《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		7	
		VI-2-1-13-1 スカート支持たて置円筒形容器の	表現の相違
		耐震性についての計算書作成の基本方針	

《参考》柏崎刈羽原子力発電所第7号機 (2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		目、次	
		1. 概要·····	
		2. 一般事項	
		2.1 評価方針	
		2.2 適用 <mark>規格・</mark> 基準 <mark>等</mark> ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		 2.3 記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		2.4 計算精度と数値の丸め方・・・・・	
		3. 評価部位	
		4. 固有周期······	
		4.1 固有周期の計算方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		5. 構造強度評価·····	
		5.1 構造強度評価方法	
		5.2 設計用地震力	
		5.3 計算方法	
		5.3.1 応力の計算方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	表現の相違
		5.4 応力の評価・・・・・	
		5.4.1 胴の応力評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	表現の相違
		5.4.2 スカートの応力評価・・・・・	表現の相違
		5.4.3 基礎ボルトの応力評価・・・・・	表現の相違
		6. 耐震計算書のフォーマット・・・・・	

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		1. 概要	
		本資料は, 添付書類「VI-2-1-1 耐震設計の基本方針」に基づき,	表現の相違
		耐震性に関する説明書が求められているスカート支持たて置円筒形	
		容器(耐震重要度分類Sクラス又はSs機能維持の計算を行うもの)	
		が,十分な耐震性を有していることを確認するための耐震計算の方法	
		について記載したものである。	
		解析の方針及び減衰定数については、添付書類「VI-2-1-6 地震応	表現の相違
		答解析の基本方針」に従うものとする。	
		ただし、本基本方針が適用できないスカート支持たて置円筒形容器	
		にあっては、個別耐震計算書にその耐震計算方法を含めて記載する。	
		2. 一般事項	
		2.1 評価方針	
		スカート支持たて置円筒形容器の応力評価は,添付書類「VI-2-1-9	表現の相違
		機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容	
		限界に基づき、「3. 評価部位」にて設定する箇所において、「4. 固	
		有周期」で算出した固有周期に基づく設計用地震力による応力等が許	
		容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確	
		認することで実施する。確認結果を「6. 耐震計算書のフォーマット」	
		にて示す。	
		スカート支持たて置円筒形容器の耐震評価フローを図 2-1 に示す。	
		計算モデルの設定	
		理論式による固有周期	
		- THE 4 - 0 A THE 11 - 123	
		設計用地震力	
		地震時における応力	
		スカート支持たて置円筒形容器の構造強度評価	
		図 2-1 スカート支持たて置円筒形容器の耐震評価フロー	

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		<mark>本評価において適用する規格・基準等</mark> を以下に示す。	
		(1) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)	記載箇所の相違
		日本電気協会)	
		(2) 原子力発電所耐震設計技術指針 重要度分類·許容応力編 JEA	
		G4601·補一1984((社)日本電気協会)	
		(3) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)	表現の相違
		(4) 発電用原子力設備規格 設計・建設規格((社)日本機械学会,	表現の相違
		2005/2007) (以下「設計・建設規格」という。)	

東海第二発電所		女川原子力発電所第2号機	備	齢考
	2.3 記号	の説明		
	記号	記号の説明	単位	
	A	胴の軸断面積	nn ²	
	Аь	基礎ボルトの軸断面積	nn ^z	
	Ae	胴の有効せん断断面積	nn ²	
	As	スカートの軸断面積	nn ^z	
	Ase	スカートの有効せん断断面積	n.n. ²	
	Co	基礎ボルト計算における係数	122	
	Сн	水平方向設計震度	977	
	Ct	基礎ボルト計算における係数	(A <u>rc</u>)	
	Cv	鉛直方向設計震度	1000	
	Dы	ベースプレートの内径	nn.	
	Dbo	ベースプレートの外径	RB.	
	Do	基礎ボルトのピッヂ円直径	AR.	
	Di	胴の内径	RR.	
	Di	スカートに設けられた各開口部の穴径(」=1, 2, 3…」 ₁)	(MMR)	
	Ds	スカートの内径	3 0.0. 3	
	d	ボルトの呼び径	mm.	
	E	胴の縦弾性係数	MPa	
	Es	スカートの縦弾性係数	MPa	
	e	基礎ボルト計算における係数	870	
	F	設計・建設規格 SSB-3121.1(1)に定める値	MPa	
	F *	設計・建設規格 SSB-3121.3又はSSB-3133に定める値	MPa	
	Fe	基礎に作用する圧縮力	N	
	Ft	基礎ボルトに作用する引張力	N	
	fb	曲げモーメントに対する許容座屈応力	MPa	
	fo	軸圧縮荷重に対する許容座屈応力	MPa	
	fs b	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa	
	ft	スカートの許容引張応力	MPa	
	fto	引張力のみを受ける基礎ボルトの許容引張応力	MPa	
	ft s	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa	
	G	胴のせん断弾性係数	MPa	
	Gs	スカートのせん断弾性係数	MPa	
	g	重力加速度(=9.80665)	m/s ^t	
	H	水頭	(MLML)	

東海第二発電所	女川原子力発電所第2号機 備考
	記号 記号の説明 単位
	Is スカートの断面二次モーメント mm ⁴
	j 1 スカートに設けられた開口部の穴の個数 ー
	Кн 水平方向ばね定数 N/m
	K∨ 給直方向ばね定数 N/m
	k 基礎ボルト計算における中立軸の荷重係数 -
	ℓ 胴のスカート接合点から重心までの距離 mm
	01,02 基礎ボルト計算における中立軸から荷重作用点までの距離 mm (図5-2k:示す距離) 1
	Rr 容器の重心から上端支持部までの距離 ma
	ℓs スカートの長さ ma
	Mas スカートに作用する転倒モーメント N·mm
	Ms 1 スカートの上端部に作用する転倒モーメント N·ma
	M≤2 スカートの下端部に作用する転倒モーメント N·na
	mo 容器の運転時質量 kg
	me 容器のスカート接合部から上部の空質量 kg
	n 基礎ボルトの本数 -
	Pr 最高使用圧力 MPa
	Q 重心に作用する任意の水平力 N
	Q' Qにより上端の支持部に作用する反力 N
	S 設計・建設規格 付録材料図表 Part5 表5に定める値 WPa
	Sa 胴の許容応力 WPa
	Su 設計・建設規格 付録材料図表 Part5 表9に定める値 WPa
	Su 設計・建設規格 付録材料図表 Part5 表8に定める値 MPa
	Sy(RT) 設計・建設規格 付録材料図表 Part5 表3に定める材料の MPa 40℃における値
	s 基礎ボルトと基礎の縦弾性係数比 ー
	Тн 水平方向固有周期 <u>s</u>
	T∨ 鉛直方向固有周期 <u>s</u>
	t 胴板の厚さ nn
	t1 基礎ボルト面積相当板幅 mm
	t2 压縮側基礎相当幅 ma
	ts スカートの厚さ AAA
	Y スカート開口部の水平断面における最大円周長さ mm
	z 基礎ボルト計算における係数 ー
	α 基礎ボルト計算における中立軸を定める角度 rad

参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版) 東海第二発電所		女川原子力発電所第2号機	備考
		記号 記号の説明	単位
		δ 荷重Qによる容器の上端での変位量	n.n.
		δ′ 荷重Q′による容器の上端での変位量	RL RL
		δ o 荷重Q, Q' による容器の重心での変位量	nun.
		η 座屈応力に対する安全率	-
		π 円周率	-
		ρ′ 液体の密度(=比重×10-6)	kg/mm ³
		σo 胴の一次一般膜応力の最大値	MPa
		σο。 胴の組合せ圧縮応力	MPa
		σot 胴の組合せ引張応力	MPa
		σ 2 地震動のみによる胴の一次応力と二次応力の和の変動値の最大値	MPa
		σ2φ 地震動のみによる胴の周方向一次応力と二次応力の和	MPa
		σ2。 地震動のみによる胴の一次応力と二次応力の和の変動値 (圧縮側)	MPa
		σ 2 t 地震動のみによる胴の一次応力と二次応力の和の変動値 (引張側)	MPa
		σ ε×。 地震動のみによる胴の軸方向一次応力と二次応力の和(圧縮側)	MPa
		σ 2×t 地震動のみによる胴の軸方向一次応力と二次応力の和(引張側)	MPa
		σ Β 基礎ボルトに生じる引張応力	MPa
		σ。 基礎に生じる圧縮応力	MPa
		σ = スカートの組合せ応力	MPa
		σ s 1 スカートの運転時質量による軸方向応力	MPa
		び≤2 水平方向地震によりスカートに生じる曲げモーメントによる 軸方向応力	MPa
		σs3 スカートの鉛直方向地震による軸方向応力	MPa
		σ×1, σφ1 静水頭又は内圧により胴に生じる軸方向及び周方向応力	MPa
		σ×2 胴の運転時質量による軸方向引張応力	MPa
		σ×3 胴の空質量による軸方向圧縮応力	MPa
		σ×4 水平方向地震により胴に生じる曲げモーメントによる軸方向応力	MPa
		σ×5 胴の鉛直方向地震による軸方向引張応力	MPa
		σ×5 胴の鉛直方向地震による軸方向圧縮応力	MPa
		σ×。 胴の軸方向応力の和(圧縮側)	MPa
		σ×t 胴の軸方向応力の和(引張側)	MPa
		σ φ 胴の周方向応力の和	MPa
		σφ2 静水頭に鉛直方向地震が加わり胴に生じる周方向応力	MPa
		て 地震により胴に生じるせん断応力	MPa
		て ト 基礎ボルトに生じるせん断応力	MPa
		記号 記号の説明	単位
		てs 地震によりスカートに生じるせん断応力	MPa
		φ1(x) 圧縮荷重に対する許容座屈応力の関数	MPa
			MPa

