緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機 (2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                | 備考    |
|----------------------------|---------|-----------------------------|-------|
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             | 表現の相違 |
|                            |         | VI-2-1-13-5 たて軸ポンプの耐震性についての | みがツ川産 |
|                            |         |                             |       |
|                            |         | 計算書作成の基本方針                  |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |
|                            |         |                             |       |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機 (2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                                                                   | 備考           |
|----------------------------|---------|--------------------------------------------------------------------------------|--------------|
|                            |         | 目 次                                                                            |              |
|                            |         |                                                                                |              |
|                            |         | 1. 概要 · · · · · · · · · · · · · · · · · ·                                      |              |
|                            |         | 2. 一般事項                                                                        |              |
|                            |         | 2.1 評価方針                                                                       |              |
|                            |         | 2.2 適用 <mark>規格・</mark> 基準 <mark>等</mark> ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |              |
|                            |         | 2.3 記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                  |              |
|                            |         | 2.4 計算精度と数値の丸め方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                            |              |
|                            |         | 3. 評価部位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                    |              |
|                            |         | 4. 固有値解析及び構造強度評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                           |              |
|                            |         | 4.1 固有値解析及び構造強度評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                        | -t           |
|                            |         | 4.2 固有周期・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                   | 表現の相違        |
|                            |         | 4.3 設計用地震力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                 |              |
|                            |         | 4.4 計算方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                   | + 10 o 10 V4 |
|                            |         | 4.4.1       応力の計算方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                        | 表現の相違        |
|                            |         |                                                                                | 本田の担告        |
|                            |         | 4.5.1       ボルトの応力評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                       | 表現の相違        |
|                            |         | 4.5.2       ハレルケーシング及いコノムハイフの応力計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・          |              |
|                            |         | 5.1 動的機能維持評価方法······                                                           |              |
|                            |         | 6. 耐震計算書のフォーマット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                            |              |
|                            |         | 0. 顺辰印弃百90万才 (7)[                                                              |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |
|                            |         |                                                                                |              |

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                                                                                                                                                                                                                                                                                                                                                                       | 備考    |
|---------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                           |         | 1. 概要 本資料は、添付書類「VI-2-1-1 耐震設計の基本方針」に基づき、耐震性に関する説明書が求められているたて軸ボンプ(耐震重要度分類 S クラス又はSs機能維持の計算を行うもの)が、十分な耐震性を有していることを確認するための耐震計算の方法について記載したものである。 解析の方針及び減衰定数については、添付書類「VI-2-1-6 地震応答解析の基本方針」に従うものとする。 ただし、本基本方針が適用できないたて軸ポンプにあっては、個別耐震計算書にその耐震計算方法を含めて記載する。                                                                                                                            |       |
|                           |         | 2. 一般事項 2.1 評価方針 たて軸ポンプの応力評価は、添付書類「VI-2-1-9 機能維持の基本 方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、 「3. 評価部位」にて設定する箇所において、「4.2 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「4. 固有値解析及び構造強度評価」にて示す方法にて確認することで実施する。また、たて軸ポンプの機能維持評価は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定した動的機器の機能維持の方針に基づき、地震時の応答加速度が動的機能確認済加速度以下であることを、「5. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6. 耐震計算書のフォーマット」に示す。 たて軸ポンプの耐震評価フローを図 2-1 に示す。 | 表現の相違 |
|                           |         |                                                                                                                                                                                                                                                                                                                                                                                    |       |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所



赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機 (2020.9.25) | 東海第二発電所 |                  | 女川原子力発電所第2号機                     |                  | 備考 |
|----------------------------|---------|------------------|----------------------------------|------------------|----|
|                            |         | 2.3 記号の説明        |                                  |                  |    |
|                            |         | 記号               | 記号の説明                            | 単位               |    |
|                            |         | Аьі              | ボルトの軸断面積*1                       | mm <sup>2</sup>  |    |
|                            |         | Ac               | バレルケーシング又はコラムパイプの断面積             | mm <sup>2</sup>  |    |
|                            |         | Сн               | 水平方向設計震度                         | -                |    |
|                            |         | Ср               | ポンプ振動による震度                       | -                |    |
|                            |         | Cv               | 鉛直方向設計震度                         | -                |    |
|                            |         | Dc               | バレルケーシング又はコラムパイプの内径              | mm               |    |
|                            |         | D i              | ボルトのピッチ円直径*1                     | mm               |    |
|                            |         | d i              | ボルトの呼び径*1                        | mm               |    |
|                            |         | F i              | 設計・建設規格 SSB-3121.1(1)に定める値*1     | MPa              |    |
|                            |         | F ,*             | 設計・建設規格 SSB-3133 に定める値*1         | MPa              |    |
|                            |         | Fьі              | ボルトに作用する引張力(1本当たり)*1             | N                |    |
|                            |         | f sbi            | せん断力のみを受けるボルトの許容せん断応力*1          | MPa              |    |
|                            |         | f toi            | 引張力のみを受けるボルトの許容引張応力*1            | MPa              |    |
|                            |         | f tsi            | 引張力とせん断力を同時に受けるボルトの許容引張応力*1      | MPa              |    |
|                            |         | g                | 重力加速度(=9.80665)                  | m/s <sup>2</sup> |    |
|                            |         | Н р              | 予想最大両振幅                          | $\mu$ m          |    |
|                            |         | M                | 図 4-2 計算モデルによる多質点解析により求められるモーメント | N•mm             |    |
|                            |         |                  | 図 4-2 計算モデルの①、回、⊙及び⊜を支点とする地震及び水平 | NT               |    |
|                            |         | M <sub>i</sub>   | 方向のポンプ振動による転倒モーメント*2             | N·mm             |    |
|                            |         | $M_{p}$          | ポンプ回転により作用するモーメント                | N•mm             |    |
|                            |         |                  | バレルケーシング付根部に対しては、ポンプ床下部質量        | ,                |    |
|                            |         | m                | コラムパイプ付根部に対しては, コラムパイプ総質量        | kg               |    |
|                            |         | m i              | 運転時質量*3                          | kg               |    |
|                            |         | N                | 回転速度(原動機の同期回転速度)                 | rpm              |    |
|                            |         | n i              | ボルトの本数*1                         | -                |    |
|                            |         | n <sub>f i</sub> | 評価上引張力を受けるとして期待するボルトの本数*1        | -                |    |
|                            |         | P                | 原動機出力                            | kW               |    |
