本資料のうち，枠囲みの内容 は商業機密の観点から公開で
きません。

女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－B－08－0001＿改 0
提出年月日	2020 年 12 月 11 日

VI－2－9－2－1－2 サプレッションチェンバの耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用基準 3
2.4 記号の説明 4
3．評価部位 5
4．固有周期 8
5．構造強度評価 9
5.1 構造強度評価方法 9
5.2 荷重の組合せ及び許容応力 9
5．2．1 荷重の組合せ及び許容応力状態 9
5．2．2 許容応力 9
5．2．3 使用材料の許容応力評価条件 9
5．2．4 設計荷重 14
5.3 設計用地震力 15
5.4 計算方法 16
5．4．1 応力評価点 16
5．4．2 解析モデル及び諸元 18
5．4．3 応力計算方法 21
5.5 計算条件 21
5.6 応力の評価 21
6．評価結果 22
6.1 設計基準対象施設としての評価結果 22
6．2 重大事故等対処設備としての評価結果 29
7．参照図書 34

1．概要

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－2－ 1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，サプレッションチ エンバが設計用地震力に対して十分な構造強度を有していることを説明するものである。

サプレッションチェンバは，設計基準対象施設においては S クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

なお，本計算書においては，新規制対応工認対象となる設計用地震力及び重大事故等時に対 する評価について記載するものとし，前述の荷重を除く荷重によるサプレッションチェンバの評価は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類（参照図書（1））による（以下「既工認」という。）。

2．一般事項
2.1 構造計画 サプレッションチェンバの構造計画を表 2－1 に示す。

表2－1 構造計画

2．2 評価方針

サプレッションチェンバの応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件 に関する説明書」及び添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所において，「4．固有周期」にて算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まるこ とを，「5．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

サプレッションチェンバの耐震評価フローを図 2－1 に示す。

図 2－1 サプレッションチェンバの耐震評価フロー

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補— 1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版）（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007）（以下「設計•建設規格」という。）
2.4 記号の説明

記号	記号の説明	単位
D	死荷重	－
D_{1}	直径	mm
E	縥弾性係数	MPa
ℓ_{i}	長さ（ $\mathrm{i}=1,2,3)$	mm
M	機械的荷重	－
M_{L}	地震と組み合わせる機械的荷重	－
Msal	機械的荷重（SA 後長期（L）機械的荷重）	－
$\mathrm{M}_{\text {SALL }}$	機械的荷重（SA 後長期（LL）機械的荷重）	－
P	圧力	－
P_{L}	地震と組み合わせる圧力	－
$\mathrm{P}_{\text {Sal }}$	圧力（SA 後長期（L）圧力）	kPa
P SALL	圧力（SA 後長期（LL）圧力）	kPa
R_{1}	半径	mm
S	許容引張応力	MPa
S d	弹性設計用地震動S d により定まる地震力	－
S d＊	弾性設計用地震動S d により定まる地震力又は静的地震力	－
S s	基準地震動S s により定まる地震力	－
S_{u}	設計引張強さ	MPa
Sy	設計降伏点	MPa
S_{y}（R T）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
t_{1}	厚さ	mm
T	温度	${ }^{\circ} \mathrm{C}$
Tsal	温度（SA 後長期（L）温度）	${ }^{\circ} \mathrm{C}$
TsALL	温度（SA 後長期（LL）温度）	${ }^{\circ} \mathrm{C}$
α	純曲げによる全断面降伏荷重と初期降伏荷重の比または1．5の いずれか小さい方の値	－
$\theta 1$	角度	－
v	ポアソン比	－
A S S	オーステナイト系ステンレス鋼	－
HNA	高ニッケル合金	－

3．評価部位
サプレッションチェンバの形状及び主要寸法を図 3－1 及び図 3－2 に，使用材料及び使用部位 を表3－1に示す。

A～A断面図

$$
\mathrm{D}_{1}=\square \quad \mathrm{R}_{1}=\square \quad \mathrm{t}_{1}=\square \quad \theta_{1}=\square
$$