《参考》柏崎刈羽原子力発電所第7号機 (2020.9.25提出版)	東海第二発電所			女川	原子力発電所第	2号機		備考
			計算精度と数					
					6 桁以上を確保~			表現の相違
		<mark>本資料で</mark> 表示する数値の丸め方は <mark>、</mark> 表 2-1 に示すとおり <mark>とする</mark> 。 表 2-1 表示する数値の丸め方			表現の相違			
			数値の種類	単位	処理桁	処理方法	表示桁	
			固有周期	s	小数点以下第4 位	四捨五入	小数点以下第3位	
			震度	-	小数点以下第3 位	切上げ	小数点以下第2位	
		:	最高使用圧力	MPa	_		小数点以下第2位	
			温度	°C	—	_	整数位	
			比重	_	小数点以下第3 位	四捨五入	小数点以下第2位	
			質量	kg	_	—	整数位	
			下記以外の長 さ	mm	_		整数位*1	
		長 さ	胴板の厚さ	mm	_	_	小数点以下第1 位	
			スカートの厚 さ	mm	_	_	小数点以下第1 位	
			面積	mm^2	有効数字5桁目	四捨五入	有効数字4桁*2	
			モーメント	N•mm	有効数字5桁目	四捨五入	有効数字4桁*2	
			算出応力	MPa	小数点以下第1 位	切上げ	整数位	
			許容応 <mark>力</mark>	MPa	小数点以下第1 位	切捨て	整数位 <mark>*3</mark>	表現の相違
		注記	2 *1:設計上定め	うる値が	小数点以下の場合に	は,小数点以	下表示とする。	表現の相違
					上のときは, べき数 付録材料図表に記		モの中間における引	
			張強さ及	び降伏)補間した値の	0小数点以下第1位	

