女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－B－20－0038＿改 0
提出年月日	2020 年 12 月 22 日

VI－3－2－10 重大事故等クラス 2 ポンプの強度計算方法

目次

1．一般事項 1
1.1 概要 1
1.2 適用規格及び基準との適合性• 1
1.3 強度計算書の構成とその見方• 3
1．4 計算精度と数値の丸め方 4
1.5 材料の表示方法 5
2．計算条件 6
2.1 ポンプの形式判別 6
2.2 計算部位 6
2.3 設計条件 7
3．重大事故等クラス 2 ポンプのうちクラス 2 ポンプの規定に基づく評価． 8
3.1 共通記号 8
3.2 うず巻ポンプ又はターボポンプのケーシングの厚さ 9
3.3 うず巻ポンプ又はターボポンプのケーシングの吸込み及び吐出口部分の厚さ 10
3．4 ケーシング各部形状の規定 11
3.5 往復ポンプのリキッドシリンダー及びマニホールドに関するものの厚さ 15
3.6 うず巻ポンプ，ターボポンプ又は往復ポンプのケーシングカバーの厚さ 16
3.7 ボルトの平均引張応力 19
3.8 耐圧部分等のうち管台に係るもの（ケーシングの吸込口部分及び吐出口部分を除く。）の厚 さ 23
3.9 吸込及び吐出フランジ 23
4．重大事故等クラス 2 ポンプのらちクラス 2 ポンプの規定によらない場合の評価． 24
4．1 立形ポンプの強度計算方法 24
別紙 ポンプの強度計算書のフォーマット

1．一般事項

1.1 概要

本資料は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」に基づき，重大事故等クラス 2 ポンプが十分な強度を有することを確認するための方法を説明するものである。

1.2 適用規格及び基準との適合性

（1）強度計算は，昭和 55 年通商産業省告示第501号「発電用原子力設備に関する構造等の技術基準」（以下「告示第 5 0 1 号」という。）及び発電用原子力設備規格（設計•建設規格 （2005年版（2007年追補版含む。））J S M E S N C 1－2005／2007）（日本機械学会 2007年 9 月）（以下「設計•建設規格」という。）により行う。なお，設計基準対象施設のクラス 3 ポンプで重大事故等対処設備兼用となるポンプのうち，設計•建設規格のクラス 2 ポンプ に規定がないものについては，クラス 3 ポンプの規定を準用する。
（例）軸垂直割りケーシングを持った 1 段あるいは多段の立形ポンプ
告示第501号と設計•建設規格の比較に基づく告示第501号各条項及び設計•建設規格各規格番号と強度計算書との対応は，表1－1 に示すとおりである。
（2）両規格に計算式の規定がないものについては，他の規格及び基準を適用して行う。
日本産業規格（以下「 J I S 」という。）と強度計算書との対応は，表1－2に示すとおり である。
（3）強度計算書で計算するもの以外のフランジは，以下に掲げる規格（材料に係る部分を除 く。）又は設計•建設規格 別表2に掲げるものを使用する。（設計•建設規格 PMC－3710） a．J I S B 2 2 3 8（1996）「鋼製管フランジ通則」

表1－1 告示第501号各条項及び設計•建設規格各規格番号と強度計算書との対応 （重大事故等クラス 2 ポンプ）

告示第501号条項 設計•建設規格規格番号	強度計算書の計算式 （章節番号）	備考
PMC－3110	2.1	ポンプの形式判別
PMC－3320	3.2	らず巻ポンプ又はターボポンプのケーシングの厚さ
PMC－3330	3.3	うず巻ポンプ又はターボポンプのケーシングの吸込み及び吐出口部分の厚さ
第 77 条第 7 項 PMC-3340	3.4	ケーシング各部形状の規定
PMC－3350	3.5	往復ポンプのリキッドシリンダー及びマニホー ルドに関するものの厚さ
第 77 条第 5 項 PMC-3410	3.6	らず巻ポンプ，ターボポンプ又は往復ポンプの ケーシングカバーの厚さ
PMC－3510	3.7	ボルトの平均引張応力
PMC－3610	3.8	耐圧部分等のうち管台に係るもの（ケーシング の吸込口部分及び吐出口部分を除く。）の厚さ
PMC－3710	3.9	吸込及び吐出フランジ

表 1－2 J I S と強度計算書との対応

J I S		強度計算書の 計算式	備考	
（章節番号）				

注記＊：設計•建設規格 PMC－3710により J I S B 8 2 6 5（2003）「圧力容器の構造—一般事項」（以下「JIS B 8 2 6 5 」という。）の附属書 3（規定）「圧力容器 のボルト締めフランジ」を用いて計算を行う。

