- 3.1 設定方針
- 3.2 検討対象領域の選定
- 3.3 波源モデルの設定
- 3.4 津波予測計算
- 3.5 まとめ

3.1 設定方針

■保守的設定①:想定波源域の設定

- 基準断層モデルの保守性を確保する観点から、最新の科学的・技術的知見から想定される波源域及び地震規模を上回る地震を考慮する。具体的には、 構造境界(破壊のバリア)の破壊伝播を1つ考慮した(=2連動)連動型地震を想定する。
- 基準断層モデルの想定波源域は、発電所の津波高さに与える影響が最も大きい領域を確認した上で設定する。具体的には、十勝沖・根室沖から岩手県沖北部の連動型地震に追加して、千島海溝沿いで発生する津波、超巨大地震(東北地方太平洋沖型)に伴う津波の影響を確認する。

■保守的設定②:大すべり域・超大すべり域の設定

 国内外で発生している巨大地震の地震学的・地質学的・測地学的知見等から、青森県東方沖及び岩手県沖北部で発生し得る最大すべり量は1968年十勝 沖地震に伴うすべり量と考えられるが、保守的設定の観点から、3.11地震における宮城県沖のすべり量と同規模のすべり量を考慮する。

3.2 検討対象領域の選定:十勝沖・根室沖から千島前弧スリバー北東端

千島海溝沿いでは、ほぼ空白域無く既往地震が発生し、各セグメントにアスペリティが分布しているとともに、地震調査研究推進本部(2017a)では「現時点で解明されている知見の中で最大の地震は17世紀の地震(Mw8.8)であるが、北方領土における津波堆積物の分布が不明瞭であり、規模がより大きくなる可能性がある。」としていることを踏まえ、保守的設定の観点から、過去に発生した記録はないものの、納沙布断裂帯の破壊伝播を考慮した十勝沖・根室沖から千島前弧スリバー北東端を波源域とする連動型地震を想定した。

3.2 検討対象領域の選定:十勝沖・根室沖から岩手県沖北部

 日本海溝・千島海溝島弧会合部は、アラスカ・アリューシャン島弧会合部と同様に、破壊のバリアとして作用すると考えられるが、敷地前面の青森県 東方沖及び岩手県沖北部のすべりは発電所の津波高さに与える影響が大きいことを踏まえ、保守的設定の観点から、島弧会合部の破壊伝播を考慮し、十勝沖・根室沖から岩手県沖北部を波源域とする連動型地震を想定した。

Figure 4. Schematic along-strike cross section of potential configuration of Pacific plate, Yakutat terrane, North America plate, and Wrangell slab. Intraslab seismicity is limited to Pacific plate. Tremor occurs at the Yakutat–North America interface. Wrangell slab is an obliquely subducting extension of the Yakutat microplate causing Wrangell volcanism.

アラスカ・アリューシャン島弧会合部のテクトニクス的背景 (Wech(2016))

3.2 検討対象領域の選定:超巨大地震(東北地方太平洋沖型)

- 超巨大地震(東北地方太平洋沖型)が発電所の津波高さに与える影響を確認するため、検討対象領域として選定した。
- なお、本検討は各波源域が発電所の津波高さに与える影響を確認するものであることを踏まえ、検討に用いる波源モデルは、3.11地震に伴う津波の 広域の痕跡高を良好に再現する特性化モデルとした。

検討対象領域 (地震調査研究推進本部(2017a, 2019)に一部加筆)

3.3 波源モデルの設定:大すべり域・超大すべり域の設定

- ■大すべり域・超大すべり域の面積, すべり量
- 各検討対象領域の波源モデルは、発電所の津波高さに与える影響を比較するため、広域の津波特性を考慮できる杉野ほか(2014)の知見を踏ま えて設定した。
 - ▶ 大すべり域:津波断層の平均すべり量の1.4倍,全体面積の40%程度(超大すべり域を含む)
 - ▶ 超大すべり域:津波断層の平均すべり量の3倍,全体面積の15%程度

杉野ほか(2014)によるMw8.9以上の規模の地震の 大すべり域・超大すべり域の設定方法

表5 東北地震津波の特性化波源モデルの各諸元

領域 波源全体		小断層の数	面積(km²)	すべり量(m)	モーメントマグニ チュードMw 9.1	
		5147	134593	10.4(平均)		
	超大すべり域	792	20189	31.2		
内訳	大すべり域	1312	33648	14.6		
	背景すべり域	3043	80756	3.5	2,-2	

図8 東北地震津波の再現用波源モデル(左)と特性化波源モデル(右)

3.3 波源モデルの設定:大すべり域・超大すべり域の設定

■大すべり域・超大すべり域の位置①

 +勝沖・根室沖から千島前弧スリバー北東端,並びに十勝沖・根室沖から岩手県沖北部の連動型地震で考慮する大すべり域・超大すべり域は,複数のセグメントの連動破壊が見られた2004年スマトラ〜アンダマン地震のすべり分布及び活断層の連動時における断層セグメント間の相互作用に 関する知見を参考として、セグメント毎に設定した。

第723回審査会合(R1.6.7) 資料2-2-1 p131 再揭 **127**

3.3 波源モデルの設定:大すべり域・超大すべり域の設定

■大すべり域・超大すべり域の位置②

- ・ 十勝沖・根室沖から千島前弧スリバー北東端,並びに十勝沖・根室沖から岩手県沖北部の連動型地震で考慮する大すべり域・超大すべり域の位置は, 各領域におけるアスペリティ分布等を参考に,以下のとおり設定した。
 - > 青森県東方沖及び岩手県沖北部:アスペリティ分布,並びに1968年十勝沖地震の震央位置を参考に設定。
 - > 十勝沖・根室沖:アスペリティ分布,17世紀の地震のすべり量分布及びすべり欠損分布を参考に設定。
 - ▶ 根室沖から千島前弧スリバー北東端:発電所に与える影響が大きくなるように,根室沖側(納沙布断裂帯側)に移動させて設定。

第723回審査会合(R1.6.7) 資料2-2-1 p132 再掲

128

3.3 波源モデルの設定:まとめ(1)

- 設定した各波源モデルのすべり量分布,断層パラメータを以下に示す。
- なお、十勝沖・根室沖から千島前弧スリバー北東端の連動型地震、十勝沖・根室沖から岩手県沖北部の連動型地震において、セグメント毎に設定した大すべり域・超大すべり域の面積は、各セグメントの面積を基に設定した。詳細を次頁に示す。

		十勝沖・根室沖から千島前弧スリバー 北東端の連動型地震	十勝沖・根室沖から岩手県沖北部の 連動型地震	超巨大地震(東北地方太平洋沖型)	
モーメントマク゛ニチュート゛(Mw)		9.21	9.05	9.13	
断屑	層面積(S)	157,100 (km ²)	110,472 (km²)	129,034 (km²)	
平均	匀応力降下量(⊿σ)	3.19(MPa)	3.17(MPa)	3.26(MPa)	
地震	震モーメント(Mo)	8.15×10 ²² (Nm)	4.77 × 10 ²² (Nm)	6.21 × 10 ²² (Nm)	
平均すべり量		10.38(m)	8.64(m)	9.63(m)	
4	背景領域(0.33D) 3.33(m) (面積及び面積比率) (92,651(km²), 59.0%)		2.70(m) (64,419(km²), 58.3%)	3.02 (m) (72,341 (km²), 56.5%)	
ッベリ	大すべり域(1.4D) (面積及び面積比率)*	14.12(m) (38,911(km²), 24.8%)	11.46(m) (26,783(km²), 24.3%)	12.80(m) (35,497(km²), 27.5%)	
重	超大すべり域(3D) (面積及び面積比率)	30.26 (m) (25,538 (km²), 16.2%)	24.56 (m) (19,271 (km²), 17.4%)	27.43(m) (20,696(km²), 16.0%)	
破場	衷形態	同時破壊	同時破壊	同時破壊	
ライズタイム		60(s)	60(s)	60(s)	

※:超大すべり域を含まない面積及び面積比率

断層面全体

根室沖 S 十勝沖

3.3 波源モデルの設定:まとめ(2)

十勝沖・根室沖から千島前弧スリバー北東端の連動型地			バー北東端の連動型地震		ŀ	−勝沖・根室沖から岩手県ネ	沖北部の連動型地震	
モーメントマグニチュート (Mw)			9.21	-t	モーメントマク゛ニチュート゛(Mw)		9.05	
平t	匀応力降下量(2)	σ)	3.19(MPa)	平	均応力降下量(乙	3.17(MPa)		
地震	震モーメント(Mo)		8.15×10 ²² (Nm)	地	震モーメント(Mo)		4.77 × 10 ²² (Nm)	
平t	タすべり量		10.38(m)	<u>भ</u>	均すべり量			
	面積(S)		157,100 (km ²)		面積(S)		110,472 (km ²)	
		すべり量	3.33(m)			すべり量	2 .70(m)	
断	背景領域	面積及び面積比率	92,651 (km²), 59.0%		背景領域 	面積及び面積比率	64,419(km²), 58.3%	
層面		すべり量	14.12(m)	層面		すべり量	11.46(m)	
全体	大すべり域	面積及び面積比率※	38,911(km²), 24.8%		大すべり域	面積及び面積比率※	26,783(km²), 24.3%	
		すべり量	30.26 (m)			すべり量	24.56 (m)	
	超大すべり域	面積及び面積比率	25,538(km²), 16.2%		超大すべり域 	面積及び面積比率	19,271 (km²), 17.4%	
千島			87,587 (km ²)		面積(S)		69,513(km ²)	
前弧ス	背景領域	すべり量	3.33(m)		背景領域	すべり量	2.70(m)	
〕 バ		面積及び面積比率	52,059(km²), 59.5%	日本		面積及び面積比率	40,592(km²), 58.4%	
-北東		すべり量	14.12(m)	- │沖│	大すべり域	すべり量	11.46(m)	
端 く 納	スすべり域	面積及び面積比率※	22,099(km ²), 25.2%	+ 勝		面積及び面積比率※	16,812(km²), 24.2%	
沙布	+77	すべり量	30.26(m)	沖		すべり量	24.56(m)	
断裂帯	超大すへり或	面積及び面積比率	13,429(km²), 15.3%		超大すへり或	面積及び面積比率	12,109(km²), 17.4%	
			69,513(km ²)				40,959 (km ²)	
		すべり量	3.33(m)	□ 森 県		すべり量	2.70(m)	
根室	肖贡領域	面積及び面積比率	40,592(km ²), 58.4%		育意領域	面積及び面積比率	23,827(km²), 58.2%	
泙 ~		すべり量	14.12(m)	及び		すべり量	11.46(m)	
十勝	人りへり改	面積及び面積比率※	16,812(km²), 24.2%	日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	入りへり改	面積及び面積比率※	9,971 (km²), 24.3%	
‴沖 -	+77 - +	すべり量	30.26(m)	県		すべり量	24.56(m)	
	超入9へり或	面積及び面積比率	12,109(km ²), 17.4%	部	超大すへり或	面積及び面積比率	7,162(km²), 17.5%	

※:超大すべり域を含まない面積及び面積比率

※:超大すべり域を含まない面積及び面積比率

第723回審査会合(R1.6.7) 資料2-2-1 p133 再掲

129

3.4 津波予測計算:最大水位上昇量,最大水位下降量

- 各評価位置における最大水位上昇量・下降量を以下に※、水位時刻歴波形、並びに最大水位上昇量分布の比較を次頁以降に示す。
 - ※:津波解析条件,津波水位の評価位置の詳細を補足説明資料「5.津波解析条件」に,各ケースのスナップショットを「6.千島海溝・日本海溝沿いで発生する津波解析結果 (スナップショット)」に記載。

	【水位上昇側】	下線:最大ケース			
の連動型地震		最大水位上昇量(m)			
·····································		敷地前面	取水口前面	放水路護岸前面	
千島前弧スリバー北東端	十勝沖・根室沖から千島前弧スリバー 北東端の連動型地震	4.78	3.00	_	
新沙开 State	十勝沖・根室沖から岩手県沖北部の 連動型地震	<u>6.64</u>	<u>6.15</u>	<u>6.27</u>	
	超巨大地震(東北地方太平洋沖型)	4.30	3.92	3.22	

【水位下降側】

	最大水位下降量(m)
	取水口前面
十勝沖・根室沖から千島前弧スリバー 北東端の連動型地震	-2.99
十勝沖・根室沖から岩手県沖北部の 連動型地震	<u>-4.28</u>
超巨大地震(東北地方太平洋沖型)	-3.52

検討対象領域 (地震調査研究推進本部(2017a, 2019)に一部加筆)

ト北東端

日本海溝・千島海溝 島弧会合部

第723回審査会合(R1.6.7) 資料2-2-1 p135 再掲

3. 想定波源域の設定

3.4 津波予測計算:水位時刻歴波形の比較

• 基準津波策定位置(左図),並びに取水口前面(右図)における水位時刻歴波形※を以下に示す。

• 基準津波策定位置,取水口前面のいずれの位置においても十勝沖・根室沖から岩手県沖北部の連動型地震による津波が水位の上昇側,下降側 ともに最も影響が大きいことを確認した。

※:基準津波策定位置及び水位時刻歴波形抽出位置の詳細は, 補足説明資料「5.津波解析条件」に記載。

131

3.4 津波予測計算:最大水位上昇量の比較

0

• 最大水位上昇量分布.並びに敷地前面における最大水位上昇量の比較を以下に示す。

Ν

• 敷地前面全体に亘って、十勝沖・根室沖から岩手県沖北部の連動型地震による津波の影響が最も大きいことを確認した。

■最大水位上昇量分布

十勝沖・根室沖から岩手県沖北部 の連動型地震

超巨大地震(東北地方太平洋沖型)

■敷地前面における最大水位上昇量の比較

最大水位上昇量の比較範囲

敷地前面における最大水位上昇量の比較

132

3.5 まとめ

• 以上から、基準断層モデルの想定波源域は、十勝沖・根室沖から岩手県沖北部に設定する。

- 4.1 3.11 地震から得られた知見の整理
- 4.2 基本方針(設定フロー)
- 4.3 広域の津波特性を考慮した特性化モデル(特性化モデル①)
- 4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル (特性化モデル2,3,④)
- 4.5 まとめ

4.1 3.11 地震から得られた知見の整理

- 特性化モデル設定にあたり、3.11地震から得られた知見を整理した。
- 3.11地震の地震特性を再現するモデル(震源断層モデル),津波特性を再現するモデル(津波波源モデル)の比較等から,特性化モデルの設定にあたって反映が必要な知見は、以下のとおり整理される。
 - i. 地震特性(=実現象に近い破壊メカニズム)を再現するモデルと、津波特性(=広域沿岸部の痕跡高)を再現するモデルは異なり、両モデルの差を埋めるのは、今後検討すべき課題である(杉野ほか(2013))。
 - ii. 広域に亘って,時間的・空間的に複雑なすべり分布の不均一性が見られたが,沿岸の津波高さに大きな影響を及ぼしたのは,正対する海域 で生じた大きなすべり領域である(Satake et al.(2013), 杉野ほか(2013))。

4.1 3.11地震から得られた知見の整理(知見:i)

- i. 地震特性(=実現象に近い破壊メカニズム)を再現するモデルと、津波特性(=広域沿岸部の痕跡高)を再現するモデルは異なり、両モデルの差を 埋めるのは、今後検討すべき課題である。
- 杉野ほか(2013)では、3.11地震の破壊メカニズム(地震特性)が現れる沖合いの観測波形及び観測地殻変動量をターゲットとしたインバージョン 解析により求められたモデル(=暫定波源モデル)と、沿岸の痕跡高(広域の津波特性)を再現するモデル(=確定波源モデル)を得ており、後者 のモデルのすべり量は前者のモデルのすべり量を1.2倍している。
- 両者のモデルの意義を以下のとおり整理している。
 - ▶ 暫定波源モデルは,実現象に近い破壊メカニズムを表していると考えられ,理学的側面において意義がある。
 - ▶ 確定波源モデルは、波源想定等の工学的側面において意義がある。
 - > 理学・工学の両方の観点から全ての現象(プレート境界の破壊,津波伝播,津波遡上)を共通のモデルでより良く説明・再現できることが理想 であるが,両モデルの差を埋めるのは,今後検討すべき課題である。

4.1 3.11地震から得られた知見の整理(知見: ii)(1/2)

ii. 広域に亘って,時間的・空間的に複雑なすべり分布の不均一性が見られたが,沿岸の津波高さに大きな影響を及ぼしたのは,正対する海域で 生じた大きなすべり領域である。

Satake et al.(2013)は、津波波形インバージョン解析から推定された断層モデルを用いて、宮城県沿岸、三陸沿岸の津波高さに寄与したすべり領域の分析を実施し、宮城県沿岸の津波高さに寄与したすべり領域は、869年の地震に伴う津波の発生領域であり、三陸沿岸の津波高さに寄与したすべり領域は、1896年明治三陸地震津波の発生領域であったとしている。

4.1 3.11地震から得られた知見の整理(知見: ii)(2/2)

 杉野ほか(2013)は、観測津波波形、観測地殻変動データ等を用いたジョイントインバージョン解析から推定された津波波源モデルを用いて、原子カ サイト沖合150m水深点の最大津波高に寄与した3.11地震のすべり領域の分析を実施し、各サイトの津波高さに寄与したすべり領域は、ほぼ正対す る海域のすべり領域であったことを示している。

(杉野ほか(2013))

4.2 基本方針(設定フロー)

• 3.11地震から得られた知見を踏まえ、広域の津波特性及び地震特性を考慮した複数の特性化モデルを設定する。

(A)知見 i の反映

次の2つのモデルを基本として設定する。

・津波特性の観点:広域の津波特性(沿岸部の痕跡高)を考慮した特性化モデル

・地震特性の観点:青森県東方沖及び岩手県沖北部の大すべり域(アスペリティ,固着等)の破壊特性を考慮した特性化モデル

(B)知見 ii の反映

青森県東方沖及び岩手県沖北部の大すべり域は,発電所の津波高さに与える影響が大きいことを踏まえ,大すべり域のすべり量,すべり領域について保 守性を確保する(科学的想像力の発揮)。

4.3 広域の津波特性を考慮した特性化モデル(特性化モデル①)

- 4.3.1 本説明(コメント回答)の基本方針
- 4.3.2 超大すべり域の配置
- 4.3.3 広域の津波特性を考慮した特性化モデルの設定
- 4.3.4 特性化モデル①の設定方針
- 4.3.5 大きなすべりが生じる構造的特徴
- 4.3.6 日本海溝・千島海溝島弧会合部における大きなすべりの発生可能性
- 4.3.7 特性化モデル①の設定

4.3.1 本説明(コメント回答)の基本方針

S:審査会合コメントNo.

No.	コメント時期	コメント内容
S31	平成28年4月28日 第358回審査会合	広域の痕跡高に着目した基準断層モデルについて検討すること。
S140	令和元年6月7日 第723回審査会合	広域の津波特性を考慮した特性化モデルの大すべり域・超大すべり域の配置について,保守性を踏まえた上で,その 妥当性を説明すること。

■本説明(コメント回答)の基本方針

(1)広域の津波特性を考慮した特性化モデル

- i. 超大すべり域の配置 S31
- 過去に「十勝沖・根室沖から岩手県沖北部の連動型地震」が発生した記録が無いことから、「3.11地震津波の影響範囲と超大すべり域位置の 関係」、「根室沖から岩手県沖北部で確認されている津波堆積物及びそれを再現する津波波源」に関する知見を収集し、超大すべり域を配置 する。
- ii. 広域の津波特性を考慮した特性化モデルの設定 S140
- 敷地前面海域である青森県東方沖及び岩手県沖北部の大すべり域は、発電所の津波高さに与える影響が大きいことを踏まえ、最新の科学的・ 技術的知見から想定されるすべりを上回る規模のすべりを考慮する。

(2)特性化モデル①(広域の津波特性を考慮した特性化モデルに保守性を考慮したモデル)の設定 S140

- 3.11地震時に大きなすべりが生じた宮城県沖と破壊が停止した茨城県沖・房総沖のテクトニクス的背景及び地震学的知見から、大きなすべりが生じる構造的特徴を整理した上で、日本海溝・千島海溝島弧会合部のテクトニクス的背景及び地震学的見地から、同会合部で大きなすべりが発生する可能性を検討する。
- 上記検討結果を踏まえ、広域の津波特性を考慮した特性化モデルに保守性を考慮した特性化モデル①を設定する。

4.3.2 超大すべり域の配置

S31 S140

142

■基本方針

- 3.11地震に伴う津波により、青森県北部から茨城県南部に至る広範囲で津波被害が確認された。
- 過去に「十勝沖・根室沖から岩手県沖北部の連動型地震」が発生した記録が無いことから、同領域でM9クラスの巨大地震が発生した場合の津波の影響範囲と超大すべり域の配置の関係を整理するため、「3.11地震に伴う津波の影響範囲と超大すべり域位置の関係」、「根室沖から岩手県沖北部で確認されている津波堆積物及びそれを再現する津波波源」に関する知見を収集し、超大すべり域を配置する。

青森県北部~茨城県南部における3.11地震に伴う津波の痕跡高* (東北地方太平洋沖地震津波合同調査グループ(2012)) ※:海岸線からの距離1000m以内,信頼度Aのデータ(総数:2,686)

4.3.2 超大すべり域の配置

■3.11地震に伴う津波の影響範囲と超大すべり域位置の関係

• 3.11地震に伴う津波は、青森県北部から茨城県南部に至る広範囲で被害が確認されているが、震源域に位置する宮城県沿岸の津波高さ(痕跡高) よりも、三陸沿岸の津波高さ(痕跡高)の方が高かったことが特徴的である(Tsuji et al.(2014))。

143

S31 S140

Satake et al.(2013)は、津波波形インバージョン解析から推定された断層モデルを用いて、宮城県沿岸、三陸沿岸の津波高さに寄与したすべり領域の分析を実施し、宮城県沿岸の津波高さに寄与したすべり領域は、869年の地震に伴う津波の発生領域であり、三陸沿岸の津波高さに寄与したすべり領域は、1896年明治三陸地震津波の発生領域であったとしている。

以上の知見から、沿岸の津波高さに影響を及ぼすすべり領域は、正対する海域で生じる大きなすべり領域である。

4.3.2 超大すべり域の配置

S31 S140

■根室沖から岩手県沖北部における既往津波:17世紀に発生した超巨大地震に伴う津波の津波堆積物(十勝沖・根室沖)

17世紀に発生した超巨大地震に伴う津波の津波堆積物は、根室から十勝地域まで沿岸約200kmで確認され、北海道浜中町の霧多布湿原では、
 1952年十勝沖地震に伴う津波や1960年チリ地震に伴う津波の遡上距離は海岸から1~2km程度であるのに対し、17世紀の津波に伴う津波堆積物は、現海岸線から最低でも内陸へ3km以上に渡って分布する(高清水(2013)、地震調査研究推進本部(2017a)、佐竹(2017))。

144

4.3.2 超大すべり域の配置

S31 S140

■根室沖から岩手県沖北部における既往津波:17世紀に発生した超巨大地震に伴う津波の津波堆積物を再現する波源モデル(十勝沖・根室沖)

- 17世紀の津波の津波堆積物分布を説明する断層モデルは複数提案されているが、地震調査研究推進本部(2017a)、佐竹(2017)は、津波堆積物の 平面的な分布及び十勝海岸の津波高さを再現する波源モデルは、Ioki and Tanioka(2016)が提案するプレート間地震と津波地震の連動を考慮した 波源モデル(T10N5S25モデル[※])であるとしている。
- なお、地震調査研究推進本部(2017a)は、17世紀の津波は、超巨大地震だったと推定されているにも関わらず、歴史記録では東北地方以南への影響は見られないとともに、17世紀ごろの年代を示す津波堆積物は、下北半島(Tanigawa et al.(2017))や三陸海岸(高田ほか(2016))で分布が確認されているが、それが17世紀の津波か1611年慶長三陸地震の津波かは判断できず、両者の関係解明は今後の課題としている。

※:T=十勝沖, N=根室沖, S=海溝寄り

(地震調査研究推進本部(2017a))

17世紀に発生した超巨大地震に伴う津波の再現モデル の断層パラメータ(Ioki and Tanioka (2016))

Fault models and their parameters of the 17th century great earthquake.

