女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0033_改 0
提出年月日	2020年11月27日

VI-2-1-13-1 スカート支持たて置円筒形容器の耐震性についての 計算書作成の基本方針

2020年11月 東北電力株式会社

目 次

1.	棚	任要	1
2.	_	-般事項	2
2.	1	評価方針	2
2. 2	2	適用 <mark>規格・</mark> 基準 <mark>等</mark>	2
2. 3	3	記号の説明	3
2.4	4	計算精度と数値の丸め方	6
3.	評	² 価部位	7
4.	古	月有周期	8
4.	1	固有周期の計算方法	8
5.	構	ş造強度評価 1	12
5.	1	構造強度評価方法 1	12
5. 2	2	設計用地震力 1	12
5. 3	3	計算方法 1	12
	5.	3.1 応力の計算方法1	12
5. 4	4	応力の評価 2	20
	5.	4.1 胴の応力評価 2	20
	5.	4.2 スカートの応力評価 2	21
	5.	4.3 基礎ボルトの応力評価 2	23
6.	而	け震計算書のフォーマット 2	2.4

1. 概要

本資料は、添付書類「VI-2-1-1 耐震設計の基本方針」に基づき、耐震性に関する説明書が求められているスカート支持たて置円筒形容器(耐震重要度分類 S クラス又は S s 機能維持の計算を行うもの)が、十分な耐震性を有していることを確認するための耐震計算の方法について記載したものである。

解析の方針及び減衰定数については,添付書類「VI-2-1-6 地震応答解析の基本方針」 に従うものとする。

ただし、本基本方針が適用できないスカート支持たて置円筒形容器にあっては、個別 耐震計算書にその耐震計算方法を含めて記載する。

2. 一般事項

2.1 評価方針

スカート支持たて置円筒形容器の応力評価は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6. 耐震計算書のフォーマット」にて示す。スカート支持たて置円筒形容器の耐震評価フローを図 2-1 に示す。

図 2-1 スカート支持たて置円筒形容器の耐震評価フロー

2.2 適用<mark>規格・</mark>基準等

本評価において適用する規格・基準等を以下に示す。

- (1) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (2) 原子力発電所耐震設計技術指針 重要度分類·許容応力編 JEAG4601· 補-1984((社)日本電気協会)
- (3) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- (4) 発電用原子力設備規格 設計・建設規格((社)日本機械学会,2005/2007)(以下 「設計・建設規格」という。)

2.3 記号の説明

記号	記号の説明	単位
A	胴の軸断面積	mm ²
A_b	基礎ボルトの軸断面積	\mathbf{mm}^2
A _e	胴の有効せん断断面積	\mathbf{mm}^2
A_s	スカートの軸断面積	${ m mm}^2$
A _{se}	スカートの有効せん断断面積	${\sf mm}^2$
Сс	基礎ボルト計算における係数	_
Сн	水平方向設計震度	_
C t	基礎ボルト計算における係数	_
C_{V}	鉛直方向設計震度	_
D _{b i}	ベースプレートの内径	mm
D _{bo}	ベースプレートの外径	mm
D _c	基礎ボルトのピッチ円直径	mm
D i	胴の内径	mm
Dj	スカートに設けられた各開口部の穴径 $(j=1, 2, 3 \cdots j_1)$	mm
D _s	スカートの内径	mm
d	ボルトの呼び径	mm
Е	胴の縦弾性係数	MPa
E s	スカートの縦弾性係数	MPa
е	基礎ボルト計算における係数	_
F	設計・建設規格 SSB-3121.1(1)に定める値	MPa
F *	設計・建設規格 SSB-3121.3又はSSB-3133に定める値	MPa
F c	基礎に作用する圧縮力	N
F _t	基礎ボルトに作用する引張力	N
fь	曲げモーメントに対する許容座屈応力	MPa
f c	軸圧縮荷重に対する許容座屈応力	MPa
f sb	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f t	スカートの許容引張応力	MPa
f to	引張力のみを受ける基礎ボルトの許容引張応力	MPa
f ts	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
G	胴のせん断弾性係数	MPa
G s	スカートのせん断弾性係数	MPa
g	重力加速度 (=9.80665)	m/s^2
Н	水頭	mm
I	胴の断面二次モーメント	mm^4

記号	記号の説明	単位
Is	スカートの断面二次モーメント	mm ⁴
j 1	スカートに設けられた開口部の穴の個数	_
K_{H}	水平方向ばね定数	N/m
K_{V}	鉛直方向ばね定数	N/m
k	基礎ボルト計算における中立軸の荷重係数	_
Q	胴のスカート接合点から重心までの距離	mm
Q ₁ , Q ₂	基礎ボルト計算における中立軸から荷重作用点までの距離	mm
	(図5-2に示す距離)	
ϱ_{r}	容器の重心から上端支持部までの距離	mm
ϱ s	スカートの長さ	mm
M_s	スカートに作用する転倒モーメント	N•mm
$M_{\mathrm{s}1}$	スカートの上端部に作用する転倒モーメント	N•mm
$M_{\mathrm{s}2}$	スカートの下端部に作用する転倒モーメント	N•mm
m_0	容器の運転時質量	kg
m _e	容器のスカート接合部から上部の空質量	kg
n	基礎ボルトの本数	_
P _r	最高使用圧力	MPa
Q	重心に作用する任意の水平力	N
Q′	Qにより上端の支持部に作用する反力	N
S	設計・建設規格 付録材料図表 Part5 表5に定める値	MPa
S _a	胴の許容応力	MPa
S _u	設計・建設規格 付録材料図表 Part5 表9に定める値	MPa
Sy	設計・建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y(RT)}$	設計・建設規格 付録材料図表 Part5 表8に定める材料の 40℃における値	MPa
S	基礎ボルトと基礎の縦弾性係数比	_
Тн	水平方向固有周期	S
T_{V}	鉛直方向固有周期	S
t	胴板の厚さ	mm
t 1	基礎ボルト面積相当板幅	mm
t 2	圧縮側基礎相当幅	mm
t s	スカートの厚さ	mm
Y	スカート開口部の水平断面における最大円周長さ	mm
Z	基礎ボルト計算における係数	_
α	基礎ボルト計算における中立軸を定める角度	rad