|                            |         | Рс               | バレルケーシング又はコラムパイプの内圧              | MPa              |    |
|                            |         |                  | 図 4-2 計算モデルの①、回、○及び⊜における地震及び水平方向 | N                |    |
|                            |         | Q <sub>bi</sub>  | のポンプ振動によりボルトに作用するせん断力*1          | N                |    |
|                            |         | S                | 設計・建設規格 付録材料図表 Part5 表 5 に定める値   | MPa              |    |
|                            |         |                  |                                  |                  |    |
|                            |         |                  |                                  |                  |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機 備考                                                                                                                                                                                                                                                                    |
|---------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |         | 記号 記号の説明 単位                                                                                                                                                                                                                                                                        |
|                           |         | Sa バレルケーシング又はコラムパイプの許容応力 MPa                                                                                                                                                                                                                                                       |
|                           |         | Su, Sui 設計・建設規格 付録材料図表 Part5 表 9 に定める値*1 MPa                                                                                                                                                                                                                                       |
|                           |         | S <sub>y</sub> , S <sub>yi</sub> 設計・建設規格 付録材料図表 Part5 表 8 に定める値*1 MPa                                                                                                                                                                                                              |
|                           |         | Syi(R 設計・建設規格 付録材料図表 Part5 表 8 に定める材料の MPa                                                                                                                                                                                                                                         |
|                           |         | T) 40℃における値*1                                                                                                                                                                                                                                                                      |
|                           |         | T: 固有周期**                                                                                                                                                                                                                                                                          |
|                           |         | t バレルケーシング又はコラムパイプの厚さ mm                                                                                                                                                                                                                                                           |
|                           |         | Z バレルケーシング又はコラムパイプの断面係数 mm <sup>3</sup>                                                                                                                                                                                                                                            |
|                           |         | π 円周率 -                                                                                                                                                                                                                                                                            |
|                           |         | σ バレルケーシング又はコラムパイプの一次一般膜応力の最大値 MPa                                                                                                                                                                                                                                                 |
|                           |         | σ <sub>b1</sub> ボルトに生じる引張応力*1 MPa                                                                                                                                                                                                                                                  |
|                           |         | 水平方向地震によりバレルケーシング又はコラムパイプに MPa MPa                                                                                                                                                                                                                                                 |
|                           |         | <sup>σ сн</sup> 生じる応力                                                                                                                                                                                                                                                              |
|                           |         | 鉛直方向地震によりバレルケーシング又はコラムパイプに MPa MPa                                                                                                                                                                                                                                                 |
|                           |         | σ <sub>CV</sub> 生じる応力                                                                                                                                                                                                                                                              |
|                           |         | σ <sub>zp</sub> バレルケーシング又はコラムパイプの内圧による軸方向応力 MPa                                                                                                                                                                                                                                    |
|                           |         | σ <sub>θP</sub> バレルケーシング又はコラムパイプの内圧による周方向応力 MPa                                                                                                                                                                                                                                    |
|                           |         | τ <sub>bi</sub> ボルトに生じるせん断応力*1 MPa                                                                                                                                                                                                                                                 |
|                           |         | 注記*1: $A_{bi}$ , $D_{i}$ , $d_{i}$ , $F_{i}$ , $F_{i}$ *, $F_{bi}$ , $f_{sbi}$ , $f_{toi}$ , $f_{tsi}$ , $n_{i}$ , $n_{fi}$ , $Q_{bi}$ , $S_{ui}$ , $S_{yi}$ , $S_{yi}$ (RT), $\sigma_{bi}$ , 及び $\tau_{bi}$ の添字 $i$ の意味は、以下のとおりとする。 $i=1: 基礎ポルト$ $i=2: ポンプ取付ボルト$ $i=3: 原動機台取付ボルト$ |
|                           |         | i = 4: 原動機取付ボルト 設備構成の差異による                                                                                                                                                                                                                                                         |
|                           |         | (女川 2 号機には、ポ                                                                                                                                                                                                                                                                       |
|                           |         | ンプ取付ボルト(上),                                                                                                                                                                                                                                                                        |
|                           |         | (下)は存在しない。)                                                                                                                                                                                                                                                                        |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機 (2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                                                                                         | 備考               |
|----------------------------|---------|------------------------------------------------------------------------------------------------------|------------------|
|                            |         |                                                                                                      |                  |
|                            |         | *2: M:の添字iの意味は、以下のとおりとする。                                                                            |                  |
|                            |         | $egin{array}{ll} \mathbf{i} = 1: & \textcircled{0} \\ \mathbf{i} = 2: & \textcircled{2} \end{array}$ |                  |
|                            |         | i =3 : ⊙                                                                                             |                  |
|                            |         | i =4: ⊕                                                                                              |                  |
