女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0045_改 0
提出年月日	2020年11月27日

VI-2-1-13-7 盤の耐震性についての計算書作成の基本方針

2020年11月 東北電力株式会社

目次

1.	概	[要	1
2.	_	-般事項	1
2.	1	評価方針	1
2. 2	2	適用 <mark>規格・</mark> 基準 <mark>等</mark>	2
2.	3	記号の説明	3
2.	4	計算精度と数値の丸め方	5
3.	評	⁷ 価部位	5
4.	古]有周期	5
5.	構	f 造強度評価	6
5.	1	構造強度評価方法	6
5. 2	2	設計用地震力	7
5.	3	計算方法	7
!	5. 3	3.1 応力の計算方法	7
5.	4	応力の評価 1	6
!	5.4	4.1 ボルトの応力評価 1	6
6.	機	能維持評価 1	7
6.	1	電気的機能維持評価方法 1	7
7.	而	震計算書のフォーマット1	7
7.	1	直立形盤の耐震計算書のフォーマット 1	7
7. 2	2	壁掛形盤の耐震計算書のフォーマット 1	7

1. 概要

解析の方針及び減衰定数については,添付書類「VI-2-1-6 地震応答解析の基本方針」 に従うものとする。

ただし、本基本方針が適用できない盤にあっては、個別耐震計算書にその耐震計算方 法を含めて記載する。

2. 一般事項

2.1 評価方針

盤の応力評価は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。また、盤の機能維持評価は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき、地震時の応答加速度が電気的機能確認済加速度以下であることを、「6. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7. 耐震計算書のフォーマット」に示す。

盤の耐震評価フローを図 2-1 に示す。

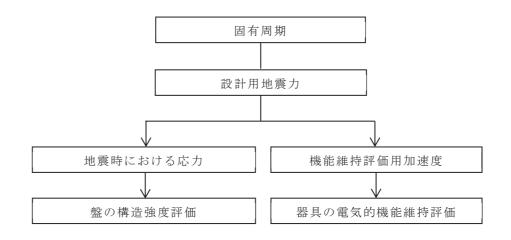


図 2-1 盤の耐震評価フロー

2.2 適用規格・基準等本評価において適用する規格・基準等を以下に示す。

- (1) 原子力発電所耐震設計技術指針 JEAG4601-1987((社) 日本電気協会)
- (2) 原子力発電所耐震設計技術指針 重要度分類·許容応力編 JEAG4601·補-1984((社)日本電気協会)
- (3) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版 ((社)日本電気協会)
- (4) 発電用原子力設備規格 設計・建設規格 ((社) 日本機械学会 2005/2007) (以下「設計・建設規格」という。)

2.3 記号の説明

記号	記号の説明	単位
Аьі	ボルトの軸断面積*1	mm^2
Сн	水平方向設計震度	_
C v	鉛直方向設計震度	_
d i	ボルトの呼び径*1	mm
F i	設計・建設規格 SSB-3121.1(1)に定める値*1	MPa
F ;*	設計・建設規格 SSB-3133 に定める値*1	MPa
F _{bi}	ボルトに作用する引張力(1本当たり)*1	N
F _{b 1 i}	鉛直方向地震及び壁掛盤取付面に対し左右方向の水平方向地震によりボルトに作用する引張力(1本当たり)(壁掛形)*1	N
F _{b 2 i}	鉛直方向地震及び壁掛盤取付面に対し前後方向の水平方向地震によりボルトに作用する引張力(1本当たり)(壁掛形)*1	N
f toi	引張力のみを受けるボルトの許容引張応力*1	MPa
f s b i	せん断力のみを受けるボルトの許容せん断応力*1	MPa
f t s i	引張力とせん断力を同時に受けるボルトの許容引張応力*1	MPa
g	重力加速度(=9.80665)	m/s^2
h i	据付面又は取付面から重心までの距離*2	mm
Q _{1 i}	重心とボルト間の水平方向距離(直立形)*1,*3	mm
Q _{1 i}	重心と下側ボルト間の鉛直方向距離(壁掛形)*1	mm
ℓ _{2 i}	重心とボルト間の水平方向距離(直立形)*1,*3	mm
ℓ _{2 i}	上側ボルトと下側ボルト間の鉛直方向距離(壁掛形)*1	mm
Q 3 i	左側ボルトと右側ボルト間の水平方向距離(壁掛形)*1	mm
m i	運転時質量*2	kg
n i	ボルトの本数*1	_
n _{f i}	評価上引張力を受けるとして期待するボルトの本数(直立形)*1	_
n f V i	評価上引張力を受けるとして期待するボルトの本数*1 (鉛直方向)(壁掛形)	_
n _{f H i}	評価上引張力を受けるとして期待するボルトの本数*1 (水平方向)(壁掛形)	_
Q _{bi}	ボルトに作用するせん断力*1	N
Q _{b 1 i}	水平方向地震によりボルトに作用するせん断力(壁掛形)*1	N
Q _{b 2 i}	鉛直方向地震によりボルトに作用するせん断力(壁掛形)*1	N
S u i	設計・建設規格 付録材料図表 Part5 表 9 に定める値*1	MPa
S _{y i}	設計・建設規格 付録材料図表 Part5 表 8 に定める値*1	MPa
S _{y i} (R T)	設計・建設規格 付録材料図表 Part5 表 8 に定める材料の 40℃に おける値*1	MPa
π	円周率	_
о в і	ボルトに生じる引張応力*1	MPa
т ь і	ボルトに生じるせん断応力*1	MPa

