女川原子力発	工事計画審査資料
資料番号	02－工－B－20－0036＿改 0
提出年月日	2020 年 12 月 22 日

VI－3－2－8 重大事故等クラス 2 容器の強度計算方法
1．一般事項 1
1.1 概要 1
1.2 適用規格及び基準との適合性• 1
1.3 強度計算書の構成とその見方• 1
1．4 計算精度と数値の丸め方 5
1.5 材料の表示方法 7
2．重大事故等クラス 2 容器（クラス 1 容器又は原子炉格納容器を除く）の強度計算方法 8
2.1 共通記号 8
2.2 円筒形の胴の計算 10
2.3 円すい形の胴の計算 11
2.4 容器の胴の補強を要しない穴の最大径の計算 13
2.5 全半球形鏡板の計算 15
2.6 半だ円形鏡板の計算 18
2.7 容器の鏡板の補強を要しない穴の最大径の計算 20
2.8 円形平板の計算 22
2.9 だ円形マンホール平板の計算－ 36
2． 10 容器の管板の計算 37
2.11 容器の管台の計算 39
2． 12 容器の管台の補強を要しない穴の最大径の計算 41
2． 13 内面に圧力を受ける円すい形の胴と円筒形の胴との接続による強め輪の計算••• 41
2.14 開放タンクの胴の計算 45
2． 15 開放タンクの底板の計算 47
2． 16 開放タンクの管台の計算 49
2.17 熱交換器の伝熱管の計算 50
3．穴の補強計算 51
3.1 記号の説明 51
3.2 容器の穴の補強計算 55
3.3 開放タンクの胴の穴の補強計算 86
3.42 つ以上の穴が接近しているときの補強計算 87
4．フランジの強度計算 127
4．1 記号の説明 127
4.2 算式 130
5．既工認における評価結果の確認による強度評価方法 140
5.1 確認内容 140
5.2 強度評価方法 140
6．重大事故等クラス 2 容器であつてクラス 1 容器の強度計算方法 140
7．重大事故等クラス 2 容器であって原子炉格納容器の強度計算方法• 140

別紙 容器の強度計算書のフォーマット

1．一般事項

1.1 概要

本書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物 の強度計算の基本方針」に基づき，重大事故等クラス 2 容器が十分な強度を有することを確認 するための方法を説明するものである。

1.2 適用規格及び基準との適合性

（1）強度計算は，昭和 55 年通商産業省告示第501号「発電用原子力設備に関する構造等の技術基準」（以下「告示第 5 0 1 号」という。）及び発電用原子力設備規格（設計•建設規格 （2005 年版（2007 年追補版含む。））J S M E S N C 1－2005／2007）（日本機械学会） （以下「設計•建設規格」という。）により行う。
告示第501号と設計•建設規格の比較に基づく，告示第501号各条項及び設計•建設規格各規格番号と強度計算書との対応は，表1－1に示すとおりである。
（2）両規格に計算式の規定がないものについては他の規格及び基準を適用して行う。
日本産業規格（以下「 J I S 」という。）と強度計算書との対応は表 1－2 に示すとおりで ある。
（3）重大事故等クラス 2 容器であってクラス 1 容器の評価は，施設時の適用規格である告示第 501 号による評価を実施する。
（4）重大事故等クラス 2 機器であって原子炉格納容器の評価は，告示第501号に基づき評価 を実施する。ただし，改造箇所で適用規格が設計•建設規格の場合は設計•建設規格と告示第501号の比較を行い，いずれか安全側の規格による評価を実施する。
（5）強度計算書で計算するもの以外のフランジは，以下に掲げる規格（材料に関する部分を除 く。）又は設計•建設規格 別表2に掲げるものを使用する。（設計•建設規格 PVC－3700）
a．J I S B 2 2 3 8（1996）「鋼製管フランジ通則」
b．J I S B 2239 （1996）「鋳鉄製管フランジ通則」

1.3 強度計算書の構成とその見方

（1）強度計算書は，本書と各容器の強度計算書からなる。
（2）各容器の強度計算書では，記号の説明及び計算式を省略しているので，本書によるものと する。

表1－1 告示第501号各条項及び設計•建設規格各規格番号と強度計算書との対応 （重大事故等クラス 2 容器）

告示第501号 条項設計•建設規格 規格番号	強度計算書の計算式 （章節番号）	備考
```PVC-3100 (容器の胴の規定) PVC-3121 PVC-3122 (1) PVC-3111 PVC-3121 PVC-3124. 1 (1) PVC-3150 (2) PVC-3160 PVC-3162 PVC-3171 PVC-3172 PVC-3173 (1) PVC-3173 (3) PVC-3174 PVC-3175 (1) PVC-3175 (3)```	2． 2   2． 3   2． 4   2． 12   3.2   3.4   2． 13	円筒形の胴の計算   円すい形の胴の計算   容器の胴の補強を要しな い穴の最大径の計算   容器の管台の補強を要し ない穴の最大径の計算   容器の穴の補強計算   2 つ以上の穴が接近してい るときの補強計算   内面に圧力を受ける円す い形の胴と円筒形の胴と の接続による強め輪の計算
$\begin{aligned} & \text { PVC-3200 (容器の鏡板についての規定) } \\ & \text { PVC-3210 (2) } \\ & \text { PVC-3220 } \\ & \text { PVC-3223 (1) } \\ & \text { PVC-3210 (3) } \\ & \text { PVC-3220 } \\ & \text { PVC-3225 } \\ & \text { PVC-3230 (2) } \\ & \text { PVC-3240 } \end{aligned}$	2.5   2． 6   2.7   3.2	全半球形鏡板の計算   半だ円形鏡板の計算   容器の鏡板の補強を要し ない穴の最大径の計算   容器の穴の補強計算

表 1－1 告示第5 O 1 号各条項及び設計•建設規格各規格番号と強度計算書との対応 （重大事故等クラス 2 容器）

告示第501号 条項設計•建設規格 規格番号	強度計算書の計算式   （章節番号）	備考
```第 34 条 (容器の平板についての規定) 第1項 第 2 項 PVC-3300 (容器の平板についての規定) PVC-3310 PVC-3320 PVC-3320 (2)```	$2.8$ $2.8$   3． 2	円形平板の計算円形平板の計算容器の穴の補強計算
PVC－3500（容器の管板についての規定） PVC－3510	2． 10	容器の管板の計算
$\begin{gathered} \text { PVC-3600 (管台についての規定) } \\ \text { PVC-3610 } \\ \text { PVC-3610 (1) } \\ \text { PVC-3610 (2) } \end{gathered}$	$\begin{aligned} & 2.11 \\ & 2.17 \end{aligned}$	容器の管台の計算熱交換器の伝熱管の計算
$\begin{aligned} & \text { PVC-3900 (開放タンクについての規定) } \\ & \text { PVC-3920 } \\ & \text { PVC-3940 } \\ & \text { PVC-3950 } \end{aligned}$	2.14 3.3	開放タンクの胴の計算 開放タンクの胴の穴の補強計算
PVC－3960 PVC－3970	2． 15	開放タンクの底板の計算
	2． 16	

表 1－2 J I S と強度計算書との対応

J I S		強度計算書の計算式 （章節番号）	備考
No．	項		
J I S B 8201 （2005）「陸用鋼製ボイラー構造｣	6．6．8	2.9	だ円形マンホール平板 の計算＊
J I S B 8265 （2003）	3	4	フランジの強度計算＊2
「圧力容器の構造一一般事項」附	4		
属書 3（規定）「圧力容器のボルト締めフランジ」	5		

注記＊1 ：J I S B 8 2 0 1（2005）「陸用鋼製ボイラー構造」（以下「J I S B 8 2 01 」という。）を用いて計算を行う。
＊2：設計•建設規格 PVC－3710によりJ I S B 8265 （2003）「圧力容器の構造一一般事項」（以下「J I S B 8 2 6 5 」という。）の附属書 3（規定）「圧力容器 のボルト締めフランジ」を用いて計算を行う。

1．4 計算精度と数値の丸め方

計算の精度は，6桁以上を確保する。
表示する数値の丸め方は，表 1－3 に示すとおりとする。

表1－3 表示する数値の丸め方

数値の種類		単位	処理标	処理方法	表示桁
$\begin{aligned} & \text { 圧 } \\ & \text { 力 } \end{aligned}$	最高使用圧力 （開放タンクを除く）	MPa	－	－	小数点以下第 2 位
	最高使用圧力 （開放タンク）	MPa	小数点以下第 3 位	四捨五入	小数点以下第2位
	外面に受ける最高の圧力	MPa	－	－	小数点以下第2位
温度		${ }^{\circ} \mathrm{C}$	－	－	整数位
許容応力＊1		MPa	小数点以下第 1 位	切捨て	整数位
降伏点＊1		MPa	小数点以下第 1 位	切捨て	整数位
算出応力		MPa	小数点以下第 1 位	切上げ	整数位
長d	下記以外の長さ	$\begin{gathered} \mathrm{mm} \\ \mathrm{~m}^{* 2} \end{gathered}$	小数点以下第 3 位	四捨五入	小数点以下第 2 位
	計算上必要な厚さ	mm	小数点以下第 3 位	切上げ	小数点以下第 2 位
	最小厚さ	mm	小数点以下第 3 位	切捨て	小数点以下第 2 位
	ボルト谷径	mm	－	－	小数点以下第 3 位
	開放タンクの水頭及び管台の内径	m	小数点以下第 5 位	四捨五入	小数点以下第4位
	ガスケット厚さ	mm	－	－	小数点以下第 1 位
面積		mm ${ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊3
力		N	有効数字 5 桁目	四唅五入	有効数字 4 桁＊3
モーメント		$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊3
角度		－	小数点以下第 2 位	四捨五入	小数点以下第 1 位
比重		－	小数点以下第 3 位	四捨五入	小数点以下第 2 位
慣性モーメント		mm ${ }^{4}$	有効数字 5 桁目	四捨五入	有効数字 4 桁

注記＊1：設計•建設規格 付録材料図表に記載された温度の中間における許容引張応力及び設計降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。ただし，許容引張応力及び設計降伏点が設計•建設規格 付録材料図表に定められた値のa倍である場合は，次のようにして定める。
（1）比例法により補間した値の小数点以下第 2 位を切り捨て，小数点以下第 1 位ま での値を a 倍する。
（2）（1）で得られた値の小数点以下第 1 位を切り捨て，整数位までの値とする。ま た，告示別表に記載された許容引張応力及び設計降伏点は，各温度の値をSI単位に換算し，SI 単位に換算した値の小数点第 1 位を四捨五入して，整数位まで の値とする。その後，設計•建設規格と同様の換算と桁処理を行う。
＊2：開放タンクの胴内径
＊3：絶対値が 1,000 以上のときは，べき数表示とする。

1.5 材料の表示方法

材料は次に従い表示するものとする。
（1）設計•建設規格に定める材料記号を原則とする。
設計•建設規格に記載されていないが設計•建設規格に相当材が記載されている場合は次 のように表示する。

	相当材記号	相当	（当該材記号）
（例 1）	SM400A	相当	（SMA400AP）
（例 2）	SCMV3－1	相当	（ASME SA387 Gr．11C1．1）

（2）管材の許容引張応力の値は継目無管，電気抵抗溶接管及び鍛接管等，製造方法により異な る場合があるため材料記号の後に＂一＂を入れ，その製法による記号を付記して表示する。
（例）STPT410－S（継目無管の場合）
（3）強度区分により許容引張応力が異なる場合，材料記号の後に J I S で定める強度区分を付記して表示する。
（例）

設計•建設規格の表示	計算書の表示
SCMV3	$\binom{$ 付録材料図表 Part5 表5}{ の許容引張応力の上段 }

（4）使用する厚さ又は径等によって許容引張応力の値が異なる場合，材料記号の後に該当する厚さ又は径等の範囲を付記して表示する。
（例）S45C（直径 40 mm 以下）
（5）熱処理によって許容引張応力の値が異なる場合，材料記号の後に J I S に定める熱処理記号を付記して表示する。
（例）SUS630 H1075（固溶化熱処理後 $570 \sim 590{ }^{\circ} \mathrm{C}$ 空冷の場合）
（6）ガスケット材料で非石綿の場合の表示は以下とする。
（例）非石綿ジョイントシート
渦巻形金属ガスケット（非石綿）（ステンレス鋼）
平形金属被覆ガスケット（非石綿板）（ステンレス鋼）
なお，この場合のガスケット係数（m）及びガスケットの最小設計締付圧力（y）は，
JIS B 8 2 6 5 附属書3 表2 備考3より，ガスケットメーカ推奨値を適用する。

2．重大事故等クラス 2 容器（クラス 1 容器又は原子炉格納容器を除く）の強度計算方法
2.1 共通記号

重大事故等クラス 2 容器の強度計算において，特定の計算に限定せず，一般的に使用する記号を共通記号として次に掲げる。

なお，以下に示す記号のうち，各計算において説明しているものはそれに従う。

告示第 5 0 1 号又は設計•建設規格の記号	計算書の表示	表示内容	単位
	放射線検査の有無 有り 無し	発電用原子力設備規格（溶接規格 J S M E S NB1－2001）（日本機械学会2001年） $\mathrm{N}-3140$ 及び N－4140（N－1100（1）a 準用）の規定に準じて放射線透過試験を行い，同規格の規定に適合するもの その他のもの	- -

2.2 円筒形の胴の計算

重大事故等クラス 2 容器については，設計•建設規格 PVC－3121，PVC－3122（1）を適用する。容器の形状は設計•建設規格 PVC－3111 に適合する円筒形とする。また，容器の継手は，設計•建設規格 PVC－3112に適合する溶接継手又は，フランジ継手を使用する。
（1）記号の説明

設計•建設規格の記号	計算書の表示	表示内容	単位
D ${ }_{\text {i }}$S	D i	胴の内径	mm
	S	最高使用温度における材料の許容引張応力設計•建設規格 付録材料図表 Part5 表5又は表 6 による。	MPa
	t	胴に必要な厚さ	mm
	t_{1}	胴の規格上必要な最小厚さ	mm
t	t 2	胴の計算上必要な厚さ	mm
	ts	胴の最小厚さ	mm
	tso	胴の呼び厚さ	mm

（2）算式
円筒形の胴に必要な厚さは次に掲げる値のうちいずれか大きい値とする。
a．規格上必要な最小厚さ：t 1
炭素鋼鋼板又は低合金鋼鋼板で作られたものにあつては 3 mm ，その他の材料で作られ たものにあっては 1.5 mm とする。
b．内面に圧力を受ける胴：t 2

$$
\mathrm{t}_{2}=\frac{\mathrm{P} \cdot \mathrm{D}_{\mathrm{i}}}{2 \cdot \mathrm{~S} \cdot \eta-1.2 \cdot \mathrm{P}}
$$

（3）評価
胴の最小厚さ（ t s ）ミ胴に必要な厚さ（ t ）ならば十分である。
2.3 円すい形の胴の計算

重大事故等クラス2容器については設計•建設規格 PVC－3111，PVC－3121 及びPVC－ 3124．1（1）を適用する。
（1）記号の説明

設計•建設規格の記号	計算書の表示	表示内容	単位
D o	D o	胴の大径端側の内径	mm
D s	D s	胴の小径端側の内径	mm
S	S	最高使用温度における材料の許容引張応力	MPa
		設計•建設規格 付録材料図表 Part5 表5又は表 6 による。	
	t	胴に必要な厚さ	mm
	t ${ }_{1}$	胴の規格上必要な最小厚さ	mm
t	t 2	胴の計算上必要な厚さ	mm
	t s	胴の最小厚さ	mm
	t s o	胴の呼び厚さ	mm
θ	θ	円すいの頂角の 2 分の1	－

（2）形状の制限
（設計•建設規格 図 PVC－3111－1（d））

図 2－1 円すい形の胴の形状

設計•建設規格 図 PVC－3111－1（d）の形状にあつては $\theta \leqq 30^{\circ}$ であること。
（3）算式
円すい形の胴に必要な厚さは，次に掲げる値のうちいずれか大きい値とする。
a．規格上必要な最小厚さ ： $\mathrm{t}{ }_{1}$
炭素鋼鋼板又は低合金鋼鋼板で作られたものにあっては3mm，その他の材料で作られた
ものにあっては 1.5 mm とする。
b．内面に圧力を受ける胴
（a）設計•建設規格 図 PVC－3111－1（d）の形状にあっては，次の式による値とする。 イ．円すい部：t 2

$$
\mathrm{t}_{2}=\frac{\mathrm{P} \cdot \mathrm{D} \mathrm{o}}{2 \cdot \cos \theta \cdot(\mathrm{~S} \cdot \eta-0.6 \cdot \mathrm{P})}
$$

（4）評価
胴の最小厚さ（ t s ）ミ胴に必要な厚さ（ t ）ならば十分である。
2.4 容器の胴の補強を要しない穴の最大径の計算

重大事故等クラス 2 容器については，設計•建設規格 PVC－3150（2）を適用する。
（1）記号の説明

設計•建設規格の記号	計算書の表示	表示内容	単位
D	D	穴の中心における胴の外径	mm
	d r_{1}	補強を要しない穴の最大径（だ円穴の場合は長径）	mm
d	d r 2	補強を要しない穴の最大径（だ円穴の場合は長径）	mm
K	K	係数 ただしK $\mathrm{K} \leqq 0.99$	－
S	S	内圧時の最高使用温度における材料の許容引張応力 設計•建設規格 付録材料図表 Part5 表5又は表 6 による。	MPa
t s	t s	胴の最小厚さ	mm
η	η	穴が長手継手を通る場合はその継手の効率， その他の場合は 1.00	－

（2）算式
胴の補強を要しない穴の最大径は，次の a 項及びb 項で計算した値のうちいずれか大きい方の値とする。
a．穴の径が 61 mm 以下で，かつ，次の式により計算した値以下の穴

$$
\mathrm{d}_{\mathrm{r} 1}=\frac{\mathrm{D}-2 \cdot \mathrm{t}_{\mathrm{s}}}{4}
$$

b．穴の径が 200 mm 以下で，かつ，クラス 2 容器は設計•建設規格 図 PVC－3150－1 及び PVC－3150－2 により求めた値以下の穴

$$
\mathrm{d}_{\mathrm{r} 2}=8.05 \cdot \sqrt[3]{\mathrm{D} \cdot \mathrm{t}_{\mathrm{s}} \cdot(1-\mathrm{K})}
$$

Kは，次の式により計算した値で，K＞ K .99 のときは， $\mathrm{K}=0.99$ とする。
（a）円筒形の場合

$$
\mathrm{K}=\frac{\mathrm{P} \cdot \mathrm{D}}{1.82 \cdot \mathrm{~S} \cdot \eta^{\prime} \cdot \mathrm{t}_{\mathrm{s}}}
$$

（3）評価
穴の径＞補強を要しない穴の最大径となる穴を判別する。
穴の補強が不要な場合は，穴の補強計算を行わない。
2.5 全半球形鏡板の計算

重大事故等クラス 2 容器については設計•建設規格 PVC－3210（2），PVC－3220 及び PVC－ 3223 （1）を適用する。
（1）フランジ部を有する場合
a．記号の説明

設計•建設規格の記号	計算書の表示	表示内容	単位
D i	D i	鏡板が取り付けられる胴の内径	mm
R	R	鏡板の内半径	mm
S	S	内圧時（中低面に圧力を受けるとき）の最高使用温度における材料の許容引張応力 設計•建設規格 付録材料図表 Part5 表5又は表 6 による。	MPa
	t	鏡板に必要な厚さ	mm
t	t_{1}	鏡板のフランジ部の計算上必要な厚さ	mm
t	t_{2}	鏡板の計算上必要な厚さ	mm
	t ${ }_{\text {c }}$	鏡板の最小厚さ	mm
	t co	鏡板の呼び厚さ	mm

b．形状
全半球形であること。

図 2－2 全半球形鏡板の形状

C．算式
全半球形鏡板に必要な厚さは，次に掲げる値のうちいずれか大きい値とする。
（a）中低面に圧力を受ける鏡板： t_{1} ， t_{2}
イ．フランジ部：t 1

$$
\mathrm{t}_{1}=\frac{\mathrm{P} \cdot \mathrm{D}_{\mathrm{i}}}{2 \cdot \mathrm{~S} \cdot \eta-1.2 \cdot \mathrm{P}}
$$

ロ．鏡板： t_{2}

$$
\mathrm{t}_{2}=\frac{\mathrm{P} \cdot \mathrm{R}}{2 \cdot \mathrm{~S} \cdot \eta-0.2 \cdot \mathrm{P}}
$$

d．評価
鏡板の最小厚さ（ t c ）ミ鏡板に必要な厚さ（ t ）ならば十分である。
（2）フランジ部を有しない場合
a．記号の説明

設計•建設規格の記号	計算書の表示	表示内容	単位
R	R	鏡板の内半径	mm
S	S	内圧時（中低面に圧力を受けるとき）の最高使用温度における材料の許容引張応力 設計•建設規格 付録材料図表 Part5 表5又は表 6 による。	MPa
t	t	鏡板に必要な厚さ	mm
	t ${ }_{1}$	鏡板の計算上必要な厚さ	mm
	t c	鏡板の最小厚さ	mm
	too	鏡板の呼び厚さ	mm

b．形状
全半球形であること。

図 2－3 全半球形鏡板の形状
c．算式
中低面に圧力を受ける全半球形鏡板に必要な厚さ $\mathrm{t}{ }_{1}$ は，次に掲げる値とする。

$$
\mathrm{t}_{1}=\frac{\mathrm{P} \cdot \mathrm{R}}{2 \cdot \mathrm{~S} \cdot \eta-0.2 \cdot \mathrm{P}}
$$

d．評価
鏡板の最小厚さ（ t c） 鏡板に必要な厚さ（ t ）ならば十分である。
2.6 半だ円形鏡板の計算

重大事故等クラス 2 容器については設計•建設規格 PVC－3210（3），PVC－3220 及びPVC－3225 を適用する。
（1）記号の説明

設計•建設 規格の記号	計算書の表示	表示内容	単位
D i	D i	鏡板が取り付けられる胴の内径	mm
D	D i L	鏡板の内面における長径	mm
h	h	鏡板の内面における短径の 2 分の 1	mm
K	K	半だ円形鏡板の形状による係数	－
S	S	内圧時（中低面に圧力を受けるとき）の最高使用温度における材料の許容引張応力 設計•建設規格 付録材料図表 Part5 表5又は表 6 による。	MPa
	t	鏡板に必要な厚さ	mm
t	t_{1}	鏡板のフランジ部の計算上必要な厚さ	mm
t	t 2	鏡板の計算上必要な厚さ	mm
	t ${ }_{\text {c }}$	鏡板の最小厚さ	mm
	t co	鏡板の呼び厚さ	mm

（2）形状

$$
\frac{\mathrm{D}_{\mathrm{i} \mathrm{~L}}}{2 \cdot \mathrm{~h}} \leqq 2 \text { であること。 }
$$

図 2－4 半だ円形鏡板の形状
（3）算式
半だ円形鏡板に必要な厚さは，次に掲げる値のうちいずれか大きい値とする。
a．中低面に圧力を受ける鏡板： t_{1} ， t_{2}
（a）フランジ部：t ${ }_{1}$

$$
\mathrm{t}_{1}=\frac{\mathrm{P} \cdot \mathrm{D}_{\mathrm{i}}}{2 \cdot \mathrm{~S} \cdot \eta-1.2 \cdot \mathrm{P}}
$$

（b）鏡板： t_{2}

$$
\begin{aligned}
& \mathrm{t}_{2}=\frac{\mathrm{P} \cdot \mathrm{D}_{\mathrm{i} \mathrm{~L}} \cdot \mathrm{~K}}{2 \cdot \mathrm{~S} \cdot \eta-0.2 \cdot \mathrm{P}} \\
& \text { ただし, } \mathrm{K}=\frac{1}{6} \cdot\left\{2+\left(\frac{\mathrm{D}_{\mathrm{i} \mathrm{~L}}}{2 \cdot \mathrm{~h}}\right)^{2}\right\}
\end{aligned}
$$

（4）評価
鏡板の最小厚さ（ t c ）ミ鏡板に必要な厚さ（ t ）ならば十分である。
2.7 容器の鏡板の補強を要しない穴の最大径の計算

重大事故等クラス 2 容器については設計•建設規格 PVC－3230（2）を適用する。
（1）記号の説明

設計•建設規格の記号	計算書の表示	表示内容	単位
D	D	鏡板のフランジ部の外径。ただし円すい形鏡板にあ っては，円すいの部分がすその丸みの部分に接続す る部分の軸に垂直な断面の外径	mm
d	$\mathrm{d}_{\mathrm{r}} 1$	補強を要しない穴の最大径（だ円穴の場合は長径）	mm
	d r 2	補強を要しない穴の最大径（だ円穴の場合は長径）	mm
K	K	係数 ただしK 00.99	－
S	S	内圧時（中低面に圧力を受けるとき）の最高使用温度における材料の許容引張応力 設計•建設規格 付録材料図表 Part5 表5 又は表 6 による。	MPa
t s	t c	鏡板の最小厚さ	mm
η	η	穴が継手を通る場合はその継手の効率。その他の場合は1．00	－