記号	記号の説明	単位
δ	荷重Qによる容器の上端での変位量	mm
δ'	 荷重Q′による容器の上端での変位量	mm
δ o	 荷重Q, Q'による容器の重心での変位量	mm
η	 座屈応力に対する安全率	_
π	円周率	_
ρ '	 液体の密度(=比重×10 ⁻⁶)	kg/mm ³
σ 0	胴の一次一般膜応力の最大値	MPa
σос	胴の組合せ圧縮応力	MPa
σ o t	胴の組合せ引張応力	MPa
σ 2	地震動のみによる胴の一次応力と二次応力の和の変動値の最大値	MPa
σ 2 φ	地震動のみによる胴の周方向一次応力と二次応力の和	MPa
σ 2 с	地震動のみによる胴の一次応力と二次応力の和の変動値 (圧縮側)	MPa
σ _{2 t}	地震動のみによる胴の一次応力と二次応力の和の変動値 (引張側)	MPa
σ _{2хс}	地震動のみによる胴の軸方向一次応力と二次応力の和(圧縮側)	MPa
σ _{2 x t}	地震動のみによる胴の軸方向一次応力と二次応力の和(引張側)	MPa
σь	基礎ボルトに生じる引張応力	MPa
σс	基礎に生じる圧縮応力	MPa
σs	スカートの組合せ応力	MPa
σ s 1	スカートの運転時質量による軸方向応力	MPa
σ s 2	水平方向地震によりスカートに生じる曲げモーメントによる 軸方向応力	MPa
σ s 3	スカートの鉛直方向地震による軸方向応力	MPa
σ χ 1, σ φ 1	静水頭又は内圧により胴に生じる軸方向及び周方向応力	MPa
σ χ2	胴の運転時質量による軸方向引張応力	MPa
σ х 3	胴の空質量による軸方向圧縮応力	MPa
σ _{x 4}	水平方向地震により胴に生じる曲げモーメントによる軸方向応力	MPa
σ χ 5	胴の鉛直方向地震による軸方向引張応力	MPa
σ x 6	胴の鉛直方向地震による軸方向圧縮応力	MPa
σ _{хс}	胴の軸方向応力の和(圧縮側)	MPa
σ _{х t}	胴の軸方向応力の和(引張側)	MPa
σ φ	胴の周方向応力の和	MPa
σ φ2	静水頭に鉛直方向地震が加わり胴に生じる周方向応力	MPa
τ	地震により胴に生じるせん断応力	MPa
τь	基礎ボルトに生じるせん断応力	MPa

記号	記号の説明	単位
τ s	地震によりスカートに生じるせん断応力	MPa
φ ₁ (x)	圧縮荷重に対する許容座屈応力の関数	MPa
φ ₂ (x)	曲げモーメントに対する許容座屈応力の関数	MPa

2.4 計算精度と数値の丸め方

計算精度は,有効数字6桁以上を確保する。

本資料で表示する数値の丸め方は、表 2-1 に示すとおりとする。

表 2-1 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
	固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
	震度	_	小数点以下第3位	切上げ	小数点以下第2位
	最高使用圧力	MPa	_	_	小数点以下第2位
	温度	${}^{\circ}\!$	_		整数位
	比重	_	小数点以下第3位	四捨五入	小数点以下第2位
	質量	kg	_	_	整数位
長	下記以外の長さ	mm	_	_	整数位*1
	胴板の厚さ	mm	_		小数点以下第1位
さ	スカートの厚さ	mm	_		小数点以下第1位
	面積	${\sf mm}^2$	有効数字5桁目	四捨五入	有効数字4桁*2
	モーメント	N·mm	有効数字5桁目	四捨五入	有効数字4桁*2
	算出応力	MPa	小数点以下第1位	切上げ	整数位
	許容応力	MPa	小数点以下第1位	切捨て	整 数 位 * ³

注記 *1:設計上定める値が小数点以下の場合は、小数点以下表示とする。

*2: 絶対値が1000以上のときは、べき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及 び降伏点は、比例法により補間した値の小数点以下第1位を切り捨て、整数 位までの値とする。

3. 評価部位

スカート支持たて置円筒形容器の耐震評価は「5.1 構造強度評価方法」に示す条件に 基づき、耐震評価上厳しくなる胴、スカート及び基礎ボルトについて評価を実施する。

4. 固有周期

4.1 固有周期の計算方法

スカート支持たて置円筒形容器の固有周期の計算方法を以下に示す。

(1) 計算モデル

モデル化に当たっては次の条件で行う。

- a. 容器及び内容物の質量は重心に集中するものとする。
- b. 容器はスカートで支持され、スカート下端のベースプレートを円周上等ピッチの多数の基礎ボルトで基礎に固定されており、固定端とする。
- c. 胴とスカートをはりと考え、変形モードは曲げ及びせん断変形を考慮する。
- d. スカート部材において、マンホール等の開口部があって補強をしていない場合は、欠損の影響を考慮する。
- e. 耐震計算に用いる寸法は、公称値を使用する。

本容器は,前記の条件より図 4-1 に示す下端固定の1質点系振動モデルあるいは下端固定上端支持の1質点系振動モデルとして考える。

下端固定上端支持の場合

図 4-1 固有周期の計算モデル

(2) 水平方向固有周期

a. 下端固定の場合

曲げ及びせん断変形によるばね定数KHは次式で求める。

$$K_{H} = 1000 / \left\{ \frac{\varrho^{3}}{3 \cdot E \cdot I} + \frac{1}{3 \cdot E_{s} \cdot I_{s}} \cdot \left(3 \cdot \varrho^{2} \cdot \varrho_{s} + 3 \cdot \varrho \cdot \varrho_{s}^{2} + \varrho_{s}^{3} \right) + \frac{\varrho}{G \cdot A_{e}} + \frac{\varrho_{s}}{G_{s} \cdot A_{s}} \right\}$$

$$(4.1.1)$$

ここで、スカートの開口部(図 4-2 参照)による影響を考慮し、胴及びスカートの断面性能は次のように求める。

胴の断面性能は次式で求める。

$$I = \frac{\pi}{8} \cdot \left(D_i + t\right)^3 \cdot t \qquad \cdots \qquad (4.1.2)$$

$$A_{e} = \frac{2}{3} \cdot \pi \cdot \left(D_{i} + t\right) \cdot t \qquad \cdots \qquad (4.1.3)$$

スカートの断面性能は次式で求める。

$$I_{s} = \frac{\pi}{8} \cdot \left(D_{s} + t_{s}\right)^{3} \cdot t_{s} - \frac{1}{4} \cdot \left(D_{s} + t_{s}\right)^{2} \cdot t_{s} \cdot Y \cdot \cdot \cdot \quad (4.1.4)$$

スカート開口部の水平断面における最大円周長さは次式で求める。

(図 4-2 及び図 4-3 参照)

$$Y = \sum_{i=1}^{j1} \left(D_s + t_s \right) \cdot \sin^{-1} \left(\frac{D_j}{D_s + t_s} \right) \quad \cdots \quad (4.1.5)$$

$$A_{se} = \frac{2}{3} \cdot \left\{ \pi \cdot \left(D_s + t_s \right) - Y \right\} \cdot t_s \quad \cdots \quad (4.1.6)$$

したがって、固有周期 T H は次式で求める。

$$T_{H} = 2 \cdot \pi \cdot \sqrt{\frac{m_{0}}{K_{H}}} \qquad (4.1.7)$$

図 4-2 スカート開口部の形状

図 4-3 スカート開口部の水平断面における最大円周長さ

b. 下端固定上端支持の場合

重心の位置に水平方向の荷重Qが作用したときに上端の支持部に生じる反力 Q' は、図 4-4 に示すように荷重Q及び反力 Q' による上端の変位量 δ と δ' が等しいとして求める。

図 4-4 下端固定上端支持の場合の変形モデル

図 4-4 の(1)の場合

$$\delta = \frac{\mathbf{Q} \cdot \ell^{2}}{6 \cdot \mathbf{E} \cdot \mathbf{I}} \cdot \left(2 \cdot \ell + 3 \cdot \ell_{r}\right) + \frac{\mathbf{Q}}{6 \cdot \mathbf{E}_{s} \cdot \mathbf{I}_{s}}$$

$$\cdot \left\{2 \cdot \ell_{s}^{3} + 3 \cdot \ell_{s}^{2} \cdot \ell_{r} + 6 \cdot \ell_{s} \cdot \ell \cdot \left(\ell_{s} + \ell + \ell_{r}\right)\right\}$$

$$+ \frac{\mathbf{Q} \cdot \ell}{\mathbf{G} \cdot \mathbf{A}_{s}} + \frac{\mathbf{Q} \cdot \ell_{s}}{\mathbf{G}_{s} \cdot \mathbf{A}_{s}} \quad \cdots \qquad (4.1.8)$$