（単位：mm）
図 3－1 サプレッションチェンバの形状及び主要寸法

（単位：mm）

図 3－2 サプレッションチェンバ強め輪の形状及び主要寸法

枠囲みの内容は商業機密の観点から公開できません。

表3－1 使用材料表

使用部位	使用材料	備考
サプレッションチェンバ	SGV49（SGV480）	

4．固有周期
（1）設計基準対象施設としての固有周期
設計基準対象施設における固有周期は表 4－1 に示すとおりである。水平方向及び鉛直方向に対し，固有周期は 0.05 秒を超えており，柔であることを確認した。

表 4－1 固有周期（設計基準対象施設）

	固有周期 (s)
卓越方向	0.069
水平方向	0.065
鉛直方向	

（2）重大事故等対処設備としての固有周期
重大事故等対処設備における固有周期は表 4－2 に示すとおりである。水平方向及び鉛直方向に対し，固有周期は 0.05 秒を超えており，柔であることを確認した。

表 4－2 固有周期（重大事故等対処設備）

	固有周期 (s)
卓越方向	0.091
水平方向	0.083
鉛直方向	

5．構造強度評価

5.1 構造強度評価方法

（1）サプレッションチェンバは，ボックスサポートにより拘束支持された円環状の円筒構造 であり，荷重はボックスサポートを介して原子炉建屋に伝達される。

サプレッションチェンバの耐震評価として，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」において計算された荷重を用いて，「5．4 計算方法」に示す方法に従い構造強度評価を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表 2－1 に示す。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
サプレッションチェンバの荷重の組合せ及び許容応力状態のうち，設計基準対象施設 の評価に用いるものを表 5－1 に，重大事故等対処設備の評価に用いるものを表 5－2 に示 す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せ は，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

5．2．2 許容応力

サプレッションチェンバの許容応力は添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 5－3 に示すとおりとする。

5．2．3 使用材料の許容応力評価条件
サプレッションチェンバの使用材料の許容応力評価条件のうち，設計基準対象施設の評価に用いるものを表 5－4に，重大事故等対処設備の評価に用いるものを表5－5に示す。

表5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等 の区分	荷重の組合せ＊1		許容応力状態
原子炉格納施設	原子炉格納容器	$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	S	$\begin{gathered} \text { クラスMC } \\ \text { 容器 } \end{gathered}$	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd} *$	$\begin{gathered} (9) \\ (10) * 3 \\ (13) \\ (15) \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	$\begin{gathered} (11) \\ (12)^{* 3} \\ (14) \end{gathered}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd} \mathrm{d}^{* * 2}$	（16）	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $⺌ 1: ~(~) ~ 内 は$ 添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－6の荷重の組合せのNo．を示す。
＊2：原子炉格納容器は冷却材喪失事故後の最終障壁となることから，構造体全体としての安全裕度を確認する意味で，冷却材喪失事故後の最大内圧との組合せを考慮する。
＊3：荷重の組合せとして考慮しないので評価しない。

表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等 の区分	荷重の組合せ＊2		許容応力状態
原子炉格納施設	原子炉格納容器	$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	常設耐震／防止 常設／緩和	重大事故等クラス2容器	$\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{Sd}{ }^{* 3}$	（V（L）－1）	$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}$
					$\mathrm{D}+\mathrm{P}_{\text {SALL }}+\mathrm{M}_{\text {SALL }}+\mathrm{S} \mathrm{s}$	（V（LL）－ 1 ）	$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}$

＊2：（ ）内は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－7の荷重の組合せのNo．を示す。
$* 3:$ 重大事故等後の最高内圧及び最高温度との組合せを考慮する。
＊4： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