（2）算式
鏡板の補強を要しない穴の最大径は，次のa項及び b 項で計算した値のうちいずれか大 きい方の値とする。
a．穴の径が 61 mm 以下で，かつ，次の式により計算した値以下の穴

$$
\mathrm{d}_{\mathrm{r} 1}=\frac{\mathrm{D}-2 \cdot \mathrm{t}_{\mathrm{c}}}{4}
$$

b．穴の径が 200 mm 以下で，かつ，設計•建設規格 図 PVC－3150－1 及び図 PVC－3150－2 に より求めた値以下の穴

$$
\mathrm{d}_{\mathrm{r} 2}=8.05 \cdot \sqrt[3]{\mathrm{D} \cdot \mathrm{t}_{\mathrm{c}} \cdot(1-\mathrm{K})}
$$

Kは，次の式により計算した値で，K＞0． 99 のときは， $\mathrm{K}=0.99$ とする。
（a）さら形鏡板及び半だ円形鏡板の場合

$$
\mathrm{K}=\frac{\mathrm{P} \cdot \mathrm{D}}{1.82 \cdot \mathrm{~S} \cdot \eta^{\prime} \cdot \mathrm{t}_{\mathrm{c}}}
$$

（b）全半球鏡板の場合

$$
\mathrm{K}=\frac{\mathrm{P} \cdot \mathrm{D}}{3.64 \cdot \mathrm{~S} \cdot \eta^{\prime} \cdot \mathrm{t}_{\mathrm{c}}}
$$

（3）評価
穴の径＞補強を要しない穴の最大径となる穴を判別する。
穴の補強が不要な場合は，穴の補強計算を行わない。

2.8 円形平板の計算

重大事故等クラス 2 容器については告示第 5 O 1 号第 34 条第 1 項及び第 2 項又は設計•建設規格 PVC－3310 及び PVC－3320 を適用する。
（1）記号の説明

告示第501号，設計•建設規格， J I S の記号	計算書の表示	表示内容	単位
A_{b}	A_{b}	実際に使用するボルトの総有効断面積	mm^{2}
A_{m}	A_{m}	ボルトの総有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{m} 1}$	$\mathrm{A}_{\mathrm{m} 1}$	使用状態でのボルトの総有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{m} 2}$	$\mathrm{A}_{\mathrm{m} 2}$	ガスケット締付時のボルトの総有効断面積	mm^{2}
b	b	ガスケット座の有効幅	mm
b 。	b 。	ガスケット座の基本幅（J I S B 8 843 附属書 2 表1又はJIS B 8 265 附属書 3表3による。）	mm
C	C	ボルト穴の中心円の直径	mm
d，G	d	クラス 2 容器は告示第 501 号第 34 条第 1 項に記載される表，設計•建設規格 表 PVC－3310－1 に規定する方法によって測った平板の径又は最小内のり （ガスケットの場合 $\mathrm{d}=\mathrm{G}$ ）	mm
d_{b}	d_{b}	ボルトのねじ部の谷の径と軸部の径の最小部のいず れか小さい方の径	mm
	d_{h}	平板の断面に現れる穴の径 （だ円穴の場合は長径）	mm
Dg	Dg	セルフシールガスケットの外径	mm
F	F	全体のボルトに作用する力	N
G	G	ガスケット反力円の直径	mm
	G s	ガスケット接触面の外径	mm
H	H	内圧によってフランジに加わる全荷重	N
h_{G}	h_{G}	ボルト穴の中心円から H_{G} 作用点までの半径方向の距離	mm
hg_{g}	h g	モーメントアームでボルトのピッチ円の直径と d と の差の 2 分の 1	mm
K	K	平板の厚さ計算における取付け方法による係数	－
l	l	フランジ部の長さ	mm

告示第 5 0 1 号，設計•建設規格， J I S の記号	計算書の表示	表示内容	単位
m N	m N	ガスケット係数（J I S B 8 243 附属書2表2又はJIS B 8 2 65 附属書 3 表2 による。） ガスケットの接触面の幅（J I S B 8 243 附属書2表1又はJIS B 8 265 附属書3表3による。）	mm
n	n	ボルトの本数	－
P	P	最高使用圧力又は外面に受ける最高の圧力	MPa
r	r	すみの丸みの内半径	mm
S	S	内圧時の最高使用温度における材料の許容引張応力告示第 5 0 1 号 別表第 6 又は別表第 7 又は設計•建設規格 付録材料図表 Part5 表5 又は表6に よる。	MPa
σ a	S a	常温におけるボルト材料の許容引張応力 告示第501号 別表第8又は設計•建設規格 付録材料図表 Part5 表 7 による。	MPa
σ b	S_{b}	最高使用温度におけるボルト材料の許容引張応力告示第501号 別表第8又は設計•建設規格 付録材料図表 Part5 表7による。	MPa
t	t	平板の計算上必要な厚さ	mm
t c	t c	平板のすみ肉ののど厚	mm
t_{f}	t_{f}	平板のフランジ部の厚さ	mm
t_{n}	t_{n}	ガスケット溝を考慮した平板の厚さ	mm
	$t_{\text {p }}$	平板の最小厚さ	mm
	t po	平板の呼び厚さ	mm
t s	t s	胴又は管の最小厚さ	mm
t r	ts r	胴又は管の継目がない場合の計算上必要な厚さ	mm
t i	t i	平板ののど厚。告示第501号第34条第1項の表 による。	mm
t w	t w	告示第501号第34条第1項の表又は設計•建設規格 表 PVC－3310－1 による。	mm
t w 1	t w 1	設計•建設規格 表 PVC－3310－1 による。	mm
t w 2	t w 2	設計•建設規格 表 PVC－3310－1 による。	mm

	告示第 5 0 1 号，設計•建設規格， J I S の記号	計算書の表示	表示内容	単位
	W	W	パッキンの外径又は平板の接触面の外径内の面積に作用する全圧力	N
	W_{g}	W_{g}	ガスケット締付時のボルト荷重	N
	W m_{1}	W m_{1}	使用状態での必要な最小ボルト荷重	N
	$\mathrm{W}_{\mathrm{m} 2}$	$\mathrm{W}_{\mathrm{m} 2}$	ガスケット締付時に必要な最小ボルト荷重	N
	W	W 。	使用状態でのボルト荷重	N
	y	y	ガスケットの最小設計締付圧力（ J I S B 8 2 43 附属書2 表2 又はJ I S B 8 265附属書3表2による。）	$\mathrm{N} / \mathrm{mm}^{2}$
	π	π	円周率	－
		σ_{p}	平板に作用する力によって生じる応力	MPa
$\stackrel{\square}{\sim}$		ガスケット 座面の形状	ガスケット座面の形状（J I S B 8 243 附属書2 表1又はJIS B 8 265 附属書 3表3による。）	－

（2）形状の制限

	取付け方法	形状の制限
（ a ）		無し。
（ b ）		$\begin{aligned} & \mathrm{d} \leqq 600 \mathrm{~mm}, \\ & \mathrm{t}_{\mathrm{p} \text { o }} \geqq \mathrm{d} / 20 \text { であること。 } \end{aligned}$
（ c ）		$\begin{aligned} & \mathrm{d} \leqq 600 \mathrm{~mm}, \\ & \mathrm{t}_{\mathrm{p} o} \geqq \mathrm{~d} / 20 \text { であること。 } \end{aligned}$
（ d）		$\mathrm{r} \geqq 3 \cdot \mathrm{t}_{\mathrm{f}}$ であること。
（ e）		$\begin{aligned} & \mathrm{d} \leqq 600 \mathrm{~mm}, \\ & \mathrm{t}_{\mathrm{po}} \geqq \mathrm{~d} / 20, \\ & \mathrm{r} \geqq 3 \cdot \mathrm{t}_{\mathrm{f}} \text { であること。 } \end{aligned}$

(f)
O 2 (1) VI-3-2-8 R 1
(i)
b．設計•建設規格（PVC－3310）

	取付け方法	形状の制限
（ a ）		無し。
（ b ）		$\begin{aligned} & \mathrm{d} \leqq 600 \mathrm{~mm}, \\ & \mathrm{~d} / 4>\mathrm{t}_{\mathrm{poo}} \geqq \mathrm{~d} / 20 \text { かつ, } \\ & \mathrm{r} \geqq \mathrm{t}_{\mathrm{f}} / 4 \text { であること。 } \end{aligned}$
（ c ）		$\begin{aligned} & \mathrm{t}_{\mathrm{f}} \geqq 2 \cdot \mathrm{t}_{\mathrm{s}} \text { かつ, } \\ & \mathrm{r} \geqq 3 \cdot \mathrm{t}_{\mathrm{f}} \text { であること。 } \end{aligned}$
（d）		$\begin{aligned} & \mathrm{t}_{\mathrm{f}} \geqq \mathrm{t}_{\mathrm{s}} \text { かつ, } \\ & \mathrm{r} \geqq 1.5 \cdot \mathrm{t}_{\mathrm{f}} \text { であること。 } \end{aligned}$
（ e ）	溶接部中心	$\mathrm{r} \geqq 3 \cdot \mathrm{t}_{\mathrm{f}}$ であること。

		取付け方法	形状の制限
	（ f ）		$0.8 \cdot \mathrm{~S} \geqq \sigma_{\mathrm{p}}$ であること。
$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \infty \\ & \stackrel{1}{2} \\ & \stackrel{\sim}{p} \\ & \stackrel{1}{2} \end{aligned}$	（g）		$0.8 \cdot \mathrm{~S}_{\mathrm{b}} \geqq \sigma_{\mathrm{p}}$ であること。
\ominus \sim 0	（h）		$\begin{aligned} & \mathrm{t}_{\mathrm{w}} \geqq 2 \cdot \mathrm{t}_{\mathrm{s} \mathrm{r}} \text { から, } \\ & \mathrm{t}_{\mathrm{w}} \geqq 1.25 \cdot \mathrm{t}_{\mathrm{s}} \text { であること。 } \end{aligned}$
	（ i ）	$\begin{gathered} \mathrm{tw}_{1}+\mathrm{t} \mathrm{w}_{2} \geqq 2 \cdot \mathrm{ts} \\ \mathrm{t}_{\mathrm{w} 1} \geqq \mathrm{ts} \end{gathered}$	$\begin{aligned} & \mathrm{t}_{\mathrm{w} 1}+\mathrm{t}_{\mathrm{w} 2} \geqq 2 \cdot \mathrm{t}_{\mathrm{s}}, \\ & \mathrm{t}_{\mathrm{w} 1} \geqq \mathrm{t}_{\mathrm{s}} \text { かつ, } \\ & \mathrm{t}_{\mathrm{s}} \geqq 1.25 \cdot \mathrm{t}_{\mathrm{s} \mathrm{r}} \text { であること。 } \end{aligned}$

O 2 (1) VI-3-2-8 R 1				
®	区	-	$\stackrel{\Xi}{\Xi}$	
				年

（3）算式
平板の計算上必要な厚さは，次の式による値とする。
a．告示第 5 0 1号
（a）平板に穴がない場合

$$
\mathrm{t}=\mathrm{d} \cdot \sqrt{\frac{\mathrm{~K} \cdot \mathrm{P}}{\mathrm{~S}}}
$$

Kの値は以下による。

取付け方法	Kの値
第34条 第1項	Kの值
（ a ）	
（ b ）	0.20
（ c ）	
（ d ）	0
（ e ）	0.25
（ f ）	0． 30
（g）	0.30
（ h ）	
（ i ）	0.50
（ j ）	
（k）	$0.30+\frac{1.4 \cdot \mathrm{~F} \cdot \mathrm{~h}_{\mathrm{g}}}{\mathrm{~W} \cdot \mathrm{~d}} *$
（ ${ }^{\text {）}}$	0.75

注記＊：4 項「フランジの強度計算」における記号との対応は次のとおり。 F は W_{o} と W_{g} のいずれか大きい方， h_{g} は h_{G} ， W は H ， d は G （セルフシール ガスケットを用いる場合は D_{g} ）とする。
（b）平板に穴を設ける場合であつて，穴の径（ d_{h} ）が d の 2 分の 1 以下で容器の胴の穴の補強に準じて補強するものの計算上必要な厚さは，次の式による値とする。

$$
\mathrm{t}=\mathrm{d} \cdot \sqrt{\frac{\mathrm{~K} \cdot \mathrm{P}}{\mathrm{~S}}}
$$

この場合において，平板の補強に用いる必要厚さ（ t pr ）は t とし，かつ，補強に有効な面積は，補強に必要な面積の 2 分の 1 以上とする。
（c）平板に穴を設ける場合であって，穴の径（ d_{h} ）が d の 2 分の 1 以下で（b）項以外のも のの計算上必要な厚さは，次の式による値とする。

$$
\mathrm{t}=\mathrm{d} \cdot \sqrt{\frac{2 \cdot \mathrm{~K} \cdot \mathrm{P}}{\mathrm{~S}}}
$$

ただし，平板の取付け方法が，（k）の場合を除き，Kの値が 0.375 を超えるときは その値を 0.375 とする。
（d）平板に穴を設ける場合であって，穴の径（ d_{h} ）が d の 2 分の 1 を超えるものの計算上必要な厚さは，次の式による値とする。

$$
\mathrm{t}=\mathrm{d} \cdot \sqrt{\frac{2.25 \cdot \mathrm{~K} \cdot \mathrm{P}}{\mathrm{~S}}}
$$

b．設計•建設規格
（a）平板に穴がない場合
$\mathrm{t}=\mathrm{d} \cdot \sqrt{\frac{\mathrm{K} \cdot \mathrm{P}}{\mathrm{S}}}$
Kの値は以下による。

取付け方法	Kの値
（ a ）	0.17
（ b ）	0.13
（ c ）	0.17
（ d ）	$\begin{aligned} & \operatorname{Max}(0.2, \quad 0.33 \cdot \mathrm{~m}) \\ & \text { 乙こで, } \quad \mathrm{m}=\mathrm{t}_{\mathrm{sr}} / \mathrm{t}_{\mathrm{s}} \end{aligned}$
（ e ）	$\begin{aligned} & 0.17 \\ & 0.10^{* 1} \end{aligned}$
（ f ）	0.20
（g）	
（ h ）	$\begin{aligned} & \text { Max }(0.2,0.33 \cdot \mathrm{~m}) \\ & \text { ここで, } \mathrm{m}=\mathrm{t}_{\mathrm{s} \text { r }} / \mathrm{t}_{\mathrm{s}} \end{aligned}$
（ i ）	0.33
（ j ）（1）	$\begin{aligned} & \operatorname{Max}(0.2,0.33 \cdot \mathrm{~m}) \\ & \text { ここで, } \mathrm{m}=\mathrm{t}_{\mathrm{sr}} / \mathrm{t}_{\mathrm{s}} \end{aligned}$
（ j ）（2）	
（ k ）	
（e）	
（m）	$\begin{aligned} & 0.20+\frac{1.0 \cdot \mathrm{~F} \cdot \mathrm{~h}_{\mathrm{g}}}{\mathrm{~W} \cdot \mathrm{~d}} \\ & \text { ただし, } \mathrm{t}_{\mathrm{n}} \text { の厚さにあっては } \frac{1.0 \cdot \mathrm{~F} \cdot \mathrm{~h}_{\mathrm{g}}}{\mathrm{~W} \cdot \mathrm{~d}} * 2 \end{aligned}$
（ n ）	0.50

注記＊1 ：取付け方法（e）において $\mathrm{t} \mathrm{f}_{\mathrm{f}}$ から $\mathrm{t} \mathrm{s}_{\mathrm{s}}$ へ移行するテーパが 1 対 4 又はそれより緩やかであり，かつ，以下の（1）又は（2）いずれかの場合，K＝0．10とする。
（1）$\quad l \geqq\left(1.1-0.8 \cdot \frac{\mathrm{ts}^{2}}{\mathrm{tf}^{2}}\right) \cdot \sqrt{\mathrm{d} \cdot \mathrm{t}_{\mathrm{f}}}$ の場合
（2） t_{s} が $2 \cdot \sqrt{\mathrm{~d} \cdot \mathrm{t}_{\mathrm{s}}}$ 以上の長さにわたつて

$$
\mathrm{t}_{\mathrm{s}} \geqq 1.12 \cdot \mathrm{t}_{\mathrm{f}} \cdot \sqrt{1.1-\ell / \sqrt{\mathrm{d} \cdot \mathrm{t}_{\mathrm{f}}}} \text { の場合 }
$$

＊2：4 項「フランジの強度計算」における記号との対応は次のとおり。
Fは W_{o} と W_{g} のいずれか大きい方， h_{g} は h_{G} ， W は H ， d は G （セルフシー ルガスケットを用いる場合は D_{g} ）とする。
（b）平板に穴を設ける場合であって，穴の径（ d_{h} ）が d の 2 分の 1 以下で容器の胴の穴 の補強に準じて補強するものの計算上必要な厚さは，次の式による値とする。

$$
\mathrm{t}=\mathrm{d} \cdot \sqrt{\frac{\mathrm{~K} \cdot \mathrm{P}}{\mathrm{~S}}}
$$

この場合において，平板の補強に用いる必要厚さ（ t р r ）は t とし，かつ，補強に有効な面積は，補強に必要な面積の 2 分の 1 以上とする。
（c）平板に穴を設ける場合であって，穴の径（ d_{h} ）が d の 2 分の 1 以下で（b）項以外のも のの計算上必要な厚さは，次の式による値とする。

$$
\mathrm{t}=\mathrm{d} \cdot \sqrt{\frac{2 \cdot \mathrm{~K} \cdot \mathrm{P}}{\mathrm{~S}}}
$$

ただし，平板の取付け方法が，（m）の場合を除き，Kの値が 0.375 を超えるときは その値を 0.375 とする。
（d）平板に穴を設ける場合であって，穴の径（ d_{h} ）が d の 2 分の 1 を超えるものの計算上必要な厚さは，次の式による値とする。

$$
\mathrm{t}=\mathrm{d} \cdot \sqrt{\frac{2.25 \cdot \mathrm{~K} \cdot \mathrm{P}}{\mathrm{~S}}}
$$

（4）評価
平板の最小厚さ $\left(t_{p}\right) \geqq$ 平板の計算上必要な厚さ（ t$)$ ならば十分である。

2.9 だ円形マンホール平板の計算

重大事故等クラス 2 容器については J I S B 8 2 0 1 6．6．8項 マンホールカバーの最小厚さを適用する。
（1）記号の説明

（2）算式
だ円形マンホール平板の計算上必要な厚さは次に掲げる値のらちいずれか大きい値とす る。
a．平板の計算上必要な厚さ：t ${ }_{1}$

$$
\mathrm{t}_{1}=\frac{5 \cdot \mathrm{~b}}{\mathrm{c}} \cdot \sqrt{\frac{\mathrm{P}}{\sigma_{\mathrm{a}}}}+\alpha
$$

b．規格上必要な最小厚さ：t 2
平板の中央部の厚さは 14 mm 以下としてはならない。
（3）評価
マンホール平板の最小厚さ（ t_{p} ）ミマンホール平板に必要な厚さ（ t ）ならば十分であ る。
2.10 容器の管板の計算

重大事故等クラス 2 容器については設計•建設規格 PVC－3510を適用する。
（1）記号の説明

設計•建設規格の記号	計算書の表示	表示内容	単位
A	A	管板に取り付けられる任意の管の中心が囲む面積	mm^{2}
D	D	パッキンの中心円の径（胴と一体となった管板にあ っては，胴の内径）	mm
	d_{t}	管の外径	mm
F	F	管及び管板の支え方による係数	－
L	L	面積Aの周のうち穴の径以外の部分の長さ	mm
P	P	計算上必要な厚さが大きい値の方の最高使用圧力	MPa
	P_{t}	管穴の中心間の距離	mm
S	S	最高使用温度における材料の許容引張応力 設計•建設規格 付録材料図表 Part5 表5 又は表 6 による。	MPa
	t	管板に必要な厚さ	mm
t	t_{1}	管板の計算上必要な厚さ	mm
t	t 2	管板の計算上必要な厚さ	mm
	t_{b}	管板の最小厚さ	mm
	t b o	管板の呼び厚さ	mm
	t s	胴と管板が一体となっている場合の胴の最小厚さ	mm
	Z	管穴の中心間に必要な距離	mm
	伝熱管の形式直管		
		同左	－
	U 字管	同左	－
	管板の支え方		
	管側胴と体でない。	同左	－
		同左	－
	体である。 胴側胴と一		
		同左	－
	体でない。		
	胴側胴と一	同左	－

（2）形状の制限

$$
\mathrm{P}_{\mathrm{t}} \geqq \mathrm{z}, \quad \mathrm{z}=\mathrm{d}_{\mathrm{t}}+0.25 \cdot \mathrm{~d}_{\mathrm{t}} \text { であること。 }
$$

（3）算式
管板の計算上必要な厚さは，次の式により計算したいずれか大きい方の値（ 10 mm 未満の場合は 10 mm ）とする。

$$
\begin{aligned}
& \mathrm{t}_{1}=\frac{\mathrm{F} \cdot \mathrm{D}}{2} \cdot \sqrt{\frac{\mathrm{P}}{\mathrm{~S}}} \\
& \mathrm{t}_{2}=\frac{\mathrm{P}}{0.85 \cdot \mathrm{~S}} \cdot\left(\frac{\mathrm{~A}}{\mathrm{~L}}\right)_{\text {Max }}
\end{aligned}
$$

ここで $\left(\frac{\mathrm{A}}{\mathrm{L}}\right)_{\text {Max }}$ は $\left(\frac{\mathrm{A}}{\mathrm{L}}\right)$ の最大値であり，通常一番外側の管穴の中心を順次結んで得られる多角形が最大値となる。

以下にA及びLの取り方の例を示す。
Aは，一番外側の管穴の中心を順次結んで得られる多角形の面積（図 2－5 参照）
Lは，一番外側の管穴の中心を順次結んで得られる多角形の外周の長さから外周上の管穴の直径の合計を差し引いた長さ

（A）部詳細図

図 2－5 管板の計算に用いる多角形

なお，計算は管側と胴側各々の条件に対して行い，計算上必要な厚さが大きい側の結果 を強度計算書に記載する。
（4）評価
管板の最小厚さ（ $\mathrm{t} \mathrm{b}_{\mathrm{b}}$ ）ミ管板に必要な厚さ（ t ）ならば十分である。

2． 11 容器の管台の計算
重大事故等クラス 2 容器については設計•建設規格 PVC－3610を適用する。
（1）記号の説明

	設計•建設規格の記号	計算書の表示	表示内容	単位
	B	B	設計•建設規格 付録材料図表 Part7 図 1～20 よ り求めた値（Bを求める際に使用した板の厚さは繰返し計算により最終的に t_{2} となる。）	－
	$\begin{gathered} \mathrm{D} \text { 。 } \\ \mathrm{S} \end{gathered}$	$\begin{gathered} \mathrm{D}_{\circ} \\ \mathrm{S}\left[\mathrm{~S}_{1}\right]^{* 1} \end{gathered}$	管台の外径＊2 内圧時の最高使用温度における材料の許容引張応力設計•建設規格 付録材料図表 Part5 表5又は表 6 による。	mm MPa
	S	S_{2}	外圧時の最高使用温度における材料の許容引張応力設計•建設規格 付録材料図表 Part5 表 5 又は表 6 による。	MPa
$\stackrel{\sim}{\sim}$		t	管台に必要な厚さ	mm
∞	t	t_{1}	管台の計算上必要な厚さ	mm
a $\substack{1 \\ 1}$	t	t 2	管台の計算上必要な厚さ	mm
$\stackrel{1}{5}$		t 3	管台の規格上必要な最小厚さ	mm
Θ		$\begin{gathered} \mathrm{t}_{\mathrm{n}} \\ \mathrm{t}_{\mathrm{no}} \end{gathered}$	管台の最小厚さ 管台の呼び厚さ＊2	mm mm
$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	注記＊1 ：S［ $\left.\mathrm{S}_{1}\right]$ は内圧時の計算のみの場合は S を，内圧時及び外圧時の計算の場			
	合は l_{1} を用いる。			
	なお， $\mathrm{S}_{1}=\mathrm{S}_{2}$ の場合は， S_{2} を S_{1} と置き換える			
	＊2：管台の外径及び呼び厚さは，下図参照。			

注：本図は，管台の外径及び呼び厚さの寸法を説明するものであり，管台の取付け形式を示すものではない。
（2）算式
管台に必要な厚さは，次に掲げる値のうちいずれか大きい値とする。
a．内面に圧力を受ける管台： t_{1}

$$
\mathrm{t}_{1}=\frac{\mathrm{P} \cdot \mathrm{D}_{\mathrm{o}}}{2 \cdot \mathrm{~S} \cdot \eta+0.8 \cdot \mathrm{P}}
$$

b．外面に圧力を受ける管台： t_{2}
設計•建設規格 図 PVC－3610－1 より P_{e} ， S_{2} に対して求めた厚さ。ただし，図より求 められない場合は次の式による値とする。

$$
\mathrm{t}_{2}=\frac{3 \cdot \mathrm{Pe} \cdot \mathrm{D}_{\mathrm{o}}}{4 \cdot \mathrm{~B}}
$$

c．規格上必要な最小厚さ：t 3
炭素鋼鋼管を使用する管台にあっては，管台の外径に応じて設計•建設規格 表 PVC－ 3610－1 より求めた管台の厚さとする。
（3）評価
管台の最小厚さ（ t_{n} ）ミ管台に必要な厚さ（ t ）ならば十分である。
2.12 容器の管台の補強を要しない穴の最大径の計算