図 4-4 の(2) の場合

$$\delta' = \frac{Q' \cdot (\ell + \ell_{r})^{3}}{3 \cdot E \cdot I} + \frac{Q'}{3 \cdot E_{s} \cdot I_{s}}$$

$$\cdot \left\{ 3 \cdot (\ell + \ell_{r})^{2} \cdot \ell_{s} + 3 \cdot (\ell + \ell_{r}) \cdot \ell_{s}^{2} + \ell_{s}^{3} \right\}$$

$$+ \frac{Q' \cdot (\ell + \ell_{r})}{G \cdot A_{e}} + \frac{Q' \cdot \ell_{s}}{G_{s} \cdot A_{se}} \qquad (4.1.9)$$

(4.1.8)式と(4.1.9)式を等しく置くことにより

$$Q' = Q \cdot \left\{ \frac{\ell^{2} \cdot \left(2 \cdot \ell + 3 \cdot \ell_{r}\right)}{6 \cdot E \cdot I} + \frac{2 \cdot \ell_{s}^{3} + 3 \cdot \ell_{s}^{2} \cdot \ell_{r} + 6 \cdot \ell_{s} \cdot \ell \cdot \left(\ell_{s} + \ell + \ell_{r}\right)}{6 \cdot E_{s} \cdot I_{s}} + \frac{\ell}{G \cdot A_{e}} + \frac{\ell_{s}}{G_{s} \cdot A_{se}} \right\} / \left\{ \frac{\left(\ell + \ell_{r}\right)^{3}}{3 \cdot E \cdot I} + \frac{3 \cdot \left(\ell + \ell_{r}\right)^{2} \cdot \ell_{s} + 3 \cdot \left(\ell + \ell_{r}\right) \cdot \ell_{s}^{2} + \ell_{s}^{3}}{3 \cdot E_{s} \cdot I_{s}} + \frac{\ell + \ell_{r}}{G \cdot A_{e}} + \frac{\ell_{s}}{G_{s} \cdot A_{se}} \right\}$$

$$(4.1.10)$$

したがって、図 4-4 の(3)に示す重心位置での変位量 δ $_0$ は図 4-4 の(1)及び (2)の重心位置での変位量の重ね合せから求めることができ、ばね定数 K_H は次式で求める。

固有周期は(4.1.7)式により求める。

(3) 鉛直方向固有周期

軸方向変形によるばね定数Kvは次式で求める。

$$K_{V} = 1000 / \left(\frac{\ell}{E \cdot A} + \frac{\ell_{s}}{E_{s} \cdot A_{s}}\right) \qquad (4.1.12)$$

$$A = \pi \cdot \left(D_{i} + t\right) \cdot t \qquad (4.1.13)$$

$$A_{s} = \left\{ \pi \cdot \left(D_{s} + t_{s} \right) - Y \right\} \cdot t_{s} \qquad (4.1.14)$$

したがって、固有周期 Tvは次式で求める。

$$T_{V} = 2 \cdot \pi \cdot \sqrt{\frac{m_{0}}{K_{V}}} \qquad (4.1.15)$$

5. 構造強度評価

5.1 構造強度評価方法

4.1(1)項 a.~e.のほか,次の条件で計算する。概要図を図 5-1 に示す。

(1) 地震力は容器に対して水平方向及び鉛直方向から作用するものとする。

図5-1 概要図

5.2 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は、添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。

5.3 計算方法

5.3.1 応力の計算方法

応力計算における水平方向と鉛直方向の組合せについて、静的地震力を用いる場合は絶対値和を用いる。動的地震力を用いる場合は、絶対値和又は SRSS 法を用いる。

5.3.1.1 胴の計算方法

(1) 静水頭又は内圧による応力

静水頭による場合(鉛直方向地震時を含む。)

$$\sigma_{\phi 1} = \frac{\rho' \cdot g \cdot H \cdot D_{i}}{2 \cdot t} \qquad (5.3.1.1.1)$$

$$\sigma_{\phi 2} = \frac{\rho' \cdot g \cdot H \cdot D_{i} \cdot C_{V}}{2 \cdot t} \qquad (5.3.1.1.2)$$

$$\sigma_{\mathbf{x} \, \mathbf{1}} = 0 \quad \cdots \quad (5. \, 3. \, 1. \, 1. \, 3)$$

内圧による場合

$$\sigma_{\phi 1} = \frac{P_{r} \cdot (D_{i} + 1.2 \cdot t)}{2 \cdot t} \qquad (5.3.1.1.4)$$

$$\sigma_{\phi 2} = 0 \qquad (5.3.1.1.5)$$

$$\sigma_{x 1} = \frac{P_{r} \cdot (D_{i} + 1.2 \cdot t)}{4 \cdot t} \qquad (5.3.1.1.6)$$

(2) 運転時質量及び鉛直方向地震による応力

胴がスカートと接合する点を境界として、上部には胴自身の質量による圧縮応力が、下部には下部の胴自身の質量と内容物の質量による引張応力が生じる。

下部の胴について
$$\sigma_{x2} = \frac{\left(m_0 - m_e\right) \cdot g}{\pi \cdot \left(D_i + t\right) \cdot t} \qquad (5.3.1.1.7)$$

$$\sigma_{x5} = \frac{\left(m_0 - m_e\right) \cdot g \cdot C_V}{\pi \cdot \left(D_i + t\right) \cdot t} \qquad (5.3.1.1.8)$$

上部の胴について

$$\sigma_{x3} = \frac{m_e \cdot g}{\pi \cdot (D_i + t) \cdot t} \qquad (5.3.1.1.9)$$

$$\sigma_{x6} = \frac{m_e \cdot g \cdot C_V}{\pi \cdot (D_i + t) \cdot t} \qquad (5.3.1.1.10)$$

(3) 水平方向地震による応力

水平方向の地震力により胴はスカート接合部で最大となる曲げモーメントを受ける。この曲げモーメントによる軸方向応力と地震力によるせん断応力は次のように求める。

a. 下端固定の場合

$$\sigma_{x4} = \frac{4 \cdot C_{H} \cdot m_{0} \cdot g \cdot \ell}{\pi \cdot (D_{i} + t)^{2} \cdot t} \qquad (5.3.1.1.11)$$

$$\tau = \frac{2 \cdot C_{H} \cdot m_{0} \cdot g}{\pi \cdot (D_{i} + t) \cdot t} \qquad (5.3.1.1.12)$$

b. 下端固定上端支持の場合

$$\sigma_{x4} = \frac{4 \cdot C_{H} \cdot m_{0} \cdot g \cdot \left| \ell - \frac{Q'}{Q} \cdot \left(\ell + \ell_{r} \right) \right|}{\pi \cdot \left(D_{i} + t \right)^{2} \cdot t} \quad \dots \dots \qquad (5.3.1.1.13)$$

$$\tau = \frac{2 \cdot C_H \cdot m_0 \cdot g \cdot \left(1 - \frac{Q'}{Q}\right)}{\pi \cdot \left(D_i + t\right) \cdot t} \qquad (5.3.1.1.14)$$

