女川原子力発電所第 2 号機	
工事計画審査資料	
資料番号	02 －工－B－19－0041＿改 0
提出年月日	2020 年 11 月 27 日

VI－2－1－13－5 たて軸ポンプの耐震性についての計算書作成の基本方針

目次

1．概要 1
2．一般事項 1
2.1 評価方針 1
2.2 適用規格•基準等 2
2.3 記号の説明 3
2.4 計算精度と数値の丸め方 5
3．評価部位 5
4．固有値解析及び構造強度評価 6
4．1 固有値解析及び構造強度評価方法 6
4． 2 固有周期 7
4.3 設計用地震力 7
4． 4 計算方法 7
4．4．1 応力の計算方法 7
4.5 応力の評価 10
4．5．1 ボルトの応力評価 10
4．5．2 バレルケーシング及びコラムパイプの応力評価 10
5．機能維持評価 11
5.1 動的機能維持評価方法 11
6．耐震計算書のフォーマット 11

1．概要

本資料は，添付書類「VI－2－1－1 耐震設計の基本方針」に基づき，耐震性に関する説明書が求められているたて軸ポンプ（耐震重要度分類 S クラス又はS s 機能維持の計算 を行うもの）が，十分な耐震性を有していることを確認するための耐震計算の方法につ いて記載したものである。

解析の方針及び減衰定数については，添付書類「VI－2－1－6 地震応答解析の基本方針」 に従うものとする。

ただし，本基本方針が適用できないたて軸ポンプにあつては，個別耐震計算書にその耐震計算方法を含めて記載する。

2．一般事項
2.1 評価方針

たて軸ポンプの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定 した荷重及び荷重の組合せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所において，「4．2 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．固有値解析及び構造強度評価」にて示す方法に て確認することで実施する。また，たて軸ポンプの機能維持評価は，添付書類「VI－2－ 1－9 機能維持の基本方針」にて設定した動的機器の機能維持の方針に基づき，地震時 の応答加速度が動的機能確認済加速度以下であることを，「5．機能維持評価」にて示 す方法にて確認することで実施する。確認結果を「6．耐震計算書のフォーマット」 に示す。

たて軸ポンプの耐震評価フローを図 2－1 に示す。

図 2－1 たて軸ポンプの耐震評価フロー

2.2 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 • 補－1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版 （（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）
2.3 記号の説明

記号	記号の説明	単位
$\mathrm{A}_{\mathrm{b}} \mathrm{i}$	ボルトの軸断面積＊1	mm^{2}
A_{C}	バレルケーシング又はコラムパイプの断面積	mm^{2}
C_{H}	水平方向設計震度	－
C p	ポンプ振動による震度	－
C_{v}	鉛直方向設計震度	－
D C	バレルケーシング又はコラムパイプの内径	mm
D i	ボルトのピッチ円直径＊1	mm
d_{i}	ボルトの呼び径＊1	mm
$\mathrm{F}_{\text {i }}$	設計•建設規格 SSB－3121．1（1）に定める値＊1	MPa
F_{i}＊	設計•建設規格 SSB－3133に定める値＊${ }^{\text { }}$	MPa
$\mathrm{F}_{\mathrm{b}} \mathrm{i}$	ボルトに作用する引張力（1本当たり）＊1	N
f s b i	せん断力のみを受けるボルトの許容せん断応力＊1	MPa
f t o i	引張力のみを受けるボルトの許容引張応力＊1	MPa
f ts i	引張力とせん断力を同時に受けるボルトの許容引張応力＊1	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
H_{p}	予想最大両振幅	$\mu \mathrm{m}$
M	図 4－2 計算モデルによる多質点解析により求められるモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{i}	図 4－2計算モデルの ${ }^{(1)}$ ，（ㅁ），$)^{2}$ 及び Θ を支点とする地震及び水平方向のポンプ振動による転倒モーメント＊2	$\mathrm{N} \cdot \mathrm{mm}$
M ${ }_{\text {p }}$	ポンプ回転により作用するモーメント	$\mathrm{N} \cdot \mathrm{mm}$
m	バレルケーシング付根部に対しては，ポンプ床下部質量 コラムパイプ付根部に対しては，コラムパイプ総質量	kg
m_{i}	運転時質量＊3	kg
N	回転速度（原動機の同期回転速度）	rpm
n i	ボルトの本数＊1	－
n f i	評価上引張力を受けるとして期待するボルトの本数＊1	－
P	原動機出力	kW
P_{c}	バレルケーシング又はコラムパイプの内圧	MPa
$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	図 4－2計算モデルの ${ }^{(1), ~(1), ~ Q 及 ひ ゙ ~} \Theta$ における地震及び水平方向 のポンプ振動によりボルトに作用するせん断力＊1	N
S	設計•建設規格 付録材料図表Part5 表 5 に定める値	MPa