1.3 強度計算書の構成とその見方

（1）強度計算書は，本書と各ポンプの強度計算書からなる。
（2）各ポンプの強度計算書では，記号の説明及び計算式を省略しているので，本書によるもの とする。

1．4 計算精度と数値の丸め方

計算の精度は，6桁以上を確保する。
表示する数値の丸め方は，表1－3に示すとおりとする。

表 1－3 表示する数値の丸め方

数値の種類		単位	処理桁	処理方法	表示桁
最高使用圧力		MPa	－	－	小数点以下第 2 位
最高使用温度		${ }^{\circ} \mathrm{C}$	－	－	整数位
許容応力＊1		MPa	小数点以下第 1 位	切捨て	整数位
算出応力		MPa	小数点以下第 1 位	切上げ	整数位
$\begin{aligned} & \text { 長 } \\ & \text { さ } \end{aligned}$	下記以外の長さ	mm	小数点以下第 2 位	四捨五入	小数点以下第 1 位
	計算上必要な厚さ	mm	小数点以下第 2 位	切上げ	小数点以下第 1 位
	最小厚さ	mm	小数点以下第 2 位	切捨て	小数点以下第 1 位
	ボルト谷径	mm	－	－	小数点以下第 3 位
面積		mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力		N	有効数字 5 桁目	四捨五入	有効数字 4 桁 ${ }^{*}$ 2

注記＊1 ：設計•建設規格 付録材料図表に記載された温度の中間における許容引張応力は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。 また，告示第 5 0 1 号別表に記載された許容引張応力は，各温度の値を SI 単位に換算し，SI 単位に換算した値の小数点以下第 1 位を四捨五入して，整数位までの値 とする。その後，設計•建設規格と同様の換算と桁処理を行う。
＊2：絶対値が 1000 以上のときは，べき数表示とする。

1.5 材料の表示方法

材料は次に従い表示するものとする。
（1）設計•建設規格に定める材料記号を原則とする。
設計•建設規格に記載されていないが設計•建設規格に相当材が記載されている場合は，次のように表示する。

相当材記号 相当（当該材記号）
（例 1）SM400A 相当（SMA400AP）
（例 2）SCS14 相当（ASME SA351 Gr．CF8M）
（2）使用する厚さ又は径等によって許容引張応力が異なる場合，材料記号の後に該当する厚さ又は径等の範囲を付記して表示する。
（例）SNB7（径 $\leqq 63 \mathrm{~mm}$ ）
（3）ガスケット材料で非石綿の場合の表示は以下とする。
（例）非石綿ジョイントシート
渦巻形金属ガスケット（非石綿）（ステンレス鋼）
平形金属被覆ガスケット（非石綿板）（ステンレス鋼）
なお，この場合のガスケット係数m及びガスケットの最小設計締付圧力 yは，J I S
B 8 265 附属書3表2備考3より，ガスケットメーカ推奨値を適用する。

2．計算条件
2.1 ポンプの形式判別

ポンプの形式が，設計•建設規格 PMC－3110に掲げるもののうち，いずれかの形式に該当 するかを判別する。
（1）うず巻ポンプであって，ケーシングが軸垂直割り又は軸平行割りであるもの
（2）ターボポンプであって，ケーシングが軸垂直割りで軸対称であるもの又は軸平行割りであ るもの
（3）往復ポンプ

上記（1）及び（2）に掲げるポンプについては，設計•建設規格 PMC－3320 から PMC－3340 及び PMC－3400からPMC－3700，（3）に掲げるポンプについては，設計•建設規格 PMC－3350からPMC－ 3700 の規定に従って計算を行う。

2.2 計算部位

設計•建設規格 PMC－3000 において強度計算の対象となる部位を略図を用いて明らかにす る。

2.3 設計条件

ポンプの強度計算は，最高使用圧力及び最高使用温度に対して行う。
耐圧部（吸込口及び吐出口を除く。）の厚さを求める計算において，使用する最高使用圧力 は，以下の（1）又は（2）による。
（1）最高使用圧力がポンプの吐出側，吸込側で同一の場合は，その最高使用圧力を使用する。
（2）最高使用圧力がポンプの吐出側，吸込側で相違している場合は，以下の条件のうちいずれ かにする。
a．ケーシングの耐圧部（吸込口及び吐出口を除く。）を吸込側，吐出側に分けそれぞれの最高使用圧力を使用する。
（分けない場合は，吐出側のみの最高使用圧力を使用する。）
b．ピットバレル形（軸垂直割り軸対称ケーシング）ポンプの場合は，吸込側の最高使用圧力のみを使用する。（ただし，一部管台の計算においては，吐出側の最高使用圧力を使用 する。）

