女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-20-0030_改 0
提出年月日	2020年12月22日

VI-3-2-5 クラス2弁の強度計算方法

2020年12月

東北電力株式会社

1.	<u> </u>	般事項 · · · · · · · · · · · · · · · · · · ·
1	. 1	概要 · · · · · · · · · · · · · · · · · · ·
1	. 2	適用規格及び基準との適合性・・・・・・1
1	. 3	強度計算書の構成とその見方······2
1	. 4	計算精度と数値の丸め方 ······3
1	. 5	材料の表示方法 ······ 4
2.	ク	ラス 2 弁の強度計算方法 ・・・・・・・・ 5
2	. 1	弁箱又は弁ふたの最小厚さの計算・・・・・ 5
2	. 2	フランジの強度計算 ・・・・・ 8
3.	添	付図 20

別紙 クラス2弁の強度計算書のフォーマット

- 1. 一般事項
- 1.1 概要

本資料は、添付書類「VI-3-1-3 クラス2機器の強度計算の基本方針」に基づき、クラス2 弁が十分な強度を有することを確認するための方法を説明するものである。

- 1.2 適用規格及び基準との適合性
 - (1) 強度計算は、昭和55年通商産業省告示第501号「発電用原子力設備に関する構造等の 技術基準」(以下「告示第501号」という。)及び発電用原子力設備規格(設計・建設規 格(2005年版(2007年追補版含む。)) JSME S NC1-2005/2007)(日本機械学 会 2007年9月)(以下「設計・建設規格」という。)により行う。

なお,告示第501号及び設計・建設規格による評価について,評価式及び許容値の2 つの項目について比較を実施した結果,設計・建設規格側が安全側であることを確認した。 そのため,設計・建設規格による評価を行う。

設計・建設規格各規格番号と強度計算書との対応は、表 1-1 に示すとおりである。

- (2) 設計・建設規格に計算式の規定がないフランジについては日本産業規格(以下「JIS」 という。)を適用して行う。本資料との対応は,表 1-2 に示すとおりである。
- (3) 強度計算書で計算するもの以外のフランジは、以下に掲げる規格(材料に係る部分を除く。)又は設計・建設規格別表2に掲げるものを使用する。(設計・建設規格 WVC-3410)

a. JIS B 2238 (1996) 「鋼製管フランジ通則」

 設計・建設規格 規格番号	強度計算書の計算式	備考		
成司 • 建成规俗 规俗笛与	(章節番号)	加方		
VVC-3200 耐圧部の設計		弁箱又は弁ふた及び管台の強度計算		
VVC-3210	2.1	弁箱又は弁ふたの最小厚さの計算		
VVC-3300 弁の応力評価		フランジの強度計算		
VVC-3310 (a) *	2.2	弁箱と弁ふたのフランジの応力解析		
VVC-3310 (b) *	2.2	フランジボルトの応力解析		

表 1-1 設計・建設規格各規格番号と強度計算書との対応

注記 *:設計・建設規格 VVC-3310 による計算は,接続管の外径が115 mm を超える弁について 適用する。

JIS		強度計算書の計算式	備考
Νο.	項	(章節番号)	加大
JIS B 8265 (2003)		2.2	フランジの強度計算*
「圧力容器の構造-一般事項」			
附属書3(規定)	3		
「圧力容器のボルト締めフランジ」	4		
附属書4(規定)	3		
「全面形非金属ガスケットを用いる	4		
全面座フランジ」			

表 1-2 JISと強度計算書との対応

 注記 *:設計・建設規格 WC-3310 によりJIS B 8265 (2003)「圧力容器の構造ーー 般事項」(以下「JIS B 8265」という。)の附属書 3 (規定)「圧力容器のボ ルト締めフランジ」及び附属書 4 (規定)「全面形非金属ガスケットを用いる全面座フ ランジ」を用いて計算を行う。

- 1.3 強度計算書の構成とその見方
 - (1) 強度計算は、本資料と各弁の強度計算書からなる。
 - (2) 各弁の強度計算書では、記号の説明及び計算式を省略しているので、本資料によるものとする。