注記 * 1: $A_{b\,i}$, d_{i} , F_{i} , F_{i} *, $F_{b\,i}$, $F_{b\,1\,i}$, $F_{b\,2\,i}$, $f_{s\,b\,i}$, $f_{t\,o\,i}$, $f_{t\,s\,i}$, $\ell_{1\,i}$, $\ell_{2\,i}$, $\ell_{3\,i}$, n_{i} , $n_{f\,i}$, $n_{f\,V\,i}$, $n_{f\,H\,i}$, $Q_{b\,i}$, $Q_{b\,1\,i}$, $Q_{b\,2\,i}$, $S_{u\,i}$, $S_{y\,i}$, $S_{y\,i}$ (RT), $\sigma_{b\,i}$ 及び $\tau_{b\,i}$ の添字 i の意味は,以下のとおりとする。

i =1:基礎ボルトi =2:取付ボルト

*2: h_i 及び m_i の添字 iの意味は、以下のとおりとする。

i = 1 : 据付面i = 2 : 取付面

 $*3: \ell_{1i} \leq \ell_{2i}$

2.4 計算精度と数値の丸め方

計算精度は,有効数字6桁以上を確保する。

本資料で表示する数値の丸め方は,表 2-1 に示すとおりである。

表 2-1 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
震度	_	小数点以下第3位	切上げ	小数点以下第2位
温度	$^{\circ}\!\mathbb{C}$		1	整数位
質量	kg	_		整数位
長さ	mm		1	整数位*1
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字4桁*2
力	N	有効数字 5 桁目	四捨五入	有効数字4桁*2
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力	MPa	小数点以下第1位	切捨て	整数位 <mark>*³</mark>

注記 *1: 設計上定める値が小数点以下の場合は、小数点以下表示とする。

*2:絶対値が1000以上のときは、べき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ

及び降伏点は、比例法により補間した値の小数点以下第1位を切り捨

て,整数位までの値とする。

3. 評価部位

盤の耐震評価は「5.1 構造強度評価方法」に示す条件に基づき、耐震評価上厳しくなる基礎ボルト及び取付ボルトについて評価を実施する。

4. 固有周期

盤の固有周期は、振動試験(加振試験又は打振試験)にて求める。なお、振動試験により固有周期が求められていない盤については、構造が同様な盤に対する振動試験の結果 算定された固有周期を使用する。

5. 構造強度評価

- 5.1 構造強度評価方法
 - (1) 盤の質量は重心に集中しているものとする。
 - (2) 地震力は盤に対して、水平方向及び鉛直方向から作用するものとする。
 - (3) 盤は取付ボルトでチャンネルベースに固定されており、固定端とする。
 - (4) チャンネ<mark>ル</mark>ベースは基礎ボルト又は埋込金物で基礎と固定されており、固定端と する。
 - (5) 床面据付の盤の転倒方向は、図 5-1 概要図(直立形)における長辺方向及び短辺方向について検討し、計算書には計算結果の厳しい方(許容値/発生値の小さい方をいう。)を記載する。壁掛形の盤については、図 5-2 概要図(壁掛形)における正面方向及び側面方向*について検討し、計算書には計算結果の厳しい方を記載する。
 - (6) 盤の重心位置については、転倒方向を考慮して、計算条件が厳しくなる位置に重心位置を設定して耐震性の計算を行うものとする。
 - (7) 耐震計算に用いる寸法は、公称値を使用する。

注記*:壁掛形の計装ラックの転倒方向は、計装ラックを正面より見て左右に転倒する場合を「正面方向転倒」、前方に転倒する場合を「側面方向転倒」という。

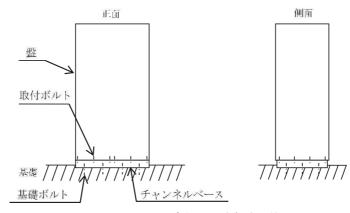


図 5-1 概要図(直立形)

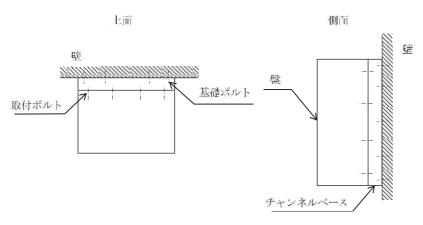


図 5-2 概要図(壁掛形)

5.2 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は,添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。なお,壁掛形の盤の設計用地震力については,設置床上下階のいずれか大きい方を用いる。