3．重大事故等クラス 2 ポンプのうちクラス 2 ポンプの規定に基づく評価
3.1 共通記号

重大事故等クラス 2 ポンプの強度計算において，特定の計算に限定せず，一般的に使用する記号を共通記号として次に掲げる。

告示第501号又は設計•建設規格 の記号	強度計算書 の表示	表示内容	単位
P	P	最高使用圧力	MPa
S	S	最高使用温度における告示第501号別表第6又 は設計•建設規格 付録材料図表 Part5 表5 に規定する材料の許容引張応力	MPa
t	t	ケーシングの計算上必要な厚さ	mm
	t s	最小厚さ	mm
	tso	呼び厚さ	mm
η	η	長手継手の効率で，設計•建設規格 PVC－3130 を適用する。	－

3.2 うず巻ポンプ又はターボポンプのケーシングの厚さ

重大事故等クラス 2 ポンプにおけるらず巻ポンプ又はターボポンプのケーシング厚さは，設計•建設規格 PMC－3320を適用する。
（1）記号の説明

設計•建設規格 の記号	強度計算書 の表示	表示内容	単位
A	A	図 $3-1 ~ 2$ 示す寸法	

（2）算式

$$
\mathrm{t}=\frac{\mathrm{P} \cdot \mathrm{~A}}{2 \cdot \mathrm{~S}}
$$

ただし，片吸込み 1 重うず巻ポンプについては，

$$
\mathrm{t}=\frac{\mathrm{P} \cdot \mathrm{~A}}{\mathrm{~S}}
$$

（3）評価
最小厚さ（ t s ）\geqq 計算上必要な厚さ（ t ）ならば十分である。

図 3－1 1 重うず巻ポンプの例 （設計•建設規格 図 PMC－3320－1，4）

図 3－2 ターボポンプの例 （設計•建設規格 図 PMC－3320－5）
3.3 うず巻ポンプ又はターボポンプのケーシングの吸込み及び吐出口部分の厚さ

重大事故等クラス 2 ポンプにおけるうず巻ポンプ又はターボポンプのケーシングの吸込み及 び吐出口部分の厚さは，設計•建設規格 PMC－3330を適用する。
（1）記号の説明

設計•建設規格 の記号	強度計算書 の表示	表示内容	単位
¢	¢	図 3－3（設計•建設規格 図 PMC－3330－1）に示す範囲	mm
r i	r i	吸込口部分又は吐出口部分の内半径	mm
r m	r m	次式により計算した値 $\mathrm{r}_{\mathrm{m}}=\mathrm{r}_{\mathrm{i}}+0.5 \cdot \mathrm{t}$	mm
	t_{e}	lの範囲の最小厚さ	mm
	teo	Qの範囲の呼び厚さ	mm

（2）算式
$\ell=0.5 \cdot \sqrt{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}}$
ただし， $\mathrm{r}_{\mathrm{m}}=\mathrm{r}_{\mathrm{i}}+0.5 \cdot \mathrm{t}$
（3）評価
ℓ の範囲の最小厚さ（ $\mathrm{t}{ }_{\ell}$ ）ミ計算上必要な厚さ（ t ）＊ならば十分である。
注記＊：ピットバレル形ポンプの吐出口部分については，吐出口の内径と吐出側の最高使用圧力を用いて求めた必要厚さと，ケーシング内径と吸込側の最高使用圧力を用いて求めた必要厚さの大きい値とする。

図 3－3 吸込み及び吐出口部分の厚さの規定範囲の例 （設計•建設規格 図 PMC－3330－1）

3．4 ケーシング各部形状の規定

3．4．1 うず巻ポンプであって，ケーシングが軸垂直割り又は軸平行割りの形状の規定 2.1 項の （1）に掲げるポンプの形状は，告示第 5 0 1 号第 77条第7項 第 4 号から第6号又は，設計•建設規格 PMC－3340（4）から（6）によるものとする。
（1）記号の説明

$\underline{X-X}$ 断面

図 3－4－1 うず巻ポンプのケーシング各部形状
（告示第 501 号第 77 条第 7 項図 2 又は設計•建設規格 図 PMC－3340－1（b））
（2）算式
a．$\quad \mathrm{r}_{1}=0.05 \cdot \mathrm{t}$
b．$\quad \mathrm{r}_{2}=0.3 \cdot \mathrm{t}$
c．$\quad \mathrm{r}_{3}=0.1$ • t 又は 7 mm のうちいずれか大きい値 （告示第501号の場合）
$\mathrm{r}_{3}=0.1 \cdot \mathrm{t}$ 又は 6 mm のうちいずれか大きい値 （設計•建設規格の場合）
（3）評価
a．最小半径（ $\mathrm{r}_{1} \mathrm{~S}$ ） ミ計算上必要な半径（ r_{1} ）ならば十分である。
b．最小半径（ $\mathrm{r}_{2} \mathrm{~S}$ ）ミ計算上必要な半径（ r_{2} ）ならば十分である。
c．最小半径（ $\mathrm{r} \mathrm{B}_{3}$ S）ミ計算上必要な半径（ r_{3} ）ならば十分である。