1.4 計算精度と数値の丸め方

計算の精度は、6桁以上を確保する。

表示する数値の丸め方は、表 1-3 に示すとおりとする。

表 1-3 表示する数値の丸め方					
	数値の種類	単位	処理桁	処理方法	表示桁
	最高使用圧力	MPa	_	_	小数点以下第2位
	設計・建設規格別表		•		
圧力	1-1 に規定する許容	MPa	<u>*1</u>	*1	小数点以下第2位
/5	圧力		(小数点以下第3位)	(四捨五入)	
	上記以外の圧力	MPa	小数点以下第3位	切上げ	小数点以下第2位
	温度	°C	—	_	整数位
応	許容応力*2	MPa	小数点以下第1位	切捨て	整数位
力	算出応力	MPa	小数点以下第1位	切上げ	整数位
	計算上必要な厚さ	mm	小数点以下第2位	切上げ	小数点以下第1位
長さ	実際の長さ	mm	_		小数点以下第1位
さ	ボルト谷径	mm	_	_	小数点以下第3位
	上記以外の長さ	mm	小数点以下第2位	四捨五入	小数点以下第1位
面	総断面積	mm^2	有効数字5桁目	四捨五入	有効数字4桁*3
積	実際の断面積	mm^2	有効数字5桁目	四捨五入	有効数字4桁*3
-	弁操作力による反力	Ν	_		整数位
力	上記以外の力	Ν	有効数字5桁目	四捨五入	有効数字4桁*3
モーメント		N•mm	有効数字5桁目	四捨五入	有効数字4桁*3
角度 ° - - 小数点以下第1位					小数点以下第1位

表 1-3 表示する数値の丸め方

注記 *1:設計・建設規格 別表に定められる温度区分の中間の温度における許容圧力を比例法 により補間して求める場合は、()内を適用する。

*2:設計・建設規格 付録材料図表に記載された温度の中間における許容引張応力は、比 例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。

*3:絶対値が1000以上のときは、べき数表示とする。

1.5 材料の表示方法

材料は次に従い表示するものとする。

(1) 設計・建設規格に定める材料記号を原則とする。

JISの改正により設計・建設規格に定める材料記号と相違が生じた場合,設計・建設 規格と同等以上の材料であることを確認し,最新のJISによる材料記号を表示する。

設計・建設規格に記載されていないが設計・建設規格に相当材が記載されている場合は, 次のように表示する。

相当材記号相当(当該材記号)

- (例 1) SM400A 相当 (SMA400AP)
- (例 2) SCS14A 相当 (ASME SA351 Gr.CF8M)
- (2) 使用する厚さ又は径等によって許容引張応力の値が異なる場合,材料記号の後に該当す る厚さ又は径等の範囲を付記して表示する。

(例) SNB7 (径≦63 mm)

- (3) ガスケット材料で非石綿の場合の表示は、フランジの強度計算「記号の説明」の「計算書の表示」による。
 - (例) NON-ASBESTOS

SUS-NON-ASBESTOS

なお、この場合のガスケット係数(m)及びガスケットの最小設計締付圧力(y)は、

JIS B 8265附属書3 表2 備考3よりガスケットメーカ推奨値を適用する。

2. クラス2弁の強度計算方法

発電用原子力設備のうちクラス2弁の強度計算に用いる計算式と記号を以下に示す。

2.1 弁箱又は弁ふたの最小厚さの計算

設計・建設規格 VVC-3210 を適用する。

	/ DLD]		
設計・建設 規格の記号	計算書の表示	表示内容	単位
d m	d m	図 3-1 に示す弁入口流路内径	mm
d n	d n	図 3-1 に示すネック部の内径	mm
Q	Q	^d n ≤1.5の場合,図3-2に示すネック部の厚さが	mm
		t 以上必要な部分の範囲	
Р	Р	最高使用圧力	MPa
P 1	P 1	最高使用温度における設計・建設規格 別表 1-1 に	MPa
		規定する許容圧力の欄のうち、最高使用圧力より低	
		く、かつ、最も近い呼び圧力の項の許容圧力	
P ₂	P 2	最高使用温度における設計・建設規格 別表 1-1 に	MPa
		規定する許容圧力の欄のうち,最高使用圧力より高	
		く、かつ、最も近い呼び圧力の項の許容圧力	
t	t	弁箱(ネック部を除く。)又は弁ふたの計算上必要	mm
		な厚さ	
t 1	t 1	設計・建設規格 別表3の呼び圧力(設計・建設規	mm
		格 別表 1-1 においてP1に対応する呼び圧力をい	
		う。)の欄のうち、当該弁の弁入口流路内径に対応	
		する値	
t ₂	t ₂	設計・建設規格 別表3の呼び圧力(設計・建設規	mm
		格 別表 1-1 においてP₂に対応する呼び圧力をい	
		- う。)の欄のうち,当該弁の弁入口流路内径に対応	
		する値	
	t _{a b}	弁箱の最小厚さ	mm
	t a f	弁ふたの最小厚さ	mm
	Τm	最高使用温度	°C
t m	t $_{m1}$	ℓの範囲内のネック部の計算上必要な厚さ	mm
t m	t m2	ℓ の範囲外及び $\frac{d_n}{d_m} > 1.5$ の場合,ネック部の計算上	mm
		必要な厚さ	
	t _{mal}	t _{m1} に対応するネック部の最小厚さ	mm
	t_{ma2}	t _{m2} に対応するネック部の最小厚さ	mm

