V 燃料デブリの取り出し・廃炉

1. 燃料デブリの取り出し・廃炉に係わる作業ステップ

燃料デブリ等の取り出しを開始するまでに必要な作業は高線量下にある原子炉建屋内等 で行なわれる。現在、炉心に注入した冷却水が圧力容器や格納容器から漏えいしている状 態にあるが、漏えい箇所の状況や格納容器・圧力容器の内部の状況が確認できていない。 このため、TIP案内管を活用し燃料デブリの位置に関する情報や取り出し装置開発に必 要なインプットに資する情報入手作業を試みる検討をしているが、現時点において情報を 入手できていないため、燃料デブリ等を取り出すための具体的な方策を確定することは難 しい状況にある。しかし、燃料デブリを冠水させた状態で取り出す方法が作業被ばく低減 等の観点から最も確実な方法の1つであると考えていることから、まずは調査装置等を開 発し、格納容器の水張りに向けた調査を行ない、止水に向けた具体的な方策を構築するも のとする。また、燃料デブリの取り出し技術の開発に向けて、開発した装置を用いて格納 容器内の状況調査を実施する。

なお,格納容器の水張りに向けた調査や格納容器内の状況調査にあたり,事前に遠隔操作 型の除染装置等を用いて除染等を行ない作業場所の線量低減を図るものとする。

現時点で想定している燃料デブリ取り出しに係わる作業ステップは以下の通りである。本 ステップについては、今後の現場調査の結果や技術開発の進捗状況等により適宜見直して いく。また、廃止措置に向けて、燃料デブリの取り出し作業等によって得られる各種デー タの蓄積を図っていく。

- ①原子炉建屋内は高線量であるため、作業場所の線量低減が必要となる。遠隔操作型の除染装置等を用いて原子炉建屋内の線量低減を図るべく、2013年度上期から瓦礫撤去と除染・遮へい作業を実施する。
- ②線量低減後に、開発中の遠隔操作型の調査装置を用いて格納容器下部の漏えい箇所等の 状況確認を実施する。線量低減に要する期間を事前に予見することは難しいが、2014 年度から漏えい箇所等の状況確認ができるよう装置開発を進める。
- ③格納容器下部の漏えい箇所等の状況確認結果を踏まえ,格納容器下部の止水装置を開発 し、止水・水張りを行なう。
- ④格納容器内本格調査用装置開発のためにはデータ収集が必要であるため、線量低減後に 格納容器内の環境調査(アクセスルートの状況、線量、温度など)を目的に格納容器内 事前調査を 2013 年から実施する。この事前調査で得られた情報を基に格納容器内部調 査に必要となる技術開発を行ない、実証終了後、本格的な内部調査を行なう。
- ⑤格納容器上部補修のための遠隔操作型の調査・補修装置を開発し、調査・補修・水張り を実施する。
- ⑥原子炉建屋コンテナ等を設置し、圧力容器の上蓋等を開放する。

⑦圧力容器内部の調査技術を開発し、調査を実施する。

- ⑧格納容器や圧力容器の内部調査結果等を踏まえ、燃料デブリ取り出し技術の開発、燃料 デブリの臨界管理技術の開発、燃料デブリ収納缶の開発、計量管理方策の確立が完了し ていること等も確認した上で、燃料デブリの取り出しを開始する。
- 2. 添付資料
- 添付資料-1 燃料デブリ取り出しに向けたプロセス
- 添付資料-2 現段階での原子炉格納容器内部調査について
- 添付資料-3 現段階での2号機 TIP 案内管を活用した炉内調査・温度計設置について
- 添付資料-4 原子炉格納容器バウンダリ施工箇所開放時の影響評価に関する説明資料
- 添付資料-5 原子炉格納容器内部(ペデスタル内)調査について
- 添付資料-6 1号機原子炉格納容器内部詳細調査について
- 添付資料-7 内部調査および試験的取り出し作業のうち2号機原子炉格納容器内部詳細 調査について

現段階での原子炉格納容器内部調査について

燃料デブリの取り出しにあたっては,原子炉格納容器の補修等が必要であり,そのため 原子炉格納容器内部の調査を適宜検討・実施し,原子炉格納容器内部の状況の把握に努め, 燃料デブリの取出しに向けた準備作業を実施していくこととする。

1. 原子炉格納容器内部調查実施内容

原子炉格納容器内部調査の実施内容について適宜検討したうえで実施することとなる が,原子炉格納容器内部へのアクセスについては,まずは原子炉格納容器貫通部(原子 炉格納容器予備ペネ)からカメラ等を挿入し,内部の状況を確認する。

2. 常設監視計器の設置の検討・実施内容

原子炉格納容器内部調査に際し,原子炉格納容器予備ペネから常設監視計器を挿入する。常設監視計器としては,原子炉格納容器内の冷却状態の把握を行っている温度計が 故障することに備え,新たな原子炉格納容器内温度計の設置を検討・実施する。

また,今後の原子炉格納容器の補修に向け,原子炉格納容器の漏えい孔の大きさや位 置に関する情報が得られる可能性があることから,原子炉格納容器水位検出器の設置も 併せて検討・実施する。

- 3. 原子炉格納容器貫通部の構造について
- (1) 基本方針
 - (a) 原子炉格納容器の隔離機能

現状,福島第一原子力発電所1~3号機の原子炉格納容器は,原子炉圧力容器の 圧力バウンダリを格納し放射性物質の漏えいを制限する機能は失われている。原子 炉格納容器の内部調査等にあたっては,現状の原子炉格納容器内圧力を考慮し,そ れに耐えうる構造とする。

(b) 孔あけ加工範囲

原子炉格納容器内部の詳細な状況は把握出来ておらず,既設ハッチの開閉は困難 であるため,原子炉格納容器予備ペネ部に孔あけ加工を実施する。なお,孔あけ加 工範囲については挿入する機器を考慮のうえ,最小限の孔あけとなるよう加工する。 また,孔あけ箇所は,被ばく線量等の作業環境も考慮して選定する。

- (2) 作業内容
 - (a) 原子炉格納容器貫通部孔あけ作業原子炉格納容器貫通部のうち原子炉建屋1階の予備ペネの閉止板に、電動加工機

V-添 2-1

によるカッター(ホールソー・バイト)にて孔あけ加工を実施する。

孔あけ加工箇所については、チャンバー(1号機)又は新設スプール(2号機) ならびに隔離弁を取り付けるとともに、シール性を有する加工機を用いる。また、 3号機は、孔あけ箇所に気密性を有するグローブボックスを取り付け、内部にて孔 あけ加工作業を行い、孔あけ加工後に隔離弁を取り付けることで、加工中および加 工後の原子炉格納容器バウンダリ機能を維持する。

(隔離弁は、加工後の孔あけ加工機取り外しの際に閉じる)(別添-1,2参照)

項目	内容	
孔あけ加工箇所数	1 箇所	
原子炉格納容器貫通部番号	X-100B(予備ペネ)	
原子炉格納容器貫通部 設置場所	1号機原子炉建屋1階 北西部	
工事による孔加工の大きさ	φ 130mm	
工事箇所の閉止板(予備ペネ)板厚	28mm	

1号機 原子炉格納容器貫通部

2号機 原子炉格納容器貫通部

項目	内容	
孔あけ加工箇所数	1箇所	
原子炉格納容器貫通部番号	X-53(予備ペネ)	
原子炉格納容器貫通部 設置場所	2号機原子炉建屋1階 北西部	
工事による孔加工の大きさ	φ 50mm	
工事箇所の閉止板(予備ペネ)板厚	30mm	

3号機 原子炉格納容器貫通部

項目	内容
孔あけ加工箇所数	1箇所
原子炉格納容器貫通部番号	X-53 (予備ペネ)
原子炉格納容器貫通部 設置場所	3号機原子炉建屋1階 北西部
工事による孔加工の大きさ	φ143.2mm(ペネ内径設計値)
工事箇所の閉止板(予備ペネ)板厚	14mm

なお、内部調査に用いる機器、設置する機器等については、シール性を有するものにて構成し、当該機器からの漏えいが無いようバウンダリ機能を確保する。(装置 構造のバウンダリ構造概略については別添-3参照) (b) 被ばく低減対策

孔あけ箇所は,作業性,アクセス性および雰囲気線量を考慮し,原子炉建屋1階 の予備ペネを選定することにて,被ばく低減に努める。また,事前に模擬訓練を行 い作業の習熟度の向上をはかるとともに,日々の作業における時間管理にて被ばく 管理に努める。

なお,孔あけ工事においては,原子炉格納容器内圧力より高い圧力にて窒素を封 入し,残留水素があった場合の爆発防止をはかるとともに原子炉格納容器内雰囲気 の流出による過剰被ばくとならないよう配慮する。

その他,仮設遮へいを活用し被ばく低減対策を実施する。(窒素封入位置について は別添-2参照)

- (3) 構造強度及び耐震性
 - (a) 構造強度

福島第一原子力発電所1~3号機の原子炉格納容器は,原子炉圧力容器の圧力バウンダリを格納し放射性物質の漏えいを制限する機能は失われており,設置する常設監視計器のシール部は,現状の原子炉格納容器内圧力を考慮し,必要な構造強度を有するものと評価する。