3．4．2 横軸であって軸垂直割り軸対称ケーシングをもつ多段のターボポンプのケーシングの ボルト穴の規定

重大事故等クラス 2 ポンプにおける 2.1 項の（2）に掲げるポンプのうち，横軸であって軸垂直割り軸対称ケーシングをもつ多段ポンプのケーシングのボルト穴は，設計•建設規格 PMC－3340（8），（9）を適用する。
（1）記号の説明

\begin{tabular}{|c|c|c|c|}
\hline 設計•建設規格 の記号 \& 強度計算書 の表示 \& 表示内容 \& 単位

\hline \multirow[b]{6}{*}{X

d} \& a

a_{s} \& | 図 3－4－2（a）（設計•建設規格 図 PMC－3340－3（a）） に示すケーシングボルト中心円上の隣り合うボルト穴の中心間の弧の計算上必要な長さ |
| :--- |
| 図 3－4－2（a）（設計•建設規格 図 PMC－3340－3（a）） に示すケーシングボルト中心円上の隣り合うボルト穴の中心間の弧の最小長さ | \& mm

\hline \& a so \& 図 3－4－2（a）（設計•建設規格 図 PMC－3340－3（a）） に示すケーシングボルト中心円上の隣り合うボルト穴の中心間の弧の呼び長さ \& mm

\hline \& X \& 図 3－4－2（b）（設計•建設規格 図 PMC－3340－3（b）） に示すケーシングボルト穴と吐出ノズル内面との間 の計算上必要な距離 \& mm

\hline \& X s \& 図 3－4－2（b）（設計•建設規格 図 PMC－3340－3（b）） に示すケーシングボルト穴と吐出ノズル内面との間 の最小距離 \& mm

\hline \& X so \& 図 3－4－2（b）（設計•建設規格 図 PMC－3340－3（b）） に示すケーシングボルト穴と吐出ノズル内面との間 の呼び距離 \& mm

\hline \& d_{bm} \& ケーシングボルトの呼び径 \& mm

\hline
\end{tabular}

（a）
（b）

図 3－4－2 横軸であって軸垂直割り軸対称ケーシングをもつ多段の
ターボポンプのケーシングのボルト穴回りの形状
（設計•建設規格 図 PMC－3340－3）
（2）算式
a．$\quad \mathrm{a}=2 \cdot \mathrm{~d}_{\mathrm{b} \mathrm{m}}$
b． $\mathrm{X}=\mathrm{t}$ 又は $0.5 \cdot \mathrm{~d}_{\mathrm{bm}}$ のらちいずれか大きい値
（3）評価
a．最小長さ（ a_{s} ）ミ計算上必要な長さ（ a ）ならば十分である。
b．最小距離（ X s ）\geqq 計算上必要な距離（ X ）ならば十分である。
3.5 往復ポンプのリキッドシリンダー及びマニホールドに関するものの厚さ

重大事故等クラス 2 ポンプにおける往復ポンプのリキッドシリンダー及びマニホールドに関 するものの厚さは，設計•建設規格 PMC－3350を適用する。
（1）記号の説明

設計•建設規格 の記号	強度計算書 の表示	表示内容	単位
$\begin{gathered} \mathrm{D}_{\mathrm{i}} \\ \mathrm{R}_{\mathrm{i}} \\ \mathrm{Z} \end{gathered}$	D i R i Z 継手の種類継手有り継手無し	リキッドシリンダーヌはマニホールドの内径 リキッドシリンダー又はマニホールドの内半径次式により計算された値 $\mathrm{Z}=\frac{\mathrm{S} \cdot \eta+\mathrm{P}}{\mathrm{~S} \cdot \eta-\mathrm{P}}$ 同左 同左	mm mm

（2）算式
厚さが内半径の 2 分の 1 以下のもの

$$
\mathrm{t}=\frac{\mathrm{P} \cdot \mathrm{D}_{\mathrm{i}}}{2 \cdot \mathrm{~S} \cdot \eta-1.2 \cdot \mathrm{P}}
$$

厚さが内半径の 2 分の 1 を超えるもの

$$
\mathrm{t}=\mathrm{R}_{\mathrm{i}} \cdot(\sqrt{\mathrm{Z}}-1)
$$

ただし，

$$
\mathrm{Z}=\frac{\mathrm{S} \cdot \eta+\mathrm{P}}{\mathrm{~S} \cdot \eta-\mathrm{P}}
$$

