本資料のうち、枠囲みの内容	柏崎刈羽原子力発電	所第7号機 工事計画審査資料
は、機密事項に属しますので	資料番号	KK7補足-026-11 改9
公開できません。	提出年月日	2020年9月4日

原子炉格納容器コンクリート部の耐震性についての

計算書に関する補足説明資料

2020年9月 東京電力ホールディングス株式会社 1. 工事計画添付書類に係る補足説明資料

V-2-9-2-1「原子炉格納容器コンクリート部の耐震性についての計算書」の記載内容を補足するための資料を以下に示す。

- 別紙1 応力解析における既工認と今回工認の解析モデル及び手法の比較
- 別紙2 応力解析におけるモデル化,境界条件及び拘束条件の考え方
- 別紙3 地震荷重の入力方法
- 別紙4 応力解析における断面の評価部位の選定
- 別紙5 応力解析における応力平均化の考え方
- 別紙6 地震荷重の算定方法
- 別紙7 貫通部における平均応力の考え方
- 別紙8 重大事故等時の高温による剛性低下の考え方
- 別紙9 床スラブによる拘束条件に対する補助壁等の影響

別紙1 応力解析における既工認と今回工認の解析モデル及び手法の比較

目 次

1.	概要	別紙 1-1
2.	応力解析モデル及び手法の比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 1-2

別紙 1-1 今回工認における異常時荷重の考え方

1. 概要

本資料は、原子炉格納容器コンクリート部(以下「RCCV」という。)の既工認時及び 今回工認時の応力解析モデル及び手法の比較を示すものである。 2. 応力解析モデル及び手法の比較

RCCVの応力解析モデル及び手法の比較を表2-1に示す。また、今回工認時の応力解析 モデルを図2-1に示す。

比較に用いる既工認時の応力解析モデル及び手法は、平成3年8月23日付け3資庁第6675 号にて認可された工事計画の添付資料Ⅳ-2-7-1(Ⅱ)「原子炉格納容器コンクリート部の 耐震性についての計算書」(以下「既工認」という。)のものである。

項 目	内容	既工認	今回工認	備考
角	3析手法	・3 次元 FEM モデルを用いた応力解析 (弾性解析)	(荷重状態Ⅲ) ・同左 (荷重状態Ⅳ, V) ・3 次元 FEM モデルを用いた応力解析(弾塑性解析)	
解科	沂コード	• NASTRAN	(荷重状態Ⅲ) ・MSC NASTRAN (荷重状態Ⅳ, V) ・ABAQUS	_
	モデル化 範囲	 (上部構造モデル) RCCV シェル部、トップスラブ部、使用済燃料貯蔵プール、蒸気乾燥器・気水分 離器ピット及びダイヤフラムフロア(東西軸に対して北半分をモデル化) (基礎スラブモデル) RCCV 底部を含む基礎スラブ 上記をそれぞれモデル化 	(上部構造モデル部分) ・RCCV シェル部,トップスラブ部,使用済燃料貯蔵プール,蒸気乾燥器・気水 分離器ピット及びダイヤフラムフロア(全周をモデル化) (基礎スラブモデル部分) ・RCCV 底部を含む基礎スラブ 上記を一体でモデル化	12
	材料物性	検討時の各規準, コンクリートの設計基準強度に基づき設定 ・コンクリートのヤング係数 上部構造 : E = 2.65×10 ⁴ N/nm ² (SI 換算) 基礎スラブ: E = 2.55×10 ⁴ N/nm ² (SI 換算) ・コンクリートのポアソン比: ν = 0.167	 適用規準等の見直しによる再設定 ・コンクリートのヤング係数 上部構造 : E = 2.88×10⁴ N/mm² 基礎スラブ: E = 2.79×10⁴ N/mm² ・コンクリートのポアソン比: v = 0.2 ・鉄筋のヤング係数: E = 2.05×10⁵ N/mm² ・鉄筋のポアソン比: v = 0.3 	3 4 5
モデル	要素種別	・シェル要素	 (荷重状態Ⅲ) ・同左 (荷重状態Ⅳ, V) ・積層シェル要素 	_
	境界条件	 (上部構造モデル) ・東西軸に対して対称 ・基礎スラブの上端で固定 ・側面の水平及び回転ばねを考慮せず ・周辺床の剛性を考慮 ・ライナの剛性を考慮 ・ライナの剛性を考慮せず (基礎スラブモデル) ・底面を弾性地盤ばねにより支持 ・底面の弾性地盤ばねは、浮上りを考慮 ・側面の水平及び回転ばねを考慮せず ・上部構造物の剛性を考慮 	 (上部構造モデル部分) ・全周をモデル化 ・基礎スラブモデル部分と一体化 ・側面の水平及び回転ばねを考慮せず ・周辺床の剛性を考慮 ・ライナの剛性を考慮せず (基礎スラブモデル部分) ・底面を弾性地盤ばねにより支持 ・底面の弾性地盤ばねは、浮上りを考慮 ・側面の水平及び回転ばねを考慮 ・上部構造物の剛性を考慮 	2