記号	記号の説明	単位
S a	バレルケーシング又はコラムパイプの許容応力	MPa
$\mathrm{S}_{u}, \mathrm{~S}_{\text {ui }}$	設計•建設規格 付録材料図表 Part5 表 9 に定める値＊1	MPa
$S_{y}, S_{y}{ }^{\text {i }}$	設計•建設規格 付録材料図表 Part5 表 8 に定める値＊1	MPa
$\mathrm{S}_{\mathrm{y} \text { i }}(\mathrm{R} T)$	設計•建設規格 付録材料図表Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ における値＊${ }^{\circ}$	MPa
T i	固有周期＊4	S
t	バレルケーシング又はコラムパイプの厚さ	mm
Z	バレルケーシング又はコラムパイプの断面係数	mm^{3}
π	円周率	－
σ	バレルケーシング又はコラムパイプの一次一般膜応力の最大値	MPa
σ b i	ボルトに生じる引張応力＊1	MPa
$\sigma \mathrm{CH}$	水平方向地震によりバレルケーシング又はコラムパイプに生じる応力	MPa
$\sigma \mathrm{Cv}$	鉛直方向地震によりバレルケーシング又はコラムパイプに生じる応力	MPa
$\sigma_{\mathrm{z}} \mathrm{p}$	バレルケーシング又はコラムパイプの内圧による軸方向応力	MPa
$\sigma{ }_{\theta} \mathrm{P}$	バレルケーシング又はコラムパイプの内圧による周方向応力	MPa
τ b i	ボルトに生じるせん断応力＊1	MPa

 は，以下のとおりとする。
i＝ 1 ：基礎ボルト
$\mathrm{i}=2$ ：ポンプ取付ボルト
$i=3$ ：原動機台取付ボルト
$\mathrm{i}=4$ ：原動機取付ボルト
＊2： M_{i} の添字 i の意味は，以下のとおりとする。
$\mathrm{i}=1:(1)$
i $=2$ ：（）
i $=3$ ：
$\mathrm{i}=4: \Theta$
＊ $3: \mathrm{m}_{\mathrm{i}}$ の添字 i の意味は以下のとおりとする。
$\mathrm{i}=1$ ：据付面
$\mathrm{i}=2$ ：ポンプ取付面
$\mathrm{i}=3$ ：原動機台取付面
$\mathrm{i}=4$ ：原動機取付面
＊4： T_{i} の添字 i の意味は，固有周期の次数を示す。

2.4 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
本資料で表示する数値の丸め方は，表2－1に示すとおりである。

表 2－1 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位 $* 3$

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊ 2 ：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

たて軸ポンプの耐震評価は「4．1 固有値解析及び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルト，取付ボルト並びにバレルケーシング及びコ ラムパイプについて評価を実施する。また，海水ポンプのように，コラムパイプ端部を支持部で水平方向の支持をする場合には，支持部取付用基礎ボルトについて評価を実施 する。

4．固有値解析及び構造強度評価
4． 1 固有値解析及び構造強度評価方法
たて軸ポンプの固有値解析及び構造評価に用いる解析モデルの作成条件を以下に示 す。
（1）ポンプは基礎ボルトで基礎に固定されており，固定端とする。
（2）ポンプは原動機も含めて多質点モデルにてモデル化し，軸とケーシングとを分 け軸受部をばねで接続した複列式多質点モデルとする。
（3）モデル化に際しては，原動機，ポンプ及び内容物の質量は各質点に集中するも のとする。
（4）下部サポートは鉛直方向にスライドできるものとし，水平方向の地震力を受け るものとする。
（5）地震力はポンプに対して水平方向及び鉛直方向から作用するものとする。
（6）耐震計算に用いる寸法は，公称値を使用する。
（7）固有値解析及び地震応答解析に用いる解析コードは「MSC NASTRAN」とする。