|                            |         | *3:m <sub>1</sub> の添字iの意味は以下のとおりとする。<br>i =1:据付面                                                     |                  |
|                            |         | i = 2: ポンプ取付面                                                                                        | 設備構成の差異による       |
|                            |         | i = 3:原動機台取付面                                                                                        | (女川 2 号機には, ポ    |
|                            |         | i =4:原動機取付面                                                                                          | ンプ取付ボルト(上),      |
|                            |         |                                                                                                      | (下) は存在しない。)     |
|                            |         | *4: T;の添字iの意味は,固有周期の次数を示す。                                                                           | (1) (2) (2.21.9) |
|                            |         |                                                                                                      | 設計の差異による(女       |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      | 川2号機のたて軸ポン       |
|                            |         |                                                                                                      | プは鉛直方向が剛設計       |
|                            |         |                                                                                                      | であるため鉛直の固有       |
|                            |         |                                                                                                      | 周期記号を定義してい       |
|                            |         |                                                                                                      | ない。)             |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |
|                            |         |                                                                                                      |                  |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機 備考                                                               |
|---------------------------|---------|-------------------------------------------------------------------------------|
|                           |         | 2.4 計算精度と数値の丸め方<br>計算精度は、有効数字 6 桁以上を確保する。<br>本資料で表示する数値の丸め方は、表 2-1 に示すとおりである。 |
|                           |         | 表 2-1 表示する数値の丸め方                                                              |
|                           |         | 数値の種類 単位 処理桁 処理方法 表示桁                                                         |
|                           |         | 固有周期 s 小数点以下第4位 四捨五入 小数点以下第3位                                                 |
|                           |         | 震度 - 小数点以下第3位 切上げ 小数点以下第2位                                                    |
|                           |         | 温度                                                                            |
|                           |         | 質量 kg — — 整数位                                                                 |
|                           |         | 長さ mm - 整数位*1                                                                 |
|                           |         | 面積 mm <sup>2</sup> 有効数字 5 桁目 四捨五入 有効数字 4 桁* <sup>2</sup>                      |
|                           |         | モーメント N·mm 有効数字 5 桁目 四捨五入 有効数字 4 桁*2                                          |
|                           |         | 力 N 有効数字 5 桁目 四捨五入 有効数字 4 桁*2                                                 |
|                           |         | 算出応力 MPa 小数点以下第1位 切上げ 整数位 記載箇所の相違                                             |
|                           |         | 許容応力 MPa 小数点以下第1位 切捨て 整数位 整数位 整数位 を を を を を を を を を を を を を を を を を を を       |
|                           |         | 注記 *1: 設計上定める値が小数点以下の場合は、小数点以下表示とする。 表現の相違                                    |
|                           |         | *2:絶対値が1000以上のときは、べき数表示とする。                                                   |
|                           |         | *3:設計・建設規格 付録材料図表に記載された温度の中間における引張                                            |
|                           |         | 強さ及び降伏点は、比例法により補間した値の小数点以下第1位を                                                |
|                           |         | 切り捨て、整数位までの値とする。                                                              |
|                           |         | 3. 評価部位<br>たて軸ポンプの耐震評価は「4.1 固有値解析及び構造強度評価方                                    |
|                           |         | 法」に示す条件に基づき、耐震評価上厳しくなる基礎ボルト、取付ボ 設備構成の差異による                                    |
|                           |         | ルト並びにバレルケーシング及びコラムパイプについて評価を実施 (コラムパイプ端部                                      |
|                           |         | する。また、海水ポンプのように、コラムパイプ端部を支持部で水平 は、取付用基礎ボルト                                    |
|                           |         | 方向を支持する場合には、支持部取付用基礎ボルトについて評価を実 で固定された下部サポ 施する。                               |
|                           |         |                                                                               |
|                           |         |                                                                               |
|                           |         |                                                                               |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                                                                                                   | 備考 |
|---------------------------|---------|----------------------------------------------------------------------------------------------------------------|----|
|                           |         | 4. 固有値解析及び構造強度評価                                                                                               |    |
|                           |         | 4.1 固有値解析及び構造強度評価方法                                                                                            |    |
|                           |         | たて軸ポンプの固有値解析及び構造評価に用いる解析モデルの作                                                                                  |    |
|                           |         | 成条件を以下に示す。                                                                                                     |    |
|                           |         | (1) ポンプは基礎ボルトで基礎に固定されており、固定端とする。                                                                               |    |
|                           |         | (2) ポンプは原動機も含めて多質点モデルにてモデル化し、軸とケ                                                                               |    |
|                           |         | ーシングとを分け軸受部をばねで接続した複列式多質点モデル                                                                                   |    |
|                           |         | とする。                                                                                                           |    |
|                           |         | (3) モデル化に際しては、原動機、ポンプ及び内容物の質量は各質                                                                               |    |
|                           |         | 点に集中するものとする。                                                                                                   |    |
|                           |         | (4) 下部サポートは鉛直方向にスライドできるものとし、水平方向                                                                               |    |
|                           |         | の地震力を受けるものとする。                                                                                                 |    |
|                           |         | (5) 地震力はポンプに対して水平方向及び鉛直方向から作用するも                                                                               |    |
|                           |         | のとする。                                                                                                          |    |
|                           |         | (6) 耐震計算に用いる寸法は、公称値を使用する。                                                                                      |    |
|                           |         | (7) 固有値解析及び地震応答解析に用いる解析コードは「MSC                                                                                |    |
|                           |         | NASTRAN」とする。                                                                                                   |    |
|                           |         | 原動機製付ポルト  原動機製付ポルト  基礎ポルト  基礎ポルト  エンア取付ポルト  基礎ポルト  エンクスを付ポルト  エロス内を (アボサポート  バレルケーシング  【ターボ形たて軸ボンブ】  図 4-1 概要図 |    |
|                           |         | 囚 <sup>4−</sup> 1 ( <b>阪</b> 安囚                                                                                |    |
|                           |         |                                                                                                                |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                        | 備考    |
|---------------------------|---------|-------------------------------------|-------|
|                           |         | 4.2 固有周期                            | 表現の相違 |
|                           |         | たて軸ポンプの固有周期について、「4.1 固有値解析及び構造強度    |       |
|                           |         | 評価方法」に基づき作成した解析モデルにより計算する。          |       |
|                           |         | 4.3 設計用地震力                          |       |
|                           |         | 「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」に      |       |
|                           |         | よる地震力は,添付書類「VI-2-1-7 設計用床応答曲線の作成方針」 | 表現の相違 |
|                           |         | に基づき設定する。                           |       |
|                           |         | 4.4 計算方法                            |       |