表5－3 クラスMC容器及び重大事故等クラス2容器の許容応力

応力分類許容応力状態	一次一般膜応力	- 次膜応力 + - 次曲げ応力	一次 + 二次応力	一次＋二次＋ピーク応力
$\mathrm{III}_{4} \mathrm{~S}$		左欄の 1． 5 倍の値＊4		＊2，＊3
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	構造上の連続な部分は0．6•見，不連続な部分は S_{y} と $0.6 \cdot \mathrm{~S}_{\mathrm{u}}$ の小さい方。ただ し，ASS及びHNAについては，構造上	左欄の	$\left\lvert\, \begin{gathered} 3 \cdot \mathrm{~S}^{* 1} \\ \left.\binom{\mathrm{~S} \mathrm{~d} \text { 又は } \mathrm{S} \mathrm{~s} \text { 地震動のみによる }}{\text { 応力振幅について評価する。 }} \right\rvert\, \end{gathered}\right.$	S d 又は S s 地震動のみによる疲労解析を行い，運転状態 I， IIにおける疲労累積係数との和
$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 5}$	方，不連続な部分は1．2•S とする。			

注記＊1：3•Sを超えるときは弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313を除く。また， S_{m} は S と読み替える。）の簡易弾塑性解析を用いる。
＊2：設計•建設規格 PVB－3140（6）を満たすときは疲労解析不要。
ただし，PVB－3140（6）の「応力の全振幅」は「S d 又はS s 地震動による応力の全振幅」と読み替える。
＊3：運転状態 I，IIにおいて，疲労解析を要しない場合は，地震動のみによる疲労累積係数を1．0以下とする。
＊4：設計•建設規格 PVB－3111に準じる場合は，純曲げによる全断面降伏荷重と初期降伏荷重の比または1．5のいずれか小さい方の値（ α ） を用いる。
＊5： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

表5－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
サプレッションチェンバ	SGV49 （SGV480）	周囲環境温度	104	131	237	430	－

表5－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S (MPa)	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
サプレッションチェンバ	SGV49 （SGV480）	周囲環境 温度	$111 / 178^{* 1}$ $(200) * 2$	131	226	422

注記＊1：SA 後長期（L）の時 $178^{\circ} \mathrm{C}$ ， SA 後長期（LL）の時 $111^{\circ} \mathrm{C}$ 。
＊2：重大事故等時の評価温度として，保守的に限界温度を適用する。

5．2．4 設計荷重

（1）設計基準対象施設としての設計荷重
設計基準対象施設としての設計荷重である，最高使用圧力，最高使用温度及び水力学的動荷重は，参照図書（1）に定めるとおりである。死荷重として，サプレッションチェン バ，ボックスサポート及びサプレッションプール水の自重を考慮する。
（2）重大事故等対処設備としての設計荷重
a．重大事故等対処設備としての評価圧力及び評価温度
重大事故等対処設備としての評価圧力及び評価温度は，以下のとおりとする。

内圧 $\mathrm{P}_{\text {SAL }}$	640 kPa	（ S A 後長期	（L））
内圧 P SALL	427 kPa	（ S A 後長期	（LL））
温度T SAL	$178{ }^{\circ} \mathrm{C}$	（ S A 後長期	（L））
温度T SALL	$111^{\circ} \mathrm{C}$	（ S A 後長期	（LL））

b．水力学的動荷重
重大事故等対処設備としての水力学的動荷重は，参照図書（1）に示すとおりである。

5.3 設計用地震力

評価に用いる設計用地震力を表 5－6 及び表 5－7に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書
類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－6 設計用地震力（設計基準対象施設）

据付場所 及び設置高さ （m）	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		減衰定数(\%)	
	水平 方向	鉛直 方向	$* 1$ 水平方向設計震度	$* 1$ 鉛直方向設計震度	$\text { * } 1$ 水平方向設計震度	*1 鉛直方向設計震度	水平 方向	鉛直 方向
原子炉格納容器 $\begin{gathered} \text { 0. P. } \\ -8.10 \end{gathered}$	0． 069	0． 065						

注記＊1：上段は設計用床応答曲線より得られる震度，中段は設計用最大応答加速度より得られる震度，下段は静的震度を示す。
＊2：鋼製格納容器に適用される減衰定数の値。