【ピットバレル形たて軸ポンプ】

【ターボ形たて軸ポンプ（海水ポンプ）】

図 4－1 概要図

4． 2 固有周期
たて軸ポンプの固有周期について，「4．1 固有値解析及び構造強度評価方法」に基 づき作成した解析モデルにより計算する。

4． 3 設計用地震力
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

4．4 計算方法

4．4．1 応力の計算方法
4．4．1．1 ボルトの計算方法

図 4－2 計算モデル

ボルトの応力は地震による震度，ポンプ振動による震度及びポンプ回転によ り作用するモーメントによって生じる引張力とせん断力について計算する。 なお，転倒モーメント及びせん断力は，水平方向には設計震度とポンプ振動 による震度の合計を考慮し，鉛直方向には，設計震度と自重を考慮した地震応答解析により算出する。
（1）引張応力
ボルトに対する引張力は転倒支点から正比例した力が作用するものとし，最も厳しい条件として転倒支点から最も離れたボルトについて計算する。

引張力

$$
\begin{equation*}
F_{b i}=\frac{M_{i}-\left(1-C_{p}-C_{v}\right) \cdot m_{i} \cdot g \cdot \frac{D_{i}}{2}}{\frac{3}{8} \cdot n_{f i} \cdot D_{i}} \tag{4.4.1.1.1}
\end{equation*}
$$

ここで， M_{i} は地震応答解析より求める。
また，C ${ }_{p}$ はポンプ振動による振幅及び原動機の同期回転数を考慮して定 める値で，次式で求める。

$$
\begin{equation*}
C_{p}=\frac{\frac{1}{2} \cdot \frac{\mathrm{H}_{\mathrm{p}}}{1000} \cdot\left(2 \cdot \pi \cdot \frac{\mathrm{~N}}{60}\right)^{2}}{\mathrm{~g} \cdot 1000} \tag{4.4.1.1.2}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\sigma_{b i}=\frac{\mathrm{F}_{\mathrm{bi}}}{\mathrm{~A}_{\mathrm{bi}}} \tag{4.4.1.1.3}
\end{equation*}
$$

ここで，ボルトの軸断面積 $\mathrm{A}_{\mathrm{b} \mathrm{i}}$ は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b} \mathrm{i}}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{i}}^{2} \tag{4.4.1.1.4}
\end{equation*}
$$

ただし， $\mathrm{F}_{\mathrm{b}}^{\mathrm{i}} \mathrm{i}$ が負のときボルトには引張力が生じないので，引張応力の計算は行わない。
（2）せん断応力
ボルトに対するせん断力はボルト全本数で受けるものとして計算する。 なお，基礎ボルト（ $\mathrm{i}=1$ ）については，ポンプ回転によるモーメントは作用しない。

せん断力
せん断力は地震応答解析により求める $\mathrm{Q}_{\mathrm{b}} \mathrm{i}$ 及びポンプ回転により作用す るモーメント M_{p} を考慮して求める。

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{bi}}=\frac{\mathrm{Q}_{\mathrm{bi}}+2 \cdot \mathrm{M}_{\mathrm{p}} / \mathrm{D}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{bi}}} \tag{4.4.1.1.5}
\end{equation*}
$$

ここで，ポンプ回転により作用するモーメント M_{p} は次式で求める。

$$
\begin{align*}
& \mathrm{M}_{\mathrm{p}}=\left(\frac{60}{2 \cdot \pi \cdot \mathrm{~N}}\right) \cdot 10^{6} \cdot \mathrm{P} \tag{4.4.1.1.6}\\
& \left(1 \mathrm{~kW}=10^{6} \mathrm{~N} \cdot \mathrm{~mm} / \mathrm{s}\right)
\end{align*}
$$

$\begin{aligned} \text { 4．4．1．2 } & \text { バレルケーシング及びコラムパイプの計算方法 } \\ & \text { バレルケーシング及びコラムパイプの応力は次式により求める。 }\end{aligned}$
（1）水平方向地震力による応力
多質点モデルを用いて応答計算を行い，得られた各部に働くモーメント により，曲げ応力は以下のようになる。

$$
\begin{equation*}
\sigma_{\mathrm{CH}}=\frac{\mathrm{M}}{\mathrm{Z}} \tag{4.4.1.2.1}
\end{equation*}
$$