（3）評価
最小厚さ（ t s ）\geqq 計算上必要な厚さ（ t ）ならば十分である。
3.6 うず巻ポンプ，ターボポンプ又は往復ポンプのケーシングカバーの厚さ

3．6．1 うず巻ポンプ又はターボポンプのケーシングカバー（軸封部を除く。）の厚さ重大事故等クラス 2 ポンプにおけるうず巻ポンプ又はターボポンプのケーシングカバー （軸封部を除く。）の厚さは，告示第 5 0 1 号第 77 条第5項第1号又は設計•建設規格 PMC－3410（1）を適用する。
（1）記号の説明

告示第501号又は設計•建設規格 の記号	強度計算書 の表示	表示内容	単位
d	d	告示第501号第77条第5項第1号の表又は設計•建設規格 表PMC－3410－1に示すケーシングカバーの取付け方法に応じたケーシングカバーの径又は最小内 のり	mm
K	K	告示第501号第77条第5項第1号の表又は設計•建設規格 表PMC－3410－1に規定するケーシングカバー の取付け方法による係数	－

（2）算式
平板形の場合

$$
\mathrm{t}=\mathrm{d} \cdot \sqrt{\frac{\mathrm{~K} \cdot \mathrm{P}}{\mathrm{~S}}}
$$

（3）評価
最小厚さ（ t s）ミ計算上必要な厚さ（ t ）ならば十分である。

3．6．2 往復ポンプのケーシングカバー（リキッドシリンダーカバー及びマニホールドカバー） の厚さ

重大事故等クラス 2 ポンプにおける往復ポンプのケーシングカバー（リキッドシリンダ ーカバー及びマニホールドカバー）の厚さは，告示第501号第77条第5項第1号を適用する。
（1）記号の説明

（2）算式
平板形の場合

$$
\begin{aligned}
\mathrm{t} & =\mathrm{d} \cdot \sqrt{\frac{\mathrm{~K} \cdot \mathrm{P}}{\mathrm{~S}}} \\
\text { ただし, } \mathrm{K} & =0.30+\frac{1.4 \cdot \mathrm{~F} \cdot \mathrm{~h}_{\mathrm{g}}}{\mathrm{~W} \cdot \mathrm{~d}}
\end{aligned}
$$

（3）評価
最小厚さ（ t s ）ミ計算上必要な厚さ（ t ）ならば十分である。
3.7 ボルトの平均引張応力

重大事故等クラス 2 ポンプのボルトの平均引張応力は，設計•建設規格 PMC－3510を適用 し，以下の方法により求める。
（1）記号の説明

設計•建設規格 の記号	強度計算書 の表示	表示内容	単位
A_{G}	A_{G}	有効ガスケット面積で，通常のフランジにあって は，実際のガスケット面積の 0.5 倍 内周においてガスケットの締付応力が最大になるよ ら加工されたフランジにあっては，実際のガスケッ ト面積の 0.2 倍とする。	mm^{2}
	A_{V}	ターボポンプ（軸平行割りケーシング）で，ポンプ中心線の片側において内圧が加わる面積でセルフシ ールガスケット外周の線とポンプ中心線とで囲まれ た部分の面積	mm^{2}
$\mathrm{A}_{\text {W }}$	$\mathrm{A}_{\text {W }}$	ターボポンプ（軸平行割りケーシング）で，ポンプ中心線の片側において内圧が加わる部分の面積で， ガスケットの内周の線と，フランジに平行な平面上 への投影図においてケーシング内面を示す線とのい ずれか外側の線の外側にケーシングの厚さの 0.5 倍の幅をとつて引いた線とポンプ中心線とで囲まれた部分の面積	mm^{2}
A_{b}	A_{b}	ボルト1本当たりの最小軸断面積 $\mathrm{A}_{\mathrm{b}}=(\pi / 4) \cdot \mathrm{d}_{\mathrm{b}}^{2}$	mm^{2}

（2）算式
a．円形フランジをボルト等により締め付ける場合
設計•建設規格 PVB－3121の解説及びJIS B 8 265 附属書 3 の方法によ り計算する。

$$
\sigma=\frac{\mathrm{W}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}}
$$

ただし，Wは次式で計算される $\mathrm{W}_{\mathrm{m} 1}, \mathrm{~W}_{\mathrm{m} 2}$ のいずれか大きい値とする。

$$
\mathrm{W}_{\mathrm{m} 1}=\mathrm{H}+\mathrm{H}_{\mathrm{p}}
$$

$$
\text { ここで, } \mathrm{H}=\frac{\pi}{4} \cdot \mathrm{G}^{2} \cdot \mathrm{P}
$$