Fault model	Length (km)	Width (km)	Depth (km)	Strike (deg)	Dip (deg)	Rake (deg)	Slip (m)
Т	100	100	14	228	15	90	10
N	200	100	14	228	15	90	5
S	300	30	6.7	228	15	90	0-35

Fig. 12. Tsunami heights along the Pacific coast of Hokkaido (Satake *et al.*, 2008; Ioki and Tanioka, 2016) from combined model of interplate and tsunami earthquakes (brown), giant fault (green), interplate earthquakes (red for T10N5, light blue for TN5) and tsunami earthquake model (dark blue). Coastal tsunami heights by Hirakawa *et al.* (2000) are also shown.

既往再現モデルによる北海道南東部沿岸での津波高さ
(佐竹(2017))

4.3.2 超大すべり域の配置

■根室沖から岩手県沖北部における既往津波:青森県北部太平洋沿岸の津波堆積物(イベント堆積物)

 青森県東方沖及び岩手県沖北部では、過去にM9クラスの巨大地震伴う津波が発生した記録がないことを踏まえ、青森県北部太平洋沿岸を対象に 津波堆積物調査を実施し、広範囲にわたり、津波起因の可能性があるイベント堆積物が分布することを確認した。

□尻屋崎∮	調査地点		イベント堆積物 ^{※1}			
			有無	基底標高(T.P.)	推定年代(年)	
猿ヶ森周辺	尻屋崎		有	約8.1m	A.D.190年頃	
山小田野沢		タテ沼付近①	有	約7.6m ^{※2}	A.D.1650年頃より後	
日 東京電力敷地内		タテ沼付近②	有	約11.8m	A.D.50年頃	
	猿ヶ森 周辺	猿ヶ森川	有	約11.0m ^{※2}	A.D.1300年頃	
この こ		材木沢	有	約7.6m	A.D.1550年頃	
		大川	有	約6.8m	A.D.1450年頃より後	
尾駮老部川	小田野沢		有	約4m	A.D.1700年頃	
□ 尾駮発茶沢	東京電力敷地内		有	約7.4m	A.D.1400年頃	
		A測線	有	約6.1m	B.C.500年頃	
	東北電力	B測線	人工改変	/	/	
中六川目	敷地内	C測線	有	約8.6m	B.C.750年頃	
		D測線	有	約8.4m	B.C.2800年頃	
	尾駮老部川		有	約1.9m	B.C.2000年頃	
この地図は,国土地理院長の承認を 得て,数値地図200000(地図画像)	尾駮発茶沢		有	約6.2m	B.C.2950年頃	
を複製したものである。(承認番号 平26情複,第5号)	平沼		有	約1.6m	A.D.550年頃	
	六川目		有	約2.5m	B.C.4700年頃以前	

青森県北部太平洋沿岸で確認されたイベント堆積物

調査位置図

※1:各イベント堆積物の詳細は,補足説明資料「3.津波堆積物調査」に記載。 ※2:イベント堆積物の基底標高を確認することは出来なかったことから,確認できた下限標高を記載。 146

4.3.2 超大すべり域の配置

■根室沖から岩手県沖北部における既往津波:青森県北部太平洋沿岸の津波堆積物(イベント堆積物)を再現する波源モデル

1856年の津波の再現モデル(Mw8.35)及び同モデルを基本に地震規模及び走向の不確かさを考慮した津波波源モデル^{※1}を設定して数値シミュレーションを実施した結果,青森県東方沖及び岩手県沖北部に分布する津波堆積物(イベント堆積物)の分布を概ね再現できることを確認した。
 ※1:再現解析の詳細は,本資料「2.最新の科学的・技術的知見を踏まえた波源域及び津波規模の評価」に記載。

本資料 p116.117

一部修正(統合)

147

4.3.2 超大すべり域の配置

■まとめ

• M9クラスの巨大地震が発生した場合の津波の影響範囲と超大すべり域の配置の関係を整理するため、「3.11地震に伴う津波の影響範囲と超大すべり域位 置の関係」、「根室沖から岩手県沖北部で確認されている津波堆積物及びそれを再現する津波波源」に関する知見を収集した。

148

- 3.11地震に伴う津波は広範囲に影響を及ぼしたが沿岸部の津波高さに大きく寄与したのは、正対する海域の大きなすべりであるとともに、北海道東部沿岸、 青森県東方沖及び岩手県沖北部沿岸の津波堆積物の分布を再現する津波波源は、3.11地震と同様に、正対する海域で発生した津波によるものであることを 確認した。
- 以上から、十勝沖・根室沖から岩手県沖北部の広域の津波特性を考慮した特性化モデルを設定する際には、十勝沖・根室沖、青森県東方沖及び岩手県沖北部の各領域に超大すべり域を配置する必要がある。

4.3.3 広域の津波特性を考慮した特性化モデルの設定

■設定方針①

 3.11地震の広域の津波特性(痕跡高)を考慮した特性化モデル※並びに3.11地震における大すべりの発生形態から得られた知見を踏まえ、「十勝沖・ 根室沖から岩手県沖北部の連動型地震」の広域の津波特性を考慮した特性化モデルを設定する。
 ※:3.11地震における広域の津波特性を考慮した特性化モデルの設定方法の詳細は、補足説明資料「8.3.11地震における広域の津波特性を考慮した特性化モデル」に記載。

【3.11地震の広域の津波特性(痕跡高)を考慮した特性化モデルから得られた知見の反映】

- i. <u>超大すべり域の位置</u>:超大すべり域を複数配置することで広域の津波痕跡を再現でき,その位置は,地震学的・測地学的知見(アスペリティ,固着 等)を踏まえて配置する。
- ii. 大すべり域・超大すべり域のすべり量:杉野ほか(2014)に示されるすべり量,面積比率を踏まえて設定する。

149

4.3.3 広域の津波特性を考慮した特性化モデルの設定

S31 S140

150

■設定方針②

【3.11地震における大すべりの発生形態に係る知見】

iii. <u>超大すべり域のすべり量分布</u>:宮城県沖における浅部領域の大きなすべりの発生要因(深部の破壊を起点としたダイナミックオーバーシュート) を踏まえ、3.11地震の広域の津波特性を考慮した特性化モデルのうち宮城県沖のすべり量分布並びに十勝沖・根室沖、青森県東方沖及び岩手 県沖北部の地震学的・測地学的知見(アスペリティ、固着等)を踏まえて設定する。

■ダイナミックオーバーシュート(Ide et al.(2011))

- ✓ 3.11地震は、①浅部の比較的静かなすべり、②深部における高周波を放射する破壊の2つの破壊モードからなる。
- 、 このうち、①のすべりは地震以前に蓄えられていたひずみを解放するだけではなく、さらにすべり過ぎたことが、地震直後に陸側プレート内で正断層地震が発生したことから推定 される。これがダイナミックオーバーシュート(動的過剰すべり)と呼ばれる現象である。
- ✓ 浅部のダイナミックオーバーシュートは、それに先立つ深部のエネルギッシュな破壊により励起された。深部側の破壊が存在しなければ、巨大な津波は発生しなかった。

(左図)コンター:総すべり量の分布,0309:前震(Mw7.3)のメカニズム,MS:本震のメカニズム, 0312及び0314:余震(それぞれMw6.5,Mw6.1)のメカニズム,青点:前震の震央,赤点:余震の震央, グラフ:地震モーメントの放出速度の推移(右図)すべり速度分布のスナップショット

(Ide et al.(2011))

時間毎の破壊過程の模式図(井出(2011))

4.3.3 広域の津波特性を考慮した特性化モデルの設定

■超大すべり域の位置:十勝沖・根室沖,青森県東方沖及び岩手県沖北部におけるアスペリティと地震活動パターン

- 青森県東方沖及び岩手県沖北部について、Yamanaka and Kikuchi(2004)、永井ほか(2001)はアスペリティ分布の解析から、アスペリティ(左図:AとB)のうち、1968年の地震と1994年の地震の共通アスペリティBのカップリング率はほぼ100%に近く、個々のアスペリティが単独で動けばM7クラスの地震(=1994年)を、連動するとM8クラスの地震(=1968年)を引き起こすとしている。

+勝沖・根室沖におけるアスペリティと 2003年十勝沖~1973年根室沖の震源 域間のP波速度構造(2010年測線) (東(2012))

151

4.3.3 広域の津波特性を考慮した特性化モデルの設定

S31 S140

■ 超大すべり域の位置: 十勝沖・根室沖における地震学的見地

- 東北大学(2012)は、小繰り返し地震(相似地震)の活動及びそれから推定されるプレート間地震すべりについて、3.11地震で大きなすべりを生じた 宮城県沖における特徴との類似性から十勝沖・根室沖で巨大地震が発生する可能性があるとしている。
- なお、日本海溝・千島海溝島弧会合部付近の低地震活動(下図:第1図空白域B)は、プレートの折れ曲がりが影響している可能性も考えられるとしている。

第1図. 北海道南東沖の小繰り返し地震グループの分布(丸印). 丸の色はグループの地震の平均の深さを 示す. コンターは Yamanaka and Kikuchi (2004)^のによる M7 以上の地震のすべり量分布. 矩形は第3 図で平均の積算すべりを推定した領域を示す. 黄色楕円は繰り返し地震活動が低い場所.

東北大学(2012)

(2) 第2図. 北海道南東沖(左)および東北地方東方沖(右)の繰り返し地震分布(黒丸)およびそれにより推定したプレート間カップリング率(カラー)の比較. カップリング率は 0.3°×0.3°のグリッドごとに、3 つ以上の小繰り返し地震グループが存在する場所について推定した. 緑および黒のコンターはM7以上の地震のすべり量分布(Yamanaka and Kikuchi, 2004⁶); linuma et al., 2012⁷). 関東地方の沖の破線は、フィリピン海プレートの北東限(Uchida et al., 2009⁸).

東北大学(2012)

【宮城県沖における特徴】

特徴①:大すべり域を中心とする広域で高いカップリング率が推定される。 特徴②:プレート境界型地震の発生域下限付近まで高カップリング領域が存在。 特徴③:プレート境界型地震の発生域下限付近でのM7クラスの地震(の繰り返し)が存在。 特徴④:海溝近傍の低地震活動と低繰り返し地震活動。

4.3.3 広域の津波特性を考慮した特性化モデルの設定

S31 S140

■<u>超大すべり域の位置</u>:十勝沖·根室沖における測地学的見地

• 国土地理院(2012)は、1999年9月から2003年8月までと2007年3月から2011年2月までのすべり欠損速度分布から、両期間で、釧路沖の海溝寄りと 根室沖の陸寄りに強い固着領域が推定され、その広がりから巨大地震の潜在的発生可能性を有する地域と言うことができるとしている。

第2図 1999年9月から2003年8月までの平均的な滑り欠損速度分布. Fig. 2 Distribution of slip-deficit rate from September, 1999 to August, 2003.

第3図 2007年3月から2011年2月までの平均的な滑り欠損速度分布. Fig. 3 Distribution of slip-deficit rate from March, 2007 to February, 2011.

国土地理院(2012)

以上の地震学的・測地学的知見を踏まえ,超大すべり域を配置する。

S31 S140

4. 特性化モデルの設定 4.3 広域の津波特性を考慮した特性化モデル(特性化モデル①)

4.3.3 広域の津波特性を考慮した特性化モデルの設定

■<u>超大すべり域のすべり量</u>:青森県東方沖及び岩手県沖北部

• 国内外で発生している巨大地震の地震学的・地質学的・測地学的知見から,青森県東方沖及び岩手県沖北部については,1968年十勝沖地震に 伴うすべりが最大規模と評価される。

■大すべり域・超大すべり域の設定(概念)

3.11地震時のすべり分布 (地震調査研究推進本部(2012)に一部加筆)

<u>敷地前面海域である青森県東方沖及び岩手県沖北部の大すべり域は、発電所の津波高さに与える影響が大きいことを踏まえ、最新の科学的・</u> 技術的知見から想定されるすべりを上回る規模のすべりとして、3.11地震時における宮城県沖のすべりと同規模のすべりを考慮する。

- 4. 特性化モデルの設定 4.3 広域の津波特性を考慮した特性化モデル(特性化モデル①)
 - 4.3.3 広域の津波特性を考慮した特性化モデルの設定

■超大すべり域のすべり量分布

- 青森県東方沖及び岩手県沖北部で発生している既往地震の震源深さ(約20km)は, 3.11地震時に宮城県沖の浅部領域をオーバーシュートさせた (破壊の起点となった)震源深さと同程度である。
- ・ 十勝沖・根室沖における高カップリング領域並びに小繰り返し地震(相似地震)の活動領域は、3.11地震で大きなすべりを生じた宮城県沖における 特徴と類似する(東北大学(2012))。

P震源位置とすべり分布 Figure 6. Asperity map along the subduction zone in northeasten Japan. Stars show the main shock epecienters. Contour lines show the moment release distribution. The interval of the computines is 0.5 m. Each earthquake is distinguished by color. We painted the area within the value of half the maximum slip as an asperity.

青森県東方沖及び岩手県沖北部における アスペリティ分布,既往地震の震源 (Yamanaka and Kikuchi(2004))

第2回. 北海道南東沖(左)および東北地方東方沖(右)の繰り返し地震分布(黒丸)およびそれにより推 定したプレート間カップリング率(カラー)の比較. カップリング率は 0.3°×0.3°のグリッドごと に、3つ以上の小繰り返し地震グループが存在する場所について推定した. 緑および黒のコンター はM7以上の地震のすべり量分布(Yamanaka and Kikuchi, 2004⁶); linuma et al., 2012⁷). 関東地方の 沖の破線は、フィリピン海プレートの北東限(Uchida et al., 2009⁸).

【宮城県沖における特徴】 特徴①:大すべり域を中心とする広域で高いカップリング率が推定される。 特徴②:プレート境界型地震の発生域下限付近まで高カップリング領域が存在。

- 特徴③:プレート境界型地震の発生域下限付近でのM7クラスの地震(の繰り返し)が存在。
- 特徴④:海溝近傍の低地震活動と低繰り返し地震活動。

+勝沖・根室沖と宮城県沖のカップリング領域並びに地震活動の比較 - (東北大学(2012))

<u>青森県東方沖及び岩手県沖北部,十勝沖・根室沖と宮城県沖の地震学的な類似性を踏まえ,3.11地震の広域の津波特性を考慮した特性化モデル</u> における宮城県沖の超大すべり域のすべり量分布を各領域に設定する。

155
4.3.3 広域の津波特性を考慮した特性化モデルの設定

■ まとめ

 3.11地震の広域の津波特性を考慮した特性化モデル並びに3.11地震における大すべりの発生形態から得られた知見を踏まえて設定した特性化モデルを 以下に示す。

【青森県東方沖及び岩手県沖北部の大すべり域・超大すべり域】

- ・超大すべり域の位置:アスペリティ分布及び1968年十勝沖地震の震源位置を踏まえて設定。
- 超大すべり域のすべり量:1968年十勝沖地震に伴うすべりが最大規模と評価されるが,発電所前面の超大すべり域は発電所の津波高さに与える影響が大きいことを踏まえ,保守的に3.11地震時における宮城県沖と同規模のすべりを考慮。すべり量は杉野ほか(2014)を踏まえて設定。
- •超大すべり域のすべり量分布:3.11地震の震源深さとの類似性を考慮し,3.11地震の広域の津波特性を考慮した特性化モデルの宮城県沖の超大すべり域のすべり量分布を参考に設定。
- ・大すべり域・超大すべり域の面積:青森県東方沖及び岩手県沖北部の断層面積を基に,杉野ほか(2014)に示される面積比率を踏まえて設定。

【十勝沖・根室沖の大すべり域・超大すべり域】

- •超大すべり域の位置:地震学的,測地学的知見を踏まえて設定。
- ・超大すべり域のすべり量:すべり量は杉野ほか(2014)を踏まえて設定。超巨大地震(17世紀型)を再現するモデルのすべり量と同等であることを確認。
- ・超大すべり域のすべり量分布:宮城県沖の高カップリング領域並びに小繰り返し地震(相似地震)の活動領域との類似性を考慮し、3.11地震の広域の 津波特性を考慮した特性化モデルの宮城県沖の超大すべり域のすべり量分布を参考に設定。
- •大すべり域・超大すべり域の面積:十勝沖から根室沖の断層面積を基に,杉野ほか(2014)に示される面積比率を踏まえて設定。

+勝沖・根室沖から岩手県沖北部の 広域の津波特性を考慮した特性化モデル

諸元		広域の津波特性を考慮した 特性化モデル	
ŧ-	メントマク [゛] ニチュート [゛] (Mw)	9.06	
断	層面積(S)	110,472 (km²)	
平均応力降下量(⊿σ)		3.1 (MPa)	
地震モーメント(Mo)		4.93 × 10 ²² (Nm)	
平t	タすべり量	8.93(m)	
-	背景領域(0.33D) (面積及び面積比率)	2.79(m) (64,419(km²), 58.3%)	
9べり量	大すべり域(1.4D) (面積及び面積比率)*	11.84(m) (26,783(km²), 24.3%)	
	超大すべり域(3D) (面積及び面積比率)	25.38 (m) (19,271 (km²), 17.4%)	

※:超大すべり域を含まない面積及び面積比率

4.3.4 特性化モデル①の設定方針

- 3.11地震時に大きなすべりが生じた宮城県沖と破壊が停止した茨城県沖・房総沖のテクトニクス的背景及び地震学的知見から、大きなすべりが生じる構造的特徴を整理した上で、日本海溝・千島海溝島弧会合部のテクトニクス的背景等の類似性及び地震学的見地から、同領域で3.11地震時で見られた大きなすべりが発生する可能性を検討する。
- 上記検討から得られた知見を踏まえ、広域の津波特性を考慮した特性化モデルに保守性を考慮した特性化モデル①を設定する。

シ東北電力

S31 S140

4.3.5 大きなすべりが生じる構造的特徴

S31 S140

158

■3.11地震で大きなすべりを生じた要因:宮城県沖における付加体の幅

Kozdon and Dunham(2013)は、3.11地震ではプレート境界浅部でもすべりが発生したことに着目し、地震探査で得られた宮城県沖の地震波速度構造を模した沈み込みプレート境界モデルを用いた2次元動的破壊シミュレーションから、付加体の幅が小さいほどプレート境界浅部のすべり量が増大する傾向があるとし、3.11地震で大きなすべりが発生した宮城県沖における付加体(P波速度:3~4km/s以下の領域)の幅は、他領域と比較して狭い(Tsuru et al.(2002))。

Figure 11. (a) Influence of horizontal extent *W* of shallow velocity-strengthening region on cumulative slip (plotted every 5 s). Shown for maximum effective normal stress $\bar{\sigma}_{max} = 40$ MPa and seismogenic depth D = 45 km. (b) Horizontal and (c) vertical seafloor displacement compared with various observations (dashed line). The color version of this figure is available only in the electronic edition.

horizontal distance from coast (km)

200

150

動的破壊シミュレーションによる付加体の幅と 断層すべり量,水平・上下変位の関係 (Kozdon and Dunham(2013)に一部加筆)

Figure 17. Map view of the low velocity sedimentary units observed on MCS sections in the Japan Trench margin. Small dots represent background seismicity taken from JMA (Japan Meteorological Agency) HypoCatalog.

日本海溝沿いにおける付加体(低速度堆積物)の分布 (Tsuru et al.(2002)に一部加筆)

4.3.5 大きなすべりが生じる構造的特徴

S31 S140

- 3.11地震で大きなすべりを生じた要因:宮城県沖の海溝軸付近における島弧地殻の地震波速度
 - Liu and Zhao(2018)は、地震波トモグラフィーの結果から、3.11地震で大きなすべりが発生した宮城県沖に顕著な高速度域があることを確認し、 海溝軸付近に比較的高速度域の島弧地殻が分布することと3.11地震の大きなすべりには関連があるとしている。

Fig. 5. Vertical cross sections of V_p tomography (left) and corresponding cartoons (right). The east-west vertical cross sections are along the three profiles shown in Fig. 1C. The normalized residual topography (blue line) and gravity (green line) along each profile are shown atop each cross sections. The red and blue colors in (A CO) denote low and high V_p perturbations, respectively, whose scale is shown based (A). The white bold and dashed lines in (A) to (C) denote the UBP and the forearc Moho. The red and blue verturbations, respectively, whose scale is shown based (A). The white bold and dashed lines in (A) to (C) denote the UBP and the forearc Moho. 2017 and the VLFEs (24) within a 40-km width of each profile, respectively. Note that the hypocentes of the VLFEs and the megathrust earthquakes (M_w. 70 to 80) during 1917 to 2017 and the VLFEs (24) within a 40-km width of each profile, respectively. Note that the hypocentes of the VLFEs and the megathrust earthquakes are set on the UBP, because their accurate focal depths are unclear for most of them. The reverse triangle denotes the Japan Trench axis. HF, high-frequency. In the right panels, the red, green, and blue lines denote low-, normal, and high-V_p anomalies atop the subducting Pacific plate, respectively, according to the tomographic results of this study. The gray dashed line denotes the forearc. Moho.