（2）鉛直方向地震による応力

$$
\begin{equation*}
\sigma_{\mathrm{CV}}=\frac{\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{p}}\right) \cdot \mathrm{m} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{c}}} \tag{4.4.1.2.2}
\end{equation*}
$$

（3）内圧による応力

$$
\begin{align*}
& \sigma_{\theta \mathrm{P}}=\frac{\mathrm{P}_{\mathrm{C}} \cdot \mathrm{D}_{\mathrm{C}}}{2 \cdot \mathrm{t}} \tag{4.4.1.2.3}\\
& \sigma_{\mathrm{ZP}}=\frac{\mathrm{P}_{\mathrm{C}} \cdot \mathrm{D}_{\mathrm{C}}}{4 \cdot \mathrm{t}} \tag{4.4.1.2.4}
\end{align*}
$$

以上の $(1) \sim(3)$ の各応力から，一次一般膜応力は

$$
\sigma=\operatorname{Max}\left(\begin{array}{lll}
\sigma_{\mathrm{CH}} & +\sigma_{\mathrm{CV}}+\sigma_{\mathrm{ZP}}, & \sigma_{\theta \mathrm{P}} \tag{4.4.1.2.5}
\end{array}\right)
$$

一次応力は一次一般膜応力と同じになるので省略する。

4.5 応力の評価

4．5．1 ボルトの応力評価
4．4．1．1項で求めたボルトの引張応力 $\sigma \mathrm{bi}$ は次式より求めた許容引張応力 f tsi以下であること。

ただし，ftoiは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{tooi}}-1.6 \cdot \tau_{\mathrm{bi}}, \quad \mathrm{f}_{\mathrm{too}}\right] \tag{4.5.1.1}
\end{equation*}
$$

せん断応力 τ biはせん断力のみを受けるボルトの許容せん断応力 f s b i 以下で あること。

ただし，f s bi は下表による。

	弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	基準地震動 S s による荷重との組合せの場合
許容引張応力 ftoi	$\frac{\mathrm{F}_{\mathrm{i}}}{2} \cdot 1.5$	$\frac{\mathrm{F}_{\mathrm{i}}^{*}}{2} \cdot 1.5$
許容せん断応力 $\mathrm{f}_{\mathrm{s}} \mathrm{bi}$	$\frac{\mathrm{F}_{\mathrm{i}}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}_{\mathrm{i}}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

4．5．2 バレルケーシング及びコラムパイプの応力評価
4．4．1．2 項で求めた応力が最高使用温度における許容応力 S a 以下であること。 ただし，S a は下表による。

応力の種類	許容応力 S a	
	弾性設計用地震動 S d 又は静的震度に よる荷重との組合せの場合	基準地震動 S s による荷重との組合せの場合
一次一般膜応力	設計降伏点 S_{y} と設計引張強さ S_{u} の 0.6 倍のいずれか小さい方の値。 ただし，オーステナイト系ステンレ ス鋼及び高ニッケル合金にあっては許容引張応力 S の 1.2 倍の方が大きい場合は，この大きい方の値とする。	設計引張強さ S_{u} の 0.6 倍

一次応力の評価は算出応力が一次一般膜応力と同じ値であるので省略する。

5．機能維持評価
5.1 動的機能維持評価方法

機能維持評価用加速度と機能確認済加速度との比較により，地震時又は地震後の動的機能維持を評価する。

機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。なお，水平方向の機能維持評価用加速度はコラム先端（原動機にあっては軸受部）の応答加速度又は設計用最大応答加速度（1．0•ZPA）のいずれか大きい方を，鉛直方向は設計用最大応答加速度（1．0•ZPA）を設定する。

機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」による。 なお，この適用形式を外れる場合は，加振試験等に基づき確認した加速度を用いる こととし，個別計算書にその旨を記載する。

6．耐震計算書のフォーマット
たて軸ポンプの耐震計算書のフォーマットは，以下のとおりである。

〔設計基準対象施設及び重大事故等対処設備の場合〕
フォーマット I 設計基準対象施設としての評価結果
フォーマット II 重大事故等対処設備としての評価結果

〔重大事故等対処設備単独の場合〕
フォーマットII 重大事故等対処設備としての評価結果＊

注記 $*$ ：重大事故等対処設備単独の場合は，設計基準対象施設及び重大事故等対処設備 に示すフォーマットIIを使用するものとする。ただし，評価結果表に記載の章番を「2．」から「1．」とする。
【フォーマットI 設計基淮対象施設としての評亚結果】
10000 ポンプの而震性についての計算結果I
1．設計基淮対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基淮地震動S s		ポンブ振動 による震度	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲興境 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	最高使用圧力 （MPa）	
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度				吸込側	吐出側
		${ }_{\text {o.P. }}^{\text {建屋 }} \text { * }$			$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{V}}=$	$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{v}}=$	$\mathrm{C}_{\mathrm{p}}=$				