管台を胴と見なし，2．4項「容器の胴の補強を要しない穴の最大径の計算」を使用する。

2． 13 内面に圧力を受ける円すい形の胴と円筒形の胴との接続による強め輪の計算
（1）大径端側について
重大事故等クラス 2 容器については設計•建設規格 PVC－3171，PVC－3172，PVC－3173（1）及び PVC－3173（3）を適用する。
a．記号の説明

	設計•建設規格の記号	計算書の表示	表示内容	単位
	A a	A a	強め輪に必要な断面積円すい形の胴と円筒形の胴との接続部からそれ ぞれの胴の厚さの中心に沿った距離	mm ${ }^{2}$ mm
$\stackrel{\square}{0}$	A e	A e	実際の強め輪の断面積	mm^{2}
∞		b e	強め輪の接続部から端部までの距離	mm
$\stackrel{1}{1}$		bed	強め輪の有効な長さで b e と a の小さい値	mm
$\stackrel{\Phi}{1}$	D o	D o	円すい形の胴の大径端に接続する円筒形の胴の内径	mm
N	S	S	最高使用温度における円すい形の胴材料の許容引張応力 設計•建設規格 付録材料図表 Part5 表5又 は表 6 による。	MPa
	t	t	円すい形の胴の厚さ	mm
	t^{\prime}	t^{\prime}	円すい形の胴と円筒形の胴との接続部における円筒形の胴の計算上必要な厚さ	mm
	t e	t e	tee 1 ， $\mathrm{te} \mathrm{e}_{2}$ のいずれか小さい値	mm
	t e	t e 1	円筒形の胴の余肉厚さ	mm
	t e	t e 2	円すい形の胴の余肉厚さ	mm
		t i	強め輪の厚さ	mm
	t o	t o	円すい形の胴の大径端に接続する円筒形の胴の厚さ	mm
	η	η	円すい形の胴の継手効率	－
	θ	θ	円すいの頂角の 2 分の1	。
	θ_{1}	θ_{1}	設計•建設規格 表 PVC－3172－1 より求めた角度	－

b．算式
（a）強め輪の要否の計算

$$
\begin{aligned}
& \theta_{1} \geqq \theta \text { であれば強め輪は不要である。 } \\
& \theta_{1}<\theta \text { であれば b 項の強め輪の計算を行う。 }
\end{aligned}
$$

（b）強め輪の計算
イ．強め輪に必要な断面積

$$
\mathrm{A}=\frac{\mathrm{P} \cdot \mathrm{Do}^{2}}{8 \cdot \mathrm{~S} \cdot \eta} \cdot\left(1-\frac{\theta_{1}}{\theta}\right) \cdot \tan \theta
$$

ロ．実際の強め輪の断面積

$$
\mathrm{Ae}=4 \cdot \mathrm{te} \cdot \sqrt{\frac{\mathrm{Do} \cdot \mathrm{too}}{2}}+2 \cdot \mathrm{bed} \cdot \mathrm{t}_{\mathrm{i}}
$$

ただし，胴の余肉のみで強め輪とする場合は，

$$
\mathrm{Ae}=4 \cdot \mathrm{te} \cdot \sqrt{\frac{\mathrm{Do} \cdot \mathrm{t} \mathrm{o}}{2}}
$$

ここで，
b ed $=\operatorname{Min}(\mathrm{a}, \mathrm{b}$ e）
$a=\sqrt{\frac{\mathrm{Do} \mathrm{\cdot t} \mathrm{o}}{2}}$
$\mathrm{te}=\operatorname{Min}\left(\mathrm{te}_{1}, \mathrm{te}_{2}\right)$
te ${ }_{1}=\mathrm{t}_{\mathrm{o}}-\mathrm{t}^{\prime}$
$\mathrm{te} 2=\mathrm{t}-\frac{\mathrm{t}^{\prime}}{\cos \theta}$
c．評価
強め輪の断面積（ A e ）\geqq 強め輪に必要な断面積（ A ）ならば十分である。
（2）小径端側
重大事故等クラス 2 容器については設計•建設規格 PVC－3171，PVC－3174，PVC－3175（1）及び PVC－3175（3）を適用する。
a．記号の説明

\begin{tabular}{|c|c|c|c|c|}
\hline \& 設計•建設規格の記号 \& 計算書の表示 \& 表示内容 \& 単位

\hline \& A
a \& A
a \& 強め輪に必要な断面積円すい形の胴と円筒形の胴との接続部からそれぞ れの胴の厚さの中心に沿った距離 \& mm ${ }^{2}$
mm

\hline \& A e \& A e \& 実際の強め輪の断面積 \& mm^{2}

\hline \& \& b e \& 強め輪の接続部から端部までの距離 \& mm

\hline \& \& bed \& 強め輪の有効な長さで b e と a の小さい値 \& mm

\hline \& D s \& D s \& 円すい形の胴の小径端に接続する円筒形の胴の内径 \& mm

\hline $\stackrel{\square}{2}$ \& m \& m \& m_{1} ， m_{2} のいずれか小さい値 \& －

\hline \& m \& m_{1} \& 円筒形の胴の余肉の割合 \& －

\hline \uparrow \& m \& m 2 \& 円すい形の胴の余肉の割合 \& －

\hline $\stackrel{P}{1}$ \& S \& S \& 最高使用温度における円すい形の胴材料の許容引 \& MPa

\hline \ominus

0 \& \& \& 設計•建設規格 付録材料図表 Part5 表5又は表6による。 \&

\hline \& t \& t \& 円すい形の胴の厚さ \& mm

\hline \& t^{\prime} \& t^{\prime} \& 円すい形の胴と円筒形の胴との接続部における円筒形の胴の計算上必要な厚さ \& mm

\hline \& \& t i \& 強め輪の厚さ \& mm

\hline \& t s \& t s \& 円すい形の胴の小径端に接続する円筒形の胴の厚
さ \& mm

\hline \& η \& η \& 円すい形の胴の継手効率 \& －

\hline \& θ \& θ \& 円すいの頂角の 2 分の 1 \& －

\hline \& θ_{2} \& $\theta 2$ \& 設計•建設規格 表 PVC－3174－1 より求めた角度 \& －

\hline
\end{tabular}

b．算式
（a）強め輪の要否の計算

$$
\begin{aligned}
& \theta_{2} \geqq \theta \text { であれば強め輪は不要である。 } \\
& \theta_{2}<\theta \text { であれば b 項の強め輪の計算を行う。 }
\end{aligned}
$$

（b）強め輪の計算
イ．強め輪に必要な断面積

$$
\mathrm{A}=\frac{\mathrm{P} \cdot \mathrm{D} \mathrm{~s}^{2}}{8 \cdot \mathrm{~S} \cdot \eta} \cdot\left(1-\frac{\theta_{2}}{\theta}\right) \cdot \tan \theta
$$

ロ．実際の強め輪の断面積

$$
A \mathrm{e}=\mathrm{m} \cdot \sqrt{\frac{\mathrm{Ds} \cdot \mathrm{t} \mathrm{~s}}{2}} \cdot\left\{\left(\mathrm{t}-\frac{\mathrm{t}^{\prime}}{\cos \theta}\right)+\left(\mathrm{ts}-\mathrm{t}^{\prime}\right)\right\}+2 \cdot \mathrm{bed} \cdot \mathrm{ti}
$$

ただし，胴の余肉のみで強め輪とする場合は，

$$
\mathrm{Ae}=\mathrm{m} \cdot \sqrt{\frac{\mathrm{Ds} \cdot \mathrm{t} \mathrm{~s}}{2}} \cdot\left\{\left(\mathrm{t}-\frac{\mathrm{t}^{\prime}}{\cos \theta}\right)+\left(\mathrm{ts}-\mathrm{t}^{\prime}\right)\right\}
$$

ここで，
b ed $=\operatorname{Min}(\mathrm{a}, \mathrm{b} e)$
$a=\sqrt{\frac{D \mathrm{~s} \cdot \mathrm{t} \mathrm{s}}{2}}$
$\mathrm{m}=\operatorname{Min}\left(\mathrm{m}_{1}, \quad \mathrm{~m}_{2}\right)$
$\mathrm{m}_{1}=\mathrm{ts}_{\mathrm{s}} \cdot \frac{\cos \left(\theta-\theta_{2}\right)}{\mathrm{t}^{\prime}}$
$\mathrm{m}_{2}=\mathrm{t} \cdot \frac{\cos \theta \cdot \cos \left(\theta-\theta_{2}\right)}{\mathrm{t}^{\prime}}$
c．評価
強め輪の断面積（ A e ）\geqq 強め輪に必要な断面積（ A ）ならば十分である。

2． 14 開放タンクの胴の計算
重大事故等クラス 2 容器については設計•建設規格 PVC－3920を適用する。
（1）記号の説明

設計•建設規格の記号	計算書の表示	表示内容	単位
D i	D_{i}	胴の内径	m
H	H	水頭＊	m
S	S	最高使用温度における材料の許容引張応力 設計•建設規格 付録材料図表 Part5 表5 又は表 6 による。	MPa
	t	胴に必要な厚さ	mm
	t ${ }_{1}$	胴の規格上必要な最小厚さ	mm
t	t 2	胴の計算上必要な厚さ	mm
	t 3	胴の内径に応じた必要厚さ	mm
	t s	胴の最小厚さ	mm
	t s o	胴の呼び厚さ	mm
ρ	ρ	液体の比重。ただし， 1.00 未満の場合は 1.00 とす る。	－

注記＊：開放タンクの水頭の取り方は，強度評価上は次のいずれかとする。
（1）タンク上部フランジ上端又はタンク胴板上端より底板内側まで
（2）底板に管台が取り付く場合は，第1溶接継手まで

なお，この水頭の取り方は，底板及び管台の計算で用いる水頭も同じである。
（2）算式
開放タンクの胴に必要な厚さは，次に掲げる値のうちいずれか大きい値とする。
a．規格上必要な最小厚さ：t 1
炭素鋼鋼板又は低合金鋼鋼板で作られた場合は 3 mm ，その他の材料で作られた場合は 1.5 mm とする。
b．胴の計算上必要な厚さ：t 2

$$
\mathrm{t}_{2}=\frac{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{H} \cdot \rho}{0.204 \cdot \mathrm{~S} \cdot \eta}
$$

c．胴の内径に応じた必要厚さ ：t 3
胴の内径が 5 m を超えるものについては，胴の内径の区分に応じ設計•建設規格 表 PVC－3920－1 より求めた胴の厚さとする。
（3）評価
胴の最小厚さ（ t s ）ミ胴に必要な厚さ（ t ）ならば十分である。

2． 15 開放タンクの底板の計算
重大事故等クラス 2 容器については設計•建設規格 PVC－3960及び PVC－3970を適用する。
（1）記号の説明

設計•建設規格の記号	計算書の表示	表示内容	単位
H	H	水頭	m
P	P	最高使用圧力	MPa
	t	底板の規格上必要な厚さ	mm
	t b	底板の最小厚さ	mm
	t bo	底板の呼び厚さ	mm
ρ	ρ	液体の比重。ただし， 1.00 未満の場合は 1.00 とす る。	－

下記（3）b 項の場合の記号の説明で上記以外の記号については，鏡板又は平板の項を参照の こと。ただし，鏡板の計算にあっては， t bを t c， t boを t c 。に読み替える。
（2）形状の制限次のいずれかであること。
a．平板
b．設計•建設規格 PVC－3210に規定されている鏡板
（3）算式
開放タンクの底板に必要な厚さは次によるものとする。
a．地面，基礎等に直接接触するものの厚さ：t
設計•建設規格 PVC－3970（1）により 6 mm 以上とする。
b．上記以外のものの底板に必要な厚さ ：t
設計•建設規格 PVC－3970（2）を適用する。
ここで，最高使用圧力 P は次の式による値とする。

$$
\mathrm{P}=9.80665 \times 10^{-3} \cdot \mathrm{H} \cdot \rho
$$

（a）鏡板
設計•建設規格 PVC－3970（2）より，設計•建設規格 PVC－3220を準用する。全半球形鏡板にあっては，2．5項「全半球形鏡板の計算」による厚さとする。半だ円形鏡板にあっては，2．6項「半だ円形鏡板の計算」による厚さとする。
（b）平板
設計•建設規格 PVC－3970（2）より，設計•建設規格 PVC－3310を準用する。 2.8 項「円形平板の計算」による厚さとする。
（4）評価
底板の最小厚さ（ t_{b} ）ミ底板に必要な厚さ（ t ）ならば十分である。

2． 16 開放タンクの管台の計算
重大事故等クラス 2 容器については設計•建設規格 PVC－3980を適用する。
（1）記号の説明

注記＊：管台の内径及び呼び厚さは，下図参照。

注：本図は，管台の内径及び呼び厚さの寸法を説明するものであり，管台の取付け形式を示すものではない。
（2）算式
開放タンクの管台に必要な厚さは，次に掲げる値のうちいずれか大きい値とする。
a．管台の計算上必要な厚さ：t 1

$$
\mathrm{t}_{1}=\frac{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{H} \cdot \rho}{0.204 \cdot \mathrm{~S} \cdot \eta}
$$

b．規格上必要な最小厚さ：t 2
管台の外径に応じ設計•建設規格 表 PVC－3980－1 より求めた管台の厚さとする。
（3）評価
管台の最小厚さ（ t_{n} ）ミ管台に必要な厚さ（ t ）ならば十分である。

2． 17 熱交換器の伝熱管の計算
重大事故等クラス 2 容器の熱交換器の伝熱管については設計•建設規格 PVC－3610（1）及び PVC－3610（2）を適用する。
（1）記号の説明

設計•建設規格の記号	計算書の表示	表示内容	単位
B	B	設計•建設規格 付属材料図表 Part7 図 1～図20 より求めた値（Bを求める際に使用した板の厚さは繰返し計算により最終的に t 2 となる。）	－
D 。	D 。	伝熱管の外径	mm
$\mathrm{P}_{\text {e }}$	$\mathrm{P}_{\text {e }}$	外面に受ける最高の圧力	MPa
S	S	最高使用温度における材料の許容引張応力 設計•建設規格 付録材料図表 Part5 表5 又は表 6 による。	MPa
	t	伝熱管に必要な厚さ	mm
t	t_{1}	内圧時の伝熱管の計算上必要な厚さ	mm
t	t 2	外圧時の伝熱管の計算上必要な厚さ	mm
	t ${ }_{\text {t }}$	伝熱管の最小厚さ	mm
	t t 。	伝熱管の呼び厚さ	mm

（2）算式
伝熱管に必要な厚さは，次に掲げる値のうちいずれか大きい値とする。
a．内面に圧力を受ける伝熱管：t ${ }_{1}$

$$
\mathrm{t}_{1}=\frac{\mathrm{P} \cdot \mathrm{D}_{\mathrm{o}}}{2 \cdot \mathrm{~S} \cdot \eta+0.8 \cdot \mathrm{P}}
$$

b．外面に圧力を受ける伝熱管：t 2
設計•建設規格 図 PVC－3610－1 より Pe及びSに対応して求めた厚さ。ただし，図よ り求められない場合は，次の式により計算した値とする。

$$
\mathrm{t}_{2}=\frac{3 \cdot \mathrm{P}_{\mathrm{e}} \cdot \mathrm{D}_{\mathrm{o}}}{4 \cdot \mathrm{~B}}
$$

（3）評価
伝熱管の最小厚さ（ t t）\geqq 伝熱管に必要な厚さ（ t ）ならば十分である。

3．穴の補強計算
3.1 記号の説明

設計•建設規格の記号	計算書の表示	表示内容	単位
A	A_{0}	補強に有効な総面積	mm^{2}
	A_{1}	胴，鏡板又は平板の部分の補強に有効な面積	mm^{2}
	A_{2}	管台の部分の補強に有効な面積	mm^{2}
	A_{3}	すみ肉溶接の部分の補強に有効な面積	mm^{2}
	A_{4}	強め板の部分の補強に有効な面積	mm^{2}
	$\mathrm{A}_{0 \mathrm{D}}$	$\mathrm{X}_{1} \neq \mathrm{X}_{2}$ の場合の片側断面についての補強に有効な総面積	mm^{2}
	$\mathrm{A}_{1 \mathrm{D}}$	$\mathrm{X}_{1} \neq \mathrm{X}_{2}$ の場合の片側断面についての胴，鏡板又は平板の部分の補強に有効な面積	mm^{2}
	$\mathrm{A}_{2 \mathrm{D}}$	$\mathrm{X}_{1} \neq \mathrm{X}_{2}$ の場合の片側断面についての管台の部分の補強に有効な面積	mm ${ }^{2}$
	$\mathrm{A}_{3 \mathrm{D}}$	$\mathrm{X}_{1} \neq \mathrm{X}_{2}$ の場合の片側断面についてのすみ肉溶接の部分の補強に有効な面積	mm^{2}
	$\mathrm{A}_{4} \mathrm{D}$	$\mathrm{X}_{1} \neq \mathrm{X}_{2}$ の場合の片側断面についての強め板の部分 の補強に有効な面積	mm^{2}
	$A_{j 0}$	大きい穴の補強に有効な総面積	mm^{2}
	$\mathrm{A}_{\mathrm{j} 1}$	大きい穴の胴，鏡板又は平板の部分の補強に有効な面積	mm^{2}
	$A_{j} 2$	大きい穴の管台の部分の補強に有効な面積	mm^{2}
	$\mathrm{A}_{\mathrm{j} 3}$	大きい穴のすみ肉溶接の部分の補強に有効な面積	mm^{2}
	$A_{j 4}$	大きい穴の強め板の部分の補強に有効な面積	mm^{2}
	$\mathrm{A}_{\mathrm{j} ~}^{\text {r }}$	大きい穴の補強に必要な面積	mm^{2}
$\mathrm{A}_{\text {r }}$	A_{r}	穴の補強に必要な面積	mm^{2}
	$\mathrm{A}_{\mathrm{r}}^{\mathrm{D}}$	片側断面についての穴の補強に必要な面積	mm^{2}
B	B	設計•建設規格 付録材料図表 Part7 図 1～図20	－
		より求めた値（Bを求める際に使用した板の厚さは繰返し計算により最終的に t n r となる。）	
	B e	強め板の外径	mm
d	d	胴又は鏡板の断面に現われる穴の径 平板の場合は設計•建設規格の表中に規定する方法 によって測った平板の径又は，最小内のり断面に現 われる穴の径	mm
	d_{h}	平板の断面に現われる穴の径	mm
	d_{j}	大きい穴の補強を要する限界径	mm
	d_{w}	管台の取り付く穴の径（完全溶込み溶接により溶接 された管台については， $\mathrm{d}_{\mathrm{w}}=\mathrm{D}_{\mathrm{on} \mathrm{n}}+\alpha$（ α はルート間隔の 2 倍），それ以外の管台については， $\mathrm{d}_{\mathrm{w}}=$ D on）	mm

設計•建設規格の記号	計算書の表示	表示内容	単位
ts	S w 3	突合せ溶接部の許容引張応力	MPa
	S w 4	管台壁の許容せん断応力	MPa
	t c	鏡板の最小厚さ	mm
ts r	t cr	穴の補強計算に用いる鏡板の計算上必要な厚さ	mm
	t e	強め板の最小厚さ	mm
t_{n}	t_{n}	管台の最小厚さ	mm
	$\mathrm{t}_{\mathrm{n} \text { o }}$	管台の呼び厚さ	mm
$\mathrm{tar}_{\mathrm{n}}$	tnr	管台の計算上必要な厚さ	mm
t s	t_{p}	平板の最小厚さ	mm
ts r	$\mathrm{t}_{\mathrm{pr}} \mathrm{r}$	平板の計算上必要な厚さ	mm
t s	t s	胴の最小厚さ	mm
t s r	ts r	胴の継目がない場合の計算上必要な厚さ	mm
	$\begin{gathered} \mathrm{W} \\ \mathrm{~W}_{1} * 2 \\ \mathrm{~W}_{2} * 2 \end{gathered}$	溶接部の負らべき荷重	N
		$\mathrm{W}_{1}=\left(\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}\right) \cdot \mathrm{S}$ s	N
		$\begin{aligned} & \mathrm{W}_{2}=\left(\mathrm{d} \cdot \mathrm{t}_{\mathrm{sr}}-\mathrm{A}_{1}\right) \cdot \mathrm{S}_{\mathrm{s}} \text { 又は } \\ & \mathrm{W}_{2}=\left(\mathrm{d}_{\mathrm{w}} \cdot \mathrm{t}_{\mathrm{s} \mathrm{r}}-\mathrm{A}_{1}\right) \cdot \mathrm{S}_{\mathrm{s}} \end{aligned}$	N
	$\mathrm{W}_{\text {e } 1}$	すみ肉溶接部のせん断力（管台取付部：胴，鏡板又 は平板の外側）	N
	$\mathrm{W}_{\text {e } 2}$	すみ肉溶接部のせん断力（管台取付部：胴，鏡板又 は平板の内側）	N
	W e 3	すみ肉溶接部のせん断力（強め板取付部）	N
	We 4	突合せ溶接部のせん断力（胴，鏡板又は平板と強め板との突合せ部）	N
	$\mathrm{W}_{\text {e } 5}$	突合せ溶接部のせん断力（管台取付部）	N
	$\mathrm{W}_{\text {e } 5 \mathrm{D}}$	突合せ溶接部のせん断力（管台取付部）	N
	$\mathrm{W}_{\text {e } 6}$	突合せ溶接部の引張力（胴，鏡板又は平板の部分径 Donにおいて）	N
	We 7	突合せ溶接部の引張力（胴，鏡板又は平板の部分径 d wにおいて）	N
	$W_{\text {e } 8}$	突合せ溶接部の引張力（強め板の部分径Donにおい て）	N
	$W_{\text {e } 9}$	突合せ溶接部の引張力（強め板の部分径 d_{w} におい て）	N
	$\mathrm{W}_{\text {e } 10}$	管台のせん断力	N
	$\mathrm{W}_{\text {e } 11}$	すみ肉溶接部のせん断力（管台取付部の胴，鏡板又 は平板の部分径 d_{w} より外側）	N

設計•建設規格の記号	計算書の表示	表示内容	単位
η	$\mathrm{W}_{\text {ebp } 1}$	予想される破断箇所の強さ	N
	$\mathrm{W}_{\text {ebp } 2}$	予想される破断箇所の強さ	N
	$\mathrm{W}_{\text {ebp } 3}$	予想される破断箇所の強さ	N
	$\mathrm{W}_{\text {ebp } 4}$	予想される破断箇所の強さ	N
	Webp 5	予想される破断箇所の強さ	N
	Webp ${ }^{\text {a }}$	予想される破断箇所の強さ	N
	WELD－	管台溶接形式（図 3－1～図3－19を参照）	－
	X	補強の有効範囲（胴，鏡板又は平板の面に沿った方向）	mm
	X_{1}	補強の有效範囲	mm
	X_{2}	補強の有效範囲	mm
	X ${ }_{\text {j }}$	大きい穴の補強に有効な範囲	mm
	$\mathrm{X}_{\mathrm{j} 1}$	大きい穴の補強に有効な範囲	mm
	$\mathrm{X} \mathrm{j}_{2}$	大きい穴の補強に有効な範囲	mm
	Y_{1}	補強の有効範囲（胴，鏡板又は平板より外側）	mm
	Y_{2}	補強の有効範囲（胴，鏡板又は平板より内側）	mm
	η	穴が長手継手又は胴と全半球形鏡板との接合部の周継手を通る場合はその継手の効率。その他の場合は 1． 00	－
	π	円周率	－
	応力除去の 有無		
	有り	同左	－
	無し	同左	－

注記＊1：重大事故等クラス 2 容器については設計•建設規格 図PVC－4212－3による。
＊2：本記号の表示内容は胴の場合を示す。
なお，鏡板の場合は S_{s} を S_{c} ， $\mathrm{t}_{\mathrm{s} \mathrm{r}}$ を t cr に読み替える。平板の場合は， S_{s} を

3.2 容器の穴の補強計算

「補強は，穴の中心を含み，かつ，胴板の面に垂直な任意の平面に現れる断面について，補強に有効な範囲内にある補強に有効な面積が補強に必要な面積より大きい」ことを確認する。 また，破断が想定される溶接部の強さが溶接部の負うべき荷重より大きいことを確認する。 なお，穴の補強計算上必要のない強め板を取り付けるものもあるが，その場合は強め板があ るものとして計算する。
（1）胴の場合
重大事故等クラス 2 容器については，設計•建設規格 PVC－3160を適用する。
a．管台の形式
図 3－1～図 3－19に管台の形式，補強に有効な面積，補強に必要な面積，破断形式等を示す。

