場合に は，それについて解決されている。 c）当該組織が，定められた要求事項を満たす能力をもっている。 （3）保安に係る組織は，業務•原子炉施設に対する要求事項のレビューの結果の記録及びそのレビューを受けてとられた処置の記録を作成し，管理する（4．2．4参照）。 （4）保安に係る組織は，業務•原子炬施設に対する要求事項が変更された場合に は，関連する文書を改定する。また，変更後の要求事項が関連する要員に理解され ていることを確実にする。 7.2 .3 外部とのコミュニケーション 保安に係る組織は，原子力の安全に関して組織の外部の者と適切なコミュニケー ションを図るため，効果的な方法を明確にし，これを実施する。 7.3 設計•開発 7．3．1 設計•開発の計画 （1）保安に係る組織は，原子炬施設の設計•開発の計画を策定し，管理する。この設計•開発には，設備，施設，ソフトウェア及び原子力の安全のために重要な手順書等に関する設計•開発を含む。 （2）保安に係る組織は，設計•開発の計画において，次の事項を明碓にする。	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
	a）設計•開発の性質，期間及び複雑さの程度 b）設計•開発の各段階に適したレビュー，検証及び妥当性確認の方法並びに管理体制 c）設計•開発に関する部署及び要員の責任及び権限 d）設計開発に必要な内部及び外部の資源 （3）保安に係る組織は，効果的なコミュニケーションと責任及び権限の明碓な割当 てを確実にするために，設計•開発に関与する関係者（他部署を含む。）間のインタ フェースを運営管理する。 （4）保安に係る組織は，設計•開発の進行に応じて，策定した計画を適切に変更す る。 7．3．2 設計•開発へのインプット （1）保安に係る組織は，原子炉施設の要求事項に関連するインプットを明確にし，記録を作成し，管理する（4．2．4参照）。インプットには次の事項を含める。 a）機能及び性能に関する要求事項 b）適用可能な場合は，以前の類似した設計から得られた情報 c）適用される法令•規制要求事項 d）設計•開発に不可欠なその他の要求事項 （2）保安に係る組織は，これらのインプットについて，その適切性をレビューし承認する。要求事項は，漏れがなく，あいまいではなく，かつ，相反することがない ようにする。 7．3．3 設計•開発からのアウトプット （1）保安に係る組織は，設計•開発からのアウトプット（機器等の仕様等）は，設計•開発へのインプットと対比した検証を行うのに適した形式により管理する。ま た，次の段階に進める前に，承認をする。 （2）保安に係る組織は，設計•開発のアウトプット（機器等の仕様等）は，次の状態とする。 a）設計•開発へのインプットで与えられた要求事項を満たす。 b）調達，業務の実施及び原子炉施設の使用に対して適切な情報を提供する。 c）関係する検查及び試験の合否判定基準を含むか，又はそれを参照している。 d）安全な使用及び適正な使用に不可欠な原子炉施設の特性を明確にする。 7．3．4 設計•開発のレビュー （1）保安に係る組織は，設計•開発の適切な段階において，次の事項を目的とし て，計画されたとおりに体系的なレビューを行う。 a）設計•開発の結果が，要求事項を満たせるかどうかを評価する。 b）問題を明確にし，必要な処置を提案する。 （2）レビューへの参加者には，レビューの対象となっている設計•開発段階に関連す る部署を代表する者及び当該設計•開発に係る専門家を含める。 （3）保安に係る組織は，設計•開発のレビューの結果の記録及び必要な処置があれ	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
	ばその記録を作成し，管理する。 7．3．5 設計•開発の検証 （1）保安に係る組織は，設計•開発からのアウトプットが，設計•開発へのインプ ットとして与えられている要求事項を満たしていることを確実にするために，計画 されたとおりに検証を実施する。 （2）設計•開発の検証には，原設計者以外の者又はグループが実施する。 （3）保安に係る組織は，設計•開発の検証の結果の記録及び必要な処置があればそ の記録を作成し，管理する。 7．3．6設計•開発の妥当性碓認 （1）保安に係る組織は，設計•開発の結果として得られる原子炉施設又は個別業務 が，規定された性能，指定された用途又は意図された用途に係る要求事項を満たし得ることを確実にするために，計画した方法に従って，設計•開発の妥当性確認を実施する。ただし，当該原子炉施設の設置の後でなければ妥当性確認を行うことが できない場合は，当該原子炉施設の使用を開始する前に，設計•開発の妥当性確認 を行う。 （2）保安に係る組織は，実行可能な場合はいつでも，原子炬施設を使用又は個別業務を実施するに当たり，あらかじめ，設計•開発の妥当性確認を完了する。 （3）保安に係る組織は，設計•開発の妥当性確認の結果の記録及び必要な処置があ ればその記録を作成し，管理する。 7．3．7 設計•開発の変更管理 （1）保安に係る組織は，設計•開発の変更を行った場合は変更内容を識別するとと もに，その記録を作成し，管理する。 （2）保安に係る組織は，変更に対して，レビュー，検証及び妥当性確認を適切に行 い，その変更を実施する前に承認する。 （3）保安に係る組織は，設計•開発の変更のレビューにおいて，その変更が，当該原子炉施設を構成する要素（材料又は部品）及び関連する原子炉施設に及ぼす影響 の評価を行う。 （4）保安に係る組織は，変更のレビュー，検証及び妥当性確認の結果の記録及び必要な処置があればその記録を作成し，管理する。 7.4 調達 7．4．1 調達プロセス （1）保安に係る組織は，調達する製品又は役務（以下「調達製品等」といら。）が規定された調達要求事項に適合することを確実にする。 （2）保安に係る組織は，保安活動の重要度に応じて，供給者及び調達製品等に対す る管理の方式と程度を定める。これには，一般産業用工業品を調達する場合は，供給者等から必要な情報を入手し，当該一般産業用工業品が要求事項に適合している ことを確認できるよう管理の方法及び程度を含める。 （3）保安に係る組織は，供給者が要求事項に従って調達製品等を供給する能力を判	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
	保安に係る組織は，品質方針，品質目標，監査結果，データの分析，是正処置，未然防止処置及びマネジメントレビューを通じて，品質マネジメントシステムの有効性 を向上させるために継続的に改善する。 8．5．2 是正処置等 （1）保安に係る組織は，検出された不適合及びその他の事象（以下「不適合等」とい う。）の再発防止のため，原子力の安全に及ぼす影響に応じて，不適合等の原因を除圭する是正処置を行う。 （2）是正処置の必要性の評価及び実施について，次に掲げる手順により行う。 a）不適合等のレビュー及び分析 b）不適合等の原因の特定 c）類似の不適合等の有無又は当該不適合等が発生する可能性の明確化 d）必要な処置の決定及び実施 e）とった是正処置の有効性のレビュー （3）必要に応じ，次の事項を考慮する。 a）計画において決定した保安活動の改善のために実施した処置の変更 b）品質マネジメントシステムの変更 （4）原子力の安全に及ぼす影響が大きい不適合に関して根本的な原因を究明するた めの分析の手順を確立し，実施する。 （5）全ての是正処置及びその結果に係る記録を作成し，管理する。 （6）保安に係る組織は，前項までの不適合等の是正処置の手順（根本的な原因を究明 するための分析に関する手順を含む。）を定め，これを管理する。 （7）保安に係る組織は，前項の手順に基づき，複数の不適合等の情報について，必要 により類似する事象を抽出し，分析を行い，その結果から類似事象に共通する原因 が認められた場合，適切な処置を行う。 8．5．3 未然防止処置 （1）保安に係る組織は，原子力施設及びその他の施設の運転経験等の知見を収集し，起こり得る不適合の重要度に応じて，次に掲げる手順により適切な未然防止処置を行う。 a）起こり得る不適合及びその原因についての調查 b）不適合の発生を予防するための処置の必要性の評価 c）必要な処置の決定及び実施 d）とった未然防止処置の有効性のレビュー （2）全ての未然防止処置及びその結果に係る記録を作成し，管理する。 （3）保安に係る組織は，前項までの未然防止処置の手順を定め，これを管理する。	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前			変 更 後			備 考
表1 TRACYの設置変更許可の経緯			表4－1 TRACYの設置変更許可の経緯			記載の適正化
許可年月日	許 可 番 号	備 考	許可年月日	許 可 番 号	備 考	
昭和63年10月7日	63安（原規）第409号	新設	昭和63年10月7日	63安（原規）第409号	新設	
平成 7 年11月29日	7 安（原規）第353号	溶液燃料貯蔵設備（S T A C Y 施設と共用）の貯蔵能力の変更	平成 7 年11月29日	7 安（原規）第353号	溶液燃料貯蔵設備（S T A C Y施設と共用）の貯蔵能力の変更	
平成11年3月30日	11安（原規）第52号	溶液燃料貯蔵設備（S T A C Y施設と共用）の貯蔵能力の変更	平成11年3月30日	11安（原規）第52号	溶液燃料貯蔵設備（S T A C Y施設と共用）の貯蔵能力の変更	
平成20年2月14日	19諸文科科第3150号	ウラン酸化物燃料貯蔵設備 （S T A C Y 施設と共用）の設置	平成20年2月14日	19諸文科科第3150号	ウラン酸化物燃料貯蔵設備 （S T A C Y 施設と共用）の設置	
			平成30年1月31日	原規規発第18013110号	STACY（定常臨界実験装置）施設等の変更	設置変更許可の経緯を追加
			表 4－2 廃止措置計画認可及び変更認可の経緯			法令改正に伴う見直し（廃止措置実施方針から移動）
			認可年月旦	認可番号	備 考	
			平成 29 年6月7日	原規規発第1706076号	核原料物質，核燃料物質及び原 子炉の規制に関する規制に関す る法律（昭和 32 年法律第 166 号）第 43 条の 3 の 2 第 2 項の 規定に基づき廃止措置計画の認 可を取得	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前			変 更 後	備 考
表2 TRACYの主要な仕様		表 4－3 TRACYの主要な仕様		記載の適正化
項 目	仕 様	項 目	仕 様	
型 式	ウラン溶液燃料タンク型	型 式	ウラン溶液燃料タンク型	
炉 心	T 50炉心 形状 円環形状 外形 約 50 cm 内径 約 8 cm 高さ 100 cm 以下	炉 心	T50炉心 形状 円環形状 外形 約 50 cm 内径 約 8 cm 高さ 100 cm 以下	
熱出力		熱出力		
燃 料	種類 溶液燃料（ウラン硝酸水溶液） ${ }^{235} \mathrm{U}$ 濃縮度 約10wt\％ ウラン浱度 $500 \mathrm{gU} / \mathrm{l}$ 以下	燃 料	種類 溶液燃料（ウラン硝酸水溶液） ${ }^{235} \mathrm{U}$ 濃縮度 約10wt\％ ウラン浱度 $500 \mathrm{gU} / \mathrm{l}$ 以下	
制御方式	液位 安全棒 調整トランジェント棒	制御方式	液位 安全棒 調整トランジェント棒	
運転方法	定出力運転 過渡出力運転 - パルス引抜モード - ランプ引抜モード - ランプ給夜モード	運転方法	定出力運転 過渡出力運転 - パルス引抜モード - ランプ引抜モード - ランプ給夜モード	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前								変 更 後								備 考
表3 TRACYの設備及び解体範囲（ $2 / 10$ ）								表 4 －4 TRACYの設備及び解体範囲（ $2 / 10$ ）								記載の適正化
		設備名				解体しない設備		施設区分	設備区分	設備名			解体しない設備			
施設区分	設備区分				解体す る設備 （第2 段階）	STACY に移管 （第1 段階開 始時）	$\begin{array}{\|l\|} \hline \text { STACY } \\ \text { に移管 } \\ \text { (第2 } \\ \text { 段階終 } \\ \text { 了時) } \\ \hline \end{array}$						解体す る設備 （第2段階）	STACY に移管 （第1 段階開 始時）	STACY に移管 （第2 段階終 了時）	
計測制御系統施設	制御設備	制御材駆動設備		衝撃圧力吸収槽	\bigcirc			計測制御系統施設	制御設備			衝撃圧力吸収槽	\bigcirc			
				入口分配器	\bigcirc							入口分配器	\bigcirc			
				高速給液ポンプ	\bigcirc							高速給液ポンプ	\bigcirc			
				高速給夜ポンプ吐出弁	\bigcirc							高速給液ポンプ吐出弁	\bigcirc			
				低速給液ポンプ	\bigcirc							低速給液ポンプ	\bigcirc			
				低速給液ポンプ吐出弁	\bigcirc							低速給液ポンプ吐出弁	\bigcirc			
				急速排液弁 A	\bigcirc							急速排液弁 A	\bigcirc			
				急速排液弁 B	\bigcirc							急速排液弁 B	\bigcirc			
				通常排液弁	\bigcirc							通常排液弁	\bigcirc			
				配管	\bigcirc							配管	\bigcirc			
			安全棒畒	安全棒駆動装置	\bigcirc					安全秦装直		安全棒駆動装置	\bigcirc			
				安全棒圧空槽	\bigcirc							安全棒圧空槽	\bigcirc			
				安全棒真空槽	\bigcirc							安全棒真空槽	\bigcirc			
				配管	\bigcirc							配管	\bigcirc			
				安全棒弁ボックス	\bigcirc							安全棒弁ボックス	\bigcirc			
				調整トランジェン ト棒駆動装置	\bigcirc							調整トランジェン卜棒駆動装置	\bigcirc			
				圧空槽	\bigcirc							圧空槽	\bigcirc			
				配管	\bigcirc							配管	\bigcirc			
	その他の主要 な事項	$\begin{array}{\|l} \hline \begin{array}{l} \text { インター } \\ \text { ロック } \end{array} \\ \hline \end{array}$	盤		\bigcirc				その他の主要 な事項	$\begin{array}{\|l\|l\|} \hline \text { インター } \\ \text { ロック } \end{array}$	盤		\bigcirc			
		警報回路	警報回路		\bigcirc					警報回路	警報		\bigcirc			
		制御室等	制御				\bigcirc			制御室等	制御宔				\bigcirc	
			制御	室外停止スイッチ	\bigcirc						制御	外停止スイッチ	\bigcirc			
原子炉格納施設	炉室（T）	炉室（T）					\bigcirc	原子炬格納施設	炉室（T）	炉室（T）					\bigcirc	
		炉下室（T）					\bigcirc			炉下室（T）					\bigcirc	
		炉室（T）換気空調設備					\bigcirc			炉室（T）換	気気空調	設備			\bigcirc	
固有設備 共用設備（S T A C Y への移管前）								○固有設備 共用設備（S T A C Y への移管前）								