> プレート境界におけるP波速度分布とそのイメージ (Liu and Zhao (2018)に一部加筆)

本資料 p13 一部修正

4.3.5 大きなすべりが生じる構造的特徴

S31 S140

- 3.11地震で破壊が停止した要因: 房総沖におけるテクトニクス的背景とすべりの関係
- 房総沖の相模トラフ周辺では,陸側のプレートの下にフィリピン海プレートが,さらに下方には太平洋プレートが沈み込み,茨城県から千葉県沿岸の 南東方向に向かってフィリピン海プレートの北東端が太平洋プレートに接している(Uchida et al.(2009)他)。
- Uchida et al.(2009)は, 地震学的見地から太平洋プレートの上盤側をなすプレートの違いによってカップリング率が大きく異なるとし, 文部科学省 (2008)は, プレート境界面の上盤側の構造不均質がプレート間固着状態に強く影響を及ぼすとしている。
- Shinohara et al.(2011)は、3.11地震の余震分布に関する分析から、フィリピン海プレート北東端の位置と3.11地震の破壊域が一致するとしている。

4.3.5 大きなすべりが生じる構造的特徴

- 3.11地震で破壊が停止した要因:茨城県沖における沈み込む海山とすべりの関係①
- 茨城県沖では,海溝軸から海山が沈み込んでいることが確認されており, Kundu et al.(2012)は, 3.11地震の大きなすべり領域(high slip patch)の南限では, 沈み込む海山がプレート間のカップリングを弱め, 3.11地震の破壊のバリアとして作用したとしている。
- Mochizuki et al.(2008), 望月(2011)は、茨城県沖に非地震活動域が存在する要因について、複数の海山の沈み込みによってプレート境界に接する 下部地殻が削り取られ、そこに堆積した堆積物がプレート境界における固着を弱くしている(過去に海山の通った痕跡がアスペリティの境界になっている)可能性が考えられるとしている。また、南側の沈み込む海山上のプレート境界において地震が発生せず、海山の麓周辺でM7程度の地震が集中的 に発生している要因について、海山の沈み込みによって上盤側底部が破壊され、歪エネルギーが蓄積できないために地震活動が非活発である可能 性が考えられるとしている。

4.3.5 大きなすべりが生じる構造的特徴

S31 S140

■ 3.11地震で破壊が停止した要因:茨城県沖における沈み込む海山とすべりの関係②

 文部科学省(2013b)は、茨城県沖において発生した3.11地震の余震(M7.5)のすべり領域はフィリピン海プレートの北東限と沈み込む海山に囲まれた 範囲に位置するため、この地震の破壊伝播がフィリピン海プレートと海山によって止められたように見え、大地震の発生場所と規模(震源域の広がり) は海底地形やプレート構造等の地学的要因と関係する可能性があることが分かったとしている。

図12 (茨城県沖地震)2011年茨城県沖の地震(M7.6)震源城の模式図。右上図は,近地強震波形とGNSSデータ解析から求められた断層面 上における滑り分布。大きな滑り域が太平洋プレート/フィリピン海プレート境界(青点線)と太平洋プレートとともに沈み込む海 山(紫点線)に挟まれた位置にあり,これらの構造の境界が滑りを止めた可能性が考えられる。

4.3.5 大きなすべりが生じる構造的特徴

S31 S140

- 3.11地震で破壊が停止した要因:国内外における巨大地震が発生していないプレート境界の構造的特徴
- Wang and Bilek(2014)は,機器観測された全ての巨大地震は,滑らかな地形が沈み込む海域で発生し,起伏の激しい地形を伴うプレート境界ではクリープしており,超巨大地震は発生していないとしている。
- また、沈み込む海山は、起伏の激しい地形の典型例であり、海山が沈み込む領域では中小規模の地震を伴うが、大地震を発生する証拠は得られておらず、3.11地震の破壊の南側の停止は、フィリピン海プレートが下盤となる位置ではなく、海山が沈み込む領域で生じたとしている。

Fig. 1. World map showing general lack of correlation between rugged subducting seafloor and great megathrust earthquakes and showing locations of map areas of Fig. 2 through 10 at 14. Rupture extents of giant ($M_w \ge 9$) events are indicated with pink lines. Epicentre locations of other great ($M_w \ge 8$) events are from the USGS/NOAA catalogue for the time period 1903–2012.

起伏の激しい海底と巨大地震の発生位置の分布 (Wang and Bilek(2014))

Fig. 11. Scenarios of seamount subduction seen in the literature. (a) "Cutting off": The top part of or the entire seamount is sheared off. (b) "Sliding over": The upper plate frictionally slides over the seamount without severe internal damage. (c) "Breaking through": The seamount forces its way through by severely damaging its surrounding and itself (modified from Wang and Bilek (2011)). We consider (a) unlikely and (b) mechanically impossible. Scenario (c) is supported by field observations and sandbox experiments.

沈み込む海山とプレート境界上盤のシナリオ (Wang and Bilek(2014))

4.3.5 大きなすべりが生じる構造的特徴

- 3.11地震で破壊が停止した要因:スロー地震活動域(青森県東方沖及び岩手県沖北部,茨城県沖・房総沖)
 - Nishikawa et al. (2019)は、防災科学技術研究所のS-netによる地震記録や、その他の地震学的及び測地学的な観測記録を使用して、日本海溝沿 いで発生している地震現象(テクトニック微動, 超低周波地震, スロースリップ, 群発地震, 小繰り返し地震)の空間分布から, スロー地震多発域(三 陸沖北部、茨城県沖)と3.11地震の破壊が停止した領域が一致する一方で、3.11地震で大きなすべりが生じた宮城県沖のスロー地震活動は低調で あったとしている。
 - また、スロー地震が多発している茨城県沖は、沈み込む海山等の不均質な地質構造に対応していることから、同領域は周囲との摩擦特性が異なり、 2012年にコスタリカで発生した地震(Mw7.6)や2016年にエクアドルで発生した地震(Mw7.8)のように、地震の破壊を妨げる領域の可能性があるとし ている。

the tectonic tremors, VLFs, and earthquake swarms containing repeaters. foreshock (Mw 7.3). The solid and dashed black contours indicate the Red squares indicate tremors with a duration of 80 s or longer Yellow squares denote VLFs. Blue circles represent events of background swarms containing repeaters (orange stars). Cyan circles are events of aftershock swarms containing repeaters (green stars). The green square denotes the June 2017 SSE. Magenta diamonds indicate the 2003 swarms containing repeaters during the 1991–2010 and 2014–2018 M 6.8 and 2008 M 6.9 Fukushima-Oki earthquakes. Magenta large stars time periods respectively

Fig. 3 Slow earthquake activity in the Japan Trench (A) Encenters of denote the encenters of the Tohoku-Oki earthquake and its Jargest coseismic slip (17) and afterslip (20) distributions of the Tohoku-Oki earthquake at 10-m and 0.4-m intervals respectively. The magenta dashed line indicates the forearc segment boundary (24) (B and C) Space-time distributions of the tectonic tremors VLFs, and earthquake

> 日本海溝におけるスロー地震活動 (Nishikawa et al.(2019))

構造的不均質性の関係(概略図)(Nishikawa et al.(2019))

164

S31 S140

- 4. 特性化モデルの設定 4.3 広域の津波特性を考慮した特性化モデル(特性化モデル①)
 - 4.3.5 大きなすべりが生じる構造的特徴

■ まとめ

 3.11地震時に大きなすべりが生じた宮城県沖と破壊が停止した茨城県沖・房総沖のテクトニクス的背景及び地震学的見地から、大きなすべりが 生じるプレート境界は以下の構造的特徴を有するものと考えられる。

> 付加体の幅が狭く、海溝軸付近には比較的高速度域の島弧地殻が分布する。

> プレート境界周囲(上盤,下盤)は均質な構造を呈するとともに、スロー地震活動が低調である。

165

S31 S140

4.3.6 日本海溝・千島海溝島弧会合部における大きなすべりの発生可能性

S31 S140

166

■島弧会合部のテクトニクス的背景①

- 千島海溝南西端は、日本海溝との島弧会合部に位置し、その会合部(衝突帯)では、日高山脈が形成されている(日高造山運動)(木村(2002))。
- 日高山脈の地下深部において、千島弧は下部地殻内で上下に裂けて分離(デラミネーション)し、上部地殻を含めた上半分は日高主衝上断層によって西側に衝上し、上部マントルを含めた下半分は下降している。また、東北日本弧は、その分離(デラミネーション)した千島弧の中へウェッジ状に突入している(伊藤(2000))。

S31 S140

4. 特性化モデルの設定 4.3 広域の津波特性を考慮した特性化モデル(特性化モデル①)

4.3.6 日本海溝・千島海溝島弧会合部における大きなすべりの発生可能性

■島弧会合部のテクトニクス的背景②

- 千島前弧スリバーの衝突により沈み込んだ地殻の先端部は,直下の太平洋スラブ上面にまで達している(Kita et al.(2010))。
- 長谷川ほか(2012)は、太平洋スラブ地殻内の二重深発地震面のうち上面の地震の空間分布とプレート構造には明瞭な対応関係があるとし、房総沖における太平洋スラブの直上に重なって沈み込むフィリピン海スラブの範囲と同様に、島弧会合部における沈み込んだ地殻と太平洋スラブが接する範囲では、そのテクトニクス的背景から上面地震の発生帯が局所的に深くなっているとしている。

S31 S140

4. 特性化モデルの設定 4.3 広域の津波特性を考慮した特性化モデル(特性化モデル①)

4.3.6 日本海溝・千島海溝島弧会合部における大きなすべりの発生可能性

■島弧会合部のテクトニクス的背景とM7~8クラスの地震発生領域の関係

- ・ 文部科学省(2008)は、三陸沖北部から釧路・根室沖に至る海域で実施した海底地震観測データによる地震波速度構造から、千島弧と東北日本弧の 衝突の結果剥落した下部地殻物質に対応すると考えられる顕著な低速度帯が認められ、この低速度帯と沈み込む太平洋スラブと接触する範囲を避 けるようにプレート間地震の震源域が広がるとともに、1968年十勝沖地震の北西側のアスペリティや2003年および2004年にM7級のプレート境界地震 を起こした領域は、明らかに高速度の前弧マントルの直下に位置するとしている。
- また、千島弧前弧から剥落した下部地殻物質とプレート境界の接触域において、ほとんど相似地震が発生していないことも含めると、接触域とその周囲は摩擦特性が異なり、接触域において地震性すべりはほとんど起こらないのかもしれないとしている。

S31 S140

4. 特性化モデルの設定 4.3 広域の津波特性を考慮した特性化モデル(特性化モデル①)

4.3.6 日本海溝・千島海溝島弧会合部における大きなすべりの発生可能性

■襟裳岬沖の沈み込む海山

- Yamazaki and Okamura(1989)は、襟裳岬沖の海溝軸海側には襟裳海山が存在し、その陸側斜面下には、地磁気異常から沈み込んだ海山が存在 するとしている。
- 木戸ほか(2002)は、襟裳海山周辺を対象としたマルチチャンネル反射法探査、海底地形精査・地磁気・重力異常探査を実施し、海底地形図(下: 中央図)、襟裳海山及び沈み込む海山直上を北西-南東に横切るMCS処理記録(下:右図)から、沈み込む海山を明瞭にイメージングしている。

S31 S140

4. 特性化モデルの設定 4.3 広域の津波特性を考慮した特性化モデル(特性化モデル①)

4.3.6 日本海溝・千島海溝島弧会合部における大きなすべりの発生可能性

■沈み込む海山と上盤プレートの相互作用

- Dominguez et al.(1998)は、海山の沈み込みによる陸側斜面の構造的特徴について、海山の沈み込みを模した砂箱実験とコスタリカ沖中米海溝陸側 斜面の実地形との比較から、次のとおり整理している。
- ▶ 沈み込んでいく海山の前面には、海側に傾斜するバックスラストが形成され、海山の進行とともに新たに陸側に形成されるとともに、沈み込んでいる 海山の頂上付近から陸側のバックスラストへ発散していく横ずれ断層のネットワークが形成される。
- ▶ 海山が完全に沈み込み,海山の海側で再び付加体が形成され始め,沈み込む堆積物の底付けが行われるようになると,海山の海側には陸側に 傾斜する正断層群が形成される。

171

4.3.6 日本海溝・千島海溝島弧会合部における大きなすべりの発生可能性

S31 S140

■襟裳岬沖の沈み込む海山付近の地殻構造(1/2)

Nishizawa et al. (2009)は、襟裳海山及び第1鹿島海山とその陸側に沈み込む海山を横切る地震波トモグラフィーから、典型的なプレート境界の構造と比較して、襟裳海山及び第1鹿島海山位置は地殻が厚く、海溝軸付近の陸側のプレートについては、沈み込む海山の影響により低速度の島弧地殻が分布するとしている。

襟裳海山(a)第1鹿島海山(b)とその陸側に沈み込む海山を 横切る地震波トモグラフィー(Vp) (Nishizawa et al.(2009)に一部加筆)

Figure 11. (a) Influence of horizontal extent *W* of shallow velocity-strengthening region on cumulative slip (plotted every 5 s). Shown for maximum effective normal stress $\bar{\sigma}_{max} = 40$ MPa and seismogenic depth D = 45 km. (b) Horizontal and (c) vertical seafloor displacement compared with various observations (dashed line). The color version of this figure is available only in the electronic edition.

動的破壊シミュレーションによる付加体の幅と 断層すべり量,水平・上下変位の関係 (Kozdon and Dunham(2013)に一部加筆)

S31 S140

4. 特性化モデルの設定 4.3 広域の津波特性を考慮した特性化モデル(特性化モデル①)

4.3.6 日本海溝・千島海溝島弧会合部における大きなすべりの発生可能性

■襟裳岬沖の沈み込む海山付近の地殻構造(2/2)

- 2003年十勝沖地震の余震のうち海溝軸付近の深さ5kmの位置で, 逆断層型の低周波地震が発生したことついて, Obara et al. (2004)は, 低周波地震 (LF1, LF2)の震源位置は, 海山の沈み込みによって影響を受けたプレート境界に対応するとしている。
- また、日本海溝・千島海溝沿いは造構成侵食作用が卓越し付加体が未発達な沈み込み帯であるため、南海トラフに見られるような付加体内部の外 縁隆起帯が形成されにくいが、沈み込む海山の影響により、海溝軸陸側のプレートに地塁・地溝構造(normal faulting system)を形成するため、この 領域で破壊速度が遅い逆断層型の低周波地震が発生したことが示唆されるとしている。
- 以上から、襟裳岬沖の浅部領域は、沈み込む海山の影響により、茨城県沖と類似する比較的低速度域の島弧地殻が分布すると考えられる。

(Bottom) Time sequence of aftershock activity for 2003 Tokachi-Oki earthquake and LF earthquakes. Earthquake listed in JMA catalog located in the rectangle area shown in top panel are plotted with the time duration of ten days. Circles indicate earthquakes, of which the magnitude is greater than 5.5. LF events are indicated by star symbols.

2003年十勝沖地震の本震,余震の震源分布及び低周波地震の震源位置他(Obara et al.(2004))

S31 S140

4. 特性化モデルの設定 4.3 広域の津波特性を考慮した特性化モデル(特性化モデル①)

4.3.6 日本海溝・千島海溝島弧会合部における大きなすべりの発生可能性

■島弧会合部付近における地震学的見地:スロー地震活動域

- Nishikawa et al. (2019), Tanaka et al. (2019)は、防災科学技術研究所のS-netによる地震記録から日本海溝及び千島海溝(南部)沿いで発生して いる地震現象を整理し、島弧会合部付近における浅部領域(深さ約20km以浅)にスロー地震活動域が存在するとしている。
- Tanaka et al.(2019)は、スロー地震活動域と既往地震(1968年、1994年、2003年)のアスペリティ分布やその余震活動域の関係を整理し、スロー地震活動域は地震活動域を避けるように相補的に発生していることから、各活動域の摩擦特性には違いがあるとしている。

Fig. 1 Temor activity in the Japan Trench. (A) Epicenters of the tectonic tremors. Dots indicate the epicenters of the tremors, which are colored according to their duration (see the color scale). Yellow and red stars are VLFs and M > 4.5 ordinary earthquakes, respectively, with the ordinary earthquake picenters taken from the Japan Meteorological Agency (JMA) catalog. Black triangles are S-net observatories. The green square denotes the June 2017 SSE that was detected by our GNSS analysis.

The orange shaded polygons indicate the 18 overlapping subregions used for our tremor detection. The top of the Pacific Plate is indicated by the black contours at 10-km depth intervals. (B) Space-time distribution of the tectonic tremors. We used Japanese Standard Time (JST; UTC + 9 hours). The verticaline indicate J January 2012 and January 2018 (C to E) Enlarged views of (B). The green shaded region in (E) denotes the spatiotemporal extent of the June 2017 SSE.

日本海溝及び千島海溝(南部)のスロー地震活動 (Nishikawa et al.(2019))

Figure 3. Locations of tremor sources determined in this study (red circles). (a) Comparison with locations of very low frequency earthquakes determined by an array signal processing method (blue crosses; Asano et al., 2008) and a cross-correlation analysis (light green diamonds; Matsuzawa et al., 2015) using land-based stations. Broken lines indicate contours of the depths to the plate interface at 10-km intervals defined by Kita et al. (2010) and Nakajima and Hasegawa (2006). (b) Comparison with the epicenters (stars) and slip distributions (contours) of the 1968 Tokachi-Oki (light blue; Yamanaka & Kikuchi, 2004), 1994 Sanriku-Oki (purple; Nagai et al., 2001), and 2003 Tokachi-Oki earthquakes (green; Yamanaka & Kikuchi, 2003). Purple circles denote 7-day aftershocks ($M \ge 3.0$) of the 1994 Sanriku-Oki earthquake listed in the Japan Meteorological Agency earthquake catalog. Plus signs indicate the stations used in the analysis.

島弧会合部付近におけるスロー地震活動域と 既往地震のアスペリティ分布の比較 (Tanaka et al.(2019))

4.3.6 日本海溝・千島海溝島弧会合部における大きなすべりの発生可能性

S31 S140

■島弧会合部付近における地震学的見地:沈み込む海山及びスロー地震活動域と津波発生領域の関係

- Okamura et al.(2008)は、千島海溝南西部の地質構造と1952年、2003年十勝沖地震に伴う津波の発生領域(同津波の再現モデルのすべり分布)の比較から、沈み込む海山はプレート境界深部から浅部への破壊伝播を防ぐ領域であることが示唆されるとしている。
- また、島弧会合部付近のスロー地震活動域(Tanaka et al.(2019))は、1952年十勝沖地震に伴う津波の発生領域(Okamura et al.(2008))を避けるように相補的に発生していることから、既往地震(1968年、1994年、2003年)のアスペリティ分布やその余震活動域との摩擦特性に違いがある (Okamura et al.(2008))ことを含めて、同活動域は、茨城県沖のスロー地震活動域と同様に、破壊を停止させる領域と考えられる。

 O: テクトニック微動活動発生位置

 ・ ※: 超低周波地震発生位置

 日: 1952年十勝沖地震に

 (a)

 (a)

 (a)

 (a)

 (a)

 (b)

 (c)

 (c)

1952年の地震に伴う津波のすべり分布とスロー地震活動域の関係

(Tanaka et al.(2019)に一部加筆)

Figure 5. Comparison of topography, geologic structure, earthquake and tsunami sources, and geophysical data. (a) Bathymetric contour map, (b) depth contour map at the base of Pliocene sediments (contour interval of 0.2 s in two-way traveltime), (c) and (d) seismic and tsunami sources defined as the areas with slip larger than 1 m for *Yamanaka and Kikuchi* [2003], *Tanioka et al.* [2004], and *Satake et al.* [2006] and 1.2 m for *Yagi* [2004], (e) magnetic anomaly [*Joshima*, 2005] (contour interval of 50 nT), and (f) gravity anomaly [*Joshima*, 2005] (contour interval of 10 mGal).

地質構造と津波発生領域の比較(Okamura et al.(2008))

ション、そう、ちから。

4.3.6 日本海溝・千島海溝島弧会合部における大きなすべりの発生可能性

S31 S140

■島弧会合部付近における地震学的見地:すべり欠損速度分布とスロー地震活動域との関係

- Nishimura et al.(2004)は、1995年から2002年のGPSデータを用いて福島県沖から十勝沖までのすべり欠損速度の空間分布と時間変化を整理し、 宮城県沖及び十勝沖では、いずれの期間も強い固着が見られるとしている。また、Hashimoto et al.(2009)は1996年から2000年のGPSデータを用 いて日本海溝から千島海溝のすべり欠損速度分布を整理し、深さ10km~40km範囲に6つの強い固着域が存在し、それらは既往地震発生領域と良 く対応するとしている。
- 島弧会合部付近のスロー地震活動域のすべり欠損(Nishimura et al.(2004))は、宮城県沖や十勝沖等のすべり欠損と比較して十分小さい。

Figure 6. Annual slip distribution on the two plate boundaries. The thick rectangle on the Pacific side is the region of a model fault of the subducting Pacific Plate. Red and blue areas indicate the region of back-slip and forward-slip, respectively. Contour interval is 2 cm yr^{-1} . Vectors represent motion of the hangingwall relative to the footwall. The length of red bars right of the line in the sea of Japan means collision rates at the plate boundary modelled by the virtual tensile fault. Stars are epicemetres of large (M > 6) earthquakes near the plate boundaries. (a) 1995 April to 1996 March. (b) 1996 April to 1999 March. (c) 1997 April to 2000 March. (f) 2001 March. (g) 2001 April to 2002 March.

福島県沖から十勝沖のすべり欠損分布(Nishimura et al.(2004))

Figure 4 | Comparison of slip-deficit zones and tsunami source regions.

The blue and red contours indicate, respectively, the slip-deficit and slip-excess rates at intervals of 3 cm yr⁻¹. The green stars and the green ellipses indicate the epicentres and the tsunami source regions, respectively, for the large interplate earthquakes ($M_w \ge 7.5$) that occurred in the past century. The green dotted ellipse indicates the tsunami source region of the 2003 Tokachi-oki earthquake.

1996年~2000年における日本海溝から千島海溝の

すべり欠損分布(Hashimoto et al.(2009))

4.3.6 日本海溝・千島海溝島弧会合部における大きなすべりの発生可能性

■まとめ

日本海溝・千島海溝島弧会合部は、そのテクトニクス的背景及び地震学的見地から、大すべりが発生するプレート境界の構造的特徴を有していないことから、
 3.11地震時に見られた大すべりが発生する可能性は極めて低いと考えられる。

4.3.7 特性化モデル①の設定

S: 審査会合コメントNo.