ただし，すみ肉溶接部分の破断箇所については，両方の脚長が等しいため，片側の脚長の破断形式のみを図示する。
b．穴の補強
（a）補強に必要な面積
設計•建設規格 PVC－3161．3 を適用する。
イ．円筒形の胴の場合
（イ）管台の一部分が胴の部分となっていない場合及びWE L D－8，22 の場合

$$
\mathrm{A}_{\mathrm{r}}=\mathrm{d} \cdot \mathrm{t}_{\mathrm{sr}} \cdot \mathrm{~F}
$$

（ロ）管台の一部分が胴の部分となっている場合

$$
\mathrm{A}_{\mathrm{r}}=\mathrm{d} \cdot \mathrm{t}_{\mathrm{s} r} \cdot \mathrm{~F}+2 \cdot\left(1-\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{s}}\right) \cdot \mathrm{t}_{\mathrm{sr}} \cdot \mathrm{~F} \cdot \mathrm{t}_{\mathrm{n}}
$$ $\left(\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{s}}>1\right.$ の場合は $\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{s}}=1$ とする。以下，胴の場合において同じ。）

（b）補強に有効な範囲
設計•建設規格 PVC－3161．1を適用する。

$$
\begin{aligned}
& \mathrm{X}=\mathrm{X}_{1}+\mathrm{X}_{2} \\
& \mathrm{X}_{1}=\mathrm{X}_{2}=\operatorname{Max}\left(\mathrm{d}, \mathrm{~d} / 2+\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{n}}\right) \\
& \mathrm{Y}_{1}=\operatorname{Min}\left(2.5 \cdot \mathrm{t}_{\mathrm{s}}, 2.5 \cdot \mathrm{t}_{\mathrm{n}}+\mathrm{t}_{\mathrm{e}}\right) \\
& \mathrm{Y}_{2}=\operatorname{Min}\left(2.5 \cdot \mathrm{t}_{\mathrm{s}}, 2.5 \cdot \mathrm{t}_{\mathrm{n}}\right)
\end{aligned}
$$

ただし，構造上計算した有効範囲が取れない場合は，構造上取り得る範囲とする。 また，強め板がない場合には t e $=0$ とする。
（c）補強に有効な面積
設計•建設規格 PVC－3161．2を適用する。

イ．胴の部分の補強に有効な面積
（イ）管台の一部分が胴の部分となっていない場合及びW E L D－8，22 の場合

$$
\mathrm{A}_{1}=\left(\eta \cdot \mathrm{t}_{\mathrm{s}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{sr}}\right) \cdot(\mathrm{X}-\mathrm{d})
$$

（ロ）管台の一部分が胴の部分となっている場合

$$
\begin{aligned}
\mathrm{A}_{1}=(& \left.\eta \cdot \mathrm{t}_{\mathrm{s}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{s} r}\right) \cdot(\mathrm{X}-\mathrm{d}) \\
& -\left(1-\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{s}}\right) \cdot\left(\eta \cdot \mathrm{t}_{\mathrm{s}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{s} \mathrm{r}}\right) \cdot 2 \cdot \mathrm{t}_{\mathrm{n}}
\end{aligned}
$$

ロ．管台の部分の補強に有効な面積
（イ）管台が胴の内側に突出していない場合及びWELD－8，22の場合

$$
\mathrm{A}_{2}=2 \cdot\left(\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{nr}}\right) \cdot \mathrm{Y}_{1} \cdot \mathrm{~S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{s}}
$$

（ロ）管台が胴の内側に突出している場合

$$
\mathrm{A}_{2}=2 \cdot\left\{\left(\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{nr}}\right) \cdot \mathrm{Y}_{1}+\mathrm{t}_{\mathrm{n}} \cdot \mathrm{Y}_{2}\right\} \cdot \mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{s}}
$$

ただし，

$$
\mathrm{t}_{\mathrm{nr}}=\frac{\mathrm{P} \cdot\left(\mathrm{D}_{\mathrm{on}}-2 \cdot \mathrm{t}_{\mathrm{n}}\right)}{2 \cdot \mathrm{~S}_{\mathrm{n}}-1.2 \cdot \mathrm{P}}
$$

外面に圧力を受ける場合は，設計•建設規格 図 PVC－3610－1 を適用する。 ただし，図より求められない場合は次の式による値とする。

$$
\mathrm{t}_{\mathrm{nr}}=\frac{3 \cdot \mathrm{P} \cdot \mathrm{D}_{\mathrm{on}}}{4 \cdot \mathrm{~B}}
$$

八．すみ肉溶接部の部分の補強に有効な面積

$$
\mathrm{A}_{3}=\mathrm{L}_{1} \cdot \mathrm{~L}_{1}+\mathrm{L}_{2} \cdot \mathrm{~L}_{2}+\mathrm{L}_{3} \cdot \mathrm{~L}_{3}
$$

ただし，補強の有効範囲にないすみ肉溶接の部分は除く。

二．強め板の部分の補強に有効な面積

$$
\begin{aligned}
& \mathrm{A}_{4}=\left\{\operatorname{Min}\left(\mathrm{B}_{\mathrm{e}}, \mathrm{X}\right)-\mathrm{D}_{\mathrm{on}}\right\} \cdot \mathrm{t}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{s}} \\
& \left(\mathrm{~S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{s}}>1 \text { の場合は } \mathrm{S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{s}}=1 \text { とする。以下, 胴の場合において同じ。 }\right)
\end{aligned}
$$

ホ．補強に有効な総面積

$$
\mathrm{A}_{0}=\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}
$$

（d）補強に有効な範囲 $\mathrm{X}_{1} \neq \mathrm{X}_{2}$ の場合の補強に有効な面積の確認
設計•建設規格 PVC－3165を適用する。
補強に必要な面積の 2 分の 1 以上の補強に有効な面積は穴の中心線の両側にある必要 がある。
ただし，補強に有効な範囲 $\mathrm{X}_{1}=\mathrm{X}_{2}$ の場合は上記条件を満足することが明らかであ り，以下の計算は行わない。

イ．補強に必要な面積の 2 分の 1

$$
\mathrm{A}_{\mathrm{r} D}=\mathrm{A}_{\mathrm{r}} / 2
$$

口． X_{1} 又は X_{2} のいずれか小さい方の断面における補強に有効な面積
（イ）胴の部分の補強に有効な面積
－管台の一部分が胴の部分となっていない場合及びWELD－8， 22 の場合

$$
\mathrm{A}_{1 \mathrm{D}}=\left(\eta \cdot \mathrm{t}_{\mathrm{s}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{s} r}\right) \cdot\left\{\operatorname{Min}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)-\mathrm{d} / 2\right\}
$$

－管台の一部分が胴の部分となっている場合

$$
\begin{aligned}
\mathrm{A}_{1 \mathrm{D}}= & \left(\eta \cdot \mathrm{t}_{\mathrm{s}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{sr}}\right) \cdot\left\{\operatorname{Min}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)-\mathrm{d} / 2\right\} \\
& -\left(1-\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{s}}\right) \cdot\left(\eta \cdot \mathrm{t}_{\mathrm{s}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{s} \mathrm{r}}\right) \cdot \mathrm{t}_{\mathrm{n}}
\end{aligned}
$$

（ロ）管台の部分の補強に有効な面積

$$
\mathrm{A}_{2 \mathrm{D}}=\mathrm{A}_{2} / 2
$$

（八）すみ肉溶接の部分の補強に有効な面積

$$
\mathrm{A}_{3 \mathrm{D}}=\mathrm{A}_{3} / 2
$$

（ニ）強め板の部分の補強に有効な面積

$$
\mathrm{A}_{4 \mathrm{D}}=\mathrm{A}_{4} / 2
$$

（ホ）補強に有効な総面積

$$
\mathrm{A}_{0 \mathrm{D}}=\mathrm{A}_{1 \mathrm{D}}+\mathrm{A}_{2 \mathrm{D}}+\mathrm{A}_{3 \mathrm{D}}+\mathrm{A}_{4 \mathrm{D}}
$$

c．大きい穴の補強
設計•建設規格 PVC－3164を適用する。
（a）大きい穴の補強を要する限界径
イ． D_{i} が 1500 mm 以下の場合
$d_{j}=D_{i} / 2$
ただし， 500 mm を超える場合は 500 mm とする。

ロ．D i が 1500 mm を超える場合
$\mathrm{d}_{\mathrm{j}}=\mathrm{D}_{\mathrm{i}} / 3$
ただし， 1000 mm を超える場合は 1000 mm とする。
ここで， $\mathrm{d} \leqq \mathrm{d}_{\mathrm{j}}$ の場合は大きい穴の補強計算は必要ない。
一方， $\mathrm{d}>\mathrm{d}_{\mathrm{j}}$ の場合は補強に必要な面積の 3 分の 2 以上が穴の周囲から穴の径の 4 分の 1 の範囲内にある必要がある。
（b）大きい穴の補強における管台の形式
図 3－21～図 3－39 に大きい穴の補強における管台の形式を示す。
（c）大きい穴の補強に必要な面積

$$
A_{j r}=\frac{2}{3} \cdot A_{r}
$$

（d）大きい穴の補強に有効な範囲

$$
\begin{aligned}
& X_{j}=X_{\mathrm{j}_{1}}+\mathrm{X}_{\mathrm{j} 2} \\
& \mathrm{X}_{\mathrm{j} 1}=\mathrm{X}_{\mathrm{j} 2}=\frac{\mathrm{d}}{2}+\frac{\mathrm{d}}{4}
\end{aligned}
$$

ただし，構造上計算した有効範囲がとれない場合は，構造上取り得る範囲とする。
（e）大きい穴の補強に有効な面積
イ．胴の部分の補強に有効な面積
（イ）管台の一部分が胴の部分となっていない場合及びWE L D－8，22 の場合

$$
\mathrm{A}_{\mathrm{j} 1}=\left(\eta \cdot \mathrm{t}_{\mathrm{s}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{s} r}\right) \cdot\left(\mathrm{X}_{\mathrm{j}}-\mathrm{d}\right)
$$

（ロ）管台の一部分が胴の部分となっている場合

$$
\begin{aligned}
\mathrm{A}_{\mathrm{j} 1}= & \left(\eta \cdot \mathrm{t}_{\mathrm{s}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{sr}}\right) \cdot\left(\mathrm{X}_{\mathrm{j}}-\mathrm{d}\right) \\
& -\left(1-\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{s}}\right) \cdot\left(\eta \cdot \mathrm{t}_{\mathrm{s}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{sr}}\right) \cdot 2 \cdot \mathrm{t}_{\mathrm{n}}
\end{aligned}
$$

ロ．管台の部分の補強に有効な面積
（イ）管台が胴の内側に突出していない場合及びWELD－8，22の場合

$$
A_{j 2}=2 \cdot\left\{\frac{\operatorname{Min}\left(X_{j}, D_{o n}\right)-d}{2}-t_{n r}\right\} \cdot Y_{1} \cdot \frac{S_{n}}{S_{s}}
$$

（ロ）管台が胴の内側に突出している場合

$$
\begin{aligned}
& A_{j 2}=2 \cdot\left[\left\{\frac{\operatorname{Min}\left(X_{j}, D_{o n}\right)-d}{2}-t_{n r r}\right\} \cdot Y_{1}\right. \\
&\left.+\frac{\operatorname{Min}\left(X_{j}, D_{o n}\right)-d}{2} \cdot Y_{2}\right] \cdot \frac{S_{n}}{S_{s}}
\end{aligned}
$$

八。 すみ肉溶接の部分の補強に有効な面積

$$
\mathrm{A}_{\mathrm{j} 3}=\mathrm{L}_{1} \cdot \mathrm{~L}_{1}+\mathrm{L}_{2} \cdot \mathrm{~L}_{2}+\mathrm{L}_{3} \cdot \mathrm{~L}_{3}
$$

ただし，大きい穴の補強の有効範囲にないすみ肉溶接の部分は除く。

ニ．強め板の部分の補強に有効な面積

$$
\mathrm{A}_{\mathrm{j} 4}=\left\{\operatorname{Min} \cdot\left(\mathrm{B}_{\mathrm{e}}, \mathrm{X}_{\mathrm{j}}\right)-\mathrm{D}_{\mathrm{on}}\right\} \cdot \mathrm{t}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{s}}
$$

ホ．大きい穴の補強に有効な総面積

$$
\mathrm{A}_{\mathrm{j} 0}=\mathrm{A}_{\mathrm{j} 1}+\mathrm{A}_{\mathrm{j} 2}+\mathrm{A}_{\mathrm{j} 3}+\mathrm{A}_{\mathrm{j} 4}
$$

d．溶接部の強度
設計•建設規格 PVC－3168及びPVC－3169を適用する。
（a）溶接部の負うべき荷重次の 2 つの計算式（ W_{1} 及び W_{2} ）により求めた荷重のらちいずれか小さい方。 $\mathrm{W}_{1}=\left(\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}\right) \cdot \mathrm{S}$ s
管台の一部分が胴の部分となっていない場合及びWELD－8， 22 の場合

$$
\mathrm{W}_{2}=\left(\mathrm{d} \cdot \mathrm{t}_{\mathrm{sr}}-\mathrm{A}_{1}\right) \cdot \mathrm{S}_{\mathrm{s}}
$$

管台の一部分が胴の一部となっている場合

$$
\mathrm{W}_{2}=\left(\mathrm{d}_{\mathrm{w}} \cdot \mathrm{t}_{\mathrm{s} \mathrm{r}}-\mathrm{A}_{1}\right) \cdot \mathrm{S}_{\mathrm{s}}
$$

よって， $\mathrm{W}=\operatorname{Min}\left(\mathrm{W}_{1}, \mathrm{~W}_{2}\right)$
ここで， $\mathrm{W}<0$ の場合は，溶接部の強度計算は必要ない。
一方， $\mathrm{W} \geqq 0$ の場合は以下の溶接部の強度計算を行う。
（b）溶接部の単位面積当たりの強さ

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{w} 1}=\mathrm{S}_{\mathrm{s}} \cdot \mathrm{~F}_{1} \\
& \mathrm{~S}_{\mathrm{w} 2}=\mathrm{S}_{\mathrm{s}} \cdot \mathrm{~F}_{2} \\
& \mathrm{~S}_{\mathrm{w} 3}=\mathrm{S}_{\mathrm{s}} \cdot \mathrm{~F}_{3} \\
& \mathrm{~S}_{\mathrm{w} 4}=\operatorname{Min}\left(\mathrm{S}_{\mathrm{s}}, \quad \mathrm{~S}_{\mathrm{n}}\right) \cdot \mathrm{F}_{4}
\end{aligned}
$$

（c）継手部の強さ

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{e} 1}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{~L}_{1} \cdot \mathrm{~S}_{\mathrm{w} 1} / 2
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{e} 2}=\pi \cdot\left(\mathrm{d}-2 \cdot \mathrm{~L}_{2}\right) \cdot \mathrm{L}_{2} \cdot \mathrm{~S}_{\mathrm{w} 1} / 2 \ldots \ldots \ldots \ldots \ldots . .(\mathrm{WELD}-17 \text { の場合) } \\
& \mathrm{W}_{\mathrm{e} 3}=\pi \cdot \mathrm{B}_{\mathrm{e}} \cdot \mathrm{~L}_{2} \cdot \mathrm{~S}_{\mathrm{w} 1} / 2 \\
& \mathrm{~W}_{\mathrm{e} 4}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot\left(\frac{\mathrm{~d}_{\mathrm{w}}-\mathrm{D}_{\mathrm{on}}}{2}\right) \cdot \mathrm{S}_{\mathrm{w} 2 / 2} \\
& \mathrm{~W}_{\mathrm{e} 5}=\pi \cdot\left(\frac{\mathrm{D}_{\mathrm{on}}+\mathrm{d}}{2}\right) \cdot \mathrm{t}_{\mathrm{n}} \cdot \mathrm{~S}_{\mathrm{w} 2} / 2 \\
& \mathrm{~W}_{\mathrm{e} 6}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{t}_{\mathrm{s}} \cdot \mathrm{~S}_{\mathrm{w} 3} / 2 \cdots \cdots \cdots \cdots \cdots \text { (WELD-5, 6, } 14 \text { 以外の場合) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{e} 8}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{t}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{w} 3} / 2 \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots(\text { WELD }-14 \text { 以外の場合) } \\
& \mathrm{W}_{\mathrm{e} 8}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{~L}_{5} \cdot \mathrm{~S}_{\mathrm{w} 3} / 2 \cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text { (WELD}-14 \text { の場合) } \\
& \mathrm{W}_{\mathrm{e} 9}=\pi \cdot \mathrm{d}_{\mathrm{w}} \cdot \mathrm{t}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{w} 3} / 2 \\
& \mathrm{~W}_{\mathrm{e} 10}=\pi \cdot\left(\frac{\mathrm{D}_{\mathrm{on}}+\mathrm{d}}{2}\right) \cdot \mathrm{t}_{\mathrm{n}} \cdot \mathrm{~S}_{\mathrm{w} 4} / 2
\end{aligned}
$$

（d）予想される破断箇所の強さ
イ．WELD－1の場合

$$
\begin{aligned}
& W_{\text {ebp } 1}=W_{e 1} W_{e 5} \cdots \cdots \cdots \cdots \cdots \cdot \text { を通る強さ }=W_{e 1}+W_{\text {e } 5} \\
& W_{\text {ebp } 2}=W_{e 5 D} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=W_{\text {e }}
\end{aligned}
$$

口．WELD－2の場合
$\mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 2} \cdots \cdots \cdots \cdots \cdots \cdots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 2}$
$\mathrm{W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \cdots \cdots \cdots \cdots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}$

八．WELD－3の場合

$$
\begin{aligned}
\mathrm{W}_{\mathrm{ebp} 1} & =\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 6} \cdots \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }
\end{aligned}=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 6} .
$$

ニ．WELD－4の場合

ebp 1	e 1	を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\text {e } 6}$
Webp 2	$\mathrm{W}_{\mathrm{el}} \mathrm{We}_{\text {el }}$	を通る強さ $=W_{\text {e } 1}+W_{\text {e } 10}$
bp 3		を通る強さ $=W_{\text {e } 11}+W_{\text {e } 7}$
	$\mathrm{n}=\mathrm{d}_{\mathrm{w}}$ の場合はW	

ホ．WELD－5の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 6} \cdot \cdots \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 6} \\
& \mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdot \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}
\end{aligned}
$$

へ．WELD－6の場合

ト．WELD－8の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 2} \cdots \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 2} \\
& \mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}
\end{aligned}
$$

チ．WELD－9の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 6} \mathrm{~W}_{\mathrm{e} 2} \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 6}+\mathrm{W}_{\mathrm{e} 2} \\
& \mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10} \\
& \mathrm{~W}_{\mathrm{ebp} 3}=\mathrm{W}_{\mathrm{e} 7} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 7}
\end{aligned}
$$

リ．WELD－11の場合
$W_{e b p 1}=W_{e} 3$ We4 We．．．．を通る強さ $=W_{e}+W_{e 4}+W_{e 2}$
$W_{\text {ebp } 2}=W_{\text {e } 1} W_{e 8} W_{e 2} \cdots \cdots \cdot$ を通る強さ $=W_{e 1}+W_{e 8}+W_{e 2}$
$W_{\text {ebp } 3}=W_{\text {e } 9} W_{\text {e } 4} \ldots \ldots$. を通る強さ $=W_{e 9}+W_{e 4}+W_{\text {e } 2}$
$W_{\text {ebp } 4}=W_{e 3} W_{e 4} W_{e 10} \ldots . .$. を通る強さ $=W_{e 3}+W_{e 4}+W_{e 10}$
$\mathrm{W}_{\mathrm{ebp} 5}=\mathrm{We}_{\mathrm{e} 1} \mathrm{We} 10^{l} \ldots \ldots \ldots \ldots$ を通る強さ $=W_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}$
ヌ．WELD－12の場合
$W_{\mathrm{ebp} 1}=W_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 6} \ldots \ldots \ldots \ldots \ldots \ldots$ を通る強さ $\quad . \ldots W_{\mathrm{e} 1}+W_{\mathrm{e} 6}$
$W_{\text {ebp } 3}=W_{\text {e } 3} W_{\text {e } 4} W_{\text {e } 6} \cdots \cdots \cdot$ を通る強さ $=W_{e 3}+W_{\text {e } 4}+W_{\text {e } 6}$
$\mathrm{W}_{\mathrm{ebp} 4}=\mathrm{We}_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 4} \mathrm{We} 10^{\mathrm{e}} . \cdots \cdot$ を通る強さ $=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 10}$
$W_{e b p 5}=W_{e 1} W_{e 10} \cdots \cdots \ldots \ldots$ を通る強さ $=W_{e 1}+W_{e 10}$
ル．WELD－13の場合

ヲ．WELD－14の場合

p 1	$=W_{\mathrm{e} 3} W_{\mathrm{e} 6}$	を通る強さ $=\mathrm{W}_{\text {e } 3}+\mathrm{W}_{\text {e } 6}$
$\mathrm{W}_{\text {ebp } 2}$	e 1 e 8 －	を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 8}+\mathrm{W}_{\mathrm{e} 6}$
$\mathrm{W}_{\text {ebp }} 3$	$=W_{\text {e } 3} W_{\text {elo }}$	を通る強さ $=\mathrm{W}_{\text {e } 3}+\mathrm{W}_{\text {e } 10}$
$\mathrm{W}_{\text {ebp } 4}$	$=W_{e 1} W_{e 10}$	を通る強さ $=\mathrm{W}_{\text {e } 1}+\mathrm{W}_{\text {e } 10}$

ワ．WELD－15，16，22の場合

$\mathrm{W}_{\text {ebp } 1}$	，	を通る強さ $=W_{\text {e } 1}+W_{\text {e } 8}+W_{\text {e } 6}$
$\mathrm{W}_{\text {ebp } 2}$	We 3－${ }^{\text {e } 7}$	を通る強さ $=W_{\text {e } 3}+W_{\text {e } 7}$
$\mathrm{W}_{\text {ebp } 3}$	4 e 6	を通る強さ $=W_{\text {e } 3}+W_{\text {e } 4}+W_{\text {e } 6}$
Webp 4	e 4 We ${ }^{\text {e }}$	を通る強さ $=\mathrm{W}_{\text {e } 3}+\mathrm{W}_{\text {e } 4}+\mathrm{W}_{\text {e } 10}$
$W_{\text {ebp } 5}$	e9 We 7	を通る強さ $=W_{\text {e } 9}+W_{\text {e } 7}$
Webp 6	$=W_{e 1} W_{e 10}$	を通る強さ $=W_{\text {e } 1}+W_{\text {e } 10}$

カ．WELD－17の場合
$W_{\text {ebp } 1}=W_{e 1} W_{e 2} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=W_{e 1}+W_{e 2}$
ヨ．WELD－18の場合

．．．．．．．．．．．．．．．．．を通る強さ $=W_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 6}+\mathrm{W}_{\mathrm{e} 2}$
$\mathrm{W}_{\mathrm{ebp} 4}=\mathrm{W}_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 4} \mathrm{~W}_{\mathrm{e} 10} \ldots \ldots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 10}$
$\mathrm{W}_{\mathrm{ebp} 5}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}$
夕．WELD－19， $19^{\text {－}}$ の場合

$$
\begin{aligned}
\mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 8} \mathrm{~W}_{\mathrm{e} 6} \mathrm{~W}_{\mathrm{e} 2} \\
\ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 8}+\mathrm{W}_{\mathrm{e} 6}+\mathrm{W}_{\mathrm{e} 2} \\
\mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 7} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 7} \\
\mathrm{~W}_{\mathrm{ebp} 3}=\mathrm{W}_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 4} \mathrm{~W}_{\mathrm{e} 6} \mathrm{~W}_{\mathrm{e} 2}
\end{aligned}
$$

$$
\text { を通る強さ }=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 6}+\mathrm{W}_{\mathrm{e} 2}
$$

$$
\mathrm{W}_{\mathrm{ebp} 4}=\mathrm{We}_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 4} \mathrm{We} 10^{\mathrm{e}} \ldots . . \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 10}
$$

$$
W_{\text {ebp } 5}=W_{\mathrm{e} 9} \mathrm{~W}_{\mathrm{e} 7} \cdots \ldots \ldots \ldots \ldots \text { を通る強さ }=W_{\mathrm{e} 9}+W_{\mathrm{e} 7}
$$

$$
\mathrm{W}_{\mathrm{ebp} 6}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}
$$

e．評価
胴の穴の補強は，下記の条件を満足すれば十分である。
$\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$
$\mathrm{A}_{0 \mathrm{D}} \geqq \mathrm{A}_{\mathrm{r} D}$（ただし， $\mathrm{X}_{1} \neq \mathrm{X}_{2}$ の場合のみ）
$A_{j 0} \geqq A_{j r}$（ただし，大きい穴の補強を要する場合のみ）
すべての破断箇所の強さ $\geqq \mathrm{W}$（ただし， W が正の場合のみ）
（2）鏡板の場合
重大事故等クラス 2 容器については設計•建設規格 PVC－3240を適用する。
a．管台の形式
図3－1～図3－19に管台の形式，補強に有効な面積，補強に必要な面積，破断形式等を示 す。
ただし，すみ肉溶接部分の破断箇所については，両方の脚長が等しいため，片側の脚長 の破断形式のみを図示する。
b．穴の補強
（a）補強に必要な面積
設計•建設規格 PVC－3241（設計•建設規格 PVC－3161．3準用）を適用する。

