本資料のうち、枠囲みの内容は 他社の機密事項を含む可能性が あるため公開できません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-D-01-0051_改 0
提出年月日	2020年11月10日

基本設計方針に関する説明資料

【第68条 水素爆発による原子炉建屋等の破損を防止する ための設備】

- ・先行審査プラントの記載との比較表
- ・要求事項との対比表

(設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式-7)

・各条文の設計の考え方

(設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式-6)

2020年11月

東北電力株式会社

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

[]番号:様式-7との紐づけを示す番号であり、本比較表において追記したもの(比較対象外)

先行審査プラントの記載との比較表(計測制御系統施設の基本設計方針)

《参考》柏崎刈羽原子力発電所第7号機(2020/9/25補正申請版)	東海第二発電所	女川原子力発電所第2号機	備考
		2. 計測装置等 2.1 計測装置 2.1.4 原子炉格納容器から原子炉建屋に漏えいした水素濃度の計測 炉心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止するために原子炉建屋内の水素濃度が変動する可能性のある範囲にわたり測定できる監視設備として、原子炉建屋内水素濃度を設ける設計とする。 【68条1】	表現の相違 設備名称の相違
		原子炉建屋内水素濃度は、中央制御室において連続 監視できる設計とする。 【68 条 6】	設備名称の相違
		原子炉建屋内水素濃度のうち、原子炉建屋地上3階及び原子炉建屋地下2階に設置するものについては、常設代替交流電源設備又は可搬型代替交流電源設備からの給電及び所内常設蓄電式直流電源設備、常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能な設計とする。 【68条7】	設計の差異 (計測器の設置場所及び給電する電源:
		また、原子炉建屋内水素濃度のうち、原子炉建屋地上1階及び原子炉建屋地下1階に設置するものについては、所内常設蓄電式直流電源設備、常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能な設計とする。 【68条8】	

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

[] 番号:様式-7との紐づけを示す番号であり、本比 較表において追記したもの(比較対象外)

先行審査プラントの記載との比較表 (計測制御系統施設の基本設計方針)

2.1.5 静的触媒式水素再結合装置の作動状態監視 炉心の著しい損傷が発生した場合において原子炉建 屋等の水素燥発による損傷を防止するために原子炉建 屋原子炉棟内の水素濃度上昇を抑制し、水素濃度を可 燃限界未満に制御するための重大事放等対処設備とし で、水素濃度制御設備である静的触媒式水素再結合装 置動作監視装置を設ける設計とする。 【68 条 1】 静的触媒式水素再結合装置動作監視装置(個数 8, 計 測範囲 0~500℃、検出器種類 熱電対)は、静的触媒式 設計の差異	《参考》柏崎刈羽原子力発電所第7号機(2020/9/25補正申請版)	東海第二発電所	女川原子力発電所第2号機	備考
測範囲 0~500℃、検出器種類 熱電対)は、静的触媒式 水素再結合装置の入口側及び出口側の温度により静的 触媒式水素再結合装置の作動状態を中央制御室から監視できる設計とし、重大事故等時において測定可能なよう耐環境性を有した熱電対を使用する。 【68 条 4】 静的触媒式水素再結合装置動作監視装置は、所内常 設備名称の相違	NS 37 HARGETTINN 1 7370 FB/NRT 1 7370K (AVENT V) AV HILL T BRIDE	ANIEWY — JURESTI	2.1.5 静的触媒式水素再結合装置の作動状態監視 炉心の著しい損傷が発生した場合において原子炉建 屋等の水素爆発による損傷を防止するために原子炉建 屋原子炉棟内の水素濃度上昇を抑制し、水素濃度を可 燃限界未満に制御するための重大事故等対処設備とし て、水素濃度制御設備である静的触媒式水素再結合装 置動作監視装置を設ける設計とする。	
			測範囲 0~500℃, 検出器種類 熱電対) は、静的触媒式水素再結合装置の入口側及び出口側の温度により静的触媒式水素再結合装置の作動状態を中央制御室から監視できる設計とし、重大事故等時において測定可能なよう耐環境性を有した熱電対を使用する。	
搬型代替直流電源設備から給電が可能な設計とする。			設蓄電式直流電源設備,常設代替直流電源設備又は可 搬型代替直流電源設備から給電が可能な設計とする。	

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

[]番号:様式-7との紐づけを示す番号であり、本比 較表において追記したもの(比較対象外)

先行審査プラントの記載との比較表 (原子炉格納施設の基本設計方針)

《参考》柏崎刈羽原子力発電所第7号機(2020/9/25補正申請版)	東海第二発電所	女川原子力発電所第2号機	備考
			設計の差異 (女川2号は非常用ガス処理系を68条設備としては使用しない)
			設計の差異 (東二の原子炉建屋ガス処理系と同じ機能を有する設備として、女川には非常用ガス処理系があるが、静的触媒式水素再結合装置により水素爆発損傷防止対策が可能であり、また、水素処理を目的として設置した設備ではないことから、女川2号は非常用ガス処理系を68条設備としては使用しない)

- 1 -

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

[]番号:様式-7との紐づけを示す番号であり、本比較表において追記したもの(比較対象外)

先行審査プラントの記載との比較表(原子炉格納施設の基本設計方針)

《参考》柏崎刈羽原子力発電所第7号機(2020/9/25補正申請版)	東海第二発電所	女川原子力発電所第2号機	備考
			設計の差異
			(東二の原子炉建屋ガス処理系と同じ機能
			を有する設備として, 女川には非常用ガス処
			理系があるが,静的触媒式水素再結合装置に
			より水素爆発損傷防止対策が可能であり,ま
			た,水素処理を目的として設置した設備では
			ないことから、女川 2 号は非常用ガス処理
			系を68条設備としては使用しない)

- 2 -

緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

[]番号:様式-7との紐づけを示す番号であり、本比 較表において追記したもの(比較対象外)

先行審査プラントの記載との比較表 (原子炉格納施設の基本設計方針)