 1. 再用的な スカート支持たて振るよう、実際活性上述しくたる角、スカート及 び温暖水やドニンドで活性を実活する。 3. 回路内部 4.1 国有期のご様方法 スカート支持たて置用策構整面目有期の許算方法を以下に示 マート支持たて置用策構整面目有期の許算方法を以下に示 マート支持たて置用策構整の目有期の許算方法を以下に示 マート支持たて置用策構整の目有期の許算方法を以下に示 マート支持たの学校の気が、ないたりです。 4. 服務の外帯物の質能注意にと思せれており、回光構 とする。 5. 服長スカート支持れしたして実施のペーズプレート将用 用してビックの参数の活躍がありて式構成のと大い時の低い 取りため、大いない場合に、気に耐ないな、マンオール等の間口部があって構動をし でいたいる場合は、気化の影響を変更する。 6. 服長スカート大きたりと考え、変形なール等の間口部があって補助をし でいたいる場合は、気化の影響を変更する。 7. 開催計算に用いる子指定は、公式の保険を用する。 7. 解除部は、前面の影響ので活動をして考える。 7. 解除部は、前面の影響の目前に構成の注意気振動をデルとして考える。 7. 解除部は、前面の影響ので活動をして考える。 7. 解除部は、前面の影響ので活動をして考える。 7. 解除部は、前面の影響ので活動をついて構成の注意気振動をデルとして考える。 7. 解除の計算に用いる目前にないて、空気の保険の前の話があって活動をし ていたいる場合は、気化の影響を変更する。 7. 解除する。 7. 原始には、気化のなどので活動をして、 でないて、空気のなどので活動をして、 ので活動をついて実施して、ここので活動をして、 (1) して、ここので消費にないて、 (1) して、一下す消費目的の目前にないて、 (1) して、 (1) して、 (2) して、 (2) して、 (2) して、 (3) して、 (3) して、 (4) こので (4) こので可能ので、 (5) こので活動をついて、 (5) このででのででのでのででのでので、 (5) このででのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでの	《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
方法) ビデザ条件に基づき、預要評価上競しくなる項、スカート及 び基礎ポルトについて評価を実施する。 4. 国有項例の注意方法 スカート支持とて慣用簡形容器の固有周期の計算方法を以下に示 マー マー マー モデアル モデアル モデアルでに当たっては次の条件で行う。 a. 容器及び内容物の質量は重なに集中するものとする。 b. 容器はスカートで支持され、スカート下通のイースプレートを円 周上室でシテの多数の広義ポルトで基礎に固定されており、固定端 とする。 c. 阿とスカートをはりと考え、要形モードは曲げ及びせん得愛形を 考慮する。 d. スカートをはりと考え、使用モーム、大都の時間も感染していなす「強調をしていた」」の非確 とする。 c. 阿とスカートをはりと考え、使用モーム、「本部構成」ので消除をしていた。 マンない場合は、大和の時間も感染した。「美国モール等の間に認があって消除をしていた。」 本部構成、前記の条件より図4-1にパイド海関定の質点不再動やデ ルあるいけ下層関定上端支持の1質点系指動やデルをして考える。			3. 評価部位	
び基礎ボルトについて評価を実施する。 4. 個有問則 4. 個有問則 4. 個有問則の計算方法を以下に示 カート文持とて慣円簡形容器の固有周期の計算方法を以下に示 す。 1. 計算でデル モデル化に当たっては水の条件で行う。 a. 容器及び付替物の質量は近心に集中するものとする。 5. 感感はスカートで支持され、スカート下端のベースブレートを円 風上空ビッチの多数の基礎ボルトで基礎に固定されており、固定端 とする。 5. 感感はスカートで支持され、スカート下端のベースブレートを円 風上空ビッチの多数の基礎ボルトで基礎に固定されており、固定端 とする。 6. 個長計算に用いる寸表は、文価の影響を増加する。 7. 個質計算に用いる寸表は、文価の範囲を使用する。 7. 個質計算に用いる寸表は、次価の範囲を使用する。 7. 個質計算に用いる寸表はのご構成ですか。 7. 個質計算に用いる寸表は、一定する。 7. 個質計算に加いすけで、 7. 個質計算に加いる寸表は、一定する。 7. 個質計算に用いる寸表はので、 7. 一定する。 7. 個質注に描述すれて、 7. 一定する。 7. 個質注に描述すれて、 7. 一定する。 7. 個質注:描述すれて、 7. 一定する。 7. 個質注:描述すれて、 7. 一定する。 7. 個質注:描述すれて、 7. 一定する。 7. 個質注:描述すれて、 7. 一定する。 7. 一二一一一一一一一一一一一一一一一一一一一一一一一一一一一			スカート支持たて置円筒形容器の耐震評価は「5.1 構造強度評価	
4. 固有周期 4.1 固有周期の計算方法 4.1 固有周期の計算方法 4.1 固有周期の計算方法 4.1 固有周期の計算方法 4.1 固有周期の計算方法 4.1 副有周期の計算方法 4.1 副有周期の計算方法 4.1 副有周期の計算方法 4.1 副有周期の計算方法 4.1 副有周期の計算方法 4.1 副第二の「は大師である」 4.1 副第二の「は大師である」 4.1 副第二の「は大師である」 4.1 副第二の「は大師である」 4.1 副第二の「は大師である」 4.1 副第二の「日前からっており」国定留 をする。 6.1 周になかったちはりと考え、変形で一下は曲げ及びせん断変形を 考慮する。 6.2 スクート部材において、マンホール学の間目部があって補強をし ていない場合は、大聞の修憲を考慮する。 7 市営計「昭和学の「覚点系振動モデルとして考える。 7 市営計「昭和学の「覚点系振動モデルとして考える。 7 市営計「昭和学の「覚点系振動モデルとして考える。 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 1 日本の参加 </td <td></td> <td></td> <td>方法」に示す条件に基づき, 耐震評価上厳しくなる胴, スカート及</td> <td></td>			方法」に示す条件に基づき, 耐震評価上厳しくなる胴, スカート及	
4.1 固有周期の計算方法 スカート支持たて運用時形容器の固有周期の計算方法を以下に示 マーン3.1 固有周期の計算方法 スカート支持たて運用時形容器の固有周期の計算方法を以下に示 マージ3.1 計算モブル モデル化に当たっては次の条件で行う。 ・ 常器はスカートで支持され、スカート下端のベースブレートを円 周上等ビッチの多数の基礎ボルトで基礎に固定されており、固定端 とする。 ・ 順とスカートを注めと考え、変形モードは曲げ及びせん断変形を 考慮する。 ・ 一個ショントの場合に知いて、マンホール等の間口部があって補強をし ていない場合は、欠損の影響を考慮する。 ・ 耐酸計算に用いる「非法は、必須通ら影響と考慮する。 ・ 不容器は、前記の条件より図4-1に示す下端固定の1質点系振動モデ かあるいは下端固定して考える。 <t< td=""><td></td><td></td><td>び基礎ボルトについて評価を実施する。</td><td></td></t<>			び基礎ボルトについて評価を実施する。	
x			4. 固有周期	
す。 (1) 計算モデル モデル化に当たっては次の条件で行う。 モデル化に当たっては次の条件で行う。 ロークの数の基礎ポルトで基礎に国定されており、国定端 とする。 レークの数の基礎ポルトで基礎に固定されており、国定端 とする。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ローの目の目的があって補強をしていない場合は、欠損の影響を考慮する。 ロークの目の目的があって補強をしていないま合われていないないので補強をしていないま合われていない。 下個目を引いるす法は、公務値を使用する。 本容器は、前記の条件より図られていまって不能問定の「貸点系振動モデル」をして考える。			4.1 固有周期の計算方法	
(1) 計算モデル モデル化に当たっては次の条件で行う。 a. 容器及び内容物の質量は重心に集中するものとする。 b. 容器はスカートで支持され、スカート下海のベースプレートを円 周上等ビッチの多数の基礎ボルトで基礎に固定されており、固定端 とする。 c. 同とスカートをはりと考え、変形モードは曲げ及びせん断変形を 考慮する。 d. スカート部がにおいて、マンホール等の7周口部があって補強をし ていない場合は、欠額の影響を考慮する。 e. 耐震計算に用いるす近は、公参領を使用する。 米容器は、前記の条件より図4-1に示す下端固定の1質点系接動モデ ルあらいは下端固定上端支持の1質点系接動モデルとして考える。			スカート支持たて置円筒形容器の固有周期の計算方法を以下に示	
モデル化に当たっては次の条件で行う。 a. 容認及び内容物の買量は重心に集中するものとする。 b. 容器はスカートで支持され、スカート下端のベースプレートを円 周上をする。 c. 開とスカートをはりと考え、変形モードは曲げ及びせん研変形を 考慮する。 d. スカート部材において、マンホール等の開口部があって補強をし ていない場合は、欠損の影響を考慮する。 e. 耐震非常に用いる寸法は、公称値を使用する。 本容器は、前記の条件より図4-1に示す下端固定の1質点系振動モデルとして考える。			す。	
a. 容器及び内容物の質量は重心に集中するものとする。 b. 容器はスカートで支持され、スカート下端のベースブレートを円 周上等ビッチの多数の基礎ボルトで基礎に固定されており、固定端 とする。 c. 酮とスカートをはりと考え、変形モードは曲げ及びせん断変形を 考慮する。 d. スカート部材において、マンホール等の閉口部があって補強をし ていない場合は、欠損の影響を考慮する。 e. 耐震計算に用いる寸法は、公券値を使用する。 本容器は、前部の条件より図+1に示す下端固定の1質点系振動モデ ルあるいは下端固定上端支持の1質点系振動モデルとして考える。			(1) 計算モデル	
b. 容器はスカートで支持され、スカート下端のベースブレートを円 周上等ビッチの多数の基礎ボルトで基礎に固定されており、固定端 とする。 c. 脚とスカートをはりと考え、変形モードは曲げ及びせん断変形を 考慮する。 d. スカート部材において、マンホール等の開口部があって補強をし ていない場合は、大損の影響を考慮する。 e. 耐震計算に用いる寸法は、公称値を使用する。 本容器は加え外低10回に示す下端固定の1質点系振動モデ ルあるいは下端固定上端文時の1質点系振動モデルとして考える。			モデル化に当たっては次の条件で行う。	
周上等ビッチの多数の基礎ボルトで基礎に固定されており、固定端とする。 6. 胴とスカートをはりと考え、変形モードは曲げ及びせん断変形を考慮する。 6. スカート部材において、マンホール等の開口部があって補強をしていない場合は、欠損の影響を考慮する。 7. 耐費計算に用いる寸法は、公称値を使用する。 本容器は、前記の条件より図4-1に示す下端固定の1質点系振動モデルあるいは下端固定上端支持の1質点系振動モデルあるいは下端固定上端支持の1質点系振動モデルあるいは下端固定して考える。 Image: Current of the state			a. 容器及び内容物の質量は重心に集中するものとする。	
周上等ビッチの多数の基礎ボルトで基礎に固定されており、固定端 とする。 6. 胴とスカートをはりと考え、変形モードは曲げ及びせん断変形を 考慮する。 6. スカート部材において、マンホール等の開口部があって補強をし ていない場合は、欠損の影響を考慮する。 7. 耐費計算に用いる寸法は、公称値を使用する。 本容器は、前記の条件より図4-1に示す下端固定の1質点系振動モデ ルあるいは下端固定上端支持の1質点系振動モデルとして考える。 $\int (1+c \sqrt{3}+m_{0}+q) \sqrt{1+c} \sqrt$			b. 容器はスカートで支持され,スカート下端のベースプレートを円	
とする。 こ. 願とスカートをはりと考え,変形モードは曲げ及びせん断変形を 考慮する。 d. スカート部材において,マンホール等の開口部があって補強をし ていない場合は、欠損の影響を考慮する。 e. 耐酸計算に用いる寸法は、公称値を使用する。 本容器は、前記の条件より図4-1に示す下端固定の1質点系振動モデ ルとるいは下端固定上端文特の1質点系振動モデルとして考える。 $\int \int $				
 に 胴とスカートをはりと考え、変形モードは曲げ及びせん断変形を 考慮する。 d. スカート部材において、マンホール等の開口部があって補強をし ていない場合は、欠損の影響を考慮する。 e. 耐震計算に用いる寸法は、公称値を使用する。 本容器は、前記の条件より図4-1に示す下端固定の1質点系振動モデルとして考える。 レあるいは下端固定上端支持の1質点系振動モデルとして考える。 				
考慮する。 d. スカート部材において、マンホール等の開口部があって補強をしていない場合は、欠損の影響を考慮する。 e. 耐震計算に用いる寸法は、公称値を使用する。 本容器は、前記の条件より図4-1に示す下端固定の1質点系振動モデルとして考える。				
d. スカート部材において、マンホール等の開口部があって補強をしていない場合は、欠損の影響を考慮する。 e. 耐震計算に用いる寸法は、公称値を使用する。 本容器は、前記の条件より図4-1に示す下端固定の1質点系振動モデルとあるいは下端固定上端支持の1質点系振動モデルとして考える。 $\left(1+C_{ij}, m_{in} \in \int_{I_{in}} \int_{I_{i$				
ていない場合は、欠損の影響を考慮する。 e. 耐震計算に用いる寸法は、公称値を使用する。 本容器は、前記の条件より図4-1に示す下端固定の1質点系振動モデルとして考える。 $\int \frac{1+C_{1}+m_{0}+g}{V_{1}+m_{0}+g}$ (1+C_{V}+m_{0}+g) 下端固定の場合 $\int \frac{1+C_{1}+m_{0}+g}{V_{1}+m_{0}+g}$ 下端固定の場合				
 e. 耐震計算に用いる寸法は、公称値を使用する。 本容器は、前記の条件より図4-1に示す下端固定の1質点系振動モデルとして考える。 レあるいは下端固定上端支持の1質点系振動モデルとして考える。 				
本容器は、前記の条件より図4-1に示す下端固定の1質点系振動モデルあるいは下端固定上端支持の1質点系振動モデルとして考える。				
ルあるいは下端固定上端支持の1質点系振動モデルとして考える。 $\left(1+C_{1},\dots,m_{0}+g\right)$ $\left(1+C_{1},\dots,m_{0}+g\right)$ $\left(1+C_{1},\dots,m_{0}+$				
$(1+C_{v}) \cdot m_{0} \cdot g$ $(1+C$				
$(1 + C_{v}) \cdot m_{0} \cdot g$ $(1 + C_{v}) \cdot m_$				