イ．半だ円形鏡板及び全半球形鏡板の場合
（イ）管台の一部分が鏡板の部分となっていない場合及びW E L D－38 の場合

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{r}}=\mathrm{d} \cdot \mathrm{t}_{\mathrm{c} \mathrm{r}} \cdot \mathrm{~F} \\
& (\mathrm{~F}=1 \text { とする。以下, 鏡板の場合において同じ。) }
\end{aligned}
$$

（ロ）管台の一部分が鏡板の部分となっている場合

$$
\mathrm{A}_{\mathrm{r}}=\mathrm{d} \cdot \mathrm{t}_{\mathrm{cr}} \cdot \mathrm{~F}+2 \cdot\left(1-\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{c}}\right) \cdot \mathrm{t}_{\mathrm{cr}} \cdot \mathrm{~F} \cdot \mathrm{t}_{\mathrm{n}}
$$

$$
\left(S_{n} / S_{c}>1 \text { の場合は } S_{n} / S_{c}=1\right. \text { とする。以下鏡板の場合において同じ。) }
$$

ただし，tcrは次による。
半だ円形鏡板であって，中低面に圧力を受けるものは

$$
\mathrm{t}_{\mathrm{cr}}=\frac{\mathrm{P} \cdot \mathrm{R}}{2 \cdot \mathrm{~S}_{\mathrm{c}} \cdot \eta-0.2 \cdot \mathrm{P}}
$$

全半球形鏡板にあって（厚さが内半径の 0.356 倍以下のもの），中低面に圧力を受けるものは

$$
\mathrm{t}_{\mathrm{cr}}=\frac{\mathrm{P} \cdot \mathrm{R}}{2 \cdot \mathrm{~S}_{\mathrm{c}} \cdot \eta-0.2 \cdot \mathrm{P}}
$$

（b）補強に有効な範囲
設計•建設規格 PVC－3241（設計•建設規格 PVC－3161．1準用）を適用する。

$$
\begin{aligned}
& \mathrm{X}=\mathrm{X}_{1}+\mathrm{X}_{2} \\
& \mathrm{X}_{1}=\mathrm{X}_{2}=\operatorname{Max}\left(\mathrm{d}, \mathrm{~d} / 2+\mathrm{t}_{\mathrm{c}}+\mathrm{t}_{\mathrm{n}}\right) \\
& \mathrm{Y}_{1}=\operatorname{Min}\left(2.5 \cdot \mathrm{t}_{\mathrm{c}}, 2.5 \cdot \mathrm{t}_{\mathrm{n}}+\mathrm{t}_{\mathrm{e}}\right) \\
& \mathrm{Y}_{2}=\operatorname{Min}\left(2.5 \cdot \mathrm{t}_{\mathrm{c}}, 2.5 \cdot \mathrm{t}_{\mathrm{n}}\right)
\end{aligned}
$$

ただし，構造上計算した有効範囲が取れない場合は，構造上取り得る範囲とする。 また，強め板がない場合には t e $=0$ とする。
（c）補強に有効な面積
設計•建設規格 PVC－3241（設計•建設規格 PVC－3161．2 準用）を適用する。

イ．鏡板の部分の補強に有効な面積

（イ）管台の一部分が鏡板の部分となっていない場合及びWELD－38の場合

$$
\mathrm{A}_{1}=\left(\eta \cdot \mathrm{t}_{\mathrm{c}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{c} \mathrm{r}}\right) \cdot(\mathrm{X}-\mathrm{d})
$$

（ロ）管台の一部分が鏡板の部分となっている場合

$$
\begin{aligned}
\mathrm{A}_{1}=(& \left.\eta \cdot \mathrm{t}_{\mathrm{c}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{c} \mathrm{r}}\right) \cdot(\mathrm{X}-\mathrm{d}) \\
& -\left(1-\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{c}}\right) \cdot\left(\eta \cdot \mathrm{t}_{\mathrm{c}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{cr}}\right) \cdot 2 \cdot \mathrm{t}_{\mathrm{n}}
\end{aligned}
$$

ロ．管台の部分の補強に有効な面積
（イ）管台が鏡板の内側に突出していない場合及びW E L D－38 の場合

$$
\mathrm{A}_{2}=2 \cdot\left(\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{nr}}\right) \cdot \mathrm{Y}_{1} \cdot \mathrm{~S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{c}}
$$

（ロ）管台が鏡板の内側に突出している場合

$$
\mathrm{A}_{2}=2 \cdot\left\{\left(\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{nr}}\right) \cdot \mathrm{Y}_{1}+\mathrm{t}_{\mathrm{n}} \cdot \mathrm{Y}_{2}\right\} \cdot \mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{c}}
$$

ただし，

$$
\mathrm{t}_{\mathrm{nr}}=\frac{\mathrm{P} \cdot\left(\mathrm{D}_{\mathrm{on}}-2 \cdot \mathrm{t}_{\mathrm{n}}\right)}{2 \cdot \mathrm{~S}_{\mathrm{n}}-1.2 \cdot \mathrm{P}}
$$

八．すみ肉溶接の部分の補強に有効な面積

$$
\mathrm{A}_{3}=\mathrm{L}_{1} \cdot \mathrm{~L}_{1}+\mathrm{L}_{2} \cdot \mathrm{~L}_{2}+\mathrm{L}_{3} \cdot \mathrm{~L}_{3}
$$

ただし，補強の有効範囲にないすみ肉溶接の部分は除く。

二．強め板の部分の補強に有効な面積

$$
\begin{aligned}
& \left.\mathrm{A}_{4}=\left\{\operatorname{Min}\left(\mathrm{B}_{\mathrm{e}}, \mathrm{X}\right)-\mathrm{D}_{\mathrm{on}}\right\}\right\} \cdot \mathrm{t}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{c}} \\
& \quad\left(\mathrm{~S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{c}}>1 \text { の場合は } \mathrm{S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{c}}=1\right. \text { とする。以下, 鏡板の場合において同じ。) }
\end{aligned}
$$

ホ．補強に有効な総面積

$$
\mathrm{A}_{0}=\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}
$$

（d）補強に有効な範囲 $\mathrm{X}_{1} \neq \mathrm{X}_{2}$ の場合の補強に有効な面積の確認
設計•建設規格 PVC－3241（設計•建設規格 PVC－3165準用）を適用する。
補強に必要な面積の 2 分の 1 以上の補強に有効な面積は，穴の中心線の両側にある必要がある。

ただし，補強に有効な範囲 $\mathrm{X}_{1}=\mathrm{X}_{2}$ の場合は上記条件を満足することが明らかであ り，以下の計算は行わない。

イ．補強に必要な面積の 2 分の 1

$$
\mathrm{A}_{\mathrm{r} D}=\mathrm{A}_{\mathrm{r}} / 2
$$

ロ． X_{1} 又は X_{2} のいずれか小さい方の断面における補強に有効な面積
（イ）鏡板の部分の補強に有効な面積
－管台の一部分が鏡板の部分となっていない場合及びWE LD－38の場合

$$
\mathrm{A}_{1 \mathrm{D}}=\left(\eta \cdot \mathrm{t}_{\mathrm{c}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{cr}}\right) \cdot\left\{\operatorname{Min}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)-\mathrm{d} / 2\right\}
$$

－管台の一部分が鏡板の部分となっている場合

$$
\begin{aligned}
\mathrm{A}_{1 \mathrm{D}}= & \left(\eta \cdot \mathrm{t}_{\mathrm{c}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{cr}}\right) \cdot\left\{\operatorname{Min}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)-\mathrm{d} / 2\right\} \\
& -\left(1-\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{c}}\right) \cdot\left(\eta \cdot \mathrm{t}_{\mathrm{c}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{cr}}\right) \cdot \mathrm{t}_{\mathrm{n}}
\end{aligned}
$$

（ロ）管台の部分の補強に有効な面積

$$
\mathrm{A}_{2 \mathrm{D}}=\mathrm{A}_{2} / 2
$$

（八）すみ肉溶接の部分の補強に有効な面積

$$
\mathrm{A}_{3 \mathrm{D}}=\mathrm{A}_{3} / 2
$$

（ニ）強め板の部分の補強に有効な面積

$$
\mathrm{A}_{4 \mathrm{D}}=\mathrm{A}_{4} / 2
$$

（ホ）補強に有効な総面積

$$
\mathrm{A}_{0 \mathrm{D}}=\mathrm{A}_{1 \mathrm{D}}+\mathrm{A}_{2 \mathrm{D}}+\mathrm{A}_{3 \mathrm{D}}+\mathrm{A}_{4 \mathrm{D}}
$$

c．大きい穴の補強
設計•建設規格 PVC－3241（設計•建設規格 PVC－3164準用）を適用する。
（a）大きい穴の補強を要する限界径
イ． D_{i} が 1500 mm 以下の場合
$\mathrm{d}_{\mathrm{j}}=\mathrm{D}_{\mathrm{i}} / 2$
ただし， 500 mm を超える場合は 500 mm とする。

ロ． D_{i} が 1500 mm を超える場合

$$
\mathrm{d}_{\mathrm{j}}=\mathrm{D}_{\mathrm{i}} / 3
$$

ただし， 1000 mm を超える場合は 1000 mm とする。
ここで， $\mathrm{d} \leqq \mathrm{d}_{\mathrm{j}}$ の場合は大きい穴の補強計算は必要ない。
一方， $\mathrm{d}>\mathrm{d}_{\mathrm{j}}$ の場合は，補強に必要な面積の 3 分の 2 以上が穴の周囲から穴 の径の 4 分の 1 の範囲内にある必要がある。
（b）大きい穴の補強における管台の形式
図 3－21～図 3－39 に大きい穴の補強における管台の形式を示す。
（c）大きい穴の補強に必要な面積

$$
A_{j r}=\frac{2}{3} \cdot A_{r}
$$

（d）大きい穴の補強に有効な範囲

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{j}}=\mathrm{X}_{\mathrm{j} 1}+\mathrm{X}_{\mathrm{j} 2} \\
& \mathrm{X}_{\mathrm{j} 1}=\mathrm{X}_{\mathrm{j} 2}=\frac{\mathrm{d}}{2}+\frac{\mathrm{d}}{4}
\end{aligned}
$$

ただし，構造上計算した有効範囲がとれない場合は，構造上取り得る範囲とする。
（e）大きい穴の補強に有効な面積

1．鏡板の部分の補強に有効な面積

（イ）管台の一部分が鏡板の部分となっていない場合及びWE LD－38の場合

$$
\mathrm{A}_{\mathrm{j} 1}=\left(\eta \cdot \mathrm{t}_{\mathrm{c}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{cr}}\right) \cdot\left(\mathrm{X}_{\mathrm{j}}-\mathrm{d}\right)
$$

（ロ）管台の一部分が鏡板の一部となっている場合

$$
\begin{aligned}
\mathrm{A}_{\mathrm{j} 1}= & \left(\eta \cdot \mathrm{t}_{\mathrm{c}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{c}} \mathrm{r}\right) \cdot\left(\mathrm{X}_{\mathrm{j}}-\mathrm{d}\right) \\
& -\left(1-\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{c}}\right) \cdot\left(\eta \cdot \mathrm{t}_{\mathrm{c}}-\mathrm{F} \cdot \mathrm{t}_{\mathrm{c} \mathrm{r}}\right) \cdot 2 \cdot \mathrm{t}_{\mathrm{n}}
\end{aligned}
$$

ロ．管台の部分の補強に有効な面積
（イ）管台が鏡板の内側に突出していない場合及びWELD－38の場合

$$
A_{j 2}=2 \cdot\left\{\frac{\operatorname{Min}\left(X_{j}, D_{o n}\right)-d}{2}-t_{n r}\right\} \cdot Y_{1} \cdot \frac{S_{n}}{S_{c}}
$$

（ロ）管台が鏡板の内側に突出している場合

$$
\begin{aligned}
& A_{j 2}=2 \cdot\left[\left\{\frac{\operatorname{Min}\left(X_{j}, D_{o n}\right)-d}{2}-t_{n r r}\right\} \cdot Y_{1}\right. \\
&\left.+\frac{\operatorname{Min}\left(X_{j}, D_{o n}\right)-d}{2} \cdot Y_{2}\right] \cdot \frac{S_{n}}{S_{s}}
\end{aligned}
$$

八．すみ肉溶接の部分の補強に有効な面積

$$
\mathrm{A}_{\mathrm{j} 3}=\mathrm{L}_{1} \cdot \mathrm{~L}_{1}+\mathrm{L}_{2} \cdot \mathrm{~L}_{2}+\mathrm{L}_{3} \cdot \mathrm{~L}_{3}
$$

ただし，大きい穴の補強の有効篚囲にないすみ肉溶接の部分は除く。

ニ．強め板の部分の補強に有効な面積

$$
A_{j 4}=\left\{\operatorname{Min}\left(B_{e}, X_{j}\right)-D_{o n}\right\} \cdot t_{e} \cdot S_{e} / S_{c}
$$

ホ．大きい穴の補強に有効な総面積

$$
\mathrm{A}_{\mathrm{j} 0}=\mathrm{A}_{\mathrm{j} 1}+\mathrm{A}_{\mathrm{j} 2}+\mathrm{A}_{\mathrm{j} 3}+\mathrm{A}_{\mathrm{j} 4}
$$

d．溶接部の強度
設計•建設規格 PVC－3241（設計•建設規格 PVC－3168及びPVC－3169 準用）を適用す る。
（a）溶接部の負うべき荷重
次の 2 つの計算式（ W_{1} 及び W_{2} ）により求めた荷重のらちいずれか小さい方。

$$
\mathrm{W}_{1}=\left(\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}\right) \cdot \mathrm{S}_{\mathrm{c}}
$$

管台の一部分が鏡板の部分となっていない場合及びWELD－38の場合

$$
\mathrm{W}_{2}=\left(\mathrm{d} \cdot \mathrm{t}_{\mathrm{cr}}-\mathrm{A}_{1}\right) \cdot \mathrm{S}_{\mathrm{c}}
$$

管台の一部分が鏡板の部分となっている場合

$$
\mathrm{W}_{2}=\left(\mathrm{d}_{\mathrm{w}} \cdot \mathrm{t}_{\mathrm{cr}}-\mathrm{A}_{1}\right) \cdot \mathrm{S}_{\mathrm{c}}
$$

よって， $\mathrm{W}=\operatorname{Min}\left(\mathrm{W}_{1}, \mathrm{~W}_{2}\right)$
ここで， $\mathrm{W}<0$ の場合は溶接部の強度計算は必要ない。
一方， $\mathrm{W} \geqq 0$ の場合は以下の溶接部の強度計算を行う。
（b）溶接部の単位面積当たりの強さ

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{w} 1}=\mathrm{S}_{\mathrm{c}} \cdot \mathrm{~F}_{1} \\
& \mathrm{~S}_{\mathrm{w} 2}=\mathrm{S}_{\mathrm{c}} \cdot \mathrm{~F}_{2} \\
& \mathrm{~S}_{\mathrm{w} 3}=\mathrm{S}_{\mathrm{c}} \cdot \mathrm{~F}_{3} \\
& \mathrm{~S}_{\mathrm{w} 4}=\operatorname{Min}\left(\mathrm{S}_{\mathrm{c}}, \quad \mathrm{~S}_{\mathrm{n}}\right) \cdot \mathrm{F}_{4}
\end{aligned}
$$

（c）継手部の強さ
$\mathrm{W}_{\mathrm{e} 1}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{L}_{1} \cdot \mathrm{~S}_{\mathrm{w} 1} / 2$
$\mathrm{~W}_{\mathrm{e} 2}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{L}_{3} \cdot \mathrm{~S}_{\mathrm{w} 1} / 2$
$\mathrm{~W}_{\mathrm{e} 3}=\pi \cdot \mathrm{B}_{\mathrm{e}} \cdot \mathrm{L}_{2} \cdot \mathrm{~S}_{\mathrm{w} 1} / 2$
$\mathrm{W}_{\mathrm{e} 4}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot\left(\frac{\mathrm{d}_{\mathrm{w}}-\mathrm{D}_{\mathrm{on}}}{2}\right) \cdot \mathrm{S}_{\mathrm{w} 2 / 2}$
$\mathrm{W}_{\mathrm{e} 5}=\pi \cdot\left(\frac{\mathrm{D}_{\mathrm{on}}+\mathrm{d}}{2}\right) \cdot \mathrm{t}_{\mathrm{n}} \cdot \mathrm{S}_{\mathrm{w} 2} / 2$
$\mathrm{W}_{\mathrm{e} 6}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{t}_{\mathrm{c}} \cdot \mathrm{S}_{\mathrm{w} 3} / 2 \cdots \cdots \cdots \cdots$（WELD－35，36， 44 以外の場合）
$\mathrm{W}_{\mathrm{e} 6}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{L}_{4} \cdot \mathrm{~S}_{\mathrm{w} 3} / 2 \cdots \cdots \cdots \cdots \cdots \cdots$（WELD－35，36，44の場合）

$\mathrm{W}_{\mathrm{e} 8}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{t}_{\mathrm{e}} \cdot \mathrm{S}_{\mathrm{w} 3} / 2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$（WELC． L -44 以外の場合）
$\mathrm{W}_{\mathrm{e} 8}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{L}_{5} \cdot \mathrm{~S}_{\mathrm{w} 3} / 2$ （WELD－44の場合）
$\mathrm{W}_{\mathrm{e} 9}=\pi \cdot \mathrm{d}_{\mathrm{w}} \cdot \mathrm{t}_{\mathrm{e}} \cdot \mathrm{S}_{\mathrm{w} 3} / 2$
$\mathrm{W}_{\mathrm{e} 10}=\pi \cdot\left(\frac{\mathrm{D}_{\mathrm{on}}+\mathrm{d}}{2}\right) \cdot \mathrm{t}_{\mathrm{n}} \cdot \mathrm{S}_{\mathrm{w} 4} / 2$
$\mathrm{W}_{\mathrm{e} 11}=\pi \cdot \mathrm{d}_{\mathrm{w}} \cdot\left(\frac{\mathrm{D}_{\mathrm{on}}-\mathrm{d}_{\mathrm{w}}}{2}+\mathrm{L}_{1}\right) \cdot \mathrm{S}_{\mathrm{w} 1} / 2$
（d）予想される破断箇所の強さ
イ．WELD－31の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 5} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 5} \\
& \mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 5 \mathrm{D}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=W_{\mathrm{e} 5}
\end{aligned}
$$

ロ．WELD－32の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 2} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 2} \\
& \mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}
\end{aligned}
$$

八。WELD－33の場合
$W_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 6} \ldots \ldots . . . \ldots$. を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 6}$
$\mathrm{W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \cdots \cdots \cdots \cdots$ を通る強さ $=W_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}$
$\mathrm{W}_{\mathrm{ebp} 3}=\mathrm{W}_{\mathrm{e} 7} \ldots \ldots$.
二．WELD－34の場合
$W_{\text {ebp } 1}=W_{e 1} W_{e 6} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=W_{e 1}+W_{e 6}$
$W_{e b p 2}=W_{e 1} W_{e 10} \cdots \cdots \ldots \ldots .$. を通る強さ $=W_{e 1}+W_{\text {e } 10}$
$W_{\mathrm{ebp} 3}=\mathrm{W}_{\mathrm{e} 11} \mathrm{~W}_{\mathrm{e} 7} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=W_{\mathrm{e} 11}+\mathrm{W}_{\mathrm{e} 7}$
ただし， $\mathrm{D}_{\mathrm{on}}=\mathrm{d}_{\mathrm{w}}$ の場合は $\mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{ebp} 3}$ となるため $\mathrm{W}_{\mathrm{ebp}}$ とを省略する。
ホ，WELD－35の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 6} \cdots \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 6} \\
& \mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}
\end{aligned}
$$

～．WELD－36の場合
$\mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 6} \mathrm{~W}_{\mathrm{e} 2} \cdot \cdots \cdots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 6}+\mathrm{W}_{\mathrm{e} 2}$
$\mathrm{W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}$
$W_{\text {ebp } 3}=W_{e 1} W_{e ~}$ ．．．．．．．．．．．．．を通る強さ $=W_{e 1}+W_{e 7}$
ト．WELD－38の場合
$W_{e b p 1}=W_{e 1} W_{e 2} \cdots \cdots \ldots \ldots .$. を通る強さ $=W_{e 1}+W_{e 2}$
$\mathrm{W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \ldots \ldots \ldots \ldots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}$

チ．WE L D－39の場合
$W_{e b p 1}=W_{e 1} W_{e} 6 W_{e 2} \ldots \ldots$ を通る強さ $=W_{e 1}+W_{e 6}+W_{e 2}$
$W_{e b p 2}=W_{e 1} W_{e 10} \cdots \ldots \ldots . .$. を通る強さ $=W_{e 1}+W_{e 10}$
$\mathrm{W}_{\mathrm{ebp} 3}=\mathrm{W}_{\mathrm{e} 7}$ ．．．．．．．．．．．．．．．．．．．．．．を通る強さ $=\mathrm{W}_{\mathrm{e} 7} 7$
リ．WELD－41の場合
$W_{e b p 1}=W_{e 3} W_{e 4} W_{e 2} \ldots \ldots$. を通る強さ $=W_{e 3}+W_{e 4}+W_{e 2}$
$W_{e b p 2}=W_{e 1} W_{e 8} W_{e 2} \cdot \cdots \cdot$ を通る強さ $=W_{e 1}+W_{e 8}+W_{e 2}$
$W_{\text {ebp } 3}=W_{e 9} W_{e 4} W_{e 2} \cdots \cdots \cdot$ を通る強さ $=W_{e 9}+W_{e 4}+W_{e 2}$
$W_{\text {ebp } 4}=W_{e}$ W $W_{e 4} 4$ W．．．．を通る強さ $=W_{e 3}+W_{e 4}+W_{e 10}$
$W_{\text {ebp } 5}=W_{e 1} W_{e 10} \cdots \cdots \cdots \cdots \cdots$ を通る強さ $=W_{e 1}+W_{\text {e } 10}$
ヌ．WELD－42の場合
$W_{e b p 1}=W_{e} 1 W_{e} 6 \ldots \ldots \ldots \ldots$ を通る強さ $=W_{e} 1+W_{e} 6$
$W_{\text {ebp } 2}=W_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 7} \cdots \ldots \ldots \ldots \ldots$ を通る強さ $=W_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 7}$
$W_{\text {ebp } 3}=W_{e} 3$ We $W_{e 6} \cdots \cdots$ を通る強さ $=W_{e 3}+W_{e 4}+W_{e 6}$
$W_{\text {ebp } 4}=W_{e 3} W_{e 4} W_{e 10} \cdots \cdots$ を通る強さ $=W_{e 3}+W_{e 4}+W_{\text {e } 10}$
$\mathrm{W}_{\mathrm{ebp} 5}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}$
ル。WELD－43の場合
$W_{\text {ebp } 1}=W_{e 1} W_{e 5 D} \cdots \ldots \ldots \ldots \ldots$ を通る強さ $=W_{e 1}+W_{\text {e } 5}$
$W_{e b p 2}=W_{e}$ We $W_{e 5} \ldots \ldots$ を通る強さ $=W_{e 3}+W_{e 4}+W_{e 5}$
ヲ．WELD－44の場合
$W_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 6} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=W_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 6}$

$\mathrm{W}_{\mathrm{ebp} 3}=\mathrm{W}_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 10} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 10}$
$\mathrm{W}_{\mathrm{ebp} 4}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}$

ワ．WELD－45，46の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 8} \mathrm{~W}_{\mathrm{e} 6} \ldots \ldots . . \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 8}+\mathrm{W}_{\mathrm{e} 6} 6 \\
& W_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 7} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=W_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 7} \\
& W_{e b p 3}=W_{e 3} W_{e 4} W_{e 6} \ldots \ldots . \text { を通る強さ }=W_{e 3}+W_{e 4}+W_{e 6} \\
& W_{\text {ebp } 4}=W_{\text {e } 3} W_{e 4} W_{e 10} \cdots \cdots \text { を通る強さ }=W_{e 3}+W_{e 4}+W_{\text {e } 10} \\
& W_{\text {ebp } 5}=W_{\text {e } 9} W_{\mathrm{e} 7} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=W_{\mathrm{e} 9}+W_{\mathrm{e} 7} 7 \\
& \mathrm{~W}_{\mathrm{ebp} 6}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}
\end{aligned}
$$

力．WELD－48の場合

$$
\begin{aligned}
& W_{\text {ebp } 2}=W_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 7} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=W_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 7} \\
& W_{e b p}=W_{e 3} W_{e 4} W_{e} \text { W } W_{e 2} \\
& \text {................ を通る強さ }=W_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 6}+\mathrm{W}_{\mathrm{e} 2} \\
& W_{e b p 4}=W_{e} \text { W W We. } W_{\text {e } 10} \ldots \text { を通る強さ }=W_{e 3}+W_{e 4}+W_{e 10} \\
& W_{e b p 5}=W_{e} W_{e 10} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=W_{e 1}+W_{\text {e } 10}
\end{aligned}
$$

