

柏崎刈羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		1．概要 2．一般事項． 2.1 評価方針 2.2 適用規格•基準等． 2.3 記号の説明． 2．4 計算精度と数値の丸め方． 3．評価部位 4．固有値解析及び構造強度評価． 4.1 固有値解析及び構造強度評価方法． 4.2 固有周期 \cdot 4.3 設計用地震力． 4.4 計算方法 4．4．1 応力の計算方法． 4.5 応力の評価． 4．5．1 ボルトの応力評価． 4．5．2 バレルケーシング及びコラムパイプの応力評価． 5．機能維持評価． 5．1 動的機能維持評価方法． 6．耐震計算書のフォーマット	表現の相違 表現の相違 表現の相違

柏崎刈羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		1．概要 本資料は，添付書類「VI－2－1－1 耐震設計の基本方針」に基づき，耐震性に関する説明書が求められているたて軸ポンプ（耐震重要度分類 S クラス又はS s 機能維持の計算を行らもの）が，十分な耐震性を有していることを確認するための耐震計算の方法について記載した ものである。 解析の方針及び減衰定数については，添付書類「VI－2－1－6 地震応答解析の基本方針」に従うものとする。 ただし，本基本方針が適用できないたて軸ポンプにあっては，個別耐震計算書にその耐震計算方法を含めて記載する。 2．一般事項 2.1 評価方針 たて軸ポンプの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき， 「3．評価部位」にて設定する筧所において，「4．2 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．固有値解析及び構造強度評価」にて示す方法に て確認することで実施する。また，たて軸ポンプの機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した動的機器の機能維持の方針に基づき，地震時の応答加速度が動的機能確認済加速度以下であることを，「5．機能維持評価」にて示す方法にて確認す ることで実施する。確認結果を「6．耐震計算書のフォーマット」に示す。 たて軸ポンプの耐震評価フローを図 2－1 に示す。	表現の相違 表現の相違 表現の相違表現の相違表現の相違

柏崎划羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		4．固有值解析及び構造強度評価 4.1 固有値解析及び構造強度評価方法 たて軸ポンプの固有値解析及び構造評価に用いる解析モデルの作成条件を以下に示す。 （1）ポンプは基礎ボルトで基礎に固定されており，固定端とする。 （2）ポンプは原動機も含めて多質点モデルにてモデル化し，軸とケ ーシングとを分け軸受部をばねで接続した複列式多質点モデル とする。 （3）モデル化に際しては，原動機，ポンプ及び内容物の質量は各質点に集中するものとする。 （4）下部サポートは鉛直方向にスライドできるものとし，水平方向 の地震力を受けるものとする。 （5）地震力はポンプに対して水平方向及び鉛直方向から作用するも のとする。 （6）耐震計算に用いる寸法は，公称値を使用する。 （7）固有値解析及び地震応答解析に用いる解析コードは「MSC NASTRAN」とする。 【ピットバレル形たて軸ポンプ】 【ターボ形たて軸ポンプ（海水ポンプ）】 図 4－1 概要図	