《参考》柏崎刈羽原子力発電所第7号機(2020/9/25補正申請版)	東海第二発電所	女川原子力発電所第2号機	備考
		3. 圧力低減設備その他の安全設備 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制 御設備並びに格納容器再循環設備 3.3.3 原子炉建屋水素濃度抑制系	記載方針の相違 (要目表に合わせた章構成としている。)
		炉心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止するために原子炉建屋原子炉棟内の水素濃度上昇を抑制し、水素濃度を可燃限界未満に制御するための重大事故等対処設備として、水素濃度制御設備である静的触媒式水素再結合装置を設ける設計とする。 【68条1】	設備名称の相違
		水素濃度制御設備である静的触媒式水素再結合装置 は,運転員の起動操作を必要とせずに,原子炉格納容 器から原子炉建屋原子炉棟内に漏えいした水素と酸素 を触媒反応によって再結合させることで,原子炉建屋 原子炉棟内の水素濃度の上昇を抑制し,原子炉建屋原 子炉棟の水素爆発を防止できる設計とする。また評価 に用いる性能を満足し,試験により性能及び耐環境性 が確認された型式品を設置する設計とする。静的触媒 式水素再結合装置は,原子炉建屋原子炉棟内に漏えい した水素が滞留すると想定される原子炉建屋原子炉棟 3 階に設置することとし,静的触媒式水素再結合装置	
		の触媒反応時の高温ガスの排出が重大事故等時の対処 に重要な計器・機器に悪影響がないよう離隔距離を設 ける設計とする。 【68条3】	
		静的触媒式水素再結合装置の流路として、 <mark>設計基準 対象施設である</mark> 原子炉建屋原子炉棟 <mark>,原子炉建屋大物 搬入口及び原子炉建屋エアロック</mark> を重大事故等対処設 備として使用できる設計とする。 【68 条 2】	表現の相違 (流路として使用する基本設計方針対象設備の記載。)

赤色:様式-6に関する記載(付番及び下線)

青色:設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更許可と基本設計方針(後)との対比

緑色:技術基準規則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比 【○○条○○】: 関連する資料と基本設計方針を紐づけるための付番 <関連する資料>

・様式-1への展開表(補足説明資料)

技術基準要求機器リスト(設定根拠に関する説明書 別添-1)

様式-7

: 前回提出時からの変更箇所

			との対比表		
技術基準規則・解釈	設工認申請書 基本設計方針(後)	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可,技術基準規則 及び基本設計方針との対比	備考
(水素爆発による原子炉建屋等		ロ 発電用原子炉施設の一般構造			
の損傷を防止するための設備)		(3) その他の主要な構造			
		(i) 本発電用原子炉施設は,(1)			
		耐震構造,(2)耐津波構造に加			
		え,以下の基本的方針のもとに安			
		全設計を行う。			
		b. 重大事故等対処施設(発電用			
		原子炉施設への人の不法な侵入			
		等の防止, 中央制御室, 監視測定			
		設備、緊急時対策所及び通信連絡			
		を行うために必要な設備は, a.	9. 原子炉格納施設		
		設計基準対象施設に記載)	9.6 水素爆発による原子炉建屋		
		(m) 水素爆発による原子炉建屋	等の損傷を防止するための設備		
		等の損傷を防止するための設備	9.6.1 概要		
第六十八条 発電用原子炉施設	- 炉心の著しい損傷が発生した	炉心の著しい損傷が発生した	炉心の著しい損傷が発生した	同趣旨の記載であるが、表現の違	計測制御系統施設
には、炉心の著しい損傷が発生し	場合において原子炉建屋等の水	場合において原子炉建屋等の水	場合において原子炉建屋等の水	いによる差異あり	2.1.4 原子炉格納容器から原子
た場合において原子炉建屋その	素爆発による損傷を防止するた	素爆発による損傷を防止するた	素爆発による損傷を防止するた		炉建屋に漏えいした水素濃度の
他の原子炉格納容器から漏えい	めに原子炉建屋原子炉棟内の水	めに必要な重大事故等対処設備	めに必要な重大事故等対処設備		計測
する気体状の放射性物質を格納	素濃度上昇を抑制し、水素濃度を	 を設置する。①a	を設置する。 �� (①a 重複)		2.1.5 静的触媒式水素再結合器
するための施設(以下「原子炉建	可燃限界未満に制御するための		水素爆発による原子炉建屋等		置の監視装置
屋等」という。) の水素爆発によ	重大事故等対処設備として,水素		の損傷を防止するための設備の		原子炉格納施設
る損傷を防止する必要がある場	濃度制御設備である静的触媒式		構造図及び系統概要図を第 9.6		3.3.3 原子炉建屋水素濃度制御
合には、水素爆発による当該原子	水素再結合装置及び静的触媒式		-1 図から第 9.6-3 図に示す。		系
炉建屋等の損傷を防止するため	水素再結合装置動作監視装置を	リ 原子炉格納施設の構造及び設	②		
に必要な設備を施設しなければ	設けるとともに,原子炉建屋内の	備			
ならない。①	水素濃度が変動する可能性のあ	(4) その他の主要な事項	9.6.2 設計方針		
【解釈】	る範囲にわたり測定できる監視	(iii) 水素爆発による原子炉建屋	水素爆発による原子炉建屋等		
1 第68条に規定する「水素爆	設備として、 <mark>原子炉建屋内水素濃</mark>	等の損傷を防止するための設備	の損傷を防止するための設備の		
発による当該原子炉建屋等の損	<mark>度</mark> を設ける設計とする。	水素爆発による原子炉建屋等	うち,原子炉建屋等の損傷を防止		
傷を防止するために必要な設備」	① a①b①c①d 【68 条 1】	の損傷を防止するための設備の	するための水素濃度制御設備と		①c①d 引用元:P2
とは、以下に掲げる措置又はこれ		うち,原子炉建屋等の損傷を防止	して,静的触媒式水素再結合装置		
らと同等以上の効果を有する措		するための水素濃度制御設備と	及び静的触媒式水素再結合装置		
置を行うための設備をいう。	静的触媒式水素再結合装置の	して, 静的触媒式水素再結合装置	動作監視装置を設ける。また、原	設備記載の適正化	原子炉格納施設
a) 水素濃度制御設備 (制御によ	流路として、設計基準対象施設で	及び静的触媒式水素再結合装置	子炉建屋内の水素濃度が変動す	(設備名称を工認名称とした)	3.3.3 原子炉建屋水素濃度制御
り原子炉建屋等で水素爆発のお	ある <mark>原子炉建屋原子炉棟</mark> , 原子炉	動作監視装置を設ける。 <a>①b ま	る可能性のある範囲にわたり測		系
それがないことを示すこと。)又	建屋大物搬入口及び原子炉建屋	た,原子炉建屋内の水素濃度が変	定するための設備として,原子炉		
は水素排出設備(動的機器等に水	エアロックを重大事故等対処設	動する可能性のある範囲にわた	建屋水素濃度監視設備を設ける。		

赤色:様式-6に関する記載(付番及び下線)

青色:設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更許可と基本設計方針(後)との対比

緑色:技術基準規則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比 【○○条○○】: 関連する資料と基本設計方針を紐づけるための付番 <関連する資料>

・様式-1への展開表(補足説明資料)

技術基準要求機器リスト(設定根拠に関する説明書 別添-1)