1.2 機器要目 注記 $*:$ 基準床レベルを示す。

＋自		
\bigcirc		
	＊	＊
क त	＊	＊
の $\frac{\text { a }}{\text { ed }}$	＊	＊
$\begin{aligned} & \text { 实 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { n } \\ & i \\ & i \\ & 5 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { in } \\ & \frac{1}{\lambda} \\ & \pi \\ & \pi \end{aligned}$

O2（1）VI－2－1－13－5 R 1
1.1 設計条件

注記＊：基漼床レベルを示す。											
部 材	$\begin{aligned} & \mathrm{m}_{\mathrm{i}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{d}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n_{i}	n_{fi}	$\begin{gathered} \mathrm{M}_{\mathrm{p}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\mathrm{S}_{\mathrm{y} \text { i }}$ （MPa）	S_{ui} （MPa）	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{*} \\ & (\mathrm{MPa}) \end{aligned}$
基礎ボルト $(\mathrm{i}=1)$			（M ）					＊2	＊2		
ポンプ取付ボルト $(i=2)$			（M ）					＊1	＊1		
原動機台取付ボルト $(\mathrm{i}=3)$			（M ）					＊1	＊1		
原動機取付ボルト $(\mathrm{i}=4)$			（M ）					＊2	＊2		

（2）バレルケーシング，コラムパイプに作用する力 （単位： $\mathrm{N} \cdot \mathrm{mm}$ ）		
	M	
部 材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s
バレルケーシング		
コラムパイプ		

	$\mathrm{M}_{\mathrm{i}}(\mathrm{N} \cdot \mathrm{mm})$		$\mathrm{F}_{\mathrm{bi}}(\mathrm{N})$		$\mathrm{Q}_{\mathrm{b} i}(\mathrm{~N})$	
部 材	弾性設計用地震動 Sd又は静的震度	基淮地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d又は静的震度	基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$						
ポンプ取付ボルト $(\mathrm{i}=2)$						
原動機台取付ボルト $(\mathrm{i}=3)$						
原動機取付ボルト $(\mathrm{i}=4)$						

すべて許容応力以下である。

[^0]O 2 （1） $\mathrm{VI}-2-1-13-5$ R 1
注記＊：基準地震動S s により定まる応答加速度を設定する。なお，水平方向の機能維持評価用加速度はコラム先端（原動機にあっては軸绶部）の応答加速度又は設計用最大応答加速度（1．0•ZPA）のいずれか大きい方を，鉛直方向は設計用最大応答加速度（ $1.0 \cdot \mathrm{ZPA}$ ）を設定する。機能維持評価用加速度は，すべて機能確認済加速度以下である。

1.5 その他の機器要目

（1）節点データ

節点番号	節点座標（mm）		
	x	y	z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

（2）要素の断面性状

断面特性番号 （要素番号）	要素両端の節点番号	材料番号	断面積 （ mm^{2} ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
31				
32				

（3）ばね結合部の指定

ばねの両端の節点番号		ばね定数
1	15	$(\mathrm{~N} / \mathrm{mm})$
3	17	$(\mathrm{~N} / \mathrm{mm})$
6	20	$(\mathrm{~N} / \mathrm{mm})$
9	23	$(\mathrm{~N} / \mathrm{mm})$
12	38	$(\mathrm{~N} / \mathrm{mm})$
13	39	$(\mathrm{~N} / \mathrm{mm})$
17	27	$(\mathrm{~N} / \mathrm{mm})$
31	33	$(\mathrm{~N} \cdot \mathrm{~mm} / \mathrm{rad})$

（4）節点の質量

節点番号	質量（kg）
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

（5）材料物性値

材料番号	温度 $\left({ }^{\circ} \mathrm{C}\right)$	縦弾性係数 （MPa）	質量密度 （ $\mathrm{kg} / \mathrm{mm}^{3}$ ）	$\begin{gathered} \text { ポアソン比 } \\ (-) \end{gathered}$	材質	部位
1						
2						
3						
4						
5						

