

柏崎刈羽7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		3．評価部位 計装ラックの耐震評価は「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルト及び取付ボルトについて評価を実施する。 4．固有周期 計装ラックの固有周期は，振動試験（加振試験又は打振試験）に て求める。なお，振動試験により固有周期が求められていない計装 ラックについては，構造が同様な振動特性を持つ計装ラックに対す る振動試験の結果算定された固有周期を使用する。 5．構造強度評価 5.1 構造強度評価方法 （1）計装ラックの質量は重心に集中しているものとする。 （2）地震力は計装ラックに対して，水平方向及び鉛直方向から作用 するものとする。 （3）計装ラックは取付ボルトでチャンネルベースに固定されてお り，固定端とする。 （4）チャンネルベースは基礎ボルト又は埋込金物で基礎と固定され ており，固定端とする。 （5）床面据付の計装ラックの転倒方向は，図 5－1 概要図（直立形） における長辺方向及び短辺方向について検討し，計算書には計算結果の厳しい方（許容値／発生値の小さい方をいう。）を記載す る。壁掛形の計装ラック＊については，図 5－2 概要図（壁掛形） における正面方向及び側面方向について検討し，計算書には計算結果の厳しい方を記載する。 （6）計装ラックの重心位置については，転倒方向を考慮して，計算条件が厳しくなる位置に重心位置を設定して耐震性の計算を行う ものとする。 （7）耐震計算に用いる寸法は，公称値を使用する。 注記＊：壁掛形の計装ラックの転倒方向は，計装ラックを正面より 見て左右に転倒する場合を「正面方向転倒」，前方に転倒する場合を「側面方向転倒」という。	表現上の相違

柏崎对羽 7 号機（2020．9．25）

先行審査プラントの記載との比較表（VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針）

柏崎刈羽 7 号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		（1）引張応力 ボルトに対する引張力は，最も厳しい条件として，図5－3及び図5－4 で最外列のボルトを支点とする転倒を考え，これを片側の最外列のボ ルトで受けるものとして計算する。 引張力 計算モデル図 5－3（1）及び図 5－3（3）の場合の引張力 $\begin{equation*} F_{b i}=\frac{m_{i} \cdot C_{H} \cdot h_{i} \cdot g-m_{i} \cdot\left(1-C_{v}\right) \cdot \ell_{1 i} \cdot g}{n_{f_{i}} \cdot\left(\ell_{1 i}+\ell_{2 i}\right)} \tag{5.3.1.1.1} \end{equation*}$ 計算モデル図 5－3（2）及び図 5－3（4）の場合の引張力 $\begin{equation*} F_{b i}=\frac{m_{i} \cdot C_{H} \cdot h_{i} \cdot g-m_{i} \cdot\left(1-C_{v}\right) \cdot \ell_{2 i} \cdot g}{n_{f_{i}} \cdot\left(\ell_{1 i}+\ell_{2 i}\right)} . \tag{5.3.1.1.2} \end{equation*}$ 計算モデル図 5－4（1）及び図 5－4（2）の場合の引張力 引張応力 $\begin{equation*} \sigma_{b i}=\frac{F_{b i}}{\mathrm{~A}_{\mathrm{bi}}} \tag{5.3.1.1.6} \end{equation*}$ ここで，ボルトの軸断面積 A_{b} は次式により求める。 $\mathrm{A}_{\mathrm{b} i}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{i}}{ }^{2}$ ただし， F_{b} iが負のときボルトには引張力が生じないので，引張応力の計算は行わない。 （2）せん断応力 ボルトに対するせん断力は，ボルト全本数で受けるものとして計算 する。	

柏崎刈羽7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		6．機能維持評価 6.1 電気的機能維持評価方法 機能維持評価用加速度と機能碓認済加速度との比較により，地震時又は地震後の電気的機能維持を評価する。 機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線 の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。 機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，加振試験により電気的機能の健全性を確認した評価部位の加速度を適用することとし，個別計算書にその旨を記載す る。 7．耐震計算書のフォーマット 7.1 直立形計装ラックの耐震計算書のフォーマット直立形計装ラックの耐震計算書のフォーマットは，以下のとおり である。 〔設計基準対象施設及び重大事故等対処設備の場合〕 フォーマット I 設計基準対象施設としての評価結果 フォーマットII 重大事故等対処設備としての評価結果 〔重大事故等対処設備単独の場合〕 フォーマットII 重大事故等対処設備としての評価結果＊ 7.2 壁掓形計装ラックの耐震計算書のフォーマット 壁掛形計装ラックの耐震計算書のフォーマットは，以下のとおり である。 〔設計基準対象施設及び重大事故等対処設備の場合〕 フォーマットIII 設計基準対象施設としての評価結果 フォーマットIV 重大事故等対処設備としての評価結果 〔重大事故等対処設備単独の場合〕 フォーマットIV 重大事故等対処設備としての評価結果＊ 注記 $*$ ：重大事故等対処設備単独の場合は，設計基準対象施設及び重大事故等対処設備に示すフォーマットII及びIVを使用する ものとする。ただし，評価結果表に記載の章番を「2．」か ら「1．」とする。	記載方針の差異 表現上の相違
本資料のらち棶囲みの内容は，他社の機楁事㑯を合む可能珄があるため公開できません。			

先行審査プラントの記載との比較表（VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針）