: 前回提出時からの変更箇所

様式-7

技術基準規則・解釈	設工認申請書	設置許可申請書	設置許可申請書	設置許可,技術基準規則	備考
素爆発を防止する機能を付ける	基本設計方針(後) 備として使用できる設計とする。	本文 り測定するための設備として, 原	添付書類八 ◆ (①b①c 重複)	及び基本設計方針との対比	
こと。放射性物質低減機能を付け	(5) 【68条2】	子炉建屋水素濃度監視設備を設	◆ (UDUC 里後)		
ること。)を設置すること。23	[00 来 2]	「丁炉) 足座小糸仮及 監視 放 in <u>を io</u> ける。 ① c			⑤引用元:P3
<u> </u>		<u>1) 3.</u> (1)			3 月南九 . F3
		 a.水素濃度制御による原子炉建	 (1) 水素濃度制御による原子炉		
		屋等の損傷を防止するための設	建屋等の損傷を防止するための		
		備	設備		
		'''' (a) 静的触媒式水素再結合装置	a.静的触媒式水素再結合装置に		
	水素濃度制御設備である静的	による水素濃度の上昇抑制	よる水素濃度の上昇抑制		
	触媒式水素再結合装置は, 運転員	水素爆発による原子炉建屋等	水素爆発による原子炉建屋等	設備設計の明確化	 原子炉格納施設
	の起動操作を必要とせずに,原子	の損傷を防止するための設備の	の損傷を防止するための設備の		3.3.3 原子炉建屋水素濃度制御
	炉格納容器から原子炉建屋原子	うち、炉心の著しい損傷により原	うち、炉心の著しい損傷により原	悪影響防止の方針について明確	
	炉棟内に漏えいした水素と酸素	子炉格納容器から原子炉建屋原	子炉格納容器から原子炉棟内に	化)	
	を触媒反応によって再結合させ	子炉棟内に水素が漏えいした場	水素が漏えいした場合において,		
	ることで, 原子炉建屋原子炉棟内	合において,原子炉建屋原子炉棟	原子炉棟内の水素濃度上昇を抑		
	の水素濃度の上昇を抑制し,原子	内の水素濃度上昇を抑制し,水素	制し,水素濃度を可燃限界未満に		
	炉建屋原子炉棟の水素爆発を防	濃度を可燃限界未満に制御する	制御するための重大事故等対処		
	止できる設計とする。また評価に	ための重大事故等対処設備とし	設備として, ① (①a①d 重複) <u>水</u>		
	用いる性能を満足し,試験により	<u>て, ①d 静的触媒式水素再結合装</u>	素濃度制御設備である②b 静的		
	性能及び耐環境性が確認された	置は,運転員の起動操作を必要と	触媒式水素再結合装置及び静的		
	型式品を設置する設計とする。静	せずに,原子炉格納容器から原子	触媒式水素再結合装置動作監視		
	的触媒式水素再結合装置は,原子	<u>炉建屋原子炉棟内に漏えいした</u>	装置を使用する。 ��(②a②b 重		
	炉建屋原子炉棟内に漏えいした	水素と酸素を触媒反応によって	複)		
	水素が滞留すると想定される原	再結合させることで,原子炉建屋	静的触媒式水素再結合装置は,		
	子炉建屋原子炉棟 3 階に設置す	原子炉棟内の水素濃度の上昇を	運転員の起動操作を必要とせず		
	ることとし,静的触媒式水素再結	抑制し,原子炉建屋原子炉棟の水	に,原子炉格納容器から原子炉棟		
	合装置の触媒反応時の高温ガス	素爆発を防止できる設計とする。	内に漏えいした水素と酸素を触		
	の排出が重大事故等時の対処に	②a	媒反応によって再結合させるこ		
	重要な計器・機器に悪影響がない		とで,原子炉棟内の水素濃度の上		
	よう離隔距離を設ける設計とす		昇を抑制し,原子炉棟の水素爆発		
	る。		を防止できる設計とする。 ①(②		
	②a②b 【68条3】		a 重複)		
	静的触媒式水素再結合装置動				
	作監視装置(個数 8, 計測範囲 0	静的触媒式水素再結合装置動	静的触媒式水素再結合装置動	設備設計の明確化	計測制御系統施設
	17監視表直(個数 8, 計例配囲 0 ~500℃, 検出器種類 熱電対)は,	作監視装置は,静的触媒式水素再	作監視装置は、静的触媒式水素再		2.1.5 静的触媒式水素再結合装
	~500 C, 横山益惶頻 熱電刃/は, 静的触媒式水素再結合装置の入	作監視装直は、静的歴媒式小素冉 結合装置の入口側及び出口側の	作監院装直は、静的歴媒式小素件 結合装置の入口側及び出口側の	て明記、計測器の耐環境性の方針	2.1.5 前的無媒式水系再結合装 置の監視装置
	野町歴殊八小糸円箱冒装直の八	和古表直の八日側及び田日側の	和古表直の八日側及い田日側の	し切記、計側番の刪泵現性の方針	単ツ監保表 圏

赤色:様式-6に関する記載(付番及び下線)

青色:設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更許可と基本設計方針(後)との対比

緑色:技術基準規則と基本設計方針(後)との対比

紫色:基本設計方針(前)と基本設計方針(後)との対比

【○○条○○】: 関連する資料と基本設計方針を紐づけるための付番 <関連する資料>

・様式-1への展開表(補足説明資料)

技術基準要求機器リスト(設定根拠に関する説明書 別添-1)

: 前回提出時からの変更箇所

要求事項との対比表

技術基準規則・解釈	設工認申請書	設置許可申請書	設置許可申請書	設置許可,技術基準規則	備考
汉州 圣中风别 " 府	基本設計方針(後)	本文	添付書類八	及び基本設計方針との対比	VIII ^-7
	口側及び出口側の温度により静	温度により静的触媒式水素再結	温度により静的触媒式水素再結	について明確化)	
	的触媒式水素再結合装置の作動	合装置の作動状態を中央制御室	合装置の作動状態を中央制御室		
	状態を中央制御室から監視でき	から監視できる設計とする。 ②c	から監視できる設計とする。静的		
	る設計とし,重大事故等時におい	静的触媒式水素再結合装置動作	触媒式水素再結合装置動作監視		
	て測定可能なよう耐環境性を有	監視装置は,所内常設蓄電式直流	装置は,所内常設蓄電式直流電源		
	した熱電対を使用する。	電源設備,常設代替直流電源設備	設備,常設代替直流電源設備又は		
	②c②d 【68 条 4】	又は可搬型代替直流電源設備か	可搬型代替直流電源設備から給		
		ら給電が可能な設計とする。 4a	電が可能な設計とする。		②d 引用元: P9
			♠(②c④a 重複)		
	静的触媒式水素再結合装置動		主要な設備は,以下のとおりと		
	作監視装置は,所内常設蓄電式直		する。		計測制御系統施設
	流電源設備,常設代替直流電源設		· 静的触媒式水素再結合装置		2.1.5 静的触媒式水素再結合装
	備又は可搬型代替直流電源設備		· 静的触媒式水素再結合装置動		置の監視装置
	から給電が可能な設計とする。		作監視装置		
	④a 【68 条 5】		所内常設蓄電式直流電源設備		
			(10.2 代替電源設備)		
			・常設代替直流電源設備(10.2		
			代替電源設備)		
			·可搬型代替直流電源設備(10.2		
			代替電源設備)		
			③		
			本系統の流路として,原子炉棟		
			を重大事故等対処設備として使		
			用する。⑤		
		│ │ b.水素濃度監視	b. 水素濃度監視		
		(a) 原子炉建屋水素濃度監視設	(a) 原子炉建屋水素濃度監視設		
		備による水素濃度測定	備による水素濃度測定		
		水素爆発による原子炉建屋等	水素爆発による原子炉建屋等		
		の損傷を防止するための設備の	の損傷を防止するための設備の		
		うち, 炉心の著しい損傷により原	うち, 炉心の著しい損傷により原		
		子炉格納容器から原子炉建屋原	子炉格納容器から原子炉棟内に		
		子炉棟内に漏えいした水素の濃	漏えいした水素の濃度を測定す		
		度を測定するため、炉心の著しい	るため、炉心の著しい損傷が発生		
		損傷が発生した場合に水素濃度			
		原物が元王した勿日に小希候及	しに勿口に小术仮及が変期する		<u> </u>