【フォーマットII 重大事故等対処設備としての評侕結果】
10000 ポンプの而震性についての計算結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾生設計用地震動 Sd又は静的震度		基淮地震動S s		$\begin{aligned} & \text { ポンブ振動 } \\ & \text { による䨖度 } \end{aligned}$	最高使用 温度 （ ${ }^{\text {C }}$ ）	周囲澴境温度（ $\left.{ }^{\circ} \mathrm{C}\right)$	最高使用圧力 （ MPa ）	
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度				吸込側	吐出側
		$$			－	－	$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{V}}=$	$\mathrm{C}_{\mathrm{p}}=$				

注記 $*$ ：基淮床レベルを示す。
2.2 機器要目

－直		
\bigcirc		
碞気	＊	＊
动 ${ }_{\text {® }}^{\text {ex }}$	＊	＊
心 ${ }_{\text {a }}^{\text {a }}$	＊	＊
安	令	$\begin{aligned} & \lambda \\ & \stackrel{\lambda}{\lambda} \\ & \frac{1}{n} \\ & \pi \end{aligned}$

注記＊：最高使用温度で算出

部 材	$\begin{aligned} & \mathrm{m}_{\mathrm{i}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{d}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} \mathrm{i}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n_{i}	n_{fi}	$\begin{gathered} \hline \mathrm{M}_{\mathrm{p}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{yi}} \\ & (\mathbb{P P a}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} F_{i} \\ (\mathbb{P P a}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{*} \\ & (\mathbb{P P a}) \end{aligned}$
基礎ボルト $(\mathrm{i}=1)$			（M）					＊ 2	＊2	－	
ポンプ取付ボルト $(\mathrm{i}=2)$			（M ）					＊	＊	－	
原動機台取付ボルト $(i=3)$			（M）					＊1	＊1	－	
原動機取付ボルト $(i=4)$			（M）					＊ 2	＊2	－	

2.3 計算数値
（2）バレルケーシング，コラムパイプに作用する力

（単位： $\mathrm{N} \cdot \mathrm{mm}$ ） $|$\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ 部 材 } \& \multicolumn{3}{|c|}{M}

\cline { 2 - 4 } \& | 弾性設計用地震動 |
| :---: |
| S d 又は静的震度 | \& | 基準地震動 |
| :---: |
| S |

\hline バレルケーシング \& - \&

\hline コラムパイプ \& - \&

\hline
\end{tabular}

すべて許容応力以下である。

部 材	材 料	
バレルケーシング		弾性設計用地震動
		又は静的震度
		基漼地震動S s
コラムパイプ		弾性設計用地震動S
		又は静的震度
		基準地震動S s

部 材	$\mathrm{M}_{\mathrm{i}}(\mathrm{N} \cdot \mathrm{mm})$		$\mathrm{F}_{\mathrm{bi}}(\mathrm{N})$		$\mathrm{Q}_{\mathrm{bi}}(\mathrm{N})$	
	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動S d又は静的震度	基淮地震動 S s	弾性設計用地震動 S d又は静的震度	基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$	－		－		－	
$\begin{gathered} \text { ポンプ取付ボルト } \\ \quad(\mathrm{i}=2) \end{gathered}$	－		－		－	
原動機台取付ボルト $(\mathrm{i}=3)$	－		－		－	
原動機取付ボルト $(\mathrm{i}=4)$	－		－		－	

すべて許容応力以下である。 注記 $*: \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi} \mathrm{i}}\right]$ より算出
2．4．4 動的機能の評価結果
注記＊：基準地震動 S s により定まる応答加速度を設定する。なお，水平方向の機能維持評価用加速度はコラム先端（原動機にあっては䌷受部）の応答加速度又は設計用最大応答加速度（1．0•ZPA）のいずれか大きい方を，鉛直方向は設計用最大応答加速度（ $1.0 \cdot \mathrm{ZPA)}$ を設定する。
2．4．4 動的機能の評価結果