表 2-1 応力解析モデル及び手法の比較 (RCCV) (1/3)

別紙 1-3

項目	内容	既工認	今回工認	備考
モデル	非線形 特性	・考慮しない	 (荷重状態Ⅲ) ・同左 (荷重状態Ⅳ, V) コンクリート ・圧縮側のコンクリート構成則 : CEB-FIP Model code に基づき設定 ・ひび割れ発生後の引張軟化曲線:出雲ほか(1987)による式 鉄筋 ・バイリニア型 	_
地亰	裏荷重との 組合せ	 荷重状態Ⅲ:DL+P1(+T1)+H1+K1+R41, DL+P25(+T25)+K1+R41, DL+P25(+T25)+K1+R41 荷重状態Ⅳ:DL+P1+H1+K2+R42, DL+P21+K1+R41 DL:死荷重及び活荷重(浮力を含む) P1:運転時圧力 T1:運転時温度荷重 P21:異常時圧力(直後) P25:異常時圧力(120時間後) T25:異常時温度荷重(720時間後) H1:逃がし安全弁作動時荷重 K1:S1地震荷重(地震時土圧荷重を含む) K2:S2地震荷重(地震時配管荷重 R42:S2地震時配管荷重 	荷重状態皿:DL+P1(+T1)+H1+Kd+Rd+Ed, DL+P25(+T25)+Kd+Rd+Ed 荷重状態Ⅳ:DL+P1+H1+Ks+Rs+Es, DL+P21+Kd+Rd+Ed 荷重状態Ⅳ:DL+P1+H1+Ks+Rs+Es, DL+P21+Kd+Rd+Ed 荷重状態Ⅴ:DL+P5AL+HSSAL+HSA+Kd+Rd+Ed, DL+PSALL+HSSALL+Ks+Rs+Es DL:死荷重及び活荷重(浮力を含む) P1:運転時圧力 T1:運転時温度荷重 P25:<	_
荷重	死荷重 及び 活荷重	(上部構造モデル) ・躯体自重,機器配管重量,静水圧 (基礎スラブモデル) ・躯体自重,機器配管重量,静水圧,上部構造物からの荷重及び浮力	(上部構造モデル部分) ・同左	
の	運転時荷重	・運転時圧力,運転時温度荷重及び逃がし安全弁作動時荷重	 ・同左 	_
設	異常時荷重	 ・異常時圧力,異常時温度荷重 	 ・同左 	_
定	重大事故等 時荷重	・考慮せず	・重大事故等時圧力,重大事故等時水圧荷重及び重大事故等時水力学的動荷重	_

表 2-1 応力解析モデル及び手法の比較(RCCV)(2/3)

項目	内容	既工認	今回工認	備考
	地震荷重	 (上部構造モデル) ・上部構造の各階床位置に地震力(水平力,曲げモーメント,鉛直力)を入力(基礎スラブモデル) ・上部構造からの地震力(水平力,曲げモーメント,鉛直力)及び基礎部の付加地震力を入力 	 (上部構造モデル部分) ・同左 (基礎スラブモデル部分) ・同左 	_
荷重の設定	地震時 土圧荷重	P _a =10.0+0.65・γ・h γ : 土の単位体積重量 (t/m ³) h : 地表面からの深さ (m)	 S d 地震時 P_a=260+0.65·γ·h S s 地震時 P_a=460+0.65·γ·h γ : 土の単位体積重量 (kN/m³) h : 地表面からの深さ (m) ・地震時土圧は,常時土圧に地震時増分土圧を加えて算出 ・地震時増分土圧は「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社) 日本電気協会)」の地震時増分土圧算定式から加力側増分土圧及び支持側増分土圧を包絡したものとして評価 	_
	地震時 配管荷重	・配管貫通部の地震時配管反力	・同左	_
評価 方法	応力解析	 ・荷重状態Ⅲ:発生応力が許容限界を超えないことを確認 ・荷重状態Ⅳ:発生応力又はひずみが許容限界を超えないことを確認 	 ・荷重状態Ⅲ, Ⅳ:同左 ・荷重状態V:発生応力又はひずみが許容限界を超えないことを確認 	6 7

表 2-1 応力解析モデル及び手法の比較(RCCV)(3/3)

【具体的な反映事項】(表の備考欄に対応)

①荷重状態Ⅲ及びⅣのモデルについて、設置変更許可時は上部構造モデルと基礎スラブモデルをそれぞれモデル化する方針としていたが、上部構造と基礎スラブを一体でモデル化する荷重状態 Vとの評価の整合性及び近年の計算機能力の向上を踏まえ、荷重状態Ⅲ及びⅣも一体でモデル化することとした。

②記載したモデル化範囲及び境界条件は、地震荷重時のものである。地震荷重以外の荷重時については、以下の変更を行っている。

温度荷重以外の荷重時:原子炉本体基礎及び下部ドライウェルアクセストンネルをモデル化範囲に加え,境界条件として外壁の剛性を考慮したロッド要素を基礎スラブに接続する。 温度荷重時:上記に加えてライナの剛性を考慮する。