様式-7

赤色:様式-6に関する記載(付番及び下線)

青色:設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更許可と基本設計方針(後)との対比

緑色:技術基準規則と基本設計方針(後)との対比

【○○条○○】: 関連する資料と基本設計方針を紐づけるための付番 <関連する資料>

・様式-1への展開表(補足説明資料)

		安	との対比表 └───		
技術基準規則・解釈	設工認申請書 基本設計方針(後)	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可,技術基準規則 及び基本設計方針との対比	備考
		が変動する可能性のある範囲で	可能性のある範囲で測定できる		
	原子炉建屋内水素濃度は, 中央	測定できる重大事故等対処設備	重大事故等対処設備として,原子		
b) 想定される事故時に水素濃度	制御室において連続監視できる	として,原子炉建屋内水素濃度	炉建屋水素濃度監視設備である	同趣旨の記載であるが,表現の違	計測制御系統施設
が変動する可能性のある範囲で	設計とする。	は,中央制御室において連続監視	原子炉建屋内水素濃度を使用す	いによる差異あり	2.1.4 原子炉格納容器から原子
推定できる監視設備を設置する	③ 【68条6】	できる設計とし、③ 原子炉建屋	る。��(①a①c 重複)		炉建屋に漏えいした水素濃度の
こと。③		内水素濃度のうち,原子炉建屋地	原子炉建屋内水素濃度は,中央		計測
	原子炉建屋内水素濃度のうち,	上3階及び原子炉建屋地下2階	制御室において連続監視できる		
c)これらの設備は、交流又は直	原子炉建屋地上 3 階及び原子炉	に設置するものについては,常設	設計とし,①(③重複)原子炉建		同上
流電源が必要な場合は代替電源	建屋地下 2 階に設置するものに	代替交流電源設備又は可搬型代	屋内水素濃度のうち,原子炉建屋		
設備からの給電を可能とするこ	ついては,常設代替交流電源設備	替交流電源設備からの給電及び	地上3階及び原子炉建屋地下2		
£. 4	又は可搬型代替交流電源設備か	所内常設蓄電式直流電源設備,常	階に設置するものについては,常		
	らの給電及び所内常設蓄電式直	設代替直流電源設備又は可搬型	設代替交流電源設備又は可搬型		
	流電源設備,常設代替直流電源設	代替直流電源設備からの給電が	代替交流電源設備からの給電及		
	備又は可搬型代替直流電源設備	可能な設計とする。	び所内常設蓄電式直流電源設備,		
	からの給電が可能な設計とする。	(4) b	常設代替直流電源設備又は可搬		
	④ b 【68条7】		型代替直流電源設備からの給電		
			が可能な設計とする。 🗘 (4b 重		
	また,原子炉建屋内水素濃度の		複)		
	うち,原子炉建屋地上1階及び原	また,原子炉建屋内水素濃度の	また,原子炉建屋内水素濃度の		同上
	子炉建屋地下 1 階に設置するも	うち,原子炉建屋地上1階及び原	うち,原子炉建屋地上1階及び原		
	のについては, 所内常設蓄電式直	子炉建屋地下1階に設置するも	子炉建屋地下1階に設置するも		
	流電源設備,常設代替直流電源設	のについては,所内常設蓄電式直	のについては, 所内常設蓄電式直		
	備又は可搬型代替直流電源設備	流電源設備,常設代替直流電源設	流電源設備,常設代替直流電源設		
	からの給電が可能な設計とする。	備又は可搬型代替直流電源設備	備又は可搬型代替直流電源設備		
	④c 【68 条 8】	からの給電が可能な設計とする。	からの給電が可能な設計とする。		
		4 c	(♠c 重複)		
			主要な設備は,以下のとおりと		
			する。		
			• 原子炉建屋内水素濃度		
			•常設代替交流電源設備(10.2		
			代替電源設備)		
			• 可搬型代替交流電源設備		
			(10.2 代替電源設備)		
			• 代替所内電気設備(10.2 代		
			替電源設備)		
			· 所内常設蓄電式直流電源設		
			備(10.2 代替電源設備)		

様式-7 技術基準要求機器リスト(設定根拠に関する説明書 別添-1) 紫色:基本設計方針(前)と基本設計方針(後)との対比 : 前回提出時からの変更箇所 要求事項との対比表

赤色:様式-6に関する記載(付番及び下線)

青色:設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更許可と基本設計方針(後)との対比

緑色:技術基準規則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比 【○○条○○】: 関連する資料と基本設計方針を紐づけるための付番 <関連する資料>

様式-1への展開表(補足説明資料)

技術基準要求機器リスト(設定根拠に関する説明書 別添-1)