- (4) 組合せ応力
 - (1) \sim (3)によって求めた胴の応力は以下のように組み合わせる。
 - a. 一次一般膜応力
 - (a) 組合せ引張応力

$$\sigma_{\phi} = \sigma_{\phi 1} + \sigma_{\phi 2} \qquad (5. 3. 1. 1. 15)$$

$$\sigma_{0 t} = \frac{1}{2} \cdot \left\{ \sigma_{\phi} + \sigma_{x t} + \sqrt{\left(\sigma_{\phi} - \sigma_{x t}\right)^{2} + 4 \cdot \tau^{2}} \right\} \qquad (5. 3. 1. 1. 16)$$

ここで,

【絶対値和】

$$\sigma_{xt} = \sigma_{x1} + \sigma_{x2} + \sigma_{x4} + \sigma_{x5} \quad \cdots \qquad (5.3.1.1.17)$$

【SRSS 法】

$$\sigma_{xt} = \sigma_{x1} + \sigma_{x2} + \sqrt{\sigma_{x4}^2 + \sigma_{x5}^2} \quad \dots \qquad (5.3.1.1.18)$$

(b) 組合せ圧縮応力

$$\sigma_{\phi} = -\sigma_{\phi 1} - \sigma_{\phi 2} \qquad \cdots \qquad (5. 3. 1. 1. 19)$$

σxcが正の値(圧縮側)のとき、次の組合せ圧縮応力を求める。

ここで,

【絶対値和】

$$\sigma_{xc} = -\sigma_{x1} + \sigma_{x3} + \sigma_{x4} + \sigma_{x6}$$
 (5. 3. 1. 1. 21)

【SRSS 法】

$$\sigma_{xc} = -\sigma_{x1} + \sigma_{x3} + \sqrt{\sigma_{x4}^2 + \sigma_{x6}}$$
 (5. 3. 1. 1. 22)

したがって、胴の組合せ一次一般膜応力の最大値は、絶対値和、SRSS 法それぞれに対して、

$$\sigma_0 = \text{Max} \left[\text{組合せ引張応力} \left(\sigma_{0 \text{ t}} \right), \text{ 組合せ圧縮応力} \left(\sigma_{0 \text{ c}} \right) \right]$$
 (5. 3. 1. 1. 23)

とする。

一次応力は一次一般膜応力と同じ値になるので省略する。

- b. 地震動のみによる一次応力と二次応力の和の変動値
 - (a) 組合せ引張応力

$$\sigma_{2 \phi} = \sigma_{\phi 2} \qquad (5.3.1.1.24)$$

$$\sigma_{2 t} = \sigma_{2 \phi} + \sigma_{2 x t} + \sqrt{\left(\sigma_{2 \phi} - \sigma_{2 x t}\right)^{2} + 4 \cdot \tau^{2}}$$

$$\cdots (5.3.1.1.25)$$

ここで,

【絶対値和】

$$\sigma_{2 \times t} = \sigma_{\times 4} + \sigma_{\times 5} \qquad (5.3.1.1.26)$$

【SRSS法】

(b) 組合せ圧縮応力

$$\sigma_{2 \phi} = -\sigma_{\phi 2} \qquad (5. 3. 1. 1. 28)$$

$$\sigma_{2 c} = \sigma_{2 \phi} + \sigma_{2 x c} + \sqrt{\left(\sigma_{2 \phi} - \sigma_{2 x c}\right)^{2} + 4 \cdot \tau^{2}} \qquad (5. 3. 1. 1. 29)$$

ここで,

【絶対値和】

$$\sigma_{2 \times c} = \sigma_{\times 4} + \sigma_{\times 6} \quad \cdots \qquad (5.3.1.1.30)$$

【SRSS 法】

$$\sigma_{2 \times c} = \sqrt{\sigma_{3}^{2} + \sigma_{3}^{2}}$$
 (5. 3. 1. 1. 31)

したがって、胴の地震動のみによる一次応力と二次応力の和の変動値の最大値は、絶対値和、SRSS 法それぞれに対して、

$$\sigma_2 = \text{Max} \left[組合せ引張応力 \left(\sigma_{2t} \right), 組合せ圧縮応力 \left(\sigma_{2c} \right) \right]$$
(5.3.1.1.32)

とする。

5.3.1.2 スカートの計算方法

(1) 運転時質量及び鉛直方向地震による応力

スカート底部に生じる運転時質量及び鉛直方向地震による圧縮応力は次式で求める。

$$\sigma_{s1} = \frac{m_0 \cdot g}{\left\{\pi \cdot \left(D_s + t_s\right) - Y\right\} \cdot t_s} \qquad (5.3.1.2.1)$$

$$\sigma_{s3} = \frac{m_0 \cdot g \cdot C_V}{\left\{\pi \cdot \left(D_s + t_s\right) - Y\right\} \cdot t_s} \qquad (5.3.1.2.2)$$

(2) 水平方向地震による応力

水平方向の地震力によりスカートに作用する曲げモーメントにより生じる軸方向 応力及び水平方向地震力によるせん断応力は次のように求める。

a. 下端固定の場合

b. 下端固定上端支持の場合

軸方向応力は(5.3.1.2.3)式で表されるが、曲げモーメント M_s は次の M_{s1} 又は M_{s2} のいずれか大きい方の値とする。

(3) 組合せ応力

組合せ応力は次式で求める。

【絶対値和】

$$\sigma_{s} = \sqrt{\left(\sigma_{s1} + \sigma_{s2} + \sigma_{s3}\right)^{2} + 3 \cdot \tau_{s}^{2}} \quad \cdots \qquad (5.3.1.2.9)$$

【SRSS 法】

$$\sigma_{s} = \sqrt{\left(\sigma_{s1} + \sqrt{\sigma_{s2}^{2} + \sigma_{s3}^{2}}\right)^{2} + 3 \cdot \tau_{s}^{2}} \qquad \dots (5.3.1.2.10)$$

5.3.1.3 基礎ボルトの計算応力

(1) 引張応力

基礎に作用する転倒モーメントM。は、下端固定の場合、(5.3.1.2.5)式を、下端固定上端支持の場合は(5.3.1.2.6)式又は(5.3.1.2.7)式のいずれか大きい方を用いる。転倒モーメントが作用した場合に生じる基礎ボルトの引張荷重と基礎部の圧縮荷重については、荷重と変位量の釣合い条件を考慮することにより求める(図 5-2 参照)。

以下にその手順を示す。

a. σ_b 及び σ_c を仮定して基礎ボルトの応力計算における中立軸の荷重係数kを求める。

$$k = \frac{1}{1 + \frac{\sigma_b}{s \cdot \sigma_c}} \qquad (5.3.1.3.1)$$

基礎ボルトの応力計算における中立軸を定める角度αを求める。 b.

$$\alpha = \cos^{-1} (1-2 \cdot k)$$
 (5. 3. 1. 3. 2)