それぞれの詳細については、別紙2「応力解析におけるモデル化、境界条件及び拘束条件の考え方」に示す。

③コンクリートのヤング係数及びせん断弾性係数については、「鉄筋コンクリート構造計算規準・同解説-許容応力度設計法-」((社)日本建築学会、1999 改定)に基づき再計算

④「鋼構造設計規準-許容応力度設計法-」((社)日本建築学会,2005 改定)に基づき設定

⑤コンクリートのヤング係数を算出するための圧縮強度は実強度、断面の評価のための圧縮強度は設計基準強度を採用

⑥「発電用原子力設備規格 コンクリート製原子炉格納容器規格」((社)日本機械学会,2003)に基づき評価

⑦弾性解析による荷重状態Ⅲについては、既工認時と同様に、モデル化範囲及び境界条件が異なる荷重ごとに解析を行い、解析結果を組み合わせた応力により評価を実施する。

弾塑性解析による荷重状態Ⅳ及びVについては、荷重の種類で区分した解析ステップを設定し、解析ステップごとにモデル化範囲及び境界条件を変えて荷重を入力する一連の解析を実施し、 最終的な応力又はひずみにより評価を実施する。なお、解析ステップは圧力及び地震荷重以外の荷重、圧力、地震荷重の順であり、荷重ごとのモデル化範囲及び境界条件の考え方は弾性解 析と同じである。

別紙 1-5

別紙 1-1 今回工認における異常時荷重の考え方

目 次

1.	概要	別紙 1-1-1
2.	今回工認における荷重の組合せ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 1-1-2
3.	既工認における異常時圧力及び異常時温度荷重 ・・・・・・・・・・・	別紙 1-1-5
4.	まとめ ・・・・・	別紙 1-1-8

1. 概要

原子炉格納容器コンクリート部(以下「RCCV」という。)の応力解析においては,既 工認*における異常時圧力及び異常時温度荷重から今回工認における異常時圧力及び異 常時温度荷重を設定している。本資料は,その考え方について示すものである。

注記*:平成4年3月27日付け3資庁第13034号にて認可された工事計画の添付資料IV -1-3「原子炉格納施設の基礎の説明書」及びIV-3-4-1-1「原子炉格納容器コン クリート部の強度計算書」 2. 今回工認における荷重の組合せ

RCCV の応力解析における荷重の組合せは、V-2-1-9「機能維持の基本方針」にて設定 している荷重の組合せを用いている。V-2-1-9「機能維持の基本方針」における荷重の 組合せを表 2-1 に示す。表 2-1 に示すとおり、荷重状態Ⅲ及びⅣにおいて、異常時圧 力P2及び異常時温度荷重T2を用いた荷重の組合せを設定しており、荷重状態Ⅲの注記 に「冷却材喪失事故時の荷重としての圧力の最大値は考慮しない」、荷重状態Ⅳの注記 に「冷却材喪失事故後の最大内圧とSd(又は静的地震力)との組合せを考慮する」と 記載している。

また, V-2-1-9「機能維持の基本方針」における荷重及び荷重の組合せは,「発電用 原子力設備規格 コンクリート製原子炉格納容器規格((社)日本機械学会,2003)」 (以下「CCV 規格」という。)における荷重の組合せに基づき設定している。CCV 規格に おける荷重の組合せを表 2-2 に示す。表 2-2 に示すとおり,荷重状態Ⅲの(異常+地 震)時は,異常発生から 10⁻¹年以降の圧力及び温度荷重を考慮すること,荷重状態Ⅳの (異常+地震)時は,異常時圧力の最大値を考慮することが備考に記載されている。

以上より, RCCV の応力解析における異常時圧力及び異常時温度荷重は, 異常発生から 10⁻¹年以降の圧力及び温度荷重並びに異常時圧力の最大値を用いることとしている。

表 2-1 V-2-1-9「機能維持の基本方針」における荷重の組合せ

		荷重状態	荷重の組合せ	許容限界 建物・構築物
			$\begin{array}{c} D+L+P_1\\ +R_1+T_1+\\ H+S d^* \end{array}$	部材に生じる応力が CCV 規格* ³ における荷 重状態Ⅲの許容値を超えないこととする。
原子炉枚	コンカリート部	Ш	$D+L+P_{2}^{*1}$ $+R_{2}+T_{2}+$ $S d^{*}$	部材に生じる応力が CCV 規格* ³ における荷 重状態Ⅲの許容値を超えないこととする。
格納容器		IV	$\begin{array}{c} D+L+P_1\\ +R_1+H+\\ S\ s\end{array}$	部材に生じる応力若しくはひずみが CCV 規 格* ³ における荷重状態Ⅳの許容値を超えな いこととする。
		.,	$D+L+P_{2}$ $+R_{2}+S d*$	部材に生じる応力若しくはひずみが CCV 規 格* ³ における荷重状態IVの許容値を超えな いこととする。