: 前回提出時からの変更箇所

様式-7

		女小ず快(この対比表		
技術基準規則・解釈	設工認申請書 基本設計方針(後)	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可,技術基準規則 及び基本設計方針との対比	備考
	E-1801/721 (E/	1122	·常設代替直流電源設備(10.2	X O EST WITH C SAME	
			代替電源設備)		
			· 可搬型代替直流電源設備		
			(10.2 代替電源設備)		
			(10.2 八省电源放湘)		
		海和小生去海部河和佛 (古柳)	*		
		常設代替交流電源設備,可搬型	常設代替交流電源設備,可搬型		
		代替交流電源設備,代替所內電気	代替交流電源設備,代替所內電気		
		設備,所內常設蓄電式直流電源設	設備,所内常設蓄電式直流電源設		
		備,常設代替直流電源設備及び可	備,常設代替直流電源設備及び可		
		搬型代替直流電源設備について	搬型代替直流電源設備について		
		は,「ヌ(2)(iv) 代替電源設備」	は,「10.2 代替電源設備」に記載		
		に記載する。 1	する。②		
			9.6.2.1 多様性, 位置的分散		
			基本方針については,「1.1.7.		
			1 多様性, 位置的分散, 悪影響防		
			止等」に示す。		
			静的触媒式水素再結合装置動		
			作監視装置と原子炉建屋内水素		
			濃度は, 共通要因によって同時に		
			機能を損なわないよう,異なる計		
			測方式とすることで多様性を有		
			する設計とする。また, 静的触媒		
			式水素再結合装置動作監視装置		
			は,非常用交流電源設備に対して		
			多様性を有する所内常設蓄電式		
			直流電源設備,常設代替直流電源		
			設備又は可搬型代替直流電源設		
			備からの給電により作動できる		
			設計とし,原子炉建屋内水素濃度		
			は,非常用交流電源設備に対して		
			多様性を有する常設代替交流電		
			源設備又は可搬型代替交流電源		
			設備からの給電及び所内常設蓄		
			電式直流電源設備,常設代替直流		
			電源設備又は可搬型代替直流電		
			源設備からの給電により作動で		

赤色:様式-6に関する記載(付番及び下線)

青色: 設置変更許可本文及び添付書類八からの引用以外の記載 茶色: 設置変更許可と基本設計方針(後)との対比

緑色:技術基準規則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比 【○○条○○】: 関連する資料と基本設計方針を紐づけるための付番 <関連する資料>

・様式-1への展開表(補足説明資料)

技術基準要求機器リスト(設定根拠に関する説明書 別添-1)

様式-7

: 前回提出時からの変更箇所

		安水尹伐	.との対比表		
技術基準規則・解釈	設工認申請書 基本設計方針(後)	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可,技術基準規則 及び基本設計方針との対比	備考
	金本版刊为如 (反)	一	きる設計とする。	及り基本政門分割との利比	
			電源設備の多様性及び位置的		
			・ 最原設備の多様性及び位置的 分散については,「10.2 代替電源		
			設備」に記載する。		
			4		
			9.6.2.2 悪影響防止		
			基本方針については,「1.1.7.		
			1 多様性, 位置的分散, 悪影響防		
			上等」に示す。		
			静的触媒式水素再結合装置は,		
			原子炉建屋燃料取替床壁面近傍		
			に設置し、他の設備と独立して作		
			動する設計とするとともに、重大		
			事故等時の再結合反応による温		
			度上昇が重大事故等時に使用す		
			る他の設備に悪影響を及ぼさな		
			い設計とする。		
			静的触媒式水素再結合装置動		
			作監視装置及び原子炉建屋内水		
			素濃度は、他の設備と電気的な分		
			離を行うことで、他の設備に悪影		
			響を及ぼさない設計とする。また,静的触媒式水素再結合装置動		
			作監視装置は、静的触媒式水素再		
			結合装置内の水素流路を妨げな		
			い配置及び寸法とすることで、静		
			的触媒式水素再結合装置の水素		
			処理性能に悪影響を及ぼさない		
			設計とする。		
			9.6.2.3 容量等		
			基本方針については,「1.1.7.		
			2 容量等」に示す。		
			静的触媒式水素再結合装置は,		
			想定される重大事故等時におい		
			て,有効燃料部の被覆管がジルコ		
			し、行列系作可収復信かンルコ		<u> </u>

赤色:様式-6に関する記載(付番及び下線)

青色:設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更許可と基本設計方針(後)との対比

緑色:技術基準規則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比

【○○条○○】: 関連する資料と基本設計方針を紐づけるための付番 <関連する資料>

様式-1への展開表(補足説明資料)

技術基準要求機器リスト(設定根拠に関する説明書 別添-1)

: 前回提出時からの変更箇所

様式-7

			頁との対比表 └───		
技術基準規則・解釈	設工認申請書 基本設計方針(後)	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可,技術基準規則 及び基本設計方針との対比	備考
	坐 个队们刀≠ (区)		ニウムー水反応により全て反応	及び基本政計分割といろに	
			したときに発生する水素(約		
			990kg) が,原子炉格納容器の最		
			高使用圧力の2倍における原子		
			炉格納容器漏えい率に対して保		
			守的に設定した漏えい率(10%/		
			日)で漏えいした場合において,		
			ガス状よう素による性能低下及		
			び水素再結合反応開始の不確か		
			さを考慮しても,原子炉棟内の水		
			素濃度及び酸素濃度が可燃領域		
			に達することを防止するために		
			必要な水素処理容量を有する設		
			計とする。		
			また,静的触媒式水素再結合装		
			置は,原子炉棟内の水素の効率的		
			な除去を考慮して分散させ, 適切		
			な位置に配置する。		
			静的触媒式水素再結合装置動		
			作監視装置は,静的触媒式水素再		
			結合装置作動時に想定される温		
			度範囲を測定できる設計とする。		
			原子炉建屋内水素濃度は,原子		
			炉建屋燃料取替床の天井付近に		
			分散させた適切な位置に配置し,		
			想定される重大事故等時におい		
			て,原子炉棟内の水素濃度を測定		
			できる設計とする。また,原子炉		
			建屋内水素濃度は,原子炉建屋燃		
			料取替床以外の水素が漏えいす		
			る可能性の高いエリアにも設置		
			し,水素の早期検知及び滞留状況		
			を把握できる設計とする。		
			6		
			9.6.2.4 環境条件等		
			基本方針については,「1.1.7.		

赤色:様式-6に関する記載(付番及び下線)

青色: 設置変更許可本文及び添付書類八からの引用以外の記載 茶色: 設置変更許可と基本設計方針(後)との対比

緑色:技術基準規則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比 【○○条○○】: 関連する資料と基本設計方針を紐づけるための付番 <関連する資料>

・様式-1への展開表(補足説明資料)

技術基準要求機器リスト(設定根拠に関する説明書 別添-1)