(1) 記号の説明

- (2) 算式
- a. 弁箱(ネック部を除く。)又は弁ふたの計算上必要な厚さ

$$t = t_{1} + \frac{(P - P_{1}) \cdot (t_{2} - t_{1})}{(P_{2} - P_{1})}$$

注:最高使用圧力が最高使用温度における設計・建設規格 別表 1-1 に規定する許容 圧力の欄に掲げる許容圧力以下の場合は、弁箱(ネック部を除く。)又は弁ふたの 計算上必要な厚さtは、設計・建設規格 別表3の呼び圧力(1.03 MPa)の欄の うち当該弁の弁入口流路内径に対応する値とする。

b. ネック部の計算上必要な厚さ

- (a) $\frac{d_n}{d_m} \leq 1.5$ の場合
 - イ. 弁箱流路方向の外径から、ネック方向に沿って次の式で計算した&の範囲の必要な厚さ
 t_{m1} = t

$$\ell = 1.1 \cdot \sqrt{d_m \cdot t}$$

ロ. イ.以外のネック部の必要な厚さ

$$t_{m2} = \frac{2 \cdot d_n \cdot t}{3 \cdot d_m}$$

(b)
$$\frac{d_n}{d_m} > 1.5$$
の場合
 $t_{m2} = \frac{2 \cdot d_n \cdot t}{3 \cdot d_m}$

O 2 ① VI-3-2-5 R 1

(3) 評価

以下の条件を満足すれば十分である。

- a. 弁箱(ネック部を除く。)又は弁ふたの最小厚さ
 t_{ab} ≥ t
 t_{af} ≥ t
- b. ネック部の最小厚さ

(a)
$$\frac{d_n}{d_m} \leq 1.5 \mathcal{O}$$
場合
 $t_{mal} \geq t_{ml}$
 $t_{mal} \geq t_{ml}$
(b) $\frac{d_n}{d_m} > 1.5 \mathcal{O}$ 場合

t $_{ma2} \ge t _{m2}$

2.2 フランジの強度計算

2.2.1 ボルト締めフランジ

設計・建設規格 VVC-3310 を適用する。

(1) 記号の説明

JISの記号	計算書の表示	表示内容	単位
А	А	フランジの外径	mm
A _b	A _b	実際に使用するボルトの総有効断面積	mm^2
A_{m}	A_{m}	ボルトの総有効断面積	mm^2
A_{m1}	$A_{m 1}$	使用状態でのボルトの総有効断面積	mm^2
A_{m2}	A_{m2}	ガスケット締付時のボルトの総有効断面積	mm^2
В	В	フランジの内径	mm
В 1	B 1	B+g₀ (f≧1のときの一体形フランジの場合)	mm
		B+g1 (f <1のときの一体形フランジの場合)	
b	b	ガスケット座の有効幅	mm
b o	b o	ガスケット座の基本幅	mm
С	С	ボルト穴の中心円の直径	mm
d	d	係数 (= $\frac{U}{V} \cdot h_o \cdot g_o^2$ (一体形フランジの場合))	mm^3
d b	d b	ボルトのねじ部の谷の径と軸部の径の最小部の小さ	mm
		い方の径	
е	е	係数(= $\frac{F}{h_o}$ (一体形フランジの場合))	mm^{-1}
F	F	一体形フランジの係数	_
		(JIS B 8265 附属書3 図5又は表4	
		による。)	
	F _e	フランジに作用する機械的鉛直荷重(弁操作力によ	Ν
		る反力)	
f	f	ハブ応力修正係数	_
		(JIS B 8265 附属書3 図4又は表4	
		による。)	
G	G	ガスケット反力円の直径	mm
	G s	ガスケット接触面の外径	mm