b. 原子炉格納容器

〔記号の説明〕

- D : 死荷重
- L :活荷重
- P1:運転時圧力荷重
- R₁:運転時配管荷重
- T₁:運転時温度荷重
- P₂:異常時圧力荷重
- R₂:異常時配管荷重
- T₂:異常時温度荷重
- H:水力学的動荷重
- Sd*:弾性設計用地震動Sdにより定まる地震力又はSクラス設備に適用される静的地震力の いずれか大きい方の地震力
- Ss:基準地震動Ssにより定まる地震力
- 注記*1:冷却材喪失事故時の荷重として圧力の最大値は考慮しない。
 - *2:原子炉格納容器は原子炉冷却材喪失時の最終障壁となることから、構造体全体としての安全余裕を確認する意味で、原子炉冷却材喪失後の最大内圧とSd(又は静的地震力)との組合せを考慮する。
 - *3 : 発電用原子力設備規格 コンクリート製原子炉格納容器規格
 - ((社)日本機械学会,2003)

表 2-2 CCV 規格における荷重の組合せ(抜粋)

荷重状態	荷 重 荷重時	死荷重	活荷重	プレストレス荷重	運転時圧力	運転時配管荷重	運転時温度荷重	異常時圧力	異常時配管荷重	異常時温度荷重	ジェット力	Si地震荷重	S ² 地震荷重	積雪荷重	風圧力	試験圧力
I	通常運転時	1.0	1.0	1.0	1.0	1.0	1.0	1								
	逃がし安全弁作動時	1.0	1.0	1.0	1.0	1.0	1.0								•	
п	試験時	1.0	1.0	1.0									:			1.0
	積雪時	1.0	1.0	1.0	1.0	1.0	1.0			×.				1.0	1	
	暴風時	1.0	1.0	1.0 [:]	1.0	1.0	1.0				4				1.0	
Π .	地震時	1.0	1.0	1.0	1.0	1.0	1.0					1.0			<u>.</u>	
-	異常時	1.0	1.0	1.0	:		5	1.0	1.0	1.0			•			
	(異常+地震)時	1.0	1.0	1.0	/			1.0	1.0	1.0		1.0				
	地震時	1.0	1.0	1.0	1.0	1.0			÷.,				1.0	•		
	異常時	1.0	1.0	1.0				1.5	1.0)# 						:
IV	ジェット力作用時	1.0	1.0	1.0							1.0					
	(異常+地震)時	1.0	1.0	1.0				1.0	1.0			1.0				
	(異常+積雪)時	1.0	1.0	1.0				1.25	1.0					1.25		
	(異常+暴風)時	1.0	1.0	1.0				1.25	1.0	4					1.25	

別表4 コンクリート部に作用する荷重

- (備考) 1. この表に掲げる荷重状態の荷重時において、上欄に掲げる荷重に表中の荷重係 数を乗じて加えたものが作用するものとする。この場合において、上欄に掲げる 荷重は、各荷重時において想定される荷重の発生状況について検討を加え、適切 に定めるものとする。
 - 4. 荷重状態Ⅲの(異常+地震)時は,異常時圧力および異常時配管荷重の最大値と S1地震荷重が同時に作用しないものとする。

この組合せにおいて考慮する異常時荷重は,異常発生から10⁻¹年以降の圧力による荷重,温度荷重および配管荷重とする。

5. 荷重状態IVの(異常+地震)時は,異常時圧力および異常時配管荷重の最大値と S1地震荷重が同時に作用するものとする。荷重状態IVのジェット力は,沸騰水型原 子炉において考慮する。 3. 既工認における異常時圧力及び異常時温度荷重

今回工認においては,異常時の条件が既工認から変更ないため,既工認の異常時圧力 及び異常時温度荷重をそのまま用いている。

既工認における異常時圧力を表 3-1に,異常時温度荷重を表 3-2に示す。表 3-1及 び表 3-2に示すとおり,既工認においては,異常発生後の経過時間として「直後」,「30 分」,「6 時間」,「230 時間」及び「720 時間」の5 種類を設定している。今回工認におい ては,これらの中から「2. 今回工認における荷重の組合せ」に示した「異常発生から 10⁻¹年以降の圧力及び温度荷重並びに異常時圧力の最大値」に相当するものを選定して いる。即ち,10⁻¹年(≒30 日=720 時間)以降に相当する「720 時間」の圧力 P₂₅及び 温度荷重 T₂₅,並びに,異常時圧力の最大値に相当する「直後」の圧力 P₂₁を選定し ている。なお,「30 分」,「6 時間」及び「230 時間」の異常時圧力及び異常時温度荷重に ついては,既工認において,地震荷重と組み合わせない荷重状態Ⅲの異常時に用いてい る。 表 3-1 既工認における異常時圧力

(a) シェル部, トップスラブ部

表3-3 異常時圧力(P₂)

۱

• •

(単位:kg/cm²)

			(単位:kg/cm ²
異常発生後 の経過時間	記号	ドライウェル	サブレッション チェンバ
直後	P ₂₁		
30分	P22		
6時間	P ₂₃		
24時間	P ₂₄		
720時間	P ₂₅		

(b) 基礎スラブ

(単位:kg/cm²) 異常発生後 の経過時間 サプレッション 記号 ドライウェル。 ・チェンバ P₂₁ 直後 30分 P₂₂ 6時間 P₂₃ 230 時間 P24 · 720時間 P₂₅

表3-2 異常時圧力(P2)

表 3-2 既工認における異常時温度荷重

(a) シェル部, トップスラブ部

表3-5 異常時温度荷重(T2)

.