1号機 常設監視計器取り付けシール部許容圧力

部位	許容圧力
常設監視計器取り付けシール部	300kPa g
(参考)原子炉格納容器圧力	(参考)113.9kPa abs (H25.3月最大値)

2号機 常設監視計器取り付けシール部許容圧力

部位	許容圧力
常設監視計器取り付けシール部	340kPa g
既設スプール取り付け部	20kPa g
(参考)原子炉格納容器圧力	(参考)8.78kPa g(H25.3月最大値)

3号機 常設監視計器取り付けシール部許容圧力

部位	許容圧力
常設監視計器取り付けシール部	340kPa g
(参考)原子炉格納容器圧力	(参考)0.22kPa g(H27.2月最大値)

なお,常設監視計器は,メーカー調達標準により手配,製造され,許容圧力に耐 えることは,製造時における耐圧・外観試験により確認している。また,常設監視 計器設置作業時にも,原子炉格納容器内圧力に対して,既設原子炉格納容器貫通部 との取付け部等に漏えいのないことを確認する。

(b) 耐震性

孔あけ工事ならびに原子炉格納容器内常設監視計器設置に伴い,既設原子炉格納 容器貫通部に隔離弁,シール部ならびに常設監視計器が接続される。常設監視計器 は,既設架台と新設架台にて荷重を受け,格納容器貫通部に荷重が集中しないよう にする。

また,新設架台または新設サポートは既設架台または床・壁に固定し,転倒防止 措置をはかる。(別添-4参照)

なお、常設監視計器損傷の際には、常設監視計器を引き抜くか切断の上、設置し た隔離弁を閉じる措置を取ることとする。この措置を取るまでの間に損傷箇所(原 子炉格納容器側)より放出されるセシウム量及び敷地境界での実効線量については、 周辺の公衆に対し、著しい放射線被ばくのリスクを与えるものではないことを評価 している。(添付資料-4参照)

- 4. その他
- (1) 常設監視計器の基本仕様

常設監視計器(原子炉格納容器内温度計)の基本仕様は、「II 特定原子力施設の設計, 設備」の内、「2 特定原子力施設の構造及び設備、工事の計画」の内、「2.9 原子 炉圧力容器内・原子炉格納容器内監視計測器」に記載する。

- 5. 添付資料
 - 別添-1 原子炉格納容器貫通部 位置図(平面図)
 - 別添-2 原子炉格納容器貫通部 加工機 構造概略図
 - 別添-3 原子炉格納容器 常設監視計器 構造概略図
 - 別添-4 常設監視計器 支持構造図

1号原子炉建屋1階

2号原子炉建屋1階

原子炉格納容器貫通部 位置図(平面図)

3 号原子炉建屋1 階

原子炉格納容器貫通部 位置図(平面図)

閉止板孔あけ加工

- 1. X-100B にチャンバー,隔離弁,アタッチメントを取付。
- 2. 隔離弁を開き、孔あけ電動加工機のカッターを挿入。
- 3. カッターにて閉止板を孔加工(φ 130mm)。
- 4. カッターを引き抜き,隔離弁を閉じる。

* 孔あけ時には窒素を封入。

(2号機)

閉止板孔あけ加工

- 1. X-53 に新設スプールならびに隔離弁を取り付ける。
- 2. 隔離弁を開き, 孔あけ電動加工機のカッターを挿入。
- 3. カッターにて閉止板を孔加工(φ50mm)。
- 4. カッターを引き抜き,隔離弁を閉じる。

* 孔あけ時には窒素を封入。

原子炉格納容器貫通部 加工機 構造概略図

V-添 2-7

閉止板孔あけ加工

- 1. X-53 にグローブボックス(密閉容器)を取り付ける。
- 2. 加工機をペネ胴部に取り付け、閉止板周端部を遠隔操作にて切削する。
- 3. ペネ胴部より閉止板を切り落とし確認後,加工機を取り外す。
- 4. 閉止治具をペネ内部に取り付けて仮封止をする。
- 5. 隔離弁を取り付け、閉止治具を取り外し、隔離弁を閉じる。
- 6. グローブボックスを X-53 から取り外す。

* 孔あけ時には窒素を封入。

原子炉格納容器貫通部 加工機 構造概略図

原子炉格納容器 常設監視計器 構造概略図

原子炉格納容器 常設監視計器 構造概略図

(1号機)

(2号機)

常設監視計器 支持構造図

現段階での2号機 TIP 案内管を活用した炉内調査・温度計設置について

燃料デブリの取り出しにあたっては,燃料デブリ位置の特定や取り出し装置の開発のインプット条件となる炉内情報の取得が必要となることから,事前に原子炉圧力容器内部の 調査(以下,「炉内調査」という)を実施し,燃料デブリの取り出しに向けた準備作業を進めていくことになる。

福島第一原子力発電所2号機については,原子炉圧力容器に繋がっている系統の一つで ある TIP 案内管を活用して炉内調査及び温度計設置作業を行う計画であったが,TIP 案内 管健全性確認及び TIP 案内管障害物対策作業の結果,TIP 案内管4本共に,案内管内部の 付着物等の障害物の突破ができなかったため,炉内調査及び温度計設置作業については中 断する。以下では,作業計画の内,中断前までの作業内容を示す。

1. TIP 案内管の構造変更

(1) TIP 案内管の構造変更の概要

TIP 案内管への内視鏡や温度計の挿入作業を実施するためには, TIP ボール弁を開 ける必要があるが, TIP ボール弁を開ける場合, RPV 側との隔離が無い状態となる。 このため, 作業の安全対策と外部への RPV ガス等の放出防止を目的として, 隔離弁 やフラッシングライン, ドレンラインを設けた新規隔離弁ユニットを取り付ける。 また, 新規隔離弁を TIP ボール弁のフランジに直接取り付けるため, 不要となるバ ルブアセンブリの爆発弁については, 取り外して撤去する。

炉内調査や温度計設置に際しては、新規隔離弁ユニットの先にシール・送りユニ ットを設置し、N2 ガスを連続封入し RPV 側と隔離した状態で内視鏡や温度計を炉内 へ送ることができるようにする。(TIP 室配置及び TIP 室内機器配置については図1, 2参照)

項目	内容
設置場所	2号機原子炉建屋1階 南東部 TIP 室内
本数	4本
外径	約 φ 10mm
内径	約 φ 7mm
原子炉格納容器貫通部番号	X-35A, C, D, E
	※X-35BはTIPパージ装置
バルブアセンブリ構成	TIP ボール弁,爆発弁

表1 2号機 TIP 案内管の概要

- (2) 作業内容
 - (a) 新規隔離弁ユニット設置作業

TIP 案内管を取り外した後、バルブアセンブリから爆発弁をフランジ部で切り離して取り外し、このフランジ部に新規隔離弁ユニットを設置する。

新規隔離弁ユニット設置後には、バウンダリ機能の確保ができているかどうかを確認するため、 N2 ガスによる漏えい試験を行う。バウンダリ機能の確保が確認できた後、TIP ボール弁を遠隔操作により動作させて(閉→開)、炉水逆流の有無、案内管内圧、線量率の変化の有無を確認する。

(既設 TIP バルブアセンブリの取り外し位置及び新規隔離弁ユニット取り付け後の 状態については図3,4参照)

(b) TIP 案内管健全性確認作業

ファイバースコープを TIP 案内管に挿入し,得られる画像より TIP 案内管の健全 性(閉塞,破断等の有無)を確認する。ファイバースコープは,気密容器と送り・ 巻き取り装置で構成されるシール・送りユニットに内蔵されており,手動ハンドル 操作で送り・巻き取りを行う。シール・送りユニットは,挿入作業時に新規隔離弁 ユニットに接続し, RPV 側との隔離のため N2 ガスを封入しながら,ファイバースコ ープを案内管内部に送る。送り長さについては,ファイバースコープケーブルに付 けたマーキング,ハンドルの回転数(1回転当たりの送り量を事前に測定)及び案 内管内の映像(弁や継手,リミットスイッチ等)により判断する。

(シール・送りユニット構造概略については、図5参照)

(c) TIP 案内管障害物対策作業

TIP 案内管健全性確認作業において, TIP 案内管内部の付着物及び TIP 索引装置リ ミットスイッチローラ押し上げ不可のため、4 本共にファイバースコープを途中ま でしか挿入できなかったことから、対応策として、先端に楔を付けたダミーTIP ケ ーブル※をギア式の送り装置を使用してより強い力で挿入し、ローラの押し上げ及 び付着物の突破を試みる。ダミーTIP ケーブルは、気密容器と送り・巻き取り装置 (ギア式) で構成されるシール・送りユニットに内蔵されており、手動ハンドル操 作で送り・巻き取りを行う。

※プラント建設時等で本物の TIP 検出器を入れる前に確認のため使用するケーブル (ダミーTIP ケーブルと楔形状の例については,図6参照)

(d) 炉内調查·温度計設置作業

(b) TIP 案内管健全性確認及び(c) TIP 案内管障害物対策作業の結果,4本共に TIP 案内管内部の付着物等の障害物の突破ができなかったことから,計画していた炉内