表 5－7 設計用地震力（重大事故等対処設備）

据付場所 及び設置高さ （m）	固有周期 （s）		弹性設計用地震動 S d又は静的震度		基準地震動 S s		減衰定数 （\％）	
	水平 方向	鉛直 方向	＊1 水平方向設計震度	$* 1$ 鉛直方向設計震度	＊1 水平方向設計震度	＊1 鉛直方向設計震度	水平 方向	鉛直 方向
原子炉 格納容器 $\begin{gathered} \text { 0. P. } \\ -8.10 \end{gathered}$	0． 091	0． 083						

注記 $* 1$ ：上段は設計用床応答曲線より得られる震度，中段は設計用最大応答加速度より得られる震度，下段は静的震度を示す。
＊2：鋼製格納容器に適用される減衰定数の値。

枠囲みの内容は商業機密の観点から公開できません。

5.4 計算方法

5．4．1 応力評価点
サプレッションチェンバの応力評価点は，サプレッションチェンバを構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を表 5－8 及び図 5－1 に示す。

表 5－8 応力評価点

応力評価点番号	応力評価点
P1	胴中央部外側
P2	胴中央部底部
P3	胴中央部内側
P4	胴中央部頂部
P5	胴エビ継手部外側
P6	胴エビ継手部底部
P7	胴エビ継手部内側
P8	胴エビ継手部頂部
P9	内側ボックスサポート取付部
P10	外側ボックスサポート取付部

図 5－1 サプレッションチェンバの応力評価点

5．4．2 解析モデル及び諸元

設計基準対象施設としての評価及び重大事故等対処設備としての評価には，以下の 3 つの解析モデルを用いる。

解析コードは「MSCN N A S T R A N 」を使用する。なお，評価に用いる解析コー ドの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
（1）サプレッションチェンバ全体はりモデル
応力評価点 P1～P4 の地震荷重による応力は，サプレッションチェンバ全体をはり要素 にモデル化して計算する。解析モデルを図 5－2 に，諸元を表 5－9 に示す。ボックスサポ ート下端を
（2）サプレッションチェンバ部分シェルモデル（圧力荷重）
応力評価点 P1～P10 の圧力による応力は，サプレッションチェンバを構成する円筒の うち 2 個をシェル要素にモデル化して計算する。解析モデルを図5－3に，諸元を表5－9に示す。円筒部の端面を

また，ボックスサポート下端を，

（3）サプレッションチェンバ部分シェルモデル（強制変位荷重）
応力評価点 P1～P10 の死荷重による応力及び応力評価点 P5～P10 の地震荷重による応力は，サプレッションチェンバを構成する円筒のうち 2 個をシェル要素にモデル化して計算する。解析モデルを図5－4に，諸元を表5－9に示す。円筒部端面の各節点を

ボックスサポート下端（代表）

図 5－2 解析モデル（1）サプレッションチェンバ全体はりモデル

円筒部端面（代表）

図 5－3 解析モデル（2）サプレッションチェンバ部分シェルモデル（圧力荷重）

図 5－4 解析モデル（3）サプレッションチェンバ部分シェルモデル（強制変位荷重）

表 5－9（1）機器諸元（その 1）

項目	記号	単位	入力値	
			設計基準対象施設	重大事故等対処設備
材質	－	－	SGV49（SGV480 相当）	
機器質量	－	ton		
水密度	－	ton／m ${ }^{3}$		
水位	－	mm	0．P．-3800	0．P．-1514
温度条件	T	${ }^{\circ} \mathrm{C}$		
縦弾性係数	E	MPa		
ポアソン比	v	－		

表 5－9（2）機器諸元（その 2）

項目			個数
要素数		サプレッションチェンバ全体はりモデル	
	（2）	サプレッションチェンバ部分シェルモデル（圧力荷重）	
	（3）	サプレッションチェンバ部分シェルモデル（強制変位荷重）	
節点数	（1）	サプレッションチェンバ全体はりモデル	
	（2）	サプレッションチェンバ部分シェルモデル（圧力荷重）	
	（3）	サプレッションチェンバ部分シェルモデル（強制変位荷重）	