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		(2) 水平方向固有周期	
		a. 下端固定の場合	
		曲げ及びせん断変形によるばね定数K _H は次式で求める。	
		$K_{H} = 1000 \times \left\{ \frac{\ell^{3}}{3 \cdot E \cdot I} + \frac{1}{3 \cdot E_{s} \cdot I_{s}} \cdot \left(3 \cdot \ell^{2} \cdot \ell_{s} + 3 \cdot \ell \cdot \ell_{s}^{2} + \ell_{s}^{3} \right) + \right.$	
		$\frac{\ell}{G \cdot A_{e}} + \frac{\ell_{s}}{G_{s} \cdot A_{se}} \right\} \qquad \cdots \qquad \cdots \qquad \cdots \qquad (4.1.1)$	
		ここで,スカートの開口部(図4-2参照)による影響を考慮し,胴及	
		びスカートの断面性能は次のように求める。	
		胴の断面性能は次式で求める。	
		$\mathbf{I} = \frac{\pi}{8} \cdot \left(\mathbf{D}_{i} + \mathbf{t} \right)^{3} \cdot \mathbf{t} \qquad \cdots $	
		$A_{e} = \frac{2}{3} \cdot \pi \cdot (D_{i} + t) \cdot t \qquad \cdots \qquad \cdots \qquad (4.1.3)$	
		スカートの断面性能は次式で求める。	
		$I_{s} = \frac{\pi}{8} \cdot \left(D_{s} + t_{s}\right)^{3} \cdot t_{s} - \frac{1}{4} \cdot \left(D_{s} + t_{s}\right)^{2} \cdot t_{s} \cdot Y (4.1.4)$	
		スカート開口部の水平断面における最大円周長さは次式で求める。 (図4-2及び図4-3参照)	
		$Y = \sum_{j=1}^{j1} \left(D_s + t_s \right) \cdot \sin^{-1} \left(\frac{D_j}{D_s + t_s} \right) \qquad (4.1.5)$	
		$A_{se} = \frac{2}{3} \cdot \left\{ \pi \cdot \left(D_{s} + t_{s} \right) - Y \right\} \cdot t_{s} \cdot \cdot \cdot \cdot \cdot \cdot \left(4.1.6 \right)$	
		したがって、固有周期T _H は次式で求める。	
		$T_{\rm H} = 2 \cdot \pi \cdot \sqrt{\frac{m_0}{K_{\rm H}}} \qquad (4.1.7)$	
		図4-2 スカート開口部の形状	

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		t s D s D s D s D s D s D s T Y W M T S T S T S T S T S T S T S T S T S T S	
		b. 下端固定上端支持の場合 重心の位置に水平方向の荷重Qが作用したときに上端の支持部に 生じる反力Q'は、図 4-4 に示すように荷重Q及び反力Q'による 上端の変位量 $\delta \geq \delta'$ が等しいとして求める。	
		図4-4 下端固定上端支持の場合の変形モデル 図 4-4 の(1)の場合	
		$\delta = \frac{\mathbf{Q} \cdot \boldsymbol{\ell}^{2}}{6 \cdot \mathbf{E} \cdot \mathbf{I}} \cdot \left(2 \cdot \boldsymbol{\ell} + 3 \cdot \boldsymbol{\ell}_{r}\right) + \frac{\mathbf{Q}}{6 \cdot \mathbf{E}_{s} \cdot \mathbf{I}_{s}}$ $\cdot \left\{2 \cdot \boldsymbol{\ell}_{s}^{3} + 3 \cdot \boldsymbol{\ell}_{s}^{2} \cdot \boldsymbol{\ell}_{r} + 6 \cdot \boldsymbol{\ell}_{s} \cdot \boldsymbol{\ell} \cdot \left(\boldsymbol{\ell}_{s} + \boldsymbol{\ell} + \boldsymbol{\ell}_{r}\right)\right\}$	
		$+ \frac{Q \cdot \ell}{G \cdot A_{e}} + \frac{Q \cdot \ell_{s}}{G_{s} \cdot A_{se}} \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (4.1.8)$	
			(八明マシナル)]

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		図 4-4 の(2)の場合	
		$\delta' = \frac{\mathbf{Q}' \cdot \left(\boldsymbol{\ell} + \boldsymbol{\ell}_{r}\right)^{3}}{3 \cdot \mathbf{E} \cdot \mathbf{I}} + \frac{\mathbf{Q}'}{3 \cdot \mathbf{E}_{s} \cdot \mathbf{I}_{s}}$	
		$\delta = \frac{1}{3 \cdot E \cdot I} + \frac{1}{3 \cdot E_{s} \cdot I_{s}}$	
		$\cdot \left\{ 3 \cdot \left(\ell + \ell_{\mathrm{r}} \right)^{2} \cdot \ell_{\mathrm{s}} + 3 \cdot \left(\ell + \ell_{\mathrm{r}} \right) \cdot \ell_{\mathrm{s}}^{2} + \ell_{\mathrm{s}}^{3} \right\}$	
		$+ \frac{\mathbf{Q}' \cdot \left(\boldsymbol{\ell} + \boldsymbol{\ell}_{r}\right)}{\mathbf{G} \cdot \mathbf{A}_{e}} + \frac{\mathbf{Q}' \cdot \boldsymbol{\ell}_{s}}{\mathbf{G}_{s} \cdot \mathbf{A}_{se}} \qquad \cdot (4.1.9)$	
		(4.1.8)式と(4.1.9)式を等しく置くことにより,	
		$\mathbf{Q'} = \mathbf{Q} \cdot \left\{ \frac{\boldsymbol{\ell}^2 \cdot \left(2 \cdot \boldsymbol{\ell} + 3 \cdot \boldsymbol{\ell}_{\mathrm{r}} \right)}{6 \cdot \mathrm{E} \cdot \mathrm{I}} \right\}$	
		$+\frac{2\cdot \ell_{s}^{3}+3\cdot \ell_{s}^{2}\cdot \ell_{r}+6\cdot \ell_{s}\cdot \ell\cdot \left(\ell_{s}+\ell+\ell_{r}\right)}{6\cdot E_{s}\cdot I_{s}}$	
		6 • E _s • I _s	
		$+\frac{\ell}{\mathbf{G}\cdot\mathbf{A}_{e}}+\frac{\ell}{\mathbf{G}_{s}\cdot\mathbf{A}_{s}e} \right\} \times \left\{ \frac{\left(\ell+\ell_{r}\right)^{3}}{3\cdot\mathbf{E}\cdot\mathbf{I}} \right\}$	
		$+\frac{3\cdot\left(\varrho+\varrho_{r}\right)^{2}\cdot\varrho_{s}+3\cdot\left(\varrho+\varrho_{r}\right)\cdot\varrho_{s}^{2}+\varrho_{s}^{3}}{3\cdot\mathrm{E}\cdot\mathrm{I}}$	
		$+$ $3 \cdot E_{s} \cdot I_{s}$	
		$+ \frac{\ell + \ell_{\rm r}}{G \cdot A_{\rm o}} + \frac{\ell_{\rm s}}{G_{\rm s} \cdot A_{\rm so}} \bigg\} \qquad \cdots \qquad (4.1.10)$	
		。 s so したがって,図 4-4の(3)に示す重心位置での変位量 δoは図 4-4	
		の(1)及び(2)の重心位置での変位量の重ね合せから求めることがで	
		き、ばね定数Kuは次式で求める。	
		$K_{H} = \frac{Q}{\delta_{0}} = 1000 \times \left\{ \frac{\ell^{3}}{3 \cdot E \cdot I} + \frac{3 \cdot \ell^{2} \cdot \ell_{s} + 3 \cdot \ell \cdot \ell_{s}^{2} + \ell_{s}^{3}}{3 \cdot E_{s} \cdot I_{s}} \right\}$	
		``	
		$+\left(1-\frac{\mathbf{Q}'}{\mathbf{Q}}\right)\cdot\left(\frac{\boldsymbol{\ell}}{\mathbf{G}\cdot\mathbf{A}_{e}}+\frac{\boldsymbol{\ell}_{s}}{\mathbf{G}_{s}\cdot\mathbf{A}_{se}}\right)-\frac{\mathbf{Q}'}{\mathbf{Q}}\cdot\left(\frac{2\cdot\boldsymbol{\ell}^{3}+3\cdot\boldsymbol{\ell}^{2}\cdot\boldsymbol{\ell}_{r}}{6\cdot\mathbf{E}\cdot\mathbf{I}}\right)$	
		$+\frac{3\cdot e_s^2\cdot e+e_s^3+3\cdot e_s\cdot e^2+3\cdot e_s\cdot e\cdot e\cdot e_r+\frac{3}{2}\cdot e_s^2\cdot e_s}{3\cdot E_s\cdot I_s}\right)\!$	