: 前回提出時からの変更箇所

様式-7

技術監察規則・解釈 (株) (後) (後) (表文 (後) (表文 (後) (表文 (後) (表文 (美) (表文 (表文 (美) (表文 (美) (表文	要求事項との対比表					
3 信息を発生)に対す 参院地域水水が開き社会産 動作室 (税装度水が原子が発達的水水震震 度は、原子が内が、原子が内が、定置し、起産 される 第大事故や時に3317 競 数条件をう理した設計とする。 9.6.2.5 機体性の確保 をあり付しついては、「1.1.7. 4 機体性及び破除 機体化りに示す す。 参的地域大水本再符合装置、 静的地域大水本再符合装置、 海的地域大水本再符合装置、 では、思定される直入事故等時に 33いて、他の系統と切り替えるこ おいて、他の系統と切り替えるこ 海的地域大水本用符合法ではは、 水水大・酸酸が、成大・大・皮肤及 いによって受動的に起動する定 個とし、操作・吸水が上がる。 動物地域ス水素可容を被して にはよって受動的に起動する定 個とし、操作・吸水が表面の計 能は黄度が、原子が重量内水本震 の反び、ルン新動面で配便がり始 なな計とする。 参り地域ス水素可容を表面の作 能は大きない。 をなまとする。 ● 1.3 主要設備及び仕符 本事発化による加了を使用で の最近を防止する方とめの発情の 主要機能化域を第9.6 1 表に示す ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	技術基準規則・解釈		The state of the s			備考
静の始端式水高用格分製廠, 前 的整線式水高用路台、製工 環底区が原子中地量内水素配 度は、原子原内に設置し、超子 される重大事故の計算とする。 ◆ 9.6.2.5 機件性の確保 基本方針については、「1.1.7. 4 操作性及び域域・接対付して示す。 参照を放送水高再結合製工動物の整理が、表面を動物を製造水水高平成合物を運動作数を が終端式水高平原は一分水温 度は、形定される低小型の手段として さいて、他の系統と地の対象のに さいて、他の系統と地の対象のに さいて、他の系統と対象を認定とする。 静め他は、形定される低小型をお記さまする。 静め他は大水高級所名。 最近によって受動的に起動すると となく使用で水面積が減入すると検証が 定によって受動的に起動する設 値とし、機体下型を設定される。 静め地域式水素料合合装度動作 強烈を減度が原子が建したする。 静め地域式水素料合合装度動作 強烈を減度が原子が建した。 静め地域式水素料合合装度動作 強烈を減度が原子が建した。 静め出て、素面を含まままままままままままままままままままままままままままままままままままま			, , ,		24-21/2007	
の発展大水素再合合製面的作室 複数数 200 原子原建型内水素達 度は、原子原体内に設置し、想定 される重大事故事故上に設する構 壌木弁が上さいては、「1.1.7、 4 操作性及び対象。検査性」に示す。 物の射度大水素再符合製面。特 的対度大水素再符合製面。特 的対度大水素再符合製面。特 的対度大水素再符合製面。 板型面及び原子地塩内水素酸 度は、認定される面大水板等時に おいて、他の系数を切り巻末るこ となく使用できる設計とする。 特の健康大水素再符合影面は、 水素上の異常が成しましまっ。 特の健康大水素再符合影面は、 水素、医型が能しましまっ。 特的教理大水素再符合影面は、 水素、医型が能しましまっ。 特的教理大水素再符合影面は、 水素、医型が能しましまっ。 特的教理大水素再合影響が記ませずる。 特的教理大水素再発音を製造面動作 監視器面及び原子の建立内水素 激度は、中央影響室を配列の手能 な設まとする。 9.6.3 主要設備及び肝子の建筑 の工具、中央影響をを配列の手能 な設まとする。 9.6.3 主要設備及び肝子の認確の 主要整備及び肝子の認確の 電視器面及び原子の理解等 の指集が施上する。						
現装置及び原子が極内に設定し、認定される意大事を考慮した設計とする。 9.6.2.5 操作性の確保 議本方針については、「1.1.7. 4 機体性及び製め・検索性」に示す。 - 静の触媒大水素再結合装置動作型 視装置及び原子が建国内水素競技は、形容もおる意大者被告装置動作型 視装置及び原子が建国内水素競技は、砂定される意大者が時に おいて、他の承告を認計とする。 - 静の触媒大水素再結合装置は、 水素と発素が能人すると触覚反 にによって受動的に起動する設備 にし、操作を表別する 静的性質大水素再結合と変し、 水素と発素が成人すると触覚反 にによって受動的に起動する 静的性質大水素再結合接近の場所 監視疾展及び原本素再結合接近動作 監視疾展及び原本素素結合接近動作 を接続展及び成立水素再結合接近動作 を表現を表現する。 9.6.3 主要設備及び仕様 水素製発による原子が建量等 の掲載を添する。 9.6.3 主要設備及び仕様 ・ 水素発化による原子が建量等 の掲載を新り、6-1 表に示す。 ◆						
度は、原子が棟がに設立し、地定される重大事故等時における環境条件を考慮した設計とする。 9.6.2.5 操作性の確保 基本が針については、「1.1.7. 4 操作性及び競・検査性」に示す。 動物性或水素再結合装置、動物性変な水素再結合装置、動物性変な水素再結合装置が、地定する大事体等時において、他の系統と切り考えることなく使用できる影響とする。 静め触媒大水素再結合装置は、水素と健素が流入すると健謀反応によって受診をする。 静め触媒大水素再結合装置は、水素と健素が流入すると健謀反応によって表情を表情を表現した。 「機工を表現する政治を表現しているなど、ままれているなど、ままれているなど、ままれているなど、ままれているなど、ままれているなど、ままれているなど、ままれているなどのではなどのできまれているなど、ままれているなどのできまれているなどのできまれているなどのできまれているなどのできないできまれているなどのできまれているなどのできまれているなどのできないできれているなどのできないできないるなどのできないできないできないできないできないできないできないできないできないできない						
される重大事故等時における環 境条件を制慮した設計とする。 9.6.2.5 操作性の確保 基本が針については、「1.1.7. 4 操作性及び破験・検査性」に示す。 静め触線大水素再結合接面 静 的地域本水素再結合接面 静 度は、地定される重大事体等時に おいて、他の系統とする。 静の触線大水素再結合接直は、 本書と傳表がすると健康反応 によって受動的に起動する設 備とし、操作不要な設計とする。 静的機域大水素再結合接直は、 水素と修成が計ると機様反応 にによって受動的に起動する設 備とし、操作不要な設計とする。 静的機域大水素再結合接直は、 なこれによって受動的に起動する設 備とし、操作不要な設計とする。 静的機域本水素再結合接直が下極を設計、 を設計となる。 かの機能を対すると機様反応 には、由来制御室で監視が可能 な設計とする。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・						
原条件を考慮した設計とする。 ② 6.2.5 操作性の確保 基本力針については、「1.1.7. 4 操作性及び試験・検査性」に示す。 静的熱媒式水素所結合装置、静的熱媒式水素高温度は、恋定よる意大事故事時に おいて、他の系をと切り替えることとなく使用する。 静的熱媒式水素再結合装置は、水素と酸素が減入する。 静的熱媒式水素再結合装置は、水素と酸素が減入する。 静的熱媒式水素再結合装置は、水素と酸素が減入する。 静的熱媒式水素再結合装置は、水素と酸素が減入する。 静的熱媒式水素再結合装置動作を監視装置及び原子炉建屋内水素濃度は、中央制卵室で監視が可能な設計とする。						
● 9.6.2.5 操作性の確保 基本方針については、「1.1.7. 4 操作性及び試験・検査性」に示す。 方の機態表式水素用結合装置, 持 的態度式水素用結合装置物作監 視装温及び原子炉建風内水素濃 度は、過度される最大事故等時に おいて、他の表と切り替えることなく使用できる設計とする。 静的物態式水素用給合装置は、 水素と機が流入すると触媒反 応によって受動的に起動する設 備とし、操作不要な設計とする。 静的触媒式水素用結合装置動作 監視装置及び原子炉建屋内水素 濃度は、水素内部合装置動作 監視装置及び原子炉建屋内水素 濃度は、中央制御室で監視が可能 な設計とする。 ● 9.6.3 主要設備及び仕様 水素機をによる原子炉建屋 の損傷を貸しまするための設備の 主要機器仕様を第 9.6-1 表に示す。 ●						