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前						変 更 後						備 考
表3 TRACYの設備及び解体範囲（ $3 / 10$ ）						表4－4 TRACYの設備及び解体笙囲（3／10）						記載の適正化
施設区分	設備区分	設備名	解体す る設備 （第2段階	解体しない設備		施設区分	設備区分	設備名	解体す る設備 （第2段階）	解体しない設備		
				STACY に移管 （第 1 段階開 始時）	$\begin{gathered} \text { STACY } \\ \text { に移管 } \\ \text { (第2 } \\ \text { 段階終 } \\ \text { 了時) } \end{gathered}$					$\begin{aligned} & \hline \text { STACY } \\ & \text { に移管 } \\ & \text { (第 } 1 \\ & \text { 段階開 } \\ & \text { 始時) } \end{aligned}$	STACY に移管 （第2 段階終 了時）	
核燃料物質取扱施設及 び貯蔵施設	調整附属設備	万過器（I）A		\bullet		核燃料物質取扱施設及 び貯蔵施設	調整附属設備	万過器（I）A		\bullet		
		3過器（I）B		\bullet				3過器（I）B		\bullet		
		万過器（II）		\bullet				万過器（II）		\bullet		
		送液ポット		\bullet				送液ポット		\bullet		
		溶解液計量槽		\bullet				溶解液計量槽		\bullet		
		調整附属設備グローブボックス（ I ）		\bullet				調整附属設備グローブボックス（ I ）		\bullet		
		配管		\bullet				配管		\bullet		
		混合槽		\bullet				混合槽		\bullet		
		U濃縮缶		\bullet				U賑縮缶		\bullet		
		U濃縮罂デミスタ		\bullet				U濃繀缺デミスタ		\bullet		
		U 凝縮效掼		\bullet				U 凝縮㖡槽		\bullet		
		U凝維器		\bullet				U凝縮器		\bullet		
		U濃縮液泠却器		\bullet				U濃綋液浍却器		\bullet		
		U溶液ポット		\bullet				U溶液ポット		\bullet		
		U溶液中間槽		\bullet				U溶液中間槽		\bullet		
		U濃繀液ポット		\bullet				U漲維液ポット		\bullet		
		U濃紱夜中間槽		\bullet				U溑維液中間槽		\bullet		
	調整設備			\bullet			調整設備	U演縮夜掼		\bullet		
		溶液払出ポット		\bullet				溶液払出ポット		\bullet		
		溶液払出中間槽		\bullet				溶液払出中間槽		\bullet		
		戻液ポット		\bullet				戻液ポット		\bullet		
		厌液中閒槽		\bullet				戻液中間槽		\bullet		
		溶液払出槽		\bullet				溶液払出槽		\bullet		
		戻液受橧		\bullet				戻液受槽		\bullet		
		U溶液受槽A		\bullet				U溶液受槽A		\bullet		
		U溶液受槽B		\bullet				U溶液受槽B		\bullet		
		ライン沘合器		\bullet				ライン混合器		\bullet		
		ノックアウトポット（I）		\bullet				ノックアウトポット（I）		\bullet		
○固有設備 共用設備	TACYへの移	管前）				○固有設備 共用設備	T T C Y への移	管前）				

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前						変 更 後						備 考
表 $\underline{3}$ TRACYの設備及び解体範囲（4／10）						表4－4 TRACYの設備及び解体節囲（ $4 / 10$ ）						記載の適正化
施設区分	設備区分	設備名	解体す る設備 （第2段階）	解体しない設備		施設区分	設備区分	設備名	解体す る設備 （第2段階）	解体しない設備		
				STACY に移管 （第1 段階開 始時）	STACY に移管 （第2 段階終 了時）					$\begin{array}{\|l\|} \hline \text { STACY } \\ \text { に移管 } \\ \text { (第 } 1 \\ \text { 訹階 } \\ \text { 始時) } \\ \hline \end{array}$	STACY に移管 （第2 段階終 了時）	
核粠料物質取扱施設及 び貯蔵施設	調整設備	ノックアウトポット（II）		\bullet		$\begin{aligned} & \text { 核燃料物質 } \\ & \text { 取报訑設 } \\ & \text { び貯蔵施設 } \end{aligned}$	調整設備	ノックアウトポット（II）		\bullet		
		ノックアウトポット（III）		\bullet				ノックアウトポット（III）		\bullet		
		ノックアウトポット（IV）		\bullet				ノックアウトポット（IV）		\bullet		
		調整設備グローブボックス（ I ）		\bullet				調整設備グローブボックス（ I ）		\bullet		
		調整設備グローブボックス（II）		\bullet				調整設備グローブボックス（II）		\bullet		
		調整設備グローブボックス（III）		\bullet				調整設備グローブボックス（III）		\bullet		
		調整設備グローブボックス（IV）		\bullet				調整設備グローブボックス（IV）		\bullet		
		調整設備グローブボックス（V）		\bullet				調整設備グローブボックス（V）		\bullet		
		調整設備グローブボックス（VI）		\bullet				調整設備グローブボックス（VI）		\bullet		
		サンプリング用グローブボックス （I）		\bullet				サンプリング用グローブボックス （I）		\bullet		
		配管		\bullet				配管		\bullet		
		抽出器		\bullet				抽出器		\bullet		
		抽残液洗浄器		\bullet				抽残液洗浄器		\bullet		
		U逆抽出器		－				U逆抽出器		\bullet		
		U溶液洗浄器		\bullet				U溶液洗浄器		\bullet		
		調整液ろ過器		\bullet				調整液ろ過器		\bullet		
		調整液ポット		\bullet				調整液ポット		\bullet		
		調整液中閏槽		\bullet				調整液中閏槽		\bullet		
		U溶媒ポット		\bullet				U溶媒ポット		\bullet		
	精製設俑	U溶媒中閏槽		\bullet			精蚝設俯	U溶媒中閏槽		\bullet		
		調整液槽		\bullet				調整液槽		\bullet		
		抽残液槽A		\bullet				抽残液槽 ${ }^{\text {A }}$		\bullet		
		抽残液槽 ${ }^{\text {B }}$ ，		\bullet				抽残液槽 ${ }^{\text {B }}$ B		\bullet		
		U溶媒槽A		\bullet				U溶媒槽A		\bullet		
		U 溶媒槽 ${ }^{\text {B }}$ A		\bullet				U溶楳槽B		\bullet		
		U溶媒槽C		\bullet				U溶媒槽C		\bullet		
		精製設備グローブボックス（ I ）		\bullet				精製設備グローブボックス（ I ）		\bullet		
○固有設備 共用設備	T A C Y	移管前）				○固有設備 共用設備	S T A C Y	移管前）				

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前						変 更 後						備 考
表3 TRACYの設備及び解体範囲（ $5 / 10$ ）						表4－4 TRACYの設備及び解体範囲（5／10）						記載の適正化
施設区分	設備区分	設備名	解体す る設備第2段階	解体しない設備		施設区分	設備区分	設備名	解体す る設備 （第2段階）	解体しない設備		
				$\begin{aligned} & \hline \text { STACY } \\ & \text { に移管 } \\ & \text { (第1 } \\ & \text { 段階開 } \\ & \text { 始時) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { STACY } \\ \text { に移管 } \\ \text { (第2 } \\ \text { 段階終 } \\ \text { 了時) } \\ \hline \end{array}$					STACY に移管 （第 1 段階開 始時）	$\begin{array}{\|l\|} \hline \text { STACY } \\ \text { に移管 } \\ \text { (第2 } \\ \text { 段階終 } \\ \hline \text { 了時) } \\ \hline \end{array}$	
核燃料物質取扱施設及 び貯蔵施設	精製設備	精製設備グローブボックス（II）		\bullet		核燃料物質取报施設及び貯歲施設	精製設備	精製設備グローブボックス（II）		\bullet		
		精製設備グローブボックス（III）		\bullet				精製設備グローブボックス（III）		\bullet		
		ノックアウトポット		\bullet				ノックアウトポット		\bullet		
		ミキサセトラドレン回収ポット（I）		\bullet				ミキサセトラドレン回収ポット（I）		\bullet		
		ミキサセトラドレン回収ポット（II）		\bullet				ミキサセトラドレン回収ポット（II）		\bullet		
		サンプリング用グローブボックス （III）		\bullet				サンプリング用グローブボックス （III）		\bullet		
		配管		\bullet				配管		\bullet		
		溶媒洗浄器		\bullet				溶媒洗浄器		\bullet		
		溶媒洗浄廃液洗浄器		\bullet				溶媒洗浄廃液洗浄器		\bullet		
		洗浄浴媒中閫槽		\bullet				洗浄溶媒中閫槽		\bullet		
		洗浄裖液ポット		\bullet				洗浄廃液ポット		\bullet		
		洗浄廃液中閣槽		\bullet				洗浄廃液中閏槽		\bullet		
		水分払出ポット		\bullet				水分払出ポット		\bullet		
		水分払出中閏槽		\bullet				水分払出中開槽		\bullet		
		油分払出ポット		\bullet				油分払出ポット		\bullet		
		油分払出中閫槽		\bullet				油分払出中間槽		\bullet		
	精製附属設備	廃溶媒ポット		\bullet			精製附属設備	廃溶媒ポット		\bullet		
		廃溶媒中開槽		\bullet				廃溶媒中閫槽		\bullet		
		廃希积剤ポット		\bullet				廃希秋剤ポット		\bullet		
		廃希秋剤中間槽		\bullet				廃希积剤中間槽		\bullet		
		T B P 吸着埕A		\bullet				T B P 吸着塔A		\bullet		
		T B P 吸着塔B		\bullet				T B P 吸着塔B		\bullet		
		油水中開ポット		\bullet				油水中閽ポット		\bullet		
		油水分離槽		\bullet				油水分離槽		\bullet		
		溶媒槽		\bullet				溶楳橧		\bullet		
		溶媒万過器（I）		\bullet				溶媒万過器（ ）		\bullet		
○固有設備 共用設備	T A C Y への移	管前）				○固有設備 共用設備	TACYいの移	管前）				

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前						変 更 後						備 考
表 $\underline{3}$ TRACYの設備及び解体範囲（ $6 / 10)$						表4－4 TRACYの設備及び解体範囲（ $6 / 10$ ）						記載の適正化
				解体し	ない設備					解体しな	ない設備	
施設区分	設備区分	設備名	解体す る設備 （第2段階）	$\begin{array}{\|l\|} \hline \text { STACY } \\ \text { に移管 } \\ \text { (第1 } \\ \text { 段階開 } \\ \text { 始時) } \end{array}$	$\begin{array}{\|l\|} \hline \text { STACY } \\ \text { に移管 } \\ \text { (第2 } \\ \text { 段階終 } \\ \text { 了時) } \\ \hline \end{array}$	施設区分	設備区分	設備名	$\begin{aligned} & \text { 解体す } \\ & \text { る設 } \\ & \text { (第2 } \\ & \text { 段階) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { STACY } \\ \text { に移管 } \\ \text { (第 } 1 \\ \text { 階閣時) } \\ \hline \end{array}$	$\begin{gathered} \hline \text { STACY } \\ \text { に移管 } \\ \text { (第2 } \\ \text { 段階終 } \\ \text { 了時) } \\ \hline \end{gathered}$	
核然料物質取扱施設及 び貯蔵施設	精製附属設備	溶媒ち過器（II）		\bullet		核燃料物質取扱施設及 び貯蔵施設	精製附属設備	溶媒ち過器（II）		\bullet		
		希秋剤槽		\bullet				希釈剤槽		\bullet		
		洗浄廃液槽A		\bullet				洗浄廃液槽A		\bullet		
		洗浄廃液槽B		\bullet				洗浄廃液槽 B		\bullet		
		油水受槽（ I ）		\bullet				油水受槽（ I ）		\bullet		
		油水受槽（（I）		\bullet				油水受槽（II）		\bullet		
		廃溶媒槽		\bullet				廃溶媒槽		\bullet		
		廃希积剤槽A		\bullet				廃希积剤槽A		\bullet		
		廃希积剤槽B		\bullet				廃希积剤槽B		\bullet		
		精製附属設備グローブボックス（I）		\bullet				精製附属設備グローブボックス（ I ）		\bullet		
		精製附属設備グローブボックス（II）		\bullet				精製附属設備グローブボックス（II）		\bullet		
		精製附属設備グローブボックス（III）		\bullet				精製附属設備グローブボックス（III）		\bullet		
		精製附属設備グローブボックス（IV）		\bullet				精製附属設備グローブボックス（IV）		\bullet		
		精製附属設備グローブボックス（V）		\bullet				精製附属設備グローブボックス（V）		\bullet		
		サンプリング用グローブボックス （II）		\bullet				サンプリング用グローブボックス （II）		－		
		配管		\bullet				配管		\bullet		
	燃取補助設備	蒸発缶給液槽A		\bullet			燃取補助設備	蒸発缶給液槽A		\bullet		
		蒸発缶給液掼 B		\bullet				蒸発缶給液槽 B		\bullet		
		ウラナス供給槽		\bullet				ウラナス供給槽		\bullet		
		ウラナス電解槽		\bullet				ウラナス電解槽		\bullet		
		ウラナス供給ラインヒータ		\bullet				ウラナス供給ラインヒータ		\bullet		
		然取補助設備グローブボックス（I）		\bullet				燃取補助設備グローブボックス（ I ）		\bullet		
		然取補助設備グローブボックス（II）		\bullet				燃取補助設備グローブボックス（II）		\bullet		
		燃取補助設備グローブボックス（III）		\bullet				燃取補助設備ゾローブボックス（III）		\bullet		
		$\begin{aligned} & \text { サンプリング用グローブボックス } \\ & \text { (IV) } \\ & \hline \end{aligned}$		\bullet				サンプリング用グローブボックス （IV）		\bullet		
		配管		\bullet				配管		\bullet		
○固有設備共用設備	TACYへの程	管前）				○固有設備共用設備	TACYへの移	管前）				

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前						変 更 後						備 考
表3 TRACYの設備及び解体範囲（7／10）						表 4 －4 TRACYの設備及び解体範囲（ $7 / 10$ ）						記載の適正化
				解体しな	ない設備					解体しな	ない設備	
施設区分	設備区分	設備名	解体す る設備 （第 2段階）	STACY に移管 （第1 段階開 始時）	STACY に移管 （第2 段階終 了時）	施設区分	設備区分	設備名	解体す る設備 （第2 段階）	STACY に移管 （第1 段階開 始時）	STACY に移管 （第2 段階終 了時）	
核燃料物質取扱施設及 び貯蔵施設	燃取補助設備	蒸発缶		\bigcirc		核燃料物質取扱施設及 び貯蔵施設	燃取補助設備	蒸発缶		\bigcirc		
		濃縮液受槽		\bigcirc				濃縮液受槽		\bigcirc		
	ウラン酸化物燃料貯蔵設備	ウラン酸化物燃料収納架台		\bigcirc			ウラン酸化物燃料貯蔵設備	ウラン酸化物燃料収納架台		－		
	溶液燃料貯蔵設備	U溶液貯槽（ I ）A		－			溶液燃料貯蔵設備	U溶液貯槽（ I ）A		－		
		U溶液貯槽（I）B		\bigcirc				U溶液貯槽（I）B		\bigcirc		
		U溶液貯槽（ I ）C		\bigcirc				U溶液貯槽（I）C		\bigcirc		
		U溶液貯槽（ I ）（予備槽）		\bigcirc				U溶液貯槽（ I ）（予備槽）		\bigcirc		
		U溶液貯槽（ II）A		\bigcirc				U溶液貯槽（ II）A		－		
		U溶液貯槽（II）B		－				U溶液貯槽（II）B		－		
		U溶液較正ポット		\bigcirc				U溶液較正ポット		－		
		ノックアウトポット（I）		\bigcirc				ノックアウトポット（I）		\bigcirc		
		溶液貯蔵室－1隔離壁		\bigcirc				溶液貯蔵室－1隔離壁		\bigcirc		
		溶液貯蔵室 -7 隔離壁		\bigcirc				溶液貯蔵室－7隔離壁		\bigcirc		
		溶液貯蔵室－9隔離壁		\bigcirc				溶液貯蔵室－9隔離壁		－		
		溶液燃料貯蔵設備グローブボックス（ ）		\bigcirc				溶液燃料貯蔵設備グローブボックス（ I ）		\bigcirc		
		溶液燃料貯蔵設備グローブボックス（II）		\bigcirc				溶液燃料貯蔵設備グローブボックス（II）		\bigcirc		
		サンプリング用グローブボックス		\bigcirc				サンプリング用グローブボックス		\bigcirc		
		配管		－				配管		\bullet		
	供給設備（II）	燃料取扱ボックス	\bigcirc				供給設備（II）	燃料取扱ボックス	\bigcirc			
		給排液へッダボックス	\bigcirc					給排液へッダボックス	\bigcirc			
		ダンプ槽III A	\bigcirc					ダンプ槽III A	\bigcirc			
		ダンプ槽III B	\bigcirc					ダンプ槽III B	\bigcirc			
		減衰槽 A	\bigcirc					減衰槽 A	\bigcirc			
		減衰槽B	\bigcirc					減衰槽B	\bigcirc			
		真空槽	\bigcirc					真空槽	\bigcirc			
		補給液調整槽	\bigcirc					補給液調整槽	\bigcirc			
固有設備 共用設備（S T A C Y への移管前）						固有設備 共用設備（S T A C Y への移管前）						