柏崎刈羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		ボルトの応力は地震による震度，ポンプ振動による震度及びポンプ回転により作用するモーメントによって生じる引張力とせん断力に ついて計算する。 なお，転倒モーメント及びせん断力は，水平方向には設計震度とポ ンプ振動による震度の合計を考慮し，鉛直方向には，設計震度と自重 を考慮した地震応答解析により算出する。 （1）引張応力 ボルトに対する引張力は転倒支点から正比例した力が作用するも のとし，最も厳しい条件として転倒支点から最も離れたボルトについ て計算する。 引張力 $\begin{equation*} F_{b i}=\frac{M_{i}-\left(1-C_{p}-C_{V}\right) \cdot m_{i} \cdot g \cdot \frac{D_{i}}{2}}{\frac{3}{8} \cdot n_{f i} \cdot D_{i}} \tag{4.4.1.1.1} \end{equation*}$ ここで， M_{i} は地震応答解析より求める。 また，C p_{p} はポンプ振動による振幅及び原動機の同期回転数を考慮し て定める値で，次式で求める。 $\begin{equation*} \mathrm{C}_{\mathrm{p}}=\frac{\frac{1}{2} \cdot \frac{\mathrm{H}_{\mathrm{P}}}{1000} \cdot\left(2 \cdot \pi \cdot \frac{\mathrm{~N}}{60}\right)^{2}}{\mathrm{~g} \cdot 1000} \tag{4.4.1.1.2} \end{equation*}$ 引張応力 $\begin{equation*} \sigma_{b i}=\frac{F_{b_{i}}}{\mathrm{~A}_{\mathrm{bi}}} \tag{4.4.1.1.3} \end{equation*}$ ここで，ボルトの軸断面積 A_{b} は次式により求める。 $\begin{equation*} \mathrm{A}_{\mathrm{bi}}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{i}}{ }^{2} \tag{4.4.1.1.4} \end{equation*}$ ただし， F_{b} がが負のときボルトには引張力が生じないので，引張応力の計算は行わない。 （2）せん断応力	表現の相違

柏崎划羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第 2 号機	備考
		ボルトに対するせん断力はボルト全本数で受けるものとして計算 する。なお，基礎ボルト（ $\mathrm{i}=1$ ）については，ポンプ回転によるモーメ ントは作用しない。 せん断力 せん断力は地震応答解析により求める $Q_{b i}$ 及びポンプ回転により作用するモーメント M_{p} を考慮して求める。 せん断応力 $\begin{equation*} \tau_{b i}=\frac{Q_{b i}+2 \cdot M_{p} / D_{i}}{n_{i} \cdot A_{b i}} \tag{4.4.1.1.1.5} \end{equation*}$ ここで，ポンプ回転により作用するモーメント M_{p} は次式で求める。 $\begin{equation*} \mathrm{M}_{\mathrm{p}}=\left(\frac{60}{2 \cdot \pi \cdot \mathrm{~N}}\right) \cdot 10^{6} \cdot \mathrm{P} \tag{4.4.4.1.1.6} \end{equation*}$ \qquad $\left(1 \mathrm{~kW}=10^{6} \mathrm{~N} \cdot \mathrm{~mm} / \mathrm{s}\right)$ 4．4．1．2 バレルケーシング及びコラムパイプの計算方法 バレルケーシング及びコラムパイプの応力は次式により求める。 （1）水平方向地震力による応力 多質点モデルを用いて応答計算を行い，得られた各部汇働くモーメ ントにより，曲げ応力は以下のようになる。 ${ }^{\sigma}{ }_{\mathrm{CH}}=\frac{\mathrm{M}}{\mathrm{Z}}$ （2）鉛直方向地震による応力 $\begin{equation*} \sigma_{C v}=\frac{\left(1+C_{v}+C_{p}\right) \cdot m \cdot g}{A_{c}} \tag{4.4.1.2.2} \end{equation*}$ （3）内圧による応力 $\sigma_{\theta P}=\frac{\mathrm{P}_{\mathrm{C}} \cdot \mathrm{D}_{\mathrm{C}}}{2 \cdot \mathrm{t}}$ \qquad $\sigma_{Z \mathrm{P}}=\frac{\mathrm{P}_{\mathrm{C}} \cdot \mathrm{D}_{\mathrm{C}}}{4 \cdot \mathrm{t}}$ \qquad 以上の（1）～（3）の各応力から，一次一般膜応力は $\begin{equation*} \sigma=\operatorname{Max}\left(\sigma_{\mathrm{CH}}+\sigma_{\mathrm{CV}}+\sigma_{\mathrm{ZP}}, \sigma_{\theta \mathrm{P}}\right) \tag{4.4.1.2.5} \end{equation*}$ \qquad 一次応力は一次一般膜応力と同じになるので省略する。	