 5.6、2.5 機作性の確保 基本方針については、「1.1.7、2.4 操作性及び試験・検査性」に示す。 節の触媒式水素再結合装置動作監視装置及び原子が監局内水常騰度は、勘定される症状事故時時において、他の系統と即り替えることなく使用できる設計とする。 静的性な水本再結合装置は、水来と酸素が変入すると触媒反応によって受動的に起動する設備とし、機体不要な設計とする。 静的触媒式水素再結合装置動作監視装置及び原子炉建屋内水煮濃度は、中央制御建て監視が可能な設計とする。 ◆ 9.6.3 主要配備及び仕様本変計とする。 中央制御建て監視が可能な設計とする。 ◆ 9.6.3 主要配備及び仕様本表際発による原子炉建屋内の損傷を防止するための設備の主要機器仕様を第9.6-1 表に示す。 				· ·		
基本方針については、「1.1.7. 4 操作性及び対象・検査性、に示す。 静的触媒式水素再結合装置、静的 的壓式水素再結合装置 想要 皮 切用 テ 伊 起 自 財 素 没 選 表 選 度 は、 想 定 さ れ る 重 大 率 故 等 時 に お い て、 他 の 系				V		
基本方針については、「1.1.7. 4 操作性及び対象・検査性、に示す。 静的触媒式水素再結合装置、静的 的壓式水素再結合装置 想要 皮 切用 テ 伊 起 自 財 素 没 選 表 選 度 は、 想 定 さ れ る 重 大 率 故 等 時 に お い て、 他 の 系				9.6.2.5 操作性の確保		
4 操作性及び試験・検査性」に示す。 静的触媒式水素再結合装置動作監視装置及び原子炉建陷内水素濃度は、想定される重大事故等時において、他の系統と切り替えることなく使用できる設計とする。静的触媒式水素再結合装置は、水素と酸素が流入すると触媒反応によって受動的に起動する設備とし、操作不要な設計とする。静的触媒式水素再結合装置動作監視装置及び原子炉建局内水素濃度は、中央制御室で監視が可能な設計とする。 9.6.3 主要設備及び仕様本な設計とする。 9.6.3 主要設備及び仕様本な報告とする。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・						
・ 静的触媒式水素再結合装置動作監 視装置及び原子炉建屋内水素濃 度は、想定される重大事故等時に おいて、他の系統と切り替えるこ となく使用できる設計とする。 静的触媒式水素再結合装置は、 水素と酸素が流入すると触媒反 応によって受動的に起動する設 備とし、操作不要と設計とする。 静的触媒式水素再結合装置動作 監視装置及び原子炉建屋内水索 濃度は、中央制御室で監視が可能 な設計とする。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・				·		
静的触媒式水素再結合装置動作監 視装置及び原子炉建屋内水素濃 度は、規定される重大事故等時に おいて、他の系統と同り替えるこ となく使用できる設計とする。 静的触媒式水素再結合装置は、 水素と酸素が流入すると触媒反 応によって受動的に起動する設 備とし、操作不要な設計とする。 静的触媒式水素再結合装置動作 監視装置及び原子炉建屋内水素 濃度は、中央制御室で監視が可能 な設計とする。 ● 1.6.3 主要設備及び仕様 水素爆発による原子炉建屋等 の損傷を防止するための設備の 主要機器仕様を第 9.6-1 表に示 す。◆						
的触媒式水素再結合装置動作監 視装置及び原子炉堆层内水素濃 度は、想定される重大事故等時に おいて、他の系統と切り替えるこ となく使用できる設計とする。 静的触媒式水素再結合装置は、 水素と酸素が流入すると触媒反 応によって受動的に起動する設 備とし、操作不要な設計とする。 静的触媒式水素再結合装置動作 監視装置及び原子炉建屋内水素 濃度は、中央制御室で監視が可能 な設計とする。						
 視妄 置及び原子炉建屋内水素機度は、想定される重大事故等時において、他の系統と切り替えることなく使用できる設計とする。静的触媒式水素再結合装置は、水素と酸素が流入すると触媒反応によって受動的に起動する設備とし、操作不要な設計とする。静的触媒式水素再結合装置動作監視装置及び原子炉建屋内水素濃度は、中央制御室で監視が可能な設計とする。 9.6.3 主要設備及び仕様水素燥度は、中央制御室で監視が可能な設計とする。 9.6.3 主要設備及び仕様水素燥発による原子炉建屋等の損傷を防止するための設備の主要機器仕様を第 9.6-1 表に示す。 						
度は、想定される重大事故等時に おいて、他の系統と切り替えることなく使用できる設計とする。 静的触媒式水素再結合装置は、 水素と酸素が流入すると触媒反 応によって受動的に起動する設 備とし、操作不要な設計とする。 静的触媒式水素再結合装置動作 監視装置及び原子炉建屋列水素 濃度は、中央制御室で監視が可能 な設計とする。						
おいて、他の系統と切り替えることなく使用できる設計とする。 静的触媒式水素再結合装置は、 水素と酸素が流入すると触媒反 応によって受動的に起動する設 備とし、操作不要な設計とする。 静的触媒式水素再結合装置動作 監視装置及び原子炉建屋内水素 濃度は、中央制御室で監視が可能 な設計とする。 9.6.3 主要設備及び仕様 水素爆発による原子炉建屋等 の損傷を防止するための設備の 主要機器仕様を第9.6-1表に示 す。◆						
となく使用できる設計とする。 静的触媒式水素再結合装置は、水素と酸素が流入すると触媒反応によって受動的に起動する設備とし、操作不要な設計とする。 静的触媒式水素再結合装置動作監視装置及び原子炉建屋内水素濃度は、中央制御室で監視が可能な設計とする。 ● 9.6.3 主要設備及び仕様水素爆発による原子炉建屋等の損傷を防止するための設備の主要機器仕様を第9.6-1表に示す。 ●						
静的触媒式水素再結合装置は、水素と酸素が流入すると触媒反応によって受動的に起動する設備とし、操作不要な設計とする。静的触媒式水素再結合装置動作監視装置及び原子炉建屋内水素濃度は、中央制御室で監視が可能な設計とする。 9.6.3 主要設備及び仕様水素爆発による原子炉建屋等の損傷を防止するための設備の主要機器仕様を第9.6-1表に示す。 シ						
水素と酸素が流入すると触媒反応によって受動的に起動する設備とし、操作不要な設計とする。静的触媒式水素再結合装置動作監視装置及び原子炉建屋内水素濃度は、中央制御室で監視が可能な設計とする。 9.6.3 主要設備及び仕様水素爆発による原子炉建屋等の損傷を防止するための設備の主要機器仕様を第9.6−1表に示す。◆						
応によって受動的に起動する設備とし、操作不要な設計とする。静的触媒式水素再結合装置動作監視装置及び原子炉建屋内水素 濃度は、中央制御室で監視が可能な設計とする。 9.6.3 主要設備及び仕様 水素爆発による原子炉建屋等の損傷を防止するための設備の主要機器仕様を第9.6-1表に示す。 ②						
備とし、操作不要な設計とする。 静的触媒式水素再結合装置動作 監視装置及び原子炉建屋内水素 濃度は、中央制御室で監視が可能 な設計とする。						
静的触媒式水素再結合装置動作 監視装置及び原子炉建屋内水素 濃度は、中央制御室で監視が可能 な設計とする。 9.6.3 主要設備及び仕様 水素爆発による原子炉建屋等 の損傷を防止するための設備の 主要機器仕様を第 9.6−1 表に示 す。						
監視装置及び原子炉建屋内水素 濃度は、中央制御室で監視が可能 な設計とする。 9.6.3 主要設備及び仕様 水素爆発による原子炉建屋等 の損傷を防止するための設備の 主要機器仕様を第 9.6−1 表に示 す。						
濃度は、中央制御室で監視が可能な設計とする。 9.6.3 主要設備及び仕様 水素爆発による原子炉建屋等の損傷を防止するための設備の 主要機器仕様を第 9.6−1 表に示 す。 ○						
な設計とする。 9.6.3 主要設備及び仕様 水素爆発による原子炉建屋等 の損傷を防止するための設備の 主要機器仕様を第 9.6-1 表に示 す。②						
 9.6.3 主要設備及び仕様 水素爆発による原子炉建屋等の損傷を防止するための設備の主要機器仕様を第 9.6−1 表に示す。 						
9.6.3 主要設備及び仕様 水素爆発による原子炉建屋等 の損傷を防止するための設備の 主要機器仕様を第 9.6-1 表に示 す。②						
水素爆発による原子炉建屋等 の損傷を防止するための設備の 主要機器仕様を第 9.6-1 表に示 す。②				Ť		
水素爆発による原子炉建屋等 の損傷を防止するための設備の 主要機器仕様を第 9.6-1 表に示 す。②				9.6.3 主要設備及び仕様		
の損傷を防止するための設備の 主要機器仕様を第 9.6−1 表に示 す。◆				· ·		
主要機器仕様を第 9.6-1 表に示す。 �						
す。②						
9.6.4 試験検査						
				9.6.4 試験検査		
基本方針については,「1.1.7.						