5.3 計算方法

5.3.1 応力の計算方法

5.3.1.1 ボルトの計算方法

ボルトの応力は、地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。計算モデルは、取付ボルトの場合を示す。

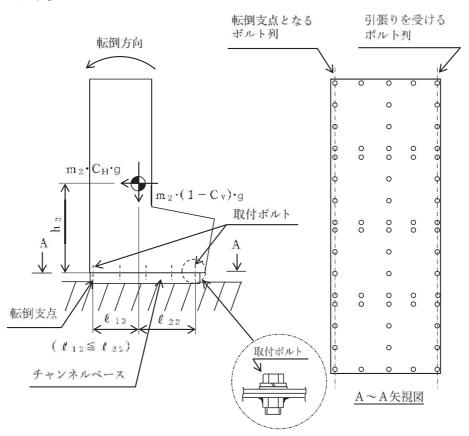


図 5-3(1) 計算モデル (ベンチ形 短辺方向転倒 (1-C_V)≥0の場合)

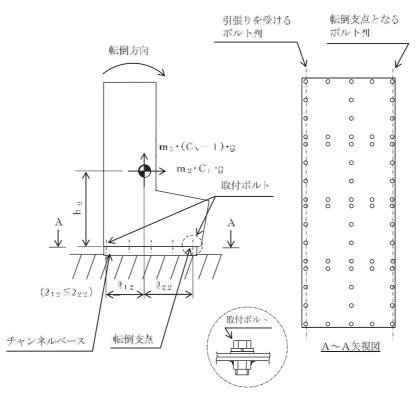
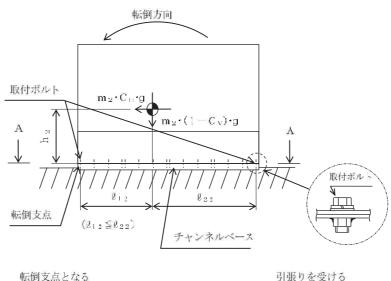



図 5-3(2) 計算モデル (ベンチ形 短辺方向転倒 $(1-C_V)<0$ の場合)

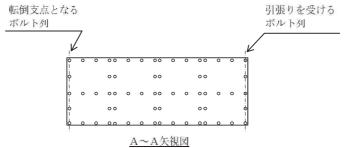
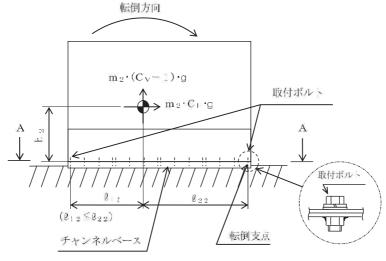



図 5-3(3) 計算モデル (ベンチ形 長辺方向転倒 (1-C_V)≥0の場合)

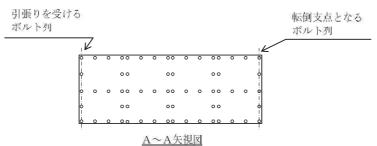


図 5-3(4) 計算モデル (ベンチ形 長辺方向転倒 $(1-C_{\rm V})<0$ の場合

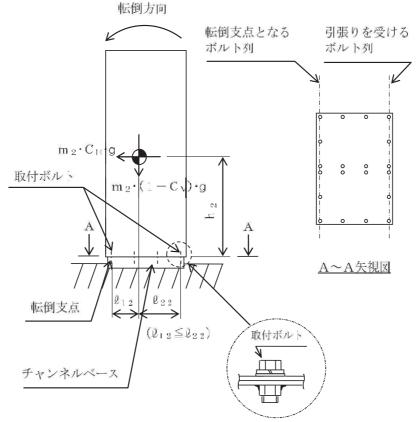


図 5-4(1) 計算モデル (直立形 短辺方向転倒 (1-C_V)≥0の場合)

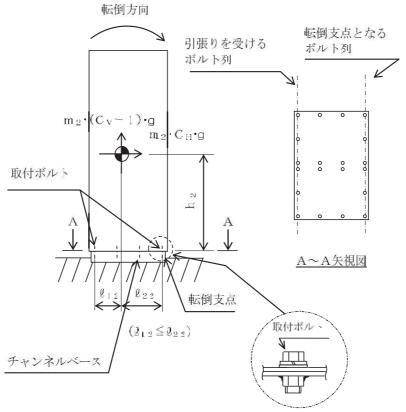


図 5-4(2) 計算モデル (直立形 短辺方向転倒 $(1-C_V)<0$ の場合)