|                           |         | 4.4.1 応力の計算方法                       |       |
|                           |         | 4.4.1.1 ボルトの計算方法                    |       |
|                           |         | 原動機会取付ボルト                           |       |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                                                                                                                                     | 備考    |
|---------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                           |         | ボルトの応力は地震による震度、ポンプ振動による震度及びポンプ                                                                                                                   |       |
|                           |         | 回転により作用するモーメントによって生じる引張力とせん断力に                                                                                                                   |       |
|                           |         | ついて計算する。                                                                                                                                         |       |
|                           |         | なお、転倒モーメント及びせん断力は <mark>、</mark> 水平方向には設計震度とポ                                                                                                    | 表現の相違 |
|                           |         | ンプ振動による震度の合計を考慮し、鉛直方向には、設計震度と自重                                                                                                                  |       |
|                           |         | を考慮した地震応答解析により算出する。                                                                                                                              |       |
|                           |         | (1) 引張応力                                                                                                                                         |       |
|                           |         | ボルトに対する引張力は転倒支点から正比例した力が作用するも                                                                                                                    |       |
|                           |         | のとし、最も厳しい条件として転倒支点から最も離れたボルトについ                                                                                                                  |       |
|                           |         | て計算する。                                                                                                                                           |       |
|                           |         | 引張力                                                                                                                                              |       |
|                           |         | $F_{bi} = \frac{M_{i} - (1 - C_{p} - C_{V}) \cdot m_{i} \cdot g \cdot \frac{D_{i}}{2}}{\frac{3}{8} \cdot n_{fi} \cdot D_{i}} \qquad (4.4.1.1.1)$ |       |
|                           |         | ここで、 $M_i$ は地震応答解析より求める。<br>また、 $C_p$ はポンプ振動による振幅及び原動機の同期回転 <mark>数</mark> を考慮して定める値で、次式で求める。                                                    |       |
|                           |         | $C_{p} = \frac{\frac{1}{2} \cdot \frac{H_{p}}{1000} \cdot \left(2 \cdot \pi \cdot \frac{N}{60}\right)^{2}}{g \cdot 1000} \qquad (4.4.1.1.2)$     |       |
|                           |         | 引張応力                                                                                                                                             |       |
|                           |         | $\sigma_{b i} = \frac{F_{b i}}{A_{b i}}$ (4.4.1.13)                                                                                              |       |
|                           |         | ここで、ボルトの軸断面積 $A_{bi}$ は次式により求める。                                                                                                                 |       |
|                           |         | $A_{b i} = \frac{\pi}{4} \cdot d_{i}^{2}$ (4.4.1.1.4)                                                                                            |       |
|                           |         | ただし、 $F_{bi}$ が負のときボルトには引張力が生じないので、引張応力の計算は行わない。                                                                                                 |       |
|                           |         | (2) せん断応力                                                                                                                                        |       |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機 (2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                                                                                                                         | 備考 |
|----------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|----|
|                            |         | ボルトに対するせん断力はボルト全本数で受けるものとして計算                                                                                                        |    |
|                            |         | する。なお、基礎ボルト(i=1)については、ポンプ回転によるモーメ                                                                                                    |    |
|                            |         | ントは作用しない。                                                                                                                            |    |
|                            |         | せん断力                                                                                                                                 |    |
|                            |         | せん断力 <mark>は地</mark> 震応答解析により求めるQ <sub>bi</sub> 及びポンプ回転により                                                                           |    |
|                            |         | 作用するモーメントMpを考慮して求める。                                                                                                                 |    |
|                            |         | せん断応力                                                                                                                                |    |
|                            |         | $\tau_{bi} = \frac{Q_{bi} + 2 \cdot M_{p}/D_{i}}{n_{i} \cdot A_{bi}} \qquad (4.4.1.1.5)$                                             |    |
|                            |         |                                                                                                                                      |    |
|                            |         | ここで、ポンプ回転により作用するモーメントM <sub>p</sub> は次式で求める。                                                                                         |    |
|                            |         | $M_{p} = \left(\frac{6 \text{ 0}}{2 \cdot \pi \cdot N}\right) \cdot 1 \text{ 0}^{6} \cdot P$ (4.4.1.1.6)                             |    |
|                            |         | $(1kW = 10^6 N \cdot mm/s)$                                                                                                          |    |
|                            |         | 4.4.1.2 バレルケーシング及びコラムパイプの計算方法                                                                                                        |    |
|                            |         | バレルケーシング及びコラムパイプの応力は次式により求める。                                                                                                        |    |
|                            |         | (1) 水平方向地震力による応力                                                                                                                     |    |
|                            |         | 多質点モデルを用いて応答計算を行い、得られた各部に働くモーメ                                                                                                       |    |
|                            |         | ントにより、曲げ応力は以下のようになる。                                                                                                                 |    |
|                            |         | $\sigma_{\rm CH} = \frac{M}{Z} \qquad (4.4.1.2.1)$                                                                                   |    |
|                            |         | (2) 鉛直方向地震による応力                                                                                                                      |    |
|                            |         | $\sigma_{Cv} = \frac{\left(1 + C_v + C_p\right) \cdot m \cdot g}{A_c} \qquad \dots (4.4.1.2.2)$                                      |    |
|                            |         | (3) 内圧による応力                                                                                                                          |    |
|                            |         | $\sigma_{\theta P} = \frac{P_C \cdot D_C}{2 \cdot t} \qquad (4.4.1.2.3)$                                                             |    |
|                            |         | 2 ' (                                                                                                                                |    |
|                            |         | $\sigma_{ZP} = \frac{P_C \cdot D_C}{4 \cdot t} \qquad (4.4.1.2.4)$                                                                   |    |
|                            |         | 以上の(1)~(3)の各応力から,一次一般膜応力は                                                                                                            |    |
|                            |         | $\sigma = \text{Max}\left(\sigma_{\text{CH}} + \sigma_{\text{CV}} + \sigma_{\text{ZP}}, \sigma_{\theta \text{P}}\right)$ (4.4.1.2.5) |    |
|                            |         | 一次応力は一次一般膜応力と同じになるので省略する。                                                                                                            |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
|---------------------------|---------|--------------|----|
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |
|                           |         |              |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                                                                                                                     | 備考 |
|---------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------|----|
|                           |         |                                                                                                                                  |    |
|                           |         |                                                                                                                                  |    |
|                           |         |                                                                                                                                  |    |
|                           |         |                                                                                                                                  |    |
|                           |         |                                                                                                                                  |    |
|                           |         |                                                                                                                                  |    |
|                           |         |                                                                                                                                  |    |
|                           |         |                                                                                                                                  |    |
|                           |         | 4.5 応力の評価                                                                                                                        |    |
|                           |         | 4.5.1 ボルトの応力評価<br>4.4.1.1 項で求めたボルトの引張応力 σ b i は次式より求めた許容                                                                         |    |
|                           |         | 引張応力 $f_{tsi}$ 以下であること。ただし、 $f_{toi}$ は下表による。                                                                                    |    |
|                           |         |                                                                                                                                  |    |
|                           |         | $f_{tsi} = Min \left[ 1.4 \cdot f_{toi} - 1.6 \cdot \tau_{bi}, f_{toi} \right]$ (4.5.1.1)                                        |    |
|                           |         |                                                                                                                                  |    |
|                           |         | せん断応力 $\tau_b$ ;はせん断力のみを受けるボルトの許容せん断応力 $f_{sb}$ ;以下であること。ただし、 $f_{sb}$ ;は下表による。                                                  |    |
|                           |         | Isbi以下であること。たたし、Isbiは「衣による。                                                                                                      |    |
|                           |         | 弾性設計用地震動Sd 基準地震動Ssによる                                                                                                            |    |
|                           |         | 又は静的震度による<br>荷重との組合せの場合                                                                                                          |    |
|                           |         | ***************************************                                                                                          |    |
|                           |         | 許容引張応力 $\frac{F_{i}}{f_{toi}} \cdot 1.5$ $\frac{F_{i}^{*}}{2} \cdot 1.5$                                                         |    |
|                           |         | 許容せん断応力 $\frac{\mathbf{F}_{i}}{\mathbf{1.5 \cdot \sqrt{3}}} \cdot 1.5$ $\frac{\mathbf{F}_{i}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$ |    |
|                           |         | f sb i $1.5 \cdot \sqrt{3}$ $\frac{1}{1.5 \cdot \sqrt{3}} \cdot 1.5$                                                             |    |
|                           |         |                                                                                                                                  |    |
|                           |         |                                                                                                                                  |    |
|                           |         |                                                                                                                                  |    |
|                           |         |                                                                                                                                  |    |
| 4                         |         |                                                                                                                                  |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                                                   | 備考      |
|---------------------------|---------|----------------------------------------------------------------|---------|
|                           |         | 4.5.2 バレルケーシング及びコラムパイプの応力評価                                    |         |
|                           |         | 4.4.1.2項で求めた応力が最高使用温度における許容応力Sa                                | 大下      |
|                           |         | であること。ただし、Saは下表による。                                            |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         | 度による荷重との組合せの場合 荷重との組合せの                                        | る<br>合  |
|                           |         | 設計降伏点S <sub>ッ</sub> と設計引張強さS <sub>ッ</sub><br>の 0.6 倍のいずれか小さい方の |         |
|                           |         | 値。                                                             |         |
|                           |         | ■ 一次一般膜心刀 レレス鋼及び高ニッケル合金にあ 0.6倍                                 |         |
|                           |         | っては許容引張応力Sの 1.2 倍の<br>方が大きい場合は,この大きい方                          |         |
|                           |         | の値とする。                                                         |         |
|                           |         | 一次応力の評価は算出応力が一次一般膜応力と同じ値であるので                                  | <b></b> |
|                           |         | 略する。                                                           |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |
|                           |         |                                                                |         |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                                   | 備考    |
|---------------------------|---------|------------------------------------------------|-------|
|                           |         | 5. 機能維持評価                                      |       |
|                           |         | 5.1 動的機能維持評価方法                                 |       |
|                           |         | 機能維持評価用加速度と機能確認済加速度との比較により, 地震時                |       |
|                           |         | 又は地震後の動的機能維持を評価する。                             |       |
|                           |         | 機能維持評価用加速度は、添付書類「VI-2-1-7 設計用床応答曲線             | 表現の相違 |
|                           |         | の作成方針」に基づき <mark>、基準地震動Ssにより定まる応答加速度を</mark> 設 |       |
|                           |         | 定する。なお、水平方向の機能維持評価用加速度はコラム先端(原動                |       |
|                           |         | 機にあっては軸受部)の応答加速度又は設計用最大応答加速度(1.0・              |       |
|                           |         | ZPA) のいずれか大きい方を,鉛直方向は設計用最大応答加速度 (1.0・          | 表現の相違 |
|                           |         | ZPA)を<br>設定する。                                 |       |
|                           |         | 機能確認済加速度は,添付書類「VI-2-1-9 機能維持の基本方針」             | 表現の相違 |
|                           |         | による。                                           |       |
|                           |         | なお、この適用形式を外れる場合は、加振試験等に基づき確認した                 |       |
|                           |         | 加速度を用いることとし、個別計算書にその旨を記載する。                    |       |
|                           |         |                                                |       |
|                           |         | 6. 耐震計算書のフォーマット                                |       |
|                           |         | たて軸ポンプの耐震計算書のフォーマットは、以下のとおりであ                  |       |
|                           |         | る。                                             |       |
|                           |         |                                                |       |
|                           |         | 〔設計基準対象施設及び重大事故等対処設備の場合〕                       |       |
|                           |         | フォーマット I 設計基準対象施設としての評価結果                      | 表現の相違 |
|                           |         | フォーマットⅡ 重大事故等対処設備としての評価結果                      |       |
|                           |         | 〔重大事故等対処設備単独の場合〕                               |       |
|                           |         | フォーマットⅡ 重大事故等対処設備としての評価結果*                     |       |
|                           |         | 注記*:重大事故等対処設備単独の場合は、設計基準対象施設及び重                |       |
|                           |         | 大事故等対処設備に示すフォーマットⅡを使用するものと                     |       |
|                           |         | する。ただし、評価結果表に記載の章番を「2. 」から「1. 」                |       |
|                           |         | とする。                                           |       |
|                           |         |                                                |       |
|                           |         |                                                |       |