調査及び温度計設置作業については中断する。

(e) 新規隔離弁ユニット取り外し作業

計画していた炉内調査及び温度計設置作業については中断することから,新規隔 離弁ユニットについては TIP ボール弁出口側で切り離し,TIP ボール弁の出口側に 閉止フランジを取り付けて閉止する。

(TIP 案内管の閉止位置については,図7参照)

(3) 被ばく低減対策

炉内調査や温度計設置に際しては,新規隔離弁ユニットの先にシール・送りユニ ットを設置し,N2 ガスを連続封入し RPV 側と隔離した状態で内視鏡や温度計を炉 内へ送ることができるようにする。また,作業中は,線量計により線量率をモニタ リングし,線量率上昇時には作業を中断し,TIP 室より退避する手順とする。なお, 作業の実施前には模擬訓練を行い作業の習熟度の向上をはかるとともに,日々の作 業における時間管理にて被ばく管理に努める。

(4) 格納容器バウンダリの範囲

福島第一原子力発電所2号機における TIP 案内管の原子炉格納容器バウンダリの 範囲を図7に示す。格納容器バウンダリについては、既設 TIP ボール弁を閉とする ため、新規に格納容器バウンダリとなる箇所は無い。

図4 新規隔離弁ユニット取り付け後の状態概要図

※据付高さについては A~D ラインで異なり(架台で高さを調整),図には最も高い B ラインの場合を代表して記載している。

図5 シール・送りユニットの構造と特徴

図6 ダミーTIP ケーブルと楔形状の例

図 7 TIP 案内管の閉止位置と原子炉格納容器バウンダリの範囲 概要図 (A~D ライン)

添付資料-7

内部調査及び試験的取り出し作業のうち

2号機原子炉格納容器内部詳細調査について

燃料デブリの取り出しを進めるうえで、燃料デブリの分布と既設構造物の状態等を把握 することは重要であり、そのため原子炉格納容器内部の調査を実施していく。

1. 原子炉格納容器内部詳細調査の概要

福島第一原子力発電所2号機における 2019 年度以降の原子炉格納容器内の調査は、 ペデスタル内へ通じる原子炉格納容器貫通部 X-6 ペネトレーション(以下 X-6 ペネ) (別添-1)よりアクセス・調査装置を投入し、堆積物・既設構造物の3次元形状測定、 線量測定を行うことを基本とする。それ以外の調査項目については、詳細を検討した上 で決定する。

項目	内容
原子炉格納容器貫通部番号	X-6(CRD 機構搬出入口)
場所	2号機原子炉建屋1階 北西部
外径	ϕ 609. 6mm

2号機 X-6 ペネの概要

2. X-6 ペネの構造変更及び原子炉格納容器内部詳細調査

(1) 調查設備設計方針

原子炉格納容器バウンダリとなる調査設備は、周辺の公衆に対し、著しい放射線被 ばくのリスクを与えることのないように、適切に設計を行う。調査設備は、現状の原 子炉格納容器内圧力を考慮し、それに耐えうる構造とする。

(2) X-6 ペネの構造変更

原子炉格納容器内部において広範囲にわたる調査を行うため、ペデスタル内外に アクセス可能な X-6 ペネからアーム型のアクセス・調査装置を投入する計画である。 アクセス・調査装置(断面約 400mm×約 250mm)はこれまで内部調査に使用している X-6 ペネ閉止板の開口部(φ115mm)が小さいことから、X-6 ペネ(内径約 550mm)の 閉止板を開放する。X-6 ペネに隔離機構ユニットが設置されていることから、まず は隔離機構ユニットを取外し、ハッチ開放装置にて X-6 ペネ閉止板の締結ボルトを 切断し、X-6 ペネ閉止板を開放する。この際、原子炉格納容器との隔離の維持ならび に作業上の安全対策と外部へのガス等の放出防止を目的として、バウンダリとなる 一時的な隔離部屋を設ける。調査終了後は、X-6 ペネからエンクロージャ、接続管を 取外し、X-6 ペネ接続構造の隔離弁を全閉とした状態とする。

- (3) 作業内容
 - a. 調查設備設置作業

アクセスルート構築作業により,原子炉格納容器内の放射性ダスト(以下,ダス

ト)濃度が一時的に上昇する可能性があることから、ダスト濃度上昇の抑制対策と して、X-53 ペネトレーション(以下、X-53 ペネ)(別添-1)にスプレイ治具を設 置する。常設監視計器を取外した後、X-53 ペネの孔径を130 mmに拡大させた後(別 添-2)、新たに隔離弁を取付け、原子炉格納容器バウンダリを構築する。隔離弁 取付け後、スプレイ治具をX-53 ペネに設置する。(別添-3)

次に X-6 ペネ閉止板に設置されている隔離機構ユニットを撤去し,隔離部屋を 設置する。隔離部屋にハッチ開放装置を搬入後に著しい漏えいがないことを確認 した上で, X-6 ペネ閉止板の開放作業を行う。(別添-4)

X-6 ペネ開放後,隔離部屋内のハッチ開放装置を搬出し,X-6 ペネ内の堆積物・ 構造物を X-6 ペネ内低圧水除去装置による低圧水及び X-6 ペネ内堆積物除去装置 による高圧水噴射・アブレシブウォータージェットにより除去する。その後,隔離 弁を有する X-6 ペネ接続構造を搬入し,X-6 ペネ接続構造を X-6 ペネに接続する。 装置の搬出入時には原子炉格納容器との隔離の維持ならびに作業上の安全対策と 外部へのガスなどの放出防止を目的として,気密扉の全閉および隔離部屋の窒素 換気を実施する。隔離部屋の一部(ロボット搬入部屋)を撤去した後,X-6 ペネ接 続構造に遮へい機能を有する接続管,アクセス・調査装置を内包するエンクロージ ャを接続する。(別添-5)

エンクロージャ接続後,原子炉格納容器内干渉物をアーム型のアクセス・調査装置に搭載したアブレシブウォータージェットにて切断し,アクセス・調査装置のア クセスルートを構築する。

X-6 ペネ内の堆積物・構造物の X-6 ペネ内低圧水除去装置による低圧水及び X-6 ペネ内堆積物除去装置による高圧水噴射・アブレシブウォータージェット作業時 は原子炉格納容器内への注水量が一時的に増加することから,原子炉未臨界維持 に必要な安全措置を事前に講じた上で作業を実施する。

b. 原子炉格納容器内部詳細調查

アーム型のアクセス・調査装置を伸展させ,原子炉格納容器内にアクセスし,堆 積物・既設構造物の3次元形状測定,線量測定を行う。アクセス・調査装置は先端 に測定器を搭載し,調査項目ごとに測定器を取り換える。

なお,内部調査に用いる機器については,当該機器からの著しい漏えいがないよ うバウンダリ機能を構築する。(別添-5,6)

(4) 被ばく低減対策

事前に模擬訓練を行い作業の習熟度の向上を図るとともに、日々の作業における 時間管理にて被ばく低減に努める。調査中は原則遠隔による操作とし、作業員の被ば く低減に努める。その他、仮設遮へいを活用し被ばく低減を図る。

また,X-6ペネ閉止板開放作業においては,隔離部屋内に窒素を封入し,原子炉格 納容器内雰囲気の流出による過剰被ばく防止および作業上の安全対策を行う。

調査中は既設設備に影響を与えない範囲で調査装置から窒素を原子炉格納容器に

封入し,アクセス・調査装置の汚染防止を図る。また,調査設備の窒素換気等で発生 する排気はフィルタにて粒子状の放射性物質の除去を行う。排気はモニタリングを 行い,周辺の公衆に対し,著しい放射線被ばくのリスクを与えることはないことを確 認する。

(5) 構造強度

a. X-53 ペネ

スプレイ治具の新たな原子炉格納容器バウンダリとなる箇所を別添-3に示す。シ ール部は,現状の原子炉格納容器内圧力を考慮した設計を行い,必要な強度を有する ものとする。

2 号機	常設監視計器取付けシール部許容圧力

部位	許容圧力
スプレイ治具取付けシール部	10kPa g
(参考)原子炉格納容器圧力	(参考)8.44kPa g(2015 年 4 月最大値)

なお、スプレイ治具が許容圧力に耐えることは、製造時における耐圧・外観試験に より確認する。また、スプレイ治具の設置作業時にも、取付け部等に漏えいのないこ とを確認する。

(6) バウンダリ損傷時の対応

調査設備のバウンダリ健全性に影響を与える恐れがある地震等の事象が発生した 場合には,損傷有無を確認する。損傷が生じた場合には,アクセス・調査装置を原子 炉格納容器から引抜き,隔離弁を閉止するなどの封止措置を速やかに実施する。

この措置を取るまでの間に損傷箇所(原子炉格納容器側)より放出されるセシウム 量及び敷地境界での実効線量については,周辺の公衆に対し,著しい放射線被ばくの リスクを与えるものではないことを評価している。(別添-7)

(7) アクセスルート構築作業時の影響評価

アクセスルート構築作業により,対象物表面に付着した放射性物質が追加的に浮 遊し,原子炉格納容器内の放射性ダスト濃度が一時的に上昇する可能性がある。

この作業により原子炉格納容器内の気体が環境中に放出された場合,放射性核種 の放出量及び敷地境界での実効線量については,周辺の公衆に対し,著しい放射線被 ばくのリスクを与えるものではないことを評価している。(別添-8)