柏崎刈羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		4.5 応力の評価 4．5．1 ボルトの応力評価 4．4．1．1 項で求めたボルトの引張応力 $\sigma \mathrm{bi}$ は次式より求めた許容引張応力 f t si 以下であること。ただし，f toiは下表による。 $\begin{equation*} \mathrm{f}_{\mathrm{t} \mathrm{~s} \mathrm{i}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \quad \mathrm{f}_{\mathrm{toi}}\right] \tag{4.5.1.1} \end{equation*}$ せん断応力 $\tau_{\mathrm{b}} \mathrm{i}$ はせん断力のみを受けるボルトの許容せん断応力 f sbi以下であること。ただし，f sbiは下表による。	
		弾性設計用地震動 Sd 又は静的震度による 荷重との組合せの場合 基準地震動 S s による 荷重との組合せの場合 許容引張応力 $\mathrm{f}_{\mathrm{to} \mathrm{i}}$ $\frac{\mathrm{F}_{\mathrm{i}}}{2} \cdot 1.5$ $\frac{\mathrm{~F}_{\mathrm{i}}{ }^{*}}{2} \cdot 1.5$ 許容せん断応力 $\mathrm{f}_{\mathrm{sbi} \mathrm{i}}$ $\frac{\mathrm{F}_{\mathrm{i}}}{1.5 \cdot \sqrt{3}} \cdot 1.5$ $\frac{\mathrm{~F}_{\mathrm{i}}{ }^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	

柏崎刈羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考
		5．機能維持評価 5.1 動的機能維持評価方法 機能維持評価用加速度と機能確認済加速度との比較により，地震時又は地震後の動的機能維持を評価する。 機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線 の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。なお，水平方向の機能維持評価用加速度はコラム先端（原動機にあっては軸受部）の応答加速度又は設計用最大応答加速度（1．0• ZPA）のいずれか大きい方を，鉛直方向は設計用最大応答加速度（1．0• ZPA）を設定する。 機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」 による。 なお，この適用形式を外れる場合は，加振試験等に基づき確認した加速度を用いることとし，個別計算書にその旨を記載する。 6．耐震計算書のフォーマット たて軸ポンプの耐震計算書のフォーマットは，以下のとおりであ る。 〔設計基準対象施設及び重大事故等対処設備の場合〕 フォーマット I 設計基準対象施設としての評価結果 フォーマットII 重大事故等対処設備としての評価結果 〔重大事故等対処設備単独の場合〕 フォーマットII 重大事故等対処設備としての評価結果＊ 注記 $*$ ：重大事故等対処設備単独の場合は，設計基準対象施設及び重大事故等対処設備に示すフォーマットIIを使用するものと する。ただし，評価結果表に記載の章番を「2．」から「1．」」 とする。	表現の相違 表現の相違 表現の相違 表現の相違

柏崎刈羽原子力発電所第 7 号機 $(2020.9 .25)$	東海第二発電所

柏崎刈羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機	備考

和崎刘羽原子力発電所第 7 号機（2020．9．25）	東海第二発電所

| 女川原子力発電所第2号機 |
| :---: | :---: |

柏崎刈羽原子力発電所第7号機（2020．9．25）	東海第二発電所	女川原子力発電所第2号機					備考
		（2）要素の断面					
		断面特性番号 （要素番号）	要素両端の節点番号	$\begin{aligned} & \text { 材料 } \\ & \text { 番号 } \end{aligned}$	断面積 （ mm^{2} ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメン } \end{gathered}$	
		1					
		2					
		3					
		4					
		5					
		6					
		7					
		8					
		9					
		10					
		11					
		12					
		13					
		14					
		15					
		16					
		17					
		18					
		19					
		20					
		21					
		22					
		23					
		24					
		25					
		26					
		27					
		28					
		29					
		30					
		31					
		32					
		（3）ばね結合部	旨定				
		ばねの兩	の節点番号		ばね		
		1	15			／ mm ）	
		3	17			／mm）	
		6	20			／mm）	
		9	23			／mm）	
		12	38			／mm）	
		13	39			／mm）	
		17	27			／mm）	
		31	33			－mm／rad）	