図 5-2 基礎の荷重説明図

各定数 e, z, C_t及び C_cを求める

$$e = \frac{1}{2} \cdot \left\{ \frac{(\pi - \alpha) \cdot \cos^{2} \alpha + \frac{1}{2} \cdot (\pi - \alpha) + \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha}{(\pi - \alpha) \cdot \cos \alpha + \sin \alpha} + \frac{\frac{1}{2} \cdot \alpha - \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha + \alpha \cdot \cos^{2} \alpha}{\sin \alpha - \alpha \cdot \cos \alpha} \right\} \quad \dots \quad (5.3.1.3.3)$$

$$C_{t} = \frac{2 \cdot \left\{ \left(\pi - \alpha \right) \cdot \cos \alpha + \sin \alpha \right\}}{1 + \cos \alpha}$$
 (5. 3. 1. 3. 4)

$$C_{c} = \frac{2 \cdot \left(\sin \alpha - \alpha \cdot \cos \alpha\right)}{1 - \cos \alpha} \qquad (5.3.1.3.6)$$

各定数を用いてFt及びFcを求める。

【絶対値和】

$$F_{t} = \frac{M_{s} - (1 - C_{v}) \cdot m_{0} \cdot g \cdot z \cdot D_{c}}{e \cdot D_{c}} \qquad (5.3.1.3.7)$$

$$F_c = F_t + (1 - C_V) \cdot m_0 \cdot g$$
 (5. 3. 1. 3. 8)

【SRSS 法】

$$F_{c} = \frac{\sqrt{M_{s}^{2} + (C_{v} \cdot m_{0} \cdot g \cdot (z - e) \cdot D_{c})^{2}}}{e \cdot D_{c}} + (1 - \frac{z}{e}) \cdot m_{0} \cdot g$$

$$\cdots \cdots \cdots \cdots \cdots \cdots \cdots (5, 3, 1, 3, 10)$$

基礎ボルトに引張力が作用しないのは、 α が π に等しくなったときであり、 (5.3.1.3.3) 式及び (5.3.1.3.4) 式において α を π に近づけた場合の値 e=0.75 及び z=0.25 を (5.3.1.3.7) 式又は (5.3.1.3.9) 式に代入し、得られる F_+ の値によって引張力の有無を次のように判定する。

 $F_{+} \leq 0$ ならば引張力は作用しない。

F_t>0 ならば引張力が作用しているので次の計算を行う。

 $e. \sigma_b$ 及び σ_c を求める。

$$\sigma_{b} = \frac{2 \cdot F_{t}}{t_{1} \cdot D_{c} \cdot C_{t}} \qquad (5.3.1.3.11)$$

$$\sigma_{c} = \frac{2 \cdot F_{c}}{\left(t_{2} + s \cdot t_{1}\right) \cdot D_{c} \cdot C_{c}} \qquad (5.3.1.3.12)$$

- - 7

$$t_{1} = \frac{\mathbf{n} \cdot \mathbf{A}_{b}}{\pi \cdot \mathbf{D}_{a}} \tag{5.3.1.3.13}$$

$$t_2 = \frac{1}{2} \cdot (D_{bo} - D_{bi}) - t_1$$
 (5. 3. 1. 3. 14)

$$A_b = \frac{\pi}{4} \cdot d^2$$
 (5. 3. 1. 3. 15)

 σ_b 及び σ_c が a 項にて仮定した値と十分に近似していることを確認する。この場合の σ_b 及び σ_c を基礎ボルトと基礎に生じる応力とする。

(2) せん断応力

a. 下端固定の場合

$$\tau_{b} = \frac{C_{H} \cdot m_{0} \cdot g}{n \cdot A_{b}} \qquad (5.3.1.3.16)$$

b. 下端固定上端支持の場合

$$\tau_{b} = \frac{C_{H} \cdot m_{0} \cdot g \cdot \left(1 - \frac{Q'}{Q}\right)}{n \cdot A_{b}} \qquad (5.3.1.3.17)$$

5.4 応力の評価

5.4.1 胴の応力評価

5.3.1.1 項で求めた組合せ応力が胴の最高使用温度における許容応力 S_a 以下であること。ただし、 S_a は下表による。

	許容応	力Sa
トロップ 応力の種類	弹性設計用地震動Sd又	基準地震動Ssによる荷
ルンノノマノイ生み貝	は静的震度による荷重と	重との組合せの場合
	の組合せの場合	
	設計降伏点Syと設計引	設計引張強さSuの0.6
	張強さSuの0.6倍のい	倍。
	ずれか小さい方の値。た	
	だし,オーステナイト系	
一次一般膜応力	ステンレス鋼及び高ニッ	
	ケル合金にあっては許容	
	引張応力Sの1.2倍の方	
	が大きい場合は、この大	
	きい方の値とする。	
一次応力と	地震動のみによる一次応	力と二次応力の和の変動
二次応力の和	値が設計降伏点Syの2倍	以下であれば、疲労解析
	は不要とする。	

一次応力の評価は算出応力が一次一般膜応力と同じ値であるので省略する。

5.4.2 スカートの応力評価

(1) 5.3.1.2項で求めたスカートの組合せ応力が許容引張応力 f_t 以下であること。ただし、 f_t は下表による。

	弾性設計用地震動Sd又 は静的震度による荷重と の組合せの場合	基準地震動Ssによる 荷重との組合せの場合
許容引張応力 f t	$\frac{F}{1.5}$ · 1.5	$\frac{F}{1.5}^*$ · 1.5

(2) 圧縮膜応力(圧縮応力と曲げによる圧縮側応力の組合せ)は次式を満足すること。

(座屈の評価)

$$\frac{\eta \cdot \left(\sigma_{s1} + \sigma_{s3}\right)}{f} + \frac{\eta \cdot \sigma_{s2}}{f} \le 1 \quad \dots \quad (5.4.2.1)$$

ここで, f。は次による。

$$\frac{1200 \cdot g}{F} < \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} < \frac{8000 \cdot g}{F} \quad \text{Old}$$

$$\frac{8000 \cdot g}{F} \leq \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \leq 800 \quad \emptyset \geq \tilde{\Xi}$$

$$f_c = \phi_1 \left(\frac{D_s + 2 \cdot t_s}{2 \cdot t_s}\right) \quad \cdots \qquad (5.4.2.4)$$

ただし、 $\phi_1(x)$ は次の関数とする。

$$\phi_{1}(x) = 0.6 \cdot \frac{E_{s}}{x} \cdot \left[1 - 0.901 \cdot \left\{1 - \exp\left(-\frac{1}{16} \cdot \sqrt{x}\right)\right\}\right]$$
.....(5.4.2.5)

また、fbは次による。

$$\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \leq \frac{1200 \cdot g}{F} \qquad \emptyset \geq \tilde{\Xi}$$

$$f_b = F \qquad (5.4.2.6)$$

$$\frac{1200 \cdot g}{F} < \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} < \frac{9600 \cdot g}{F} \qquad \emptyset \succeq \stackrel{\triangleright}{=}$$

$$f_b = F \cdot \left[1 - \frac{1}{8400 \cdot g} \cdot \left\{ F - \phi_2 \left(\frac{9600 \cdot g}{F} \right) \right\} \cdot \left(\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} - \frac{1200 \cdot g}{F} \right) \right]$$

$$\frac{9600 \cdot g}{F} \leq \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \leq 800 \qquad \emptyset \geq \delta$$

$$f_b = \phi_2 \left(\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \right) \qquad (5.4.2.8)$$