JISの記号	計算書の表示	表示内容	単位
g o	g o	ハブ先端の厚さ	mm
g 1	g 1	フランジ背面のハブの厚さ	mm
Н	Н	内圧力によってフランジに加わる全荷重	Ν
h	h	ハブの長さ	mm
H _D	Η _D	内圧力によってフランジの内径面に加わる荷重	Ν
h _D	h _D	ボルト穴の中心円からH _D 作用点までの半径方向の 距離	mm
H _G	Η _G	ガスケット荷重	Ν
h _G	h _G	ボルト穴の中心円からH _G 作用点までの半径方向の 距離	mm
h o	h 。	$\sqrt{\mathbf{B} \cdot \mathbf{g}_{o}}$	mm
H _P	Η _P	気密を十分に保つために,ガスケットに加える圧 縮力	Ν
Ηт	Η _T	内圧力によってフランジに加わる全荷重とフラン ジの内径面に加わる荷重との差	Ν
h _T	h _T	ボルト穴の中心円からH _T 作用点までの半径方向の 距離	mm
К	К	フランジの内外径の比	_
L	L	係数 $\left(=\frac{t \cdot e + 1}{T} + \frac{t^3}{d}\right)$	_
m	m	ガスケット係数 (JIS B 8265 附属書 3 表 2 によ る。)	_
M _D	$M_{\rm D}$	内圧力によってフランジの内径面に加わるモーメ ント	N•mm
	M _e	フランジ部に作用するモーメント (駆動部の偏心荷重によるモーメント)	N•mm
M_{G}	M_{G}	ガスケット荷重によるモーメント	N•mm
M g	M_{g}	ガスケット締付時にフランジに作用するモーメン ト	N•mm
M _o	M _o	使用状態でフランジに作用するモーメント	N•mm
M_{T}	M_{T}	内圧力によってフランジに加わる全荷重とフラン	N•mm
		ジの内径面に加わる荷重との差によるモーメント	
Ν	Ν	ガスケットの接触面の幅	mm
		(JIS B 8265 附属書 3 表 3 によ	
		る。)	

JISの記号	計算書の表示	表示内容	単位
n	n	ボルトの本数	—
	Р	最高使用圧力	MPa
	P _{eq}	機械的荷重によりフランジ部に作用する曲げモー	MPa
		メントを圧力に換算した等価圧力	
Р	$P_{\rm FD}$	フランジの設計圧力	MPa
R	R	ボルトの中心円からハブとフランジ背面との交点	mm
		までの半径方向の距離	
Т	Т	$K = \left(\begin{array}{c} A \\ B \end{array} \right)$ の値によって定まる係数	_
		(JIS B 8265 附属書 3 図 7 によ る。)	
t	t	フランジの厚さ	mm
U	U	$K = \left(\begin{array}{c} A \\ B \end{array} \right) の値によって定まる係数$	_
		(JIS B 8265 附属書 3 図 7 によ る。)	
V	V	ー体形フランジの係数	_
		(JIS B 8265 附属書3 図8 又は表4	
		による。)	
Wg	Wg	ガスケット締付時のボルト荷重	Ν
$W_{m \ 1}$	$W_{m\ 1}$	使用状態での必要な最小ボルト荷重	Ν
W_{m2}	W_{m2}	ガスケット締付時に必要な最小ボルト荷重	Ν
W o	W o	使用状態でのボルト荷重	Ν
Y	Y	$K = \left(\begin{array}{c} A \\ B \end{array} \right) の値によって定まる係数$	_
		(JIS B 8265 附属書 3 図 7 によ	
		る。)	
У	У	ガスケットの最小設計締付圧力	N/mm^2
		(JIS B 8265 附属書 3 表 2 によ	
		る。)	
Z	Z	$K = \left(\frac{A}{B} \right) の値によって定まる係数$	_
		(JIS B 8265 附属書 3 図 7 によ	
		る。)	
π	π	円周率	—

JISの記号	計算書の表示	表示内容	単位
σa	σa	常温におけるボルト材料の設計・建設規格 付録	MPa
		材料図表 Part5 表7に定める許容引張応力	
σь	σь	最高使用温度におけるボルト材料の設計・建設規	MPa
		格付録材料図表 Part5 表7に定める許容引張応	
		力	
σf	σfa	常温におけるフランジ材料の設計・建設規格 付	MPa
		録材料図表 Part5 表5に定める許容引張応力	
σf	σfb	最高使用温度におけるフランジ材料の設計・建設	MPa
		規格 付録材料図表 Part5 表5に定める許容引	
		張応力	
σн	σ _{Hg}	ガスケット締付時のハブの軸方向応力	MPa*
σн	σ _{Ho}	使用状態でのハブの軸方向応力	MPa*
σ _R	σ _{Rg}	ガスケット締付時のフランジの半径方向応力	MPa*
σ _R	σ _{Ro}	使用状態でのフランジの半径方向応力	MPa*
σт	σтg	ガスケット締付時のフランジの周方向応力	MPa*
σт	σто	使用状態でのフランジの周方向応力	MPa*
	NON-	非石綿ジョイントシート	_
	ASBESTOS		
	SUS-NON-	渦巻形金属ガスケット(非石綿)(ステンレス	—
	ASBESTOS	錮)	