3. 添付資料

- 別添-1 X-6ペネ, X-53ペネ 位置図(平面図)
- 別添-2 X-53 ペネ 孔径変更作業における構造概略図
- 別添-3 スプレイ治具 構造概略図
- 別添-4 X-6ペネ 隔離部屋 構造概略図
- 別添-5 調査設備 バウンダリ構造概略図
- 別添-6 原子炉格納容器内部詳細調查 概略図
- 別添-7 2号機原子炉格納容器内部詳細調査 原子炉格納容器バウンダリ施工箇 所開放時の影響評価に関する説明資料
- 別添-8 2号機原子炉格納容器内部詳細調査 アクセスルート構築作業時の影響 評価について

X-6 ペネ, X-53 ペネ 位置図 (平面図)

```
別添-2
```


<u>閉止板孔あけ加工</u>

- 1. 常設監視計器を引き抜き後、閉止プラグを設置し、バウンダリを確保
- 2. 既設スプールを切断後, 隔離機構を取付け
- 3. 加工機を設置し、ホールソーにて孔径を拡大**
- 4.ホールソーを引き抜き,隔離弁を閉じる※孔径拡大前に窒素を封入
 - X-53 ペネ 孔径変更作業における構造概略図

別添-3

スプレイ治具 構造概略図

X-6ペネ 隔離部屋 構造概略図

----・: バウンダリ範囲

調査設備 バウンダリ構造概略図

原子炉格納容器内部詳細調查 概略図

2号機原子炉格納容器内部詳細調査 原子炉格納容器バウンダリ施工箇所開放時の 影響評価に関する説明資料

1. 目的

2号機原子炉格納容器内部詳細調査に伴い,事故後に施工した原子炉格納容器(以下, PCV と言う)の貫通部等が開放し,PCV 内の核分裂生成物を含む気体(以下,PCV ガス と言う)が環境中に放出された場合の周辺の公衆に対する放射線被ばくの影響評価を 行う。

- 2. 放出量評価
- (1) PCV 圧力は、現状では 10kPa 未満の正圧となっているため、施工箇所の損傷によって大気に開放された場合、差圧分の PCV ガスが原子炉建屋内に放出されるものと想定される。また、本評価では原子炉格納容器ガス管理設備の放射性物質の放出抑制機能を期待しないこととし、上記差圧分の放出に加え、開放した PCV 貫通部を閉じるまでの間、窒素封入量相当の PCV ガスの放出が継続するものとする。なお、施工箇所より PCV 内の水位が低いことを確認しているため、本評価では気体のみの放出とする。
- (2) 差圧分の放出容積は、10kPa 程度に相当する容積として、PCV 容積(4240 m³(ベント管含む)。PCV 空間部容積は、PCV 下部に蓄積している液相体積を差し引く必要があるが、ここでは保守的に液相がないものとして放出容積を評価)の1割(424m³)とする。また、2018年7月時点での原子炉格納容器内窒素封入設備からの窒素封入量は20m³/h以下で、調査設備側からの窒素封入量の計画は10m³/h以下であるため、窒素封入量相当は30m³/hとし、施工箇所のPCV 貫通部を再度閉じる作業に10日間程度要すると考え、窒素封入量相当のPCV ガスの放出継続時間は240時間とする。
- (3) 評価対象核種は支配的核種であるセシウム 134 とセシウム 137 とし, PCV 内における 濃度は、2 号機原子炉格納容器ガス管理設備(HEPA フィルタ入口側)の気体(粒子状フ ィルタ、チャコールフィルタ)および凝縮水(マリネリ瓶)のサンプリング結果より、 以下の通りとする。

	PCV ガス中の放射能濃度
セシウム 134	$3.8 imes 10^{-4}$ Bq/cm ³
セシウム 137	$7.0 \times 10^{-4} \text{ Bq/cm}^{-3}$

- 3. 線量影響評価
- (1) 大気中へ放出される核分裂生成物は,原子炉建屋から地上放散されるものとし,周辺 の公衆に対する,放射線被ばくの影響を年間の実効線量を用いて評価する。

V-添 7-11

- (2) 実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算する。被ばく経路としては、放射性雲中のセシウムからの外部被ばくと内部被ばくと、地表沈着したセシウムによる外部被ばくと内部被ばくを考慮する。
- (3) 放射性雲のセシウムからの y 線の外部被ばくによる実効線量の評価に用いる式を以下 に示す。
 - $H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q_{Cs} \cdot 1000$ $H_{\gamma} : 放射性雲のセシウムからの \gamma 線の外部被ばくによる実効線量[mSv]$ K : 空気カーマから実効線量への換算係数[Sv/Gy] $E_{\gamma} : \gamma 線の実効エネルギー[MeV]$ D / Q : 相対線量[Gy/Bq] $Q_{Cs} : セシウムの大気放出量[Bq]$
- (4) 放射性雲のセシウムからの吸入摂取による内部被ばくの実効線量の評価に用いる式を 以下に示す。

 $H_{Cs} = K_{in} \cdot R_1 \cdot \chi / Q \cdot Q_{Cs}$ H_{Cs} :放射性雲のセシウムからの吸入摂取による内部被ばくの実効線量[mSv] K_{in} :内部被ばく線量換算係数[mSv/Bq] R_1 :呼吸率[m³/s] χ / Q :相対濃度[s/m³]

(5) 地表沈着したセシウムからの外部被ばくによる実効線量の評価に用いる式を以下に示 す。1年間居住し続ける場合を考慮し、1年間の線量を評価する。セシウムの崩壊につ いては保守的に考慮しない。

 $G_{ex} = K_{ex} \cdot \chi / Q \cdot V \cdot f \cdot Q_{Cs} \cdot T \cdot 1000$

- G_{ex} :地表沈着したセシウムからの外部被ばくによる実効線量[mSv]
- K_{ex}:外部被ばく線量換算係数[(Sv/s)/(Bq/m²)]
- V :沈降速度[m/s]
- f : 残存割合[-]
- **T** : 被ばく時間[s]
- (6) 地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内部被ばくの実効線 量の評価に用いる式を以下に示す。1年間居住し続ける場合を考慮し、1年間の線量 を評価する。セシウムの崩壊については保守的に考慮しない。

$$G_{in} = R_2 \cdot K_{in} \cdot \chi / Q \cdot V \cdot f \cdot F \cdot Q_{Cs} \cdot T$$

- G_{in} :地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内部 被ばくの実効線量[mSv]
- **R**₂ :呼吸率[m³/s]
- F : 再浮遊率[m⁻¹]

(7) 相対濃度と相対線量については、本事象では核分裂生成物は主排気筒より放出されないことから、地上放散を想定し、下表の値を用いる。

	敷地境界
相対濃度[s/m ³]	2. 0×10^{-5}
相対線量[Gy/Bq]	2. 4×10^{-19}

4. 評価結果

本事象時に放出されるセシウム量及び敷地境界での実効線量について評価した結果 は下表のとおりであり、周辺の公衆に対し、著しい放射線被ばくのリスクを与えること はない。

セシウム 134 放出量	約 2.9×10 ⁶ Bq
セシウム 137 放出量	約 5.4×10 ⁶ Bq
年間の実効線量	約4.9×10 ⁻⁵ mSv

以上

2号機原子炉格納容器内部詳細調査 アクセスルート構築作業時の影響評価について

1. 目的

2号機原子炉格納容器(以下, PCV)内部詳細調査のため,X-6ペネ内の堆積物の除去 及び PCV 内干渉物切断により,アーム型アクセス・調査装置のアクセスルートを構築す る必要がある。X-6ペネ内の堆積物・構造物はX-6ペネ内低圧水除去装置による低圧水 及びX-6ペネ内堆積物除去装置による高圧水噴射・アブレシブウォータージェット(以 下,AWJ)により除去する。また,PCV 内干渉物はアーム型のアクセス・調査装置に搭載 した AWJ にて切断する。当該作業により,対象物表面に付着した放射性物質が追加的に 浮遊し,PCV 内の放射性ダスト(以下,ダスト)濃度が一時的に上昇する可能性がある。 このため,当該作業によりダスト濃度が上昇した場合の影響を把握することを目的に, 追加的に PCV 内に浮遊するダストを想定し,これを含む PCV 内の気体が環境中に放出さ れた場合の周辺の公衆に対する放射線被ばくの影響評価を行う。

 アクセスルート構築作業及びダスト浮遊の要因 アクセスルート構築作業の概念図を図1に示す。

図1 アクセスルート構築作業の概念図(図中の番号は表1の作業ステップを示す)

X-6 ペネ内にはこれまでの PCV 内部調査において、砂状の堆積物の存在が確認されて いる。このため、低圧水・高圧水(以下、まとめてウォータジェット(WJ))を用いた洗 浄作業により、PCV 内へ押し出すことで除去する。このとき、WJ による洗浄及び堆積物 の PCV 床面への落下によりダストが浮遊する可能性がある。

また、X-6 ペネ内にはケーブルが残置されており、除去するためには干渉する制御棒 駆動機構交換用のレール(以下、CRD レール)ガイドも除去する必要がある。このため、 AWJ を用いて、ケーブルを細断し、CRD レールガイドを切断する。切断したケーブル及び CRD レールガイドは PCV 内へ押し出すことで除去する。これらに伴い、AWJ による切断及 び切断物の落下時にダストが浮遊する可能性がある。