ただし、 $\phi_2(x)$ は次の関数とする。

$$\phi_{2}(\mathbf{x}) = 0.6 \cdot \frac{E_{s}}{\mathbf{x}} \cdot \left[1 - 0.731 \cdot \left\{ 1 - \exp\left(-\frac{1}{16} \cdot \sqrt{\mathbf{x}}\right) \right\} \right]$$
(5.4.2.9)

ηは安全率で次による。

$$\frac{D_{s} + 2 \cdot t_{s}}{2 \cdot t_{s}} \leq \frac{1200 \cdot g}{F} \quad \text{Obs}$$

$$\eta = 1 \qquad (5.4, 2.10)$$

$$\frac{8000 \cdot g}{F} \le \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \qquad \mathcal{O} \ge \stackrel{\stackrel{>}{>}}{>}$$

$$\eta = 1.5 \qquad (5.4, 2.12)$$

5.4.3 基礎ボルトの応力評価

5.3.1.3 項で求めた基礎ボルトの引張応力 σ_b は次式より求めた許容引張応力 f_{ts} 以下であること。ただし f_{to} は下表による。

$$f_{ts} = Min \left[1.4 \cdot f_{to} - 1.6 \cdot \tau_{b}, f_{to} \right]$$
 (5.4.3.1)

せん断応力 τ $_{b}$ はせん断力のみを受ける基礎ボルトの許容せん断応力 f $_{s}$ $_{b}$ 以下であること。ただし, f $_{s}$ $_{b}$ は下表による。

	弾性設計用地震動 S d 又は静的震度による荷 重との組合せの場合	基準地震動Ssによる 荷重との組合せの場合
許容引張応力 f to	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\text{F}}{2}^* \cdot 1.5$
許容せん断応力 f _{sb}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6. 耐震計算書のフォーマット

スカート支持たて置円筒形容器の耐震計算書のフォーマットは、以下のとおりである。

〔設計基準対象施設及び重大事故等対処設備の場合〕

フォーマット I 設計基準対象施設としての評価結果

フォーマットⅡ 重大事故等対処設備としての評価結果

〔重大事故等対処設備単独の場合〕

フォーマットⅡ 重大事故等対処設備としての評価結果*

注記*: 重大事故等対処設備単独の場合は、設計基準対象施設及び重大事故等対処 設備に示すフォーマットⅡを使用するものとする。ただし、評価結果表に

記載の章番を「2.」から「1.」とする。

【フォーマットI 設計基準対象施設としての評価結果】

【〇〇〇〇容器の耐震性についての計算結果】 1. 設計基準対象施設

1.1 設計条件

112121222									
がりたり		ヤ 早 男 井 3 / 2 1 3 1 日 十 7 日	(7) 田田子田	弹性設計用地震動S d	聖和宋井		中川田郡阜 首	世界 田田 田田 田田 田田 田田 田田田田田田田田田田田田田田田田田田田田田	世界學典生田
(教命)	重	J.	Ē	又は静的震度	本字心反則2 S		東南医市工	坂同汉古面文	
	重要度分類	(m)	1	水平方向 鉛直方向	水平方向	鉛直方向	(MPa)	(3C)	(C)
				設計震度 設計震度	設計震度	設計震度	_		
		建屋			l (١			
		0.P. *		CH—	CH—	_ ^ _	_		
注記*:基準床レベルを示す	を示す。								

1.2 機器要	腰目								
$^{0}\mathrm{m}$	me	D _i	t	Ds	t s	日	ъ s	G	Gs
(kg)	(kg)	(mm)	(mm)	(mm)	(mm)	(MPa)	(MPa)	(MPa)	(MPa)
						I*	*2	*1	*2

肺板

⊕> mo.e

				Þ
$_{ m b}$ $_{ m b}$ $_{ m o}$			週動S s	
D _c			推練和	
п		M_s (N·mm)	pS順	漸
w			弹性設計用地震	又は静的震度
D ₃			子	
D_2		Y	(mm)	,
D_1		A_{b}	(mm	
$\ell_{ m s}$		р	(mm)	,
Ø (mm)		$D_{\rm b \ i}$	(mm)	

D, D.		スカート開口部の形状を示す。
	基準地震動S s	
M_{s} (N•mm)	弹性設計用地震動Sd 又沿静的震度	
λ	(mm)	
A_b	(mm)	
р	(mm)	(W)
$D_{\rm bi}$	(mm)	

		*2	*2	*1	*1	*1
(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
$F^*(\lambda \hbar - \lambda)$	F(スカート)	$S_{y}(\lambda \pi - \lambda) S_{u}(\lambda \pi - \lambda)$	$S_y(\lambda \hbar - k)$	(到組) S	S 。(別制反)	S y (铜板)

		Z*	*2
(MPa)	(MPa)	(MPa)	(MPa)
F*(基礎ボルト)	下(基礎ボルト)	(イイ公験理) n S	S y (基礎がレト)

注記 *1:最高使用温度で算出

*2:周囲環境温度で算出

^{1.3} 計算数値1.3.1 胴に生じる応力(1) 一次一般模応力

(1) 一次一般填芯力	本力						(単位:MPa)	
			設計用地震動S d 又は静的	夏 度		基準地震動S s		
/		用方向芯力	軸方向応力	せん断応力	用方向芯力	軸方向応力	せん断応力	
静水頭又は内圧による応力	ミによる応力	$\sigma_{\phi 1} =$	$\sigma_{x1} =$	l	$\sigma_{\phi 1} =$	$\sigma_{x1} =$	1	
運転時質量による引張応力	:る引張応力		$\sigma_{x2}=$	I	l	$\sigma_{x2}=$	1	
鉛直方向地震による引張応力	よる引張応力	0^{ϕ} $=$	$\sigma_{x5}=$	I	$\sigma_{\phi 2} =$	$\sigma_{x5}=$	1	
空質量による圧縮応力	5压縮応力		$\sigma_{x3}=$	I	l	$\sigma_{x3}=$	1	
鉛直方向地震による圧縮応力	よる圧縮応力		$\sigma_{x6} =$	I	l	$\sigma_{x 6} =$	1	
水平方向地震による応力	による応力		$\sigma_{x4}=$	$\tau =$		$\sigma_{x4}=$	$\tau =$	
1	引張側	$=^{\phi} \Omega$	$\sigma_{xt} =$	I	$=^{\phi}\Omega$	$\sigma_{xt} =$	1	
サインのフィエ	圧縮則	$=^{\phi} \Omega$	$\sigma_{\rm xc} =$	I	$=^{\phi}\Omega$	$\sigma_{\rm xc} =$	1	
十七七个家	引張り	$\sigma_{0t} =$			$\sigma_{0t} =$			
	出							

一次応力と二次応力の和の変動値
地震動のみによる-
(2)

(単位: MPa)