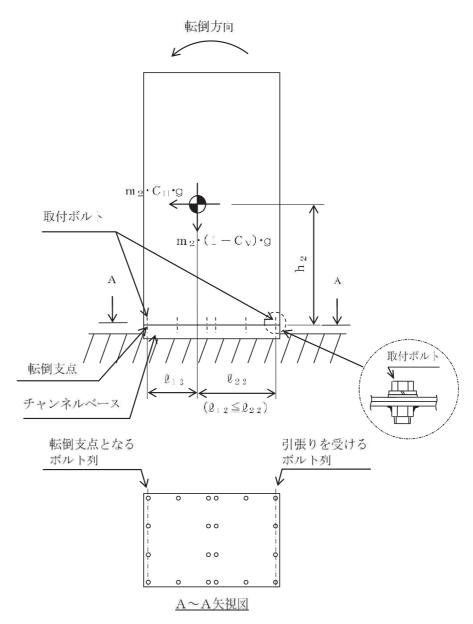


図 5-4(3) 計算モデル (直立形 長辺方向転倒 (1-C_V)≥0の場合)

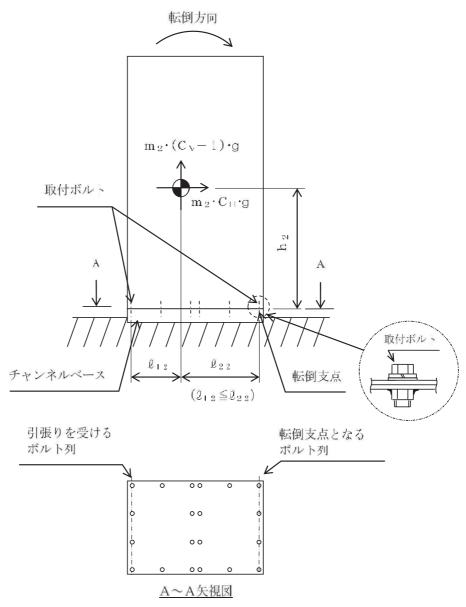


図 5-4(4) 計算モデル (直立形 長辺方向転倒 (1-C_V)<0 の場合)

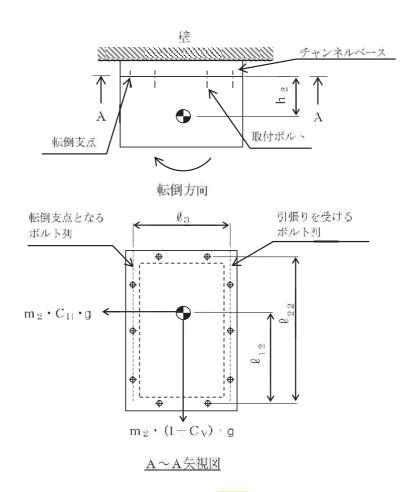
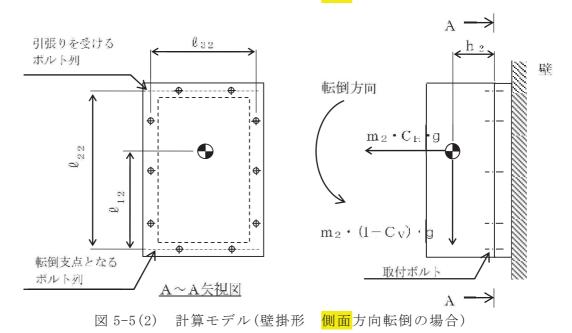



図 5-5(1) 計算モデル(壁掛形 正面方向転倒の場合)

(1) 引張応力

ボルトに対する引張力は、最も厳しい条件として図 5-3、図 5-4 及び図 5-5 で最外列のボルトを支点とする転倒を考え、これを片側の最外列のボルトで受けるものとして計算する。

a. 引張力

計算モデル図5-3(1), 5-3(3), 5-4(1)及び5-4(3)の場合の引張力

$$F_{bi} = \frac{m_{i} \cdot C_{H} \cdot h_{i} \cdot g - m_{i} \cdot (1 - C_{V}) \cdot \ell_{1i} \cdot g}{n_{fi} \cdot (\ell_{1i} + \ell_{2i})} \quad \dots (5.3.1.1.1)$$

計算モデル図 5-3(2), 5-3(4), 5-4(2)及び 5-4(4)の場合の引張力

$$F_{bi} = \frac{m_{i} \cdot C_{H} \cdot h_{i} \cdot g - m_{i} \cdot (1 - C_{V}) \cdot \ell_{2i} \cdot g}{n_{fi} \cdot (\ell_{1i} + \ell_{2i})} \qquad \dots \dots (5.3.1.1.2)$$

計算モデル図 5-5(1)及び 5-5(2)の場合の引張力

$$F_{b1i} = \frac{m_{i} \cdot (1+C_{V}) \cdot h_{i} \cdot g}{n_{fVi} \cdot \ell_{2i}} + \frac{m_{i} \cdot C_{H} \cdot h_{i} \cdot g}{n_{fHi} \cdot \ell_{3i}} \quad \dots (5.3.1.1.3)$$

$$F_{b2i} = \frac{m_{i} \cdot (1+C_{V}) \cdot h_{i} \cdot g + m_{i} \cdot C_{H} \cdot \ell_{1i} \cdot g}{n_{fv} \cdot \ell_{2i}} \quad \cdots (5.3.1.1.4)$$

$$F_{bi} = Max(F_{b1i}, F_{b2i})$$
 (5.3.1.1.5)

b. 引張応力

$$\sigma_{bi} = \frac{F_{bi}}{A_{bi}}$$
 (5. 3. 1. 1. 6)