PCV内では、アーム型アクセス・調査装置のアクセスルート上で、CRD レールの一部及 びガイドピン、CRD レール上のグレーチング、CRD レール吊り治具、制御棒駆動機構交換 用のペデスタル開口部(以下、CRD 開口部)にある電線管が干渉する。このため、AWJ を 用いてこれら干渉物を切断する。AWJ による干渉物切断により、切断欠損表面及び切断 片の落下に伴う落下物表面及び被衝突物表面からダストが浮遊する可能性がある。

加えて,1号機 PCV 内部詳細調査に向けた AWJ 作業により,AWJ 噴流の当たる遠方の 構造物からもダストが発生した可能性が示唆されたため,2号機においても X-6 ペネ内 及び PCV 内での AWJ を用いた切断作業において,AWJ 噴流の影響範囲にある構造物の汚 染表面が剥離しダストが浮遊する可能性がある。

本評価で考慮する作業ステップ及びダスト浮遊の要因の一覧を表1にまとめる。なお、 作業によらず PCV 内に存在する現浮遊ダストについては、別添-7に示すとおりバウン ダリ施工箇所が開放する厳しい事象であってもその影響は小さいことから、本評価では 考慮しない。

	作業ステップ	ダスト発生源	ダスト浮遊の要因				
① X-	① X-6 ペネ内						
(1)-	1 X-6 ペネ堆積物	堆積物	WJ による洗浄				
	洗浄/落下		堆積物の落下				
1)-2	2 ケーブル	PCV 下部グレーチング(被衝突物)	切断片の落下				
	切断/落下*1	PCV 内構造物	AWJ 影響範囲の表面剥離				
(])-:	3 レールガイド	PCV 下部グレーチング(被衝突物)	切断片の落下				
	切断/落下*1	PCV 内構造物	AWJ 影響範囲の表面剥離				
2 P	CV 内						
	2-1-1	CRD レール	AWJによる切断				
	CRD レール		切断片の落下				
1111	切断/落下	PCV 下部グレーチング(被衝突物)	切断片の落下				
作業		PCV 内構造物	AWJ 影響範囲の表面剥離				
辺断	2-1-2	ガイドピン	AWJによる切断				
1/-	ガイドピン		切断片の落下				
۱ ک	切断/落下	PCV 下部グレーチング(被衝突物)	切断片の落下				
CRD		PCV 内構造物	AWJ 影響範囲の表面剥離				
2-1-3		CRD レール上グレーチング	AWJによる切断				
G	CRD レール上		切断片の落下				
	グレーチング	PCV 下部グレーチング(被衝突物)	切断片の落下				
	切断/落下	PCV 内構造物	AWJ 影響範囲の表面剥離				
2-2	2 CRD レール	CRD レール吊り治具	AWJによる切断				
	吊り治具		切断片の落下				
	切断/落下	PCV 床面(被衝突物)	切断片の落下				
		PCV 内構造物	AWJ影響範囲の表面剥離				
2-	3 電線管	電線管	AWJによる切断				
切断/落下			切断片の落下				
		PCV 床面(被衝突物)	切断片の落下				
		PCV 内構造物	AWJ 影響範囲の表面剥離				

表1 アクセスルート構築作業における作業ステップ及びダスト浮遊の要因

*1 前段作業で洗浄されているため、切断による浮遊及び落下物からの浮遊は考慮しない。

3. 各作業におけるダスト浮遊量の評価方法

2. で挙げた各作業について、ダストの浮遊量は以下のように計算する。

ダスト浮遊量=ダスト発生源の放射能濃度[Bq/g](または表面汚染密度[Bq/cm²])

× ダスト浮遊に寄与するダスト発生源の量[g](または表面積[cm²])

× ダスト発生メカニズムに応じた気相移行率[-]

ダスト発生メカニズムに応じた気相移行率については、「Department of Energy, "DOE HANDBOOK:AIRBORNE RELEASE FRACTIONS/RATES AND RESPIRABLE FRACTIONS FOR NONREACTOR NUCLEAR FACILITIES Volume I - Analysis of Experimental Data", DOE-HDBK-3010-94, December, 1994 Reaffirmed 2013」(以下, DOE HANDBOOK) に基づき設定した。

本章では、影響の大きい X-6 ペネ内堆積物及び AWJ 影響範囲にある構造物について、 以下に各因子の設定方法について述べる。その他のダストの設定に関する詳細について は別紙1にまとめる。

(1) X-6 ペネ内堆積物

(a) ダスト発生源における放射能濃度

X-6 ペネ内の堆積物の放射能濃度については、平成 28 年 6 月に測定した X-6 ペネハッ チ前(原子炉建屋側)のコリメートした線量率(ハッチ部合計約 200mSv/h)に基づき評 価する。X-6 ペネ内には砂状堆積物やケーブルなどに加え、管内の表面汚染があり、また PCV 内からの線量率寄与が考えられるが、本評価では X-6 ペネハッチ前の線量率は全て 砂状堆積物に起因するものと想定した。また、X-6 ペネハッチにより α 線及び β 線は遮 へいされることから、PCV 内の主たる γ 線源である Cs-134、Cs-137 を堆積物中の γ 線源 として想定した。砂状堆積物は X-6 ペネ内の映像より、堆積物高さはペネ管内径の半分 (27cm)、堆積物長さはハッチ内側から 100cm まで堆積しているものと想定した。堆積物 の体積は 1.2×10⁵ cm³、密度は一般的な土の密度である 2g/cm³とし、堆積物の質量を 2.4 ×10⁵ g と設定した。この条件で放射能濃度計算を実施した。

平成 31 年 2 月に実施した 2 号機 PCV 内部調査のガイドパイプシールリングのスミア にて、燃料由来の α 核種である Am-241 が検出されており、この Am-241 を含む全 α 核種 /Cs-137 放射能比は約 0.8 倍であった。これを踏まえ、X-6 ペネ内の堆積物には、Cs-137 と同量の Am-241 が代表的な α 核種として存在するものと設定した。ただし、PCV 内外部 の α 核種の広がり傾向より、 α 核種については Cs-137 に比べて PCV 気相中に存在しにく く、PCV 外へは放出されにくい傾向があると考えられる。平成 29 年 5 月に実施した原子 炉格納容器ガス管理設備(以下、PCV ガス管理設備)の粒子状フィルタの全 α 計測にて全 α 核種/Cs-137 放射能比は約 10⁻³ 倍であったことから、PCV から放出されるまでには 1/100 倍に低減されているものと仮定した。 また、Cs 以外の β 核種が含まれることを想定して、PCV 内で検出されている Sr-90 を 代表的な β 核種として考慮する。平成 29 年 2 月に実施した PCV ガス管理設備のドレン水 及び粒子状フィルタの分析では、ドレン水から Sr-90/Cs-137 放射能比が約 5 倍、粒子状 フィルタから全 β 核種/Cs-137 放射能比が約 21 倍であったことから、保守的に Sr-90 が Cs-137 の 25 倍存在するものと設定した。

以上のとおり、本評価に用いる X-6 ペネ内堆積物の放射能濃度を表2にまとめる。

放射能濃度		
Cs-134	2.8×10^6 Bq/g	
Cs-137	$3.5 \times 10^7 \text{ Bq/g}$	
α核種(Am-241)	3.5 $ imes$ 10 7 Bq/g *1	
β核種 (Sr-90)	8.8×10^8 Bq/g	

表2 X-6ペネ内堆積物の放射能濃度

*1 PCV 外へ放出されるまでに 1/100 倍に低減されているものと仮定して評価。

(b) ダスト浮遊に寄与するダスト発生源の量

ダスト発生源の量は、2.に記載のダスト浮遊要因に基づき設定した。

X-6 ペネ内堆積物の量は,前項に記載のとおり X-6 ペネ内の映像に基づき 2.4×10⁵g とした。

(c) ダスト発生メカニズムに応じた気相移行率

ダストの気相移行率は、2.に記載のダスト浮遊要因に基づき設定した。

X-6 ペネ内の堆積物は、WJ により洗浄し PCV 床面へ落下させる。WJ 洗浄によるダスト の気相移行率は、DOE HANDBOOK の「加圧容器/配管からのベント時の飛散率」の液面上も しくは容器全体破損条件の数値から、0.35MPa 以上の水溶液のバウンディング値 0.2%を 設定した。実際の WJ は AWJ ほど表面汚染物を細かく破砕し、気相中へ移行させやすくは ないものと考えられるが、(a)に記載したとおり X-6 ペネ内のダスト発生源を全て砂状堆 積物に設定していることから、AWJ によるケーブル及び CRD レールガイド切断も包絡す るよう、この値を採用した。堆積物の PCV 床面への落下によるダストの気相移行率は、 DOE HANDBOOK の「粉体の自由落下時」の気相移行率に基づき 1%と設定した。 (2) AWJ 影響範囲にある構造物

(a) ダスト発生源における表面汚染密度

AWJ の影響範囲となる PCV 内の構造物の表面汚染密度は,平成 29 年 1,2 月に実施した 2 号機 PCV 内部調査におけるペデスタル外の空間線量率の実測値に基づき算出した表 3 の値を用いる(ペデスタル外の空間線量率は PCV 内壁及びペデスタル外壁面の Cs-134 及び Cs-137 の汚染によるものと推定)。