177

■設定概要(まとめ)

(A)3.11地震から得られた知見 i の反映 S31

 過去に「十勝沖・根室沖から岩手県沖北部の連動型地震」が発生した記録が無いことから、十勝沖・根室沖から岩手県沖北部で確認されている 津波堆積物及びそれを再現する津波波源に関する知見及び地震学的・測地学的知見を踏まえ、十勝沖・根室沖、青森県東方沖及び岩手県沖 北部のそれぞれに超大すべり域を配置した。

(B)3.11地震から得られた知見 ii の反映(保守性の確保(科学的想像力の発揮)) S140

- 敷地前面海域である青森県東方沖及び岩手県沖北部の大すべり域は、発電所の津波高さに与える影響が大きいことを踏まえ、最新の科学的・ 技術的知見から想定されるすべりを上回る規模のすべりとして、3.11地震時における宮城県沖のすべりと同規模のすべりを考慮した。
- 日本海溝・千島海溝島弧会合部は、そのテクトニクス的背景及び地震学的見地から、3.11地震で見られた大きなすべりが発生する可能性は極めて低いと考えられるが、特性化モデル①の保守性を確保する観点から、同領域に大すべり域を設定した。

	諸元	広域の津波特性を 考慮した特性化モデル	特性化モデル①	
-Ŧ	・メントマク゛ニチュート゛(Mw)	9.06	9.08	
断	層面積(S)	110,472 (km²)	110,472 (km²)	
平均応力降下量(Δσ)		3.27(MPa)	3.45(MPa)	
地震モーメント(Mo)		4.93 × 10 ²² (Nm)	5.19×10 ²² (Nm)	
Ŧ	均すべり量	8.93(m)	9.40(m)	
-	背景領域(0.33D) (面積及び面積比率)	2.79(m) (64,419(km²), 58.3%)	2.79(m) (58,609(km²), 53.1%)	
すべり景	大すべり域(1.4D) (面積及び面積比率) [※]	11.84(m) (26,782(km²), 24.2%)	11.84(m) (32,593(km²), 29.5%)	
Ŧ	超大すべり域(3D) (面積及び面積比率)	25.38(m) (19,271(km²), 17.5%)	25.38(m) (19,271(km²), 17.4%)	

※:超大すべり域を除いた面積比率

新聞祥士

4.3.7 特性化モデル①の設定(設定フロー)

S31 S140

4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した

特性化モデル(特性化モデル2,3,4)

4.4.1 設定方針

- 4.4.2 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデルの設定
- 4.4.3 特性化モデル②,③,④の設定概要
- 4.4.4 特性化モデル②の設定
- 4.4.5 特性化モデル③の設定
- 4.4.6 特性化モデル④の設定

4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル(特性化モデル2,3,④)

4.4.1 設定方針

- 3.11地震における宮城県沖の破壊特性を再現する特性化モデル※から得られた知見,並びに3.11地震における大すべりの発生形態から得られた知見 (=広域の津波特性を考慮した特性化モデルと共通)を踏まえ,青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデルを 設定する。
- なお、青森県東方沖及び岩手県沖北部の大すべり域は発電所の津波高さに与える影響が大きいことを踏まえ、保守性を確保する観点から、最新の 科学的・技術的知見から想定されるすべりを上回る規模のすべりを考慮するとともに、すべり量及びすべり分布が異なる複数の波源モデルを設定する。
 ※:3.11地震における宮城県沖の破壊特性を再現する特性化モデルの設定方法の詳細は、補足説明資料「9.3.11地震における宮城県沖の大すべり域の破壊特性を考慮した特性化 モデル」に記載。

【3.11地震における宮城県沖の破壊特性を再現する特性化モデルから得られた知見】

• 大すべり域・超大すべり域のすべり量等:内閣府(2012)に示されるすべり量,面積比率を踏まえて設定する。

▶ 大すべり域:津波断層の平均すべり量の2倍,全体面積の20%程度(超大すべり域を含む)

- > 超大すべり域:津波断層の平均すべり量の4倍,全体面積の5%程度
- <u>大すべり域・超大すべり域の設定に伴う地震モーメントの調整方法</u>:3.11地震における宮城県沖の破壊特性を再現するためには、波源領域全体 でMwを調整する必要がある。

the observation data (black); Right: Slip distribution inferred from the long-period seismic waves (<0.1Hz).

長周期地震動に基づくすべり分布 (Wu et al.(2012)に一部加筆) 宮城県沖の大すべり域の破壊特性を考慮した特性化モデル

4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル(特性化モデル2)、③、④) 4.4.2 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデルの設定

■大すべり域・超大すべり域の位置(特性化モデル①のうち青森県東方沖及び岩手県沖北部の超大すべり域の設定方針と共通)

 ・ 青森県東方沖及び岩手県沖北部について、Yamanaka and Kikuchi(2004)、永井ほか(2001)はアスペリティ分布の解析から、アスペリティ(左図:AとB)
 のうち、1968年の地震と1994年の地震の共通アスペリティBのカップリング率はほぼ100%に近く、個々のアスペリティが単独で動けばM7クラスの地
 震(=1994年)を、連動するとM8クラスの地震(=1968年)を引き起こすとしている。

4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル(特性化モデル2)、③、④ 4.4.2 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデルの設定

■大すべり域・超大すべり域のすべり量(特性化モデル①のうち青森県東方沖及び岩手県沖北部の超大すべり域の設定方針と共通)

 国内外で発生している巨大地震の地震学的・地質学的・測地学的知見から、青森県東方沖及び岩手県沖北部については、1968年十勝沖地震に 伴うすべりが最大規模と評価される。

■大すべり域・超大すべり域の設定(概念)

3.11地震時のすべり分布(地震調査研究推進本部(2012)に一部加筆)

<u>敷地前面海域である青森県東方沖及び岩手県沖北部の大すべり域は、発電所の津波高さに与える影響が大きいことを踏まえ、最新の科学的・</u> 技術的知見から想定されるすべりを上回る規模のすべりとして、3.11地震時における宮城県沖のすべりと同規模のすべりを考慮する。

4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル(特性化モデル2)、③、④) 4.4.2 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデルの設定

■大すべり域・超大すべり域のすべり量分布(特性化モデル①のうち青森県東方沖及び岩手県沖北部の超大すべり域の設定方針と共通)

• 青森県東方沖及び岩手県沖北部で発生している既往地震の震源深さ(約20km)は, 3.11地震時に宮城県沖の浅部領域をオーバーシュートさせた (破壊の起点となった)震源深さと同程度である。

(地震調査研究推進本部(2012))

Figure 6. Asperity map along the subduction zone in northeastern Japan. Stars show the main shock epicenters. Contour lines show the moment release distribution. The interval of the contour lines is 0.5 m. Each earthquake is distinguished by color. We painted the area within the value of half the maximum slip as an asperity.

青森県東方沖及び岩手県沖北部における アスペリティ分布,既往地震の震源 (Yamanaka and Kikuchi(2004))

<u>青森県東方沖及び岩手県沖北部と宮城県沖の地震学的な類似性を踏まえ、3.11地震における宮城県沖の大すべり域の破壊特性を考慮した</u> 特性化モデルのすべり量分布を各領域に設定する。

第723回審査会合(R1.6.7) 資料2-2-1 p143 一部修正 **184**

4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル(特性化モデル2,3,④)

4.4.3 特性化モデル2,3,4の設定概要

- ・ 青森県東方沖及び岩手県沖北部の大すべり域は津波高さに与える影響が大きいことを踏まえ、最新の科学的・技術的知見から想定されるすべりを上回る 規模のすべりを考慮するとともに、大すべり域・超大すべり域のすべり量、すべり分布が異なる複数の波源モデルを設定することとし、内閣府(2012)の知見 を踏まえた特性化モデル②,3.11地震における宮城県沖の破壊特性を再現する特性化モデルを参考に設定した特性化モデルを基に、すべり量を約20%割 増した特性化モデル③及び杉野ほか(2013)を参考に、短周期の波の発生要因を考慮した特性化モデル④を設定した。
- なお,各特性化モデルの超大すべり域の位置は,アスペリティ分布及び1968年の地震の震源位置を踏まえて設定した(特性化モデル①と同様)。

第700回 <u>家本</u> 会会(D1 6 7)	
弗/23回番宜云百(RI.0./)	405
資料2-2-1 p144 一部修正	185

4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル(特性化モデル2,3,④)

4.4.3 特性化モデル2,3,4の設定概要

 各特性化モデルのすべり分布及び主要な断層パラメータを以下に示す。また、各特性化モデルの断層パラメータの設定方法、並びに設定に反映した 知見等の詳細を次頁以降に示す。

諸元		特性化モデル②	特性化モデル③	特性化モデル④
τ—.	メントマグニチュード(Mw)	9.04	9.05	9.04
断層	面積(S)	110,472 (km²)	110,472 (km²)	110,472 (km²)
平均	応力降下量(⊿σ)	3.07(MPa)	3.14(MPa)	3.08(MPa)
地震モーメント(Mo)		4.62 × 10 ²² (Nm)	4.73 × 10 ²² (Nm)	4.65 × 10 ²² (Nm)
	背景領域(背景的領域) (面積及び面積比率)	5.12(m) (87,732(km²), 79.4%)	3.90 (m) (48,879(km²), 44.2%)	3.72(m) (52,259(km²), 47.3%)
すべり量	基本すべり域 (面積及び面積比率)		7.80(m) (61,593(km²), 55.8% ^{※1})	7.44(m) (58,213(km²), 52.7% ^{※3})
	大すべり域 (面積及び面積比率)	16.37(m) (22,740(km²), 20.6% ^{※1})	15.59(m) (22,740(km²), 20.6% ^{※2})	14.88(m) (23,191(km²), 21.0% ^{※4})
	中間大すべり域 (面積及び面積比率)			22.33(m) (11,714(km²), 10.6% ^{※2})
	超大すべり域 (面積及び面積比率)	32.75(m) (6,302(km²), 5.7%)	31.19(m) (6,302(km ²), 5.7%)	29.77(m) (5,696(km²), 5.2%)
	平均すべり量	8.37(m)	8.57(m)	8.42(m)

※1:大すべり域・超大すべり域をあわせた領域の面積比率,※2:超大すべり域をあわせた領域の面積比率 ※3:大すべり域・中間大すべり域・超大すべり域をあわせた領域の面積比率,※4:中間大すべり域・超大すべり域をあわせた領域の面積比率

4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル(特性化モデル2), ③, ④)

4.4.4 特性化モデル②の設定(設定フロー)

1. 巨視的波源特性の設定

特性化モデル①と共通のため,詳細は記載省略			
各パラメーター覧			
パラメータ	設定方法	設定値	
断層面積(S)	十勝沖·根室沖~岩手県沖北部	110,472 (km ²)	
地震発生深さ	地震調査研究推進本部 (2004,2012)	海溝軸~深さ60km	
平均応力降下量(⊿σ)	内閣府(2012), Murotani et al.(2013)	3(MPa)	
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$	
地震モーメント(Mo)	$16/(7\pi^{3/2}) \cdot \Delta \sigma \cdot S^{3/2}$	4.52 × 10 ²² (Nm)	
平均すべり量(D)	$16/(7\pi^{3/2}) \cdot \Delta \sigma \cdot S^{1/2}/\mu$	8.19(m)	

2. 微視的波源特性の設定

(1)大すべり域・超大すべり域の設定 ▶ 断層面積(S₂,S₄)の算定 ▶ すべり量(D₂,D₄)の算定 > 地震モーメント(M_a)の算定 ■大すべり域 パラメータ 設定方法 設定値 断層面積(S₂) 断層面積(S)の15% [※] $16.571 (km^2)$ 平均すべり量(D)の2倍 すべり量(D 2) 16.37(m) 内閣府(2012) 土木学会(2016) 剛性率(μ) $50 \times 10^{10} (\text{N/m}^2)$ 地震モーメント(M 。2) μ·S2·D2 1.36×10^{22} (Nm) ■超大すべり域 パラメータ 設定方法 設定値 断層面積(S₄) 断層面積(S)の5% $5.524 (km^2)$ 平均すべり量(D)の4倍 すべり量(D ₄) 32.75(m) 内閣府(2012) 剛性率(u) 土木学会(2016) $5.0 \times 10^{10} (N/m^2)$ 地震モーメント(M 。4) μ•S4•D4 9.04 × 10²¹ (Nm) ※:大すべり域と超大すべり域をあわせた領域の面積比率 は20%。 (2) 地震モーメントの調整(背景領域の設定)

■背景領域			
パラメータ	設定方法	設定値	
地震モーメント(M ob)	$M_{ob} - (M_{o2} + M_{o4})$	2.26 × 10 ²² (Nm)	
断層面積(S _b)	断層面積の80%	88,378 (km ²)	
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$	
すべり量(D b)	$M_{ob}/S_{ob}/\mu$	5.12(m)	

3. 特性化モデルの設定

第723回審査会合(R1.6.7) 186 資料2-2-1 p145 再掲

: 与条件

第723回審査会合(R1.6.7) 資料2-2-1 p148 一部修正 **187**

4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル(特性化モデル2),③,④)

4.4.5 特性化モデル③の設定

Satake et al.(2013)55枚モデル

地震調査研究推進本部(2014)

杉野ほか(2013)モデル

■3.11地震から得られた知見の反映

- 3.11地震に伴う津波を広域に再現するモデルの断層面積は、地震調査研究推進本部(2014)が評価した「東北地方太平洋沖型の地震」の断層面積と比較 して大きい。
- 断層面積の違いは,発電所の津波高さに大きな影響を与える大すべり域・超大すべり域等のすべり量の算定に直接的に関係することを踏まえ,3.11地震における宮城県沖の破壊特性を再現する特性化モデルを参考に設定した特性化モデルの大すべり域・超大すべり域等のすべり量を約20%割増した。
- •「3.11地震における宮城県沖の破壊特性を再現する特性化モデルを参考に設定した特性化モデル」及び「特性化モデル③」の設定フローを次頁に示す。

110,000 (km²)

112,000 (km²)

約10万(km²)

9.0

9.1

9.0

波源領域の比較

4. 特性化モデルの設定 4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル(特性化モデル2). ③. ④)

4.4.5 特性化モデル③の設定

(3.11地震における宮城県沖の破壊特性を再現する特性化モデルを参考に設定した特性化モデルの設定フロー)

第723回審査会合(R1.6.7) 資料2-2-1 p147 再掲

188

: 与条件

- ▶ 断層面積(S₂,S₄)の算定
- ▶ すべり量(D₂,D₄)の算定
- > 地震モーメント(M_a)の算定

■大すべり域

パラメータ	設定方法	設定値
断層面積(S 2)	断層面積(S)の15% [※]	16,571 (km ²)
すべり量(D 2)	平均すべり量(D)の2倍 内閣府(2012)	16.37(m)
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(M ₀2)	μ·S ₂ ·D ₂	1.36 × 10 ²² (Nm)

- $> M_0/M_0' = 4.52 \times 10^{22} (Nm) / 5.88 \times 10^{22} (Nm)$ =0.77
- ▶ 上記倍率を用いて、基準断層モデルに反映する 各領域のすべり量を一律に調整する。

	調整前	調整後
基本すべり域	8.19(m)	6.30(m)
大すべり域	16.37(m)	12.59(m)
超大すべり域	32.75(m)	25.19(m)

より、そう、ちから。

4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル(特性化モデル②,③,④)

4.4.5 特性化モデル③の設定(設定フロー)

1. 巨視的波源特性の設定

> 特性化モデル①と共通のため,詳細は記載省略

各パラメーター覧			
パラメータ	設定方法	設定値	
断層面積(S)	十勝沖·根室沖~岩手県沖北部	110,472 (km ²)	
地震発生深さ	地震調査研究推進本部 (2004,2012)	海溝軸~深さ60km	
平均応力降下量(⊿σ)	内閣府(2012), Murotani et al.(2013)	3(MPa)	
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$	
地震モーメント(Mo)	$16/(7\pi^{3/2}) \cdot \Delta \sigma \cdot S^{3/2}$	4.52 × 10 ²² (Nm)	
平均すべり量(D)	$16/(7\pi^{3/2}) \cdot \Delta \sigma \cdot S^{1/2}/\mu$	8.19(m)	

2. 微視的波源特性の設定

(1)大すべり域・超大すべり域・背景的領域の設定

- ▶ 断層面積(S₂,S₄,S_{0.5})の算定
- > すべり量(D₂,D₄,D_{0.5})の算定
- > 地震モーメント(M_{o2},M_{o4},M_{o0.5})の算定

■大すべり域

パラメータ	設定方法	設定値
断層面積(S ₂)	断層面積(S)の15%	16,571 (km ²)
すべり量(D_2)	平均すべり量(D)の2倍 内閣府(2012)	16.37(m)
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(M _{o2})	$\mu \cdot S_2 \cdot D_2$	1.36 × 10 ²² (Nm)

■超大すべり域

パラメータ	設定方法	設定値
断層面積(S ₄)	断層面積(S)の5%	5,524(km ²)
すべり量(D_4)	平均すべり量(D)の4倍 内閣府(2012)	32.75(m)
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(M ₀4)	μ•S₄•D₄	9.04×10 ²¹ (Nm)

(2) 地震モーメントの調整(すべり量の調整) (2)-1 基本すべり域の設定 ■基本すべり域 パラメータ 設定方法 設定値 断層面積(S₁) 断層面積(S)の30% 33.142 (km²) すべり量(D_1) 平均すべり量(D) 8.19(m) 剛性率(μ) 土木学会(2016) $5.0 \times 10^{10} (N/m^2)$ 地震モーメント(M _{o1}) μ•S1•D1 1.36×10^{22} (Nm)

- (2)-2 各領域の地震モーメント(合計)の算定
- > $M_{o}' = M_{o2} + M_{o4} + M_{o15} + M_{o1} = 4.75 \times 10^{22} (Nm)$

(2)-3 地震モーメントの調整(すべり量の調整)

- > $M_o/M_o' = 4.52 \times 10^{22} (Nm) / 4.75 \times 10^{22} (Nm)$ =0.95
- 上記倍率を用いて、特性化モデルに反映する 各領域のすべり量を一律に調整する。

	調整前	調整後
背景的領域	4.09(m)	3.90(m)
基本すべり域	8.19(m)	7.80(m)
大すべり域	16.37(m)	15.59(m)
超大すべり域	32.75(m)	31.19(m)

		資料	2-2-1 p1	49 再揭	
. 特性化モデルの設定					
断層モデルへの微視的波源特性の反映					
		一一一	的市场性的		
▶ 設定したフレート境界面に微視的波線特性を反映。					
・ モーメントマク [゛] ニチュート [゛] (Mw)の算定					
基本すべり域 東通原子力 発電所 発電所 超大すべり域					
諸元	内容		諸元	内容	
モーメントマク゛ニチュート゛(Mw)	9.05		すべり量	7.80(m)	
地震発生深さ	海溝軸~深さ60km	- ^{基本すべ} り域	断層面積 (面積比率) ^{※1}	61,593(km ²) (55.8%)	
断層面積(S)	110,472(km²)	背景的領	すべり量	3.90(m)	
平均応力降下量(Δσ) (=7/16・Mo・(S/π) ^{-3/2})	3.14(MPa)	域	断層面積 (面積比率)	48,879(km ²) (44.2%)	
剛性率(µ)	$5.0 \times 10^{10} (N/m^2)$	大すべり	すべり量	15.59(m)	
地震モーメントMo	4.73×10 ²² (Nm)	域	断層面積 (面積比率) ^{※2}	22,740(km ²) (20.6%)	
 すべり角 λ	太平洋プレートの運動 方向に基づいて設定	招ナオベ	すべり量	31.19(m)	
<u>ーーー</u> ライズタイム τ	60(s)	り域	断層面積 (面積比率)	6,302(km ²) (5.7%)	
※1:大すべり域と超大すべり域をあわせた領域の面積比率 ※2:超大すべり域をあわせた領域の面積比率					

189

第723回案杏合合(P167)

4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル(特性化モデル2,3,④)

190

4.4.6 特性化モデル④の設定

第723回審査会合(R1.6.7) 資料2-2-1 p150 一部修正

■特性化モデル④:3.11地震から得られた知見の反映

- 杉野ほか(2013)では、3.11地震に伴う津波の沖合い観測波形に見られた短周期と長周期の異なる性質の波の発生要因を分岐断層の活動によるものと仮定して津波波源モデルを設定している。
- 3.11地震後の日本海溝付近における海底調査(JAMSTEC(2012))や、3.11地震の各種すべり分布モデル(内閣府(2012)、Satake et al.(2013)他) から、上記要因は分岐断層によるものではないと考えられるが、分岐断層や日本海溝付近の海底地すべりは短周期の波を発生させる要因の1つと 考えられる。
- 以上の知見を踏まえ、特性化モデル③を基本として、未知なる分岐断層や海底地すべり等が存在する可能性を考慮した特性化モデル④※を設定した。

※:特性化モデル④の周期特性の詳細については、補足説明資料「12.特性化モデル④の周期特性」に記載。

【杉野ほか(2013)モデル】

津波波源モデルの小断層の配置

4. 特性化モデルの設定 4.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を考慮した特性化モデル(特性化モデル②,③,④)

4.4.6 特性化モデル④の設定(設定フロー)

1. 巨視的波源特性の設定

▶ 特性化モデル①と共通のため, 詳細は記載省略				
各パラメーター覧				
パラメータ	設定方法	設定値		
断層面積(S)	十勝沖·根室沖~岩手県沖北部	110,472(km ²)		
地震発生深さ	地震調査研究推進本部 (2004,2012)	海溝軸~深さ60km		
平均応力降下量(⊿σ)	内閣府(2012), Murotani et al.(2013)	3(MPa)		
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$		
地震モーメント(Mo)	$16/(7\pi^{3/2}) \cdot \Delta \sigma \cdot S^{3/2}$	4.52 × 10 ²² (Nm)		
平均すべり量(D)	$16/(7\pi^{3/2}) \cdot 2\sigma \cdot S^{1/2}/\mu$	8.19(m)		

2. 微視的波源特性の設定

- (1)大すべり域・超大すべり域・背景的領域・ 中間大すべり域の設定
- ▶ 断層面積(S₂,S₄,S_{0.5},S₃)の算定
- ▶ すべり量(D₂,D₄,D_{0.5},D₃)の算定
- > 地震モーメント(M₀₂,M₀₄,M₀₀₅,M₀₃)の算定

■大すべり域

パラメータ	設定方法	設定値
断層面積(S ₂)	断層面積(S)の10%	11,047(km ²)
すべり量(D_2)	平均すべり量(D)の2倍 内閣府(2012)	16.37(m)
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(M _{o2})	$\mu \cdot S_2 \cdot D_2$	9.04 × 10 ²¹ (Nm)

■超大すべり域

パラメータ	設定方法	設定値
断層面積(S ₄)	断層面積(S)の5%	5,524(km ²)
すべり量(D_4)	平均すべり量(D)の4倍 内閣府(2012)	32.75(m)
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(M ₀4)	μ•S ₄ •D ₄	9.04 × 10 ²¹ (Nm)

■背景的領域

パラメータ	設定方法	設定値
断層面積(S _{0.5})	断層面積(S)の50%	55,236(km ²)
すべり量(D _{0.5})	平均すべり量(D)の0.5倍	4.09(m)
剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(M _{o0.5})	μ·S _{0.5} ·D _{0.5}	1.13 × 10 ²² (Nm)

■中間大すべり域

パラメータ	設定方法	設定値
断層面積(S ₃)	断層面積(S)の5%	5,524 (km ²)
すべり量(D_3)	平均すべり量(D)の3倍	24.56(m)
剛性率(µ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$
地震モーメント(M _{o3})	$\mu \cdot S_3 \cdot D_3$	6.78 × 10 ²¹ (Nm)