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前						変 更 後						備 考						
表3 TRACYの設備及び解体範囲（ $8 / 10$ ）						表 $4-4$ TRACYの設備及び解体範囲（8／10）						記載の適正化						
		設備名	解体す る設備 （第2段階）	解体しない設備		施設区分	設備区分	設備名	解体す る設備 （第 2 段階）	解体しない設備								
施設区分	設備区分			STACY に移管 （第1 段階開 始時）	STACY に移管 （第 2 段階終 了時）					STACY に移管 （第 1 段階開 始時）	STACY に移管 （第2 段階終 了時）							
核燃料物質取扱施設及 び貯蔵施設	供給設備（ II）	凝縮液受槽	\bigcirc			核燃料物質取扱施設及 び貯蔵施設	供給設備（II）	凝縮液受槽	\bigcirc									
		第3よう素吸着塔	\bigcirc					第3よう素吸着塔	\bigcirc									
		配管	\bigcirc					配管	\bigcirc									
放射性廃棄物の廃棄施設	排気筒	排気筒			－	放射性廃棄 物の廃棄施設	排気筒	排気筒			－							
	気体廃共物処理設備	ブロワ A		－			気体廃棄物処理設備	ブロワ A		\bigcirc								
		ブロワ B		－				ブロワ B		\bigcirc								
		加熱器A		\bigcirc				加熱器A		\bigcirc								
		加熱器B		\bigcirc				加熱器B		\bigcirc								
		デミスタ		\bigcirc				デミスタ		\bigcirc								
		フィルタ（I）A		\bigcirc				フィルタ（I）A		\bigcirc								
		フィルタ（I）B		\bigcirc				フィルタ（I）B		\bigcirc								
		フィルタ（II）A		－				フィルタ（II）A		\bigcirc								
		フィルタ（II）B		\bigcirc				フィルタ（II）B		\bigcirc								
		気体廃棄物処理グローブボックス		\bigcirc				気体廃棄物処理グローブボックス		\bigcirc								
		配管		\bigcirc				配管		\bigcirc								
	槽ベント設備 B	ブロワ A		－			$\begin{aligned} & \text { 槽ベント設備 } \\ & \text { B } \end{aligned}$	ブロワ A		－								
		ブロワ B		－				ブロワ B		\bigcirc								
		NOx 洗浄塔		\bigcirc				NOx 洗浄塔		\bigcirc								
		オフガス洗浄塔		\bigcirc				オフガス洗浄塔		－								
		デミスタ（I）		\bigcirc				デミスタ（I）		\bigcirc								
		デミスタ（II）		\bigcirc				デミスタ（II）		\bigcirc								
		ベント加熱器		\bigcirc				ベント加熱器		\bigcirc								
		フィルタ		\bigcirc				フィルタ		\bigcirc								
		槽ベント設備B－燃調グローブボックス		\bigcirc				槽ベント設備B－燃調グローブボックス		\bigcirc								
		槽ベント設備 B－貯蔵グローブボックス		\bigcirc				槽ベント設備B－貯蔵グローブボックス		\bigcirc								
		配管		\bigcirc				配管		\bigcirc								
	$\begin{aligned} & \text { 槽ベント設備 } \\ & \text { C } \end{aligned}$	第1ベントガスコンデンサ	\bigcirc				$\begin{aligned} & \text { 槽ベント設備 } \\ & \text { C } \end{aligned}$	第1ベントガスコンデンサ	\bigcirc									
		ベントガス希釈槽	\bigcirc					ベントガス希釈槽	\bigcirc									
		再結合器	\bigcirc					再結合器	\bigcirc									
○固有設備 共用設備（S T A C Y への移管前）						○固有設備 －共用設備（S T A C Y への移管前）												

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前						変 更 後						備 考
表3 TRACYの設備及び解体範囲（9／10）						表 4 －4 TRACYの設備及び解体範囲（ $9 / 10$ ）						記載の適正化
施設区分	設備区分	設備名	解体す る設備 （第2段階）	解体しない設備		施設区分	設備区分	設備名	解体す る設備 （第2 段階）	解体しない設備		
				STACY に移管 （第1 段階開 始時）	$\begin{array}{\|l} \hline \text { STACY } \\ \text { に移管 } \\ \text { (第2 } \\ \text { 段階終 } \\ \text { 了時) } \\ \hline \end{array}$					STACY に移管 （第1 段階開 始時）	$\begin{array}{\|l\|} \hline \text { STACY } \\ \text { に移管 } \\ \text { (第2 } \\ \text { 段階終 } \\ \text { 了時) } \\ \hline \end{array}$	
放射性廃棄物の廃査施設	槽ベント設備C	第1よう素吸着塔	\bigcirc			放射性廃棄物の廃棄施設	槽ベント設備C	第1よう素吸着塔	\bigcirc			
		ベントガス送風機A	\bigcirc					ベントガス送風機A	\bigcirc			
		ベントガス送風機B	\bigcirc					ベントガス送風機B	\bigcirc			
		ベントガス送風機附属冷却器	\bigcirc					ベントガス送風機附属冷却器	\bigcirc			
		第 2 ベントガスコンデンサ	\bigcirc					第 2 ベントガスコンデンサ	\bigcirc			
		第2よう素吸着塔A	\bigcirc					第2よう素吸着塔A	\bigcirc			
		第 2 よう素吸着塔 B	\bigcirc					第 2 よう素吸着塔B	\bigcirc			
		配管	\bigcirc					配管	\bigcirc			
	槽ベント設備D	ブロワ A			－		槽ベント設備D	ブロワ A			\bigcirc	
		ブロワ B			－			ブロワ B			\bigcirc	
		加熱器A			\bigcirc			加熱器A			－	
		加熱器B			\bigcirc			加熱器B			\bigcirc	
		フィルタA			－			フィルタA			－	
		フィルタB			－			フィルタB			\bigcirc	
		配管			－			配管			\bigcirc	
	$\beta \cdot \gamma$ 廃液系設備	極低レベル廃液貯槽			\bigcirc		$\beta \cdot \gamma$ 廃液系設備	極低レベル廃液貯槽			\bigcirc	
		低レベル廃液貯槽			\bigcirc			低レベル廃液貯槽			\bigcirc	
		中レベル廃液貯槽		－				中レベル廃液貯槽		－		
		有機廃液貯槽（B）		－				有機廃液貯槽（B）		－		
		配管			－			配管			\bigcirc	
	放射性廃棄物処理場				（）		放射性廃竬物処理場				（	
放射線管理施設	屋内管理用 の主要な設備	室内モニタ			－	放射線管理施設	屋内管理用 の主要な設備	室内モニタ			－	
		放射線エリアモニタ			\bigcirc			放射線エリアモニタ			\bigcirc	
		放射線サーベイ設備			－			放射線サーベイ設備			－	
	屋外管理用 の主要な設備	排気筒モニタ			\bigcirc		屋外管理用 の主要な設備	排気筒モニタ			\bigcirc	
		モニタリングポスト			©			モニタリングポスト			©	
固有設備 共用設備（S T A C Y への移管前） 原子力科学研究所の原子炉施設の共通施設として継続使用する設備						○固有設備 －共用設備（S T A C Y への移管前） 原子力科学研究所の原子炉施設の共通施設として継続使用する設備						

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前						変 更 後		備 考
表4 廃止措置第1段階における切断閉止対象配管				表 5 － 1 廃止措置第1段階における切断閉止対象配管				記載の適正化 記載の適正化
切断閉止の目的	番号＊${ }^{\text {1 }}$	配管系統	配管径＊2	切断閉止の目的	番号＊1	配管系統	配管径＊${ }^{\text {2 }}$	
原子炉機能の停止措置	1	調整設備 溶液払出槽から供給設備 （II）ダンプ槽III Aまで	10A	原子炉機能の停止措置	1	調整設備 溶夜払出槽から供給設備 （II）ダンプ槽III A まで	10A	
	2	調整設備 溶液払出槽から供給設備 （II）ダンプ槽IIIB まで	10A		2	調整設備 溶液払出槽から供給設備 （II）ダンプ槽III B まで	10A	
STACYとの系統隔離措置	3	燃取補助設備 回収水貯槽から供給設備（II）補給液調整槽まで	10A	STACYとの 系統隔離措置	3	燃取補助設備 回収水貯槽から供給設備（II）補給液調整槽まで	10A	
	4	燃取補助設備 回収酸貯槽から供給設備（II）補給夜調整槽まで	10A		4	燃取補助設備 回収酸貯槽から供給設備（II）補給夜調整槽まで	10A	
	5	供給設備（II）から調整設備 戻液受槽まで	20A		5	供給設備（II）から調整設備 戻液受槽まで	20A	
	6	槽ベント設備Cから気体廃棄物処理設備まで	25A		6	槽ベント設備Cから気体廃棄物処理設備まで	25A	
	7	真空設備から供給設備（II）まで	15A		7	真空設備から供給設備（II）まで	15A	
	8	圧縮空気設備（L A）	15A		8	圧縮空気設備（L A）	15A	
	9	圧縮空気設備（ELA）	15A		9	圧縮空気設備（ELA）	15A	
	10	圧縮空気設備（EIA）	15 A		10	圧縮空気設備（EIA）	15A	
＊1：図 5 及び図 $\underline{6}$ の切断閉止箇所の番号を示す。 ＊2：JIS G 3459 で定める呼び径を示す。				＊ $1:$ 図 $4-4$ 及び図 $4-5$ の切断閉止箇所の番号を示す。 ＊2：JIS G 3459 で定める呼び径を示す。				

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更
変 更 前

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前		変 更 後	備 考
	（削る）		記載の適正化（図 4 -7 に移動）

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変更 前	変更 後	備 考
		記載の適正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変更前	変更後	作考
		記裁の道正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変更前	変更後	侑
		記城め通正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変更 前	変更 後	備 考
		記載の適正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変更前	変更 後	備 考
		記載の適正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変更前	変更 後	備考
		記載の適正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変更前	変更後	偳考
		記城め通正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変更前	変 更 後	備 考
		記載の適正化

変更前	変更後	偳考
		記哉か通正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変更前	変更 後	備 考
		記載の適正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更
（変 更 前

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
1．廃止措置期間中の原子炉施設の維持管理 廃止措置期間中に機能を維持すべき設備及びその機能並びにその機能を維持 すべき期間を表1－1に，また，TRACY固有設備を図1－1に，STACYと の共用設備である核燃料物質取扱設備及び貯蔵設備を含む全系統を図 $1-2$ に示 す。 処理場，放射線管理施設の屋外管理用の主要な設備のらちモニタリングポスト， モニタリングステーション，中央監視装置及び環境放射線観測車は，廃止措置期間中維持管理し，TRACYの廃止措置終了後も他の原子炬施設の共通施設として維持管理する。 1.1 原子炉本体 原子炉本体は，解体対象設備であり，維持すべき施設•設備に該当しない。 1.2 核燃料物質の取扱施設及び貯蔵施設 TRACYの燃料はSTACYに移管されており，TRACYには燃料が存在し ないため，核燃料物質の取扱施設及び貯蔵施設は維持すべき施設•設備に該当しな い。 1.3 原子炉冷却系統施設 原子炉冷却系統施設は，TRACYには不要であり設置されていないため，維持 すべき施設•設備は存在しない。 1．4 計測制御系統施設 計測制御系統施設は，解体対象設備であり，維持すべき施設•設備に該当しない。 1.5 放射性廃棄物の廃棄施設 槽ベント設備Cは，解体対象設備であり，維持すべき施設•設備に該当しない。以下の設備については，保安規定に基づき維持管理する。S T A C Y との共用設備である $\beta \cdot \gamma$ 廃液系設備のうち極低レベル廃液貯槽，低レベル廃液貯槽について，廃止措置期間中の作業員の手洗い水を貯留するため，液体廃棄物の貯留機能を維持 する。また，これら廃液貯槽のベントガスを処理する槽ベント設備Dについて，気体廃宩物の処理機能を維持する。排気筒については，放出経路確保機能を維持する。 1.6 放射線管理施設 原子炉施設内外の放射線監視，環境への放射性物質の放出管理及び放射線業務従事者の被ばく管理を行らため，排気筒モニタ，室内モニタ，放射線エリアモニタ，放射線サーベイ設備について，保安規定に基づき放射線監視機能を維持する。	（削る）	本文七，十一及び添付書類 5 －移動し たため削除

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
設備と接続している共用設備（気体廃棄物処理設備，真空設備，圧縮空気設備） の配管の一部（図 $1-1$ 及び図 $1-2$ に×印で示す 10 箇所，各数 10 cm 程度）を切断し，閉止する。なお，同様の配管切断工事は，核燃料物質取扱設備（調整附属設備）のU溶解槽からPu溶解槽への配管接続切替工事（平成12年度）にて実績がある。 （2）TRACY固有設備として残存する機器配管（図 1－1の炬室（T）及び炉下室 （T）内の機器配管の全部）の污染拡大防止のため，系統の閉じ込め管理を行う。 また，この間，第2段階の解体撤去工事に従事する作業員の被ばく低減のため，放射化物及び核分裂生成物の放射能を減衰させる期間（10年以上）を設ける。 （第2段階） （3）TRACY固有設備（総重量約 220 t ，このらち放射性廃棄物でない廃棄物の重量約 45 t ，図 $1-1$ の炉室（ T ）及び炉下室（ T ）内の機器配管の全部）を解体撤去する。なお，解体撤去に当たつては，S T A C Y の溶液燃料取扱設備の解体撤去と合わせて同時に行うことにより，解体撤去を合理的かつ効率的に行う ことを考慮する。（平成 $42 \sim 46$ 年度を目途）その具体的な手順については，設備の解体撤去に着手するまでに詳細な検討を行い，本廃止措置計画の変更認可申請を行ら。 その他，STACYと共用しているNUCEF建家（格納施設である炉室（T）及 び炬下室（T）を含む。），換気空調設備，放射線管理施設（排気筒モニタ，室内モニ夕，放射線エリアモニタ，放射線サーベイ設備），放射性廃妻物の廃妻施設（槽べン卜設備D）等はS T A C Y に移管するため，解体は行わない。また，原子力科学研究所の原子炬施設の共通施設である処理場，放射線管理施設の屋外管理用の主要な設備のらちモニタリングポスト，モニタリングステーション，中央監視装置及び環境放射線観測車は，廃止措置期間中維持管理し，TRACYの廃止措置終了後も他 の原子炬施設の共通施設として維持管理するため，解体は行わない。		

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前		変 更 後	備 考
	（削る）		本文図 4－4と統合したため削除

