

東海第二発電所 \quad 女川原子力発電所第2号機 \quad 備考

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		3．評価部位 計器スタンションの耐震評価は「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトについて評価を実施する。 4．固有周期 計器スタンションの固有周期は，振動試験（加振試験又は自由振動試験）又は理論式にて求める。なお，振動試験又は理論式により固有周期が求められていない計器スタンションについては，構造が同様な振動特性を持つ計器スタンションに対する振動試験又は理論式の結果算定された固有周期を使用する。 5．構造強度評価 5.1 構造強度評価方法 （1）計器スタンションの質量は重心に集中しているものとする。 （2）地震力は計器スタンションに対して，水平方向及び鉛直方向から作用するものとする。 （3）計器スタンションは基礎ボルトで床面及び壁面に固定されてお り，固定端とする。 （4）転倒方向＊は，図 5－1概要図（直立形）における正面方向及び側面方向並びに図 5－2 概要図（壁掛形）における正面方向及び側面方向について検討し，計算書には計算結果の厳しい方（許容値／発生値の小さい方をいう。）を記載する。 （5）計器スタンションの重心位置については，転倒方向を考慮して，計算条件が厳しくなる位置に重心位置を設定して耐震性の計算 を行らものとする。 （6）耐震計算に用いる寸法は，公称値を使用する。 注記 $*$ ：計器スタンションの転倒方向は，計器スタンションを正面よ り見て左右に転倒する場合を「正面方向転倒」，前方または後方 に転倒する場合を「側面方向転倒」という。	設計の差異による （女川 2 号では理論式 により固有周期を評価 している計器スタンシ ョン（地下水位低下設備水位計）がある。）

《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		図 5－1 概要図（直立形） （大畐分向） （銨直分向） 図 5－2 概要図（壁掛形）	

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		5.2 設計用地震力 「弾性設計用地震動 Sd 又は静的震度」及び「基準地震動 Ss」に よる地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき設定する。なお，壁刲形の計器スタンションの設計用地震力については，設置床上下階のいずれか大きい方を用いる。 5.3 計算方法 5．3．1 応力の計算方法 5．3．1．1 ボルトの計算方法 ボルトの応力は，地震による震度により作用するモーメントによ って生じる引張力とせん断力について計算する。 $\left(\ell_{1} \leqq \ell_{2}\right)$ 図 5－3（1）計算モデル （直立形 正面方向転倒－1 $\left(1-\mathrm{C}_{\mathrm{v}}\right) \geqq 0$ の場合） 図 5－3（2）計算モデル （直立形 正面方向転倒－2（ $1-\mathrm{C}_{\mathrm{v}}$ ）<0 の場合）	表現の相違

《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25）
東海第二発電所
女川原子力発電所第 2 号機
備考
《参考》䄸崎刘羽原子力発電所第 7 号機（2020．9．25）
《参考》柏崎刘羽原子力発電所第 7 号機（2020．9．25）
《参考》的崎刈羽原子力発電所第 7 号機（2020．9．25）