(2	(2)地震モーメントの調整(すべり量の調整)					
•	•					
(
Τ	■基本すべり域					
パラメータ 設定方法		設定方法	設定値			
	断層面積(S ₁)	断層面積(S)の30%	33,142 (km ²)			
	すべり量(D 1)	平均すべり量(D)	8.19(m)			
	剛性率(μ)	土木学会(2016)	$5.0 \times 10^{10} (N/m^2)$			
地震モーメント(M _{o1}) μ·S ₁ ·D ₁ 1.36×10 ²			1.36 × 10 ²² (Nm)			
_ ↓	¥					

(2)-2 各領域の地震モーメント(合計)の算定

> $M_o' = M_{o2} + M_{o4} + M_{o0.5} + M_{o3} + M_{o1}$ = 4.97 × 10²² (Nm)

(2)-3 地震モーメントの調整(すべり量の調整)

- > $M_o/M_o' = 4.52 \times 10^{22} (Nm) / 4.97 \times 10^{22} (Nm)$ =0.91
- 上記倍率を用いて、特性化モデルに反映する各 領域のすべり量を一律に調整する。

	調発則	調登俊		
背景的領域	4.09(m)	3.72(m)		
基本すべり域	8.19(m)	7.44(m)		
大すべり域	16.37(m)	14.88(m)		
中間大すべり域	24.56(m)	22.33(m)		
超大すべり域	32.75(m)	29.77(m)		
3. 特性化	モデルの設定		! 	
断層モ	デルへの微視	的波源特性の	反映	
	没定したプレート	境界面に微視	的波源特性	を反映。

第723回審査会合(R1.6.7) 資料2-2-1 p151 再掲

モーメントマグニチュード(Mw)の算定

中間大すべり域 東通原子力 発電所 の 基本すべり域						
すべり	量分布		諸元	内容		
諸元	内容	基本すべ	すべり量	7.44(m)		
モーメントマク [*] ニチュート [*] (Mw)	9.04	型(ボット) り域 背景的 領域	断層面積 (面積比率) ^{※1}	58,213(km ²) (52.7%)		
地震発生深さ	海溝軸~深さ60km		すべり量	3.72(m)		
断層面積(S)	110,472(km ²)		断層面積 (面積比率)	52,259(km ²) (47,3%)		
平均応力降下重(乙0) (=7/16・Mo・(S/π) ^{-3/2})	3.08 (MPa)	ナオペリ	すべり量	14.88(m)		
剛性率(μ)	$5.0 \times 10^{10} (N/m^2)$	域	断層面積 (面積比率) ^{※2}	23,191(km ²) (21.0%)		
地震モーメントMo	4.65 × 10 ²² (Nm)	+ 11 + +	すべり量	22.33(m)		
すべり角λ	太平洋プレートの運動 方向に基づいて設定	中间大す べり域	断層面積 (面積比率) ^{※3}	11,714(km ²) (10.6%)		
ライズタイム τ	ライズタイム τ 60(s) (回復几年 オペリ量					
※1:大すべり域,中間大すべり域及び り域 断層面積 (面積比率) (5.2%)						
※2:中間大すべり域・超大すべり域をあわせた領域の面積比率 ※3:超大すべり域をあわせた領域の面積比率						

: 与条件
4. 特性化モデルの設定

4.5 まとめ

• 設定した4つの特性化モデルを以下に示す。

	諸元	特性化モデル①	特性化モデル②	特性化モデル③	特性化モデル④
Ŧ	▼り量分布 東道 発育	中 中 中 中 中 中 中 中 中 中 中 中 中 中 中 中 中 中 中	2	■	22.77 22.37 12.33 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7
Ε	ーメントマグニチュード(Mw)	9.08	9.04	9.05	9.04
断	層面積(S)	110,472 (km²)	110,472 (km²)	110,472 (km²)	110,472(km²)
平	均応力降下量(⊿σ)	3.45(MPa)	3.07(MPa)	3.14(MPa)	3.08(MPa)
地	震モーメント(Mo)	5.19×10 ²² (Nm)	4.62×10 ²² (Nm)	4.73 × 10 ²² (Nm)	4.65 × 10 ²² (Nm)
	背景領域(背景的領域) (面積及び面積比率)	2.79(m) (58,609(km²), 53.1%)	5.12(m) (87,732(km²), 79.4%)	3.90(m) (48,879(km²), 44.2%)	3.72(m) (52,259(km²), 47.3%)
	基本すべり域 (面積及び面積比率)			7.80(m) (61,593(km²), 55.8% ^{%1})	7.44(m) (58,213(km²), 52.7% ^{※3})
すべ	大すべり域 (面積及び面積比率)	11.84 (m) (32,593 (km²), 29.5%)	16.37(m) (22,740(km²), 20.6% ^{※1})	15.59 (m) (22,740(km²), 20.6% ^{※2})	14.88(m) (23,191(km²), 21.0% ^{※4})
り 量	中間大すべり域 (面積及び面積比率)				22.33(m) (11,714(km²), 10.6% ^{※2})
	超大すべり域 (面積及び面積比率)	25.38 (m) (19,271 (km²), 17.4%)	32.75(m) (6,302(km²), 5.7%)	31.19(m) (6,302(km²), 5.7%)	29.77(m) (5,696(km²), 5.2%)
	平均すべり量	9.40(m)	8.37(m)	8.57(m)	8.42(m)

※1:大すべり域・超大すべり域をあわせた領域の面積比率,※2:超大すべり域をあわせた領域の面積比率 ※3:大すべり域・中間大すべり域・超大すべり域をあわせた領域の面積比率,※4:中間大すべり域・超大すべり域をあわせた領域の面積比率

- 5.1 検討方針
- 5.2 概略・詳細パラメータスタディ方法の検討
- 5.3 概略パラメータスタディ
- 5.4 基準断層モデルの設定
- 5.5 防波堤の影響検討

5.1 検討方針

下記に示す手順にて概略・詳細パラメータスタディを実施する。

※2:大すべり域等に合わせて、基本すべり域も移動させる。

5.2 概略・詳細パラメータスタディ方法の検討

- 土木学会(2016)では、波源特性の不確かさに関する検討として、千島海溝沿いに波源を想定し、概略パラメータスタディ(大すべり域位置)及び詳細パラメータスタディ(破壊開始点、破壊伝播速度、ライズタイム)を実施し、各因子が津波水位に与える影響について分析を行っている。
- 大すべり域の位置を左下図のように東西に移動させた5ケースについて解析(概略パラメータスタディ)を実施したところ、大樹町において、敷地前面に大すべり域が位置するケースで水位が最大となり、各ケースで最大水位上昇量に約3~13mのばらつきが見られた。

千島海溝沿いの概略パラメータスタディの断層モデル (土木学会(2016)に一部加筆)

第723回審査会合(R1.6.7) 資料2-2-1 p157 再掲 **196**

5. 基準断層モデルの設定(概略パラメータスタディ)

5.2 概略・詳細パラメータスタディ方法の検討(2)

- 概略パラメータスタディの結果,大樹町で津波水位が最も大きくなる大すべり域を西端に配置したモデルを対象に,破壊開始点を大すべり域の周辺 5ヶ所と超大すべり域の中心1ヶ所に設定し,更に破壊伝播速度を1.0, 2.0, 2.5, 3.0km/sとした詳細パラメータスタディを実施している。
- 同時破壊ケースに対し,詳細パラメータスタディを行った場合の最高津波高さを比較すると,大樹町において約4mの上昇が見られた。
- 土木学会(2016)ではパラメータスタディの手順として、「より支配的と考えられる因子に関するパラメータスタディを行った後、その中で敷地にもっとも影響を与えた断層モデルを用いて、その他の従属的な因子に関するパラメータスタディを行うことを基本とする。」としている。

以上を踏まえ,各特性化モデルを対象に,概略パラメータスタディ(大すべり域位置)を実施し,発電所に及ぼす影響が最も大きいモデルを基準 断層モデルを設定する。次に,詳細パラメータスタディ(破壊開始点,破壊伝播速度,ライズタイム)を実施する。

5. 基準断層モデルの設定(概略パラメータスタディ)
 5. 3 概略パラメータスタディ:水位上昇側(1)

5. 基準断層モデルの設定(概略パラメータスタディ) 5. 3 概略パラメータスタディ:水位上昇側(2)

5. 基準断層モデルの設定(概略パラメータスタディ) 5. 3 概略パラメータスタディ:水位下降側(1)

5. 基準断層モデルの設定(概略パラメータスタディ) 5. 3 概略パラメータスタディ:水位下降側(2)

■特	性化モデル③	3) a 100 200 km			•	特性化モデル	4) 0 150 233 Km		
*************************************	Эрананананананананананананананананананан		 :移動範囲 :基準位置 :決定ケース] : 選定ケース	東発電		29-77 14.89 7.44 3.72]:移動範囲 :基準位置 :決定ケース]
	位置	補機冷却海水系 取水口前面 最大水位下降量(m)	位置	補機冷却海水系 取水口前面 最大水位下降量(m)		位置	補機冷却海水系 取水口前面 最大水位下降量(m)	位置	補機冷却海水系 取水口前面 最大水位下降量(m)
	北へ約50km	-4.22	南へ約60km	-5.07		北へ約50km	-4.38	南へ約60km	-5.04
	北へ約40km	-4.34	南へ約70km	-5.08		北へ約40km	-4.60	南へ約70km	-5.07
	北へ約30km	-4.46	南へ約80km	-5.05		北へ約30km	-4.73	南へ約80km	-5.04
	北へ約20km	-4.62	南へ約90km	-5.09		北へ約20km	-4.99	南へ約90km	-5.04
	北へ約10km	-4.64	南へ約100km	-5.10		北へ約10km	-5.02	南へ約100km	-5.03
	基準位置	-4.74	南へ約110km	-5.06		基準位置	-5.02	南へ約110km	-5.02
	南へ約10km	-4.76	南へ約120km	-5.03		南へ約10km	-4.96	南へ約120km	-4.98
	南へ約20km	-4.87	南へ約130km	-4.99		南へ約20km	-4.98	南へ約130km	-4.92
	南へ約30km	-4.90	南へ約140km	-4.92		南へ約30km	-5.06	南へ約140km	-4.81
	南へ約40km	-5.02	南へ約150km	-4.88		南へ約40km	-5.09	南へ約150km	-4.76
	南へ約50km	-4.99				南へ約50km	-5.08		より、そう、ちから。
									∨ 泉北電ハ

5.3 概略パラメータスタディ:まとめ

• 各特性化モデルを対象に、大すべり域等の位置を南北約10km単位で移動させた検討を踏まえ下記の通り基準断層モデルを選定した。

• 発電所の津波高さに与える影響が大きい特性化モデルは、水位上昇側で特性化モデル②、水位下降側で特性化モデル③であることを確認した。

【水位上昇側】

				最大水位.	上昇量(m)	_	
特性化モデル			敷地前面	取水口前面	補機冷却海水 系取水口前面	放水路護岸 前面	備考
広域の津波特性 を考慮したモデル	特性化モデル①	南へ約50km移動	10.45	8.17	8.89	7.70	
青森県東方沖及	特性化モデル②	南へ約100km移動	10.68	8.86	9.06	8.69	基準断層 モデル①
び岩手県沖北部 の大すべり域の 破壊特性を考慮し	特性化モデル③	南へ約100km移動	9.80	8.19	8.40	7.96	
たモデル	特性化モデル④	南へ約40km移動	10.45	8.67	8.81	8.18	

【水位下降側】

			最大水位下降量(m)	
	特性化モデル	補機冷却海水系 取水口前面	備考	
広域の津波特性 を考慮したモデル	特性化モデル①	南へ約60km移動	-4.59	
青森県東方沖及び岩	特性化モデル②	南へ約60km移動	-4.89	
手県沖北部の大すべり域の破壊特性を考	特性化モデル③	南へ約100km移動	<u>-5.10</u>	基準断層 モデル②
慮したモデル	特性化モデル④	南へ約40km移動	-5.09	

次に、各特性化モデルの大すべり域の位置ならびに津波の遡上分布(最大水位上昇量・下降量分布)の比較を行い、上記特性化モデルを基準断層 モデルとして設定することの妥当性を確認する。

5.4 基準断層モデルの設定:大すべり域の位置の比較

- 各特性化モデルの最大水位上昇ケースの大すべり域位置と津波伝播特性の検討結果の比較を以下に示す。
- 発電所の津波高さに与える影響が大きい大すべり域は、各特性化モデルでほぼ同様の位置(発電所南側)であり、津波伝播特性の検討結果と調和的 であり、発電所に与える影響が大きい大すべり域を設定していることを確認した。

※:背景は津波伝播特性の検討結果

第723回審査会合(R1.6.7)

資料2-2-1 p163 再掲

100 (cm)

20

10

0 (cm)

202

203

5.4 基準断層モデルの設定:最大水位上昇量・下降量分布の比較

- 各特性化モデルの最大水位上昇量分布、最大水位下降量分布を以下に示す。
- 水位上昇側について、特性化モデル②は、発電所全体の津波高さに及ぼす影響が最も大きいことを確認した。
- 水位下降側について、特性化モデル③は、港湾内全体の津波高さに及ぼす影響が最も大きいことを確認した。
- なお、発電所港湾施設や発電所周辺の微地形が、発電所の津波高さに与える影響は小さいことを確認した※。

※:発電所港湾施設や発電所周辺の微地形が発電所の津波高さに与える影響に係る検討の詳細については、補足説明資料「13.発電所周辺地形及び各特性化モデルの周期特性」 に記載。

■最大水位上昇量分布

特性化モデル(1) (南へ約50km移動)

特性化モデル(2) (南へ約100km移動)

特性化モデル③ (南へ約100km移動)

特性化モデル④ (南へ約40km移動)

200 400 m

-8 -9

特性化モデル① (南へ約60km移動)

特性化モデル(2) (南へ約60km移動)

特性化モデル③ (南へ約100km移動)

特性化モデル④ (南へ約40km移動)

5.4 基準断層モデルの設定:まとめ

• 以上より,基準断層モデルを以下のとおり設定する。

■基準断層モデル①(水位上昇側)

		ナオズ川城		最大水位.	上昇量(m)	
	特性化モデル	大すへり或 位置	敷地前面	取水口前面	補機冷却海水 系取水口前面	放水路護岸 前面
基準断層モデル①	特性化モデル②	南へ約100km移動	10.68	8.86	9.06	8.69

■基準断層モデル②(水位下降側)

		キオベルは	最大水位下降量(m)
	特性化モデル	位置	補機冷却海水 系取水口前面
基準断層モデル②	特性化モデル③	南へ約100km移動	-5.10

第723回審査会合(R1.6.7) 資料2-2-1 p166 再掲

205

5. 基準断層モデルの設定(概略パラメータスタディ)

5.4 基準断層モデルの設定:基準断層モデル①(水位上昇側)

■基準断層モデル①(水位上昇側)

			最大水位_	上昇量(m)	
特性化モデル	大すべり域位置	敷地前面	取水口前面	補機冷却海水系 取水口前面	放水路護岸 前面
特性化モデル2	南へ約100km移動	10.68	8.86	9.06	8.69

取水口前面,補機冷却海水系取水口前面,放水路 護岸前面における水位時刻歴波形[※]

第723回審査会合(R1.6.7) 資料2-2-1 p167 再掲

206

5. 基準断層モデルの設定(概略パラメータスタディ)

5.4 基準断層モデルの設定:基準断層モデル②(水位下降側)

■基準断層モデル②(水位下降側)

たかんエデル	ナオズリは広告	最大水位下降量(m)		
特性化モノル	入り入り返位直	補機冷却海水系取水口前面		
特性化モデル③	南へ約100km移動	-5.10		

最大水位下降量分布

5.5 防波堤の影響検討

- 概略パラメータスタディで抽出した大すべり域位置が,防波堤が無い場合でも選定位置として妥当であるかを確認するため,各基準断層モデルの大 すべり域位置の前後20kmの範囲を対象に防波堤無し地形を用いてパラメータスタディを実施した。
- 基準断層モデルのすべり量分布及び数値解析に用いた地形を以下に示す。

5.5 防波堤の影響検討:まとめ

- 各基準断層モデルの解析結果を以下に示す。
- 各基準断層モデルともに、防波堤の有無が大すべり域の選定位置に与える影響はないことを確認した。
- 以上より,基準断層モデル(大すべり域位置)の妥当性を確認した。

■基準断層モデル①(水位上昇側)

下線:最大ケース

					最大水位.	上昇量(m)			
特性化モデル	大すべり域位置	敷地前面		取水口前面		補機冷却海水系 取水口前面		放水路護岸前面	
		防波堤有	防波堤無	防波堤有	防波堤無	防波堤有	防波堤無	防波堤有	防波堤無
	南へ約80km移動	9.76	9.86	8.39	8.46	8.72	8.86	8.08	8.21
	南へ約90km移動	10.32	10.37	8.64	8.73	8.90	9.08	8.50	8.39
特性化モデル②	南へ約100km移動 (基準断層モデル①)	<u>10.68</u>	<u>10.79</u>	<u>8.86</u>	<u>8.95</u>	<u>9.06</u>	<u>9.22</u>	<u>8.69</u>	<u>8.66</u>
	南へ約110km移動	9.98	10.16	8.73	8.35	8.99	8.70	8.23	7.97
	南へ約120km移動	9.97	10.05	8.28	8.07	8.60	8.50	8.04	7.91

■基準断層モデル②(水位下降側)

		最大水位下降量(m)				
特性化モデル	大すべり域位置	補機冷却海水系取水口前面				
		防波堤有	防波堤無			
	南へ約80km移動	-5.05	-6.43			
	南へ約90km移動	-5.09	-6.57			
特性化モデル③	南へ約100km移動 (基準断層モデル②)	<u>-5.10</u>	<u>-6.70</u>			
	南へ約110km移動	-5.06	-6.67			
	南へ約120km移動	-5.03	-6.67			

- 6.1 検討方針
- 6.2 動的破壊特性の不確かさに関する知見の整理
- 6.3 詳細パラメータスタディ
- 6.4 概略・詳細パラメータスタディ方法の妥当性確認

6.1 検討方針

• 下記に示す手順にて概略・詳細パラメータスタディを実施する。

基準断層モデルの設定(概略パラメータスタディ)

大すべり域位置の不確かさの考慮

- ≻波源特性の不確かさが津波高さに与える影響に関する知見を整理し、概略・詳 細パラメータスタディ方法を検討。
- ≻検討結果を踏まえ、各特性化モデルの大すべり域位置を南北約10km単位で移動させた概略パラメータスタディを実施。

基準断層モデルの設定

>発電所の津波高さに与える影響が最も大きい特性化モデルを基準断層モデル (水位上昇側・下降側)に設定。

防波堤が津波水位に与える影響を確認

基準断層モデルの大すべり域位置を,南北約20kmの範囲において10km単位で移動させたケースを対象に,防波堤の有無両条件で数値解析を実施し,防波堤が無い場合でも選定位置として妥当であるかを確認。

動的破壊特性の不確かさの考慮(詳細パラメータスタディ)

動的破壊特性に関する不確かさの考慮

- >動的破壊特性(破壊開始点,破壊伝播速度,ライズタイム)に関する知見を整理 したうえで,詳細パラメータスタディを実施し,最大水位上昇量・下降量を評価。
- ▶各不確かさが津波水位に与える影響について分析・整理し、パラメータスタディの方法の妥当性を確認する。

本章でのご説明内容

32, 75 m 16, 37 5, 12 31, 19 m 15, 59 7, 80 3 90 東通原子力 東通原子力 発電所 🍳 発電所 🧕 P1^o P1^o OP4 Op4 P2 OP5 P2^O O_{P5} P3^O PP6

第723回審査会合(R1.6.7) 資料2-2-1 p172 再掲 211

6. 動的破壊特性の不確かさの考慮(詳細パラメータスタディ)

6.2 動的破壊特性の不確かさに関する知見の整理:破壊開始点

- ・ 地震調査研究推進本部(2017b)では、地震の破壊が進む方向には地域性があり、三陸沖では浅部から深部に破壊が進む傾向があるとしている。これは、
 3.11地震の破壊形態と一致している。
- また、土木学会(2016)では、千島海溝沿いの巨大地震に伴う津波の例示計算として、左下図のように大すべり域を囲むように破壊開始点を設定し、詳細 パラメータスタディを実施している。
- 日本海溝沿いで発生した3.11地震及び青森県東方沖及び岩手県沖北部で発生する最大規模の地震と考えられる1968年十勝沖地震の震源は、共にプレート境界等深線約20km付近に位置している(地震調査研究推進本部(2012))。

<u>以上を踏まえ、破壊開始点は、等深線約20km付近と、仮に深部から浅部に向けて破壊が進行する可能性も考慮し、大すべり域を取り囲むように</u> 計6ヶ所設定する。

6.2 動的破壊特性の不確かさに関する知見の整理:破壊伝播速度, ライズタイム

M8クラスの地震の破壊継続時間は数10~120秒(土木学会(2002))であるのに対し, M9クラスの3.11地震に伴う津波を再現する内閣府(2012)モデルの破壊継続時間は300秒,平均破壊伝播速度は約2km/sである。また,藤井・佐竹による再現モデル(ver.3.1,ver.4.0,ver.4.6)では,破壊伝播速度を2.0km/sと設定している。

藤井・佐竹による3.11地震の津波波源の再現モデル

6.2 動的破壊特性の不確かさに関する知見の整理:破壊伝播速度, ライズタイム

- Fujii and Satake(2007)は、破壊伝播速度(0.5km/s~3.0km/s)、ライズタイム(60s~180s)を変化させた津波波形のインバージョン解析を実施し、2004年スマトラ~アンダマン地震の再現モデルを検討している。検討の結果、破壊伝播速度を1.0km/s、ライズタイム^{※1}を180sとした場合に、観測値と解析値が最も整合するとしている。
- Hirata et al.(2006)は2004年スマトラ〜アンダマン地震に起因する津波の、衛星観測による海面測量データを用い、津波波形のインバージョン解析を 実施し、破壊伝播速度を0.7km^{※2}、ライズタイムを150sとした場合に観測値と解析値が最も整合するとしている。

※1:各断層ブロックの破壊開始から破壊終了までの時間, ※2:Lay et al.(2005)によると、北側のセグメントが非常にゆっくりすべったとされている

Figure 7. Slip distribution estimated by inversion of tide gauge (TG) data. Rupture velocity is 1.0 (left), 1.5 (center) and 2.0 (right) km/sec. Rise time for each subfault is 3 min.