ここで、ボルトの軸断面積Abiは次式により求める。

$$A_{b_i} = \frac{\pi}{4} \cdot d_i^2$$
 (5. 3. 1. 1. 7)

ただし、 F_{bi} が負のときボルトには引張力が生じないので、引張応力の計算は行わない。

- (2) せん断応力 ボルトに対するせん断力は、ボルト全本数で受けるものとして計算する。
- a. せん断力

 - (b) 壁掛形の場合 $Q_{b1i} = m_{i} \cdot C_{H} \cdot g \qquad (5.3.1.1.9)$ $Q_{b2i} = m_{i} \cdot (1 + C_{V}) \cdot g \qquad (5.3.1.1.10)$ $Q_{bi} = \sqrt{(Q_{b1i})^{2} + (Q_{b2i})^{2}} \qquad (5.3.1.1.11)$
- b. せん断応力

$$\tau_{b i} = \frac{Q_{b i}}{n_{i} \cdot A_{b i}}$$
 (5. 3. 1. 1. 12)

5.4 応力の評価

5.4.1 ボルトの応力評価

5.3.1 項で求めたボルトの引張応力 σ_{bi} は次式より求めた許容引張応力 f_{tsi} 以下であること。

ただし、ftoiは下表による。

$$f_{t s i} = Min[1.4 \cdot f_{t o i} - 1.6 \cdot \tau_{b i}, f_{t o i}]$$
(5.4.1.1)

せん断応力 τ_{bi} はせん断力のみを受けるボルトの許容せん断応力 f_{sbi} 以下であること。ただし, f_{sbi} は下表による。

	弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	基準地震動Ssによる荷重との 組合せの場合
許容引張応力 f toi	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{F}_{\mathrm{i}}^{*}}{2} \cdot 1.5$
許容せん断応力 f _{sbi}	$\frac{\mathrm{F}_{\mathrm{i}}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F_{i}}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6. 機能維持評価

6.1 電気的機能維持評価方法

機能維持評価用加速度と機能確認済加速度との比較により、地震時又は地震後の電気的機能維持を評価する。

機能維持評価用加速度は、添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき、基準地震動 S s により定まる応答加速度を設定する。

機能確認済加速度は、添付書類「VI-2-1-9 機能維持の基本方針」に基づき加振試験により確認した加速度を用いることとし、個別計算書にその旨を記載する。

7. 耐震計算書のフォーマット

7.1 直立形盤の耐震計算書のフォーマット

直立形盤の耐震計算書のフォーマットは、以下のとおりである。

[設計基準対象施設及び重大事故等対処設備の場合]

フォーマット I 設計基準対象施設としての評価結果

フォーマットⅡ 重大事故等対処設備としての評価結果

[重大事故等対処設備単独の場合]

フォーマットⅡ 重大事故等対処設備としての評価結果*

7.2 壁掛形盤の耐震計算書のフォーマット

壁掛形盤の耐震計算書のフォーマットは、以下のとおりである。

[設計基準対象施設及び重大事故等対処設備の場合]

フォーマットⅢ 設計基準対象施設としての評価結果

フォーマットIV 重大事故等対処設備としての評価結果

[重大事故等対処設備単独の場合]

フォーマットIV 重大事故等対処設備としての評価結果*

注記*:重大事故等対処設備単独の場合は、設計基準対象施設及び重大事故等対処設備に示すフォーマットII及びIVを使用するものとする。ただし、評価結果表に記載の章番を「2.」から「1.」とする。

【フォーマットI 直立形盤の設計基準対象施設としての評価結果】

【〇〇盤の耐震性についての計算結果】

1. 設計基準対象施設 1.1 設計条件

周囲環境温度 (C)		
鬓動S s	鉛直方向 設計震度	$C_v =$
基準地	水平方向 設計震度	$C_H =$
地震動Sd 的震度	鉛直方向 設計震度	$C_{V} =$
弾性設計用地震動 又は静的震度	水平方向 設計震度	$C_H =$
司期(s)	鉛直方向	
19年	以平方向	
据付場所及び末面高さ (m)		建屋 0.P. *
上 田 田 田 二二二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	門內里女友刀棋	
4年 夕日日884		

注記*:基準床レベルを示す。

1.2 機器要目

* i i n				
n i				
$A_{ m b,i} \ m (mm^2)$				
d_{i} (mm)		(W)		(W)
$\ell_{2\ ext{i}}^{st}$				
$\ell_{1 ext{ i}}^{*}$				
h_{i} (mm)				
m i (kg)				
部林	基礎ボルト	(i = 1)	取付ボルト	(i = 2)