3. (1) (a) に記載したとおり, PCV 内の構造物の汚染表面には, Cs-137 と同量の Am-241 が代表的な α 核種として存在するものと設定し, α 核種については, PCV から放出され るまでには 1/100 倍に低減されているものと仮定した。また, Sr-90 を代表的な β 核種 として考慮し, 保守的に Sr-90 が Cs-137 の 25 倍存在するものと設定した。

以上のとおり、本評価に用いる PCV 内の構造物の表面汚染密度を表3にまとめる。

	表面汚染密度
Cs-134	4. $7 \times 10^8 \text{ Bq/cm}^2$
Cs-137	5.8 $ imes$ 10 9 Bq/cm 2
α核種(Am-241)	5. $8 \times 10^{9} \text{ Bq/cm}^{2} * ^{1}$
β核種(Sr-90)	$1.5 imes 10^{11} \mathrm{Bq/cm^2}$

表3 PCV 内の構造物の表面汚染密度

*1 PCV 外へ放出されるまでに 1/100 倍に低減されているものと仮定して評価。

(b) ダスト浮遊に寄与するダスト発生源の表面積

ダスト発生源の表面積は、2.に記載のダスト浮遊要因に基づき設定した。

AWJ 影響範囲にある構造物の汚染表面から剥離する表面積については, AWJ 影響範囲を 確認し対象表面積を設定した。定点で AWJ を噴射した場合, 1m 以内は AWJ 噴流角(片角) の約3.4倍, 1m~4m は約1.7倍, 4m 以遠は距離に応じて減少するとした領域が影響範囲 となる。各作業で想定される位置・噴射角度に対してこの影響範囲を適用し,手前の構 造物の陰に入らない構造物の表面積を算出した。その結果, AWJ 影響範囲の構造物の汚 染表面から剥離する表面積は,当該作業全体で4.4×10⁵cm² (1m 以内:5.9×10⁴cm², 1m 以 遠:3.8×10⁵cm²), CRD レール切断時で3.3×10⁵cm² (1m 以内:3.0×10⁴cm², 1m 以遠:3.0 ×10⁵cm²) である。

(c) ダスト発生メカニズムに応じた気相移行率

ダストの気相移行率は、2.に記載のダスト浮遊要因に基づき設定した。

AWJ 影響範囲にある構造物の汚染表面から剥離する場合については, AWJ の有効切断距離を踏まえて設定する。当該作業で使用する AWJ の有効切断距離は約 1m である。このため, 1m 以内の AWJ 影響範囲の気相移行率については, AWJ 切断時と同等と見なし 0.2%を

設定した。一方、1m以遠の気相移行率については、1m以内に比べ構造物の表面へ付与されるエネルギーが小さいことから、DOE HANDBOOKの「加圧容器/配管からのベント時の 飛散率」の液面下の条件の気相移行率のバウンディング値0.01%を設定した。

4. 放出量評価

当該作業に伴い, PCV 内でダストが浮遊し PCV 内のダスト濃度が現状より上昇する可 能性があることから,原子炉格納容器内窒素封入設備(以下, PCV 窒素封入設備)及び PCV ガス管理設備が稼働している通常時と,別添-7と同様に PCV バウンダリ施工箇所 開放が生じる異常時について評価を行う。

(1) 共通条件

PCV 窒素封入設備からの窒素封入量は令和2年5月時点で約20m³/h以下であり,X-6 ペネに接続されるエンクロージャは約15m³/h で窒素封入し約10m³/h で原子炉建屋(以 下,R/B)へ排気するため,エンクロージャから約5m³/hのガスがPCVへと供給される。 これらを踏まえ,PCVへの窒素供給は保守的に30m³/hとする。

PCV から R/B へ漏えいしたダストは, R/B 内で拡散することが想定されるが,本評価で は保守的に, X-6 ペネのある R/B1 階北西の小エリア(1 階部の 1/4 区画;825m³)に限定 されるものとした。また,エンクロージャからの排気先及び R/B から環境への放出元も この R/B 小エリアとする。

PCV 内及び R/B 内に浮遊・移行したダストは、重力沈降をはじめ、その他沈着や凝集 等による低減効果が働くことが考えられる。本評価では重力沈降で低減効果を代表し、 1号機 PCV 内部詳細調査に向けた AWJ 作業時に計測されたダストの低減率を踏まえ、ダ ストの粒径を 5µm とした場合の低減率を用いる。

本評価では、PCV 気相部容積が小さい方がダスト放出量は大きくなることから、PCV 容 積(4240m³(ベント管含む))からPCV下部に蓄積している液相体積(約47m³)を差し引 き、PCV 気相部容積を保守的に 4100m³とする。

(2) 通常時放出量評価

図2に通常時放出量評価のモデルを示す。

PCV ガス管理設備の排気流量は令和2年5月時点で約10m³/h であるため, PCV からの 排気流量を10m³/h とする。PCV ガス管理設備フィルタの除染係数(DF)は100とする。

PCV 圧力は令和2年5月時点で10kPa 未満の正圧に保たれており, PCV からの漏えいは あるものの,ある程度気相部で気密は有しているものと考えられる。このため, PCV から の R/B へ漏えい経路では,狭隘な漏えい箇所を通過することから, PCV 漏えい箇所での 捕集効果を見込む。捕集の除染係数は,財団法人原子力発電技術機構の報告書[1]の PCV 貫通部の漏えい試験に基づき,10とする。

図2 通常時放出量評価モデル

^[1] 財団法人 原子力発電技術機構,「重要構造物安全評価(原子炉格納容器信頼性実証 事業)に関する総括報告書」,平成15年3月.

(3) 異常時放出量評価

図3に異常時放出量評価のモデルを示す。

別添-7と同様に,施工箇所の損傷によって大気に開放された場合,差圧分の PCV ガ スが R/B 内に放出されるものと想定し,差圧分の放出容積は保守的に液相がないものと した PCV 容積(4240m³)の1割(424m³)とする。

施工箇所の損傷によって大気に開放されることを想定するため、PCV ガス管理設備での排気及び PCV 漏えい箇所での捕集効果は見込まないものとする。

評価対象は,(2)の通常時放出量評価の結果,最も放出量の大きな作業工程である CRD レール切断作業(表1の②-1)を選定した。

図3 異常時放出量評価モデル(青字は通常時と異なる項目)

5. 線量影響評価

大気中へ放出される放射性核種は, R/B から地上放散されるものとし, 周辺の公衆に 対する放射線被ばくの影響を, 実効線量を用いて評価する。

実効線量は,以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量 の和として計算する。被ばく経路としては,放射性雲中の核種からの外部被ばくと内部 被ばく,地表沈着した核種による外部被ばくと内部被ばくを考慮する。

(1) 放射性雲中の核種からの y 線の外部被ばく

放射性雲中の核種からの γ 線の外部被ばくによる実効線量の評価に用いる式を以下 に示す。

$H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q_{R} \cdot 1000$

H_v: 放射性雲中の核種からの外部被ばくによる実効線量[mSv]

K : 空気カーマから実効線量への換算係数[Sv/Gy]

- E_{γ} : γ 線の実効エネルギー[MeV]
- D/Q:相対線量[Gy/Bq]

 Q_R : 放射性核種の大気放出量(各経路の DF を考慮した合計) [Bq]

(2) 放射性雲中の核種からの内部被ばく

放射性雲中の核種からの吸入摂取による内部被ばくの実効線量の評価に用いる式を以 下に示す。

 $H_I = K_{in} \cdot R_1 \cdot \chi / Q \cdot Q_R$

- H₁: 放射性雲中の核種からの吸入摂取による内部被ばくの実効線量[mSv]
- *K_{in}*:内部被ばく線量換算係数[mSv/Bq]
- **R**₁ :呼吸率[m³/s]
- χ/Q :相対濃度 $[s/m^3]$

(3) 地表沈着した核種からの外部被ばく

地表沈着した核種からの外部被ばくによる実効線量の評価に用いる式を以下に示す。 1年間居住し続ける場合を考慮し、1年間の線量を評価する。核種の崩壊については保 守的に考慮しない。

 $G_{ex} = K_{ex} \cdot \chi / Q \cdot V \cdot f \cdot Q_R \cdot T \cdot 1000$

 G_{ex} :地表沈着した核種からの外部被ばくによる実効線量[mSv]

- *K_{ar}*:外部被ばく線量換算係数[(Sv/s)/(Bq/m²)]
- V : 沈降速度[m/s]
- f : 残存割合[-]
- T : 被ばく時間[s]
- (4) 地表沈着した核種からの内部被ばく

地表沈着した核種から再浮遊した核種の吸入摂取による内部被ばくの実効線量の評価 に用いる式を以下に示す。1年間居住し続ける場合を考慮し、1年間の線量を評価する。 核種の崩壊については保守的に考慮しない。

$$G_{in} = R_2 \cdot K_{in} \cdot \chi / Q \cdot V \cdot f \cdot F \cdot Q_R \cdot T$$