|                           |         |                                                |       |
|                           |         |                                                |       |
|                           |         |                                                |       |
|                           |         |                                                |       |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Town-cy   Late   Emblacement   Emblacement |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| Section   Sect |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| ************************************ | 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                                                                                | 備考 |
|--------------------------------------|---------------------------|---------|---------------------------------------------------------------------------------------------|----|
|                                      |                           |         | (×9.3m/s²)<br>機能確認済加速度<br>機能確認清明配置はコラム光端(原動機にあっては軸受館)の<br>以大きい方法、経済が開発とは一ラム光端(原動機にあっては軸受館)の |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機 備者  | 考 |
|---------------------------|---------|------------------|---|
|                           |         | 1.5 その他の機器要目     |   |
|                           |         | (1) 節点データ        |   |
|                           |         | (** F rix += ( ) |   |
|                           |         | 節点番号             |   |
|                           |         | 1                |   |
|                           |         | 2                |   |
|                           |         | 3                |   |
|                           |         | 5                |   |
|                           |         | 6                |   |
|                           |         | 7                |   |
|                           |         | 8                |   |
|                           |         | 9                |   |
|                           |         | 10               |   |
|                           |         | 11               |   |
|                           |         | 12               |   |
|                           |         | 13 14            |   |
|                           |         | 15               |   |
|                           |         | 16               |   |
|                           |         | 17               |   |
|                           |         | 18               |   |
|                           |         | 19               |   |
|                           |         | 20 21            |   |
|                           |         | 22               |   |
|                           |         | 23               |   |
|                           |         | 24               |   |
|                           |         | 25               |   |
|                           |         | 26               |   |
|                           |         | 27               |   |
|                           |         | 28 29            |   |
|                           |         | 30               |   |
|                           |         | 31               |   |
|                           |         | 32               |   |
|                           |         | 33               |   |
|                           |         | 34               |   |
|                           |         | 35               |   |
|                           |         | 36<br>37         |   |
|                           |         | 37 38            |   |
|                           |         | 39               |   |
|                           |         | 40               |   |
|                           |         |                  |   |
|                           |         |                  |   |
|                           |         |                  |   |
|                           |         |                  |   |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| (2) 要求の指揮性法   新田 次   新田 和  和      新田 | 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機                      | 備考 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------|-----------------------------------|----|
| (映画学)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |         |                                   |    |
| (映画学)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |         | 断面特性番号 要素両端の 材料 断面積 斯面二次<br>モーメント |    |
| 2 3 4 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |         | (安素番号)                            |    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |         |                                   |    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |         |                                   |    |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |         |                                   |    |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |         |                                   |    |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |         |                                   |    |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |         |                                   |    |
| 10 11 12 12 13 14 14 15 16 17 18 19 20 21 21 22 23 4 4 25 26 26 27 28 29 30 30 31 31 32 (3) ばな諸合部の指定  (まなの関端の始点番号 (まれ定数 15 (Nam) 15 (Nam) 15 (Nam) 15 (Nam) 15 (Nam) 15 (Nam) 17 (Nam) 18 (Nam) 18 (Nam) 18 (Nam) 18 (Nam)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |         |                                   |    |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         |                                   |    |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 11                                |    |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 12                                |    |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 13                                |    |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 14                                |    |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         |                                   |    |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 17                                |    |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         |                                   |    |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 19                                |    |
| 22   23   24   24   25   26   27   28   29   29   30   31   31   32   20   20   20   20   20   20   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |         |                                   |    |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 21 22                             |    |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 23                                |    |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 24                                |    |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 25                                |    |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 26                                |    |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 27                                |    |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 29                                |    |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 30                                |    |
| (3) ばね結合部の指定     ばねの両端の節点番号 ばね定数         1 15 (N/mm)         3 17 (N/mm)         6 20 (N/mm)         9 23 (N/mm)         12 38 (N/mm)         13 39 (N/mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |         | 31                                |    |
| ばねの両端の節点番号   ばね定数   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |         |                                   |    |
| 1     15     (N/mm)       3     17     (N/mm)       6     20     (N/mm)       9     23     (N/mm)       12     38     (N/mm)       13     39     (N/mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |         |                                   |    |
| 3     17     (N/mm)       6     20     (N/mm)       9     23     (N/mm)       12     38     (N/mm)       13     39     (N/mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |         |                                   |    |
| 6 20 (N/mm) 9 23 (N/mm) 12 38 (N/mm) 13 39 (N/mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |         |                                   |    |
| 9     23     (N/mm)       12     38     (N/mm)       13     39     (N/mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |         |                                   |    |
| 12 38 (N/mm)<br>13 39 (N/mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |         |                                   |    |
| 13 39 (N/mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |         |                                   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |         |                                   |    |
| 17 97 $(N/m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |         | 13 39 (N/mm)<br>17 27 (N/mm)      |    |
| 31 33 (N·mm/rad)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |         |                                   |    |
| 31 33 (N·mm/rad)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |         | 31 33 (N. IIIII, L.90)            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |         |                                   |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
|---------------------------|---------|--------------|----|
|                           |         | (4) 節点の質量    |    |
|                           |         | 節点番号 質量(kg)  |    |
|                           |         | 1            |    |
|                           |         | 2            |    |