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		固有周期は(4.1.7)式により求める。	
		(3) 鉛直方向固有周期	
		軸方向変形によるばね定数Kvは次式で求める。	
		$K_{V} = 1000 \times \left(\frac{\ell}{E \cdot A} + \frac{\ell_{s}}{E_{s} \cdot A_{s}} \right) \qquad \cdot $	
		$A = \pi \cdot (D_i + t) \cdot t \qquad \cdots \qquad \cdots \qquad \cdots \qquad (4.1.13)$	
		$\mathbf{A}_{s} = \left\{ \pi \cdot \left(\mathbf{D}_{s} + \mathbf{t}_{s} \right) - \mathbf{Y} \right\} \cdot \mathbf{t}_{s} \qquad \cdots \qquad (4.1.14)$	
		したがって、固有周期Tvは次式で求める。	
		$T_{V} = 2 \cdot \pi \cdot \sqrt{\frac{m_{0}}{K_{V}}} \cdots \cdots \cdots \cdots \cdots \cdots (4.1.15)$	
		5. 構造強度評価	
		5.1 構造強度評価方法	
		4.1(1)項 a. ~e. のほか,次の条件で計算する。概要図を図 5-1	
		に示す。	
		(1) 地震力は容器に対して水平方向及び鉛直方向から作用するもの	
		とする。	
		<u>期版</u>	
		スカート 開 □ 部 バースブレート 登破ボルト	
		<u> 一 に 一 に で 一 に で 一 に で 一 に で に 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、</u>	
		図 5-1 概要図	

《参考》柏崎刈羽原子力発電所第7号機 (2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		5.2 設計用地震力	
		「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」	
		による地震力は,添付書類「VI-2-1-7 設計用床応答曲線の作成方	表現の相違
		針」に基づき設定する。	
		5.3 計算方法	
		5.3.1 応力の計算方法	
		応力計算における水平方向と鉛直方向の組合せについて, 静的地震	
		力を用いる場合は絶対値和を用いる。動的地震力を用いる場合は,絶	
		対値和又は SRSS 法を用いる。	
		5.3.1.1 胴の計算方法	
		(1) 静水頭又は内圧による応力	
		静水頭による場合(鉛直方向地震時を含む。)	
		$\sigma_{\phi 1} = \frac{\rho' \cdot g \cdot H \cdot D_i}{2 \cdot t} \qquad \cdots \qquad \cdots \qquad \cdots \qquad (5.3, 1.1, 1)$	
		$\sigma_{\phi 2} = \frac{\rho' \cdot g \cdot H \cdot D_i \cdot C_V}{2 \cdot t} \qquad \cdots \qquad (5.3.1.1.2)$	
		$\sigma_{x1} = 0 \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (5.3.1.1.3)$	
		内圧による場合	
		$\sigma_{\phi 1} = \frac{P_r \cdot \left(D_i + 1.2 \cdot t\right)}{2 \cdot t} \qquad \cdots \qquad \cdots \qquad \cdots \qquad (5.3.1.1.4)$	
		$\sigma_{\phi 2} = 0$	
		$\sigma_{x1} = \frac{P_r \cdot (D_i + 1.2 \cdot t)}{4 \cdot t} \qquad \dots \qquad (5.3.1.1.6)$	
		(2) 運転時質量及び鉛直方向地震による応力	
		胴がスカートと接合する点を境界として、上部には胴自身の質量に	
		よる圧縮応力が,下部には下部の胴自身の質量と内容物の質量による	
		引張応力が生じる。	
		下部の胴について	
		$\sigma_{x2} = \frac{\left(m_0 - m_0\right) \cdot g}{\pi \cdot \left(D_i + t\right) \cdot t} \qquad \cdots \qquad \cdots \qquad \cdots \qquad (5.3.1.1.7)$	
		$\sigma_{x5} = \frac{\left(m_0 - m_e\right) \cdot g \cdot C_V}{\pi \cdot \left(D_i + t\right) \cdot t} \qquad \cdots \qquad (5. 3. 1. 1. 8)$	

《参考》柏崎刈羽原子力発電所第7号機 (2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		上部の胴について	
		$\sigma_{x3} = \frac{m_{e} \cdot g}{\pi \cdot (D_{i} + t) \cdot t} \qquad \cdots \qquad (5.3.1.1.9)$	
		$\sigma_{\mathbf{x}6} = \frac{\mathbf{m}_{\mathbf{e}} \cdot \mathbf{g} \cdot \mathbf{C}_{\mathbf{V}}}{\pi \cdot (\mathbf{D}_{\mathbf{i}} + \mathbf{t}) \cdot \mathbf{t}} \qquad (5. 3. 1. 1. 10)$	
		(3) 水平方向地震による応力	
		水平方向の地震力により胴はスカート接合部で最大となる曲げモ	
		ーメントを受ける。この曲げモーメントによる軸方向応力と地震力	
		によるせん断応力は次のように求める。	
		a. 下端固定の場合	
		$\sigma_{\mathbf{x}4} = \frac{4 \cdot C_{\mathbf{H}} \cdot \mathbf{m}_{0} \cdot g \cdot \ell}{\pi \cdot (D_{i} + t)^{2} \cdot t} \qquad \cdot $	
		$\tau = \frac{2 \cdot \mathbf{C}_{\mathrm{H}} \cdot \mathbf{m}_{0} \cdot \mathbf{g}}{\pi \cdot (\mathbf{D}_{\mathrm{i}} + \mathrm{t}) \cdot \mathrm{t}} \frac{4 \cdot \mathbf{C}_{\mathrm{H}} \cdot \mathbf{m}_{0} \cdot \mathbf{g} \cdot \ell}{\pi \cdot (\mathbf{D}_{\mathrm{i}} + \mathrm{t})^{2} \cdot \mathrm{t}} \qquad \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (5.3.1.1.12)$	
		b. 下端固定上端支持の場合	
		$\sigma_{x4} = \frac{4 \cdot C_{\mathrm{H}} \cdot \mathbf{m}_{0} \cdot g \cdot \left e - \frac{Q'}{Q} \cdot \left(e + e_{\mathrm{r}} \right) \right }{\pi \cdot \left(\mathrm{D}_{\mathrm{i}} + \mathrm{t} \right)^{2} \cdot \mathrm{t}} \qquad (5.3.1.1.13)$	
		$\tau = \frac{2 \cdot C_{\mathrm{H}} \cdot m_0 \cdot g \cdot \left(1 - \frac{Q'}{Q}\right)}{\pi \cdot \left(\mathrm{D}_{\mathrm{i}} + \mathrm{t}\right) \cdot \mathrm{t}} \qquad (5.3, 1.1, 14)$	
		(4) 組合せ応力(1)~(3)によって求めた胴の応力は以下のように組み合わせる。	
		a. 一次一般膜応力	
		(a) 組合せ引張応力	
		$\sigma_{\phi} = \sigma_{\phi 1} + \sigma_{\phi 2}$ (5. 3. 1. 1. 15)	
		$\sigma_{0t} = \frac{1}{2} \cdot \left\{ \sigma_{\phi} + \sigma_{xt} + \sqrt{\left(\sigma_{\phi} - \sigma_{xt}\right)^{2} + 4 \cdot \tau^{2}} \right\} $ (5.3.1.1.16)	