- G_{in}:地表沈着した核種から再浮遊した核種の吸入摂取による内部 被ばくの実効線量[mSv]
- **R**₂ :呼吸率[m³/s]
- *F* : 再浮遊率[m⁻¹]
- (5) 相対濃度及び相対線量

相対濃度と相対線量については、本事象では放射性核種は主排気筒より放出されない ことから、地上放散を想定する。また、作業期間は月オーダーを要すると想定するため、 通常時については年間5回の間欠放出、異常時については短時間放出とする。表4に評 価に用いた値を示す。

通常時		異常時
相対濃度	$1.7 \times 10^{-6} \text{ s/m}^3$	$2.0 \times 10^{-5} \text{ s/m}^3$
相対線量	$1.5 imes 10^{-20}$ Gy/Bq	2.4 \times 10 ⁻¹⁹ Gy/Bq

表4 評価に用いる相対濃度,相対線量

6. 評価結果

当該作業に伴う放射性核種の放出量及び敷地境界での実効線量について評価した結 果は表 5,6のとおりであり、周辺の公衆に対し、著しい放射線被ばくのリスクを与え ることはない。

表5 アクセスルート構築作業に伴い放出される放射性核種の放射能量 及び敷地境界での実効線量評価結果(通常時)

	通常時
Cs-134 放出量	約 1.6×10 ⁷ Bq
Cs-137 放出量	約 1.9×10 ⁸ Bq
α核種(Am-241)放出量	約 1.9×10 ⁶ Bq
β核種(Sr-90)放出量	約4.8×10 ⁹ Bq
敷地境界実効線量	約 8.0×10 ⁻⁴ mSv

表6 アクセスルート構築作業に伴い放出される放射性核種の放射能量 及び敷地境界での実効線量評価結果(異常時)

	異常時
	(②-1 CRD レール切断作業)
Cs-134 放出量	約 2.1×10 ⁸ Bq
Cs-137 放出量	約 2.7×10 ⁹ Bq
α核種(Am-241)放出量	約 2.7×107 Bq
β核種(Sr-90)放出量	約 6.7×10 ¹⁰ Bq
敷地境界実効線量	約 1.3×10 ⁻¹ mSv

以上

2号機原子炉格納容器内部詳細調査 アクセスルート構築作業時の影響評価についての 補足説明資料

1. はじめに

本書は、別添-8「2号機原子炉格納容器内部詳細調査 アクセスルート構築作業時の影響評価について」(以下、本文)を補足するものである。

- 各作業におけるダスト浮遊量の評価方法
 各作業について、放射性ダスト(以下、ダスト)の浮遊量は以下のように計算する。
 - ダスト浮遊量=ダスト発生源の放射能濃度[Bq/g](または表面汚染密度[Bq/cm²])
 × ダスト浮遊に寄与するダスト発生源の量[g](または表面積[cm²])
 × ダスト発生メカニズムに応じた気相移行率[-]

本章では、ダスト浮遊に寄与するダスト発生源の量(または表面積)及びダスト発生 メカニズムに応じた気相移行率について補足説明する。また、ダスト発生メカニズムに 応じた気相移行率については、「Department of Energy, "DOE HANDBOOK:AIRBORNE RELEASE FRACTIONS/RATES AND RESPIRABLE FRACTIONS FOR NONREACTOR NUCLEAR FACILITIES Volume I - Analysis of Experimental Data", DOE-HDBK-3010-94, December, 1994 Reaffirmed 2013」(以下, DOE HANDBOOK) に基づき設定した。

2.1 X-6 ペネ内堆積物の堆積物量及び気相移行率

X-6 ペネ内の堆積物については、ウォータージェット(以下,WJ)による洗浄及び堆 積物の原子炉格納容器(以下,PCV)床面への落下によりダストが浮遊することを想定 する。堆積物量及び気相移行率については、本文記載のとおりに設定し、別表(1)-1の とおりとした。

作業ステップ	浮遊 要因	落下先	落下 高さ (cm)	堆積物量 (g)	気相 移行率 (-)		
① X-6 ペネ内	① X-6 ペネ内						
①-1 X-6ペネ堆積物	WJ 洗浄	_	_		0.2%		
洗浄/落下	落下	PCV 床面	526	2. 4×10^{5}	1% *1		

別表(1)-1 X-6ペネ内堆積物の堆積物量及び気相移行率

※1:堆積物落下に伴う気相移行率は,落下高さ,落下物重量及び落下物の密度に依存する。 堆積物の密度は線源強度設定における想定密度2g/cm³とした。 また,包絡値とするためのファクターとして2倍を設定した。

2.2 AWJ 影響範囲にある構造物の汚染表面から剥離する表面積及び気相移行率 アブレシブウォータジェット(以下, AWJ)影響範囲にある構造物の汚染表面から剥 離する表面積及び気相移行率については、本文記載のとおりに設定し、別表(1)-2のと

おりとした。

作業ステップ		却能学在姗	AWJ 影響表面積(cm ²)		気相移行率(-)	
		列断对象物	1 m 以内	1 m 以遠	1 m 以内	1 m 以遠
① X-6	ペネ内					
①-1	X-6ペネ堆積物			_		
	洗浄/落下		(AW)	J 施工なし)		
1)-2	ケーブル	ケーブル				
	切断/落下	1/2/10	2.2×10^{4}	8.5×10^{4}	0.2%	0 01 %
①-3	レールガイド	レールガイド	2. 3 ~ 10	0. 5 ~ 10	0.2 /0	0.01 /0
	切断/落下					
② PCV	内					
	2-1-1	CRD レール				
作業	CRD レール					
	切断/落下					
到断	(2) -1-2					
-14	ガイドピン	ガイドピン	3.0×10^{4}	3.0×10^{5}		
	切断/落下		3. 0 ~ 10	5. 0 ~ 10		
CRD	2-1-3					
)-1	CRD レール上	CRD レール上			0.2.%	0.01.%
Ø	グレーチング	グレーチング			0.2 /0	0.01 /0
	切断/落下					
2-2	CRD レール					
	吊り治具	民的ショル	4. 4×10^3	5. 0×10^{2}		
	切断/落下	11917				
(<u>)</u> -3	雷線管			—		
		電線管	1.5×10^{3}	(該当な		
	77 H/I / 111			し)		

別表(1)-2 AWJ 影響範囲にある構造物の汚染表面から剥離する表面積 及び気相移行率

2.3 AWJ 切断欠損部の表面積及び気相移行率

X-6 ペネ内のケーブル及びレールガイドの AWJ 切断については,前段作業である X-6 ペネ堆積物洗浄/落下において表面の汚染が除去されることを想定し,切断に伴うダスト浮遊を考慮しない。

PCV 内干渉物の AWJ 切断においては, 切断による欠損部表面からのダストの浮遊を想 定する。AWJ による欠損部の表面積は, CAD を用いて切断長さを読み取り, それに切断 幅を乗じて算出する。切断幅は, AWJ による鋼材の切断試験における実績から, 2 cm と する。気相移行率は, DOE HANDBOOK の「加圧容器/配管からのベント時の飛散率」の液 面上もしくは容器全体破損条件の数値から, 0.35MPa 以上の水溶液のバウンディング値 0.2%を設定した。算出した AWJ 切断欠損部の表面積及び気相移行率を別表(1)-3 にまと める。

			切断による	気相	
	作業ステップ	切断対象物	欠損面積	移行率	
			(cm^2)	(-)	
① X-6 ~	ペネ内				
		—	_		
(<u>1</u>)-1 X-	-6 个不堆積物 沈净/洛下	(切断なし)	(切断な	こし)	
①-2 ク	ーブル 切断/落下	ケーブル	_		
(1)-3 L	/ールガイド 切断/落下	レールガイド	(考慮せず) ^{※1}		
2 PCV P	内				
	②-1-1 CRD レール 切断/落下	CRD レール	1.9×10^{3}		
KD レ 新作業	②-1-2 ガイドピン 切断/落下	ガイドピン	4. 6×10^{1}		
1 句 1	②-1-3 CRD レール上グレーチング	CRD レール上	1 5 × 103	0.2 %	
Ô	切断/落下	グレーチング	1.5×10^{-5}		
2-2 CI	RD レール吊り治具 切断/落下	CRD レール吊り治具			
②-3 霍	፤線管 切断/落下	電線管	1.4×10^2		

別表(1)-3 AWJ 切断欠損部の表面積及び気相移行率

※1:前段作業である X-6 ペネ堆積物洗浄/落下において表面の汚染が除去されることを 想定し、切断に伴う浮遊は考慮しない。

- 2.4 切断片落下時のダスト発生源の表面積と気相移行率
- 2.4.1. 落下物からの浮遊

表面の汚染した切断片が落下する場合,表面付着物の一部が浮遊することが想定 される。落下する切断片の表面積は CAD を用いて算出した。グレーチングについて は、グレーチングを平板であるとして読み取った表面積の2倍と設定した。

切断対象物の材質は多くの場合金属であるが、切断対象物表面には堆積物が付着 していることが想定される。このため、切断片の落下時の気相移行率としては、DOE HANDBOOK で与えられている「非金属又は複合固体の自由落下時」の気相移行率に基 づき設定した。算出した落下物の表面積及び気相移行率を別表(1)-4にまとめる。