|                           |         | 3            |    |
|                           |         | 4            |    |
|                           |         | 5            |    |
|                           |         | 6            |    |
|                           |         | 7            |    |
|                           |         | 8            |    |
|                           |         | 9            |    |
|                           |         | 10           |    |
|                           |         | 11           |    |
|                           |         | 12           |    |
|                           |         | 13           |    |
|                           |         | 14           |    |
|                           |         | 15           |    |
|                           |         | 16           |    |
|                           |         | 17           |    |
|                           |         | 18           |    |
|                           |         | 19           |    |
|                           |         | 20           |    |
|                           |         | 21           |    |
|                           |         | 22           |    |
|                           |         | 23           |    |
|                           |         | 24           |    |
|                           |         | 25           |    |
|                           |         | 26           |    |
|                           |         | 27           |    |
|                           |         | 28           |    |
|                           |         | 29           |    |
|                           |         | 30           |    |
|                           |         | 31           |    |
|                           |         | 32           |    |
|                           |         | 33           |    |
|                           |         | 34           |    |
|                           |         | 35           |    |
|                           |         | 36           |    |
|                           |         | 37           |    |
|                           |         | 38           |    |
|                           |         | 39           |    |
|                           |         | 40           |    |
|                           |         |              |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機 備       | <b>備考</b> |
|---------------------------|---------|----------------------|-----------|
| ·                         |         | (5) 材料物性値            |           |
|                           |         | 加速   おお              |           |
|                           |         | MPa   (kg/mm³)   (一) |           |
|                           |         | 1                    |           |
|                           |         | 2                    |           |
|                           |         | 3                    |           |
|                           |         | 4                    |           |
|                           |         | 5                    |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |
|                           |         |                      |           |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) 東海第二発電所 | 女川原子力発電所第2号機                    | 備考 |
|-----------------------------------|---------------------------------|----|
|                                   | (1) 2 1 マット日 主人が成分が自然的に してのが指数と |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
|---------------------------|---------|--------------|----|
|                           |         | 13 日本統領      |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 東海第二発電所 |     |          | 女川原子力発                                | <b>電所第2号機</b> |   | 備考 |
|---------------------------|---------|-----|----------|---------------------------------------|---------------|---|----|
|                           |         | 2.5 | その他の機    | · · · · · · · · · · · · · · · · · · · |               |   |    |
|                           |         | (1) | 節点データ    | 7                                     |               |   |    |
|                           |         |     |          |                                       | 節点座標(mm)      |   |    |
|                           |         |     | 節点番号     |                                       |               | - |    |
|                           |         |     | 1        | X                                     | у             | Z |    |
|                           |         |     | 2        |                                       |               |   |    |
|                           |         |     | 3        |                                       |               |   |    |
|                           |         |     | 4        |                                       |               |   |    |
|                           |         |     | 5        |                                       |               |   |    |
|                           |         |     | 6<br>7   |                                       |               |   |    |
|                           |         |     | 8        |                                       |               |   |    |
|                           |         |     | 9        |                                       |               |   |    |
|                           |         |     | 10       |                                       |               |   |    |
|                           |         |     | 11       |                                       |               |   |    |
|                           |         |     | 12       |                                       |               |   |    |
|                           |         |     | 13<br>14 |                                       |               |   |    |
|                           |         |     | 15       |                                       |               |   |    |
|                           |         |     | 16       |                                       |               |   |    |
|                           |         |     | 17       |                                       |               |   |    |
|                           |         |     | 18       |                                       |               |   |    |
|                           |         |     | 19<br>20 |                                       |               |   |    |
|                           |         |     | 21       |                                       |               |   |    |
|                           |         |     | 22       |                                       |               |   |    |
|                           |         |     | 23       |                                       |               |   |    |
|                           |         |     | 24       |                                       |               |   |    |
|                           |         |     | 25<br>26 |                                       |               |   |    |
|                           |         |     | 27       |                                       |               |   |    |
|                           |         |     | 28       |                                       |               |   |    |
|                           |         |     | 29       |                                       |               |   |    |
|                           |         |     | 30       |                                       |               |   |    |
|                           |         |     | 31       |                                       |               |   |    |
|                           |         |     | 32<br>33 |                                       |               |   |    |
|                           |         |     | 34       |                                       |               |   |    |
|                           |         |     | 35       |                                       |               |   |    |
|                           |         |     | 36       |                                       |               |   |    |
|                           |         |     | 37       |                                       |               |   |    |
|                           |         |     | 38       |                                       |               |   |    |
|                           |         |     | 39<br>40 |                                       |               |   |    |
|                           |         |     | 40       |                                       |               |   |    |
|                           |         |     |          |                                       |               |   |    |
|                           |         |     |          |                                       |               |   |    |
|                           |         |     |          |                                       |               |   |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) 東海第二発電所 |  | 女川原子力発電所第2号機                                                                                   | 備考 |
|-----------------------------------|--|------------------------------------------------------------------------------------------------|----|
|                                   |  | (2) 要素の断面性状                                                                                    |    |
|                                   |  | 断面特性番号     要素両端の     材料     断面積     断面二次       (要素番号)     節点番号     番号     (mm²)     モーメント(mm⁴) |    |
|                                   |  | 1                                                                                              |    |
|                                   |  | 2                                                                                              |    |