ヨ．WELD－49の場合

$$
\begin{aligned}
& W_{e b p 1}=W_{e 1} W_{e 8} W_{e 6} W_{e 2} \\
& W_{\text {ebp } 2}=W_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 7} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=W_{\mathrm{e} 3}+W_{\mathrm{e} 7} \\
& W_{e b p 3}=W_{e 3} W_{e 4} W_{e 6} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=W_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 6}+\mathrm{W}_{\mathrm{e} 2} \\
& W_{e b p 4}=W_{e 3} \text { We4 } W_{\mathrm{e} 10} \cdots \cdots \text { を通る強さ }=W_{e 3}+W_{e 4}+W_{e 10} \\
& W_{\text {ebp } 5}=W_{e 9} W_{e 7} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=W_{e 9}+W_{\text {e } 7} \\
& \mathrm{~W}_{\mathrm{ebp} 6}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}
\end{aligned}
$$

e．評価
鏡板の穴の補強は，下記の条件を満足すれば十分である。
$\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$
$\mathrm{A}_{\mathrm{OD}} \geqq \mathrm{A}_{\mathrm{rD}}$（ただし， $\mathrm{X}_{1} \neq \mathrm{X}_{2}$ の場合のみ）
$A_{j 0} \geqq A_{j r}$（ただし，大きい穴の補強を要する場合のみ）
すべての破断箇所の強さ $\geqq \mathrm{W}$（ただし，Wが正の場合のみ）
（3）平板の場合
重大事故等クラス 2 容器については設計•建設規格 PVC－3320（2）を適用する。
a．管台の形式
図 3－1～図 3－10 及び図 3－20 に管台の形式，補強に有効な面積，補強に必要な面積，破断形式等を示す。

ただし，すみ肉溶接部分の破断箇所については，両方の脚長が等しいため，片側の脚長の破断形式のみを図示する。
b．穴の補強
（a）補強に必要な面積
設計•建設規格 PVC－3320（2）（設計•建設規格 PVC－3161．3準用）を適用する。

イ．管台の一部分が平板の部分となっていない場合及びWE LD－8， 22 の場合

$$
\mathrm{A}_{\mathrm{r}}=\mathrm{d}_{\mathrm{h}} \cdot \mathrm{t}_{\mathrm{pr}}
$$

ロ．管台の一部分が平板の部分となっている場合

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{r}}=\mathrm{d}_{\mathrm{h}} \cdot \mathrm{t}_{\mathrm{pr}}+2 \cdot\left(1-\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{p}}\right) \cdot \mathrm{t}_{\mathrm{pr}} \cdot \mathrm{t}_{\mathrm{n}} \\
& \left(\mathrm{~S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{p}}>1 \text { の場合は } \mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{p}}=1\right. \text { とする。以下, 平板の場合において同じ。) }
\end{aligned}
$$

（b）補強に有効な範囲
設計•建設規格 PVC－3320（2）（設計•建設規格 PVC－3161．1準用）を適用する。

$$
\begin{aligned}
& \mathrm{X}=\mathrm{X}_{1}+\mathrm{X}_{2} \\
& \mathrm{X}_{1}=\mathrm{X}_{2}=\operatorname{Max}\left(\mathrm{d}_{\mathrm{h}}, \quad \mathrm{~d}_{\mathrm{h}} / 2+\mathrm{t}_{\mathrm{p}}+\mathrm{t}_{\mathrm{n}}\right) \\
& \mathrm{Y}_{1}=\operatorname{Min}\left(2.5 \cdot \mathrm{t}_{\mathrm{p}}, 2.5 \cdot \mathrm{t}_{\mathrm{n}}+\mathrm{t}_{\mathrm{e}}\right) \\
& \mathrm{Y}_{2}=\operatorname{Min}\left(2.5 \cdot \mathrm{t}_{\mathrm{p}}, 2.5 \cdot \mathrm{t}_{\mathrm{n}}\right)
\end{aligned}
$$

ただし，構造上計算した有効範囲がとれない場合は，構造上取り得る範囲とする。 また，強め板がない場合は t e $=0$ とする。
（c）補強に有効な面積
設計•建設規格 PVC－3320（2）（設計•建設規格 PVC－3161．2準用）を適用する。

イ．平板の部分の補強に有効な面積
（イ）管台の一部分が平板の部分となっていない場合及びWELD－8，22 の場合

$$
\mathrm{A}_{1}=\left(\mathrm{t}_{\mathrm{p}}-\mathrm{t}_{\mathrm{pr}}\right) \cdot\left(\mathrm{X}-\mathrm{d}_{\mathrm{h}}\right)
$$

（ロ）管台の一部分が平板の部分となっている場合

$$
A_{1}=\left(t_{p}-t_{p r}\right) \cdot\left(X-d_{h}\right)-\left(1-S_{n} / S_{p}\right) \cdot\left(t_{p}-t_{p r}\right) \cdot 2 \cdot t_{n}
$$

ロ．管台の部分の補強に有効な面積
（イ）管台が平板の内側に突出していない場合及びWELD－8，22 の場合

$$
\mathrm{A}_{2}=2 \cdot\left(\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{nr}}\right) \cdot \mathrm{Y}_{1} \cdot \mathrm{~S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{p}}
$$

（ロ）管台が平板の内側に突出している場合

$$
\mathrm{A}_{2}=2 \cdot\left\{\left(\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{nr}}\right) \cdot \mathrm{Y}_{1}+\mathrm{t}_{\mathrm{n}} \cdot \mathrm{Y}_{2}\right\} \cdot \mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{p}}
$$

ただし，

$$
t_{n r}=\frac{P \cdot\left(D_{o n}-2 \cdot t_{n}\right)}{2 \cdot S_{n}-1.2 \cdot P}
$$

八．すみ肉溶接の部分の補強に有効な面積

$$
\mathrm{A}_{3}=\mathrm{L}_{1} \cdot \mathrm{~L}_{1}+\mathrm{L}_{2} \cdot \mathrm{~L}_{2}+\mathrm{L}_{3} \cdot \mathrm{~L}_{3}
$$

ただし，補強の有効範囲にないすみ肉溶接の部分は除く。

ニ．強め板の部分の補強に有効な面積

$$
\begin{aligned}
& \mathrm{A}_{4}=\left\{\operatorname{Min}\left(\mathrm{B}_{\mathrm{e}}, \mathrm{X}\right)-\mathrm{D}_{\mathrm{on}}\right\} \cdot \mathrm{t}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{p}} \\
& \quad\left(\mathrm{~S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{p}}>1 \text { の場合は } \mathrm{S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{p}}=1\right. \text { とする。以下, 平板の場合において同じ。) }
\end{aligned}
$$

ホ。 補強に有効な総面積

$$
\mathrm{A}_{0}=\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}
$$

（d）補強に有効な範囲 $\mathrm{X}_{1} \neq \mathrm{X}_{2}$ の場合の補強に有効な面積の確認
設計•建設規格 PVC－3320（2）（設計•建設規格 PVC－3165準用）を適用する。
補強に必要な面積の 2 分の 1 以上の補強に有効な面積は，穴の中心線の両側にある必要がある。

り以下の計算は行わない。

イ．補強に必要な面積の 2 分の 1

$$
\mathrm{A}_{\mathrm{rD}}=\mathrm{A}_{\mathrm{r}} / 2
$$

ロ． X_{1} 又は X_{2} のいずれか小さい方の断面における補強に有効な面積
（イ）平板の部分の補強に有効な面積
－管台の一部分が平板の部分となっていない場合及びWELD－8， 22 の場合

$$
\mathrm{A}_{1 \mathrm{D}}=\left(\mathrm{t}_{\mathrm{p}}-\mathrm{t}_{\mathrm{pr}}\right) \cdot\left\{\operatorname{Min}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)-\mathrm{d}_{\mathrm{h}} / 2\right\}
$$

－管台の一部分が平板の部分となっている場合

$$
\begin{aligned}
A_{1 D}= & \left(t_{p}-t_{p r}\right) \cdot\left\{\operatorname{Min}\left(X_{1}, X_{2}\right)-d_{h} / 2\right\} \\
& -\left(1-S_{n} / S_{p}\right) \cdot\left(t_{p}-t_{p r}\right) \cdot t_{n}
\end{aligned}
$$

（ロ）管台の部分の補強に有効な面積

$$
\mathrm{A}_{2 \mathrm{D}}=\mathrm{A}_{2} / 2
$$

（ハ）すみ肉溶接の部分の補強に有効な面積

$$
\mathrm{A}_{3 \mathrm{D}}=\mathrm{A}_{3} / 2
$$

（ニ）強め板の部分の補強に有効な面積

$$
\mathrm{A}_{4 \mathrm{D}}=\mathrm{A}_{4} / 2
$$

（ホ）補強に有効な総面積

$$
\mathrm{A}_{0 \mathrm{D}}=\mathrm{A}_{1 \mathrm{D}}+\mathrm{A}_{2 \mathrm{D}}+\mathrm{A}_{3 \mathrm{D}}+\mathrm{A}_{4 \mathrm{D}}
$$

c．溶接部の強度
設計•建設規格 PVC－3320（2）（設計•建設規格 PVC－3168 及びPVC－3169 準用）を適用する。
（a）溶接部の負うべき荷重
次の 2 つの計算式（ W_{1} 及び W_{2} ）により求めた荷重のらちいずれか小さい方

$$
\mathrm{W}_{1}=\left(\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}\right) \cdot \mathrm{S}_{\mathrm{p}}
$$

管台の一部分が平板の部分となっていない場合及びWELD－8， 22 の場合

$$
\mathrm{W}_{2}=\left(\mathrm{d}_{\mathrm{h}} \cdot \mathrm{t}_{\mathrm{pr}}-\mathrm{A}_{1}\right) \cdot \mathrm{S}_{\mathrm{p}}
$$

管台の一部分が平板の部分となっている場合

$$
\mathrm{W}_{2}=\left(\mathrm{d}_{\mathrm{w}} \cdot \mathrm{t}_{\mathrm{pr}}-\mathrm{A}_{1}\right) \cdot \mathrm{S}_{\mathrm{p}}
$$

よって， $\mathrm{W}=\operatorname{Min}\left(\mathrm{W}_{1}, \mathrm{~W}_{2}\right)$
ここで， $\mathrm{W}<0$ の場合は溶接部の強度計算は必要ない。
一方，W $\geqq 0$ の場合は以下の溶接部の強度計算を行う。
（b）溶接部の単位面積当たりの強さ

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{w} 1}=\mathrm{S}_{\mathrm{p}} \cdot \mathrm{~F}_{1} \\
& \mathrm{~S}_{\mathrm{w} 2}=\mathrm{S}_{\mathrm{p}} \cdot \mathrm{~F}_{2} \\
& \mathrm{~S}_{\mathrm{w} 3}=\mathrm{S}_{\mathrm{p}} \cdot \mathrm{~F}_{3} \\
& \mathrm{~S}_{\mathrm{w} 4}=\operatorname{Min}\left(\mathrm{S}_{\mathrm{p}}, \quad \mathrm{~S}_{\mathrm{n}}\right) \cdot \mathrm{F}_{4}
\end{aligned}
$$

（c）継手部の強さ

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{e} 1}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{~L}_{1} \cdot \mathrm{~S}_{\mathrm{w} 1} / 2
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{e} 2}=\pi \cdot\left(\mathrm{d}_{\mathrm{h}}-2 \cdot \mathrm{~L}_{2}\right) \cdot \mathrm{L}_{2} \cdot \mathrm{~S}_{\mathrm{w} 1} / 2 \ldots \ldots \ldots \ldots \ldots \text { (WELD}-17 \text { の場合) } \\
& \mathrm{W}_{\mathrm{e} 3}=\pi \cdot \mathrm{B}_{\mathrm{e}} \cdot \mathrm{~L}_{2} \cdot \mathrm{~S}_{\mathrm{w} 1} / 2 \\
& \mathrm{~W}_{\mathrm{e} 4}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot\left(\frac{\mathrm{~d}_{\mathrm{w}}-\mathrm{D}_{\mathrm{on}}}{2}\right) \cdot \mathrm{S}_{\mathrm{w} 2 / 2} \\
& \mathrm{~W}_{\mathrm{e} 5}=\pi \cdot\left(\frac{\mathrm{D}_{\mathrm{on}}+\mathrm{dhh}}{2}\right) \cdot \mathrm{t}_{\mathrm{n}} \cdot \mathrm{~S}_{\mathrm{w} 2} / 2 \\
& \mathrm{~W}_{\mathrm{e} 6}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{t}_{\mathrm{p}} \cdot \mathrm{~S}_{\mathrm{w} 3} / 2 \cdots \ldots \ldots \ldots \ldots \text { (WELD-5, 6, } 14 \text { 以外の場合) } \\
& \mathrm{W}_{\mathrm{e} 6}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{~L}_{4} \cdot \mathrm{~S}_{\mathrm{w} 3} / 2 \cdots \ldots \ldots \ldots \ldots \ldots \text { (WELD}-5,6 \text {, } 14 \text { の場合) } \\
& \mathrm{W}_{\mathrm{e} 7}=\pi \cdot \mathrm{d}_{\mathrm{w}} \cdot \mathrm{t}_{\mathrm{p}} \cdot \mathrm{~S}_{\mathrm{w} 3} / 2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots .
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{e} 8}=\pi \cdot \mathrm{D}_{\mathrm{on}} \cdot \mathrm{t}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{w} 3} / 2 \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{e} 9}=\pi \cdot \mathrm{d}_{\mathrm{w}} \cdot \mathrm{t}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{w} 3} / 2 \\
& \mathrm{~W}_{\mathrm{e} 10}=\pi \cdot\left(\frac{\mathrm{D}_{\mathrm{on}}+\mathrm{dh}_{\mathrm{h}}}{2}\right) \cdot \mathrm{t}_{\mathrm{n}} \cdot \mathrm{~S}_{\mathrm{w} 4} / 2
\end{aligned}
$$

（d）予想される破断箇所の強さ
イ．WELD－1の場合

$$
\begin{aligned}
& W_{e b p 1}=W_{e 1} W_{e 5} \cdots \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=W_{e ~} 1+W_{e 5} \\
& W_{\text {ebp } 2}=W_{e 5 D} \cdots \cdots \cdots \cdots \cdots \cdots \cdot \text { を通る強さ }=W_{e 5}
\end{aligned}
$$

口．WELD－2 の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 2} \cdots \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 2} \\
& \mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}
\end{aligned}
$$

八．WELD－3の場合

$$
\begin{aligned}
& W_{\text {ebp } 1}=W_{e 1} W_{e 6} \text {.............. を通る強さ }=W_{e} 1+W_{\text {e } 6} \\
& \mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \text { We10 } \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=W_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10} \\
& \mathrm{~W}_{\mathrm{ebp} 3}=\mathrm{W}_{\mathrm{e} 7} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 7}
\end{aligned}
$$

二．WELD－4の場合

$$
\begin{aligned}
& W_{e b p 1}=W_{e 1} W_{e 6} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=W_{e 1}+W_{e 6} \\
& W_{\mathrm{ebp} 2}=W_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10} \\
& W_{\text {ebp } 3}=W_{e 11} W_{e 7} \text {............. を通る強さ }=W_{\mathrm{e} 11}+\mathrm{W}_{\mathrm{e} 7} \\
& \text { ただし, } \mathrm{D}_{\mathrm{on}}=\mathrm{d}_{\mathrm{w}} \text { の場合は } \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{ebp}} \text { と となるため } \mathrm{W}_{\mathrm{ebp} 3 \text { を省略する。 }}
\end{aligned}
$$

ホ．WELD－5 の場合
$\mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 6} \cdots \cdots \cdots \cdots \cdots \cdots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 6}$
$\mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}$

へ．WELD－6の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 6} \mathrm{~W}_{\mathrm{e} 2} \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 6}+\mathrm{W}_{\mathrm{e} 2} \\
& \mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10} \\
& \mathrm{~W}_{\mathrm{ebp} 3}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 7} \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 7}
\end{aligned}
$$

ト．WELD－8の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 2} \cdots \cdots \cdots \cdots \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 2} \\
& \mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \cdots \cdots \cdots \cdot \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}
\end{aligned}
$$

チ．WELD－9の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 6} \mathrm{~W}_{\mathrm{e} 2} \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 6}+\mathrm{W}_{\mathrm{e} 2} \\
& \mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10} \\
& \mathrm{~W}_{\mathrm{ebp} 3}=\mathrm{W}_{\mathrm{e} 7} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 7}
\end{aligned}
$$

リ．WELD－11の場合
$W_{e b p 1}=W_{e 3} W_{e 4} W_{e 2} \ldots \ldots$. を通る強さ $=W_{e 3}+W_{e 4}+W_{e 2}$
$W_{e b p 2}=W_{e 1} W_{e 8} W_{e 2} \ldots \ldots$ を通る強さ $=W_{e 1}+W_{e 8}+W_{e 2}$
$W_{\text {ebp } 3}=W_{e 9} W_{\text {e } 4} W_{e 2} \ldots \ldots$ を通る強さ $=W_{e 9}+W_{e 4}+W_{e 2}$
$W_{e b p 4}=W_{e 3} W_{e 4} W_{e 10} \ldots .$. を通る強さ $=W_{e 3}+W_{e 4}+W_{e 10}$
$\mathrm{W}_{\mathrm{ebp} 5}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \cdots \cdots \ldots \ldots .$. を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}$
ヌ．WE LD－12の場合
$\mathrm{W}_{\mathrm{ebp} 1}=\mathrm{We}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 6} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 6}$
$W_{\text {ebp } 2}=W_{e 3} W_{e 7} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=W_{e 3}+W_{\text {e } 7}$
$W_{\text {ebp } 3}=W_{e ~}$ We $W_{\text {e } 6} \ldots \ldots$ を通る強さ $=W_{e 3}+W_{e 4}+W_{e 6}$
$W_{\text {ebp } 4}=W_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 4} \mathrm{~W}_{\mathrm{e} 10} \ldots . .$. を通る強さ $=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 10}$
$\mathrm{W}_{\mathrm{ebp} 5}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \ldots \ldots \ldots \ldots \ldots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}$
ル。WELD－13の場合
$\mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 5 \mathrm{D}} \ldots \ldots \ldots \ldots \ldots$. を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 5}$
$\mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 5} \ldots \ldots \ldots$ を通る強さ $=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 5}$

ヲ．WELD－14の場合

Webp 1	N	を通る強さ $=\mathrm{W}_{\text {e } 3}+\mathrm{W}_{\text {e } 6}$
Webp 2	$W_{\text {e } 1} W_{\text {e } 8} W_{\text {e } 6}$	を通る強さ $=\mathrm{W}_{\text {e } 1}+\mathrm{W}_{\text {e } 8}+\mathrm{W}_{\text {e } 6}$
Webp 3	$=W_{\text {e } 3} W_{\text {e } 10}$	を通る強さ $=W_{\text {e } 3}+W_{\text {e } 10}$
Webp 4	$=W_{e 1} W_{e 10}$	を通る強さ $=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\text {e } 10}$

ワ．WE L D－15，16，22 の場合

カ．WELD－17の場合

$$
W_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 2} \cdots \ldots \ldots \ldots \ldots \text { を通る強さ }=W_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 2}
$$

ヨ．WELD－18の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ebp} 1}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 6} \mathrm{~W}_{\mathrm{e} 2} \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 6}+\mathrm{W}_{\mathrm{e} 2} \\
& \mathrm{~W}_{\mathrm{ebp} 2}=\mathrm{W}_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 7} 7 \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 7} \\
& \mathrm{~W}_{\mathrm{ebp} 3}=\mathrm{W}_{\mathrm{e} \cdot} \mathrm{~W}_{\mathrm{e} 4} \mathrm{~W}_{\mathrm{e} 6} \mathrm{~W}_{\mathrm{e} 2}
\end{aligned}
$$

$$
\text { を通る強さ }=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 6}+\mathrm{W}_{\mathrm{e} 2}
$$

$$
\mathrm{W}_{\mathrm{ebp} 4}=\mathrm{W}_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 4} \mathrm{~W}_{\mathrm{e} 10} \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 10}
$$

$$
\mathrm{W}_{\mathrm{ebp} 5}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \cdots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}
$$

夕．WELD－19， $19^{\text {－の場合 }}$

$$
\ldots
$$

$$
\mathrm{W}_{\mathrm{ebp} 4}=\mathrm{We}_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 4} \mathrm{~W}_{\mathrm{e} 10} \cdots \cdots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 10}
$$

$$
W_{\text {ebp } 5}=W_{\mathrm{e} 9} 9 \mathrm{~W}_{\mathrm{e} 7} \cdots \ldots \ldots \ldots \text { を通る強さ }=W_{\mathrm{e} 9}+\mathrm{W}_{\mathrm{e} 7} 7
$$

$$
\mathrm{W}_{\mathrm{ebp} 6}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}
$$

d．評価

平板の穴の補強は，下記の条件を満足すれば十分である。
$\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}} / 2$
$\mathrm{A}_{0 \mathrm{D}} \geqq \mathrm{A}_{\mathrm{r} \mathrm{D}}$（ただし， $\mathrm{X}_{1} \neq \mathrm{X}_{2}$ の場合のみ）
すべての破断箇所の強さ $\geqq \mathrm{W}$（ただし，Wが正の場合のみ）

$$
\begin{aligned}
& W_{e b p 1}=W_{e 1} W_{e 8} W_{e} \text { We } 2 \\
& \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 8}+\mathrm{W}_{\mathrm{e} 6}+\mathrm{W}_{\mathrm{e} 2} \\
& W_{\text {ebp } 2}=W_{\mathrm{e} 3} \mathrm{~W}_{\mathrm{e} 7} \cdots \cdots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 7} \\
& W_{\text {ebp } 3}=W_{e} \text { We } 4 \text { We } W_{\text {e } 2}
\end{aligned}
$$

$$
\begin{aligned}
& W_{\text {ebp } 1}=W_{e 1} W_{e 8} W_{\mathrm{e} 6} \ldots \ldots . \text { を通る強さ }=W_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 8}+\mathrm{W}_{\mathrm{e} 6} \\
& W_{\text {ebp } 2}=W_{e 3} W_{e 7} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=W_{\text {e } 3}+W_{\text {e } 7} \\
& W_{\text {ebp } 3}=W_{\text {e } 3} W_{\mathrm{e} 4} \mathrm{We}_{\mathrm{e}} \ldots \ldots . . \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 3}+\mathrm{W}_{\mathrm{e} 4}+\mathrm{W}_{\mathrm{e} 6} \\
& W_{\text {ebp } 4}=W_{\text {e } 3} W_{e 4} 4 \text { We... を通る強さ }=W_{e 3}+W_{e 4}+W_{\text {e } 10} \\
& W_{\text {ebp } 5}=W_{\mathrm{e} 9} \mathrm{~W}_{\mathrm{e} 7} \ldots \ldots \ldots \ldots \ldots \text { を通る強さ }=W_{\mathrm{e} 9}+W_{\mathrm{e} 7} 7 \\
& \mathrm{~W}_{\mathrm{ebp} 6}=\mathrm{W}_{\mathrm{e} 1} \mathrm{~W}_{\mathrm{e} 10} \cdots \ldots \ldots \ldots \ldots \text { を通る強さ }=\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 10}
\end{aligned}
$$

3.3 開放タンクの胴の穴の補強計算

重大事故等クラス 2 容器については設計•建設規格 PVC－3940及びPVC－3950を適用する。 ただし，穴の径が 85 mm 以下の場合は計算を行わない。
ここで，最高使用圧力 Pは，次の式による値とする。

$$
\mathrm{P}=9.80665 \times 10^{-3} \cdot \mathrm{H} \cdot \rho
$$

開放タンクの胴に穴を設ける場合は，3．2 項「容器の穴の補強計算」を適用する。
3.42 つ以上の穴が接近しているときの補強計算

重大事故等クラス 2 容器については，設計•建設規格 PVC－3162を適用する。
（1）記号の定義

設計•建設 規格の記号	計算書の表示	表示内容	単位
As	A_{1}	2 つの穴の間及び強め板の断面積の和	mm^{2}
	A_{2}	2 つの穴の間の胴板内に溶着された管壁の断面積	mm^{2}
	$\mathrm{A}_{\text {d }}$	A_{1} と A_{2} の和	mm ${ }^{2}$
	A_{r}	$\mathrm{A}_{\mathrm{r} 1}$ と $\mathrm{A}_{\mathrm{r} 2}$ の和の $1 / 2$	mm^{2}
	$\mathrm{A}_{\mathrm{r} 1}, \mathrm{~A}_{\mathrm{r} 2}$	2 つの穴のそれぞれの補強に必要な断面積	mm^{2}
	$\mathrm{A}_{\mathrm{r}} \mathrm{s}$	2 つの穴の間の強め材の断面積	mm^{2}
	A s	2 つの穴の間に必要な胴の断面積（胴板内に溶着され た管壁を含む。）	mm^{2}
	d	2 つの穴の中心間に必要な距離	mm
	$\mathrm{d}_{1}, \mathrm{~d}_{2}$	2 つの穴のそれぞれの直径	mm
F	F	係数	－
l	ℓ	2 つの穴の中心間の距離	mm
	$\mathrm{L}_{1 \mathrm{i}}, \mathrm{L}_{2 i}$	2 つの穴のそれぞれの内側溶け込み深さ	mm
	$\mathrm{L}_{10}, \mathrm{~L}_{2}$ 。	2 つの穴のそれぞれの外側溶け込み深さ	mm
	$\mathrm{t}_{1}, \mathrm{t}_{2}$	2 つの穴のそれぞれの管壁の厚さ	mm
t s r	ts r	胴の継手がない場合の計算上必要な厚さ	mm
ts r	t c r	鏡板の継手がない場合の計算上必要な厚さ	mm
ts r	$\mathrm{t}_{\mathrm{p}} \mathrm{r}$	平板の計算上必要な厚さ	mm