.

(単位 · ℃)

(·····	and the second state of th			1 1 - 1				
見世以上公			*		シェ	ル部			ップ			
チャルエレ	記	記号		A	部	·B	部	スラ	ブ部			
小子拉了一	'		111) 1111	内面	外面	内面	外面	内面	外面			
市化	-	sT21	夏									
但 恢	T ₂₁ .	wT21	冬									
305	-	sT22	Į									
307	T22	wT22	冬									
		sT23	夏									
094.[8]	T ₂₃	wT23	冬									
の人の牛が月				sT24	夏							
2407 (8)	T24	wT_{24}	冬									
		_s T ₂₅	夏									
(20n4, le)	T ₂₅	wT25	冬									

注: シェル部のA部, B部の位置は,表3-2の説明図参照のこと。

(b) 基礎スラブ

表 3-3 異常時温度荷重 (T₂)

								(里)	ℤ:°C)	
異常発生	異常発生		玉		RCÒ	V底部		70	の他	
後の経過	58	号		A	部	B	部	C	部	
時間	<u> </u>		<u>AD</u>	上面	下面	上面	下面	上面	下面	-
直後	Ta	"T ₂₁	夏							
	-21	"T ₂₁	*							
30 5 T2	Tee	"T ₂₂	夏							
	30 75 T ₂₂	"T ₂₂	冬							
6時間	T23	. T29	夏							
		_₩ T ₂₃	冬							
230時間	Ta	"T ₂₄	Z							
		_T ₂₄	冬							
720時間 7	Ton	T25	Q							
	40	"T ₂₅	冬							

注: 基礎スラブのA部,B部,C部の位置は,表 3-1の説明 図参照のこと。

4. まとめ

RCCV の応力解析における今回工認の異常時圧力及び異常時温度荷重の設定の考え方に ついて整理した。今回工認における荷重の組合せと既工認における異常時圧力及び異常 時温度荷重を踏まえ,今回工認における異常時圧力及び異常時温度荷重を適切に設定し ていることを確認した。 別紙2 応力解析におけるモデル化,境界条件及び拘束条件の考え方

目 次

1.	概要		 別紙 2-1
2.	応力解析におけるモデル化,	境界条件及び拘束条件	 別紙 2-2

1. 概要

本資料は、原子炉格納容器コンクリート部(以下「RCCV」という。)の応力解析におけるモデル 化、境界条件及び拘束条件についての概要を示すものである。 2. 応力解析におけるモデル化,境界条件及び拘束条件 RCCVの応力解析におけるモデル化,境界条件及び拘束条件を表 2-1 に示す。

直接基礎の底面及び側面の地盤ばねの設定における基本的な考え方は、以下のとおり。

- (1) 底面地盤ばね
- ・水平ばね

振動アドミッタンス理論に基づく水平ばねより算出する。

・鉛直ばね

基礎浮上りを考慮し、回転ばね反力として生じる転倒モーメントを適切に評価するため、 振動アドミッタンス理論に基づく回転ばねより算出する。

- (2) 側面地盤ばね
- ・水平ばね

Novak の手法に基づく水平ばねにより算出する。

・鉛直ばね

Novak の手法に基づく回転ばねにより算出する。

有限要素法を用いた解析モデルにおける要素分割の考え方*については、以下のとおり。

・はり要素

はり要素の場合は、曲げの変位関数が3次で精度が高いため、基本的に要素分割の細分化 は不要であるが、部材の接合点間で変位情報出力や荷重入力がある場合には複数要素に細分 し、曲線部材がある場合は、その曲線が直線近似できる程度の分割にすることが一般的であ る。また、分布荷重がある場合や分布質量が関係する自重荷重などの計算では、要素分割す ることにより質量分布がより正確になり、解析結果の精度が向上する。更に、要素分割の細 分化により、変形図やモード図で構造物の変形状態を容易に把握することが可能となる。

・シェル要素

要素分割は、基本的には発生する応力状態によって決まり、構造形状と荷重条件より要素 分割数を考慮する。要素形状の縦横比(アスペクト比)は、重要部分で1:2以下、その他の 領域や応力変化が少ない領域では、1:3程度までで、分割に際しては4角形要素を利用して 格子状とするのが一般的である。曲面板構造の場合は、平板要素や軸対称シェル要素の大き さは、集中荷重や不連続部を含む曲面部近傍では2.5√(R/t)を10~20分割すると適切な 応力分布が求められ、構造物の半径(R)と板厚(t)が考慮されている。また、面内曲げ・ 軸力及び面外のせん断や曲げを受ける部材のシェル要素の辺の長さは、シェルの広がり方向 の応力分布の状態から決まり、応力変化が大きい領域は要素を小さくする必要がある。