|                                   |  | 3                                                                                              |    |
|                                   |  | 4                                                                                              |    |
|                                   |  | 5                                                                                              |    |
|                                   |  | 6                                                                                              |    |
|                                   |  | 7                                                                                              |    |
|                                   |  | 9                                                                                              |    |
|                                   |  | 10                                                                                             |    |
|                                   |  | 11                                                                                             |    |
|                                   |  | 12                                                                                             |    |
|                                   |  | 13                                                                                             |    |
|                                   |  | 14                                                                                             |    |
|                                   |  | 15                                                                                             |    |
|                                   |  | 16                                                                                             |    |
|                                   |  | 17                                                                                             |    |
|                                   |  | 18                                                                                             |    |
|                                   |  | 19                                                                                             |    |
|                                   |  | 20                                                                                             |    |
|                                   |  | 21 22                                                                                          |    |
|                                   |  | 23                                                                                             |    |
|                                   |  | 24                                                                                             |    |
|                                   |  | 25                                                                                             |    |
|                                   |  | 26                                                                                             |    |
|                                   |  | 27                                                                                             |    |
|                                   |  | 28                                                                                             |    |
|                                   |  | 29                                                                                             |    |
|                                   |  | 30                                                                                             |    |
|                                   |  | 31                                                                                             |    |
|                                   |  | 32                                                                                             |    |
|                                   |  | (3) ばね結合部の指定                                                                                   |    |
|                                   |  | ばねの両端の節点番号 ばね定数                                                                                |    |
|                                   |  | 1 15 (N/mm)                                                                                    |    |
|                                   |  | 3 17 (N/mm)                                                                                    |    |
|                                   |  | 6 20 (N/mm)                                                                                    |    |
|                                   |  | 9 23 (N/mm)                                                                                    |    |
|                                   |  | 12 38 (N/mm)                                                                                   |    |
|                                   |  | 13 39 (N/mm)                                                                                   |    |
|                                   |  | 17 27 (N/mm)                                                                                   |    |
|                                   |  | 31 33 (N·mm/rad)                                                                               |    |
|                                   |  |                                                                                                |    |
|                                   |  |                                                                                                |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機 (2020.9.25) | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
|----------------------------|---------|--------------|----|
|                            |         | (4) 節点の質量    |    |
|                            |         | 節点番号 質量(kg)  |    |
|                            |         | 1            |    |
|                            |         | 2            |    |
|                            |         | 3            |    |
|                            |         | 4            |    |
|                            |         | 5            |    |
|                            |         | 6            |    |
|                            |         | 7            |    |
|                            |         | 8            |    |
|                            |         | 9            |    |
|                            |         | 10           |    |
|                            |         | 11           |    |
|                            |         | 12           |    |
|                            |         | 13           |    |
|                            |         | 14           |    |
|                            |         | 15           |    |
|                            |         | 16           |    |
|                            |         | 17           |    |
|                            |         | 18           |    |
|                            |         | 19           |    |
|                            |         | 20           |    |
|                            |         | 21           |    |
|                            |         | 22           |    |
|                            |         | 23           |    |
|                            |         | 24           |    |
|                            |         | 25           |    |
|                            |         | 26           |    |
|                            |         | 27           |    |
|                            |         | 28           |    |
|                            |         | 29           |    |
|                            |         | 30           |    |
|                            |         | 31           |    |
|                            |         | 32 33        |    |
|                            |         | 33 34        |    |
|                            |         | 35           |    |
|                            |         | 36           |    |
|                            |         | 37           |    |
|                            |         | 38           |    |
|                            |         | 39           |    |
|                            |         | 40           |    |
|                            |         | TV           |    |
|                            |         |              |    |
|                            |         |              |    |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機(2020.9.25) | 女川原子力発電所第2号機 備考 |                                         |  |
|---------------------------|-----------------|-----------------------------------------|--|
|                           |                 | (5) 材料物性值                               |  |
|                           |                 | 温度   縦弾性係数   質量密度   ポアソン比   材質   部位     |  |
|                           |                 | 75 付留 7 (°C) (MPa) (kg/mm³) (一) 「75 同時に |  |
|                           |                 | 1                                       |  |
|                           |                 | 2                                       |  |
|                           |                 | 3                                       |  |
|                           |                 | 4                                       |  |
|                           |                 | 5                                       |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |
|                           |                 |                                         |  |

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