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
	（削る）	本文図 $4-5$ と統合したため削除

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変更前	変更後	備考
添付書類一		

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更
変 更 前

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
1．放射線の被ばく管理（省略） 2．放射性廃棄物の廃棄等 廃止措置の第1段階（原子炉機能停止措置及び系統の閉じ込め管理）及び第2段階（解体撤去）に伴って発生する核燃料物質によって汚染された物及び放射性物質 として扱う必要のない物の処理処分方法は，以下のとおりである。 2.1 放射性気体廃革物 2．1．1 発生量 （1）廃止措置の第1段階 廃止措置の第 1 段階の期間中に行われる一部配管（ 10 箇所，各数 10 cm 程度）の切断及び閉止作業では，少量の塵挨が発生するが，切断部位の汚染レベルが極め て少ないこと，発生した塵挨に対しては集塵装置，局所排気装置，汚染拡大防止 の養生等の対策を講じるとともに，換気空調設備の高性能エアフィルタでろ過し た後に排気することから，放射性塵挨の放出による環境への影響は無視できる。 （2）廃止措置の第2段階 廃止措置の第2段階に係る解体撤去工事においては，切断時に塵挨が発生する が，集塵装置，局所排気装置，汚染拡大防止囲いの設置等の汚染の拡大防止対策 を講じるとともに，換気空調設備の高性能エアフィルタでろ過した後に排気する こと，また，放射化物及び核分裂生成物の放射能減衰のための期間（10年以上） を設けることから，放射性塵挨の放出による環境への影響は無視できる。 2．1．2 処理処分 廃止措置期間中に発生する放射性気体廃葉物は，換気空調設備の高性能エアフィ ルタでろ過した後，排気筒モニタにより，放射性物質の濃度が線量告示に定める排気中の濃度限度以下であることを連続監視しながら，排気筒から放出する。 2． 2 放射性液体廃棄物 2．2．1 発生量 （1）廃止措置の第1段階 廃止措置の第1段階（原子炬機能停止措置及び系統の閉じ込め管理）の期間中 に発生する主な放射性液体廃棄物は，保守作業員が管理区域から退出する際の手选い水であり，施設運転中に発生する程度を超えることはない。また，これらの放射性液体廃棄物の濃度は，従来のT R A C Y における運転保守作業の実績によ ると線量告示に定める排水中の濃度限度を超えるおそれはないことから，放射性液体廃棄物による環境への影響は無視できる。 （2）廃止措置の第2段階	1．放射線の被ばく管理（変更なし） \qquad （削る）	法令改正に伴い削 除（本文十に統合）

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
4．2．1 評価方法 放射化量の評価手順は，以下のとおりである。 （1）中性子束分布の計算 JENDL－3． $3^{(1)}$ に基づくMATXS形式ライブラリMATXSLIB－J33 ${ }^{(2)}$ をTRANSX－2． $15^{(3)}$ コードにより処理して175群の中性子群定数を作成した。この群定数を用いて， Doors 3．2aコードシステム ${ }^{(4)}$ に含まれる 2 次元輸送計算コードDORTにより，炉室（T）及び炉下室（T）を 2 次元円柱体系にモデル化し， 175 群の中性子束分布を求 めた。輸送計算に用いた構造材等の物質組成は，炉心タンクは当該材料のミルシ ート記載値，水反射体水槽はJIS G4304（2012）記載値，コンクリートは臨界安全ハ ンドブック第 1 版 ${ }^{(5)}$ 記載値を用いた。 （2）放射化汚染物質の放射能量の計算 放射化汚染物質の放射能量は，SCALE－6．1コードシステム ${ }^{(6)}$ に含まれる中性子放射化量及び核分裂生成物生成量等の計算コードORIGEN－S及びORIGEN－S用ライブ ラリ作成コードCOUPLEを用いて求めた。 上記（1）で求めた175群の中性子エネルギースペクトルと，SCALE－6．1に付属の JEFF－3．0／Aに基づく200群のAMPX WorkingライブラリをCOUPLEコードにより処理 し，ORIGEN－S用の中性子 1 群断面積を作成した。この断面積とDORTコードで求め た設備機器や構造材等の位置における中性子束を用いて，ORIGEN－Sコードにより放射化汚染物質の放射能量を算出した。 このとき，ORIGEN－Sコードに入力する中性子束の規格化及び抽出位置，照射時間，冷却時間，設備機器等の元素組成，評価対象核種は，以下のように設定した。 1）中性子束の規格化 中性子束は，DORTコードによる中性子束分布計算結果を，T R A C Y の定出力運転における最大熱出力 10 kW に規格化した値とした。 2）中性子束の抽出位置 中性子束の抽出位置の決定においては，まず，DORTコードで求めた中性子束分布のらち，放射化において支配的となる熱中性子束分布を基に，2次元円柱体系とする炉室（T）及び炉下室（T）のモデル内の領域を次の 6 つに区分した。中性子束評価のための領域区分図を図 $2-3$ に示す。中性子束は，それら 6 領域ごとに抽出し，ORIGEN－Sコードへの入力値とした。 $\begin{array}{ll} \text { (1) } & \text { 炬心タンク } \\ \hline & \text { 炬心タンクのみ } \\ \hline \text { (2) } & \text { 炬心タンク周囲 } \\ \hline \end{array}$ （1） 垂直方向：炉心タンク側面高さ（床から約 3.5 m まで） 水平方向：炉心タンク中心から 2.0 m 以内 （3）炉心タンク上部		

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
核燃料物質等（溶液燃料及び核分裂生成物）により汚染され二次汚染物質となる解体廃棄物の放射能量を推定するため，T R A C Y の最終運転後3．7年経過した平成26年12月に，スミア法による設備機器等の污染状況の調查及びサーベイメータに よる機器近傍の線量率測定を行い，連続エネルギーモンテカルロコードMCNP ${ }^{(9)}$ の計算結果を組み合わせ，以下のとおり算出した。なお，この線量率測定値には放射化汚染物質からの放射線の寄与も含まれることから，本推定放射能量は過大評価と なっている。 冷却期間経過後における核分裂生成物中の主要核種の放射能割合を算出した結果，評価対象核種はウラン並びにCs－137及びSr－90とした。表2－5に泠却期間経過後における核種の放射能量割合を示す。この放射能割合の算出には，JENDL－4．0 ${ }^{(8)}$ に基づくU－235の核分裂収率を用いた。 4．3．1 炉心タンク 炉心タンクは，TRACYの過渡出力運転において溶液燃料から放出される気体状及びミスト状の放射性物質により污染しており，二次污染物質による放射能量が大きい機器の一つである。 炉心タンク内部の放射能量C（Bq）は，サーベイメータによる線量率測定値をD s（ $\mu \mathrm{Sv} / \mathrm{h}$ ）とし，その測定位置におけるMCNPによる単位線源強度あたりの線量率計算値を $\mathrm{D}_{\underline{\mathrm{m}}}((\mu \mathrm{Sv} / \mathrm{h}) / \mathrm{Bq})$ とすると，次の関係にある。 $\underline{D}_{\underline{s}}(\mu \mathrm{~Sv} / \mathrm{h})=\mathrm{C}(\mathrm{~Bq}) \times \mathrm{D}_{\underline{\mathrm{m}}}((\mu \mathrm{~Sv} / \mathrm{h}) / \mathrm{Bq})$ よって，解体廃棄物の放射能量 C は，次式から算出することができる。 $\underline{C}=D_{s} / D_{\underline{M}} \quad(2-2)$ このMCNPによる計算では，線源核種は代表核種であるCs－137とし，線量率計算位置 は実測した位置に設定した。また，灲心タンク内の溶液燃料の代表的な液位（実験計画に応じて変更するがおおよそ 60 cm ）を考慮し，線源面を次の 2 つの領域に分割 した。それら各領域の線源面の放射能密度（ $\mathrm{Bq} / \mathrm{cm}^{2}$ ）は均一とした。 1）底部領域（タンク底面と側面 60 cm 高さ以下） 2）上部領域（タンク蓋面と側面 60 cm 高さ以上） 炬ふタンク近傍の線量率測定は，タンク底部とタンク上部の 2 点で行った。それ ぞれの位置の線量率計算値には，計算位置に近い方の線源のみが寄与するとし，遠方の線源からの寄与は無視した。つまり，計算位置に近い方の線源からの線量率を $\underline{D}_{\underline{M n}}$ ，遠い方からの線量率をD mf とすると，（2－2）式の二次污染物質の放射能量C は次の関係にある。 $\underline{C}=D_{\underline{s}}<D_{\underline{M n}} \underline{\underline{Z}} \underline{D_{s}} /\left(D_{\underline{M n}}+D_{\underline{M f}}\right) \quad(2-3)$		

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
上式に示すとおり，計算位置に近い方の線源からの線量率 $\mathrm{D}_{\mathrm{Mn} \mathrm{n}}$ のみを考慮すること で，解体廃棄物の放射能量Cを灯心タンク内の 2 つの線源領域それぞれにおいて保守的に評価することができる。これら 2 つの放射能量を合算し，解体廃忘物（炬心 タンク）の放射能量とした。 4．3．2 炬心タンク以外の主要設備機器等 炬心タンク以外で放射能量が大きい気体廃棄物処理設備の槽ベント設備C内の ベントガス希釈槽及び再結合器については，線源面は機器内部で均一と仮定し，第 4．3．1節と同様に，二次污染物質の放射能量を算出した。これ以外の機器•配管等に ついては，配管の線量率測定値から推定した系統毎の表面污染密度と内表面積を乗 じて算出した。 なお，溶液燃料給排液系配管及び供給設備（II）の貯槽については，水移送により洗浄していることから，その放射能量は槽ベント設備Cのそれよりも十分小さい。 4．3．3 解体廃棄物の放射能分布 解体廃棄物の各系統には核分裂生成物の代表核種Cs－137やSr－90が存在するほ か，溶液燃料給排液系統には微量のウランが存在している。このらちCs－137の放射能量評価の方法は，第4．3．1節で述べたとおりである。Sr－90の割合は，U－235の核分裂収率から，Cs－137と同量とした。ウランの放射能量は，汚染状況の調查結果か ら，Cs－137の放射能量の 9 倍とした。解体廃棄物の推定放射能量を表2－6に示す。同表に示すとおり，原子炉停止後 3.7 年経過時（平成 26 年 12 月現在）の解体廃妻物 の総放射能量及び放射能濃度（全体平均）は，それぞれ $1.1 \times 10^{10} \mathrm{~Bq}$ 程度， 5.0×10 ${ }^{2} \mathrm{~Bq} / \mathrm{g}$ 程度と見積もられた。また，原子炉停止後 10 年経過時（平成 33 年 3 月時点） の総放射能量及び放射能濃度（全体平均）はそれぞれ $9.8 \times 10^{9} \mathrm{~Bq}$ 程度， $4.6 \times 10^{2} \mathrm{~Bq} /$ g 程度となり，原子炬停止後約 3.7 年経過時の推定値に対して総放射能量は 10% 減，放射能濃度は 8% 減となる。 参考文献 （1）K．Shibata，et．al．，＂Japanese Evaluated Nuclear Data Library Version 3 Revision－3：JENDL－3．3，＂J．Nuc1．Sci．Technol．39， 1125 （2002）． （2）K．Kosako，et．al．，＂THE LIBRARIES FSXLIB AND MATXSLIB－J33 BASED ON JENDL－3．3，＂JAERI－Data／Cod $\times 10-2003-011$（2003）． （3）R．E．MacFarlane，＂TRANSX 2：A Code for Interfacing MATXS Cross－Section Libraries to Nuclear Transport Codes，＂LA－12312－MS（1992）． （4）Oak Ridge National Laboratory，＂D00RS 3．2a：One，Two－and Thre $\times 10-$ Dimensional Discrete Ordinates Neutron／Photon Transport Code System， CCC－650（2003）． （5）科学技術庁原子力安全局核燃料規制課編，「臨界安全ハンドブック」，にっかん	（削る）	法令改正に伴い削除（添付書類 4 に移動）

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前					変 更 後		備 考
表2－3 元素組成データ（1／2）					（削る）		法令改正に伴い削除（添付書類 4 に移動）
代表機器等	炬心タンク＊${ }^{\text {d }}$	反射体水槽＊2	実験装置架台＊3	炬室＊4			
材質	$\underline{\text { SUS304 }}$	$\underline{\text { SUS304 }}$	SS400	コンクリート			
\underline{H}	＝	$=$	－	$\underline{1.0 \times 10^{\circ}}$			
$\underline{\text { Li }}$	$\underline{\underline{1.3 \times 10^{-5}}}$	$\underline{\underline{1.3 \times 10^{-5}}}$	3.0×10^{-5}	$\underline{2.0 \times 10^{-3}}$			
B	－	＝	\pm	2.0×10^{-3}			
C	$\underline{1.1 \times 10^{-2}}$	8.0×10^{-2}	－	$\underline{1.0 \times 10^{-1}}$			
N	$\underline{4.5 \times 10^{-2}}$	4.5×10^{-2}	8.4×10^{-3}	$\underline{1.2 \times 10^{-2}}$			
$\underline{\underline{O}}$	$\underline{+}$	＝	＝	$\underline{\underline{5.3 \times 10^{1}}}$			
F	$=$	－	－	$=$			
Na	$\underline{9.7 \times 10^{-4}}$	9.7×10^{-4}	$\underline{2.3 \times 10^{-3}}$	$\underline{1.6 \times 10^{0}}$			
$\underline{\text { Al }}$	$\underline{1.0 \times 10^{-2}}$	$\underline{1.0 \times 10^{-2}}$	$\underline{3.3 \times 10^{-2}}$	$\underline{3.4 \times 10^{\circ}}$			
$\underline{\text { Si }}$	7.0×10^{-1}	$\underline{1.0 \times 10^{\circ}}$	二	3.4×10^{1}			
\underline{P}	2.1×10^{-2}	4.5×10^{-2}	5． 0×10^{-2}	5． 0×10^{-1}			
s	$\underline{2.0 \times 10^{-3}}$	3.0×10^{-2}	$\underline{5.0 \times 10^{-2}}$	3.1×10^{-1}			
$\underline{\text { Cl }}$	7.0×10^{-3}	$\underline{7.0 \times 10^{-3}}$	$\underline{4.0 \times 10^{-3}}$	$\underline{4.5 \times 10^{-3}}$			
$\underline{\underline{K}}$	3.0×10^{-4}	$\underline{3.0 \times 10^{-4}}$	$\underline{1.2 \times 10^{-3}}$	$\underline{1.3 \times 10^{0}}$			
$\underline{\text { Ca }}$	$\underline{1.9 \times 10^{-3}}$	$\underline{1.9 \times 10^{-3}}$	$\underline{1.4 \times 10^{-3}}$	$\underline{4.3 \times 10^{0}}$			
$\underline{\text { Sc }}$	3.0×10^{-6}	3.0×10^{-6}	$\underline{2.6 \times 10^{-5}}$	6.5×10^{-4}			
$\underline{\underline{T i}}$	6.0×10^{-2}	6.0×10^{-2}	2.0×10^{-4}	$\underline{2.1 \times 10^{-1}}$			
$\underline{\mathrm{v}}$	$\underline{4.6 \times 10^{-2}}$	$\underline{4.6 \times 10^{-2}}$	8.0×10^{-3}	$\underline{1.0 \times 10^{-2}}$			
$\underline{\underline{C r}}$	$\underline{1.8 \times 10^{1}}$	2.0×10^{1}	$\underline{1.7 \times 10^{-1}}$	$\underline{1.1 \times 10^{-2}}$			
$\underline{\underline{M n}}$	$\underline{9.5 \times 10^{-1}}$	2.0×10^{0}	$\underline{1.0 \times 10^{\circ}}$	3.8×10^{-2}			
Fe	$\underline{7.0 \times 10^{1}}$	$\underline{7.1 \times 10^{1}}$	$\underline{1.0 \times 10^{2}}$	$\underline{1.4 \times 10^{\circ}}$			
$\underline{\underline{C}}$	$\underline{4.0 \times 10^{-2}}$	$\underline{\underline{1.4 \times 10^{-1}}}$	$\underline{1.2 \times 10^{-2}}$	$\underline{9.8 \times 10^{-4}}$			
$\underline{\mathrm{Ni}}$	$\underline{1.0 \times 10^{1}}$	$\underline{1.1 \times 10^{1}}$	6.6×10^{-1}	3.8×10^{-3}			
$\underline{\underline{C u}}$	3.1×10^{-1}	$\underline{3.1 \times 10^{-1}}$	$\underline{1.3 \times 10^{-1}}$	$\underline{2.5 \times 10^{-3}}$			
$\underline{\mathrm{Zn}}$	4.6×10^{-2}	$\underline{4.6 \times 10^{-2}}$	$\underline{1.0 \times 10^{-2}}$	7.5×10^{-3}			
$\underline{\text { Ga }}$	$\underline{1.3 \times 10^{-2}}$	$\underline{1.3 \times 10^{-2}}$	8.0×10^{-3}	8.8×10^{-4}			
$\underline{\text { Ge }}$	－	－	－	－			
$\underline{\text { As }}$	$\underline{1.9 \times 10^{-2}}$	$\underline{1.9 \times 10^{-2}}$	5．3×10－2	7.9×10^{-4}			
Se	3.5×10^{-3}	3.5×10^{-3}	$\underline{7.0 \times 10^{-5}}$	9.2×10^{-5}			
$\underline{\mathrm{Br}}$	2.0×10^{-4}	$\underline{2.0 \times 10^{-4}}$	8.5×10^{-5}	2.4×10^{-4}			
＊ 1 ミルシート及び文献7から引用							
＊2 JIS G 4305 （2012）及び文献7から引用							
＊ 3 JIS G 3101（2010）及び文献7から引用							
＊ 4 文献 5 及び文献 7 から引用							