注記 *: JIS B 8265は「N/mm²」を使用しているが、設計・建設規格に合わせ「MPa」 に読み替えるものとする。 (2) 算式

(JIS B 8265 附属書3 図2b)7))
 注1:ここに示すフランジ形式は基本形式とする。
 注2:Wは、Wg、Wm1、Wm2及びWoのボルト荷重を表す。

図 2-1 一体形フランジ

a. ガスケット座の有効幅及びガスケット反力円の直径

(a)
$$b_0 \le 6.35 \text{ mm} \mathcal{O}$$
場合
 $G = G_s - N$
 $b = b_o$
(b) $b_0 > 6.35 \text{ mm} \mathcal{O}$ 場合
 $G = G_s - 2 \cdot b$
 $b = 2.52 \cdot \sqrt{b_o}$
ここで,
 $b_o = N/2$

b. フランジ設計圧力

$$P_{FD} = P + P_{eq}$$

 $P_{eq} = \frac{16 \cdot M_e}{\pi \cdot G^3} + \frac{4 \cdot F_e}{\pi \cdot G^2}$

c. 計算上必要なボルト荷重

d. ボルトの総有効断面積及び実際に使用するボルトの総有効断面積

$$A_{m1} = \frac{W_{m1}}{\sigma_{b}} \quad (使用状態)$$

$$A_{m2} = \frac{W_{m2}}{\sigma_{a}} \quad (ガスケット締付時)$$

$$A_{m} = Max (A_{m1}, A_{m2})$$

$$A_{b} = \frac{\pi}{4} \cdot d_{b}^{2} \cdot n$$

e. フランジの計算に用いるボルト荷重
W_o=W_{m1} (使用状態)
W_g=
$$\frac{A_m + A_b}{2} \cdot \sigma_a$$
 (ガスケット締付時)

f. 使用状態でフランジに加わる荷重

$$H_{D} = \frac{\pi}{4} \cdot B^{2} \cdot P_{FD}$$
$$H_{G} = W_{o} - H$$
$$H_{T} = H - H_{D}$$

g. 使用状態でのフランジ荷重に対するモーメントアーム

フランジの形式	h _D	h G	h _T
一体形フランジ*	$R + 0.5 \cdot g_1$	$\frac{C-G}{2}$	$\frac{R+g_1+h_G}{2}$

ただし, $R = \frac{C-B}{2} - g_1$

注記 *: クラス2弁には、一体形フランジを採用する。

R 1

- h. 使用状態でフランジに作用するモーメント $M_D = H_D \cdot h_D$ $M_G = H_G \cdot h_G$ $M_T = H_T \cdot h_T$ $M_o = M_D + M_G + M_T$
- i. ガスケット締付時にフランジに作用するモーメント

$$M_g = W_g \cdot \frac{C-G}{2}$$

(a) 使用状態でのフランジの応力

$$\sigma_{Ho} = \frac{f \cdot M_{o}}{L \cdot g_{1}^{2} \cdot B} + \frac{P \cdot B}{4 \cdot g_{0}}^{*1, *2}$$

$$\sigma_{Ro} = \frac{(1.33 \cdot t \cdot e + 1) \cdot M_{o}}{L \cdot t^{2} \cdot B}$$

$$\sigma_{To} = \frac{Y \cdot M_{o}}{t^{2} \cdot B} - Z \cdot \sigma_{Ro}$$

(b) ガスケット締付時のフランジの応力

$$\sigma_{Hg} = \frac{f \cdot M_g^{*2}}{L \cdot g_1^2 \cdot B}$$

$$\sigma_{Rg} = \frac{(1.33 \cdot t \cdot e + 1) \cdot M_g}{L \cdot t^2 \cdot B}$$