Table 4

Variance Reductions (%) for Three Different Inversions with Different Rupture Velocities and Rise Times

V	Tide	Gauge	Data	Satellite Altimeter Data			TG+SA Data		
(km/sec)	1 min	2 min	3 min	1 min	2 min	3 min	1 min	2 min	3 min
0.5	23.1	20.8	18.8	27.8	29.5	31.0	22.0	20.1	18.3
1.0	32.8	33.4	34.2	33.8	36.4	38.2	29.8	31.0	32.1
1.5	29.3	29.5	29.8	31.1	33.8	35.5	26.8	27.3	27.8
2.0	30.2	29.9	29.7	29.7	32.3	34.2	27.2	27.3	27.4
2.5	28.4	28.2	28.3	28.4	30.6	32.9	25.0	25.2	25.6
3.0	28.5	28.4	28.5	27.4	29.7	31.9	24.9	25.2	25.6

2004年スマトラ〜アンダマン地震の津波インバージョン結果 (Fujii and Satake (2007)に一部加筆)

Fig. 1. (a) Ground tracks of satellite altimetry with Jason-1 and TOPEX/Possidan (thin lines). Two satellites passed across the Indian Ocean two hours after the occurrence of the great Sumatra earthquake (Gower, 2005; JPL/NASA, 2005). Closed circles on the ground tracks indicate the points that sea surface height (JSBH) difference from two successive cycles before and after the great Sumatra earthquake can be defined. The epicenters of mainshock and aftershocks two hours after the great event are also shown. (b) Subfault setting for the inversion in this study. We model the entire aftershock zone, with a length of 1400 km along the northern Sumatra-NicobarAndmann trench, using 14 subfaults placed parallel to the trench (E1–E14). O₁ to O₄ (triangles) indicate possible rupture initiation points. Aftershock distribution, including the mainshock ejecenter, within 1 day after the occurrence of the mainshock is also shown.

> 2004年スマトラ~アンダマン地震津波発生時の衛星軌道(左)及び 数値モデルによる海底地形変化(右) (Hirata et al.(2006))

6.2 動的破壊特性の不確かさに関する知見の整理:破壊伝播速度, ライズタイム

- Lorito et al. (2010)は、津波波形のインバージョン解析を実施して、2010年チリ地震の再現モデルを策定している。
- 検討の結果, 津波波形のデータセットには破壊伝播速度を決定できるほどの感度がないものの, 地震動のインバージョン結果から, 破壊伝播速度 を2.25km/sとしている。

Figure 2 | Slip distribution of the 2010 Maule earthquake. Slip distribution for the 2010 M_w 8.8 Maule earthquake obtained from the joint inversion of tsunami and geodetic data, represented by colours according to the scale at the bottom. White arrows represent the slip direction (rake). Thin black contours indicate the associated surface vertical displacement (1-m-interval solid lines for uplift, 20-cm-interval dashed lines for subsidence). Epicentres and source zones are plotted only for major thrust earthquakes (compare Fig. 1).

2010年チリ地震の津波インバージョン結果(Lorito et al.(2010))

6.2 動的破壊特性の不確かさに関する知見の整理:破壊伝播速度,ライズタイム

• 内閣府(2012)は南海トラフで発生する巨大地震に起因する津波の評価を実施している。

• 破壊伝播速度及びライズタイムは,平均的に利用されている値を参考に3.11地震の解析結果も踏まえ,破壊伝播速度2.5km/s,ライズタイム60sと 設定している。

〇破壊伝播速度及びライズタイム:

破壊伝播速度及びライズタイムについては、平均的に利用されている値を参考に、 東北地方太平洋沖地震の解析結果も踏まえ、次のとおりに設定する。なお、東北地方 太平洋沖地震では、海溝沿いの破壊伝播速度は、それよりも深い場所に比べ遅いとの 解析結果もあるが、トラフ沿いの領域の幅が狭く、5秒程度の差しか見込めないこと から、今回の解析では、破壊速度は全域で同じとする。

破壊速度 : 2.5km/s ライズタイム : 1分

内閣府(2012)の南海トラフにおける最大クラスの波源モデルの破壊伝播速度及びライズタイム

216

6.2 動的破壊特性の不確かさに関する知見の整理:破壊伝播速度, ライズタイム

• 3.11地震に伴う津波を再現する波源モデルのうち,津波波形等をインバージョンした内閣府(2012)モデル, Satake et al.(2013)55枚モデル,杉野ほか(2013)モデルの破壊伝播速度,ライズタイムは以下のとおりである。

【3.11地震に伴う津波再現モデルの破壊伝播速度及びライズタイム】

出典	破壊伝播速度(km/s)	ライズタイム(s)
内閣府(2012)モデル	2.0 ^{%1}	300
Satake et al.(2013)55枚モデル	2.0	210
杉野ほか(2013)モデル	1.5 ^{%1, 2}	300

※1:破壊開始点と各小断層の中心点との距離を 各小断層の最初のすべりが現れる時間で除した破 壊伝播速度から算定した平均破壊速度(杉野ほか (2013), 杉野ほか(2014))。

※2:杉野ほか(2013)は,長周期観測地震動に 基づいて推定された震源断層モデル(Wu et al.(2012))の破壊伝播速度は約1.8(km/s)であり, 再現モデルの破壊伝播速度1.5(km/s)と,ほぼ整 合するとしている。

6.2 動的破壊特性の不確かさに関する知見の整理:破壊伝播速度,ライズタイム

- 3.11地震の津波波形等をインバージョンした再現モデルから、3.11地震で大きなすべりを生じた領域におけるライズタイムは210s~300sであり、M8クラスの地震のライズタイム(数秒から1分程度(相田(1986)))と比較して長い特徴がある。
- 相田(1986)では、M8クラスの地震を対象としたライズタイム^{※1}を60sとしている。

■相田(1986)による津波解析上の変動時間(初期変位分布のライズタイム)の設定方法

> 実際の地震の震源過程(=初期破壊から震源域全体に破壊が及ぶ過程)が終了するのに要する時間が数秒から1分程度であることに対して、相田 (1986)は津波初期変位分布のライズタイムの設定方法を以下のとおり示している。

<u>津波初期変位分布のライズタイム(s)=(L(km)/Vr(km/s))+て(s)</u>

ここで, L :断層長さ(km) Vr :破壊伝播速度(km/s)

- τ :ある1点で断層ずれを形成する時間(=立上り時間)(s)
- ▶ 日本海溝沿いで発生しているM8クラスの地震の断層長さL:150(km)~200(km)程度(土木学会(2016)),破壊伝播速度Vr:2.4(km/s)~3.0(km/s) (地震調査研究推進本部(2017b)),ある1点で断層ずれを形成する時間(=立上り時間) τ:5(s)程度(相田(1986))とすると、津波初期変位分布の ライズタイムは、55(s)~88(s)程度となる。

※1:津波解析上におけるライズタイムの考慮方法

Mansinha and Smylie(1971)の方法により計算される各グリッドにおける初期水位変位を、変動開始から終了までの時間を60sとして津波解析と同様の時間格子間隔△t: 0.1sを用いて階段状に与えている。

解析上のライズタイムの考慮方法(概念)

6.2 動的破壊特性の不確かさに関する知見の整理:破壊伝播速度, ライズタイム

• 国内外で発生した巨大地震の破壊伝播特性に関する知見収集結果を踏まえ、破壊伝播速度、ライズタイムのパラメータスタディ範囲を設定した。

地震	破壊伝播速度	ライズタイム	備考
3.11地震	1.5 ~2 .0km/s	210~300s	大きなすべりを生じた領域における破壊 開始から破壊終了までの時間
2004年スマトラ~アンダマン地震	0.7* ~ 1.0km/s	150~180s	各断層ブロックの破壊開始から破壊 終了までの時間
2010年チリ地震	2.25km/s		
南海トラフの巨大地震	2.5km/s	60s	

巨大地震の波源モデルにおける破壊伝播特性の設定例

※:Lay et al.(2005)によると、北側のセグメントが非常にゆっくりすべったとされている

■パラメータスタディ範囲の設定

• 国内外の巨大地震の検討事例を参考に、下記のとおり詳細パラメータスタディ範囲を設定した。

パラメータスタディ範囲の設定

	基本ケース	パラメータスタディ範囲
破壊伝播速度	2.0km/s	1.0, 1.5, 2.5km/s
ライズタイム	60s	90, 120, 180, 300s

6.2 動的破壊特性の不確かさに関する知見の整理:まとめ

以上を踏まえ、基準断層モデル①、②を対象に下記に示すフローにて詳細パラメータスタディを実施した。

第723回審査会合(R1.6.7)

資料2-2-1 p181 再掲 |

220

6.3 詳細パラメータスタディ:基準断層モデル①

項目	解析条件
破壊開始点	・同時破壊 ・大すべり域の周辺(P1~P6)
破壊伝播 速度	1.0, 1.5, 2.0, 2.5km/s
ライズタイム	60, 90, 120, 180, 300s
波源モデル	3 10.37 10.37 5.12 10.37 5.12 10.37 5.12 10.37 5.12 10.37 5.12 10.37 5.12 10.37 5.12 10.37 5.12 10.47 10.47 10.47 10.47 10.47 10.47 10.57 5.12 10.47 10.47 10.47 10.47 10.57

下線部:最大ケース

項目

破壊開始点

破壊伝播 速度

ライズタイム

波源モデル

第723回審査会合(R1.6.7) 資料2-2-1 p182 再掲

6.3 詳細パラメータスタディ:基準断層モデル②

				最大水位下降量(m)	下線部:最大ケース			
	破壊開始点	破壊伝播速度 (km/s)	ライズタイム (s)	補機冷却海水系 取水口前面				
	同時破壊	8		-5.097				
解析条件	P1			-5.06				
 ·同時破壊	P2			-5.03				
 ・大すべり域の周辺(P1~P6) 	Р3	2.0	60	-5.03				
1.0, 1.5, 2.0, 2.5km/s	P4			<u>-5.100</u>				
	P5			-5.08				
60, 90, 120, 180, 300s	P6			-5.07				
6 100 - 1210 ka		破壊伝播速度 (km/s)		最大水位下降量(m)				
31.19 15.59 7.80 3.90	破壞開始点		フイスタイム (s)	補機冷却海水系 取水口前面				
		1.0		<u>-5.101</u>				
東通原子力 """"""	54	1.5	00	-5.100				
	Ρ4	2.0	60	-5.100				
10 P2 ^O OP5		2.5		-5.099				
		西梅仁梅法安	- / - / /	最大水位下降量(m)				
	破壞開始点	· 做埢伍摿迷度 (km/s)	(s)	補機冷却海水系 取水口前面				
			60	<u>-5.101</u>				
			90	-5.10				
	P4	1.0	120	-5.09				
			180	-5.07				
			300	-5.02				

221

6.3 詳細パラメータスタディ:基準断層モデル①

			最大水位上昇量(m)					
波源モデル	破壊開始点	w\\ Km/s)	(s)	敷地前面	取水口 前面	補機冷却海水 系取水口前面	放水路 護岸前面	
基準断層モデル①	P6	2.0	60	11.18	9.26	9.51	9.20	
· · · · · · · · · · · · · ·	200 km 100 200 km 100 100 100 100 100 100 100 100 100 100 100	Б Хи		400 m ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	15.0 $9.22m(40)$ 5.0 -5.0 -10.0 10.0 $9.49m(40)$ 5.0 0.0 -5.0 -10.0 -5.0 -10.0 -15.0 -15.0 -15.0 -15.0 -15.0 -15.0 -15.0 -15.0 -15.0 -15.0 -10.0 -15.0 -15.0 -10.0 -15.0 -10.0 -15.0 -10.0 -15.0 -10.0 -15.0 -10.0 -15.0 -10.0 -15.0 -10.0 -15.0 -10.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	取水口前面 180 210 24 180 210 24 ////////////////////////////////////	
すべり量分布		最大水位	立上昇量分布	(m)	$-\frac{1}{2} \cdot 48m(3 \cdot 3 \cdot 9 \cdot 2)$ $-5 \cdot 0$ $-10 \cdot 0$ $-15 \cdot 0$ $-30 \cdot 60$	90 120 15	放水路護岸前面	

取水口前面,補機冷却海水系取水口前面,放水路 護岸前面における水位時刻歴波形[※]

(分)

時 間

222

第723回審査会合(R1.6.7) 資料2-2-1 p184 再掲

223

6. 動的破壊特性の不確かさの考慮(詳細パラメータスタディ)

6.3 詳細パラメータスタディ:基準断層モデル②

波波 しん 一般 一般 小海 日本 一般 東京 大学 しん しん しん かん しん		破壊伝播速度	ライズタイム	最大水位下降量(m)		
	<u> </u>	(km/s)	(s)	補機冷却海水系取水口前面		
基準断層モデル②	Ρ4	1.0	60	-5.10		

6.3 詳細パラメータスタディ:まとめ

• 各評価位置における水位上昇側,下降側の評価値を以下に示す。

■水位上昇側

					最大水位上昇量(m)			
波源モデル	大すべり域 位置	破壊 開始点	破壊伝播速度 (km/s)	ライズタイム (s)	敷地前面	取水口 前面	補機冷却 海水系取 水口前面	放水路 護岸前面
基準断層モデル①	南へ 約100km移動	P6	2.0	60	11.18	9.26	9.51	9.20
《参考》申請時 (敷地前面最大ケース) 海溝側強調モデル	南へ 約50km移動	P6	2.0	60	10.95	8.83		8.73

■水位下降側

ホホナディ	大すべり域	破壊	破壊伝播速度	速度 s) 「オズタイム (s)	最大水位下降量(m) 補機冷却海水系取水口前面	
波源モナル	位置	開始点	(km/s)			
基準断層モデル②	南へ 約100km移動	Ρ4	1.0	60	<u>-5.10</u>	
《参考》申請時 (取水口前面最大ケース) すべり量割増モデル	南へ 約100km移動	P4	2.0	60		

6.4 概略・詳細パラメータスタディ方法の妥当性確認

- 概略・詳細パラメータスタディは、土木学会(2016)の方法を踏まえ、概略パラメータスタディとして、津波水位に与える影響が大きい大すべり域の 不確かさを考慮し、発電所に及ぼす影響が最も大きいモデルを対象に、詳細パラメータスタディとして、動的破壊特性に係る不確かさを考慮した (順序:破壊開始点⇒破壊伝播速度⇒ライズタイム)。
- 上記,パラメータスタディ方法の妥当性を確認するため,各パラメータが水位上昇側及び水位下降側の津波水位に与える影響を分析した。

基準断層モデル①,②のすべり量分布及び破壊開始点

第723回審査会合(R1.6.7) 資料2-2-1 p187 再掲 **226**

6. 動的破壊特性の不確かさの考慮(詳細パラメータスタディ)

6.4 概略・詳細パラメータスタディ方法の妥当性確認:水位上昇側

• 基準断層モデル①によるパラメータスタディ結果(最大水位上昇量)を用いて,各パラメータが津波水位に与える影響について分析した。

大すべり域の位置の変動幅が最も大きく、概略パラメータスタディとして考慮するパラメータとして設定することの妥当性を確認した。

 また,詳細パラメータスタディで考慮した動的破壊特性に係る不確かさについて,破壊開始点及びライズタイムの不確かさの変動幅が大きいが,ライズタイム については基本ケース(60s)が最も保守的であることから,パラメータスタディ方法(破壊開始点⇒破壊伝播速度⇒ライズタイム)は妥当であることを確認した。

第723回審査会合(R1.6.7) 資料2-2-1 p188 再掲 **227**

6. 動的破壊特性の不確かさの考慮(詳細パラメータスタディ)

6.4 概略・詳細パラメータスタディ方法の妥当性確認:水位下降側

• 基準断層モデル②によるパラメータスタディ結果(最大水位下降量)を用いて,各パラメータが津波水位に与える影響について分析した。

• 大すべり域の位置の変動幅が最も大きく、概略パラメータスタディとして考慮するパラメータとして設定することの妥当性を確認した。

 また,詳細パラメータスタディで考慮した動的破壊特性に係る不確かさについて,各因子ともに不確かさの変動幅は小さく,津波水位に与える影響についても 有意な傾向は認められないが,ライズタイムについては基本ケース(60s)が最も保守的であることから,パラメータスタディ方法(破壊開始点⇒破壊伝播速度 ⇒ライズタイム)は妥当であることを確認した。

- 7.1 検討方針
- 7.2 イベント堆積物との比較
- 7.3 行政機関(内閣府)による津波評価との比較
- 7.4 行政機関(青森県)による津波評価との比較
- 7.5 まとめ

- 7.1 検討方針
- 敷地前面海域(青森県東方沖及び岩手県沖北部)ではM9クラスの巨大地震が発生した記録がないことを踏まえ,保守的設定の観点から,最新の科学的・技術的知見から想定される波源域及び地震規模を上回る地震を考慮することを基本とし,想定波源域の設定にあたっては,構造境界(破壊のバリア)の破壊伝播を考慮した十勝沖・根室沖と青森県東方沖及び岩手県沖北部の連動を考慮するとともに,大すべり域・超大すべり域の設定にあたっては,3.11地震における宮城県沖のすべり量と同規模のすべり量を考慮した。
- また、波源特性の不確かさの考慮にあたっては、国内外のプレート境界で発生している巨大地震に係る知見等を収集・整理し、保守的設定となるように破壊開始点、破壊伝播速度及びライズタイムの不確かさを組み合わせた。
- 今回評価した津波が十分保守的になっているかを確認するため、青森県北部太平洋沿岸で認められたイベント堆積物ならびに行政機関(内閣府、 青森県)の津波評価との比較を行う。

青森県北部太平洋沿岸で認められたイベント堆	ŧ積物】
-----------------------	------

		イベン	▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶
調	調査地点		基底標高(T.P.)
尻屋崎		有	約8.1m
	タ テ 沼付近①	有	約7.6m ^{※2}
	タテ沼付近②	有	約11.8m
積ヶ森 周辺	猿ヶ森川	有	約11.0m ^{※2}
70,22	材木沢	有	約7.6m
	大川	有	約6.8m
小田野沢	小田野沢		約4m
東京電力敷地内		有	約7.4m
	A測線	有	約6.1m
 東北電力	B測線	人工改変	/
敷地内	C測線	有	約8.6m
	D測線	有	約8.4m
尾駮老部川 尾駮発茶沢 平沼		有	約1.9m
		有	約6.2m
		有	約1.6m
六川目		有	約2.5m

※1:各イベント堆積物の詳細は、補足説明資料「3. 津波堆積物調査」に記載。 ※2:イベント堆積物の基底標高を確認することは出 来なかったことから、確認できた下限標高を記載。 【行政機関(内閣府,青森県)の津波評価】

内閣府の津波波源モデル 日本海溝(三陸・日高沖)モデル(Mw9.1) (内閣府(2020))

青森県の想定波源域(Mw9.0) (青森県海岸津波対策検討会 (2015))

第723回審査会合(R1.6.7) 資料2-2-1 p192 一部修正 230

7. 評価の妥当性確認

7.2 イベント堆積物との比較:津波堆積物と津波評価についての知見

- 津波堆積物と数値シミュレーションを組み合わせて歴史津波の波源を推定する取り組みが行われているものの(菅原ほか(2013)他),それらの評価の多くは堆積物分布と浸水域が一致すると仮定している。
- 一方, Goto et al. (2011)は, 津波堆積物の分布と浸水域とは必ずしも一致せず, 従来の評価手法による推定では津波を過小評価してしまう可能性を 指摘している。
- 国土交通省・内閣府・文部科学省(2014)は、上記知見を踏まえ、津波堆積物を用いて津波の評価を行う際、堆積物の基底標高(地盤変動補正後)に 2mを加えた値を推定津波水位として評価を行っている。

<u>以上の知見を踏まえ、数値シミュレーションによる津波水位がイベント堆積物の基底標高を2m以上上回ることを確認する。</u>

7.2 イベント堆積物との比較

- 連動型地震による想定津波群※1とイベント堆積物の比較を以下に示す。
- 連動型地震による想定津波群は、猿ヶ森周辺のタテ沼付近②を除くイベント 堆積物の基底標高を2m以上上回っていることを確認した。
- なお、想定津波群とタテ沼付近②の関係について、津波高さは13.4m、イベント堆積物の基底標高は11.8mであるが、(1)解析に用いた地形データは現状の地形であり、猿ヶ森川のイベント堆積物が堆積した以降に形成された砂丘を考慮していること、(2)タテ沼付近②の堆積年代(A.D.50年頃)当時の汀線位置*2及び標高*3を考慮すれば、十分2m以上上回るものと考えられる。

※1:想定津波群の詳細は、補足説明資料「4. 想定津波群の作成方法」に記載。 ※2:Tanigawa et al.(2014)は小田野沢付近で津波堆積物調査を実施し、海岸付近の浜堤 列と最も上位にあるイベント堆積物の堆積年代(180年~470年前)の関係から、当該イ ベント堆積物が堆積した当時の海岸線位置は、現在の海岸線から内陸約200mの位置 と評価している。

※3:下北半島は,隆起速度: <0.5m/kaの曲動地域のため(小池・町田(2001)), 堆積当時の標高は,現在の標高よりも低い。

猿ヶ森周辺における想定津波群(空間格子間隔5m) とイベント堆積物の比較

第723回審査会合(R1.6.7)

資料2-2-1 p193 再掲

7.3 行政機関(内閣府)による津波評価との比較

■内閣府(2020)の津波評価(1/6)

- 内閣府(2020)は,東日本大震災の教訓を踏まえ,津波堆積物調査等の科学的な知見をベースに,あらゆる可能性を考慮した最大クラスの巨大な 津波を検討している。
- 津波断層モデルの構築について、岩手県から北海道の太平洋沿岸地域における津波堆積物資料を基に推定することを基本とし、東北地方〜北海 道日高支庁以西及び北海道東部の各海岸での津波堆積物は、その海岸に面した海域で発生した津波によるものと考え、大きな津波を発生させる 地震の領域を、岩手県沖から北海道日高地方の沖合の日本海溝沿いの領域「日本海溝(三陸・日高沖)モデル」と、襟裳岬から東の千島海溝沿い の領域「千島海溝(十勝・根室沖)モデル」とに区分けしている。
- なお、日本海溝沿いと千島海溝沿いの地震の連動性について、「津波堆積物の年代資料からは詳細な分析は困難であるが、日本海溝(三陸・日高沖)モデルと千島海溝(十勝・根室沖)モデルのそれぞれから推計される津波は、二つの領域での地震が連動したか否かに関わらず、それぞれの領域における最大の津波によると考えられる津波堆積物を説明するモデルとなっている。」としている。

7.3 行政機関(内閣府)による津波評価との比較

■内閣府(2020)の津波評価(2/6)

内閣府(2020)は、岩手県から北海道太平洋沿岸地域における津波堆積物資料(産総研津波堆積物データベース、各種文献等)から、最大の津波によると考えられる津波堆積物は、岩手県から北海道の日高支庁以西の海岸領域では、12~13世紀あるいは1611年慶長三陸地震または17世紀に発生した津波によるものが相当し、北海道の十勝支庁から根室支庁にかけての海岸領域では、12~13世紀あるいは17世紀に発生した津波によるものが相当し、北海道の十勝支庁から根室支庁にかけての海岸領域では、12~13世紀あるいは17世紀に発生した津波によるものとしている。

津波断層モデルの構築に用いた津波堆積物の調査資料(内閣府(2020))

7.3 行政機関(内閣府)による津波評価との比較

■内閣府(2020)の津波評価(3/6)