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前					変 更 後		備 考 法令改正に伴い削 除（添付書類 4 に移 動）
表 $2-4$（つづき）核種別放射化汚染物質の推定放射能量（2／7）原子炉停止後3．7年経過時（平成 26 年 12 月現在）及び 10 年経過時（平成 33 年 3 月時点）					（削る）		
				（単位：Bq）			
区分		（2）炉心	周囲				
代表機器等	区射		区射体駆動	一ル設置台			
材質							
重量（t）							
冷却時間	3.7 年	10年	3.7 年	10年			
$\underline{\mathrm{H}-3}$	$\underline{2.0 \times 10^{7}}$	$\underline{1.4 \times 10^{7}}$	$\underline{2.6 \times 10^{8}}$	$\underline{1.9 \times 10^{8}}$			
C－14	$\underline{2.0 \times 10^{5}}$	$\underline{2.0 \times 10^{5}}$	6． 5×10^{4}	$\underline{6.5 \times 10^{4}}$			
C1－36	$\underline{1.2 \times 10^{4}}$	$\underline{1.2 \times 10^{4}}$	2． 8×10^{3}	$\underline{2.8 \times 10^{3}}$			
Ca－41	1． 4×10^{2}	1.4×10^{2}	8.3×10^{4}	8.3×10^{4}			
Sc－46	8.3×10^{2}	$\underline{4.9 \times 10^{-6}}$	$\underline{4.2 \times 10^{3}}$	$\underline{2.5 \times 10^{-5}}$			
$\underline{\mathrm{Mn}-54}$	$\underline{7.2 \times 10^{8}}$	$\underline{4.4 \times 10^{6}}$	$\underline{1.0 \times 10^{5}}$	$\underline{6.2 \times 10^{2}}$			
$\mathrm{Fe}-55$	3.3×10^{10}	6． 8×10^{9}	9． 1×10^{7}	1． 9×10^{7}			
$\underline{\mathrm{Fe}-59}$	3.3×10^{1}	$\underline{1.1 \times 10^{-14}}$	8.1×10^{-2}	$\underline{2.6 \times 10^{-17}}$			
Co－58	$\underline{1.1 \times 10^{4}}$	$\underline{2.0 \times 10^{-6}}$	$\underline{6.5 \times 10^{-1}}$	$\underline{1.2 \times 10^{-10}}$			
Co－60	$\underline{1.2 \times 10^{9}}$	$\underline{5.4 \times 10^{8}}$	1． 6×10^{7}	$\underline{6.8 \times 10^{6}}$			
Ni－59	4.6×10^{5}	4.6×10^{5}	5． 3×10^{2}	5． 3×10^{2}			
$\underline{\mathrm{Ni}-63}$	$\underline{5.5 \times 10^{7}}$	5． 3×10^{7}	6． 3×10^{4}	$\underline{6.1 \times 10^{4}}$			
$\underline{\mathrm{Zn}-65}$	$\underline{2.4 \times 10^{6}}$	3.6×10^{3}	2． 8×10^{5}	4． 2×10^{2}			
Sr－90	$\underline{1.2 \times 10^{-2}}$	$\underline{1.0 \times 10^{-2}}$	3.6×10^{-4}	3.1×10^{-4}			
Nb－94	$\underline{3.7 \times 10^{3}}$	$\underline{3.7 \times 10^{3}}$	7． 8×10^{1}	7.8×10^{1}			
$\underline{\mathrm{Nb}-95}$	$\underline{1.6 \times 10^{0}}$	$\underline{2.7 \times 10^{-11}}$	8.9×10^{-1}	$\underline{1.5 \times 10^{-11}}$			
Tc－99	1． 3×10^{4}	1． 3×10^{4}	1． 4×10^{0}	1． 4×10^{0}			
$\underline{\text { Ru－106 }}$	$\underline{1.2 \times 10^{-12}}$	$\underline{1.6 \times 10^{-14}}$	8.1×10^{-7}	$\underline{1.1 \times 10^{-8}}$			
$\underline{\text { Ag－108m }}$	$\underline{1.3 \times 10^{3}}$	$\underline{1.3 \times 10^{3}}$	1． 9×10^{1}	$\underline{1.8 \times 10^{1}}$			
Ag－110m	$\underline{5.5 \times 10^{5}}$	$\underline{9.6 \times 10^{2}}$	$\underline{4.8 \times 10^{3}}$	$\underline{8.4 \times 10^{0}}$			
Sb－124	1． 2×10^{2}	4.2×10^{-10}	1． 4×10^{0}	$\underline{4.9 \times 10^{-12}}$			
$\underline{\text { Te－123m }}$	$\underline{1.3 \times 10^{-3}}$	$\underline{2.1 \times 10^{-9}}$	$\underline{2.3 \times 10^{-7}}$	$\underline{3.7 \times 10^{-13}}$			
I－129	$\underline{1.4 \times 10^{-8}}$	$\underline{1.4 \times 10^{-8}}$	$\underline{8.0 \times 10^{-10}}$	8.8×10^{-10}			
Cs－134	$\underline{2.6 \times 10^{6}}$	3.2×10^{5}	$\underline{1.5 \times 10^{6}}$	1． 8×10^{5}			
Cs－137	1． 4×10^{1}	$\underline{1.2 \times 10^{1}}$	$\underline{3.5 \times 10^{-1}}$	$\underline{3.0 \times 10^{-1}}$			
Ba－133	$\underline{2.6 \times 10^{5}}$	$\underline{1.7 \times 10^{5}}$	$\underline{1.2 \times 10^{5}}$	8.0×10^{4}			
Eu－152	$\underline{3.5 \times 10^{6}}$	$\underline{2.5 \times 10^{6}}$	$\underline{1.2 \times 10^{7}}$	8.6×10^{6}			
Eu－154	5． 2×10^{5}	$\underline{3.1 \times 10^{5}}$	1． 2×10^{6}	$\underline{7.0 \times 10^{5}}$			
$\underline{\text { Tb－160 }}$	$\underline{3.6 \times 10^{2}}$	$\underline{1.0 \times 10^{-7}}$	$\underline{2.6 \times 10^{1}}$	$\underline{7.5 \times 10^{-9}}$			
Ta－182	1．1 1×10^{4}	$\underline{1.1 \times 10^{-2}}$	2． 7×10^{3}	2.6×10^{-3}			
合計	$\underline{3.5 \times 10^{10}}$	$\underline{7.5 \times 10^{9}}$	$\underline{3.9 \times 10^{8}}$	$\underline{2.2 \times 10^{8}}$			

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前					変 更 後		備 考 法令改正に伴い削 除（添付書類 4 に移 動）
表 $2-4$（つづき）核種別放射化污染物質の推定放射能量（4／7）					(削る)		法令改正に伴い削除（添付書類 4 に移動）
原子炉停止後3．7年経過時（平成26年12月現在）及び10年経過時（平成33年3月時点）(単位: Bq)							
区分	（4）炬室内下部						
代表機器等	ベントガス希秋槽		実験装置架台				
材質	SUS304		SS400				
重量（t）	2.3		$\underline{13}$				
冷却時間	3．7年	10年	3.7 年	10年			
H－3	3.0×10^{5}	$\underline{2.1 \times 10^{5}}$	3． 8×10^{6}	2.6×10^{6}			
C－14	3.5×10^{4}	3.5×10^{4}	$\underline{3.6 \times 10^{4}}$	3.6×10^{4}			
Cl－36	$\underline{7.3 \times 10^{2}}$	7.3×10^{2}	$\underline{2.3 \times 10^{3}}$	$\underline{2 .} 3 \times 10^{3}$			
Ca－41	$\underline{6.2 \times 10^{0}}$	$\underline{6.2 \times 10^{0}}$	$\underline{2.5 \times 10^{1}}$	$\underline{2.5 \times 10^{1}}$			
Sc－46	4.5×10^{0}	$\underline{2.7 \times 10^{-8}}$	$\underline{1.6 \times 10^{2}}$	$\underline{9.4 \times 10^{-7}}$			
$\underline{\mathrm{Mn}-54}$	$\underline{6.5 \times 10^{6}}$	$\underline{4.0 \times 10^{4}}$	$\underline{5.1 \times 10^{7}}$	3.1×10^{5}			
$\mathrm{Fe}-55$	8.0×10^{8}	$\underline{1.6 \times 10^{8}}$	6． 2×10^{9}	$\underline{1.3 \times 10^{9}}$			
$\underline{\mathrm{Fe}-59}$	$\underline{7.1 \times 10^{-1}}$	$\underline{2.3 \times 10^{-16}}$	5． 5×10^{0}	$\underline{1.8 \times 10^{-15}}$			
Co－58	$\underline{2.1 \times 10^{3}}$	$\underline{4.0 \times 10^{-7}}$	$\underline{7.4 \times 10^{2}}$	$\underline{1.4 \times 10^{-7}}$			
Co－60	$\underline{3.9 \times 10^{8}}$	$\underline{1.7 \times 10^{8}}$	$\underline{1.9 \times 10^{8}}$	8.1×10^{7}			
$\underline{\mathrm{Ni}-59}$	$\underline{2.5 \times 10^{5}}$	$\underline{2.5 \times 10^{5}}$	8.6×10^{4}	8.6×10^{4}			
$\underline{\mathrm{Ni} \text {－63 }}$	$\underline{3.0 \times 10^{7}}$	$\underline{2.9 \times 10^{7}}$	$\underline{1.0 \times 10^{7}}$	$\underline{1.0 \times 10^{7}}$			
$\underline{\mathrm{Zn}-65}$	$\underline{3.0 \times 10^{5}}$	$\underline{4.5 \times 10^{2}}$	3.7×10^{5}	$\underline{5.5 \times 10^{2}}$			
$\underline{\text { Sr－90 }}$	$\underline{1.5 \times 10^{-4}}$	$\underline{1.3 \times 10^{-4}}$	8.0×10^{-4}	$\underline{6.9 \times 10^{-4}}$			
Nb－94	3.0×10^{2}	$\underline{3.0 \times 10^{2}}$	3.5×10^{2}	3.5×10^{2}			
Nb－95	$\underline{2.6 \times 10^{-2}}$	$\underline{4.4 \times 10^{-13}}$	$\underline{1.5 \times 10^{-1}}$	$\underline{2.6 \times 10^{-12}}$			
Tc－99	$\underline{7.0 \times 10^{1}}$	$\underline{7.0 \times 10^{1}}$	8.3×10^{2}	8.3×10^{2}			
$\underline{\mathrm{Ru}-106}$	$\underline{\underline{1.8 \times 10^{-16}}}$	$\underline{2.5 \times 10^{-18}}$	$\underline{9.9 \times 10^{-16}}$	$\underline{1.4 \times 10^{-17}}$			
$\underline{\text { Ag－108m }}$	3.2×10^{1}	$\underline{3.2 \times 10^{1}}$	$\underline{1.8 \times 10^{2}}$	$\underline{1.8 \times 10^{2}}$			
$\underline{\text { Ag－110m }}$	$\underline{8.5 \times 10^{3}}$	$\underline{1.5 \times 10^{1}}$	$\underline{4.7 \times 10^{4}}$	8.2×10^{1}			
Sb－124	$\underline{1.7 \times 10^{0}}$	$\underline{6.1 \times 10^{-12}}$	$\underline{8.5 \times 10^{0}}$	$\underline{3.0 \times 10^{-11}}$			
Te－123m	$\underline{1.5 \times 10^{-7}}$	$\underline{\underline{2.5 \times 10^{-13}}}$	$\underline{7.4 \times 10^{-7}}$	1． 2×10^{-12}			
I－129	$\underline{2.7 \times 10^{-10}}$	$\underline{2.7 \times 10^{-10}}$	$\underline{9.9 \times 10^{-10}}$	$\underline{9.9 \times 10^{-10}}$			
Cs－134	$\underline{6.1 \times 10^{4}}$	$\underline{7.4 \times 10^{3}}$	$\underline{2.2 \times 10^{5}}$	$\underline{2.7 \times 10^{4}}$			
Cs－137	$\underline{3.1 \times 10^{-1}}$	$\underline{2.7 \times 10^{-1}}$	$\underline{9.3 \times 10^{-1}}$	8.0×10^{-1}			
Ba－133	$\underline{1.1 \times 10^{4}}$	$\underline{7.5 \times 10^{3}}$	3.4×10^{4}	$\underline{2.3 \times 10^{4}}$			
Eu－152	$\underline{7.4 \times 10^{4}}$	5． 3×10^{4}	6． 3×10^{5}	$\underline{4.6 \times 10^{5}}$			
Eu－154	$\underline{7.4 \times 10^{3}}$	$\underline{4.5 \times 10^{3}}$	6． 3×10^{4}	3.8×10^{4}			
Tb－160	$\underline{5.4 \times 10^{0}}$	$\underline{1.6 \times 10^{-9}}$	$\underline{2.8 \times 10^{1}}$	$\underline{8.3 \times 10^{-9}}$			
Ta－182	$\underline{5.5 \times 10^{-4}}$	$\underline{1.5 \times 10^{-9}}$	7.9×10^{2}	$\underline{7.7 \times 10^{-4}}$			
合計	$\underline{1.2 \times 10^{9}}$	$\underline{3.7 \times 10^{8}}$	6.5×10^{9}	$\underline{1.4 \times 10^{9}}$			