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		ここで、	
		【絶対値和】	
		$\sigma_{x1} = \sigma_{x1} + \sigma_{x2} + \sigma_{x4} + \sigma_{x5} $ (5.3.1.1.17)	
		【SRSS 法】	
		$\sigma_{xt} = \sigma_{x1} + \sigma_{x2} + \sqrt{\sigma_{x4}^2 + \sigma_{x5}^2} \cdots \cdots (5.3.1.1.18)$	
		(b) 組合せ圧縮応力	
		$\sigma_{\phi} = -\sigma_{\phi 1} - \sigma_{\phi 2} \sqrt{\sigma_{x4}^2 + \sigma_{x5}^2} \cdots \cdots \cdots \cdots (5.3.1.1.19)$	
		σ _{xc} が正の値(圧縮側)のとき,次の組合せ圧縮応力を求める。	
		$\sigma_{0c} = \frac{1}{2} \cdot \left\{ \sigma_{\phi} + \sigma_{xc} + \sqrt{\left(\sigma_{\phi} - \sigma_{xc}\right)^2 + 4 \cdot \tau^2} \right\} $ (5.3.1.1.20)	
		ここで、	
		【絶対値和】	
		$\sigma_{xc} = -\sigma_{x1} + \sigma_{x3} + \sigma_{x4} + \sigma_{x6} \qquad \cdot \cdot \cdot \cdot \cdot (5.3.1.1.21)$	
		【SRSS 法】	
		$\sigma_{\rm xc} = -\sigma_{\rm x\ 1} + \sigma_{\rm x\ 3} + \sqrt{\sigma_{\rm x\ 4}^2 + \sigma_{\rm x\ 6}} \qquad \cdot \cdot \cdot (5.\ 3.\ 1.\ 1.\ 22)$	
		したがって, 胴の組合せ一次一般膜応力の最大値は, 絶対値和,	
		SRSS 法それぞれに対して,	
		$\sigma_0 = \operatorname{Max}\left[$ 組合せ引張応力 $\left(\sigma_{0t}\right)$,組合せ圧縮応力 $\left(\sigma_{0c}\right)$] (5.3.1.1.23)	
		とする。 一次応力は一次一般膜応力と同じ値になるので省略する。	
		 一次応力は一次一般展応力と同し値になるので有略する。 b. 地震動のみによる一次応力と二次応力の和の変動値 	
		(a) 組合世引張応力	
		$\sigma_{2\phi} = \sigma_{\phi 2} \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (5.3.1.1.24)$	
		$\sigma_{2t} = \sigma_{2\phi} + \sigma_{2xt} + \sqrt{\left(\sigma_{2\phi} - \sigma_{2xt}\right)^2 + 4 \cdot \tau^2} (5.3.1.1.25)$	
		ここで、	

《参考》柏崎刈羽原子力発電所第7号機 (2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		【絶対値和】	
		$\sigma_{2 x t} = \sigma_{x 4} + \sigma_{x 5} $	
		【SRSS 法】	
		$\sigma_{2 x t} = \sqrt{\sigma_{x 4}^{2} + \sigma_{x 5}^{2}} \sigma_{x 5} \cdots \cdots \cdots \cdots \cdots (5.3.1.1.27)$	
		(b) 組合せ圧縮応力	
		$\sigma_{2\phi} = -\sigma_{\phi 2} \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (5.3.1.1.28)$	
		$\sigma_{2c} = \sigma_{2\phi} + \sigma_{2xc} + \sqrt{\left(\sigma_{2\phi} - \sigma_{2xc}\right)^2 + 4 \cdot \tau^2} (5.3.1.1.29)$	
		ここで、	
		【絶対値和】	
		$\sigma_{2 x c} = \sigma_{x 4} + \sigma_{x 6} $ (5.3.1.1.30)	
		【SRSS 法】	
		$\sigma_{2 \text{ x c}} = \sqrt{\sigma_{x 4}^{2} + \sigma_{x 6}^{2}} \sigma_{x 6} \qquad \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (5.3.1.1.31)$	
		したがって、胴の地震動のみによる一次応力と二次応力の和の変	
		動値の最大値は、絶対値和、SRSS 法それぞれに対して、	
		$\sigma_2 = Max \left[組合せ引張応力 \left(\sigma_{2t} \right), 組合せ圧縮応力 \left(\sigma_{2c} \right) \right]$	
		(5.3.1.1.32)	
		とする。	
		5.3.1.2 スカートの計算方法	
		(1) 運転時質量及び鉛直方向地震による応力	
		スカート底部に生じる運転時質量及び鉛直方向地震による圧縮応	
		力は次式で求める。	
		$\sigma_{s1} = \frac{m_0 \cdot g}{\left\{\pi \cdot \left(D_s + t_s\right) - Y\right\} \cdot t_s} \qquad \cdots \qquad (5. \ 3. \ 1. \ 2. \ 1)$	
		$\sigma_{s3} = \frac{m_0 \cdot g \cdot C_V}{\left\{\pi \cdot (D_s + t_s) - Y\right\} \cdot t_s} \qquad (5.3.1.2.2)$	

先行審査プラントの記載との比較表(VI-2-1-13-1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針)

《参考》柏崎刈羽原子力発電所第7号機 (2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		(2) 水平方向地震による応力	
		水平方向の地震力によりスカートに作用する曲げモーメントによ	
		り生じる軸方向応力及び水平方向地震力によるせん断応力は次のよ	
		うに求める。	
		a. 下端固定の場合	
		$\sigma_{s 2} = \frac{M_s}{\left(D_s + t_s\right) \cdot t_s \cdot \left\{\frac{\pi}{4} \cdot \left(D_s + t_s\right) - \frac{Y}{2}\right\}} \cdot \cdot \cdot \cdot (5.3.1.2.3)$	
		$\tau_{s} = \frac{2 \cdot C_{H} \cdot m_{0} \cdot g}{\left\{\pi \cdot \left(D_{s} + t_{s}\right) - Y\right\} \cdot t_{s}} (5.3.1.2.4)$	
		ここで、	
		$\mathbf{M}_{s} = C_{\mathbf{H}} \cdot \mathbf{m}_{0} \cdot g \cdot (\boldsymbol{\ell}_{s} + \boldsymbol{\ell}) \qquad \cdot (5.3, 1.2, 5)$	
		b. 下端固定上端支持の場合	
		軸方向応力は(5.3.1.2.3)式で表されるが,曲げモーメントM。は次の	
		M_{s1} 又は M_{s2} のいずれか大きい方の値とする。	
		$\mathbf{M}_{s1} = \mathbf{C}_{H} \cdot \mathbf{m}_{0} \cdot \mathbf{g} \cdot \left \boldsymbol{\ell} - \frac{\mathbf{Q}'}{\mathbf{Q}} \cdot \left(\boldsymbol{\ell} + \boldsymbol{\ell}_{r} \right) \right \qquad \cdot \cdot \cdot \cdot \cdot (5.3.1.2.6)$	
		$\mathbf{M}_{\mathrm{s}2} = \mathbf{C}_{\mathrm{H}} \cdot \mathbf{m}_{0} \cdot \mathbf{g} \cdot \left \boldsymbol{\ell}_{\mathrm{s}} + \boldsymbol{\ell} - \frac{\mathbf{Q}'}{\mathbf{Q}} \cdot \left(\boldsymbol{\ell}_{\mathrm{s}} + \boldsymbol{\ell} + \boldsymbol{\ell}_{\mathrm{r}} \right) \right \left \boldsymbol{\ell} - \frac{\mathbf{Q}'}{\mathbf{Q}} \cdot \left(\boldsymbol{\ell} + \boldsymbol{\ell}_{\mathrm{r}} \right) \right $	
		(5.3.1.2.7)	
		$\tau_{s} = \frac{2 \cdot C_{H} \cdot m_{0} \cdot g \cdot \left(1 - \frac{Q'}{Q}\right)}{\left\{\pi \cdot \left(D_{s} + t_{s}\right) - Y\right\} \cdot t_{s}} \qquad \cdot (5.3, 1.2, 8)$	
		(3) 組合せ応力	
		組合せ応力は次式で求める。	
		【絶対値和】	
		$\sigma_{s} = \sqrt{\left(\sigma_{s1} + \sigma_{s2} + \sigma_{s3}\right)^{2} + 3 \cdot \tau_{s}^{2}} \cdots \cdots (5.3.1.2.9)$	
		【SRSS 法】	
		$\sigma_{s} = \sqrt{\left(\sigma_{s1} + \sqrt{\sigma_{s2}^{2} + \sigma_{s3}^{2}}\right)^{2} + 3 \cdot \tau_{s}^{2}} \cdot \cdot \cdot (5.3, 1.2, 10)$	
		大容乳のうた於囲なの内容は、姉妹の様変車値を今ま可能性おちスキめん	入間できません 18-