注記*:構造解析のための有限要素法実践ハンドブック(非線形 CAE 協会,2008 年)

表 2-1 モデル化,境界条件及び拘束条件(1/6)

表 2-1 モデル化,境界条件及び拘束条件(2/6)

表 2-1 モデル化,境界条件及び拘束条件(3/6)

表 2-1 モデル化,境界条件及び拘束条件(4/6)

	境界条件,拘束条件		
上部構造物と周辺構造物との境界			
はり要素の剛性(断面性能)			
 ・軸剛性(軸断面積) 	$: A = t \times h$	t:床の厚さ	
・曲げ剛性(断面二次モーメント)	: $I = t \times h^3 / 12$	h:モデル化する床の幅*1	
	$+A \times (h/2+D/2)^2$	D:壁の厚さ	
・せん断剛性(せん断断面積)	: $A_s = t \times h$		
ロッド要素の剛性(断面性能)			
•軸剛性(軸断面積*2)	$: A = t \times h$	t:壁の厚さ	
		h:モデル化する壁の幅*3	

表 2-1 モデル化,境界条件及び拘束条件(6/6)

注記*1:プールガーダに取り付く床の幅については、既工認と同様に、下図のとおりプールの最外端からプールガーダに対して 30°の角度の範囲として設定する。

- *2: RCCV 周辺床の軸断面積については,既工認と同様に,各階の床スラブと等価な面積とな る穴あき円盤の半径方向軸剛性をもとに設定する。
- *3: プールガーダに取り付く外壁の幅については、既工認と同様に、東側及び西側の外壁長さの1/2として設定する。

別紙3 地震荷重の入力方法

目 次

1.	概要	別紙 3-1
2.	地震荷重の入力方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 3-2

1. 概要

本資料は、コンクリート製原子炉格納容器(以下「RCCV」という。)に作用する地震 荷重の入力方法について示すものである。

2. 地震荷重の入力方法

RCCV の応力解析に当たって, FEM モデルに入力する地震荷重として,水平地震力,鉛 直地震力及び地震時土圧荷重を考慮する。

地震荷重の入力は,基準地震動Ss,弾性設計用地震動Sd及び静的地震力に対する 地震応答解析結果を考慮し,FEM モデルに入力する水平力,曲げモーメント及び鉛直力 が,各質点位置で地震応答解析結果と等価になるように設定する。

具体的には、水平地震力については、地震応答解析により求まる各層の最大応答せん 断力に基づく水平力を FEM モデルに入力する。上部構造モデル部分については、地震応 答解析モデルの各質点位置に相当する FEM モデルの各節点に節点荷重として入力する。 上部構造物から作用する基礎スラブへの地震時反力については、FEM モデルにおける上 部構造物脚部に対応する各節点に、節点の支配面積に応じて分配し、節点荷重として入 力する。基礎スラブモデル部分については、地震応答解析より求まる基礎スラブ底面地 盤ばねと基礎スラブ側面地盤ばねのそれぞれの最大水平力の合算値から、上部構造物か ら作用する水平力を差し引いた値と等価になる荷重(以下「付加せん断力」という。) を FEM モデルの基礎スラブの各節点に、節点の支配面積に応じて分配し、節点荷重とし て入力する。

また、地震応答解析により求まる各質点の最大応答曲げモーメントと FEM モデルに入 力した水平力により発生する曲げモーメントの差分を FEM モデルに入力する。上部構造 モデル部分については、偶力に置換して節点荷重として入力する。上部構造物から作用 する基礎スラブへの地震時反力は、偶力に置換して水平力の入力位置に節点荷重として 入力する。基礎スラブモデル部分については、地震応答解析より求まる基礎スラブ底面 地盤ばねと基礎スラブ側面地盤ばねのそれぞれの最大曲げモーメントの合算値から、上 部構造物から作用する曲げモーメントを差し引いた値と等価になる荷重(以下「付加曲 げモーメント」という。)を FEM モデルの基礎スラブの各節点に、節点の支配面積と中 心位置からの距離に応じて偶力に置換して分配し、節点荷重として入力する。EW 方向の プール部の回転ばねによる曲げモーメントについては、プールガーダの長さで除して求 めた外壁からの鉛直方向の反力を、プールガーダの端部及び基礎スラブの外壁脚部に節 点荷重として入力する。

なお,水平地震力及び曲げモーメントについては,耐震壁の位置に対応する節点に入 力することを原則とするが,プールガーダは建屋中央部の耐震壁と同じ厚さの壁が外壁 まで連続することから,プールガーダ全体に対応する節点に入力する。また,曲げモー メントの偶力への置換については,建屋中心軸からの平面保持を仮定している。外壁部 については,地震応答解析モデルの曲げ剛性評価において考慮しているフランジ部脚部 への入力も可能であるが,外壁脚部は多点拘束していることから,フランジ部の負担分 を含め,ウェブ部にのみ入力する。