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{p}}=2 \cdot \pi \cdot \mathrm{~b} \cdot \mathrm{G} \cdot \mathrm{~m} \cdot \mathrm{P} \\
& \mathrm{~W}_{\mathrm{m} 2}=\pi \cdot \mathrm{b} \cdot \mathrm{G} \cdot \mathrm{y} \\
& \mathrm{~b} \circ \leqq 6.35 \mathrm{~mm} \text { の場合 } \\
& \mathrm{b}=\mathrm{b} \text { 。 } \\
& \mathrm{G}=\mathrm{G}_{\mathrm{s}}-\mathrm{N}
\end{aligned}
$$

b 。 $>6.35 \mathrm{~mm}$ の場合

$$
\begin{aligned}
& \mathrm{b}=2.52 \cdot \sqrt{\mathrm{~b}} \\
& \mathrm{G}=\mathrm{G}_{\mathrm{s}}-2 \cdot \mathrm{~b}
\end{aligned}
$$

なお，セルフシールガスケットを使用する場合は，次式を用いる。

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{m} 1}=\mathrm{H}=\frac{\pi}{4} \cdot \mathrm{D}_{\mathrm{g}}{ }^{2} \cdot \mathrm{P} \\
& \mathrm{~W}_{\mathrm{m} 2}=0
\end{aligned}
$$

b．ターボポンプであって，軸平行割りケーシングの場合上下ケーシングの締付けボル トの平均引張応力は，ガスケットの取付け方法に応じ，次の（a）又は（b）の方法に より計算する。
（a）合わせ面に，平パッキンを用いる場合

$$
\sigma=\frac{\mathrm{W}}{\mathrm{ni}^{\prime} \cdot \mathrm{Ab}_{\mathrm{b}}}
$$

ただし，Wは次式で計算される Wm_{1} ， $\mathrm{W}_{\mathrm{m} 2}$ のいずれか大きい値とする。

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{m} 1}=\mathrm{A}_{\mathrm{W}} \cdot \mathrm{P}+\mathrm{A}_{\mathrm{G}} \cdot \mathrm{~m} \cdot \mathrm{P} \\
& \mathrm{~W}_{\mathrm{m} 2}=0.5 \cdot \mathrm{~A}_{\mathrm{G}} \cdot \mathrm{y}
\end{aligned}
$$

（b）合わせ面に，平面座でセルフシールガスケットを使用する場合

$$
\begin{gathered}
\sigma=\frac{\mathrm{W}}{\mathrm{ni} \cdot \mathrm{~A}_{\mathrm{b}}} \\
\text { ただし, } \mathrm{W} \text { は次式により求める。 } \\
\mathrm{W}=\mathrm{A}_{\mathrm{V}} \cdot \mathrm{P}
\end{gathered}
$$

（3）評価
ボルトの平均引張応力（ σ ）§許容引張応力（ S_{b} ）ならば十分である。
3.8 耐圧部分等のうち管台に係るもの（ケーシングの吸込口部分及び吐出口部分を除く。）の厚 さ

重大事故等クラス 2 ポンプについては設計•建設規格 PMC－3610を適用する。
（1）記号の説明

設計•建設規格 の記号	強度計算書 の表示	表示内容	単位
D 。	D 。 継手の種類継手有り継手無し	管台の外径 同左 同左	mm

（2）算式

$$
\mathrm{t}=\frac{\mathrm{P} \cdot \mathrm{D}_{\mathrm{o}}}{2 \cdot \mathrm{~S} \cdot \eta+0.8 \cdot \mathrm{P}}
$$

（3）評価
最小厚さ（ t_{s} ）ミ計算上必要な厚さ（ t ）ならば十分である。
3.9 吸込及び吐出フランジ

重大事故等クラス 2 ポンプについては設計•建設規格 PMC－3710に規定されるフランジ（J I S 規格（材料に係る部分を除く。）又は，設計•建設規格 別表2のいずれか）を用いる。 これ以外のフランジを用いる場合は，J I S B 8 2 6 5 附属書 3 により応力計算を行い，必要な強度を有することを確認する。

4．重大事故等クラス 2 ポンプのうちクラス 2 ポンプの規定によらない場合の評価
4． 1 立形ポンプの強度計算方法
重大事故等クラス 2 ポンプのうち立形ポンプについては，設計•建設規格におけるクラス 2 ポンプに評価式が規定されていないため，立形ポンプの強度評価については，以下に示すとお りの重大事故等クラス 2 ポンプの評価手法として妥当性を確認した設計•建設規格に規定され ているクラス 3 ポンプの評価式及び判断基準を用いた評価を実施する。