（2）算式
2 つ以上の穴が接近しているためそれぞれの補強に有効な範囲が重なり合らときは次によ る。
$\mathrm{d}=1.5 \cdot\left(\frac{\mathrm{~d}_{1}+\mathrm{d}_{2}}{2}\right)$
$\mathrm{A}_{\mathrm{r}}=0.5 \cdot\left(\mathrm{~A}_{\mathrm{r} 1}+\mathrm{A}_{\mathrm{r} 2}\right)$
$\mathrm{A}_{\mathrm{s}}=0.7 \cdot \ell \cdot \mathrm{t}_{\mathrm{s} \mathrm{r}} \cdot \mathrm{F} \quad$（胴の補強計算の場合）
$\mathrm{A}_{\mathrm{s}}=0.7 \cdot \ell \cdot \mathrm{t}_{\mathrm{cr}} \cdot \mathrm{F} \quad$（鏡板の補強計算の場合）
$\mathrm{A}_{\mathrm{s}}=0.7 \cdot \ell \cdot \mathrm{t}_{\mathrm{pr}} \cdot \mathrm{F} \quad$（平板の補強計算の場合）
$\mathrm{A}_{\mathrm{d}}=\mathrm{A}_{1}+\mathrm{A}_{2}$
（3）評価
下記の条件を満足すれば十分である。 $\ell \geqq d, \quad A_{r s} \geqq A_{r}, \quad A_{d} \geqq A_{s}$

ここで，各形式図（図 3－1～図3－39）において，胴，鏡板又は平板の最小厚さ及び穴の補強計算に用いる計算上必要な厚さは，それぞれ胴の場合は $\mathrm{t} \mathrm{s}, ~ \mathrm{t} \mathrm{sr}$ ，鏡板の場合は t c ， $t_{c r}$ ，平板の場合は t_{p} ，$t_{p r}$ と読替えを行う。
また，各形式図中の d は，平板の場合は d_{h} と読替えを行う。

WELD－1

WELD－2

補強に有効な面積

補強に必要な面積

図 3－1
注： $\mathrm{W}_{\mathrm{e} 1}$ 等で示される図中の太線は，予想される破断形式を示す。（以降，同様）

補強に有効な面積

補強に必要な面積

図 3－2

WELD－5

補強に有効な面積
補強に必要な面積

図 3－3

WELD－8

補強に有効な面積
補強に必要な面積

図 3－4

WELD－12

補強に有効な面積
－x x 水強に必要な面積

図 3－5

WELD－13

WE LD－14

補強に有効な面積
補強に必要な面積

図 3－6

補強に有効な面積
補強に必要な面積

図 3－7

WELD－17

WE LD－18
補強に有効な面積
補強に必要な面積

図 3－8

WELD－19

WE LD－19＇
N／N1N 補強に有効な面積

図 3－9

WELD-22

図 3-10

補強に有効な面積

補強に必要な面積

図 $3-11$

補強に有効な面積
補強に必要な面積

図 $3-12$

補強に有効な面積
補強に必要な面積

図 $3-13$

図 $3-14$

図 3－15

補強に有効な面積
補強に必要な面積

図 3－16

WELD－45

補強に必要な面積

図 $3-17$

図 $3-18$

図 3－19

PLATE－1
NINT 補強に有効な面積
補強に必要な面積

図 3－20

WELD－1

WELD－2

大きい穴の補強に有効な面積
大きい穴の補強に必要な面積

図 3－21

WELD－4

大きい穴の補強に有効な面積
大きい穴の補強に必要な面積

図 3－22

WELD－5

WELD－6

大きい穴の補強に有効な面積

大きい穴の補強に必要な面積

図 3－23

WELD－8

大きい穴の補強に有効な面積
大きい穴の補強に必要な面積

図 3－24

WELD－11

WELD－12

大きい穴の補強に必要な面積

図 3－25

WELD－13

大きい穴の補強に有効な面積
大きい穴の補強に必要な面樻

図 3－26

WELD－16

大きい穴の補強に有効な面積

大きい穴の補強に必要な面積

図 3－27

WELD－17

WELD－18

大きい穴の補強に有効な面積
×x x x \quad 大きい穴の補強に必要な面積
図 3－28

WELD－19

WELD－19＇
大きい穴の補強に有効な面積
× × × × 大きい穴の補強に必要な面積
図 3－29

O 2 (1) VI-3-2-8 R 1

図 3-30

図 3-31

大きい穴の補強に有効な面積
大きい穴の補強に必要な面積

図 3－32

大きい穴の補強に有効な面積
大きい穴の補強に必要な面積

図 3－33

大きい穴の補強に有効な面積
大きい穴の補強に必要な面積

図 3－34

図 3－35

図 3－36

WELD－45

大きい穴の補強に有効な面積
大きい穴の補強に必要な面積

図 3－37

図 3－38

4．フランジの強度計算
重大事故等クラス 2 容器については設計•建設規格 PVC－3710を適用する。
計算は，J I S B 8 2 6 5 を適用する。
フランジ形式及び各部の記号は図 4－1～図 4－3 による。
4.1 記号の説明

$\begin{aligned} & \hline \text { J I S } \\ & \text { の記号 } \end{aligned}$	計算書の表示	表示内容	単位
A	A	フランジの外径	mm
A ${ }_{\text {b }}$	A ${ }_{\text {b }}$	実際に使用するボルトの総有効断面積	mm^{2}
A_{m}	A_{m}	ボルトの総有効断面積	mm ${ }^{2}$
$\mathrm{A}_{\mathrm{m} 1}$	$\mathrm{A}_{\mathrm{m} 1}$	使用状態でのボルトの総有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{m} 2}$	$\mathrm{A}_{\mathrm{m} 2}$	ガスケット締付時のボルトの総有効断面積	mm^{2}
B	B	フランジの内径	mm
b	b	ガスケット座の有効幅	mm
b 0	b 0	ガスケット座の基本幅（J I S B 8 265 附属書3表3による。）	mm
C	C	ボルト穴の中心円の直径	mm
d	d	$\text { 係数 }\left\{\begin{array}{l} \text { •一体形フランジ及び一体形フランジとして } \\ \text { 計算する任意形フランジの場合 } \\ \frac{\mathrm{U}}{\mathrm{~V}} \cdot \mathrm{~h}_{0} \cdot \mathrm{~g}_{0}{ }^{2} \\ \text { ・ルーズ形フランジ及びルーズ形フランジと } \\ \text { して計算する任意形フランジの場合 } \\ \frac{\mathrm{U}}{\mathrm{~V}_{\mathrm{L}}} \cdot \mathrm{~h}_{0} \cdot \mathrm{~g}_{0}{ }^{2} \end{array}\right.$	mm^{3}
d_{b}	$\mathrm{d}_{\text {b }}$	ボルトのねじ部の谷の径と軸部の径の最小部の小さ い方の径	mm
Dg	Dg	$\begin{aligned} & \text { セルフシールガスケットの外径 } \\ & \qquad \begin{array}{l} \text { •一体形フランジ及び一体形フランジとして } \\ \text { 計算する任意形フランジの場合 } \\ \frac{\mathrm{F}}{\mathrm{~h}_{0}} \end{array} \end{aligned}$	mm
e	e	$\text { 係数 }\left\{\begin{array}{l} \text { ・ルーズ形フランジ及びルーズ形フランジと } \\ \text { して計算する任意形フランジの場合 } \\ \frac{\mathrm{F}_{\mathrm{L}}}{\mathrm{~h}_{0}} \end{array}\right.$	mm^{-1}

$\begin{aligned} & \hline \text { J I S S } \\ & \text { の記号 } \end{aligned}$	計算書の表示	表示内容	単位
F	F	一体形フランジ及び一体形フランジとして計算する任意形フランジの係数（J I S B 8 265 附属書3 図5又は附属書3表4による。）	－
F_{L}	F_{L}	ルーズ形フランジ及びルーズ形フランジとして計算 する任意形フランジの係数（J I S B 8 265附属書3 図6又は附属書3表4による。）	－
f	f	ハブ応力修正係数（J I S B 8 265 附属書 3図 4 又は附属書 3 表 4 による。）	－
	F L A NGE－	フランジの形式（J I S B 8 2 6 5 による。図 4－1～図 4－3 参照）	－
G	G	ガスケット反力円の直径	mm
	$\mathrm{G}_{\text {s }}$	ガスケット接触面の外径	mm
g o	g o	ハブ先端の厚さ	mm
g i	g i	フランジ背面のハブの厚さ	mm
H	H	内圧によってフランジに加わる全荷重	N
h	h	ハブの長さ	mm
H_{D}	H_{D}	圧力によってフランジの内径面に加わる荷重	N
h_{D}	h_{D}	ボルト穴の中心円から H_{D} 作用点までの半径方向の距離	mm
H_{G}	H_{G}	ガスケット荷重	N
h_{G}	h_{G}	ボルト穴の中心円から H_{G} 作用点までの半径方向の距離	mm
h o	h o	$\sqrt{B \cdot g_{0}}$	mm
H_{P}	H_{P}	気密を十分に保つために，ガスケット又は継手接触面に加える圧縮力	N
H_{T}	H_{T}	圧力によってフランジに加わる全荷重とフランジの内径面に加わる荷重との差	N
h_{T}	h_{T}	ボルト穴の中心円から H_{T} 作用点までの半径方向の距離	mm
K	K	フランジの内外径の比（ $=\mathrm{A} / \mathrm{B}$ ）	－
L	L	係数 $\left(=\frac{t \cdot e+1}{T}+\frac{t^{3}}{d}\right)$	－
m	m	ガスケット係数（J I S B 8 265 附属書 3表2による。）	－
$M_{\text {D }}$	$M_{\text {D }}$	内圧によってフランジの内径面に加わる荷重による モーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{G}	M_{G}	ガスケット荷重によるモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{g}	M_{g}	ガスケット締付時にフランジに作用するモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{0}	M_{0}	使用状態でフランジに作用するモーメント	$\mathrm{N} \cdot \mathrm{mm}$

J I S の記号	計算書の表示	表示内容	単位
M_{T}	M_{T}	内圧によってフランジに加わる全荷重とフランジの内径面に加わる荷重との差によるモーメント	$\mathrm{N} \cdot \mathrm{mm}$
N	N	ガスケットの接触面の幅（J I S B 8 265附属書3表3による。）	mm
n	n	ボルトの本数	－
R	R	ボルトの中心円からハブとフランジ背面との交点ま での半径方向の距離	mm
T	T	$\mathrm{K}=\mathrm{A} / \mathrm{B}$ の値によって定まる係数（J I S B 8265 附属書3 図7又は図中の算式による。）	－
t	t	フランジの厚さ	mm
U	U	$\mathrm{K}=\mathrm{A} / \mathrm{B}$ の値によって定まる係数（J I S B 8265 附属書3図7又は図中の算式による。）	－
V	V	一体形フランジ及び一体形フランジとして計算する任意形フランジの係数（J I S B 8 265 附属書3 図8又は附属書3表4による。）	－
V_{L}	V_{L}	ルーズ形フランジ及びルーズ形フランジとして計算 する任意形フランジの係数（J I S B 8 265附属書3 図9又は附属書3表4による。）	－
W_{g}	W_{g}	ガスケット締付時のボルト荷重	N
$\mathrm{W}_{\mathrm{m} 1}$	$\mathrm{W}_{\mathrm{m} 1}$	使用状態での必要な最小ボルト荷重	N
$\mathrm{W}_{\mathrm{m} 2}$	$\mathrm{W}_{\mathrm{m} 2}$	ガスケット締付時に必要な最小ボルト荷重	N
W_{0}	W_{0}	使用状態でのボルト荷重	N
Y	Y	$\mathrm{K}=\mathrm{A} / \mathrm{B}$ の値によって定まる係数（J I S B 8265 附属書3 図7又は図中の算式による。）	－
y	y	ガスケットの最小設計締付圧力（J I S B 82 65 附属書3表2による。）	$\mathrm{N} / \mathrm{mm}^{2}$
Z	Z	$\mathrm{K}=\mathrm{A} / \mathrm{B}$ の値によって定まる係数（J I S B 8265 附属書3 図7又は図中の算式による。）	－
π	π	円周率	－
σ a	σ a	常温におけるボルト材料の許容引張応力 （設計•建設規格 付録材料図表 Part5 表7に よる。）	MPa
σ b	σ b	最高使用温度におけるボルト材料の許容引張応力 （設計•建設規格 付録材料図表 Part5 表 7 に よる。）	MPa
σ f	$\sigma \mathrm{fa}$	常温におけるフランジ材料の許容引張応力 （設計•建設規格 付録材料図表 Part5 表5 又 は表 6 による。）	MPa
σ f	σ f	最高使用温度におけるフランジ材料の許容引張応力 （設計•建設規格 付録材料図表 Part5 表5又 は表 6 による。）	MPa
σ n	$\sigma_{\mathrm{n}} \mathrm{a}$	管台又は胴の材料の常温における許容引張応力 （設計•建設規格 付録材料図表 Part5 表5又 は表 6 による。）	MPa

$\begin{gathered} \text { J I S } \\ \text { の記号 } \end{gathered}$	計算書の表示	表示内容	単位
σ n	σ n	管台又は胴の材料の最高使用温度における許容引張応力（設計•建設規格 付録材料図表 Part5 表5又は表 6 による。） ハブの軸方向応力	MPa
$\sigma_{\text {H }}$	$\sigma_{\text {H }}$		MPa ＊
$\sigma \mathrm{R}$	σ R	フランジの径方向応力	MPa ＊
σ T	σ T	フランジの周方向応力	$\mathrm{MPa} *$
	ガスケット座面の形状	ガスケット座面の形状（J I S B 8 265 附属書3表3による。）	－

注記＊：J I S B 8 2 6 5 は「N／mm²」を使用しているが，設計•建設規格に合わせ「MPa」 に読み替えるものとする。

4.2 算式

（1）フランジの内圧計算
任意形フランジは，一体形フランジとして計算する。

ただし，下記条件をすべて満足する場合には，ハブなしルーズ形フランジとして計算す る。
－ $\mathrm{g}_{0} \leqq 16 \mathrm{~mm}$
－B／g o $\leqq 300$
－ $\mathrm{P} \leqq 2 \mathrm{MPa}$
－最高使用温度 $\leqq 370{ }^{\circ} \mathrm{C}$
a．ガスケット座の有効幅及びガスケット反力円の直径
ガスケット座の有効幅 b 及びガスケット反力円の直径Gは，ガスケット座の基本幅 b 。 に従い以下のように求める。

ここで，boはJ I S B 8 2 65 附属書 3 表 3 による。
－ $\mathrm{b}_{0} \leqq 6.35 \mathrm{~mm}$ の場合
$\mathrm{b}=\mathrm{b}{ }_{\mathrm{o}}$
$\mathrm{G}=\mathrm{G}_{\mathrm{s}}-\mathrm{N}$
－ $\mathrm{b}_{\mathrm{o}}>6.35 \mathrm{~mm}$ の場合

$$
\begin{aligned}
& \mathrm{b}=2.52 \cdot \sqrt{\mathrm{~b}_{0}} \\
& \mathrm{G}=\mathrm{G}_{\mathrm{s}}-2 \cdot \mathrm{~b}
\end{aligned}
$$

b．計算上必要なボルト荷重
（a）使用状態で必要なボルト荷重

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{m} 1}=\mathrm{H}+\mathrm{H}_{\mathrm{p}} \\
& \mathrm{H}=\frac{\pi}{4} \cdot \mathrm{G}^{2} \cdot \mathrm{P} \\
& \mathrm{H}_{\mathrm{P}}=2 \cdot \pi \cdot \mathrm{~b} \cdot \mathrm{G} \cdot \mathrm{~m} \cdot \mathrm{P}
\end{aligned}
$$

（b）ガスケット締付時に必要なボルト荷重

$$
\mathrm{W}_{\mathrm{m} 2}=\pi \cdot \mathrm{b} \cdot \mathrm{G} \cdot \mathrm{y}
$$

熱交換器の管板を挟む一対のフランジのように，フランジ又はガスケットが同一でな い場合は， $\mathrm{W}_{\mathrm{m} 1}$ 及び $\mathrm{W}_{\mathrm{m} 2}$ の値は，それぞれのフランジ又はガスケットについて計算し た値のうちの大きい方とし，その値を両方のフランジの計算に用いる。

また，セルフシールガスケットを用いる場合は，

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{m} 1}(=\mathrm{H})=\frac{\pi}{4} \cdot \mathrm{D}_{\mathrm{g}}^{2} \cdot \mathrm{P} \\
& \mathrm{~W}_{\mathrm{m} 2}=0
\end{aligned}
$$

とする。
c．ボルトの総有効断面積及び実際に使用するボルトの総有効断面積

$$
\mathrm{A}_{\mathrm{m} 1}=\mathrm{W}_{\mathrm{m} 1} / \sigma_{\mathrm{b}} \quad \text { (使用状態) }
$$

$\mathrm{A}_{\mathrm{m} 2}=\mathrm{W}_{\mathrm{m} 2} / \sigma_{\mathrm{a}} \quad$（ガスケット締付時）
$\mathrm{A}_{\mathrm{m}}=\operatorname{Max}\left(\mathrm{A}_{\mathrm{m} 1}, \mathrm{~A}_{\mathrm{m} 2}\right)$
$\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{b}}{ }^{2} \cdot \mathrm{n}$
d．フランジの計算に用いるボルト荷重
$\mathrm{W}_{\mathrm{o}}=\mathrm{W}_{\mathrm{m} 1}$（使用状態）
$\mathrm{W}_{\mathrm{g}}=\left(\mathrm{A}_{\mathrm{m}}+\mathrm{A}_{\mathrm{b}}\right) \cdot \sigma_{\mathrm{a}} / 2$（ガスケット締付時）
e．使用状態でフランジに加わる荷重

$$
\begin{aligned}
& H_{D}=\frac{\pi}{4} \cdot B^{2} \cdot \mathrm{P} \\
& H_{G}=W_{0}-H \\
& H_{T}=H-H_{D}
\end{aligned}
$$

f．使用状態でのフランジ荷重に対するモーメントアーム

フランジの形式	h_{D}	h_{G}	h_{r}
一体形フランジ及び一 体形フランジとして計 算する任意形フランジ	$\mathrm{R}+0.5 \cdot \mathrm{~g}_{1}$	$\frac{\mathrm{C}-\mathrm{G}}{2}$	$\frac{\mathrm{R}+\mathrm{g}_{1}+\mathrm{h}_{\mathrm{G}}}{2}$
差込み形フランジ及び ルーズ形フランジとし て計算する任意形フラ ンジ	$\frac{\mathrm{C}-\mathrm{B}}{2}$	$\frac{\mathrm{C}-\mathrm{G}}{2}$	$\frac{\mathrm{~h}_{\mathrm{D}}+\mathrm{h}_{\mathrm{G}}}{2}$
ラップジョイント形 フランジ	$\frac{\mathrm{C}-\mathrm{B}}{2}$	$\frac{\mathrm{C}-\mathrm{G}}{2}$	$\frac{\mathrm{C}-\mathrm{G}}{2}$

ただし，

$$
\mathrm{R}=\left(\frac{\mathrm{C}-\mathrm{B}}{2}\right)-\mathrm{g}_{1}
$$

また，セルフシールガスケットを用いる場合は，GはD g と読み替える。
（h．こおいても同じ。）
g．使用状態でフランジに作用するモーメント

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{D}}=\mathrm{H}_{\mathrm{D}} \cdot \mathrm{~h}_{\mathrm{D}} \\
& \mathrm{M}_{\mathrm{G}}=\mathrm{H}_{\mathrm{G}} \cdot \mathrm{~h}_{\mathrm{G}} \\
& \mathrm{M}_{\mathrm{T}}=\mathrm{H}_{\mathrm{T}} \cdot \mathrm{~h}_{\mathrm{T}} \\
& \mathrm{M}_{0}=\mathrm{M}_{\mathrm{D}}+\mathrm{M}_{\mathrm{G}}+\mathrm{M}_{\mathrm{T}}
\end{aligned}
$$

h．ガスケット締付時にフランジに作用するモーメント

$$
\mathrm{M}_{\mathrm{g}}=\mathrm{W}_{\mathrm{g}} \cdot\left(\frac{\mathrm{C}-\mathrm{G}}{2}\right)
$$

i．一体形フランジ，一体形フランジとして計算する任意形フランジ及びルーズ形フラン ジでハブを考慮して計算するものの応力
（a）使用状態でのフランジ応力

$$
\begin{aligned}
& \sigma_{H}=\frac{\mathrm{f} \cdot \mathrm{M}_{0}}{\mathrm{~L} \cdot \mathrm{~g}_{1}{ }^{2} \cdot \mathrm{~B}} \\
& \sigma_{\mathrm{R}}=\frac{(1.33 \cdot \mathrm{t} \cdot \mathrm{e}+1) \cdot \mathrm{M}_{0}}{\mathrm{~L} \cdot \mathrm{t}^{2} \cdot \mathrm{~B}} \\
& \sigma_{\mathrm{T}}=\frac{\mathrm{Y} \cdot \mathrm{M}_{0}}{\mathrm{t}^{2} \cdot \mathrm{~B}}-\mathrm{Z} \cdot \sigma_{R}
\end{aligned}
$$

（b）ガスケット締付時のフランジの応力

$$
\begin{aligned}
& { }^{\sigma}{ }_{\mathrm{H}}=\frac{\mathrm{f} \cdot \mathrm{M}_{\mathrm{g}}}{\mathrm{~L} \cdot \mathrm{~g}_{1}{ }^{2} \cdot \mathrm{~B}} \\
& { }^{\sigma}{ }_{\mathrm{R}}=\frac{(1.33 \cdot \mathrm{t} \cdot \mathrm{e}+1) \cdot \mathrm{M}_{\mathrm{g}}}{\mathrm{~L} \cdot \mathrm{t}^{2} \cdot \mathrm{~B}} \\
& { }^{\sigma}{ }_{\mathrm{T}}=\frac{\mathrm{Y} \cdot \mathrm{M}_{\mathrm{g}}}{\mathrm{t}^{2} \cdot \mathrm{~B}}-\mathrm{Z} \cdot \sigma_{\mathrm{R}} \\
& \text { ことで, } \\
& \mathrm{L}=\frac{\mathrm{t} \cdot \mathrm{e}+1}{\mathrm{~T}}+\frac{\mathrm{t}^{3}}{\mathrm{~d}} \\
& \mathrm{~h}_{\mathrm{o}}=\sqrt{\mathrm{B} \cdot \mathrm{~g}_{0}}
\end{aligned}
$$

（一体形フランジ及び一体形フランジとして計算する任意形のフランジの場合）

$$
\mathrm{d}=\frac{\mathrm{U}}{\mathrm{~V}} \cdot \mathrm{~h}_{0} \cdot \mathrm{~g}_{0}{ }^{2}
$$

（ルーズ形フランジ及びルーズ形フランジとして計算する任意形フランジの場合）

$$
\mathrm{d}=\frac{\mathrm{U}}{\mathrm{~V}_{\mathrm{L}}} \cdot \mathrm{~h}_{0} \cdot \mathrm{~g}_{0}^{2}
$$

（一体形フランジ及び一体形フランジとして計算する任意形フランジの場合）

$$
\mathrm{e}=\frac{\mathrm{F}}{\mathrm{~h}_{0}}
$$

（ルーズ形フランジ及びルーズ形フランジとして計算する任意形フランジの場合）

$$
\mathrm{e}=\frac{\mathrm{F}_{\mathrm{L}}}{\mathrm{~h}_{0}}
$$

j．ルーズ形フランジでハブがないもの，ハブを無視して計算するもの及びハブなしルーズ形フランジとして計算する任意形フランジの応力
（a）使用状態でのフランジの応力

$$
\begin{aligned}
& \sigma_{\mathrm{H}}=0 \\
& \sigma_{\mathrm{R}}=0 \\
& \sigma_{\mathrm{T}}=\frac{\mathrm{Y} \cdot \mathrm{M}_{0}}{\mathrm{t}^{2} \cdot \mathrm{~B}}
\end{aligned}
$$