$$\sigma_{Tg} = \frac{Y \cdot M_g}{t^2 \cdot B} - Z \cdot \sigma_{Rg}$$

$$\Xi \equiv \overline{C},$$

$$L = \frac{t \cdot e + 1}{T} + \frac{t^3}{d}$$

$$h_o = \sqrt{B \cdot g_0}$$

$$d = \frac{U}{V} \cdot h_o \cdot g_0^2$$

$$e = \frac{F}{h_o}$$

注記 *1:設計・建設規格 VVB-3390 式(VVB-19)による。JIS B 8265の計算式に一次 膜応力を加えたものである。

*2: $B < 20 \cdot g_1$ のときは、 σ_{H_0} 及び σ_{H_g} の計算式のBの代わりに B_1 を用いる。

- (3) 評価一体形フランジは、以下の条件を満足すれば十分である。
 - a. ボルトの総有効断面積 A_b>A_m

b.	ハブの軸方向応力	
	使用状態にあっては	σ _{Ho} ≦1.5 • σ _{fb}
	ガスケット締付時にあっては	$\sigma_{\rm Hg} \leq 1.5 \cdot \sigma_{\rm fa}$

c. フランジの半径方向応力 使用状態にあっては $\sigma_{Ro} \leq 1.5 \cdot \sigma_{fb}$ ガスケット締付時にあっては $\sigma_{Rg} \leq 1.5 \cdot \sigma_{fa}$

d. フランジの周方向応力 使用状態にあっては $\sigma_{To} \leq 1.5 \cdot \sigma_{fb}$ ガスケット締付時にあっては $\sigma_{Tg} \leq 1.5 \cdot \sigma_{fa}$

2.2.2 全面座フランジ

設計・建設規格 VVC-3310を適用する。

(1) 記号の説明

J I Sの記号	計算書の表示	表示内容	単位
A _b	A _b	実際に使用するボルトの総有効断面積	mm^2
A_{m}	A_{m}	ボルトの所要総有効断面積	mm^2
A_{m1}	A_{m1}	使用状態でのボルトの所要総有効断面積	mm^2
A_{m2}	A_{m2}	ガスケット締付時のボルトの所要総有効断面積	mm^2
В	В	フランジの内径	mm
b'o	b'o	G。-C, ガスケット締付時におけるガスケット座	mm
		の基本幅	
b'	b'	4・√b'。, ガスケット締付時におけるガスケット	mm
		座の有効幅	
2 b''	2•b''	使用状態におけるガスケット座の有効幅	mm
		2 · b''=5 mm	
С	С	ボルト穴の中心円の直径	mm
d h	d h	ボルト穴の直径	mm
d _b	d b	ボルトのねじ部の谷径と軸部の径の最小部の小さ	mm
		い方の径	
G'	G'	C-(d _h +2・b''), ガスケット圧縮力H' _P の	mm
		位置の直径	
G o	G _o	ガスケット外径とフランジ外径の小さい方の値	mm
g 1	g 1	フランジ背面のハブの厚さ	mm
H_{D}	H_{D}	内圧力によってフランジの内径面に加わる荷重	Ν
H'	H'	内圧力によってフランジに加わる全荷重	Ν
H'P	H' _P	気密を十分に保つためのガスケット圧縮力	Ν
Н'т	H' _T	内圧力によってフランジに加わる全荷重とフラン	Ν
		ジの内径面に加わる荷重との差	
H _R	H _R	平衡反力	Ν
h _D	h _D	ボルト穴の中心円からHD作用点までの半径方向の	mm
		距離	
h'p	h' _P	ボルト穴の中心円からH'P作用点までの半径方向	mm
		の距離	

JISの記号	計算書の表示	表示内容	単位
h'ī	h' _T	ボルトの中心円からH' T作用点までの半径方向の	mm
		距離	
h _R	h _R	ボルトの中心円からHR作用点までの半径方向の距	mm
		离隹	
m	m	ガスケット係数	_
		(JIS B 8265 附属書 3 表 2 によ	
		る。)	
M_{\circ}	${ m M_{o}}$	H _R ・h _R ,使用状態でフランジに作用する全モー	N•mm
		メント	
n	n	ボルトの本数	—
Р	P_{FD}	フランジの設計圧力	MPa
t	t fø	フランジの厚さ	mm
t	t	フランジの計算厚さ	mm
$W_{m \ 1}$	W_{m1}	使用状態における必要な最小ボルト荷重	Ν
W_{m2}	W_{m2}	ガスケット締付けに必要な最小ボルト荷重	Ν
У	У	ガスケットの最小設計締付圧力	N/mm^2
		(JIS B 8265 附属書 3 表 2 によ	
		る。)	
π	π	円周率	—
σa	σa	常温におけるボルト材料の設計・建設規格 付録	MPa*
		材料図表 Part5 表7に定める許容引張応力	
σь	σ _b	最高使用温度におけるボルト材料の設計・建設規	MPa*
		格 付録材料図表 Part5 表 7 に定める許容引張	
		応力	
σf	σfb	最高使用温度におけるフランジ材料の設計・建設	MPa*
		規格 付録材料図表 Part5 表 5 に定める許容引	
		張応力	