本資料のうち枠囲みの内容は、他社の機密事項を含む可能性があるため公開できません。

《参考》柏崎刈羽原子力発電所第7号機 (2020.9.25 提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		5.3.1.3 基礎ボルトの計算応力	
		(1) 引張応力	
		基礎に作用する転倒モーメントM。は,下端固定の場合,	
		(5.3.1.2.5)式を,下端固定上端支持の場合は(5.3.1.2.6)式又は	
		(5.3.1.2.7)式のいずれか大きい方を用いる。	
		転倒モーメントが作用した場合に生じる基礎ボルトの引張荷重と	
		基礎部の圧縮荷重については,荷重と変位量の釣合い条件を考慮する	
		ことにより求める (図 5-2 参照)。	
		以下にその手順を示す。	
		a. σ _b 及びσ _c を仮定して基礎ボルトの応力計算における中立軸の	
		荷重係数kを求める。	
		$k = \frac{1}{1 + \frac{a_b}{s \cdot a_b}} \qquad (5. 3. 1. 3. 1)$	
		b. 基礎ボルトの応力計算における中立軸を定める角度 α を求め	
		$ \overset{\mathfrak{T}_{\mathfrak{s}}}{\alpha = \cos^{-1} (1 - 2 \cdot \mathbf{k})} \cdots \cdots \cdots \cdots \cdots \cdots (5, 3, 1, 3, 2) $	
		$ \hline f + f + f + f + f + f + f + f + f + f$	

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		c. 各定数 e, z, C _t 及びC _o を求める。	
		$\mathbf{e} = \frac{1}{2} \cdot \left\{ \frac{(\pi - \alpha) \cdot \cos^2 \alpha + \frac{1}{2} \cdot (\pi - \alpha) + \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha}{(\pi - \alpha) \cdot \cos \alpha + \sin \alpha} \right\}$	
		$+\frac{\frac{1}{2}\cdot\alpha-\frac{3}{2}\cdot\sin\alpha\cdot\cos\alpha+\alpha\cdot\cos^{2}\alpha}{\sin\alpha-\alpha\cdot\cos\alpha}\bigg\}\qquad \cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot(5.3.1.3.3)$	
		$z = \frac{1}{2} \cdot \left(\cos \alpha + \frac{\frac{1}{2} \cdot \alpha - \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha + \alpha \cdot \cos^2 \alpha}{\sin \alpha - \alpha \cdot \cos \alpha} \right)$	
		(5.3.1.3.4)	
		$C_{t} = \frac{2 \cdot \{(\pi - \alpha) \cdot \cos \alpha + \sin \alpha\}}{1 + \cos \alpha} \qquad \cdots \qquad (5. 3. 1. 3. 5)$	
		$C_{c} = \frac{2 \cdot (\sin \alpha - \alpha \cdot \cos \alpha)}{1 - \cos \alpha} \qquad \cdots \qquad (5.3.1.3.6)$	
		 d. 各定数を用いてFt及びFcを求める。 【絶対値和】 	
		$F_{t} = \frac{M_{s} - (1 - C_{v}) \cdot m_{0} \cdot g \cdot z \cdot D_{c}}{e \cdot D_{c}} \qquad (5. 3. 1. 3. 7)$	
		$F_{c} = F_{t} + (1 - C_{V}) \cdot m_{0} \cdot g \cdots \cdots \cdots (5. 3. 1. 3. 8)$	
		【SRSS 法】	
		$F_{t} = \frac{\sqrt{M_{s}^{2} + (C_{v} \cdot m_{0} \cdot g \cdot z \cdot D_{c})^{2}}}{e \cdot D_{c}} - \frac{z}{e} \cdot m_{0} \cdot g \qquad \cdot \cdot \cdot \cdot (5.3.1.3.9)$	
		$F_{c} = \frac{\sqrt{M_{s}^{2} + (C_{v} \cdot m_{0} \cdot g \cdot (z - e) \cdot D_{c})^{2}}}{e \cdot D_{c}} + (1 - \frac{z}{e}) \cdot m_{0} \cdot g \ 5.\ 3.\ 1.\ 3.\ 10)$	
		基礎ボルトに引張力が作用しないのは、αがπに等しくなったと	
		きであり, (5.3.1.3.3) 式及び (5.3.1.3.4) 式において α をπに	
		近づけた場合の値 e = 0.75 及び z = 0.25 を (5.3.1.3.7) 式又は	

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		(5.3.1.3.9) 式に代入し,得られるFtの値によって引張力の有無	
		を次のように判定する。	
		F t ≦0 ならば引張力は作用しない。	
		F _t >0ならば引張力が作用しているので次の計算を行う。	
		e. σь及びσ。を求める。	
		$\sigma_{\rm b} = \frac{2 \cdot \mathrm{F}_{\rm t}}{\mathrm{t}_1 \cdot \mathrm{D}_{\rm c} \cdot \mathrm{C}_{\rm t}} \qquad \cdots \qquad \cdots \qquad (5.3.1.3.11)$	
		$\sigma_{c} = \frac{2 \cdot F_{c}}{\left(t_{2} + s \cdot t_{1}\right) \cdot D_{c} \cdot C_{c}} \cdots \cdots \cdots (5.3.1.3.12)$	
		ここで,	
		$t_1 = \frac{n \cdot A_b}{\pi \cdot D_c}$ (5. 3. 1. 3. 13)	
		$t_{2} = \frac{1}{2} \cdot (D_{bo} - D_{bi}) - t_{1} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (5.3.1.3.14)$	
		$A_{b} = \frac{\pi}{4} \cdot d^{2} \cdots \cdots$	
		σ _b 及び σ _c が a 項にて仮定した値と十分に近似していることを確	
		認する。この場合のσb及びσcを基礎ボルトと基礎に生じる応力と する。	
		(2) せん断応力	
		a. 下端固定の場合	
		$\tau_{\rm b} = \frac{C_{\rm H} \cdot m_0 \cdot g}{n \cdot A_{\rm c}} \qquad (5.3, 1.3, 16)$	
		。 b. 下端固定上端支持の場合	
		$\tau_{\rm b} = \frac{C_{\rm H} \cdot m_0 \cdot g \cdot \left(1 - \frac{Q'}{Q}\right)}{n \cdot A_{\rm b}} \qquad \cdots \qquad (5.3, 1.3, 17)$	

______ 先行審査プラントの記載との比較表(VI-2-1-13-1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針)

▶考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機 備考
		5.4 応力の評価
		5.4.1 胴の応力評価
		5.3.1.1項で求めた組合せ応力が胴の最高使用温度における許容
		応力Sa以下であること。ただし、Saは下表による。
		許容応力Sa
		弾性設計用地震動Sd又は静基準地震動Ssによ
		応力の種類的震度による荷重との組合せる荷重との組合せの
		の場合場合
		設計降伏点 S _y と設計引張強 設計引張強さ S _u の0.6
		さSuの0.6倍のいずれか小さ 倍。
		い方の値。ただし,オーステ
		一次一般膜応 ナイト系ステンレス鋼及び高
		力 ニッケル合金にあっては許容
		引張応力Sの1.2倍の方が大
		きい場合は、この大きい方の
		値とする。
		一次応力と 地震動のみによる一次応力と二次応力の和の変動値
		二次応力の和 が設計降伏点 Syの2倍以下であれば、疲労解析は不
		要とする。
		一次応力の評価は算出応力が一次一般膜応力と同じ値であるので省
		略する。
		5.4.2 スカートの応力評価
		(1) 5.3.1.2項で求めたスカートの組合せ応力が許容引張応力 f t以
		下であること。ただし、ftは下表による。
		弾性設計用地震動Sd又
		は静的震度による荷重と またの知らいの思う
		の組合せの場合
		許容引張応力 F F *
		計符引張応刀 f t $\frac{F}{1.5} \cdot 1.5$ $\frac{F^*}{1.5} \cdot 1.5$
		(2) 圧縮膜応力(圧縮応力と曲げによる圧縮側応力の組合せ)は次
		式を満足すること。