（b）ガスケット締付時のフランジの応力

$$
\begin{aligned}
& \sigma_{\mathrm{H}}=0 \\
& \sigma_{\mathrm{R}}=0
\end{aligned}
$$

$$
\sigma_{\mathrm{T}}=\frac{\mathrm{Y} \cdot \mathrm{M}_{\mathrm{g}}}{\mathrm{t}^{2} \cdot \mathrm{~B}}
$$

k．評価
内圧を受けるフランジは，下記の条件を満足すれば十分である。
（a）一体形フランジ，一体形フランジとして計算する任意形フランジ及びルーズ形フラン ジでハブを考慮するもの
イ．ボルトの総有効断面積 $\mathrm{A}_{\mathrm{b}}>\mathrm{A}_{\mathrm{m}}$

ロ．ハブの軸方向応力
－一体形フランジとして計算するものの場合
使用状態にあっては
$\sigma_{\mathrm{H}} \leqq \operatorname{Min}\left(1.5 \cdot \sigma_{\mathrm{f}}, 1.5 \cdot \sigma_{\mathrm{n}}\right)$
ガスケット締付時にあっては

$$
\sigma_{\mathrm{H}} \leqq \operatorname{Min}\left(1.5 \cdot \sigma_{\mathrm{fa}}, 1.5 \cdot \sigma_{\mathrm{na}}\right)
$$

－図 4－1 FLANGE－2に示すハブ付き一体形フランジの場合使用状態にあっては $\quad \sigma_{\mathrm{H}} \leqq \operatorname{Min}\left(1.5 \cdot \sigma_{\mathrm{f}}, 2.5 \cdot \sigma_{\mathrm{n}}\right)$ ガスケット締付時にあっては

$$
\sigma_{\mathrm{H}} \leqq \operatorname{Min}\left(1.5 \cdot \sigma_{\mathrm{fa}}, 2.5 \cdot \sigma_{\mathrm{na}}\right)
$$

－上記以外で鋳鉄以外の材料の場合
使用状態にあっては $\sigma_{\mathrm{H}} \leqq 1.5 \cdot \sigma_{\mathrm{f}}$
ガスケット締付時にあっては $\sigma_{\mathrm{H}} \leqq 1.5 \cdot \sigma_{\mathrm{fa}}$

八．フランジの径方向応力
使用状態にあっては $\sigma_{\mathrm{R}} \leqq \sigma_{\mathrm{f}}$
ガスケット締付時にあっては $\sigma_{\mathrm{R}} \leqq \sigma_{\mathrm{fa}}$

二．フランジの周方向応力
使用状態にあっては
$\sigma_{\mathrm{T}} \leqq \sigma_{\mathrm{f}}$
ガスケット締付時にあっては $\sigma_{\mathrm{T}} \leqq \sigma_{\mathrm{f}} \mathrm{a}$

ホ．軸方向と径方向応力の平均
使用状態にあっては $\quad \frac{{ }_{H}{ }_{H}+{ }^{\sigma} \mathrm{R}}{2} \leqq \sigma_{\mathrm{f}}$
ガスケット締付時にあっては $\frac{{ }^{\sigma}{ }_{\mathrm{H}}+{ }^{+} \mathrm{R}_{\mathrm{R}}}{2} \leqq \sigma_{\mathrm{fa}}$

へ．軸方向と周方向応力の平均

使用状態にあっては

$$
\frac{\sigma_{\mathrm{H}}+\sigma_{\mathrm{T}}}{2} \leqq \sigma_{\mathrm{f}}
$$

ガスケット締付時にあっては $\frac{{ }^{\sigma} \mathrm{H}^{+}+{ }^{\circ} \mathrm{T}}{2} \leqq \sigma_{\mathrm{f} \text { a }}$
（b）ルーズ形フランジでハブがないもの，ハブを無視して計算するもの及びハブなしルー ズ形フランジとして計算する任意形フランジ

イ．ボルトの総有効断面積 $\quad \mathrm{A}_{\mathrm{b}}>\mathrm{A}_{\mathrm{m}}$
ロ．フランジの周方向応力

$$
\begin{array}{ll}
\text { 使用状態にあっては } & \sigma_{\mathrm{T}} \leqq \sigma_{\mathrm{f}} \\
\text { ガスケット締付時にあっては } & \sigma_{\mathrm{T}} \leqq \sigma_{\mathrm{fa}}
\end{array}
$$

FLANGE－1（J I S B 8265 附属書3 図2 3），4），5）） ［ルーズ形フランジ（差込み形フランジ）］

FLANGE－2（J I S B 8265 附属書3 図2 7），8），9））〔一体形フランジ〕

注1：ここに示すフランジ形状は基本形式とする。注2：Wは， Wg ， Wm_{m} ， $\mathrm{W}_{\mathrm{m} 2 \text { 及び } \mathrm{W} \mathrm{O}_{0} \text { のボルト荷重を表す。 }}$

図 $4-1$

FLANGE－3（J I S B 8265 附属書3 図2 11），12），13），14），15））〔任意形フランジ〕

FLANGE－4（J I S B 8265 附属書3 図26））〔一体形フランジ〕

注1：ここに示すフランジ形状は基本形式とする。注2：Wは， W_{g} ， $\mathrm{W}_{\mathrm{m}_{1}}$ ， W_{m} 及 及び W_{o} のボルト荷重を表す。

図 $4-2$

FLANGE－5（JIS B 8265 附属書3 図2 10）） ［一体形フランジ］

FLANGE－6（JIS B 8265 附属書3 図21））〔ルーズ形フランジ（ラップジョイント形フランジ）〕

注1：ここに示すフランジ形状は基本形式とする。
注2：Wは， W_{g} ， $\mathrm{W}_{\mathrm{m}}^{1}, \mathrm{~W}_{\mathrm{m}}$ 及 及びWoのボルト荷重を表す。

図 4－3

5．既工認における評価結果の確認による強度評価方法
クラス 2 容器を重大事故等クラス 2 容器として兼用する容器の強度評価について，以下の確認内容のとおり，クラス 2 容器の既に認可された工事計画（以下「既工認」という。）の添付書類 における評価結果を用いることにより，重大事故等クラス 2 容器の評価ができることから，クラ ス 2 容器の既工認の確認による評価を実施する。

5.1 確認内容

（1）実用発電用原子炉及びその附属施設の技術基準に関する規則（平成 25 年 6 月 28 日原子力規制委員会規則第六号）第 17 条において，クラス 2 容器の材料，構造及び強度の要求は，重大事故等クラス 2 容器に要求される適切な機械的強度及び化学的成分，延性破断防止等の要求と同じである。
（2）重大事故等時の使用圧力及び使用温度は設計基準の最高使用圧力及び最高使用温度に包絡 されている。
5.2 強度評価方法

クラス 2 容器の既工認における評価結果にてクラス 2 容器としての強度が十分であることを確認することにより，重大事故等クラス 2 容器として要求される強度が十分であることを確認 する。

6．重大事故等クラス 2 容器であつてクラス 1 容器の強度計算方法
重大事故等クラス 2 容器であってクラス 1 容器については，添付書類「VI－2－3－4－1－1 原子炉圧力容器の応力解析の方針」に記載する強度計算方法にて評価を実施する。

7．重大事故等クラス 2 容器であつて原子炉格納容器の強度計算方法
重大事故等クラス 2 容器であつて原子炉格納容器の強度計算方法については，添付書類「VI－ 3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」の記載内容に基づき，告示第 5 O 1 号による評価を実施する。ただし，改造箇所で適用規格が設計•建設規格の場合は設計•建設規格と告示第501号の比較を行い，いずれか安全側の規格に よる評価を実施する。

対象となる添付書類を以下に示す。これら添付書類については，評価の対象となる機器の形状，設計条件により計算方法が異なることから，計算方法については各計算書に個別に示すこと とする。

VI－3－3－6－1－1－1 ドライウェルの基本板厚計算書
VI－3－3－6－1－1－2
ドライウェルの強度計算書
VI－3－3－6－1－1－3
ドライウェル主フランジの強度計算書
VI－3－3－6－1－1－4 ドライウェルベント開口部の強度計算書
VI－3－3－6－1－1－5 ジェットデフレクタの強度計算書
VI－3－3－6－1－1－6 サプレッションチェンバの基本板厚計算書
VI－3－3－6－1－1－7 サプレッションチェンバの強度計算書
VI－3－3－6－1－1－8 ボックスサポートの強度計算書
VI－3－3－6－1－1－9 ジェット力を考慮した強度計算書
VI－3－3－6－1－2－1 機器搬出入用ハッチの基本板厚計算書
VI－3－3－6－1－2－2 機器搬出入用ハッチの強度計算書
VI－3－3－6－1－2－3 逃がし安全弁搬出入口の基本板厚計算書
VI－3－3－6－1－2－4 逃がし安全弁搬出入口の強度計算書
VI－3－3－6－1－2－5 制御棒駆動機構搬出入口の基本板厚計算書
VI－3－3－6－1－2－6 制御棒駆動機構搬出入口の強度計算書
VI－3－3－6－1－2－7 サプレッションチェンバ出入口の基本板厚計算書
VI－3－3－6－1－2－8 サプレッションチェンバ出入口の強度計算書
VI－3－3－6－1－3－1 所員用エアロックの基本板厚計算書
VI－3－3－6－1－3－2 所員用エアロックの強度計算書
VI－3－3－6－1－4－1 原子炉格納容器配管貫通部の基本板厚計算書
VI－3－3－6－1－4－2 原子炉格納容器配管貫通部の強度計算書
VI－3－3－6－1－4－3 原子炉格納容器配管貫通部ベローズの強度計算書
VI－3－3－6－1－4－4 原子炉格納容器電気配線貫通部の基本板厚計算書
VI－3－3－6－1－4－5 原子炉格納容器電気配線貫通部の強度計算書
$\mathrm{VI}-3-3-6-2-1$ ダウンカマ及びベントヘッダの基本板厚計算書

$\mathrm{VI}-3-3-6-2-2$	ダウンカマの強度計算書
$\mathrm{VI}-3-3-6-2-3$	ベントヘッダの強度計算書
$\mathrm{VI}-3-3-6-2-4$	ベント管の基本板厚計算書
$\mathrm{VI}-3-3-6-2-5$	ベント管の強度計算書
$\mathrm{VI}-3-3-6-2-6$	ベント管ベローズの強度計算書

別紙 容器の強度計算書のフォーマット
VI-3-*-*-* ○○○○○○○○○○○○の強度計算書

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－8 重大事故等クラス 2 容器の強度計算方法」に基づい て計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。

O 2 （1）VI－3－2－8 R 1

－評価条件整理表

機器名	$\text { 既設 } \begin{gathered} \text { or } \\ \text { 新設 } \end{gathered}$	施設時の 技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか						施設時の適用規格	評亚区分	同等性評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アッッ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラ } \end{aligned}$	$\begin{aligned} & \text { DB } \\ & \text { クラス } \end{aligned}$	$\begin{aligned} & \text { SA } \\ & \text { クラス } \end{aligned}$	$\begin{aligned} & \text { 条件 } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	DB 条件		SA 条件						
									$\begin{aligned} & \text { 温度 } \end{aligned}$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \text { 温度 } \end{aligned}$					

1．計算条件
1．1 計算部位
1．2 設計条件
2．強度計算
2.1 容器の胴の厚さの計算
2.2 容器の鏡板の厚さの計算
2.3 容器の平板の厚さの計算
2.4 容器の管台の厚さの計算
2.5 容器の補強を要しない穴の最大径の計算
2.6 容器の穴の補強計算
2.7 設計•建設規格における材料の規定によらない場合の評価．

1．計算条件
1.1 計算部位

概要図に強度計算箇所を示す。

図中の番号は次ページ以降の
計算項目番号を示す。
図 1－1 概要図
1.2 設計条件

最高使用圧力 (MPa)	$* * * *$
最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$* * * *$

2．強度計算
2.1 容器の胴の厚さの計算

設計•建設規格 PVC－3120

胴板名称			（1）胴板
材料			SUS316L
最高使用圧力	P	（MPa）	
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	
胴の内径	D_{i}	（mm）	
許容引張応力	S	（MPa）	107
継手効率	η		1.00
継手の種類			突合せ両側溶接
放射線検査の有無			有り
必要厚さ	t_{1}	（mm）	
必要厚さ	t_{2}	（mm）	
t_{1} ， t_{2} の大きい値	t	（mm）	
呼び厚さ	t s o	（mm）	
最小厚さ	t s	（mm）	
評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}$ ，よって十分である。			

2.2 容器の鏡板の厚さの計算

（1）設計•建設規格 PVC－3210
鏡板の形状

鏡板名称		(1)	鏡板
鏡板の内面における長径	D_{iL}	(mm)	1600.00
鏡板の内面における短径の $1 / 2$	h	$(\mathrm{~mm})$	400.00
長径と短径の比	$\mathrm{D}_{\mathrm{i} \mathrm{L}} /(2 \cdot \mathrm{~h})$	(mm)	2.00
評価 $: \mathrm{D}_{\mathrm{i} \mathrm{L}} /(2 \cdot \mathrm{~h}) \leqq 2$, よって半だ円形鏡板である。			

（2）設計•建設規格 PVC－3220
鏡板の厚さ

鏡板名称			（1）鏡板
材料			SGV480
最高使用圧力	P	（MPa）	
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	
胴の内径	D_{i}	（mm）	
半だ円形鏡板の形状に			
許容引張応力	S	（MPa）	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t 1	（mm）	
必要厚さ	t_{2}	（mm）	
t_{1} ， t_{2} の大きい値	t	（mm）	
呼び厚さ	t co	（mm）	
最小厚さ	t c	（mm）	
評価： $\mathrm{t}_{\mathrm{c}} \geqq \mathrm{t}$ ，よって十分である。			

2.3 容器の平板の厚さの計算

（1）告示第 501 号第 34 条第 1 項取付け方法及び穴の有無

平板名称			（1）	マンホール平板
平板の取付け方法				（ i ）
平板の穴の有無				無し
溶接部の寸法	t_{i}	（mm）		
胴又は管の計算上必要な厚さ	t s r	（mm）		
胴又は管の最小厚さ	t s	（mm）		
$2 \cdot{ }^{\text {t }}$		（mm）		
$1.25 \cdot \mathrm{t}_{\mathrm{s}}$				
評価： $\mathrm{t}_{\mathrm{i}} \geqq 2 \cdot \mathrm{t}_{\mathrm{s} r}$ ， $\mathrm{t}_{\mathrm{i}} \geqq 1.25 \cdot \mathrm{t}_{\mathrm{s}}$ よって十分である。				

（2）設計•建設規格 PVC－3310
取付け方法及び穴の有無

平板名称			（1）	マンホール平板
平板の取付け方法				（ i ）
平板の穴の有無				無し
溶接部の寸法	$\mathrm{t}_{\mathrm{w} 1}$	（mm）		
溶接部の寸法	t w2	（mm）		
胴又は管の計算上必要な厚さ	t s r	（mm）		
胴又は管の最小厚さ	t_{s}	（mm）		
$\mathrm{t}_{\mathrm{w} 1}+\mathrm{t}_{\mathrm{w} 2}$		（mm）		
$2 \cdot \mathrm{t}_{\mathrm{s}}$		（mm）		
$1.25 \cdot \mathrm{t} \mathrm{s} \mathrm{r}^{\text {d }}$	－	（mm）		
評価 ： $\mathrm{t}_{\mathrm{w} 1}+\mathrm{t}_{\mathrm{w} 2} \geqq 2 \cdot \mathrm{t}_{\mathrm{s}}$ ，		$\mathrm{t}_{\mathrm{s}} \geqq 1.25 \cdot \mathrm{t}_{\mathrm{s} \text { r }}$ よって十分である。		

（3）設計•建設規格 PVC－3310（告示第 501 号第 34 条第 1 項）
平板の厚さ

平板名称			（1）	マンホール平板
材料			SUSF316L	（厚さ 130 mm 未満）
最高使用圧力	P	（MPa）		
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$		
許容引張応力	S	（MPa）		107
取付け方法による係数	K			
平板の径	d	（mm）		
必要厚さ	t	（mm）		
呼び厚さ	$\mathrm{t}_{\mathrm{p} \text { o }}$	（mm）		
最小厚さ	t_{p}	（mm）		
評価： $\mathrm{t}_{\mathrm{P}} \geqq \mathrm{t}$ ，よつて十分である。				

2.4 容器の管台の厚さの計算

設計•建設規格 PVC－3610

管台名称			（1）○○○入口
材料			SUS316LTP－S
最高使用圧力	P	（MPa）	
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	
管台の外径	D 。	（mm）	
許容引張応力	S	（MPa）	107
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	
必要厚さ	t_{3}	（mm）	
t_{1} ， t_{3} の大きい値	t	（mm）	
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

2.5 容器の補強を要しない穴の最大径の計算

設計•建設規格 PVC－3150（2）

胴板名称	（1）胴板
材料	SUS316L
最高使用圧力 P（MPa）	
最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）	
胴の外径 ${ }^{\text {a }}$（ ${ }^{\text {a }}$（mm）	
許容引張応力 S（MPa）	107
胴板の最小厚さ $\mathrm{t}_{\text {s }}$ 年（mm）	
継手効率 \quad 侕	1.00
継手の種類	継手無し
放射線検査の有無	－
$\mathrm{d}_{\mathrm{r} 1}=\left(\mathrm{D}-2 \cdot \mathrm{t}_{\mathrm{s}}\right) / 4$	
61， $\mathrm{d}_{\mathrm{r} 1}$ の小さい値（mm）	61.00
K	
$\mathrm{D} \cdot \mathrm{t} \mathrm{s}^{\text {c }}$（ $\left.\mathrm{mm}^{2}\right)$	
200，d r 2 の小さい値（mm）	200.00
補強を要しない穴の最大径（mm）	200.00
評価：補強の計算を要する穴の名称	○○○入口（3．6（1）） ○○出口（3．6（2）） ○○出口（3．6（3）） マンホール（3．6（4））

容器の補強を要しない穴の最大径の計算
設計•建設規格 PVC－3230（2）

鏡板名称	（2）鏡板
材料	SUS316L
最高使用圧力 P（MPa）	
最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）	
鏡板のフランジ部の外径 D（mm）	
許容引張応力 S（MPa）	107
鏡板の最小厚さ $\mathrm{ta}_{\text {c }}$ c（mm）	
継手効率 $\quad \eta$	1.00
継手の種類	継手無し
放射線検査の有無	－
$\mathrm{d}_{\mathrm{r} 1}=\left(\mathrm{D}-2 \cdot \mathrm{t}_{\mathrm{c}}\right) / 4$	
61，d r_{1} の小さい値（mm）	61.00
K	
$\mathrm{D} \cdot \mathrm{t} \mathrm{c}$（ $\left.\mathrm{mm}^{2}\right)$	
200，d r 2 の小さい値（mm）	
補強を要しない穴の最大径（mm）	
評価：補強の計算を要する穴の名称	無し

2.6 容器の穴の補強計算

設計•建設規格 PVC－3160

強め板の有効補強面積	A_{4}	$\left(\mathrm{~mm}^{2}\right)$	
補強に有効な総面積	A_{0}	$\left(\mathrm{~mm}^{2}\right)$	
補強： $\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$, よって十分である。			

部材名称			（1）	○○○入口
大きい穴の補強				
補強を要する穴の限界径	d_{j}	（mm）		
評価： $\mathrm{d} \leqq \mathrm{d}_{\mathrm{j}}$ ，よって大きい穴の補強計算は必要ない。				
溶接部にかかる荷重	W_{1}	（N）		
溶接部にかかる荷重	W_{2}	（N）		
溶接部の負らべき荷重	W	（N）		
すみ肉溶接の許容せん断応力	$\mathrm{S}_{\mathrm{w} 1}$	（MPa）		
突合せ溶接の許容せん断応力	$\mathrm{S}_{\mathrm{w} 2}$	（MPa）		
突合せ溶接の許容引張応力	$\mathrm{S}_{\mathrm{w} 3}$	（MPa）		
管台壁の許容せん断応力	$\mathrm{S}_{\mathrm{w} 4}$	（MPa）		
応力除去の有無				
すみ肉溶接の許容せん断応力係数 F_{1}				
突合せ溶接の許容せん断応力係数				
突合せ溶接の許容引張応力係数				
		管台壁の許容せん断応力係数 F_{4}		
すみ肉溶接部のせん断力	$\mathrm{W}_{\mathrm{e} 1}$	（N）		
すみ肉溶接部のせん断力	$\mathrm{W}_{\mathrm{e} 2}$	（N）		
すみ肉溶接部のせん断力	We 3	（N）		
突合せ溶接部のせん断力	$\mathrm{W}_{\text {e } 4}$	（N）		
突合せ溶接部の引張力	$\mathrm{W}_{\text {e } 8}$	（N）		
突合せ溶接部の引張力	$\mathrm{W}_{\text {e } 9}$	（N）		
管台のせん断力	$\mathrm{W}_{\mathrm{e} 10}$	（N）		
予想される破断箇所の強さ	$\mathrm{W}_{\text {ebp } 1}$	（N）		
予想される破断箇所の強さ	$\mathrm{W}_{\text {ebp } 2}$	（N）		
予想される破断箇所の強さ	$\mathrm{W}_{\text {ebp } 3}$	（N）		
予想される破断箇所の強さ	$\mathrm{W}_{\text {ebp } 4}$	（N）		
予想される破断箇所の強さ	$\mathrm{W}_{\text {ebp } 5}$	（N）		
評価： $\mathrm{W}_{\mathrm{ebp} 1} \geqq \mathrm{~W}, \mathrm{~W}_{\mathrm{ebp} 2} \geqq \mathrm{~W}, \mathrm{~W}_{\mathrm{ebp} 3} \geqq \mathrm{~W}, \mathrm{~W}_{\mathrm{ebp} 4} \geqq \mathrm{~W}, \mathrm{~W}_{\mathrm{ebp} 5} \geqq \mathrm{~W}$以上より十分である。				

設計•建設規格における材料の規定によらない場合の評価の評価結果例

2.7 設計•建設規格における材料の規定によらない場合の評価胴側胴板（使用材料規格：J I S G ○○○○ $\triangle \triangle \triangle \triangle$ ）の評価結果 （比較材料：J I S G ○○○○ $\triangle \triangle \triangle \Delta$ ）（材料記号を記載）
○○○に使用している○○○は，材料の許容引張応力が設計•建設規格に記載されていない ことから，材料の許容引張応力が設計•建設規格に記載されている材料と機械的強度及び化学的成分を比較し，同等であることを示す。
（1）機械的強度

	引張強さ	降伏点又は耐力	比較結果
使用材料	$370 \mathrm{~N} / \mathrm{mm}^{2}$ 以上	$215 \mathrm{~N} / \mathrm{mm}^{2}$ 以上	引張強さ及び降伏点は同等である。
比較材料	$370 \mathrm{~N} / \mathrm{mm}^{2}$ 以上	$215 \mathrm{~N} / \mathrm{mm}^{2}$ 以上	

（2）化学的成分

	化学成分（\％）										
	C	Si	Mn	P	S	Cu	Ni	Cr	Mo	V	W
使用 材料	$\begin{aligned} & 0.25 \\ & \text { 以下 } \end{aligned}$	$\begin{aligned} & 0.35 \\ & \text { 以下 } \end{aligned}$	$\begin{gathered} 0.30 \\ \sim \\ 0.90 \\ \hline \end{gathered}$	$\begin{gathered} 0.040 \\ \text { 以下 } \end{gathered}$	$\begin{gathered} 0.040 \\ \text { 以下 } \end{gathered}$	－	－	－	－	－	
比較 材料	$\begin{aligned} & 0.25 \\ & \text { 以下 } \end{aligned}$	0.10 \sim 0.35	0.30 \sim 0.90	$\begin{gathered} 0.035 \\ \text { 以下 } \end{gathered}$	$\begin{gathered} 0.035 \\ \text { 以下 } \end{gathered}$	－	－	－	－	－	－
比較結果	Si，P，S の成分規定に差異があるが，以下により，本設備の環境下での使用は問題な いと考える。 Si：一般的に機械的強度に影響を与える成分であるが，（1）の評価結果からも機械強度は同等以上であること。 P ：冷間脆性に影響を与える成分であるが，本設備において使用される材料は，薄肉 （ 16 mm 未満）であるため，脆性破壊が発生しがたい寸法の材料であること，さら には，設計•建設規格クラス 2 の規定でも破壊脆性試験が要求されない範囲であ ること。 S ：熱間脆性に影響を与える成分であるが，本設備において使用される材料は，薄肉 （ 16 mm 未満）であるため，脆性破壊が発生しがたい寸法の材料であること，さら には，設計•建設規格クラス 2 の規定でも破壊脆性試験が要求されない範囲であ ること。										

（3）評価結果
（1）（2）の評価により，機械的強度，化学的成分，いずれにおいても比較材料と同等である
ことを確認したため，本設備において，$\triangle \triangle \triangle \triangle$ を重大事故等クラス 2 材料として使用する
ことに問題ないと考える。

> (材料記号を記載)