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前					変 更 後		備 考 法令改正に伴い削 除（添付書類 4 に移 動）
表2－4（つづき）核種別放射化汚染物質の推定放射能量（5／7）原子炉停止後3．7年経過時（平成 26 年 12 月現在）及び 10 年経過時（平成 33 年 3 月時点）					（削る）		
				（単位：Bq）			
区分							
代表機器等	第1よう素	（本体）					
材質							
重量（t）							
冷却時間	3.7 年	10年	3．7年	10年			
$\underline{\mathrm{H}-3}$	$\underline{1.5 \times 10^{4}}$	$\underline{1.1 \times 10^{4}}$	8.4×10^{5}	S． 9×10^{5}			
C－14	$\underline{1.8 \times 10^{3}}$	$\underline{1.8 \times 10^{3}}$	8． 0×10^{3}	8.0×10^{3}			
Cl－36	3.7×10^{1}	$\underline{3.7 \times 10^{1}}$	5． $\mathrm{S}^{\text {5 } 6 \times 10^{2}}$	5． $\mathrm{S}^{1 \times 10^{2}}$			
Ca－41	3.2×10^{-1}	3.2×10^{-1}	5． 6×10^{0}	5． 6×10^{0}			
$\underline{S c-46}$	$\underline{2.0 \times 10^{-1}}$	$\underline{1.2 \times 10^{-9}}$	3.5×10^{1}	$\underline{2.1 \times 10^{-7}}$			
$\underline{\mathrm{Mn}-54}$	$\underline{1.5 \times 10^{5}}$	$\underline{9.4 \times 10^{2}}$	5．${ }^{\text {5 }} \times 1 \times 10^{6}$	$\underline{3.2 \times 10^{4}}$			
$\mathrm{Fe}-55$	4.1×10^{7}	8． 4×10^{6}	1． 4×10^{9}	2． 8×10^{8}			
$\underline{\mathrm{Fe}-59}$	$\underline{3.6 \times 10^{-2}}$	$\underline{1.1 \times 10^{-17}}$	$\underline{1.2 \times 10^{0}}$	$\underline{3.9 \times 10^{-16}}$			
Co－58	$\underline{5.1 \times 10^{1}}$	$\underline{9.4 \times 10^{-9}}$	7.6×10^{1}	$\underline{1.4 \times 10^{-8}}$			
Co－60	$\underline{1.9 \times 10^{7}}$	8.5×10^{6}	$\underline{4.0 \times 10^{7}}$	$\underline{1.8 \times 10^{7}}$			
Ni－59	$\underline{1.3 \times 10^{4}}$	1． 3×10^{4}	1． 9×10^{4}	$\underline{1.9 \times 10^{4}}$			
$\underline{\mathrm{Ni}-63}$	$\underline{1.5 \times 10^{6}}$	$\underline{1.5 \times 10^{6}}$	2． 3×10^{6}	$\underline{2.2 \times 10^{6}}$			
$\underline{\mathrm{Zn}-65}$	$\underline{1.5 \times 10^{4}}$	$\underline{2.2 \times 10^{1}}$	7.9×10^{4}	1． 2×10^{2}			
Sr－90	3.4×10^{-6}	$\underline{2.9 \times 10^{-6}}$	8.1×10^{-5}	6． 9×10^{-5}			
Nb－94	$\underline{1.4 \times 10^{1}}$	$\underline{1.4 \times 10^{1}}$	6． 9×10^{1}	6． 9×10^{1}			
$\underline{\mathrm{Nb}-95}$	$\underline{\underline{1.1 \times 10^{-3}}}$	$\underline{1.9 \times 10^{-14}}$	$\underline{2.8 \times 10^{-2}}$	$\underline{4.7 \times 10^{-13}}$			
$\underline{\text { Tc－99 }}$	$\underline{2.7 \times 10^{0}}$	$\underline{2.7 \times 10^{0}}$	$\underline{1.4 \times 10^{2}}$	$\underline{1.4 \times 10^{2}}$			
$\underline{\mathrm{Ru}-106}$	$\underline{2.0 \times 10^{-18}}$	$\underline{2.8 \times 10^{-20}}$	$\underline{4.8 \times 10^{-17}}$	$\underline{6.8 \times 10^{-19}}$			
Ag－108m	$\underline{1.6 \times 10^{0}}$	$\underline{1.6 \times 10^{0}}$	3.8×10^{1}	3.8×10^{1}			
$\underline{\mathrm{Ag}-110 \mathrm{~m}}$	$\underline{3.8 \times 10^{2}}$	$\underline{6.6 \times 10^{-1}}$	$\underline{9.1 \times 10^{3}}$	$\underline{1.6 \times 10^{1}}$			
Sb－124	$\underline{7.2 \times 10^{-2}}$	2.5×10^{-13}	1.6×10^{0}	$\underline{5.5 \times 10^{-12}}$			
$\underline{\text { Te－123m }}$	$\underline{2.7 \times 10^{-9}}$	$\underline{4.4 \times 10^{-15}}$	5． 8×10^{-8}	$\underline{9.5 \times 10^{-14}}$			
I－129	6.2×10^{-12}	$\underline{6.2 \times 10^{-12}}$	$\underline{1.0 \times 10^{-10}}$	$\underline{1.0 \times 10^{-10}}$			
Cs－134	$\underline{2.7 \times 10^{3}}$	3.3×10^{2}	$\underline{4.3 \times 10^{4}}$	5． 3×10^{3}			
Cs－137	$\underline{7.1 \times 10^{-3}}$	$\underline{6.2 \times 10^{-3}}$	$\underline{9.3 \times 10^{-2}}$	8.1×10^{-2}			
Ba－133	$\underline{5.5 \times 10^{2}}$	$\underline{3.6 \times 10^{2}}$	$\underline{7.2 \times 10^{3}}$	$\underline{4.7 \times 10^{3}}$			
Eu－152	3.7×10^{3}	$\underline{2.7 \times 10^{3}}$	1． 4×10^{5}	$\underline{1.0 \times 10^{5}}$			
Eu－154	$\underline{3.6 \times 10^{2}}$	$\underline{2.1 \times 10^{2}}$	1． 3×10^{4}	8.			
Tb－160	$\underline{2.3 \times 10^{-1}}$	$\underline{6.8 \times 10^{-11}}$	5． 4×10^{0}	$\underline{1.6 \times 10^{-9}}$			
Ta－182	1． 3×10^{-5}	$\underline{3.4 \times 10^{-11}}$	1． 4×10^{2}	$\underline{1.4 \times 10^{-4}}$			
合計	6.2×10^{7}	$\underline{1.8 \times 10^{7}}$	$\underline{1.4 \times 10^{9}}$	$\underline{3.0 \times 10^{8}}$			

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前					変 更 後		備 考 法令改正に伴い削 除（添付書類 4 に移 動）
表 $2-4$（つづき）核種別放射化汚染物質の推定放射能量（6／7）原子炉停止後3．7年経過時（平成 26 年 12 月現在）及び 10 年経過時（平成 33 年 3 月時点）					（削る）		
				（単位：Bq）			
区分							
代表機器等	燃料取	クス	プラット1				
材質							
重量（t）							
冷却時間	3．7年	10年	3．7年	10年			
H－3	2.5×10^{5}	1． 8×10^{5}	$\underline{4.4 \times 10^{5}}$	3.1×10^{5}			
C－14	$\underline{2.9 \times 10^{4}}$	$\underline{2.9 \times 10^{4}}$	$\underline{4.2 \times 10^{3}}$	$\underline{4.2 \times 10^{3}}$			
Cl－36	6.1×10^{2}	$\underline{6.1 \times 10^{2}}$	$\underline{2.7 \times 10^{2}}$	$\underline{2.7 \times 10^{2}}$			
Ca－41	5.2×10^{0}	5． 2×10^{0}	3.0×10^{0}	3.0×10^{0}			
Sc－46	2.9×10^{0}	$\underline{1.7 \times 10^{-8}}$	$\underline{1.9 \times 10^{1}}$	$\underline{1.1 \times 10^{-7}}$			
$\underline{\mathrm{Mn}-54}$	$\underline{4.2 \times 10^{5}}$	$\underline{2.6 \times 10^{3}}$	$\underline{4.5 \times 10^{5}}$	$\underline{2.8 \times 10^{3}}$			
$\mathrm{Fe}-55$	6.7×10^{8}	1． 4×10^{8}	7． 3×10^{8}	1． 5×10^{8}			
$\underline{\mathrm{Fe}-59}$	$\underline{5.8 \times 10^{-1}}$	$\underline{\underline{1.9 \times 10^{-16}}}$	$\underline{6.3 \times 10^{-1}}$	$\underline{2.0 \times 10^{-16}}$			
Co－58	$\underline{1.5 \times 10^{2}}$	$\underline{2.8 \times 10^{-8}}$	7.3×10^{0}	$\underline{1.4 \times 10^{-9}}$			
Co－60	$\underline{3.1 \times 10^{8}}$	$\underline{1.4 \times 10^{8}}$	$\underline{2.1 \times 10^{7}}$	$\underline{9.1 \times 10^{6}}$			
Ni－59	2.1×10^{5}	$\underline{2.1 \times 10^{5}}$	1． 0×10^{4}	1． 0×10^{4}			
$\underline{\mathrm{Ni}-63}$	$\underline{2.5 \times 10^{7}}$	$\underline{2.4 \times 10^{7}}$	1． 2×10^{6}	$\underline{1.2 \times 10^{6}}$			
$\underline{\mathrm{Zn}-65}$	2.4×10^{5}	3.6×10^{2}	4.0×10^{4}	6.0×10^{1}			
Sr－90	1.1×10^{-6}	$\underline{9.1 \times 10^{-7}}$	8． 2×10^{-7}	7.0×10^{-7}			
Nb－94	$\underline{2.0 \times 10^{2}}$	$\underline{2.0 \times 10^{2}}$	3.3×10^{1}	$\underline{3.3 \times 10^{1}}$			
$\underline{\mathrm{Nb}-95}$	$\underline{\text { 1．} 6 \times 10^{-2}}$	$\underline{\underline{2.7 \times 10^{-13}}}$	$\underline{1.2 \times 10^{-2}}$	$\underline{2.1 \times 10^{-13}}$			
Tc－99	3.4×10^{1}	3.4×10^{1}	5． 7×10^{1}	5． 7×10^{1}			
$\underline{\mathrm{Ru}-106}$	$\underline{2.8 \times 10^{-19}}$	$\underline{3.9 \times 10^{-21}}$	$\underline{2.2 \times 10^{-19}}$	$\underline{3.0 \times 10^{-21}}$			
Ag－108m	$\underline{2.5 \times 10^{1}}$	$\underline{2.5 \times 10^{1}}$	1． 9×10^{1}	$\underline{1.9 \times 10^{1}}$			
$\underline{\mathrm{Ag}-110 \mathrm{~m}}$	$\underline{\underline{5.6 \times 10^{3}}}$	$\underline{9.8 \times 10^{0}}$	$\underline{4.3 \times 10^{3}}$	$\underline{7.5 \times 10^{0}}$			
Sb－124	$\underline{1.0 \times 10^{0}}$	$\underline{3.6 \times 10^{-12}}$	7.0×10^{-1}	$\underline{2.5 \times 10^{-12}}$			
$\underline{\text { Te－123m }}$	$\underline{1.1 \times 10^{-8}}$	$\underline{1.7 \times 10^{-14}}$	7.3×10^{-9}	$\underline{1.2 \times 10^{-14}}$			
I－129	$\underline{1.4 \times 10^{-11}}$	$\underline{1.4 \times 10^{-11}}$	6． 9×10^{-12}	6． 9×10^{-12}			
Cs－134	$\underline{4.0 \times 10^{4}}$	$\underline{4.9 \times 10^{3}}$	2． 1×10^{4}	$\underline{2.5 \times 10^{3}}$			
Cs－137	$\underline{9.7 \times 10^{-3}}$	8.4×10^{-3}	$\underline{4.1 \times 10^{-3}}$	$\underline{3.5 \times 10^{-3}}$			
Ba－133	$\underline{8.6 \times 10^{3}}$	$\underline{5.7 \times 10^{3}}$	$\underline{3.6 \times 10^{3}}$	$\underline{2.4 \times 10^{3}}$			
Eu－152	6.1×10^{4}	4.5×10^{4}	7.3×10^{4}	5． 3×10^{4}			
Eu－154	$\underline{5.6 \times 10^{3}}$	$\underline{3.4 \times 10^{3}}$	$\underline{6.7 \times 10^{3}}$	$\underline{4.0 \times 10^{3}}$			
Tb－160	$\underline{3.4 \times 10^{0}}$	$\underline{9.9 \times 10^{-10}}$	$\underline{2.5 \times 10^{0}}$	$\underline{7.3 \times 10^{-10}}$			
Ta－182	$\underline{1.1 \times 10^{-5}}$	5． 3×10^{-11}	6． 4×10^{1}	6.3×10^{-5}			
合計	$\underline{1.0 \times 10^{9}}$	$\underline{3.0 \times 10^{8}}$	$\underline{7.5 \times 10^{8}}$	$\underline{1.6 \times 10^{8}}$			

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前				変 更 後		
表 $2-5$ 泠却時間経過後の二次污染物質の割合				（削る）		法令改正に伴い削除（添付書類 4 に移動）
核種	半澸期＊${ }^{\text {1 }}$	洽却時間経過後のCs－137に対する放射能比＊2				
		3.7 年	10年			
H－3	12.32 y	≤ 0.01	$\bigcirc 0.01$			
C－14	$5.70 \times 10^{3} \mathrm{y}$	－	－			
$\mathrm{Cl}-36$	$3.01 \times 10^{5} \mathrm{y}$	－	－			
Ca－41	$1.02 \times 10^{5} \mathrm{y}$	$=$	$=$			
Sc－46	83.79 d	$=$	$=$			
Mn－54	312.12 d	－	－			
Fe－55	2.737 y	$=$	＝			
Fe－59	44.495 d	－	－			
Co－58	70.86 d	$=$	＝			
Co－60	5.2713 y	－	－			
Ni－59	$1.01 \times 10^{5} \mathrm{y}$	$=$	$=$			
Ni－63	100.1 y	－	－			
$\underline{\mathrm{Zn}-65}$	244.06 d	$=$	$=$			
Sr －90	28.79 y	0.973	0.967			
$\mathrm{Nb}-94$	$2.03 \times 10^{4} \mathrm{y}$	<0.01	<0.01			
Nb－95	34.991 d	≤ 0.01	<0.01			
Tc－99	$2.111 \times 10^{5} \mathrm{y}$	≤ 0.01	<0.01			
Ru－106	373.59 d	≤ 0.01	＜0．01			
Ag－108m	418 y	≤ 0.01	$\bigcirc 0.01$			
Ag－110m	249.76 d	≤ 0.01	≤ 0.01			
Sb－124	60.20 d	≤ 0.01	≤ 0.01			
Te－123m	119.25 d	≤ 0.01	≤ 0.01			
I－129	$1.57 \times 10^{7} \mathrm{y}$	≤ 0.01	$\bigcirc 0.01$			
Cs－134	2.0648 y	≤ 0.01	≤ 0.01			
Cs－137	30.1671 y	1.0	1.0			
Ba－133	10.52 y	≤ 0.01	≤ 0.01			
Eu－152	13.537 y	≤ 0.01	≤ 0.01			
Eu－154	8.593 y	≤ 0.01	<0.01			
Tb－160	72.3 d	≤ 0.01	≤ 0.01			
Ta－182	114.43 d	－	－			
ICRP， 200 107．Ann． $\Gamma<0.0$	$\begin{aligned} & \text { Iclear Decay Da } \\ & \frac{38(3) .}{C_{s}-137 \text { 放射能量 }} \end{aligned}$	for Dosimetric 対する比が 1%	ICRP Publicatio 示す。			