基準地震動 S s		
弾性設計用地震動Sd 又は静的震度		
Гі (MPa)		
г _і (МРа)		
Sui (MPa)		
Syi (MPa)		
部材	基礎ボルト (i =1)	取付ボルト (i=2)
	A (MPa) (MPa) (MPa) (MPa) (MPa) 対性設計用地震動Sd Z/は静的震度	Syi Sui Fi Fi Fi WPa) WH2計用地震動Sd Xl2精的震度

注記*:各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し、 下段は長辺方向転倒に対する評価時の要目を示す。

1.3 計算数値

(単位:N) 1.3.1 ボルトに作用する力

	Fbi		$Q_{\mathrm{b}\mathrm{i}}$	
部村	弾性設計用地震動Sd 又は静的震度	基準地震動 S s	弾性設計用地震動Sd 又は静的震度	基準地震動 S s
基礎ボルト (i=1)				
取付ボルト (i=2)				

1.4 結論

1.4.1 ボルトの応力						(単位:MPa)
	-1	1	弹性設計用地震動	単性設計用地震動Sd又は静的震度	子	基準地震動S s
	Z \$	C 3/	算出応力	許容応力	算出応力	許容応力
基礎ボルト		り揺り	$\sigma_{b1} =$	f t s 1 = *	σ _{b1} =	f _{t s 1} = *
(i = 1)		中心断	τ _{b1} =	f s b 1 ==	± 1 1 =	f_{sb1} =
取付ボルト		り張り	$\sigma_{b2}=$	f t s 2 = *	σ _{b2} =	f _{t s 2} = *
(i = 2)		年ん断	τ _{b2} =	f s b 2 ==	=2 q 2	f s b 2=

すべて許容応力以下である。

1.4.2 電気的機能維持の評価結果

 $(\times 9.8 \text{m/s}^2)$

注記 *: f_{tsi}=Min [1.4・f_{toi}ー1.6・τ_{bi}, f_{toi}] より算出

機能縮認済加速度		
機能維持評価用加速度*		
	水平方向	鉛直方向

注記*:基準地震動Ssにより定まる応答加速度とする。 機能維持評価用加速度(1.0ZbA)はすべて機能確認済加速度以下である。

【重大事故等対処設備単独の場合】 本フォーマットを使用する。 ただし、章番を1.とする。

【フォーマットⅡ 直立形盤の重大事故等対処設備としての評価結果】

2. 重大事故等対処設備

2.1 設計条件

周囲環境温度	(C)	
震動S s	鉛直方向 設計震度	$C_V =$
基準地震	水平方向 設計震度	$C_H =$
震動S d 震度	鉛直方向 設計賽度	_
弾性設計用地震動: 又は静的震度	水平方向 設計震度	I
期(s)	鉛直方向	
固有問	水平方向	
据付場所及び床面高さ	建屋 0.P. *	
出入人担己言	成哺刀類	
75 Q 10 %	(改石)	

注記*:基準床レベルを示す。

2.2 機器要目

n f i				
n i				
$A_{ m bi} \ { m (mm^2)}$				
d i (mm)		(M)		(M)
$\ell_{2\ ext{i}}^{st}$ (mm)				
$\ell_{1 \mathrm{i}}^{*}$ (mm)				
h i (mm)				
m i (kg)				
部林	基礎ボルト	(1 = 1)	取仕ボルト	(i = 2)

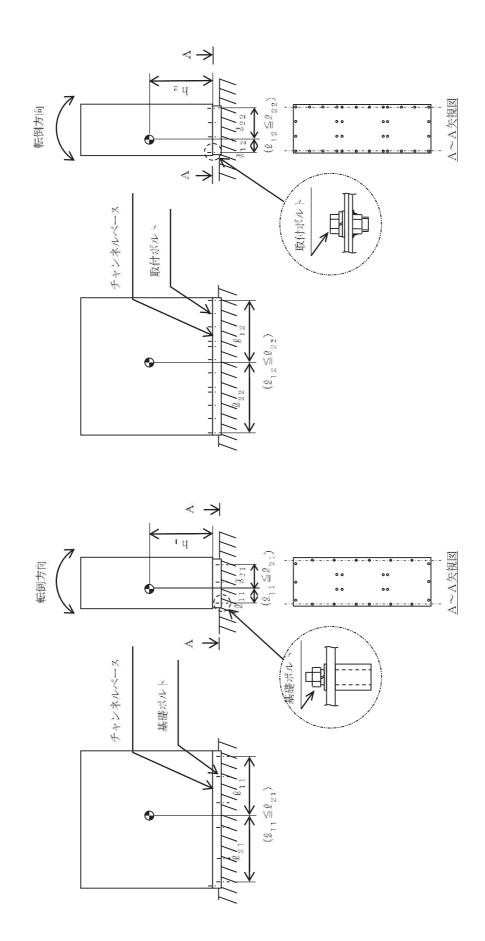
	基準地震動 S s		
転倒方向	弾性設計用地震動Sd 又は静的震度	ı	ı
<u>*</u>	r _i (MPa)		
Ц	Г і (MPa)	_	l
V	Sui (MPa)		
ď	(MPa)		
1	部村	基礎ボルト (i=1)	取付ボルト (i=2)