- 各モデルのすべり量分布,破壊開始点位置及び主な断層諸元を以下に示す。
- 破壊開始点は、日本海溝(三陸・日高沖)モデルについては青森県、岩手県沖の大すべり域に各々1箇所、千島海溝(十勝・根室沖)モデルについては十勝沖・根室沖の大すべり域周辺に3箇所設定している。

すべり量分布(合計)及び破壊開始点位置

パラメータ	設定値	備考(設定内容)	
モーメントマク゛ニチュート゛(Mw)	9.08	(logMo-9.1)/1.5	
断層面積(S)	76,332(km²)	内閣府(2020)	
平均すべり量(D)	14.76(m)	内閣府(2020)	
最大すべり量(D _{max})	40.00(m)	内閣府(2020)	
剛性率(μ)	$4.63 \times 10^{10} (N/m^2)$	内閣府(2020)	
地震モーメント(Mo)	5.21 × 10 ²² (Nm)	μ·S·D	
平均応力降下量(⊿σ)	6.02(MPa)	7/16•Mo•(S/ π) ^{-3/2}	
破壊伝播速度(Vr)	2.5(km/s)	内閣府(2020)	
ライズタイム(て)	60(s)	内閣府(2020)	

主な断層諸元

【千島海溝(十勝・根室沖)モデル】

すべり量分布(合計)及び破壊開始点位置

主な断層諸元

パラメータ	設定値	備考(設定内容)
モーメントマク゛ニチュート゛(Mw)	9.29	(logMo-9.1)/1.5
断層面積(S)	123,141(km²)	内閣府(2020)
平均すべり量(D)	18.77(m)	内閣府(2020)
最大すべり量(D _{max})	78.09(m)	内閣府(2020)
剛性率(µ)	$4.63 \times 10^{10} (N/m^2)$	内閣府(2020)
地震モーメント(Mo)	1.07 × 10 ²³ (Nm)	µ·S·D
平均応力降下量(⊿σ)	6.03(MPa)	$7/16 \cdot Mo \cdot (S/\pi)^{-3/2}$
破壞伝播速度(Vr)	2.5(km/s)	内閣府(2020)
ライズタイム(て)	60(s)	内閣府(2020)

7.3 行政機関(内閣府)による津波評価との比較

■内閣府(2020)の津波評価(4/6)

- Murotani et al. (2013)は、プレート境界地震のスケーリング関係について、日本付近で発生したM7~8クラスのプレート境界地震(Murotani et al. (2008))に、7つの巨大地震(2011年東北地方太平洋沖地震、2010年チリ地震、2004年スマトラ地震、1964年アラスカ地震、1960年チリ地震、1957年アリューシャン地震、1952年カムチャッカ地震)を追加し、M7~9クラスまでに適用可能なスケーリング則を提案している。
- Murotani et al.(2013)に示されるスケーリング則のうち破壊領域(S)とM₀の関係及び平均すべり量(D)とM₀の関係に、日本海溝(三陸・日高沖)モデル、 千島海溝(十勝・根室沖)モデルを追加したものを下図に示す。

7.3 行政機関(内閣府)による津波評価との比較

■内閣府(2020)の津波評価(5/6)

解析条件を以下に示す。

項目	本検討での計算条件	
支配方程式	非線形長波式	
初期水位	断層モデルから計算される鉛直変位に水平変位の寄与を加算し、Kajiuraフィルターを適用 ※地殻変動計算は東京大学地震研究所で開発された有限要素コードを用いて海洋研究開発機構で計算された結果を使用	
動的断層パラメータの設定	破壊伝播速度 2.5km/s ライズライム 60秒 ※破壊開始点については日本海溝モデルで2パターン、千島海溝モデルで3パターン考慮。今回示す計算結果はこれらを包含して表示。	
潮位条件	朔望平均満潮位	
計算格子間隔	陸域 : 10m 海域 : 10 m~3,240 m(ネスティング)	
境界条件	陸側:小谷ほか(1998) 沖側:完全無反射	
地震による地盤変動	海域:隆起・沈降を考慮 陸域:沈降のみ考慮 陸域の沈降量を加算 <u>地盤の沈降量</u> <u>地盤の沈降量</u> <u>地盤の沈降量</u> <u>陸域の隆起量をゼロとし、海岸からの距離</u> が10kmの範囲で海底の隆起量を低減し <u>しkm</u>	
計算時間	12時間	
計算時間間隔	C.F.L.条件を満たすとともに計算の安定性等を考慮して設定	
打ち切り水深	1 cm	
堤防等施設	・津波が越流した段階で破堤 ・地震動による影響(破壊・沈下)は震度6弱以上のエリアを対象とし、地震発生から2分後に破壊・沈下とした。 ※過去の被害等を参考に震度6弱を閾値としたが、実際にはこれより小さな震度でも地盤条件等により影響が出る場合もあることに留意。 なお、沈ト量は各道県で浸水想定が作成された際のデータを参考に設定。なお、岩手・宮城については今回は耐震性が図られていると仮定。	

・各種データについては、各機関でとりまとめられた成果を収集するとともに、各道県からも津波浸水想定に用いているデータ等を提供いただいた。 ・なお、宮城県については最新の堤防データ等が未整備のため、震災前のデータを用いて計算を行った。 236

7.3 行政機関(内閣府)による津波評価との比較

■内閣府(2020)の津波評価(6/6)

- 青森県以南の沿岸での津波高さを以下に示す。
- 発電所が立地する青森県沿岸の津波高さは、日本海溝(三陸・日高沖)モデルの影響が大きいことを確認した。

了東北電力

7.3 行政機関(内閣府)による津波評価との比較

■十勝沖・根室沖から岩手県沖北部の連動型地震による津波評価と内閣府(2020)による津波評価の比較(1/4)

- 内閣府(2020)による津波評価との比較は、発電所の津波水位に与える影響が大きい日本海溝(三陸・日高沖)モデルと連動型地震の水位上昇側・ 下降側決定ケースの最大水位上昇量・下降量を対象とする。
- 内閣府(2020)による津波評価は、日本海溝(三陸・日高沖)モデルの断層諸元に基づき実施する[※]。なお、内閣府(2020)の解析条件にあわせ、防波 堤無し地形を用いる。

※:津波解析条件の詳細は、補足説明資料「5.津波解析条件」に記載。

7.3 行政機関(内閣府)による津波評価との比較

■十勝沖・根室沖から岩手県沖北部の連動型地震による津波評価と内閣府(2020)による津波評価の比較(2/4)

- ・ 十勝沖・根室沖から岩手県沖北部の連動型地震と内閣府(2020)による日本海溝(三陸・日高沖)モデルの水位上昇側の評価結果の比較を以下に 示す。
- ・ 比較の結果, 十勝沖・根室沖から岩手県沖北部の連動型地震の評価結果は, 内閣府(2020)の評価結果を上回っていることを確認した。

【水位上昇側】

波源モデル		敷地前面 (最大水位上昇量(m))	備考
+勝沖・根室沖から 岩手県沖北部の連動型地震 基準断層モデル①		11.17	防波堤無し
	青森県沖に破壊開始点を 設定したケース	9.72	同上
ロ本海浜(二陸・ロ高沖)モナル	岩手県沖に破壊開始点を 設定したケース	8.98	同上

(最大水位上昇量分布)

日本海溝(三陸・日高沖)モデル (青森県沖に破壊開始点を 設定したケース)

設定したケース)

7.3 行政機関(内閣府)による津波評価との比較

■十勝沖・根室沖から岩手県沖北部の連動型地震による津波評価と内閣府(2020)による津波評価の比較(3/4)

- ・ 十勝沖・根室沖から岩手県沖北部の連動型地震と内閣府(2020)による日本海溝(三陸・日高沖)モデルの水位下降側の評価結果の比較を以下に 示す。
- 比較の結果,十勝沖・根室沖から岩手県沖北部の連動型地震の評価結果は,内閣府(2020)の評価結果を上回っていることを確認した。

【水位下降側】

波源モデル		敷地前面 (最大水位下降量(m))	備考
十勝沖・根室沖から 岩手県沖北部の連動型地震	基準断層モデル②	-6.55	防波堤無し
日本海溝(三陸・日高沖)モデル	青森県沖に破壊開始点を 設定したケース	-6.47	同上
	岩手県沖に破壊開始点を 設定したケース	-6.08	同上

(最大水位下降量分布)

7.3 行政機関(内閣府)による津波評価との比較

■十勝沖・根室沖から岩手県沖北部の連動型地震による津波評価と内閣府(2020)による津波評価の比較(4/4)

- 青森県北部太平洋沿岸の汀線位置(空間格子間隔278m)における十勝沖・根室沖から岩手県沖北部の連動型地震の想定津波群^{※1}と内閣府 (2020)による日本海溝(三陸・日高沖)モデルの想定津波群^{※2}の比較を以下に示す。
- ・ 比較の結果, 十勝沖・根室沖から岩手県沖北部の連動型地震の評価結果は, 内閣府(2020)の評価結果を上回っていることを確認した。

※1:連動型地震の想定津波群の詳細については、補足説明資料「4. 想定津波群の作成方法」に記載 ※2:内閣府(2020)の想定津波群の詳細については、補足説明資料「4. 想定津波群の作成方法」に記載

7.4 行政機関(青森県)による津波評価との比較

■青森県海岸津波対策検討会(2012)の津波評価(1/2)

- 青森県海岸津波対策検討会(2012)においては、太平洋沿岸に最大クラスの津波をもたらす地震として、中央防災会議「日本海溝・千島海溝周辺 海溝型地震に関する専門調査会」で検討された「三陸沖北部の地震(Mw8.4)」と「明治三陸タイプ地震(Mw8.6)」の領域を網羅する「H24青森県太 平洋側独自断層モデル(Mw9.0)」を設定し、評価を実施している。
- 3.11地震から得られた知見を踏まえ、青森県東方沖及び岩手県沖北部の海溝沿いに大すべり域を設定している。

æ 希望機能量(m) -40--53 12.2.18 -18--13 -13--08 ------05--04 42-41 -62--61 -0.1 - -0.1 0-01 02-04 205-08 08-14 1.1-17 28-44 48-72 7.8-11.5 11.6-18.2 18.3 - 28.8 震源域 地盤変動量 H24青森県太平洋側独自断層モデル(Mw9.0)の震源域及び地盤変動量 (青森県海岸津波対策検討会(2015))

7.4 行政機関(青森県)による津波評価との比較

■青森県海岸津波対策検討会(2012)の津波評価(2/2)

• 解析条件を以下に示す。

解析領域(青森県海岸津波対策検討会(2012)に一部加筆)

	計算格子間隔	A領域:450m, B領域:150m, C領域:50m, D領域:10m
	初期潮位	T.P.+0.681m
	計算時間	4時間
	計算時間間隔	0.1秒

解析条件

7.4 行政機関(青森県)による津波評価との比較

■十勝沖・根室沖から岩手県沖北部の連動型地震による津波評価と青森県海岸津波対策検討会(2012)による津波評価の比較(3/3)

- ・ 十勝沖・根室沖から岩手県沖北部の連動型地震による想定津波群^{※1}と青森県海岸津波対策検討会(2012)による東通村周辺の海岸線上の津波水 位の比較を以下に示す。
- 比較の結果、十勝沖・根室沖から岩手県沖北部の連動型地震の評価結果は、青森県海岸津波対策検討会(2012)の評価結果を上回っていることを 確認した。

※1:連動型地震の想定津波群の詳細については、補足説明資料「4.想定津波群の作成方法」に記載

※2:青森県評価では朔望平均満潮位を考慮しているのに対し、想定津波群では未考慮

7.5 まとめ

- 今回評価した津波が十分保守的になっているかを確認するため、青森県北部太平洋沿岸で認められたイベント堆積物ならびに行政機関(内閣府、 青森県)の津波評価との比較を行った。
- 比較の結果, 十勝沖・根室沖から岩手県沖北部の連動型地震による津波水位は, 青森県北部太平洋沿岸で認められたイベント堆積物ならびに 行政機関(内閣府, 青森県)の津波水位を上回ることを確認した。
- 以上から、「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波評価の妥当性を確認した。

246

参考文献

参考文献①

- 1. 地震調査研究推進本部地震調査委員会(2012):三陸沖から房総沖にかけての地震活動の長期評価(第二版)について
- 2. 公益社団法人土木学会原子力土木委員会津波評価小委員会(2016):原子力発電所の津波評価技術2016
- 3. 相田勇(1977):三陸沖の古い津波のシミュレーション,東京大学地震研究所彙報, Vol.52, pp.71-101
- 4. 地震調査研究推進本部地震調査委員会(2014):全国地震動予測地図 2014年版 ~全国の地震動ハザードを概観して~ 付録-1
- 5. 杉野英治・呉長江・是永眞理子・根本信・岩渕洋子・蛯沢勝三(2013):原子カサイトにおける2011東北地震津波の検証,日本地震工学会論文集,第13巻,第2号 (特集号)
- 6. 地震調査研究推進本部地震調査委員会(2017a):千島海溝沿いの地震活動の長期評価(第三版)
- 7. 地震調査研究推進本部地震調査委員会(2019):日本海溝沿いの地震活動の長期評価(第三版)
- 8. 杉野英治・岩渕洋子・橋本紀彦・松末和之・蛯澤勝三・亀田弘行・今村文彦(2014):プレート間地震による津波の特性化波源モデルの提案,日本地震工学会論文 集,第14巻,第5号
- 9. 内閣府(2012):南海トラフの巨大地震による震度分布・津波高について(第一次報告) 巻末資料,南海トラフの巨大地震モデル検討会
- 10.Koji Minoura, Shinichi Hirano, Tsutomu Yamada (2013) : Identification and possible recurrence of an oversized tsunami on the Pacific coast of northern Japan, Nat Hazards 68:631-643, Springer, DOI 10.1007/s11069-013-0640-z
- 11. Naoki Uchida, Junichi Nakajima, Akira Hasegawa, Toru Matsuzawa (2009) : What controls interplate coupling?: Evidence for abrupt change in coupling across a border between two overlying plates in the NE Japan subduction zone, Earth and Planetary Science Letters 283,111–121
- 12. Masanao Shinohara, Tomoaki Yamada, Kazuo Nakahigashi, Shin' ichi Sakai, Kimihiro Mochizuki, Kenji Uehira, Yoshihiro Ito, Ryusuke Azuma, Yuka Kaiho, Tetsuo No, Hajime Shiobara, Ryota Hino, Yoshio Murai, Hiroshi Yakiwara, Toshinori Sato, Yuya Machida, Takashi Shinbo, Takehi Isse, Hiroki Miyamachi, Koichiro Obana, Narumi Takahashi, Shuichi Kodaira, Yoshiyuki Kaneda, Kenji Hirata, Sumio Yoshikawa, Kazushige Obara, Takaya Iwasaki, and Naoshi Hirata(2011): Aftershock observation of the 2011 off the Pacific coast of Tohoku Earthquake by using ocean bottom seismometer network, Earth Planets Space, 63, 835–840
- 13. 宍倉正展(2013): 1960 年チリ地震(Mw 9.5)の履歴と余効変動, 地震予知連絡会 会報, 第89巻, 12-7
- 14. Kusala Rajendran (2013) : On the recurrence of great subduction zone earthquakes, CURRENT SCIENCE, VOL.104, NO.7, pp.880-892
- 15. Daniel Melnick, Bodo Bookhagen, Manfred R. Strecker, and Helmut P. Echtler (2009) : Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, B01407, doi:10.1029/2008JB005788
- 16. Genyang Tang, Penny J. Barton, Lisa C. McNeill, Timothy J. Henstock, Frederik Tilmann, Simon M. Dean, Muhammad D. Jusuf, Yusuf S. Djajadihardja, Haryadi Permana, Frauke Klingelhoefer, and Heidrun Kopp (2013) : 3–D active source tomography around Simeulue Island offshore Sumatra: Thick crustal zone responsible for earthquake segment boundary, GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 48–53, doi:10.1029/2012GL054148
- 17. Emily S. Finzel, Jeffrey M. Trop, Kenneth D. Ridgway, Eva Enkelmann (2011) : Upper plate proxies for flat-slab subduction processes in southern Alaska, Earth and Planetary Science Letters 303,348-360, doi:10.1016/j.epsl.2011.01.014

参考文献②

- 18. Aaron G. Wech (2016) : Extending Alaska's plate boundary: Tectonic tremor generated by Yakutat subduction, GEOLOGY,v.44,no.7,p.587-590, doi:10.1130 /G37817.1
- 19. Roland Von Huene, John J. Miller, and Wilhelm Weinrebe (2012): Subducting plate geology in three great earthquake ruptures of the western Alaska margin, Kodiak to Unimak, Geosphere, v. 8, no. 3, p. 628-644, doi:10.1130/GES00715
- 20. Ian Shennan, Natasha Barlow, Gary Carver, Frank Davies, Ed Garrett, and Emma Hocking (2014) : Great tsunamigenic earthquakes during the past 1000 yr on the Alaska megathrust, GEOLOGY, doi:10.1130/G35797.1
- Richard W. Briggs, Simon E. Engelhart, Alan R. Nelson, Tina Dura, Andrew C. Kemp,Peter J. Haeussler, D. Reide Corbett, Stephen J. Angster, and Lee-Ann Bradley (2014) : Uplift and subsidence reveal a nonpersistent megathrust rupture boundary (Sitkinak Island, Alaska), Geophys. Res. Lett., 41, 2289– 2296,doi:10.1002/2014GL059380.
- 22. 長谷川昭・中島淳一・内田直希・弘瀬冬樹・北左枝子・松澤暢(2010):日本列島下のスラブの三次元構造と地震活動,地学雑誌,第119巻,第2号,pp.190-204
- 23. 木村学(2002):プレート収束帯のテクトニクス学,東京大学出版会
- 24. Charles Demets(1992): Oblique Convergence and Deformation Along the Kuril and Japan Trenches, JOURNAL OF GEOPHYSICAL RESEARCH, Vol.97, No.B12, pp.17,615-17,625
- 25. 伊藤谷生(2000):日高衝突帯-前縁褶曲・衝上断層帯の地殻構造,石油技術協会誌,第65巻,第1号,pp.103-109
- 26. Xin Liu, Dapeng Zhao and Sanzhong Li (2013) : Seismic heterogeneity and anisotropy of the southern Kuril arc:insight into megathrust earthquakes, Geophysical Journal International,1069-1090,doi:10.1093/gji/ggt150
- 27. 文部科学省(2008):プレート境界及びその周辺域の3次元地殻不均質構造の推定,東南海・南海地震等海溝型地震に関する調査研究,平成20年度成果報告書, 3.1.1.2
- 28. JUNZO KASAHARA, TOSHINORI SATO, KIMIHIRO MOCHIZUKI AND KAZUO KOBAYASHI(1997) : Paleotectonic structures and their influence on recent seismo-tectonics in the south Kuril subduction zone, The Island Arc,6,267-280
- 29. 文部科学省(2012):根室沖等の地震に関する調査研究 成果報告書(平成23年度)
- 30. 地震調査研究推進本部地震調査委員会(2004):千島海溝沿いの地震活動の長期評価(第二版)について
- 31. 内閣府中央防災会議日本海溝・千島海溝周辺海溝型地震に関する専門調査会(2006):日本海溝・千島海溝周辺海溝型地震に関する専門調査会報告につい て
- 32. 文部科学省測地学分科会(2013a):「地震及び火山噴火予知のための観測研究計画」平成24年度年次報告(機関別), 課題番号1002, 北海道周辺の超巨大地 震の発生サイクル及び震源過程の解明・プレート運動の解明による衝突帯モデルの構築
- 33. 佐竹建治(2013):第197回地震予知連絡会 重点検討課題「世界の巨大地震・津波」概要, 地震予知連絡会 会報, 第89巻, 12-6
- 34. Kenji Satake, Kelin Wang, Brian F. Atwater(2003): Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B11, 2535

参考文献③

- Robert C. Witter, Yinglong Zhang, Kelin Wang, Chris Goldfinger, George R. Priest and Jonathan C. Allan (2012) : Coseismic slip on the southern Cascadia megathrust implied by tsunami deposits in an Oregon lake and earthquake-triggered marine turbidites, JOURNAL OF GEOPHYSICAL RESEARCH, VOL.117, B10303
- 36. Shinzaburo Ozawa, Takuya Nishimura, Hisashi Suito, Tomokazu Kobayashi, Mikio Tobita & Tetsuro Imakiire(2011): Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake, nature LETTER
- 37. 西村卓也(2013):測地データから推定された環太平洋地域のプレート間カップリング, 地震予知連絡会 会報, 第89巻, 12-15
- 38. Akira Hasegawa, Keisuke Yoshida, Youichi Asano, Tomomi Okada, Takeshi Iinuma, Yoshihiro Ito (2012): Change in stress field after the 2011 great Tohoku-Oki earthquake, Earth and Planetary Science Letters 355-356,pp231-243
- 39. JAMSTEC(2013):東北地方太平洋沖地震における巨大地震・津波発生メカニズムの解明~地球深部探査船「ちきゅう」の科学的成果が「SCIENCE」誌に3編同時掲載~,プレリリース
- Lin, W., M.Conin, J.C. Moore, F.M. Chester, Y. Nakamura, J.J. Mori, L. Anderson, E.E. Brodsky, N.Eguchi, B. Cook, T.Jeppson, M. Wolfson-Schwehr, Y.Sanada,S.Saito, Y.Kido, T.Hirose, J.H.Behrmann, M.Ikari, K.Ujiie, C.Rowe, J.Kirkpatrick, S.Bose, C.Regalla,F.Remitti, V. Toy, P. Fulton, T.Mishima, T. Yang, T. Sun, T. Ishikawa, J. Sample, K.Takai, J. Kameda, S.Toczko, L. Maeda, S.Kodaira,R.Hino, D.Saffer (2013) : Stress state in the largest displacement area of the 2011 Tohoku-oki Earthquake, Science, Vol.339, 687–690
- 41. 菅原大助・今村文彦・松本秀明・後藤和久・箕浦幸治(2011):地質学的データを用いた西暦869年貞観地震津波の復元について,自然災害科学,29-4,pp.501 -516
- 42. 菅原大助・今村文彦・松本秀明・後藤和久・箕浦幸治(2013): 貞観津波と東日本大震災の津波, 東日本大震災を分析する2 震災と人間・まち・記録, 明石書店, pp.179-188
- 43. 澤井祐紀・宍倉正展・岡村行信・高田圭太・松浦旅人・Than Tin Aung・小松原純子・藤井雄士郎・藤原治・佐竹健治・鎌滝孝信・佐藤伸枝(2007): ハンディジオス ライサーを用いた宮城県仙台平野(仙台市・名取市・岩沼市・亘理町・山元町)における古津波痕跡調査,活断層・古地震研究報告, No.7, pp.47-80
- 44. 澤井祐紀・宍倉正展・小松原純子(2008):ハンドコアラーを用いた宮城県仙台平野(仙台市・名取市・岩沼市・亘理町・山元町)における古津波痕跡調査,活断層 ・古地震研究報告, No.8, pp.17-70
- 45. 行谷佑一・佐竹健治・山木滋(2010):宮城県石巻・仙台平野および福島県請戸川河口低地における869年貞観地震津波の数値シミュレーション,活断層・古地 震研究報告, No.10, pp.1-21
- 46. 宍倉正展・澤井祐紀・岡村行信・小松原純子・Than TinAung・石山達也・藤原治・藤野滋弘(2007):石巻平野における津波堆積物の分布と年代,活断層・古地震 研究報告, No.7, pp.31-46
- 47. 宍倉正展・藤原治・澤井祐紀・行谷佑一・谷川晃一朗(2012):2011年東北地方太平洋沖地震による津波堆積物の仙台・石巻平野における分布限界,活断層・古 地震研究報告, No.12, pp.45-61
- 48. 文部科学省研究開発局・国立大学法人東北大学大学院理学研究科・国立大学法人東京大学地震研究所・独立法人産業技術総合研究所(2010):宮城県沖地 震における重点的調査観測総括成果報告書, p.390
- 49. 佐竹健治(2011a):日本海溝の巨大地震のスーパーサイクル,地震予知連絡会 会報,第86巻,3-15