5．4．3 応力計算方法

サプレッションチェンバの応力計算方法について以下に示す。
（1）設計基準対象施設としての応力計算
設計基準対象施設における応力は，応力評価点 P1～P4 に対し，「5．4．2 解析モデル及 び諸元」に示すサプレッションチェンバ全体はりモデル及びサプレッションチェンバ部分シェルモデルにより算出する。また，応力評価点 P5～P10 に対し，「5．4．2 解析モデ ル及び諸元」に示すサプレッションチェンバ部分シェルモデルにより算出する。水力学的動荷重は，参照図書（1）に示す水力学的動荷重による応力を用いる。水平 2 方向及び鉛直方向の設計用地震力による応力は，二乗和平方根により組み合わせる。
（2）重大事故等対処設備としての応力計算
重大事故等対処設備における応力は，応力評価点 P1～P4 に対し，「5．4．2 解析モデル及び諸元」に示すサプレッションチェンバ全体はりモデル及びサプレッションチェンバ部分シェルモデルにより算出する。また，応力評価点 P5～P10 に対し，「5．4．2 解析モ デル及び諸元」に示すサプレッションチェンバ部分シェルモデルにより算出する。水力学的動荷重は，参照図書（1）に示す水力学的動荷重による応力を比例倍して算出する。水平 2 方向及び鉛直方向の設計用地震力による応力は，二乗和平方根により組み合わせる。

5.5 計算条件

応力解析に用いる荷重を，「5．2 荷重の組合せ及び許容応力」及び「5．3 設計用地震力」 に示す。

5.6 応力の評価

「5．4 計算方法」で求めた応力が許容応力以下であること。ただし，一次十二次応力が許容値を満足しない場合は，設計•建設規格 PVB－3300 に基づいて疲労評価を行い，疲労累積係数が 1.0 以下であること。

6．評価結果
6.1 設計基準対象施設としての評価結果

サプレッションチェンバの設計基準対象施設としての耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認 した。
（1）構造強度評価結果
構造強度評価の結果を表 6－1 及び表 6－2 に示す。

表 6－1 許容応力状態 $\mathrm{II}_{A} \mathrm{~S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}$＊）（その 1）

評価対象設備	評価部位		応力分類	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P1	胴中央部外側		一次一般膜応力	25	237	\bigcirc	
				一次膜応力 + 一次曲げ応力	25	356	\bigcirc	
			一次＋二次応力	26	393	\bigcirc		
	P2	胴中央部底部	一次一般膜応力	38	237	\bigcirc		
			一次膜応力 + 一次曲げ応力	38	356	\bigcirc		
			一次＋二次応力	28	393	\bigcirc		
	P3	胴中央部内側	一次一般膜応力	26	237	\bigcirc		
			一次膜応力 + 一次曲げ応力	26	356	\bigcirc		
			一次＋二次応力	26	393	\bigcirc		
	P4	胴中央部頂部	一次一般膜応力	19	237	\bigcirc		
			一次膜応力 + 一次曲げ応力	19	356	\bigcirc		
			一次＋二次応力	28	393	\bigcirc		
	P5	胴エビ継手部外側	一次膜応力 + 一次曲げ応力	26	356	\bigcirc		
			一次＋二次応力	40	393	\bigcirc		

表 6－1 許容応力状態 $I_{A} \mathrm{~S}_{\mathrm{A}}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}^{*}$ ）（その 2）

評価対象設備	評価部位		応力分類	$\mathrm{III}_{4} \mathrm{~S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P6	胴エビ継手部底部		一次膜応力 + 一次曲げ応力	78	356	\bigcirc	
				一次 + 二次応力	46	393	\bigcirc	
	P7	胴エビ継手部内側	一次膜応力 + 一次曲げ応力	43	356	\bigcirc		
			一次 + 二次応力	72	393	\bigcirc		
	P8	胴エビ継手部頂部	一次膜応力 + 一次曲げ応力	18	356	\bigcirc		
			一次 + 二次応力	26	393	\bigcirc		
	P9	内側ボックスサポート取付部	一次膜応力 + －次曲げ応力	94	356	\bigcirc		
			一次＋二次応力	126	393	\bigcirc		
	P10	外側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	84	356	\bigcirc		
			一次 + 二次応力	86	393	\bigcirc		