注記*:各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し、 下段は長辺方向転倒に対する評価時の要目を示す。

2.3 計算数値

2.3.1 ボルトに作用する力	作用する力			(単位:N)
	F _{bi}		$Q_{\mathrm{b}\mathrm{i}}$	
部林	弾性設計用地震動Sd 又は静的震度	基準地震動 S s	弾性設計用地震動S d 又は静的震度	基準地震動 S s
基礎ボルト (i=1)	1		_	
取付ボルト (i =2)	I		I	

2.4 結論


			弹性設計用地震動	弹性設計用地震動Sd又法静的震度		基準地震動S s
部	村本	R 怪	算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	I	I	σ _{b1} =	f t s 1 = *
(i = 1)		せん野	I	I	τ b1=	f sb1=
取付ボルト		引張り	I	I	σ _{b2} =	f ts2= *
(i = 2)		中ん野	I	I	τ b2=	f sb2=
ナベト許容広力以下であ	いたもん		へに対	注記 *・f :=Min[1 4・f : ─1 6・τ . : . f :] ト り貸出	• f + 2 : -1 6 • T 1	OTL F

 $(\times 9.8 \text{m/s}^2)$

電気的機能維持の評価結果 2.4.2 機能確認済加速度 機能給持評価用加速度* 鉛直方向 水平方向

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。

【フォーマットⅢ 壁掛形盤の設計基準対象施設としての評価結果】

【〇〇盤の耐震性についての計算結果】

設計基準対象施設
 1.1 設計条件

周囲環境温度 (°C) 鉛直方向 設計震度 $\overset{<}{C}\overset{<}{=}$ 基準地震動S 水平方向 設計震度 $_{\rm H}$ 鉛直方向 設計震度 弾性設計用地震動Sd 又は静的震度 $C \stackrel{\lor}{\sim} =$ 水平方向 設計震度 $_{\rm H} =$ 水平方向 鉛直方向 固有周期(s) 据付場所及び床面高さ (m) * 建屋 (0. P. 耐震重要度分類 機器名称

注記*:基準床レベルを示す。

1.2 機器要目

	_	_		
n f H i 🖰				
n f v i *				
n i				
$A_{\mathrm{b}_{\mathrm{j}}}$				
$(\frac{\mathrm{d}}{\mathrm{mm}})$		(W)		(M)
0 _{3 i} * (mm)				
$\ell_{2 i}^{*}$ (mm)				
$\left(\begin{array}{cc} \ell_{1 & i} \\ \ell_{mm} \end{array} \right)$				
$h_{i} (mm)$				
$\frac{\mathrm{m}}{\mathrm{(kg)}}$				
#	ボアト	=1	ボアト	= 2)
幸	基礎	(i	取付	(i
				23

Ĺ	基準地震動 Ss		
転倒方向	弾性設計用地震動Sd 又は静的震度		
*	r i (MPa)		
Ĺ	(MPa)		
C	S u i (MPa)		
ď	(MPa)		
	部村	基礎ボルト (i=1)	取付ボルト (i=2)

生記*:各ボルトの機器要目における上段は正面方向転倒に対する評価時の要目を示し,

下段は側面方向転倒に対する評価時の要目を示す。

1.3 計算数值

(単位:N) 1.3.1 ボルトに作用する力

Q _{bi}	動 弾性設計用地震動 S d 基準地震動 又は静的震度 S s		
F _{bi}	弾性設計用地震動 S d 基準地震動 又は静的震度 S s		
	部村	基礎ボルト (i=1)	取付ボルト (i=2)

1.4 結論

1.4.1 ボルトの応力

(単位: MPa)

++		±	+ 弹性設計用地	震動Sd又は静的震度	基準地	震動Ss
7	Ž Ž		算出応力	許容応力	算出応力	許容応力
イブ		引張り	$\sigma_{b1} =$	f t s 1 = *	O P 1 =	f t s 1 = *
		せん断	τ b 1 =	f s b 1 =	= ^{I q} 2	f s b 1 =
~		引張り	σ b 2 =	f t s 2 = *	ο b 2 =	f t s 2 = *
2)		せん断	τ b 2 ==	f s b 2 =	= ^{2 q} 1	f s b 2 =