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

			変 更					変 更 後	備 考
表 2－6 二次污染物質（解体扊重物）の推定放射能量							（削る）		法令改正に伴い削除（添付書類 4 に移
設㢈棫器等	$\begin{aligned} & \text { 量 } \\ & (\mathrm{t}) \end{aligned}$	核㮔	原子炉停止後3．7年経過時（平成 26 年 12 月現在）		原子炉停止後 10 年経過時 （平成33年3月時点）				
					$\begin{gathered} \text { 解体察鞤物の } \\ \text { 放能量 } \\ (\mathrm{Bq}) \text {) } \end{gathered}$	解体廃莗物の放射能濃度 （ Bq / g ）			
溶液燃料給排液䒺統内＊${ }^{1}$ （炉室（T）内）	1.4	Cs 1337	3.0×10^{8}	2.2×10^{2}	2.6×10^{8}	1.9×10^{2}			
		St－90	3.0×10^{8}	2.2×10^{2}	2.6×10^{8}	1.9×10^{2}			
		u	2.7×10^{9}	1.9×10^{3}	2.7×10^{9}	1.9×10^{3}			
	6.6	$\mathrm{Cs}_{\text {s } 137}$	$1.8 \times 10^{\circ}$	2.7×10^{2}	$1.5 \times 10^{\circ}$	2.3×10^{2}			
		Sr－90	$1.8 \times 10^{\circ}$	2.7×10^{2}	1.5×10^{0}	2.3×10^{2}			
溶液洛料給棑液 系䖻内＊1 （洰下室（T）内）	3.3	Cs－137	2.6×10^{8}	$7.9 \times 10^{\text {1 }}$	2.3×10^{8}	6.8×10^{1}			
		Sr－90	2.6×10^{8}	7.9×10^{1}	2.3×10^{8}	6.8×10^{1}			
		U	$2.4 \times 10^{\circ}$	7.1×10^{2}	$2.4 \times 10^{\circ}$	7.1×10^{2}			
	0.6	Cs－137	1.6×10^{8}	2.9×10^{2}	1.4×10^{8}	2.5×10^{2}			
		Sx－90	1.6×10^{8}	2.9×10^{2}	1.4×10^{8}	2.5×10^{2}			
	9.5	Cs－137	2.3×10^{8}	2.4×10^{2}	2.0×10^{8}	2.1×10^{1}			
		Sr－90	2.3×10^{8}	2.4×10^{2}	1.9×10^{8}	2.0×10^{1}			
合 計＊2	21.4	－	${ }^{1.1 \times 10^{10}}$	5.0×10^{2}	9.8×10^{9}	4.6×10^{2}			
＊ 1 溶夜㷵料給排液系統ではUを含竟。 ＊2 放射能量及び放射能濃度の合計值は，有効数字 2 桁で切り上げ。									

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

更前		
添付書類三 廃止措置の工事上の過失，機械若しくは装置 の故障又は地震，火災その他の災害があった場合に発生すると想定される試験研究用等原子炉の事故の種類，程度，影響等に関する説明書	添付書類三 廃止措置中の過失，機械又は装置の故障， 地震，火災等があった場合に発生することが想定される事故の種類，程度，影響等に関する説明書	法会改正江伴亏見直し

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

\begin{tabular}{|c|c|c|}
\hline 変 更 前 \& 変 更 後 \& \\
\hline \begin{tabular}{l}
1．概要 \\
本説明書では，廃止措置の工事上の過失，機械若しくは装置の故障又は地震，火災その他の災害に起因して万一事故が発生したとしても，一般公衆に対して著しい放射線被ばくのリスクを与えないことを説明する。 \\
2．評価 \\
2.1 最も影響の大きい事故の選定（省略） \\
2.2 原子炉機能停止措置及び系統の閉じ込め管理のための配管切断及び閉止工事に おける集塵装置フィルタの火災による一般公衆の被ばく線量評価以上の防止対策にもかかわらず，火災の発生によって放射性物質が室内に放出さ れ，さらに大気中に放出される場合を想定して事故解析を行う。 \\
2．2．1 評価条件 \\
本評価は，以下の条件を仮定して行う。原子炉機能停止措置及び系統の閉じ込め管理のための配管切断及び閉止工事における集塵装置フィルタの火災時の放射性物質の放出経路を図 \(3-1\) に示す。 \\
（1）切断対象となる配管のうち最も径の大きい25A20S（外径 34 mm ，厚さ 3 mm ）を代表とする。 \\
（2）配管切断は全て電動工具により行い，その切断幅 2 mm が全て粉塵となるものと する。また，切断した配管の双方を閉止するため，閉止作業に必要な間隔を空け て 2 箇所を切断する。よって，切断閉止箇所 1 箇所につき，配管幅 4 mm 分（切断幅 \(2 \mathrm{~mm} \times 2\) 箇所）の粉塵が発生するものとする。 \\
（3）粉塵の放射能量のうち放射化による放射能量は，放射能濃度が最大である炉心 タンクの値を用いて評価する。（添付資料二 表 \(2-4\) 参照） \\
（4）粉塵の放射能量のうち溶液燃料（ウラン）の放射能量は，溶液燃料配管のうち \(99 \%\) 以上を占める炉下室（T）給排液系統の値を用いて評価する。また，核分裂生成物（Cs－137，Sr－90）の放射能量は，放射能濃度が最大である炉室（T）槽ベント設備Cの値を用いて評価する。（添付資料二 表 \(2-6\) 参照） \\
（5）発生した粉塵は，その全量（約93g）が仮設の集塵装置のフィルタに捕集される ものとする。 \\
（6）フィルタに捕集された粉塵の全量が火災により室内に放出されるものとする。 \\
（7）常設の換気空調設備のフィルタが火災によって詰まり，室内の粉塵が地上放出 されるものとする。このとき，建家内への沈着による除染係数として \(10{ }^{(2)}\) を考慮する。 \\
（8）評価対象核種は，系統内に汚染として残存するウラン，Cs－137，Sr－90及び放射化による放射性物質（「試験研究の用に供する原子炉等に係る放射能濃度につい ての確認等に関する規則」（平成17年11月30日文部科学省令第49号）別表三欄に掲
\end{tabular} \& \begin{tabular}{l}
1．概要 \\
本説明書では，廃止措置中の過失，機械又は装置の故障，地震，火災等に起因し て万一事故が発生したとしても，一般公衆に対して著しい放射線被ばくのリスクを与えないことを説明する。 \\
2．評価 \\
2.1 最も影響の大きい事故の選定（変更なし） \\
2.2 原子炉機能停止措置及び系統の閉じ込め管理のための配管切断及び閉止工事に おける集塵装置フィルタの火炎による一般公衆の被ばく線量評価以上の防止対策にもかかわらず，火災の発生によって放射性物質が室内に放出さ れ，さらに大気中に放出される場合を想定して事故解析を行う。 \\
2．2．1 評価条件 \\
本評価は，以下の条件を仮定して行う。原子炉機能停止措置及び系統の閉じ込め管理のための配管切断及び閉止工事における集塵装置フィルタの火災時の放射性物質の放出経路を図 3－1に示す。 \\
（1）切断対象となる配管のうち最も径の大きい25A20S（外径 34 mm ，厚さ 3 mm ）を代表とする。 \\
（2）配管切断は全て電動工具により行い，その切断幅 2 mm が全て粉塵となるものと する。また，切断した配管の双方を閉止するため，閉止作業に必要な間隔を空け て 2 箇所を切断する。よって，切断閉止箇所 1 箇所につき，配管幅 4 mm 分（切断幅 \(2 \mathrm{~mm} \times 2\) 箇所）の粉塵が発生するものとする。 \\
（3）粉塵の放射能量のうち放射化による放射能量は，放射能濃度が最大である炉心 タンクの値を用いて評価する。（添付書類四 表 \(4-3\) 参照） \\
（4）粉塵の放射能量のうち溶液燃料（ウラン）の放射能量は，溶液燃料配管のうち \(99 \%\) 以上を占める炉下室（T）給排液系統の値を用いて評価する。また，核分裂生成物（Cs－137，Sr－90）の放射能量は，放射能濃度が最大である炉室（T）槽ベント設備Cの値を用いて評価する。（添付書類四 表 \(4-5\) 参照） \\
（5）発生した粉塵は，その全量（約 93 g ）が仮設の集塵装置のフィルタに捕集される ものとする。 \\
（6）フィルタに捕集された粉塵の全量が火災により室内に放出されるものとする。 \\
⑦ 常設の換気空調設備のフィルタが火災によって詰まり，室内の粉塵が地上放出 されるものとする。このとき，建家内への沈着による除染係数として \(10{ }^{(2)}\) を考慮する。 \\
（8）評価対象核種は，系統内に汚染として残存するウラン，Cs－137，Sr－90及び放射化による放射性物質（「試験研究の用に供する原子炉等に係る放射能濃度につい ての確認等に関する規則」（平成17年11月30日文部科学省令第49号）別表三欄に掲
\end{tabular} \& 法令改正に伴う見
直し

記載の適正化

記載の適正化

\hline
\end{tabular}

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
げる濃度に示されているもの）とする。それらの放出量，実効線量係数及び γ 線実効エネルギーを表3－1に示す。 （9）室内及び建家から被ばく評価地点（敷地境界外）までの時間減衰は考慮しない。 2．2．2 放出量評価～2．2．3 被ばく線量評価（省略） 2． 3 評価結果（省略） 3．原子力科学研究所における 2009 年 1 月から 2013 年 12 月までの気象条件 （省略） 参考文献（省略）	げる濃度に示されているもの）とする。それらの放出量，実効線量係数及び γ 線実効エネルギーを表3－1に示す。 ⑨ 室内及び建家から被ばく評価地点（敷地境界外）までの時間減衰は考慮しない。 2．2．2 放出量評価～2．2．3 被ばく線量評価（変更なし） 2.3 評価結果（変更なし） 3．原子力科学研究所における 2009 年 1 月から 2013 年 12 月までの気象条件 （変更なし） 参考文献（変更なし）	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前				変 更 後				備 考
表3－1 配管等切断により発生する放射性物質の放出量，γ 線実効エネル ギー及び吸入摂取による実効線量係数				表 3－1 配管等切断により発生する放射性物質の放出量，γ 線実効エネル ギー及び吸入摂取による実効線量係数				
核 種	放出量 （Bq）	$\begin{gathered} \gamma \text { 線 } \\ \text { 実効エネルギー }{ }^{(4)} \\ (\mathrm{MeV}) \end{gathered}$	1 Bqの放射性物質を吸入摂取したときの実効線量係数 ${ }^{(5)}$ （Sv／Bq）	核 種	放出量 （Bq）	$\begin{gathered} \gamma \text { 線 } \\ \text { 実効エネルギー } \\ (\mathrm{MeV}) \end{gathered}$	1 Bq の放射性物質を吸入摂取したときの実効線量係数 ${ }^{(5)}$ （Sv／Bq）	
H－3	2.1×10^{-1}	－	4.5×10^{-11}	H－3	2． 1×10^{-1}	－	4.5×10^{-11}	
C－14	2.5×10^{-2}	－	5.8×10^{-10}	C－14	2.5×10^{-2}	－	5.8×10^{-10}	
C1－36	5.2×10^{-4}	1.6×10^{-4}	7.3×10^{-9}	C1－36	5.2×10^{-4}	1． 6×10^{-4}	7.3×10^{-9}	
Ca－41	4.4×10^{-6}	4.2×10^{-4}	9.5×10^{-11}	Ca－41	4． 4×10^{-6}	4． 2×10^{-4}	9.5×10^{-11}	
Sc－46	2.5×10^{-6}	2.0×10^{0}	6． 8×10^{-9}	Sc－46	2.5×10^{-6}	2.0×10^{0}	6． 8×10^{-9}	
Mn－54	3.6×10^{-1}	8.4×10^{-1}	1.5×10^{-9}	Mn－54	3.6×10^{-1}	8.4×10^{-1}	1.5×10^{-9}	
Fe－55	5.7×10^{2}	1.7×10^{-3}	7.7×10^{-10}	Fe－55	5.7×10^{2}	1． 7×10^{-3}	7.7×10^{-10}	
Fe－59	4.9×10^{-7}	1.2×10^{0}	3.7×10^{-9}	Fe－59	4.9×10^{-7}	1.2×10^{0}	3.7×10^{-9}	
Co－58	1.3×10^{-4}	8.2×10^{-1}	2.1×10^{-9}	Co－58	1.3×10^{-4}	8.2×10^{-1}	2.1×10^{-9}	
Co－60	2.6×10^{2}	2.5×10^{0}	3.1×10^{-8}	Co－60	2.6×10^{2}	2.5×10^{0}	3.1×10^{-8}	
Ni －59	1． 8×10^{-1}	2． 4×10^{-3}	8.3×10^{-10}	Ni －59	1． 8×10^{-1}	2． 4×10^{-3}	8.3×10^{-10}	
Ni －63	2.1×10^{1}	－	2． 0×10^{-9}	Ni －63	2.1×10^{1}	－	2． 0×10^{-9}	
Zn－65	2． 0×10^{-1}	5.7×10^{-1}	2． 0×10^{-9}	Zn－65	2． 0×10^{-1}	5.7×10^{-1}	2． 0×10^{-9}	
Sr－90	1． 8×10^{3}	－	2． 4×10^{-8}	Sr－90	1． 8×10^{3}	－	2． 4×10^{-8}	
Nb －94	1． 7×10^{-4}	1． 6×10^{0}	4.9×10^{-8}	Nb －94	1． 7×10^{-4}	1． 6×10^{0}	4.9×10^{-8}	
Nb－95	1． 4×10^{-8}	7.7×10^{-1}	1． 8×10^{-9}	Nb－95	1.4×10^{-8}	7.7×10^{-1}	1． 8×10^{-9}	
Tc－99	2.9×10^{-5}	－	4.0×10^{-9}	Tc－99	2.9×10^{-5}	－	4.0×10^{-9}	
Ru－106	2． 4×10^{-25}	－	6.6×10^{-8}	Ru－106	2． 4×10^{-25}	－	6.6×10^{-8}	
Ag－108m	2.1×10^{-5}	1． 6×10^{0}	3.7×10^{-8}	Ag－108m	2.1×10^{-5}	1． 6×10^{0}	3.7×10^{-8}	
Ag－110m	4.7×10^{-3}	2.7×10^{0}	1.2×10^{-8}	Ag－110m	4.7×10^{-3}	2.7×10^{0}	1． 2×10^{-8}	
Sb－124	8.5×10^{-7}	1． 8×10^{0}	6． 4×10^{-9}	Sb－124	8.5×10^{-7}	1． 8×10^{0}	6． 4×10^{-9}	
Te－123m	9． 3×10^{-15}	1.5×10^{-1}	4． 0×10^{-9}	Te－123m	9． 3×10^{-15}	1． 5×10^{-1}	4． 0×10^{-9}	
I－129	1.2×10^{-17}	2.5×10^{-2}	2． 0×10^{-7}	I－129	1． 2×10^{-17}	2.5×10^{-2}	2． 0×10^{-7}	
Cs－134	3.4×10^{-2}	1． 6×10^{0}	6． 6×10^{-9}	Cs－134	3.4×10^{-2}	1.6×10^{0}	6． 6×10^{-9}	
$-: ~ \gamma$ 線の放出がないことを示す。				－：γ 線の放出がないことを示す。				