表 6－2（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）（その 1）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P1	胴中央部外側		一次一般膜応力	34	258	\bigcirc	
				一次膜応力 + 一次曲げ応力	34	387	\bigcirc	
			一次＋二次応力	44	393	\bigcirc		
	P2	胴中央部底部	一次一般膜応力	48	258	\bigcirc		
			一次膜応力 + 一次曲げ応力	48	387	\bigcirc		
			一次＋二次応力	48	393	\bigcirc		
	P3	胴中央部内側	一次一般膜応力	35	258	\bigcirc		
			一次膜応力 + 一次曲げ応力	35	387	\bigcirc		
			一次＋二次応力	44	393	\bigcirc		
	P4	胴中央部頂部	一次一般膜応力	29	258	\bigcirc		
			一次膜応力 + 一次曲げ応力	29	387	\bigcirc		
			一次＋二次応力	48	393	\bigcirc		
	P5	胴エビ継手部外側	一次膜応力 + 一次曲げ応力	41	387	\bigcirc		
			一次＋二次応力	72	393	\bigcirc		

表 6－2（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）（その 2）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P6	胴エビ継手部底部		一次膜応力 + 一次曲げ応力	92	387	\bigcirc	
				一次＋二次応力	82	393	\bigcirc	
	P7	胴エビ継手部内側	一次膜応力 + 一次曲げ応力	69	387	\bigcirc		
			一次＋二次応力	130	393	\bigcirc		
	P8	胴エビ継手部頂部	一次膜応力 + 一次曲げ応力	25	387	\bigcirc		
			一次＋二次応力	46	393	\bigcirc		
	P9	内側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	131	387	\bigcirc		
			一次＋二次応力	232	393	\bigcirc		
	P10	外側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	111	387	\bigcirc		
			一次＋二次応力	160	393	\bigcirc		

表 6－2（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}{ }^{*}$ ）（その 1 ）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P1	胴中央部外側		一次一般膜応力	65	258	\bigcirc	
				一次膜応力 + 一次曲げ応力	65	387	\bigcirc	
			一次＋二次応力	26	393	\bigcirc		
	P2	胴中央部底部	一次一般膜応力	65	258	\bigcirc		
			一次膜応力 + 一次曲げ応力	65	387	\bigcirc		
			一次＋二次応力	28	393	\bigcirc		
	P3	胴中央部内側	一次一般膜応力	65	258	\bigcirc		
			一次膜応力 + 一次曲げ応力	65	387	\bigcirc		
			一次＋二次応力	26	393	\bigcirc		
	P4	胴中央部頂部	一次一般膜応力	65	258	\bigcirc		
			一次膜応力 + 一次曲げ応力	65	387	\bigcirc		
			一次＋二次応力	28	393	\bigcirc		
	P5	胴エビ継手部外側	一次膜応力 + 一次曲げ応力	43	387	\bigcirc		
			一次＋二次応力	40	393	\bigcirc		

表 6－2（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}{ }^{*}$ ）（その 2）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P6	胴エビ継手部底部		一次膜応力 + 一次曲げ応力	42	387	\bigcirc	
				一次＋二次応力	46	393	\bigcirc	
	P7	胴エビ継手部内側	一次膜応力 + 一次曲げ応力	70	387	\bigcirc		
			一次＋二次応力	72	393	\bigcirc		
	P8	胴エビ継手部頂部	一次膜応力 + 一次曲げ応力	41	387	\bigcirc		
			一次＋二次応力	26	393	\bigcirc		
	P9	内側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	82	387	\bigcirc		
			一次＋二次応力	126	393	\bigcirc		
	P10	外側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	77	387	\bigcirc		
			一次＋二次応力	86	393	\bigcirc		

6.2 重大事故等対処設備としての評価結果

サプレッションチェンバの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有している ことを確認した。
（1）構造強度評価結果
構造強度評価結果を表6－3 に示す。