注記 *: f t s i = Min[1.4・f t o i - 1.6・τ p i, f t o i] より算出 すべて許容応力以下である。

電気的機能維持の評価結果

1.4.2

 $(\times 9.8 \text{m/s}^2)$

	機能維持評価用加速度*	機能確認済加速度
水平方向		
鉛直方向		

注記*:基準地震動 S により定まる応答加速度とする。 機能維持評価用加速度(1.0ZbA)はすべて機能確認済加速度以下である。

【重大事故等対処設備単独の場合】 本フォーマットを使用する。 ただし, 章番を1.とする。

【フォーマットIV 壁掛形盤の重大事故等対処設備としての評価結果】 2. 重大事故等対処設備 2.1 設計条件

周囲環境温度	(°C)	
s S 順達	鉛直方向 設計震度	$C_{v} =$
基準地震	水平方向 設計震度	$C_H =$
地震動Sd的震度	鉛直方向 設計震度	_
弾性設計用: 又は静	水平方向 設計震度	_
周期(s)	鉛直方向	
固有厚	有 5 5 6 6	
据付場所及び床面高さ	付場所及び床面高 (m)	
計画分割	C III.	
пп А	(文) 中, (文	

注記*:基準床レベルを示す。

機器要目 2.2

n f H i *				
n fvi *				
n i				
$A_{\mathrm{b},\mathrm{i}} (\mathrm{mm}^2)$				
(mm)		(W)		(W)
Ø₃i <mark>*</mark> (mm)				
ℓ_{2}^{-1}				
$\ell_{1\ i}^{*}$				
, h				
m_{i} (kg)				
村	ボルト	=1)	ボルト	= 2)
嬠	イルド 野雅 オルト	(1	化半水の	(1

中	基準地震動 Ss		
転倒方向	弾性設計用地震動Sd 又は静的震度	_	I
*	(MPa)		
ţ	(MPa)	1	
ď	S u i (MPa)		
C	(MPa)		
	部材	基礎ボルト (i=1)	取付ボルト (i=2)
Ц			

注記*:各ボルトの機器要目における上段は正面方向転倒に対する評価時の要目を示し、 下段は側面方向転倒に対する評価時の要目を示す。

2.3 計算数值

2.3.1 ボルトに作用する力

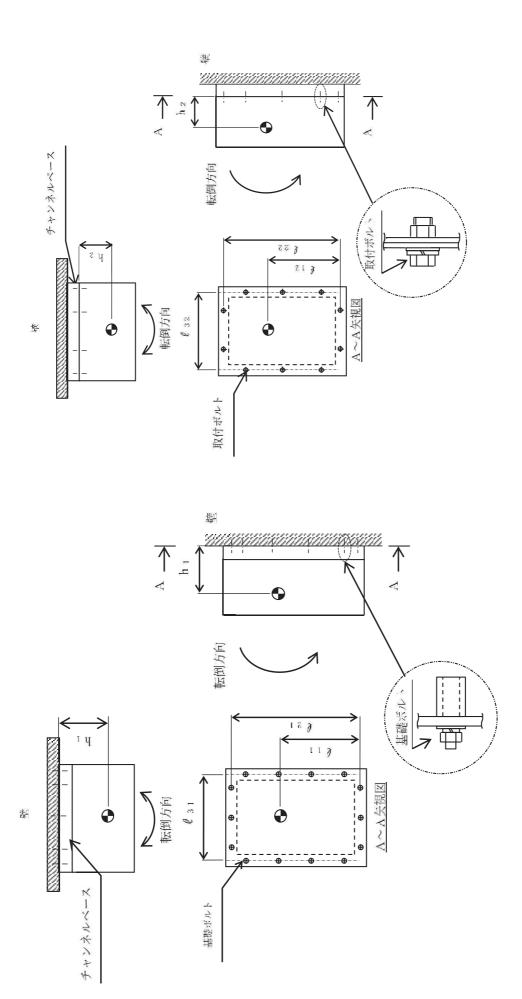
(
(単位:N)		基準地震動 Ss		
	Q b i	弾性設計用地震動Sd 又は静的震度	I	_
		是準地震動 S S		
ボルトに作用する力	다 i	弾性設計用地震動Sd 又は静的震度	I	-
ボルト		‡	ボルト =1)	ルト = 2)
2.3.1		描	基礎示 (i=	取付ボル (i=2)

2.4 結論

ボアトの応力 2.4.1

(単位: MPa)

	াস্য	1	弹性設計用地震動	動Sd又は静的震度	当	震動Ss
	\$ \$	() ()	算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	T	-	$\sigma_{b1} =$	f t s 1 = *
(i = 1)		せん断	I	_	τ _{b1} =	f s b 1 =
取付ボルト		引張り	I	-	O b 2 =	f t s 2 = *
(i = 2)		せん断	I	_	= ⁷ q 1	f s b 2 =
すべて許容応力以下で	28	0	注記 *: f t s	f $_{\rm t~s~i} = {\rm Min}[1.4 \cdot {\rm f}_{\rm t~o~i} - 1.6 \cdot {\rm \tau}_{\rm b~i},$	$_{\mathrm{i}}-1.6 \cdot \tau$ bi,	f t o i] より算出


電気的機能維持の評価結果

2.4.2

 $(\times 9.8 \text{m/s}^2)$

機能確認済加速度		
機能維持評価用加速度*		
	水平方向	鉛直方向

注記*:基準地震動Ssにより定まる応答加速度とする。 機能維持評価用加速度(1.0ZbA)はすべて機能確認済加速度以下である。