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前				変 更 後				備 考
表3－1（つづき）配管等切断により発生する放射性物質の放出量，γ 線実効 エネルギー及び吸入摂取による実効線量係数				表3－1（つづき）配管等切断により発生する放射性物質の放出量，γ 線実効 エネルギー及び吸入摂取による実効線量係数				
核 種	放出量 （Bq）	$\begin{gathered} \gamma \text { 線 } \\ \text { 実効工ネギー }{ }^{(4)} \\ (\mathrm{MeV}) \end{gathered}$	1 Bqの放射性物質を吸入县取したときの実効線量係数 ${ }^{(5)}$ （Sv／Bq）	核 種	放出量 （Bq）	$\begin{gathered} \gamma \text { 線 } \\ \text { 実効エネルキ (4) } \\ (\mathrm{MeV}) \end{gathered}$	1 Bqの放射性物質を吸入摂取したときの実効線量係数 ${ }^{(5)}$ （Sv／Bq）	
Cs－137	1.8×10^{3}	$6.0 \times 10^{-1 \%}$	4.6×10^{-9}	Cs－137	1.8×10^{3}	$6.0 \times 10^{-1 \%}$	4.6×10^{-9}	
Ba－133	7.3×10^{-3}	4.0×10^{-1}	1.5×10^{-9}	Ba－133	7.3×10^{-3}	4.0×10^{-1}	1.5×10^{-9}	
Eu－152	5.2×10^{-2}	1.1×10^{0}	4.2×10^{-8}	Eu－152	5.2×10^{-2}	1． 1×10^{0}	4.2×10^{-8}	
Eu－154	4.7×10^{-3}	1.2×10^{0}	5.3×10^{-8}	Eu－154	4.7×10^{-3}	1.2×10^{0}	5.3×10^{-8}	
Tb－160	2.9×10^{-6}	1.1×10^{0}	7.0×10^{-9}	Tb－160	2.9×10^{-6}	1.1×10^{0}	7.0×10^{-9}	
Ta－182	9． 3×10^{-12}	1.3×10^{0}	1.0×10^{-8}	Ta－182	9.3×10^{-12}	1.3×10^{0}	1.0×10^{-8}	
U－234	1.8×10^{3}	1.7×10^{-3}	9.4×10^{-6}	U－234	1.8×10^{3}	1.7×10^{-3}	9.4×10^{-6}	
U－235	8.2×10^{1}	1.5×10^{-1}	8.5×10^{-6}	U－235	8.2×10^{1}	1.5×10^{-1}	8.5×10^{-6}	
U－238	1． 1×10^{2}	1.4×10^{-3}	8.0×10^{-6}	U－238	1.1×10^{2}	1.4×10^{-3}	8.0×10^{-6}	
※ 娘核㮔であるBa－133mかからの線の值				※ 娘核㮔であるBa－137mからの γ 線の值				記載の適正化

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	
	中性子束は，DORTコードによる中性子束分布計算結果を，T R A C Y の定出力運転における最大熱出力 10 kW に規格化した値とした。 2）中性子束の抽出位置 中性子束の抽出位置の決定においては，まず，DORTコードで求めた中性子束分布のらち，放射化において支配的となる熱中性子束分布を基に，2次元円柱体系とする炉室（T）及び炉下室（T）のモデル内の領域を次の 6 つに区分した。中性子束評価のための領域区分図を図 $4-1$ に示す。中性子束は，それら 6 領域ごとに抽出し，ORIGEN－Sコードへの入力値とした。 （1）炬心タンク 炬心タンクのみ （2）炉心タンク周囲 垂直方向：炬心タンク側面高さ（床から約 3.5 m まで） 水平方向：炬心タンク中心から 2.0 m 以内 （3）炬心タンク上部 垂直方向：灲心タンク上部から架台 3 階ステージまで（床から約 $3.5 \mathrm{~m} \sim$約6．6mまで） 水平方向：炬心タンク中心から 2.0 m 以内 （4）炉室（T）内下部 垂直方向：床から架台3階ステージまで（床から約6．6mまで） 水平方向：炉心タンク中心から 2.0 m を超える範囲 （5）炉室（T）内上部 垂直方向：架台3階ステージから天井まで 水平方向：炉室（T）内全範囲 （6）炉下室（T）：炉下室（T）全範囲 3）照射時間 照射時間は，運転間隔による放射能減衰を無視し，表4－1に示すTRAC Y 運転履歴の積算出力の合計 $2.79 \times 10^{3} \mathrm{MW} \cdot \mathrm{s}$ を，上記 1 ）中性子束の規格化に おいて設定した最大熱出力 10 kW で除した 77.5 時間（連続運転）とした。 4）冷却時間 泠却時間は，TRACYの最終運転を行った平成 23 年 3 月 8 日から3．7年後 （平成26年12月）及び10年後（令和 3 年 3 月）に設定した。 5）設備機器等の元素組成 設備機器等の元素組成は，表4－2に示す 4 種類とした。これらの組成は， 同表の欄外に示した文献から引用した。 6）評価対象核種 評価対象核種は，「試験研究の用に供する原子炉等に係る放射能濃度について の碓認等に関する規則」（平成17年11月30日文部科学省令第49号）別表第三欄に掲げる濃度に示されているものから，超ウラン元素のPu－239，Pu－241，Am－241	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
	を除いたものである。 1．2．2 評価結果 炉心タンクほか炉室（T）及び炉下室（T）内における主要設備機器等の放射化汚染物質の推定放射能量を表4－3に示す。推定の結果，原子炉停止後3．7年経過時 （平成26年12月現在）における放射化污染物質の総放射能量及び放射能濃度（全体平均）は，それぞれ $3.9 \times 10^{11} \mathrm{~Bq}$ 程度， $4.0 \times 10^{3} \mathrm{~Bq} / \mathrm{g}$ 程度と見積もられる。また，原子炬停止後 10 年経過時（令和 3 年 3 月時点）における総放射能量及び放射能濃度 （全体平均）は，それぞれ $1.1 \times 10^{11} \mathrm{~Bq}$ 程度， $1.1 \times 10^{3} \mathrm{~Bq} / \mathrm{g}$ 程度となり，原子炉停止後約3．7年経過時の推定値に対して総放射能量は 71% 減，放射能濃度は 72% 減と なる。 1.3 二次污染物質 核燃料物質等（溶液燃料及び核分裂生成物）により污染され二次污染物質となる解体廃棄物の放射能量を推定するため，T R A C Y の最終運転後 3.7 年経過した平成26年12月に，スミア法による設備機器等の污染状況の調查及びサーベイメータに よる機器近傍の線量率測定を行い，連続エネルギーモンテカルロコードMCNP ${ }^{(9)}$ の計算結果を組み合わせ，以下のとおり算出した。なお，この線量率測定値には放射化汚染物質からの放射線の寄与も含まれることから，本推定放射能量は過大評価と なっている。 洽却期間経過後における核分裂生成物中の主要核種の放射能割合を算出した結果，評価対象核種はウラン並びにCs－137及びSr－90とした。表4－4に泠却期間経過後における核種の放射能量割合を示す。この放射能割合の算出には，JENDL－4．0 ${ }^{(8)}$ に基づくU－235の核分裂収率を用いた。 1．3．1 炉心タンク 炉心タンクは，TRACYの過渡出力運転において溶液然料から放出される気体状及びミスト状の放射性物質により污染しており，二次污染物質による放射能量が大きい機器の一つである。 炉心タンク内部の放射能量C（Bq）は，サーベイメータによる線量率測定値をD s（ $\mu \mathrm{Sv} / \mathrm{h})$ とし，その測定位置におけるMCNPによる単位線源強度あたりの線量率計算値を $\mathrm{D} \underline{\underline{\mathrm{m}}}((\mu \mathrm{Sv} / \mathrm{h}) / \mathrm{Bq})$ とすると，次の関係にある。 $\begin{equation*} \underline{D_{s}}(\mu \mathrm{~Sv} / \mathrm{h})=\mathrm{C}(\mathrm{~Bq}) \times \mathrm{D}_{\underline{\underline{M}}}((\mu \mathrm{~Sv} / \mathrm{h}) / \mathrm{Bq}) \tag{2-1} \end{equation*}$ よって，解体廃妻物の放射能量Cは，次式から算出することができる。 $\underline{C}=D_{s}<D_{\underline{M}} \quad(2-2)$ このMCNPによる計算では，線源核種は代表核種であるCs－137とし，線量率計算位置	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
	は実測した位置に設定した。また，炬心タンク内の溶液燃料の代表的な液位（実験計画に応じて変更するがおおよそ 60 cm ）を考慮し，線源面を次の 2 つの領域に分割 した。それら各領域の線源面の放射能密度（ $\mathrm{Bq} / \mathrm{cm}^{2}$ ）は均一とした。 1）底部領域（タンク底面と側面 60 cm 高さ以下） 2）上部領域（タンク蓋面と側面 60 cm 高さ以上） 炉心タンク近傍の線量率測定は，タンク底部とタンク上部の 2 点で行った。それ ぞれの位置の線量率計算値には，計算位置に近い方の線源のみが寄与するとし，遠方の線源からの寄与は無視した。つまり，計算位置に近い方の線源からの線量率を $\underline{D}_{\mathrm{Mn}}$ 。遠い方からの線量率を $\mathrm{D}_{\mathrm{M} f}$ とすると，（2－2）式の二次汚染物質の放射能量 C は次の関係にある。 $\begin{equation*} \underline{C}=\mathrm{D}_{\underline{s}} / \mathrm{D}_{\underline{M n} \underline{n}} \geqq \mathrm{D}_{\underline{s}} /\left(\mathrm{D}_{\underline{M_{n}}}+\mathrm{D}_{\underline{M} \underline{f}}\right) \tag{2-3} \end{equation*}$ 上式に示すとおり，計算位置に近い方の線源からの線量率 D_{Mn} のみを考慮すること で，解体廃裹物の放射能量Cを炉心タンク内の 2 つの線源領域それぞれにおいて保守的に評価することができる。これら 2 つの放射能量を合算し，解体廃妻物（炬心 タンク）の放射能量とした。 1．3．2 灲心タンク以外の主要設備機器等炉心タンク以外で放射能量が大きい気体廃葉物処理設備の槽ベント設備C内の ベントガス希积槽及び再結合器については，線源面は機器内部で均一と仮定し，第 1．3．1節と同様に，二次汚染物質の放射能量を算出した。これ以外の機器•配管等に ついては，配管の線量率測定値から推定した系統毎の表面汚染密度と内表面積を乗 じて算出した。 なお，溶液燃料給排液系配管及び供給設備（II）の貯槽については，水移送により洗浄していることから，その放射能量は槽ベント設備Cのそれよりも十分小さい。 1．3．3 解体廃棄物の放射能分布 解体廃棄物の各系統には核分裂生成物の代表核種Cs－137やSr－90が存在するほ か，溶液燃料給排液系統には微量のウランが存在している。このらちCs－137の放射能量評価の方法は，第1．3．1節で述べたとおりである。Sr－90の割合は，U－235の核分裂収率から，Cs－137と同量とした。ウランの放射能量は，污染状況の調查結果か ら，Cs－137の放射能量の9倍とした。解体廃棄物の推定放射能量を表4－5に示す。同表に示すとおり，原子炬停止後3．7年経過時（平成26年12月現在）の解体廃電物 の総放射能量及び放射能濃度（全体平均）は，それぞれ $1.1 \times 10^{10} \mathrm{~Bq}$ 程度， 5.0×10 ${ }^{2} \mathrm{~Bq} / \mathrm{g}$ 程度と見積もられた。また，原子炉停止後 10 年経過時（令和 3 年 3 月時点） の総放射能量及び放射能濃度（全体平均）はそれぞれ $9.8 \times 10^{9} \mathrm{~Bq}$ 程度， $4.6 \times 10^{2} \mathrm{~Bq} /$ g 程度となり，原子炉停止後約 3.7 年経過時の推定値に対して総放射能量は 10% 減，	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	備 考
	放射能濃度は 8% 減となる。 参考文献 （1）K．Shibata，et．al．，＂Japanese Evaluated Nuclear Data Library Version 3 Revision－3：JENDL－3．3，＂J．Nuc1．Sci．Technol．39， 1125 （2002）． （2）K．Kosako，et．al．，＂THE LIBRARIES FSXLIB AND MATXSLIB－J33 BASED ON JENDL－3．3，＂JAERI－Data／Cod×10－2003－011（2003）． （3）R．E．MacFarlane，＂TRANSX 2：A Code for Interfacing MATXS Cross－Section Libraries to Nuclear Transport Codes，＂LA－12312－MS（1992）． （4）Oak Ridge National Laboratory，＂D00RS 3．2a：One，Two－and Thre $\times 10-$ Dimensional Discrete Ordinates Neutron／Photon Transport Code System，＂ CCC－650（2003）． （5）科学技術庁原子力安全局核燃料規制課編，「臨界安全ハンドブック」，にっかん書房（1988）。 （6）Oak Ridge National Laboratory，＂Scale：A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design，＂ORNL／TM－ 2005／39，Version 6.1 （2011）． （7）J．C．Evans，et．al．，＂Long－Lived Activation Products in Reactor Materials，＂NUREG／CR－3474（1984）． （8）K．Shibata，et．al．，＂JENDL－4．0：A New Library for Nuclear Science and Engineering，＂J．Nucl．Sci．Technol．48（1），1－30（2011） （9）X－5 Monte Carlo Team，＂MCNP－A General Monte Carlo N－Particle Transport Code，Version 5 Volume I：Overview and Theory，＂LA－UR－03－1987（2008）．	

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更
変 更 前

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更
変 更 前

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更
変 更 前

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

変 更 前	変 更 後	
	1．性能維持施設及びその性能並びにその性能を維持すべき期間 性能維持施設及びその性能を以下に示す。また，その性能を維持すべき期間は，本文 表 7－1に示すとおりである。 1． 1 原子炉本体 原子炉本体は，解体対象設備であり，維持すべき施設•設備に該当しない。 1.2 核燃料物質の取扱施設及び貯蔵施設 TRACYの燃料はS T A C Y に移管されており，TRACYには燃料が存在し ないため，核燃料物質の取扱施設及び貯蔵施設は維持すべき施設•設備に該当しな い。 1.3 原子炉冷却系統施設 原子炉冷却系統施設は，T R A C Y には不要であり設置されていないため，維持 すべき施設•設備は存在しない。 1.4 計測制御系統施設 計測制御系統施設は，解体対象設備であり，維持すべき施設•設備に該当しない。 1.5 放射性廃棄物の廃棄施設 槽ベント設備Cは，解体対象設備であり，維持すべき施設•設備に該当しない。以下の設備については，保安規定に基づき維持管理する。S T A C Y との共用設備である $\beta \cdot \gamma$ 廃液系設備のうち極低レベル廃液貯槽，低レベル廃液貯槽について，廃止措置期間中の作業員の手洗い水を貯留するため，液体廃棄物の貯留性能を維持 する。また，これら廃液貯槽のベントガスを処理する槽ベント設備Dについて，気体廃棄物の処理性能を維持する。排気筒については，放出経路確保性能を維持する。 1.6 放射線管理施設 原子炉施設内外の放射線監視，環境への放射性物質の放出管理及び放射線業務従事者の被ばく管理を行らため，排気筒モニタ，室内モニタ，放射線エリアモニタ，放射線サーベイ設備について，保安規定に基づきその性能を維持する。 1.7 原子炉格納施設 炬室（T）及び炉下室（T）について，放射線の遮蔽及び原子炉施設外への汚染拡大 を防止するため，保安規定に基づき，遮蔽性能及び閉じ込め性能を維持する。また，炉室（T）換気空調設備について，換気性能を維持する。 1.8 その他原子炉の附属施設	法令改正に伴う見直し（添付書類 1 か ら移動）

T R A C Y（過渡臨界実験装置）施設に係る廃止措置計画の変更