2.4.2. 被衝突物からの浮遊

切断片が落下すると PCV 下部グレーチングまたは PCV 床面に衝突する。これら被 衝突物も表面汚染があると考えられることから,被衝突物からもダストが浮遊する 可能性がある。被衝突物からの浮遊量は,落下物からの浮遊量を基準に想定する。対 象がグレーチングの場合,前項のとおり平板であるとして読み取った表面積の 2 倍 と設定することに基づき,下記に示す落下物と被衝突物の組み合わせにより被衝突 物からの浮遊量を想定した。

被衝突物からの浮遊量(落下物からの浮遊量基準)

落下物;グレーチング以外/被衝突物;グレーチング以外の場合:落下物の1倍
 落下物;グレーチング /被衝突物;グレーチング の場合:落下物の1倍
 落下物;グレーチング以外/被衝突物;グレーチング の場合:落下物の2倍
 落下物;グレーチング /被衝突物;グレーチング以外の場合:対象なし

2.4.3. 切断片落下時のダスト浮遊量の補正係数

上述のとおり、切断片落下時には、落下物と被衝突物からダストの浮遊を想定する ことから、落下物のダスト浮遊量に落下物及び被衝突物を考慮した補正係数を乗じ て、切断片落下時のダスト浮遊量を評価した。落下物及び被衝突物を考慮した補正係 数を別表(1)-4にまとめる。

作業ステップ		落下物	落下先 (被衝突物)	落下 高さ (cm)	落下物 表面積 (cm ²)	気相 移行率 ※1 (一)	落下物及び 被衝突物を 考慮した 補正係数 (-)
	Ⅻ-6 ペネ内						
1)-1	X−6 ペネ堆積物 洗浄/落下			- (切断戶	- †なし)		
①-2 ケーブル切断/落下		ケーブル 切断片	PCV 下部		4. 5 $\times 10^4$		2 ^{*2} (落下物:0+ 被衝突物:2)
<u>(</u>]-3	レールガイド 切断/落下	レールガイド 切断片	グレーチング	119	2. 0×10^3	3. 0 × 10 -	2 ^{*2} (落下物:0+ 被衝突物:2)
② PCV 内							
業	②-1-1 CRD レール 切断/落下	CRD レール 切断片	PCV 下部 グレーチング	105	7. 0×10^3	3. 0×10^{-5}	3 (落下物:1 + 被衝突物:2)
レート切断	②-1-2 ガイドピン 切断/落下	ガイドピン 切断片			3. 6×10^2		3 (落下物:1 + 被衝突物:2)
(2)-1 CRD	 ②-1-3 CRD レール上 グレーチング 切断/落下 	CRD レール上 グレーチング 切断片				9. 0×10^3	
2-2	CRD レール 吊り治具 切断/落下	CRD レール 吊り治具 切断片	PCV 床面	416	6. 6×10^3	9. 0×10 ⁻⁵	2 (落下物:1 + 被衝突物:1)
2-3	電線管 切断/落下	電線管 切断片	PCV 床面	463	2. 1×10^3	1.0×10^{-4}	2 (落下物:1 + 被衝突物:1)

別表(1)-4 切断片落下時のダスト発生源の表面積と気相移行率

※1:切断片落下に伴う気相移行率は,落下高さ,落下物の密度に依存する。複合固体の密度として保守的に UO₂の密度を用いて算出。

※2:ケーブル及びレールガイドに付着した放射性物質は前段の作業で洗浄されること を想定するため,落下物からの浮遊は想定しない。 3. ダスト放射能量の移行評価式

評価区画を別図(1)-1 に,評価に用いる定数一覧を別表(1)-5 に示す。区画①~④に対して,ダスト放射能量の移行評価式を立て,放出量の評価を行った。

別図(1)-1 評価区画図

定数		通常時	異常時
V _{PCV}	: PCV 体積(m ³)	41	00
V_{RB}	: R/B 小エリア体積(m ³)	82	25
F_1	: PCV ガス管理設備排気流量(m ³ /h)	10	0
F_2	: PCV から R/B 小エリアへの漏えい流量(m³/h)	20	30
F ₃	: R/B 小エリアから環境への漏えい流量(m ³ /h)	30	40
λ _{PCV,d}	: PCV 内の沈降による除去速度(1/h)	2.012	$\times 10^{-1}$
$\lambda_{RB,d}$: R/B 小エリア内の沈降による除去速度(1/h)	1.36	$ imes 10^{\circ}$
DF _{leak}	: PCV 漏えい箇所での捕集効果(-)	10	1
DF _{fil}	: PCV ガス管理設備フィルタ DF (-)	10	00

別表(1)-5 評価に用いる定数一覧

① PCV 内浮遊放射能量AG_{PCV} (Bq) [区画①]

PCV 内浮遊放射能量の評価にあたっては、各作業による PCV 内への浮遊、PCV ガス管理設備による排気、R/B小エリアへの漏えい及び PCV 内での沈降を考慮す る。PCV 内で浮遊するダストの量は、各作業で想定されるダストの全てが一度に 浮遊するものとする。

$$\frac{dAG_{PCV}}{dt} = -\left(\lambda_{PCV,d} + \frac{F_1 + F_2}{V_{PCV}}\right) \cdot AG_{PCV}$$

② R/B小エリア内浮遊放射能量AG_{RB}(Bq) [区画②]

R/B小エリア内浮遊放射能量の評価にあたっては,PCV 漏えい箇所を通じた PCV 内浮遊放射能の R/B小エリアへの漏えい,R/B小エリア内での沈降及び R/B 小エリアから環境への漏えいを考慮する。なお,R/B 排気設備による排気につい ては見込まないものとする。

$$\frac{dAG_{RB}}{dt} = \frac{F_2}{V_{PCV} \cdot DF_{leak}} \cdot AG_{PCV} - \left(\lambda_{RB,d} + \frac{F_3}{V_{RB}}\right) \cdot AG_{RB}$$

③ PCV ガス管理設備からの放出放射能量R_{PGT}(Bq) [区画③]

$$\frac{dR_{PGT}}{dt} = \frac{F_1}{V_{PCV} \cdot DF_{fil}} \cdot AG_{PCV}$$

④ R/B 小エリアからの漏えいによる放出放射能量R_{RB}(Bq) [区画④]

$$\frac{dR_{RB}}{dt} = \frac{F_3}{V_{RB}} \cdot AG_{RB}$$

以上の方程式を解き、環境への放出放射能量 Q_R (Bq) を評価した。

放出放射能量

$$Q_R = R_{PGT} + R_{RB}$$

4. 線量影響評価結果の内訳

各作業及びダスト浮遊要因毎の敷地境界での実効線量(通常時)の内訳を別表(1)-6 に 示す。また,最も放出量の大きな作業工程である CRD レール切断作業(本文表1の②-1) 時にバウンダリ施工箇所開放が生じた場合の敷地境界での実効線量(異常時)の内訳を 別表(1)-7 に示す。

			内訳 (mSv)		
		合計	洗浄または	切断片の	AWJ影響範囲の
		(mSv)	切断による	落下による	表面剥離による
			ダスト浮遊	ダスト浮遊	ダスト浮遊
①X-6 ~	《ネ内				
①-1 X-6 ペネ堆積物		7.3 $\times 10^{-5}$	1.2×10^{-5}	6. 1×10^{-5}	—
①-2 ケーブル		2. 4×10^{-4}	—	1.2×10^{-5}	2. 3×10 ⁻⁴
①-3 レールガイド			—	5. 1×10^{-7}	
②PCV 内					
②-1 CRD レール 切断作業	②-1-1 CRD レール	4. 2×10 ⁻⁴	1.6×10^{-5}	2. 7×10^{-6}	3.9×10 ⁻⁴
	②-1-2 ガイドピン		3. 9×10^{-7}	1. 4×10^{-7}	
	②-1-3 CRD レール上 グレーチング		1.3×10^{-5}	2. 3×10^{-6}	
②-2 CRD レール吊り治具		4. 4×10^{-5}	1.4×10^{-6}	5. 1×10^{-6}	3.8×10^{-5}
②-3 電線管		1.6×10^{-5}	1.2×10^{-6}	1.8×10^{-6}	1.3×10^{-5}
合計		8.0×10 ⁻⁴	4. 4×10^{-5}	8.5 $\times 10^{-5}$	6. 7×10^{-4}

別表(1)-6 通常時の敷地境界での実効線量の内訳

別表(1)-7 異常時の敷地境界での実効線量の内訳(PCV バウンダリ施工箇所開放)

			内訳 (mSv)		
		合計	洗浄または	切断片の	AWJ 影響範囲の
		(mSv)	切断による	落下による	表面剥離による
			ダスト浮遊	ダスト浮遊	ダスト浮遊
②-1 CRD レール 切断作業	②-1-1 CRD レール		4. 9×10^{-3}	8.3 $\times 10^{-4}$	
	②-1-2 ガイドピン	1.3×10 ⁻¹	1.2×10^{-4}	4. 2×10^{-5}	1.2×10^{-1}
	②-1-3 CRD レール上		4. 1×10^{-3}	7. 1×10^{-4}	
	グレーチング				
合計		1.3×10^{-1}	9. 1×10^{-3}	1.6×10^{-3}	1.2×10^{-1}

以上