赤色:様式-6に関する記載(付番及び下線)

青色: 設置変更許可本文及び添付書類八からの引用以外の記載 茶色: 設置変更許可と基本設計方針(後)との対比

緑色:技術基準規則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比 【○○条○○】: 関連する資料と基本設計方針を紐づけるための付番 <関連する資料>

・様式-1への展開表(補足説明資料)

技術基準要求機器リスト(設定根拠に関する説明書 別添-1)

: 前回提出時からの変更箇所

様式-7

備考
_

赤色:様式-6に関する記載(付番及び下線)

青色:設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更許可と基本設計方針(後)との対比

緑色:技術基準規則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比

【○○条○○】: 関連する資料と基本設計方針を紐づけるための付番 <関連する資料>

・様式-1への展開表(補足説明資料)

技術基準要求機器リスト(設定根拠に関する説明書 別添-1)

: 前回提出時からの変更箇所

要求事項との対比表

技術基準規則・解釈	設工認申請書 基本設計方針(後)	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可,技術基準規則 及び基本設計方針との対比	備考
		及び設備」と兼用)	記載する。		
			3		
		2			

様式-7

-:該当なし :前回提出時からの変更箇所

様式-6

各条文の設計の考え方

台宋人の設計の考え <i>力</i> 							
第	第 68 条(水素爆発による原子炉建屋等の損傷を防止するための設備)						
1. 技術基準の条文,解釈への適合性に関する考え方							
No.	基本設計方針で 記載する事項	適合性の考え方(理由)	項-号	解釈	添付書類		
1)	水素爆発による原子炉 建屋等の損傷を防止す るための設備	技術基準の要求を受けた内容として記載している。	1	_	a, b, c, d, e, f, g, h, i		
2	水素濃度制御設備	同 上	1	1 a)	a, c, d, e, f, g, h, i		
3	水素濃度監視設備	同 上	1	1 b)	a, d, f		
4	非常用電源設備	同 上	1	1 c)	b		
(5)	重大事故等時の流路等	重大事故等時の流路に関する記載をしている。	_	_	d		
2.	設置許可本文のうち、基準	本設計方針に記載しないことの考え	方				
No.	項目	考え方			添付書類		
1	記載箇所の呼び込み 設置許可内での呼び込みに関する記載のため記載しない。						
2	主要設備及び仕様	要目表に記載しているため記載しな	い。		a, c		
3.	設置許可添八のうち、基	本設計方針に記載しないことの考え	方				
No.	項目	考え方			添付書類		
$\langle 1 \rangle$	重複記載	設置許可の中で重複記載があるため記載しない。 -					
2>	記載箇所の呼び込み	設置許可内での呼び込みに関する記載のため記載しな い。					
3>	主要設備及び仕様 要目表に記載しているため記載しない。						
4	多様性、位置的分散	第54条に対する内容であり、本条	文では記	載しない。	_		
\$	悪影響防止	同 上			_		
6	容量等	同 上					
₹	環境条件等	同 上			_		
8	操作性の確保 同 上						
9	試験検査 同 上 -						
4.	詳細な検討が必要な事項						
No.	書類名						
a	要目表						
b	単線結線図						
С	設備別記載事項の設定根拠に関する説明書						
d	安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書						
е	構造図						
f	計測装置の構成に関する	した図面並びに					
	計測範囲及び警報動作範囲に関する説明書						
g	原子炉格納施設の設計条件に関する説明書						
h	原子炉格納施設の水素濃度低減性能に関する説明書						
i							
j	j 発電用原子炉の設置許可との整合性に関する説明書						

> -:該当なし :前回提出時からの変更箇所

様式-6

k 設計及び工事に係る品質マネジメントシステムに関する説明書