		機能維持評価用加速度＊	機能確認済加速度
ポンプ	水平方向		
	鉛直方向		
原動機	水平方向		
	鉛直方向		

機能維持評価用加速度は，すべて機能確認済加速度以下である。
2.5 その他の機器要目
（1）節点データ

節点番号	節点座標（mm）		
	x	y	z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

（2）要素の断面性状

断面特性番号 （要素番号）	要素両端の節点番号	材料番号	断面積 （mm ${ }^{2}$ ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
31				
32				

（3）ばね結合部の指定

ばねの両端の節点番号		ばね定数
1	15	$(\mathrm{~N} / \mathrm{mm})$
3	17	$(\mathrm{~N} / \mathrm{mm})$
6	20	$(\mathrm{~N} / \mathrm{mm})$
9	23	$(\mathrm{~N} / \mathrm{mm})$
12	38	$(\mathrm{~N} / \mathrm{mm})$
13	39	$(\mathrm{~N} / \mathrm{mm})$
17	27	$(\mathrm{~N} / \mathrm{mm})$
31	33	$(\mathrm{~N} \cdot \mathrm{~mm} / \mathrm{rad})$

（4）節点の質量

節点番号	質量（kg）
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

（5）材料物性値

材料番号	温度 $\left({ }^{\circ} \mathrm{C}\right)$	縱弾性係数 (MPa)	質量密度 $\left(\mathrm{kg} / \mathrm{mm}^{3}\right)$	ポアソン比（一）	材質	部位
1						
2						
3						
4						
5						

[^0]: | （単位：s） | | | |
 | :---: | :---: | :---: | :---: |
 | 1．4．1 固有周期 | 固有周期 | 卓越方向 | |
 | モード | | | |
 | 1 次 | | | |
 | 2 次 | | | |
 | 1.4 .2 ボルトの応力 | | | |

 | 部 材 | 材 料 | | 弾性設計用地震動S d又は静的震度 | | 基漼地震動S s | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | 算出応力 | 許容応力 | 算出応力 | 許容応力 |
 | 基礎ボルト$(\mathrm{i}=1)$ | | 引張り | $\sigma_{\mathrm{b} 1}=$ | $\mathrm{f}_{\mathrm{ts} 1}=$ | $\sigma_{\mathrm{b} 1}=$ | $\mathrm{f}_{\mathrm{ts} 1}=$ |
 | | | せん断 | $\tau_{\mathrm{b} 1}=$ | $\mathrm{f}_{\mathrm{sb} 1}=$ | $\tau_{\mathrm{b} 1}=$ | $\mathrm{f}_{\mathrm{sb} 1}=$ |
 | ポンプ取付ボルト$(\mathrm{i}=2)$ | | 引張り | $\sigma_{\mathrm{b}_{2}}=$ | $\mathrm{f}_{\mathrm{ts} 2}=$ | $\sigma_{\mathrm{b} 2}=$ | $\mathrm{f}_{\mathrm{ts} 2}=$ |
 | | | せん断 | $\tau_{\mathrm{b}_{2}}=$ | $\mathrm{f}_{\mathrm{sb} 2}=$ | $\tau_{\mathrm{b} 2}=$ | $\mathrm{f}_{\mathrm{sb} 2}=$ |
 | 原動機台取付ボルト$(\mathrm{i}=3)$ | | 引張り | $\sigma_{\text {b } 3}=$ | $\mathrm{f}_{\mathrm{ts} 3}=$ | $\sigma_{\text {b } 3}=$ | $\mathrm{f}_{\mathrm{ts} 3}=$ |
 | | | せん断 | $\tau_{\mathrm{b} 3}=$ | $\mathrm{f}_{\mathrm{sb} 3}=$ | $\tau_{\mathrm{b} 3}=$ | $\mathrm{f}_{\mathrm{sb} 3}=$ |
 | 原動機取付ボルト$(\mathrm{i}=4)$ | | 引張り | $\sigma_{\mathrm{b} 4}=$ | $\mathrm{f}_{\mathrm{ts} 4}=$ | $\sigma_{\text {b4 }}=$ | $\mathrm{f}_{\mathrm{ts} 4}=$ |
 | | | せん断 | $\tau_{\mathrm{b} 4}=$ | $\mathrm{f}_{\mathrm{sb} 4}=$ | $\tau_{\mathrm{b} 4}=$ | $\mathrm{f}_{\mathrm{sb} 4}=$ |

 注記 $*: ~ f_{t \mathrm{si}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出

 すべて許容応力以下である。