せん断応力 周方向応力	軸方向応力 $\sigma_{x5} = \sigma_{x6} = \sigma_{x4} = \sigma_{$	£	周方向応力 σ _{φ2} = ————————————————————————————————————
Q φ 2 =		$\begin{array}{c} \sigma_{x5} = \\ \sigma_{x6} = \\ \sigma_{x4} = \end{array}$	
		$\sigma_{x 6} = \sigma_{x 4} = \sigma_{x$	$\begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & $
		$\sigma_{x4} =$	$ \sigma_{x4}=$
$ \sigma_{2\phi}=$		$\sigma_{2xt} =$	$\sigma_{2\phi} = \sigma_{2xt} =$
$ \sigma_{2\phi}=$		$\sigma_{2xc} =$	$\sigma_{2\sigma} = \qquad \qquad \sigma_{2xc} =$
$\sigma_{2t} =$			$\sigma_{2t} =$
$\sigma_{2c} =$			σ_{2c} =

1.3.2 スカートに生じる応力

-	/					
(単位: MPa)	Ss	組合セ応力			σ _s ==	
	基準地震動S	応 力	$\sigma_{s 1} =$	σ_{s3} =	$\sigma_{\rm s2}=$	= ° 2
	1又は静的震度	組合セ応力			$\sigma_{\rm s}$ =	
	弹性設計用地震動Sd	応 力	σ_{s1} =	σ_{s3} =	$\sigma_{\rm s2}=$	= s 2
に生じる応力			よる応力	こよる応力	曲げ	せん断
1.3.2 スカートに生じる応力		/	運転時質量による応力	鉛直方向地震による応力	水平方向地震	による応力

R
トに生じる応力
トに生
3 基礎ボル
3.3

(単位: MPa)

基準地震動S s	$^{\mathrm{o}}$ $^{\mathrm{b}}$ =	$=^{q} \mathfrak{1}$
弾性設計用地震動Sd 又は静的震度	$\sigma_b =$	$\tau_{\rm b} =$
	引張応力	せん断応力

1.4 結論 1.4 旧有周期

(s: 沟煎)	固有周期	$T_{ m H}$ =	$T_{\rm V} =$
1.4.1 固有周期	方 向	水平方向	鉛直方向

卡
.
—次──舰模 σ o=
$-\%+$ $\%$ $\sigma_2=$
=° Ω 和号球
圧縮と曲げ
の組合せ
()
の鉛色
せん断

すべて許容応力以下である。

注記 *: f ts=Min[1.4・f to-1.6・でb, f to]

[OOO容 1. 設計基 1.1 設計	【○○○容器の耐震性についての計算結果】 1. 設計基準対象施設 1.1 設計条件	ついての計算	術果】	【静水頭の場合】 (圧力容器と様対	【静水頭の場合】 (圧力容器と様式が異なる	ページのみ掲載)	載							
75 47 00 994	重	据行場所及	据付場所及び床面高さ	固有瓜	固有周期(s)	単性設計場 又/北麓	弾性設計用地震動Sd 又は静的震度	上	基準地震動S s	最高使用压力	最高使用温度	周囲環境温度		d
(数石) 石 (A)	#		(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(C)	(C)	7	
		通 0.P.	建屋 *			$C_H =$	$C_{V} =$	$C_H=$	$C_{V} =$	静水頭				
注記*: 差	注記*:基準床レベルを示す。	产示す。												
1.2 機器	機器要目													肺板
$ m m_0$ $ m (kg)$	m _e (kg)	D _i	t I (mm)	$\frac{D_{s}}{(mm)}$ $\frac{t_{s}}{(mm)}$) E (MPa)	E s (MPa)	G (MPa) ($\frac{G_s}{(MPa)}$			' ├		<u> </u>	
					*1	*	*1	*2		Ķ I	スカート H		wo.g	K 0
Ô	0,	D_1	D_2 I	D_3 H	S	u	D°	D_{bo}		19 19 19 19 19 19 19	/ [\
(mm)	(min)			(mm) (mm	(2)				D ₁ D ₂				O O	-sg
ſ		-	<u> </u>			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \][スカート開口部の形状を示す。	50形状を示す。	-			(m)
LObi	(mm)	(mm)	Y (mm)	嫌	Ms 弾性設計用地震動Sd 又は静的震度	Ms (Norman)	基準地震動S	Ss			A 基礎ボルト	, Q		V
	(W)											u C	_	
S _y (明板) (MPa)	NS (X)	(明神友) (MPa)	S (開放) (MPa)	S	(スカート) (MPa)	$S_u (\lambda \mathcal{H} - \mathcal{h})$) F (スカー (MPa)	<u></u>	$\mathrm{F}^*(\mathcal{A}\mathcal{H}-ert)$ (MPa)			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
*		*	*		*5	**	1		(S. 11)					
ŧ	* 1.2.1.4		11		/ - 5	"江梨井/米山					l	ø 6	Ø Ø	
N N	(MPa)	N (NP)	(MPa)	ド (基徳ホルト) (MPa)	(\frac{1}{2}\frac{1}\frac{1}{2}\f	ド" (鬼様ホ/レト) (MPa)		注記*1:最高使用温度で算出	温度で算出			~ ~	_ ~	
	% *		*2					*2:周囲環境温度で算出	割温度で算出					
					ر ا	本記載例は、	最高使用压力对	53静水頭の容器	最高使用圧力が静水頭の容器を示したものである。	`\$P\$°		A~A矢視図		

【フォーマットII 重大事故等対処設備としての評価結果】 【〇〇〇〇容器の耐震性についての計算結果】

重大事故等対処設備
 設計条件

ı			I	1												1	
	周囲環境温度	(C)						1	HIPRO		<	→ '	K				<u></u>
	最高使用温度	(C)						+	t Di	6	— (mo.g	- — ———————————————————————————————————		Ds	J Obi	V Q C	
	最高使用压力	(MPa)									メカード			₩	Ā.		
	雲動S s	鉛直方向 設計震度	$C_{V} =$											*	状を下す。		
	基準地震動S	水平方向 設計震度	$C_H=$					ı					Č		スカート開口部の形状を示す。		<u> </u>
	震動Sd 震度	鉛直方向 設計震度	I		Ğ	(MPa)	*2								K	l	$F^*(\mathcal{A}\mathcal{H}-\mathcal{F})$ (MPa)
	弾性設計用地震動Sd 又は静的震度	水平方向 設計震度			Ů	(MPa)	*		D_{bo}	(mm)				基準地震動Ss			$F(\mathcal{A}\mathcal{H}-\mathcal{h})$ (MPa)
		鉛直方向割割			П	(MPa)	*5		D°	(mm)			(m	審 			
	固有周期(s)				Ы	(MPa)	*		п				$M_{\rm s} (N \cdot mm)$	p S			$S_u(\mathcal{A}\mathcal{H}-\mathcal{F})$ (MPa)
		水平方向			t s	(mm)			S					弾性設計用地震動S 又は静的震度			<u>\(\frac{1}{\chi} \)</u>
	び米面高	1)	建屋 *		D s D	(mm)			D ₃	(mm)				弾性設計 又以			S _y (スカー (MPa)
	据付場所及び床面高さ	(m)	全 0.P.		t	(mm)			D_2	(mm)			Y	(mm)			S (開報) (MPa)
	設備分類				D _i	(mm)			D ₁	(mm)			A_{b}	(mm ²)			(A)
				ļ 	me	(kg)			$\ell_{ m s}$	(mm)			p	(mm)	(Su(開板) (MPa)
2.1 政計系件	機器名称			2.2 機器要目	m ₀	(kg) (k				(mm) (m			D_{bi}	ш) (шш)	(W)		S _y (明末反) (MPa)
ı				I													