参考文献④

- 50. 佐竹健治(2011b):東北地方太平洋沖地震の断層モデルと巨大地震発生のスーパーサイクル,科学, Vol.81, No.10
- 51. 地震調査研究推進本部地震調査委員会(2002):三陸沖から房総沖にかけての地震活動の長期評価について
- 52. R. McCaffrey (2008) : Global Frequency of Magnitude 9 Earthquakes, Geology, DR2008063
- 53. YUSHIRO FUJII and KENJI SATAKE (2012) : Slip Distribution and Seismic Moment of the 2010 and 1960 Chilean Earthquakes Inferred from Tsunami Waveforms and Coastal Geodetic Data, Pure and Applied Geophysics, DOI 10.1007/s00024-012-0524-2
- 54. Christopher H. Scholz and Jaime Campos (2012): The seismic coupling of subduction zones revisited, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, B05310, doi:10.1029/2011JB009003
- 55. Tetsuzo Seno (2014): Stress drop as a criterion to differentiate subduction zones where Mw 9 earthquakes can occur, Tectonophysics 621, 198-210
- 56. Yamanaka, Y. and M. Kikuchi (2004):Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, J. Geophys. Res., 109,B07307,doi:10,1029/2003JB002683
- 57. 永井理子・菊地正幸・山中佳子(2001):三陸沖における再来大地震の震源過程の比較研究-1968年十勝沖地震と1994年三陸はるか沖地震の比較-, 地震2, 54, 267-280
- 58. Satoshi Ide, Annemarie Baltay, Gregory C. Beroza (2011) : Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 Mw9.0 Tohoku-Oki Earthquake, Science,vol. 332,1426,DOI:10.1126/science.1207020
- 59. 井出哲(2011):東北沖地震の二面性-浅部のすべり過ぎと深部の高周波震動-,東京大学大学院理学系学科,プレスリリース
- 60. 長谷川昭(2015):2011年東北沖地震の震源域で何が起きたか?-東北沖地震の発生機構-,地震ジャーナル,60号
- 61. Tetsuro Tsuru, Jin-Oh Park, Seiichi Miura, Shuichi Kodaira, Yukari Kido, Tsutomu Hayashi (2002) : Along-arc structural variation of the plate boundary at the Japan Trench margin: Implication of interplate coupling, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B12, 2357, doi:10.1029/2001JB001664
- 62. Koichiro Obana, Shuichi Kodaira, Masanao Shinohara, Ryota Hino, Kenji Uehira,Hajime Shiobara, Kazuo Nakahigashi, Tomoaki Yamada, Hiroko Sugioka, Aki Ito, Yasuyuki Nakamura, Seiichi Miura, Tetsuo No, Narumi Takahash (2013) : Aftershocks near the updip end of the 2011 Tohoku-Oki earthquake, Earth and Planetary Science Letters,382,111-116, doi.org/10.1016/j.epsl.2013.09.007
- 63. 文部科学省測地学分科会(2014):「地震及び火山噴火予知のための観測研究計画」平成25年度年次報告(機関別),課題番号1205,アスペリティの特性解明に 向けた観測研究
- 64. Jeremy E. Kozdon and Eric M. Dunham (2013) : Rupture to the Trench: Dynamic Rupture Simulations of the 11 March 2011 Tohoku Earthquake, Bulletin of the Seismological Society of America, Vol.103, No.2B, pp.1275–1289, doi: 10.1785/0120120136
- 65. 文部科学省(2007): 択捉島沖等の地震に関する調査研究成果報告書(平成19年度)
- 66. Ioki, K. and Y. Tanioka, Y(2016) : Re-estimated fault model of the 17th century great earthquake off Hokkaido using tsunami deposit data, Earth and Planetary Science Letters, 433, 133-138
- 67. 東北大学理学研究科(2012):千島海溝沿い小繰り返し地震の解析結果について, 地震予知連絡会 会報, 第88巻, 12-3
- 68. 国土地理院(2012):千島海溝沿いの滑り欠損速度分布について,地震予知連絡会 会報,第88巻,12-2

参考文献⑤

- 69. Robert McCaffrey (2009) : The Tectonic Framework of the Sumatran Subduction Zone, Annual Review of Earth and Planetary Sciences, Vol. 37,345-366, DOI: 10.1146/annurev.earth.031208.100212
- 70. 遠田晋次(2004):断層セグメントの多重破壊とスケーリング則,月刊地球号外,46,168-174
- 71. Thorne Lay, Hiroo Kanamori, Charles J. Ammon, Meredith Nettles, Steven N. Ward, Richard C. Aster, Susan L. Beck, Susan L. Bilek, Michael R. Brudzinski, Rhett Butler, Heather R. DeShon, Goran Ekstrom, Kenji Satake, Stuart Sipkin (2005) : The Great Sumatra-Andaman Earthquake of 26 December 2004, SCIENCE, VOL 308, 1127–1133
- 72. Cecep Subarya, Mohamed Chlieh, Linette Prawirodirdjo, Jean-Philippe Avouac, Yehuda Bock, Kerry Sieh, Aron J. Meltzner, Danny H. Natawidjaja & Robert McCaffrey (2006) : Plate-boundary deformation associated with the great Sumatra-Andaman earthquake, ARTICLES, NATURE, Vol 440, doi:10.1038
- 73. Junji Koyama, Kazunori Yoshizawa, Kiyoshi Yomogida, and Motohiro Tsuzuki (2012) : Variability of megathrust earthquakes in the world revealed by the 2011 Tohoku-oki Earthquake, Earth Planets Space, 64, pp.1189-1198
- 74. 小山順二·都筑基博·蓬田清(2012):斜め衝突帯の巨大地震(1)相模トラフ,北海道大学地球物理学研究報告, No.75, pp.161-174
- 75. Lingling Ye, Thorne Lay, and Hiroo Kanamori (2012) : The Sanriku-Oki low-seismicity region on the northern margin of the great 2011 Tohoku-Oki earthquake rupture, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, B02305, doi:10.1029/2011JB008847
- 76. 羽鳥徳太郎(2000):三陸沖歴史津波の規模の再検討,津波工学研究報告17, pp.39-48
- 77. 佐竹健治・行谷佑一・山木滋(2008):石巻・仙台平野における869年貞観津波の数値シミュレーション,活断層・古地震研究報告, No.8, pp.71-89
- 78. 中央気象台(1933):昭和八年三月三日三陸沖強震及津波報告, 験震時報, Vol.7, No.2別刷
- 79. 岸力(1969):1968年十勝沖地震調査報告, 津波—北海道東北沿岸—, 1968年十勝沖地震調査委員会編『1968年十勝沖地震調査報告』, pp.207-256
- 80. 東北大学大学院工学研究科附属災害制御研究センター(2004):2003年十勝沖地震津波調査報告,津波工学研究報告,第21号,第2編
- 81. 東北地方太平洋沖地震津波合同調査グループによるデータ(http://www.coastal.jp/ttjt/), 2012/12/29
- 82. チリ津波合同調査班(1961):1960年5月24日チリ地震津波に関する論文及び報告,丸善
- 83. 宇佐美龍夫·石井寿·今村隆正·武村雅之·松浦律子(2013):日本被害地震総覧 599-2012, 東京大学出版会
- 84. 内閣府中央防災会議事務局(2005):資料1 中央防災会議 日本海溝・千島海溝周辺海溝型地震に関する専門調査会(第10回) 強震動及び津波高さの推計に ついて
- 85. 渡辺偉夫(1998):日本被害津波総覧[第2版],東京大学出版会
- 86. 気象庁(2007):千島列島東方の地震について(2006年11月15日Mj7.9および2007年1月13日Mj8.2),地震予知連絡会会報,第78巻,2-4
- 87. 都司嘉宣・上田和枝・佐竹健治(1998):日本で記録された1700年1月(元禄十二年十二月)北米巨大地震による津波,地震第2輯,第51巻,pp.1-17
- 88. 菅原大助(2014):津波堆積物と津波の規模について,地学雑誌, 123(6), 797-812

参考文献⑥

- 89. 文部科学省測地学分科会(2013b):「地震及び火山噴火予知のための観測研究計画」平成24年度年次報告(成果の概要)
- 90. KOICHIRO TANIGAWA,YUKI SAWAI, MASANOBU SHISHIKURA, YUICHI NAMEGAYA and DAN MATSUMOTO (2014) : Geological evidence for an unusually large tsunami on the Pacific coast of Aomori, Northern Japan, JOURNAL OF QUATERNARY SCIENCE, 29(2), 200-208, DOI: 10.1002/jqs.2690
- 91. 岡村行信・行谷佑一(2011):17世紀に発生した千島海溝の連動型地震の再検討,活断層・古地震研究報告, No.11, p.15-20
- 92. 鎌田隆史・菅原大助・箕浦幸治・根本直樹・山田努(2015):猿ヶ森砂丘に挟在する再堆積層の成因:下北半島後期完新世砂丘の起源の考察,日本地質学会 第122年学術大会,講演要旨,R21-O-4
- 93. 町田洋・新井房夫(2003):新編火山灰アトラス[日本列島とその周辺]について,東京大学出版会, p.336
- 94. Koji Minoura, Shu Nakaya and Masao Uchida(1994): Tsunami deposits in a lacustrine sequence of the Sanriku coast, northeast Japan, Sedimantary Geology,89, 25-31
- 95. 谷川晃一郎・澤井祐紀・宍倉正展・藤原治・行谷佑一・松本弾(2013):青森県太平洋岸で検出された津波堆積物,日本第四紀学会講演要旨集, No.43, 16-17
- 96. 国立研究開発法人 産業技術総合研究所 地質調査総合センター:津波堆積物データベース, https://gbank.gsj.jp/tsunami_deposit_db
- 97. 谷川晃一朗(2017):青森県六ケ所村平沼における津波堆積物調査,活断層・古地震研究報告, No.17, p.1-14
- 98. 谷川晃一朗・澤井祐紀・宍倉正展・藤原治・行谷佑一(2014):青森県三沢市で検出されたイベント堆積物,第四紀研究,53(1), p.55-62
- 99. 藤原治・鎌滝孝信・田村亨(2003):内湾における津波堆積物の粒度分布と津波波形との関連一房総半島南端の完新統の例一,第四紀研究,42(2), p.67-81
- 100.後藤和久・菅原大助・西村裕一・藤野滋弘・小松原純子・澤井祐紀・高清水康博(2017):津波堆積物の認定手順,津波工学研究報告,第33号,p.45-54
- 101.千釜章・多田省一郎・青沼正光(1998):下北半島における津波の伝承の解釈と埋没ヒバ林の成因, 地震, 第2輯, 第51巻, 61-73頁
- 102.小池一之(1974):砂浜海岸線の変化について(予報),地理学評論,47-11
- 103. 西村裕一(2009): 津波堆積物の時空間分布に基づく古地震の調査研究, 地震, 第2輯, 第61巻特集号, S497-S508
- 104.石村大輔, 市原季彦, 阪田知洋, 大畑雅彦, 高田裕哉(2015):高密度群列ハンディジオスライサー調査による津波堆積物の連続性と地層対比:岩手県山田町 小谷鳥を例として, 活断層研究, 43号, 53-60
- 105. Takumi Yoshii, Shiro Tanaka, Masafumi Matsuyama(2017): Tsunami deposits in a super-large wave flume, Marine Geology, No.391, 98-107
- 106.後藤和久・箕浦幸治(2012):2011 年東北地方太平洋沖地震津波の反省に立った津波堆積学の今後のあり方,堆積学研究,第71巻,第2号,105-117
- 107.Kenji Satake, Yushiro Fujii, Tomoya Harada and Yuichi Namegaya(2013): Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as 1 Inferred from Tsunami Waveform Data, Bulletin of the Seismological Society of America, 103 (2B): 1473-1492
- 108. YOSHINOBU TSUJI, KENJI SATAKE, TAKEO ISHIBE, TOMOYA HARADA, AKIHITO NISHIYAMA, and SATOSHI KUSUMOTO(2014): Tsunami Heights along the Pacific Coast of Northern Honshu Recorded from the 2011 Tohoku and Previous Great Earthquakes, Pure and Applied Geophysics
- 109.高清水康博(2013):北海道の津波堆積物研究の現状と課題:17世紀巨大津波による堆積物の研究を中心に,地質学雑誌,119(9),pp.599-612

参考文献⑦

- 110. 佐竹健治(2017):17 世紀に千島・日本海溝で発生した巨大地震, 地震研究所彙報, Vol.92, pp. 31-47
- 111. 高田圭太・宍倉正展・今井健太郎・蝦名裕一・後藤和久・越谷信・山本英和・五十嵐厚夫・市原季彦・木下博久・池田哲哉・、岩手県県土整備部河川課(2016):岩 手県沿岸における津波堆積物の分布とその年代,活断層・古地震研報, Vol.16, pp.1-52
- 112. K.Satake, F.Nanayama and S.Yamaki: (2008) Fault models of unusual tsunami in the 17th century along the Kuril trench, Earth Planets Space, 60, 925-935
- 113. Ryosuke Azuma, Yoshio Murai, Kei Katsumata, Yuichi Nishimura, Takuji Yamada, Kimihiro Mochizuki, Masanao Shinohara (2012) : Was the 1952 Tokachi-oki earthquake (Mw = 8.1) a typical underthrust earthquake?: Plate interface reflectivity measurement by an air gun-ocean bottom seismometer experiment in the Kuril Trench, Geochemistry, Geophysics, Geosystems, 13(8), Q08015, doi.org/10.1029/2012GC004135
- 114. 東龍介(2012):北海道太平洋沖海底構造調査結果及び海底地震観測レビュー, 地震予知連絡会 会報, 第88巻, 12-7
- 115. BHASKAR KUNDU, V. K. GAHALAUT and J. K. CATHERINE (2012) : Seamount Subduction and Rupture Characteristics of the March 11, 2011, Tohoku Earthquake, JOURNAL GEOLOGICAL SOCIETY OF INDIA Vol.79, pp.245-251
- 116. Thorne Lay, Hiroo Kanamori, Charles J. Ammon, Keith D. Koper, Alexander R. Hutko, Lingling Ye, Han Yue, Teresa M. Rushing(2012): Depth-varying rupture properties of subduction zone megathrust faults, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, B04311, doi:10.1029/2011JB009133
- 117. Xin Liu and Dapeng Zhao (2018): Upper and lower plate controls on the great 2011 Tohoku-oki earthquake, SCIENCE ADVANCES, Vol.4, No.6, pp.1-7
- 118. Kimihiro Mochizuki, Tomoaki Yamada, Masanao Shinohara, Yoshiko Yamanaka,Toshihiko Kanazawa (2008) : Weak Interplate Coupling by Seamounts and Repeating M ~7 Earthquakes, SCIENCE, VOL 321, 1194–1197
- 119. 望月公廣(2011):茨城沖におけるアスペリティと地下構造, 地震予知連絡会 会報, 第85巻, 12-17
- 120. Kelin Wang and Susan L. Bilek (2014) : Invited review paper: Fault creep caused by subduction of rough seafloor relief, Tectonophysics, 610, 1-24
- 121. T. Nishikawa, T. Matsuzawa, K. Ohta, N. Uchida, T. Nishimura, S. Ide(2019): The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories, Science 23 Aug 2019:, Vol. 365, Issue 6455, pp.808-813
- 122. Saeko Kita, Tomomi Okada, Akira Hasegawa, Junichi Nakajima, Toru Matsuzawa (2010) : Anomalous deepening of a seismic belt in the upper-plane of the double seismic zone in the Pacific slab beneath the Hokkaido corner: Possible evidence for thermal shielding caused by subducted forearc crust materials, Earth and Planetary Science Letters 290, 415-426
- 123. 長谷川昭・中島淳一・内田直希・梁田高広・岡田知己・趙大鵬・松澤暢・海野徳仁(2012): 沈み込み帯の地震の発生機構— 地殻流体に規定されて発生する沈 み込み帯の地震—, 地学雑誌, 121(1), pp.128-160
- 124. Junichi Nakajima, Yusuke Tsuji, Akira Hasegawa (2009) : Seismic evidence for thermally-controlled dehydration reaction in subducting oceanic crust, GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L03303, doi:10.1029/2008GL036865
- 125. TOSHITSUGU YAMAZAKI and YUKINOBU OKAMURA(1989): Subducting seamounts and deformation of overriding forearc wedges around Japan, Tectonophysics, 160, 207-229
- 126. 木戸ゆかり・小角幸代・仲西理子・鶴哲郎・金田義行(2002):日本海溝と千島海溝の接合点付近に沈み込む海山の地球物理学的特徴-地磁気およびアドミッタンス関数を用いた重力解析-,情報地質,第13巻,第3号, pp.141-151

参考文献⑧

- 127. S. Dominguez, S.E. Lallemand, J. Malavieille and R. vonHueneb (1998) : Upper plate deformation associated with seamount subduction, Tectonophysics, 293,207-224
- 128. Azusa Nishizawa, Kentaro Kaneda, Naoko Watanabe, and Mitsuhiro Oikawa (2009) : Seismic structure of the subducting seamounts on the trench axis: Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan Trench, Earth Planets Space, 61, e5-e8
- 129. Kazushige Obara, Yoshikatsu Haryu, Yoshihiro Ito, Katsuhiko Shiomi (2004) : Low frequency events occurred during the sequence of aftershock activity of the 2003 Tokachi-Oki earthquake; a dynamic process of the tectonic erosion by subducted seamount, Earth Planets Space, 56, 347-351
- 130. Sachiko Tanaka , Takanori Matsuzawa , and Youichi Asano(2019): Shallow Low-Frequency Tremor in the Northern Japan Trench Subduction Zone, Geophysical Research Letters, Vol.46, Issure.10, pp.5217–5224
- 131. Yukinobu Okamura, Takumi Tsujino, Kohsaku Arai, Tomoyuki Sasaki, Kenji Satake and Masato Joshima (2008): Fore arc structure and plate boundary earthquake sources along the southwestern Kuril subduction zone, Journal of Geophysical Research, Vol.113, B06305
- 132. Takuya Nishimura, Tomowo Hirasawa, Shin' ichi Miyazaki, Takeshi Sagiya, Takashi Tada, Satoshi Miura and Kazuo Tanaka (2004) : Temporal change of interplate coupling in northeeastern Japan during 1995–2002 estimated from continuous GPS observations, Geophysical Journal International, Vol.157, Issue 2, pp.901–916
- 133. Chihiro Hashimoto, Akemi Noda, Takeshi Sagiya and Mitsuhiro Matsu' ura (2009) : Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion, Nature Geoscience, Vol.2, pp.141-144
- 134. Changjiang Wu, Hideaki Tsutsumi, Hongjun Si, Yusuke Saijo (2012) : Rupture Process of the 2011Mw9.0 Tohoku Earthquake And Strong Motion Simulation from the Viewpoint of NPP Seismic Design,15th World Conference on Earthquake Engineering
- 135. Satoko Murotani, Kenji Satake , Yushiro Fujii (2013) : Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes, Geophysical Research Letters, Vol.40, pp.5070-5074
- 136. JAMSTEC(2012):海溝軸まで及んだ東北地方太平洋沖地震の地震断層を確認, プレスリリース
- 137. 地震調査研究推進本部(2017b): 震源断層を特定した地震の強震動予測手法(「レシピ」)
- 138. 藤井雄士郎・佐竹健治: 2011年東北地方太平洋沖地震の津波波源再現モデル, http://iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/
- 139. 社団法人土木学会原子力土木委員会津波評価部会(2002):原子力発電所の津波評価技術
- 140. Yushiro Fujii and Kenji Satake(2007) : Tsunami Source of the 2004 Sumatra-Andaman Earthquake Inferred from Tide Gauge and Satellite Data, Bulletin of the Seismological Society of America, Vol. 97, No. 1A, pp. S192-S207, doi: 10.1785/0120050613
- 141. Kenji Hirata, Kenji Satake, Yuichiro Tanioka, Tsurane Kuragano, Yohei Hasegawa, Yutaka Hayashi, Nobuo Hamada(2006): The 2004 Indian Ocean tsunami: Tsunami source model from satellite altimetry, Earth Planets Space, 58, 195-201, 2006
- 142. S. Lorito, F. Romano, S. Atzori, X. Tong, A. Avallone, J. McCloskey, M.Cocco, E.Boschi and A.Piatanesi (2010) : Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake, nature geoscience LETTERS, DOI:10.1038/NGEO1073

参考文献⑨

143. 相田勇(1986):津波波源の推定,水工学シリーズ86-B-2,土木学会水理委員会

- 144. Mansinha, L. and D. E. Smylie(1971): The displacement fields of inclined faults, Bull. Seism. Soc. Amer., Vol.61, No.5, pp.1433-1440
- 145. 内閣府(2020):日本海溝・千島海溝沿いの巨大地震モデルの検討について(概要報告),日本海溝・千島海溝沿いの巨大地震モデル検討会
- 146. 青森県海岸津波対策検討会(2015): 第7回資料(平成27年3月19日)
- 147. Goto, K., Chagué-Goff, C., Fujino, S., Goff, J., Jaffe, B., Nishimura, Y., Richmond, B., Sugawara, D., Szczuciński, W., Tappin, D.R., Witter, R. and Yulianto, E. (2011) : New insights of tsunami hazard from the 2011 Tohoku-oki event. Marine Geology, 290, 46-50
- 148. 国土交通省・内閣府・文部科学省(2014): 日本海における大規模地震に関する調査検討会報告書
- 149. 小池一之・町田洋(2001):日本の海成段丘アトラス
- 150. 青森県海岸津波対策検討会(2012):青森県海岸津波対策検討会検討結果(平成24年10月)
- 151. Murotani, S., H. Miyake, and K. Koketsu (2008): Scaling of characterized slip models for plate-boundary earthquakes, Earth Planets Space, 60, pp.987-991