注記 *: JIS B 8265は「N/mm²」を使用しているが、設計・建設規格に合わせ「MPa」 に読み替えるものとする。 (2) 算式

(JIS B 8265 附属書4図1)
 注1:ここに示すフランジ形式は基本形式とする。
 注2:Wは、Wm1及びWm2のボルト荷重を表す。

図 2-2 全面座フランジ

a. 計算上必要なボルト荷重

(a) 使用状態で必要なボルト荷重

$$W_{m1} = H' + H'_{P} + H_{R}$$

 $H' = \frac{\pi}{4} \cdot (C - d_{h})^{2} \cdot P_{FD}$
 $H'_{P} = 2 \cdot \pi \cdot b'' \cdot G' \cdot m \cdot P_{FD}$
 $H_{R} = \frac{H_{D} \cdot h_{D} + H'_{T} \cdot h'_{T} + H'_{P} \cdot h'_{P}}{h_{R}}$
 $H_{D} = \frac{\pi}{4} \cdot B^{2} \cdot P_{FD}$
 $h_{D} = \frac{(C - B)}{2} - 0.5 \cdot g_{1}$
 $H'_{T} = H' - H_{D}$
 $h'_{T} = \frac{(C + d_{h} + 2 \cdot b'') - B}{4}$
 $h'_{R} = \frac{d_{h} + 2 \cdot b''}{2}$
 $h_{R} = \frac{G_{0} - (C + d_{h})}{4} + \frac{d_{h}}{2}$

- (b) ガスケット締付時に必要なボルト荷重
 W_{m2} = π b' C y
- b. ボルトの所要総有効断面積及び実際に使用するボルトの総有効断面積

$$A_{m1} = \frac{W_{m1}}{\sigma_{b}} \qquad (使用状態)$$

$$A_{m2} = \frac{W_{m2}}{\sigma_{a}} \qquad (ガスケット締付時)$$

$$A_{m} = Max (A_{m1}, A_{m2})$$

$$A_{b} = \frac{\pi}{4} \cdot d_{b}^{2} \cdot n$$

c. フランジの計算厚さ

$$t = \sqrt{\frac{6 \cdot M_o}{\sigma_{f b} \cdot (\pi \cdot C - n \cdot d_h)}}$$

- (3) 評価全面座フランジは,以下の条件を満足すれば十分である。
 - a. ボルトの総有効断面積 A_b>A_m
- b. フランジの厚さ

t _{fℓ}≧t

3. 添付図

注 :本図は設計・建設規格 VVB-3210の解説図 VVB-3210-3 と同じ。 図 3-1 dm及びdnを明示した図

Qの範囲は、ネック部と流路部の交わる部分を基点として ネック部方向にとるものとする。

注 :本図は設計・建設規格 WVC-3210の図 WVC-3210-1と同じ。 図 3-2 ネック部の0の範囲 別紙 クラス2弁の強度計算書のフォーマット

まえがき

本計算書は、添付書類「VI-3-1-3 クラス2機器の強度計算の基本方針」及び「VI-3-2-5 クラス2弁の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお,評価条件の整理に当たって使用する記号及び略語については,添付書類「VI-3-2-1 強度計算方法の概要」に定義したものを使用する。

		評価	クラス					
	同評区等価分							
	評価区分							
		施設時の 適用規格						
		既工認における	評価結果 の有無					
		SA 条件	温度 (°C)					
	5 か>	SA∮	压力 (MPa)					
	条件アップするか	DB 条件	這度 (°C)					
	条件"	DB	压力 (MPa)					
		米 タッ 子 他 王 単 子						
		SA クラス						
	プするか	DB クラス						
	クラスアップす							
		ク ア つ シン シン シン シン シン シン ビ 単単						
	施設時の	施設時の 技術基準 する施設 の規定が もるか						
		現 or 新設						
		タ田勝	(後 ()) () () () () () () () () () () () () ()) () () () () () () () () () () () () () () () () () ()) ()) () ()) ()) ()) ()) ())) ())) ())) ())) ())) ())) ()))) ()))))))))))))					
Ē	<u> </u>			1	L	L	l	L