表6－3（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} d$ ）（その1）

評価対象設備	評価部位		応力分類	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P1	胴中央部外側		一次一般膜応力	198	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	198	379	\bigcirc	
			一次＋二次応力	48	393	\bigcirc		
	P2	胴中央部底部	一次一般膜応力	200	253	\bigcirc		
			一次膜応力 + 一次曲げ応力	200	379	\bigcirc		
			一次＋二次応力	52	393	\bigcirc		
	P3	胴中央部内側	一次一般膜応力	198	253	\bigcirc		
			一次膜応力 + 一次曲げ応力	198	379	\bigcirc		
			一次＋二次応力	48	393	\bigcirc		
	P4	胴中央部頂部	一次一般膜応力	199	253	\bigcirc		
			一次膜応力 + 一次曲げ応力	199	379	\bigcirc		
			一次＋二次応力	52	393	\bigcirc		
	P5	胴エビ継手部外側	一次膜応力 + 一次曲げ応力	102	379	\bigcirc		
			一次＋二次応力	78	393	\bigcirc		

表6－3（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}$ ）（その 2）

評価対象設備	評価部位		応力分類	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P6	胴エビ継手部底部		一次膜応力 + 一次曲げ応力	112	379	\bigcirc	
				一次＋二次応力	52	393	\bigcirc	
	P7	胴エビ継手部内側	一次膜応力 + 一次曲げ応力	160	379	\bigcirc		
			一次＋二次応力	72	393	\bigcirc		
	P8	胴エビ継手部頂部	一次膜応力 + 一次曲げ応力	125	379	\bigcirc		
			一次＋二次応力	46	393	\bigcirc		
	P9	内側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	212	379	\bigcirc		
			一次＋二次応力	138	393	\bigcirc		
	P10	外側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	236	379	\bigcirc		
			一次＋二次応力	160	393	\bigcirc		

表6－3（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SALL}}+\mathrm{M}_{\mathrm{SALL}}+\mathrm{S} \mathrm{s}$ ）（その1）

評価対象設備	評価部位		応力分類	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P1	胴中央部外側		一次一般膜応力	168	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	168	379	\bigcirc	
			一次 + 二次応力	92	393	\bigcirc		
	P2	胴中央部底部	一次一般膜応力	171	253	\bigcirc		
			一次膜応力 + 一次曲げ応力	171	379	\bigcirc		
			一次＋二次応力	102	393	\bigcirc		
	P3	胴中央部内側	一次一般膜応力	168	253	\bigcirc		
			一次膜応力 + 一次曲げ応力	168	379	\bigcirc		
			一次＋二次応力	92	393	\bigcirc		
	P4	胴中央部頂部	一次一般膜応力	172	253	\bigcirc		
			一次膜応力 + 一次曲げ応力	172	379	\bigcirc		
			一次＋二次応力	102	393	\bigcirc		
	P5	胴エビ継手部外側	一次膜応力 + 一次曲げ応力	111	379	\bigcirc		
			一次＋二次応力	154	393	\bigcirc		

表6－3（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SALL}}+\mathrm{M}_{\mathrm{SALL}}+\mathrm{S} \mathrm{S}$ ）（その 2）

評価対象設備	評価部位		応力分類	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P6	胴エビ継手部底部		一次膜応力 + 一次曲げ応力	105	379	\bigcirc	
				一次＋二次応力	98	393	\bigcirc	
	P7	胴エビ継手部内側	一次膜応力 + 一次曲げ応力	152	379	\bigcirc		
			一次＋二次応力	140	393	\bigcirc		
	P8	胴エビ継手部頂部	一次膜応力 + 一次曲げ応力	110	379	\bigcirc		
			一次＋二次応力	90	393	\bigcirc		
	P9	内側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	196	379	\bigcirc		
			一次＋二次応力	264	393	\bigcirc		
	P10	外側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	233	379	\bigcirc		
			一次＋二次応力	310	393	\bigcirc		

7．参照図書
（1）女川原子力発電所第 2 号機 第 2 回工事計画認可申請書添付書類「IV－3－1－1－13 サプレッションチェンバの強度計算書」