4．1．1 軸垂直割りケーシングをもつた 1 段あるいは多段の立形ポンプの吐出エルボ，揚水管及 びボウルの厚み
（1）記号の説明

	設計•建設規格 の記号	強度計算書 の表示	表示内容	単位
	D 。	D。	図 4－1（設計•建設規格 図 PMD－3310－7）に示す吐出エルボの外径寸法，揚水管の外径寸法又は個々の ボウルの吸込み側の最大外径寸法	mm
	d	d	吐出エルボ，揚水管又はボウルの内径寸法	mm
$\begin{aligned} & 0 \\ & \sim \end{aligned}$	y	y	0.4 （ D 。／ $\mathrm{t} \geqq 6.0$ の場合） $\mathrm{d} /\left(\mathrm{d}+\mathrm{D}_{\mathrm{o}}\right)(\mathrm{D}$ 。 $/ \mathrm{t}<6.0$ の場合）	－
1 1 1 1 0 5	η	η	長手継手の効率で，設計•建設規格 PVD－3110を適用する。	－

（2）算式

$$
\mathrm{t}=\frac{\mathrm{P} \cdot \mathrm{D}_{\mathrm{o}}}{2 \cdot(\mathrm{~S} \cdot \eta+\mathrm{P} \cdot \mathrm{y})}
$$

（3）評価
最小厚さ（ t s ）\geqq 計算上必要な厚さ（ t ）ならば十分である。

図 4－1 軸垂直割りケーシングをもつた多段の立形ポンプの例 （設計•建設規格 図 PMD－3310－7）

別紙 ポンプの強度計算書のフォーマット

VI－○－○－○－○ ○○○ポンプの強度計算書

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－10 重大事故等クラス 2 ポンプの強度計算方法」に基 づいて計算を行う。

なお，適用規格の選定結果について以下に示す。適用規格の選定に当たつて使用する記号及び略語については，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
O 2 （1）VI－3－2－10 R 0

機器名	$\begin{gathered} \text { 既設 } \\ \text { or } \\ \text { 新設 } \end{gathered}$	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					既工認に おける 評価結果 の有無	施設時の適用規格	評価区分	$\begin{aligned} & \text { 同等性 } \\ & \text { 評価 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	施設時 機器 クラス	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{aligned} & \text { SA } \\ & \text { クラス } \end{aligned}$	条件 アップ の有無	DB 条件		SA 条件						
								圧力 （MPa）	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$					

1．計算条件
1.1 ポンプ形式
1.2 計算部位
1.3 設計条件

2．強度計算
2.1 ケーシングの厚さ
2.2 ケーシングの吸込み及び吐出口部分の厚さ
2.3 ケーシングのボルト穴

2． 4 ケーシングカバーの厚さ
2.5 ボルトの平均引張応力
2.6 耐圧部分等のうち管台に係るものの厚さ
2.7 設計•建設規格における材料の規定によらない場合の評価•

1．計算条件
1．1 ポンプ形式
ターボポンプであって，ケーシングが軸垂直割りで軸対称であるものに相当する。

1.2 計算部位

概要図に強度計算箇所を示す。

図 1－1 概要図

1．3 設計条件

設計条件	
最高使用圧力（MPa）	
最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	

2．強度計算
2.1 ケーシングの厚さ

設計•建設規格 PMC－3320

計算部位	材料	P (MPa)	S (MPa)	A (mm)
(1)				

t (mm)	t so (mm)	t s (mm)

評価： t s t ，よって十分である。
2.2 ケーシングの吸込み及び吐出口部分の厚さ

設計•建設規格 PMC－3330
（単位：mm）

計算部位	r_{i}	r_{m}	ℓ	t	$\mathrm{t}_{\ell 0}$	t_{ℓ}
（2）						
（3）						

評価： $\mathrm{t}_{\ell} \geqq \mathrm{t}$ ，よつて十分である。

2．3 ケーシングのボルト穴
設計•建設規格 PMC－3340
（単位：mm）

計算部位	d_{bm}	a	a_{so}	as	X	X_{so}	X_{s}
（4）							

評価：as \geqq a，よって十分である。
評価：$X_{s} \geqq X, ~ よ っ て 十$ 分である。
2.4 ケーシングカバーの厚さ

設計•建設規格 PMC－3410（告示第 501 号第 77 条第 5 項第 1 号）

計算部位	材料	$\begin{gathered} \mathrm{P} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	平板形	
				d（mm）	K
（5）					
（6）					
（7）					

t (mm)	t s o (mm)	t s (mm)