-
Ц
ц
-3-2-5
[-3
-[]
\ominus
\sim
\bigcirc

·評価条件整理表

1.)	クラ	ス2弁・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•
1	. 1		設計仕様 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•
1	. 2	1	魚度計算書・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•

目次

1. クラス2弁

1.1 設計仕様

系統:

機器の区分		クラス2弁				
弁番号	種類	呼び径	材料			
		(A)	弁箱	弁ふた	ボルト	

1.2 強度計算書

系統:

弁番号

シート

設計条件			ネック部の	ネック部の厚さ			
最高使用压力	力P(MPa)		d n	(mm)			
最高使用温度	 要 Τ _m (℃)		d n/d	m			
弁箱又は弁.	ふたの厚さ		l	(mm)			
弁箱材料			t m 1	(mm)			
弁ふた材料	学		t _{m2}	(mm)			
P 1	(MPa)		t _{ma1}	(mm)			
P 2	(MPa)		t ma 2	(mm)			
d m	(mm)						
t 1	(mm)		評価:	$t_{mal} \ge t_{ml}$			
t ₂	(mm)			t m a 2 \geq t m 2			
t	(mm)			よって十分である。			
t _{a b}	(mm)						
t a f	(mm)						
評価:t	$a_{b} \ge t$						
t	$_{a f} \ge t$						
		よって十分である。					

フランジ及びフランジボルトの応力解析				
設計条件	.T.	ーメントの計算		
	H		T	×1
	h		+	~1
Р _{ед} (MPa) Т _m (°С)	M		-	×1
M_{e} (N·mm)	×10 ⁶ H		+	×1
IM e (N mm) F e (N)	h	5	+	
フランジの形式	M			×
フランジ	H		1	×:
材料	h		1	
	M			×
σ _{fa} (MPa) 常温 (ガスケット締付時)	M		-	×
(20 °C)				×1
σ _{f,b} (MPa) 最高使用温度(使用状態)	M	_g (N・mm) ランジの厚さと係数	<u> </u>	~ .
() · · · ·		<u>/ / / / / / / / / / / / / / / / / / / </u>	T	
A (mm) B (mm)	t K	(11111)	-	
C (mm)	h	(mm)	+	
()	f			
g 0 (mm) g 1 (mm)	F		1	
h (mm)	V		1	
ボルト	e	(mm^{-1})	1	
材料	d	(mm ³)		
	L	()		
σ 。 ^{(MP} a) 常温 (ガスケット締付時) (20 ℃)	T			
σ _ь (MPa) 最高使用温度(使用状態)	U			
最高使用温度(使用状態)	Y			
n	Z			
d _b (mm)	応	カの計算		
ガスケット	σ	Ho (MPa)		
材料		Ro (MPa)		
ガスケット厚さ (mm)		ro (MPa)		
G (mm)		Hg (MPa)	<u> </u>	
m (NJ / 2)		R g (MPa)	───	
y (N/mm ²)	σ	rg (MPa)	<u> </u>	
b o (mm)		応力の評価:σ _H 。≦1.5	• 6	
b (mm)		応力の評価: $\sigma_{\rm Ho} \ge 1.5$ $\sigma_{\rm Ro} \le 1.5$		
N (mm) G s (mm)		$\begin{array}{c} \sigma \\ r \\ \sigma \end{array} \stackrel{\sim}{_{\rm To}} \leq 1.5 \end{array}$		
<u>G</u> (mm) ボルトの計算		0 1 0 = 1.0	O I D	
ホルトの計算 H (N)	$\times 10^{6}$	σ _{Hg} ≦1.5	• 0 f a	
H (N) H _p (N)	$\times 10^{-1}$ $\times 10^{5}$	$\sigma_{Rg} \leq 1.5$		
W_{m1} (N)	$\times 10^{6}$	σ _{Tg} ≦1.5		
W m 1 (N) W m 2 (N)	$\times 10^{5}$	-		よって十分である
$\begin{array}{c} W_{m 2} \\ A_{m 1} \\ \end{array} $	$\times 10^{3}$			
A_{m1} (mm ²)	$\times 10^{3}$			
A_{m2} (mm ²)	$\times 10^{3}$			
$A_{\rm m}$ (mm ²)	$\times 10^{4}$			
W _o (N)	$\times 10^{6}$			
W _o (N)	$\times 10^{6}$			
11 8 (11)				
評価: А м < А ь				

弁番号

シート