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		計算モデル図5－5（1）の場合の引張力 $\begin{equation*} \mathrm{F}_{\mathrm{b} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}_{2}}{\mathrm{n}_{\mathrm{f} \mathrm{H}} \cdot \ell_{\mathrm{a}}}+\frac{\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \mathrm{h}_{2}}{\mathrm{n}_{\mathrm{fV}} \cdot \ell_{\mathrm{b}}}\right) . \tag{5.3.1.1.5} \end{equation*}$ 計算モデル図 $5-5(2)$ の場合の引張力 $\begin{equation*} \mathrm{F}_{\mathrm{b} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{l}_{3}+\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \mathrm{h}_{2}}{\mathrm{n}_{\mathrm{fV}} \cdot \ell_{\mathrm{b}}}\right) \cdot \tag{5.3.1.1.6} \end{equation*}$ $\begin{equation*} \mathrm{F}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{F}_{\mathrm{b} 1}, \quad \mathrm{~F}_{\mathrm{b}_{2}}\right) \tag{5.3.1.1.7} \end{equation*}$ 引張応力 $\begin{equation*} \sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{5.3.1.1.8} \end{equation*}$ ここで，ボルトの軸断面積 A_{b} は次式により求める。 $\begin{equation*} \mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{5.3.1.1.9} \end{equation*}$ ただし， F_{b} が負のときボルトには引張力が生じないので，引張応力の計算は行わない。 （2）せん断応力 ボルトに対するせん断力は，ボルト全本数で受けるものとして計算する。 せん断力 a．直立形の場合 $\begin{equation*} \mathrm{Q}_{\mathrm{b}}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \tag{5.3.1.1.10} \end{equation*}$ b．壁掛形の場合 $\mathrm{Q}_{\mathrm{b} 1}=\mathrm{m} \cdot \mathrm{g} \cdot \mathrm{C}_{\mathrm{H}}$ $\mathrm{Q}_{\mathrm{b} 2}=\mathrm{m} \cdot \mathrm{g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right)$ （5．3．1．1．12） $\begin{equation*} \mathrm{Q}_{\mathrm{b}}=\sqrt{\left(\mathrm{Q}_{\mathrm{b} 1}\right)^{2}+\left(\mathrm{Q}_{\mathrm{b} 2}\right)^{2}} \tag{5.3.1.1.13} \end{equation*}$	

《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25）
東海第二発電所

女川原子力発電所第2号機		
せん断応力		
$\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}}$		
5.4 応力の評価		
5．4．1 ボルトの応力評価		
5．3．1．1 項で求めたボルトの引張応力 σ_{b} は次式より求めた許容引		
張応力 $\mathrm{f}_{\mathrm{t}} \mathrm{s}$ 以下であること。ただし， f toは下表による。		
$\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{t}_{\mathrm{o}}}\right] \cdots \cdots \cdots \cdots \cdots(5.4 .1 .1)$		
せん断応力 $\tau_{\text {b }}$ は，せん断力のみを受けるボルトの許容せん断応力		
f sb以下であること。ただし，f s b は下表による。		
	弾性設計用地震動 S d荷重との組合せの場合	基準地震動S s による荷重との組合せの場合
許容引張応力 $f_{\text {to }}$	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\mathrm{F}^{*} \cdot 1.5$
	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}}{}{ }^{*} .5 \cdot \sqrt{3}{ }^{\text {a }}$ ． 1.5

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		6．機能維持評価 6.1 電気的機能維持評価方法 機能維持評価用加速度と機能碓認済加速度との比較により，地震時又は地震後の電気的機能維持を評価する。 機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線 の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。 機能碓認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき，加振試験により電気的機能の健全性を確認した評価部位 の加速度を適用することとし，個別計算書にその旨を記載する。 7．耐震計算書のフォーマット 7.1 直立形計器スタンションの耐震計算書のフォーマット 直立形計器スタンションの耐震計算書のフォーマットは，以下の とおりである。 〔設計基準対象施設及び重大事故等対処設備の場合〕 フォーマット I 設計基準対象施設としての評価結果 フォーマットII 重大事故等対処設備としての評価結果 〔重大事故等対処設備単独の場合〕 フォーマットII 重大事故等対処設備としての評価結果＊ 7.2 壁掛形計器スタンションの耐震計算書のフォーマット 壁掛形計器スタンションの耐震計算書のフォーマットは，以下のと おりである。 〔設計基準対象施設及び重大事故等対処設備の場合〕 フォーマットIII 設計基準対象施設としての評価結果 フォーマットIV 重大事故等対処設備としての評価結果 〔重大事故等対処設備単独の場合〕 フォーマットIV 重大事故等対処設備としての評価結果＊ 注記＊：重大事故等対処設備単独の場合は，設計基準対象施設及び重大事故等対処設備に示すフォーマットII及びIVを使用 するものとする。ただし，評価結果表に記載の章番を「2．」 から「1．」とする。	表現の相違

《参考》柏崎利羽原子力発電所第 7 号機（2020．9．25）

《参考》柏崎刘羽原子力発電所第 7 号機（2020．9．25）

《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25）

《参考》䄸崎刏羽原子力発電所第 7 号機（2020．9．25）