22 -

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		(座屈の評価)	
		$\frac{\eta \cdot \left(\sigma_{s1} + \sigma_{s3}\right)}{f_{c}} + \frac{\eta \cdot \sigma_{s2}}{f_{b}} \leq 1 \qquad \cdots \qquad \cdots \qquad (5.4.2.1)$	
		ここで, f.は次による。	
		$\frac{D_{s}+2 \cdot t_{s}}{2 \cdot t_{s}} \leq \frac{1200 \cdot g}{F} \mathcal{O} \geq \tilde{\mathcal{E}}$	
		$f_{c} = F$	
		$\frac{1200 \cdot g}{F} < \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} < \frac{8000 \cdot g}{F} \mathcal{O} \geq \mathring{e}$	
		$f_{c} = F \cdot \left[1 - \frac{1}{6800 \cdot g} \cdot \left\{ F - \phi_{1} \left(\frac{8000 \cdot g}{F} \right) \right\} \cdot \left(\frac{D_{s}^{+2} \cdot t_{s}}{2 \cdot t_{s}} - \frac{1200 \cdot g}{F} \right) \right] $ (5. 4. 2. 3)	
		$\frac{8000 \cdot g}{F} \leq \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \leq 800 \text{ のとき}$	
		$f_{c} = \phi_{1} \left(\frac{D_{s}^{+2 \cdot t_{s}}}{2 \cdot t_{s}} \right) \qquad \cdot $	
		ただし、 $\phi_1(\mathbf{x})$ は次の関数とする。 $\phi_1(\mathbf{x})=0.6 \cdot \frac{\mathbf{E}_s}{\mathbf{x}} \cdot \left[1-0.901 \cdot \left\{1-\exp\left(-\frac{1}{16} \cdot \sqrt{\mathbf{x}}\right)\right\}\right]$ (5.4.2.5)	
		また, f _b は次による。	
		$\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \leq \frac{1200 \cdot g}{F} \mathcal{O} \geq \tilde{\Xi} $	
		$f_{b} = F$	
		$\frac{1200 \cdot g}{F} < \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} < \frac{9600 \cdot g}{F} \mathcal{O} \succeq \mathring{\Xi}$	
		$\mathbf{f}_{\mathrm{b}} = \mathbf{F} \cdot \left[1 - \frac{1}{8400 \cdot g} \cdot \left\{ \mathbf{F} - \phi_2 \left(\frac{9600 \cdot g}{\mathbf{F}} \right) \right\} \cdot \left(\frac{\mathbf{D}_{\mathrm{s}} + 2 \cdot \mathbf{t}_{\mathrm{s}}}{2 \cdot \mathbf{t}_{\mathrm{s}}} - \frac{1200 \cdot g}{\mathbf{F}} \right) \right]$	
		(5. 4. 2. 7)	

《参考》柏崎刈羽原子力発電所第7号機 (2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		$\frac{9600 \cdot g}{F} \leq \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \leq 800 の とき$	
		$\frac{1}{F} = \frac{1}{2 \cdot t_s} = \frac{1}{2 \cdot t_s}$	
		$f_{b} = \phi_{2} \left(\frac{D_{s} + 2 \cdot t_{s}}{2 \cdot t_{s}} \right) \qquad \cdot $	
		$b = 2 \left(\frac{2}{x}, \frac{1}{x} \right)$ ただし、 $\phi_2(\mathbf{x})$ は次の関数とする。	
		$\phi_2(\mathbf{x}) = 0.6 \cdot \frac{\mathbf{E}_s}{\mathbf{x}} \cdot \left[1 - 0.731 \cdot \left\{ 1 - \exp\left(-\frac{1}{16} \cdot \sqrt{\mathbf{x}}\right) \right\} \right]$ (5.4.2.9)	
		$\psi_2(\mathbf{x}) = 0.0^{\circ} \frac{1}{\mathbf{x}} \cdot \left[1 = 0.751^{\circ} \left\{1 = \exp\left(-\frac{1}{16} \sqrt{\mathbf{x}}\right)\right\}\right]$ (0.4.2.9)	
		ηは安全率で次による。	
		$D_{a}+2 \cdot t_{a} = 1200 \cdot q$	
		$\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \leq \frac{1200 \cdot g}{F} \mathcal{O} \geq \tilde{\mathcal{E}}$	
		$\eta = 1 \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (5.4.2.10)$	
		$1200 \cdot \text{g}$ $\text{D}_{\text{s}} + 2 \cdot \text{t}_{\text{s}} 8000 \cdot \text{g}$	
		$\frac{1200 \cdot g}{F} < \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} < \frac{8000 \cdot g}{F} $ のとき	
		$\eta = 1 + \frac{0.5 \cdot F}{6800 \cdot g} \cdot \left(\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} - \frac{1200 \cdot g}{F}\right) \cdot \cdot$	
		$7/1$ $6800 \cdot g$ $\left(2 \cdot t_s + F\right)$ $(0.1.2.11)$	
		$\frac{8000 \cdot g}{F} \leq \frac{D_s + 2 \cdot t}{2 \cdot t} \mathcal{O} \geq \mathfrak{E}$	
		F 2·t _s	
		$\eta = 1.5 \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (5.4, 2.12)$	
		5.4.3 基礎ボルトの応力評価	
		5.3.1.3 項で求めた基礎ボルトの引張応力σ bは次式より求めた許	
		容引張応力 f_{ts} 以下であること。ただし f_{to} は下表による。	
		$f_{ts} = Min \left[1.4 \cdot f_{to} - 1.6 \cdot \tau_{b}, f_{to} \right] \cdot \cdot \cdot \cdot (5.4.3.1)$	
		せん断応力 τ b はせん断力のみを受ける基礎ボルトの許容せん断応	
		力fsb以下であること。ただし、fsbは下表による。	

《参考》柏崎刈羽原子力発電所第7号機 (2020.9.25 提出版)	東海第二発電所	女川原子力発電所第2号機 備考
		弾性設計用地震動SdZ は静的震度による荷重 との組合せの場合 基準地震動Ssによる
		許容引張応力 f_{to} $\frac{F}{2} \cdot 1.5$ $\frac{F^*}{2} \cdot 1.5$
		許容せん断応 カ $\frac{F}{1.5 \cdot \sqrt{3}} \cdot 1.5$ $\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$
		 耐震計算書のフォーマット スカート支持たて置円筒形容器の耐震計算書のフォーマットは、 以下のとおりである。
		〔設計基準対象施設及び重大事故等対処設備の場合〕 フォーマットⅠ 設計基準対象施設としての評価結果 フォーマットⅡ 重大事故等対処設備としての評価結果
		 〔重大事故等対処設備単独の場合〕 フォーマットⅡ 重大事故等対処設備としての評価結果* 注記 *:重大事故等対処設備単独の場合は,設計基準対象施設及び 重大事故等対処設備に示すフォーマットⅡを使用するもの とする。ただし,評価結果表に記載の章番を「2.」から 「1.」とする。

《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	注考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版) 東海第二発電所 女川原子力発電所第2号機					

26 -

先行審査プラントの記載と	の比較表 (VI-2-1-13-1 スカート支持たて置円筒)	形容器の耐震性についての計算書作成の基本方針)	
《参考》柏崎刈羽原子力発電所第7号機 (2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考

っわ. 1 古住たて異田佐形広明の封雪地についての計符書/によの甘まナ41)

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

(金奇多) 相磁均划所在力强電防第 7 94월 (12020, 9.25 9 7 84 1049) 政策二强電所 反則原子力强電防第 2 948 (個句 ····································
1.4 結論 L4.1 関有側 L4.1 関有側 所が功向 新地方 市

先行審査ブラントの記載と	の比較表(VI-2-1-13-1 スカート支持たて置円筒	形容器の耐震性についての計算書作成の基本方針)	
《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考

_____ った。1 古住たて異国体形応望の母電体についての計算書化書の甘去士(4)

先行審査プラントの記載と	の比較表 (VI-2-1-13-1 スカート支持たて置円筒7	5容器の耐震性についての計算書作成の基本方針)	
《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考
		<section-header></section-header>	

____ 上行率本プラントの記載しの比較主(NJ-9-1-19-1 フカート支持たて異田符形容界の副電枡にへいての社管書佐述の甘ま士44)

30 -

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

		おおおいの計算書作成の基本方針) カ川原子力必要示策2号操	備去
《参考》柏崎刈羽原子力発電所第7号機(2020.9.25 提出版)	東海第二発電所	султива-сложавляя с зерана 101 <th>備考</th>	備考

31 -

1 the second sec			(VI-2-1-13-1 スカート支持たて置円筒形容器の 東海第二発電所						2 月 根	幾			備考	
	《参考》柏崎刈羽原子力発電所第7号機(2020.9.25ま	提出版)	東海第二発電所	積的两 (単位、: s) 向 困疫的例 7向 工 _七 二 70 工 ₇ 二	No.71 理性認識のとd Xは錯ぜ透度 振電振動とs 材 材 杉 方 弾性応力 評約応力 評約応力	 $-\chi + -\chi + -\chi$ $ \sigma_2 =$ $S_s =$	縮合せ $ \sigma_s =$ $f_s =$ 田藤と曲げ $\eta \cdot (\sigma_{s,t}, \sigma_s)$ $\eta \cdot \sigma_s$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		the transformed and transformed and the transformed and the transformed and the transformed and the transformed and transformed and the transforme	注記 * : f u=Min[1.4 + f u=-1.6 + cb ,		備考	

32 -

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) :前回提出時からの変更箇所

		P器の耐震性についての計算書作成の基本方針)	
《参考》柏崎刈羽原子力発電所第7号機(2020.9.25提出版)	東海第二発電所	女川原子力発電所第2号機	備考