鉛直地震力については、地震応答解析により求まる各質点の最大応答加速度及び基礎

直上の部材の軸力から算出した鉛直震度及び軸力係数に基づく鉛直力を FEM モデルに入 力する。上部構造モデル部分については, FEM モデルの各節点に, 節点の支配重量に鉛 直震度を乗じた節点荷重として入力する。上部構造物から作用する基礎スラブへの地震 時反力については, FEM モデルにおける上部構造物脚部位置に対応する各節点の支配面 積に応じて上部構造物の重量を分配した支配重量に鉛直震度(軸力係数)を乗じた節点 荷重として入力する。基礎スラブモデル部分については, 地震応答解析より求まる基礎 スラブ底面地盤ばねの鉛直力から上部構造物から作用する鉛直力を差し引いた値と等価 になる荷重(以下「付加軸力」という。)を基礎スラブの重量で除して付加軸力係数を 算定する。そして, FEM モデルの基礎スラブの各節点の支配重量に付加軸力係数を乗じ た節点荷重として入力する。

地下外壁部に作用する地震時土圧荷重により基礎スラブに作用する荷重は,外壁を各 階スラブ位置で支持した連続ばりモデルを用いて算定する。算定した外壁脚部に生じる 単位長さ当たりの曲げモーメント及びせん断力は,基礎スラブ外周の節点の支配長さに 応じて分配し,節点荷重として入力する。なお,曲げモーメントについては,壁厚を考 慮した偶力に置換し,節点荷重として入力する。

FEM モデルに入力する地震荷重の概念図を図 2-1 に示す。また,FEM モデルに入力する地震荷重を図 2-2 に示す。なお,図 2-2 における地震時土圧荷重は、地震時増分土 圧荷重として示す。

 M_{R}

図 2-1 FEM モデルに入力する地震荷重の概念図 (1/2)

Q_A:基礎スラブに入力するせん断力

M_A:基礎スラブに入力する曲げモーメント

(d) 地震時土圧荷重

図 2-1 FEM モデルに入力する地震荷重の概念図 (2/2)

(a) 水平力(NS方向) 上部構造モデル部分

(b) 水平力(EW方向) 上部構造モデル部分図 2-2 FEMモデルに入力する地震荷重(1/11)

(d) 曲げモーメント(EW方向) 上部構造モデル部分
 図 2-2 FEMモデルに入力する地震荷重(2/11)

(f) 水平力(NS方向) 基礎スラブモデル部分

(g) 水平力(EW方向) 基礎スラブモデル部分図 2-2 FEMモデルに入力する地震荷重(4/11)

(h) 曲げモーメント (NS 方向) 基礎スラブモデル部分

(i) 曲げモーメント(EW方向) 基礎スラブモデル部分
 図 2-2 FEMモデルに入力する地震荷重(5/11)

図 2-2 FEM モデルに入力する地震荷重 (8/11)

図 2-2 FEM モデルに入力する地震荷重 (9/11)

(p) 地震時増分土圧荷重(NS 方向) せん断力

図 2-2 FEM モデルに入力する地震荷重 (10/11)

(r) 地震時増分土圧荷重(NS方向) 曲げモーメント

別紙4 応力解析における断面の評価部位の選定

目	次
---	---

1.	概	要 ·			••••	 •••	 	••••	 		 	• • •	•••	• • • • •	・別紙 4-1
2.	断	面の割	平価剖	3位の	選定	 • • • •	 		 	• • •	 		•••	• • • • •	・別紙 4-2
2. 2	1	シェル	~部			 • • • •	 		 	• • •	 		•••	• • • • •	・別紙 4-8
2.2	2	トッフ	パスラ	ブ部	• •	 •••	 		 	• • •	 •••	•••	•••		別紙 4-21
2.3	3	底部			• • • •	 • • • •	 		 		 	• • •	•••		別紙 4-31
2.4	1	貫通部	β.		• • • •	 • • • •	 		 		 	• • •	•••		別紙 4-44
2.5	5	局部			• • • •	 • • • •	 		 		 	• • •	•••		別紙 4-56

1. 概要

本資料は、原子炉格納容器コンクリート部(以下「RCCV」という。)の応力解析にお ける断面の評価部位の選定に関し、工認記載の断面の評価要素の選定結果について示す ものである。 2. 断面の評価部位の選定