評価： t s $\geqq \mathrm{t}$ ，よって十分である。

2.5 ボルトの平均引張応力

設計•建設規格 PMC－3510
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { 計算部位 } & \text { 材料 } & \begin{array}{c}\mathrm{P} \\ (\mathrm{MPa})\end{array} & \begin{array}{c}\mathrm{S}_{\mathrm{b}} \\ (\mathrm{MPa})\end{array} & \begin{array}{c}\mathrm{d}_{\mathrm{b}} \\ (\mathrm{mm})\end{array} & \mathrm{n}\end{array} \begin{array}{c}\mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{mm}^{2}\right)\end{array}\right]$

ガスケット材料	ガスケット厚さ (mm)	ガスケット 座面形状	G_{s} (mm)	G (mm)	D g (mm)

H (N)	H_{p} (N)	$\mathrm{W}_{\mathrm{m} 1}$ $(\mathrm{~N})$	$\mathrm{W}_{\mathrm{m} 2}$ $(\mathrm{~N})$	W (N)	σ (MPa)

評価：$\sigma \leqq \mathrm{S}_{\mathrm{b}}$ ，よって十分である。

2.6 耐圧部分等のうち管台に係るものの厚さ

設計•建設規格

PMC－3610				
計算部位	材料	P (MPa)	S (MPa)	$\mathrm{D} \circ$ (mm)
（10）				
（11）				

継手の種類	放射線透過試験の有無	η

t (mm)	t s o (mm)	t s (mm)

評価： t s $\geqq \mathrm{t}$ ，よって十分である。

設計•建設規格における材料の規定によらない場合の評価の評価結果例

2.7 設計•建設規格における材料の規定によらない場合の評価
（材料記号を記載） ケーシング（使用材料規格：J I S G OOOO $\Delta \Delta \triangle \Delta$ ）の評価結果 （比較材料：J I S G ○○○○ $\Delta \Delta \Delta \Delta)^{K}$
ケーシング及びケーシングカバーに使用している $\Delta \Delta \Delta \Delta$ は，材料の許容引張応力が設計•建設規格に記載されていないことから，材料の許容引張応力が設計•建設規格に記載さ れている材料と機械的強度及び化学的成分を比較し，同等であることを示す。
（1）機械的強度

	引張強さ	降伏点又は耐力	比較結果
使用材料	$370 \mathrm{~N} / \mathrm{mm}^{2}$ 以上	$215 \mathrm{~N} / \mathrm{mm}^{2}$ 以上	引張強さ及び降伏点は同等である。
比較材料	$370 \mathrm{~N} / \mathrm{mm}^{2}$ 以上	$215 \mathrm{~N} / \mathrm{mm}^{2}$ 以上	

（2）化学的成分

	化学成分（\％）									
	C	Si	Mn	P	S	Cu	Ni	Cr	Mo	V
使用 材料	$\begin{aligned} & 0.25 \\ & \text { 以下 } \end{aligned}$	$\begin{aligned} & 0.35 \\ & \text { 以下 } \end{aligned}$	$\begin{gathered} 0.30 \\ \sim \\ 0.90 \end{gathered}$	0.040 以下	$\begin{gathered} 0.040 \\ \text { 以下 } \end{gathered}$	－	－	－	－	－
比較材料	$\begin{aligned} & 0.25 \\ & \text { 以下 } \end{aligned}$	$\begin{gathered} 0.10 \\ \sim \\ 0.35 \end{gathered}$	$\begin{gathered} 0.30 \\ \sim \\ 0.90 \end{gathered}$	$\begin{gathered} 0.035 \\ \text { 以下 } \end{gathered}$	$\begin{gathered} 0.035 \\ \text { 以下 } \end{gathered}$	－	－	－	－	－

Si，P，S の成分規定に差異があるが，以下により，本設備の環境下での使用は問題 ないと考える。

Si：一般的に機械的強度に影響を与える成分であるが，（1）の評価結果からも機械強度は同等以上であること。
P ：泠間脆性に影響を与える成分であるが，本設備において使用される材料は，薄比較 肉（16 mm 未満）であるため，脆性破壊が発生しがたい寸法の材料であること
結果 ，さらには，設計•建設規格クラス 2 の規定でも破壊脆性試験が要求されない範囲であること。
S ：熱間脆性に影響を与える成分であるが，本設備において使用される材料は，薄肉（ 16 mm 未満）であるため，脆性破壊が発生しがたい寸法の材料であること ，さらには，設計•建設規格クラス 2 の規定でも破壊脆性試験が要求されない範囲であること。
（3）評価結果
（1）（2）の評価により，機械的強度，化学的成分，いずれにおいても比較材料と同等であ ることを確認したため，本設備において，$\triangle \triangle \triangle \Delta$ を重大事故等クラス 2 材料として使用 することに問題ないと考える。
（材料記号を記載）