Dpo		0	0	
2	` -			

A~A矢視図

S y (基礎がレト)	S u (基礎がレト)	F(基礎ボルト)	F (基礎ボルト)
(MPa)	(MPa)	(MPa)	(MPa)
2	Z	1	

注記 *1:最高使用温度で算出 *2:周囲環境温度で算出

2.3 計算数値 2.3.1 胴に生じる応力 (1) 一次一組費だ力

(1) 一次一般模心力	127 127							(単位: MPa)
			弹性設計用地	弾性設計用地震動Sd又は静的震度	14-2/		基準地震動S s	
/		周方向応力	TWIT	軸方向応力	せん断応力	周方向応力	軸方向応力	せん都応力
静水頭又は内圧による応力	による応力				I	$\sigma_{\phi 1} =$	0 x1=	
運転時質量による引張応力	る引張応力				1	1	σ _{x2} =	
鉛直方向地震による引張応力	トる引張応力					σ _{φ2} =	σ _{x5} ==	I
空質量による圧縮応力	圧縮応力				1	1	0 x 3=	
鉛直方向地震による圧縮応力	トる圧縮応力				1	1	— ^{9 x} θ	
水平方向地震による応力	こよる応力						σ _{x4} ==	= 2
4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	引張側				I	$\sigma_{\phi} =$	$\sigma_{xt} =$	I
ルシノリマノイエ	圧縮側			-	I	$\circ_{\phi} =$	$\sigma_{xc} =$	
十 イ ナ く 県	引展り					$\sigma_{0t} =$		
を出てている。	圧縮						1	
(2) 地震動のみば	こよる一次応	地震動のみによる一次応力と二次応力の和の変動値	姉					(単位: MPa)
			弹性設計用地	弾性設計用地震動Sd又は静的震度	14.5/		基準地震動Ss	
/		周方向応力	144	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力
鉛直方向地震による引張応力	たる引張応力	1			1	σ _{φ2} =	σ _{x5} ==	ı
鉛直方向地震による圧縮応力	トる圧縮応力			-		1	$\sigma_{x6} =$	
水平方向地震による応力	こよる応力						$\sigma_{x4} =$	= 2
140年	引張側			1	I	$\sigma_{2\phi} =$	$\sigma_{2xt} =$	ı
HACACASIII	圧縮側				1	$\sigma_{2\phi} =$	$\sigma_{2xc} =$	1
組合セ応力	引張り					$\sigma_{2t} =$		
(変動値)	紫田					$\sigma_{2c} =$		
2.3.2 スカートに生じる応力	生じる応力				(単位:MPa)		基礎ボルトに生じる応力	(単位:MPa)
		弹性設計用地震動Sd又は静的震度	又は静的震度	基準地震動S		/	弹性設計用地震動Sd	甘海州画館の
/		応 力	組合也応力	応力	組合せ応力		又は静的震度	(大学に大学)こと
運転時質量によ	よる応力	1		$\sigma_{s1} =$		引張応力	_	$\sigma_b =$
鉛直方向地震による応力	よる応力	1		σ s 3=		せん断応力	-	$_{\mathrm{p}}=$
水平方向地震	曲げ			σ_{s2} =	0 s ==			
					_			

による応力

(s: 功庫) 2.4 結論 2.4.1 固有周期

(a . 	固有周期	${ m T_H}=$	$\equiv_{\rm v}$
	方 向	水平方向	鉛直方向
i	. \	. `	4)-1

2.4.2 応力

(単位: MPa)

			弹性設計用地震動	弾性設計用地震動SdXは静的震度	建	基準地震動S s
記	Ź	C W	算出応力	許容応力	算出応力	許容応力
1,		一次一般膜	I	I	σ_0 =	S _a =
ЛРАХ		一次十二次	_	l	σ_2 =	S _a =
		組合社	_	1	$\sigma_{\rm s} =$	$f_{t} =$
7 7 1 1		圧縮と曲げ			$\eta \cdot (\sigma_{s_1} + \sigma_{s_3})$	$\eta \cdot \sigma_{s^2}$
·-		の組合せ			f c	$f_{b} = 1$
		(座屈の評価))))	(無次元)
1. 计数量		り張り	_		$\sigma_b =$	* = * f
を存むてい		せん断			$=$ q $_{2}$	f s b =

注記 *: f ts=Min[1.4 · f to-1.6 · cb , f to]

すべて許容応力以下である。

[静水頭の場合] (圧力容器と様式が異なるページのみ掲載)

【○○○容器の耐震性についての計算結果】

2. 重大事故等対処設備

	到 <u>田環境温度</u> 7. #			_	Di		Ø.0m	*0		\ \ \ \ \	D° i	D_{bo}	8		•	- —		A~A矢視図
	最高使用圧力 最高使用温度 周囲環境温度	(C ₀)				N I	Н	+ Die			基礎ボルト			•	•			√
	最高使用压力	(MPa)	静水頭				スカート	D_3 D_4	スカート開口部の形状を示す。不	A								%
	基準地震動S s	鉛直方向 設計賽度	$C_V =$						ト開口部の形				(<u>-</u>		見無い	に算出		最高使用圧力が静水頭の容器を示したものである。
	祁 東奢	水平方向 設計震度	$C_H=$					D ₁	スカー	ı			F (7,2)	(MPa)	注記*1:最高使用温度で算出	*2:周囲環境温度で算出		7が静水頭の容器を示
	地震動Sd 的震度	鉛直方向 設計震度				G _s (MPa)	*2	D _{bo}			基準地震動S s		0	(MPa)	注記*1:	*		り用圧力が静力
	弾性設計用地震動Sd 又は静的震度	水平方向 設計震度				a) G (MPa)	*1	D _c (mm)					(スカート) F	(MPa) *2		(Y)		本記載例法,最高例
	期(s)	鉛直方向				E E (MPa)	*1 *2	s			M _s (N·mm) 地震動Sd 約震度		F) S _u (7	5		F* (基礎ボルト) (MPa)		本記載例は,
	固有周期(s)	水平方向				t s (mm)		H (mm)			M。 一 一 一 一 一 一 一 一 一 一 一 一 一		S_{y} $(\chi \dot{\chi})$	(MPa) *2		(基礎ボルト) (MPa)		
	据付場所 及び床面高さ	(m)	建屋 *			D _s		(IIII)			Y (mm)		(側板)	(MPa) *1		N) (基礎 (M		
	排 及び		0. P.			t (mm)		D_2			.b 1)		<u> </u>			(基礎ポント) (MPa)	*5	
	三十八十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	1天以用(7.7.5.5.1)		注記*:基準床レベルを示す。		(mm)		D ₁			$A_{ m b}$ (mm)		Su (明本反)	(MPa) *1		S S		
設計条件	7.47	<u></u>		基準床レ	機器要目	m _e (kg)		$\ell_{ m s}$			p (mm)	(W	y (明政)	'a) 1		(基礎がレト) (MPa)	*2	
2.1 設	→ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(V) T 498(V)		: * 逞	2.2 機	$^{\mathrm{m}_{\mathrm{0}}}_{\mathrm{(kg)}}$		lg (mm)			$\mathrm{D}_{\mathrm{b} \; \mathrm{i}}$		$\mathbb{S}_{\scriptscriptstyle{\mathrm{y}}}$	(M)		S x 由		