RCCVの荷重の組合せケースを表 2-1 に示す。

荷重	荷重時	ケース	荷重の組合せ
状態	名 称	No.	
Ш	地震時	1-1	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 1.0 K $_{d \ 1 \ S \ N}$ + 0.4 K $_{d \ 1 \ D \ U}$ + R $_{d}$ + 1.0 E $_{d \ N \ S}$
	(1)	1-2	$D L + P_{1} + [T_{1}] + H_{1} + 1.0 K_{d 1 W E} + 0.4 K_{d 1 D U} + R_{d} + 1.0 E_{d E W}$
		1-3	$D L + P_{1} + [T_{1}] + H_{1} - 1.0 K_{d 1 S N} + 0.4 K_{d 1 D U} + R_{d} + 1.0 E_{d N S}$
		1-4	$D L + P_{1} + [T_{1}] + H_{1} - 1.0 K_{d 1 WE} + 0.4 K_{d 1 DU} + R_{d} + 1.0 E_{d EW}$
		1-5	$D L + P_{1} + [T_{1}] + H_{1} + 1.0 K_{d 1 S N} - 0.4 K_{d 1 D U} + R_{d} + 1.0 E_{d N S}$
		1-6	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 1.0 K $_{d \ 1 \ W E}$ - 0.4 K $_{d \ 1 \ D U}$ + R $_{d}$ + 1.0 E $_{d \ E \ W}$
		1 - 7	$D L + P_{1} + [T_{1}] + H_{1} - 1.0 K_{d 1 S N} - 0.4 K_{d 1 D U} + R_{d} + 1.0 E_{d N S}$
		1-8	$D L + P_{1} + [T_{1}] + H_{1} - 1.0 K_{d 1 WE} - 0.4 K_{d 1 DU} + R_{d} + 1.0 E_{d EW}$
		1-9	$D L + P_{1} + [T_{1}] + H_{1} + 0.4 K_{d 1 S N} + 1.0 K_{d 1 D U} + R_{d} + 0.4 E_{d N S}$
		1-10	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 0. 4 K $_{d \ 1 \ W E}$ + 1. 0 K $_{d \ 1 \ D U}$ + R $_{d}$ + 0. 4 E $_{d \ E \ W}$
		1-11	$D L + P_{1} + [T_{1}] + H_{1} - 0.4 K_{d 1 S N} + 1.0 K_{d 1 D U} + R_{d} + 0.4 E_{d N S}$
		1-12	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 0. 4 K $_{d \ 1 \ W E}$ + 1. 0 K $_{d \ 1 \ D U}$ + R $_{d}$ + 0. 4 E $_{d \ E \ W}$
		1-13	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 0. 4 K $_{d \ 1 \ S \ N}$ - 1. 0 K $_{d \ 1 \ D \ U}$ + R $_{d}$ + 0. 4 E $_{d \ N \ S}$
		1-14	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 0. 4 K $_{d \ 1 \ W E}$ - 1. 0 K $_{d \ 1 \ D U}$ + R $_{d}$ + 0. 4 E $_{d \ E \ W}$
		1-15	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 0. 4 K $_{d \ 1 \ S \ N}$ - 1. 0 K $_{d \ 1 \ D \ U}$ + R $_{d}$ + 0. 4 E $_{d \ N \ S}$
		1-16	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 0. 4 K $_{d \ 1 \ W E}$ - 1. 0 K $_{d \ 1 \ D U}$ + R $_{d}$ + 0. 4 E $_{d \ E \ W}$
		1 - 17	$D L + P_{1} + [T_{1}] + H_{1} + 1.0 K_{d 2 S N} + 1.0 K_{d 2 D U} + R_{d} + 1.0 E_{d N S}$
		1-18	$D L + P_{1} + [T_{1}] + H_{1} + 1.0 K_{d 2 W E} + 1.0 K_{d 2 D U} + R_{d} + 1.0 E_{d E W}$
		1-19	$D L + P_{1} + [T_{1}] + H_{1} - 1.0 K_{d 2 S N} + 1.0 K_{d 2 D U} + R_{d} + 1.0 E_{d N S}$
		1-20	$D L + P_{1} + [T_{1}] + H_{1} - 1.0 K_{d 2 W E} + 1.0 K_{d 2 D U} + R_{d} + 1.0 E_{d E W}$
		1-21	$D L + P_{1} + [T_{1}] + H_{1} + 1.0 K_{d 2 S N} - 1.0 K_{d 2 D U} + R_{d} + 1.0 E_{d N S}$
		1-22	$D L + P_{1} + [T_{1}] + H_{1} + 1.0 K_{d 2WE} - 1.0 K_{d 2DU} + R_{d} + 1.0 E_{d EW}$
		1-23	$D L + P_{1} + [T_{1}] + H_{1} - 1.0 K_{d 2 S N} - 1.0 K_{d 2 D U} + R_{d} + 1.0 E_{d N S}$
		1-24	$D L + P_{1} + [T_{1}] + H_{1} - 1.0 K_{d 2WE} - 1.0 K_{d 2DU} + R_{d} + 1.0 E_{d EW}$

表 2-1 荷重の組合せケース (1/6)

注:[]は応力状態2に対する荷重を表す。

荷重	荷重時	ケース	共手の知人斗
状態	名 称	No.	何里の和台包
Ш	(異常+	2-1	D L + P $_{2 5}$ + [T $_{2 5}$] + 1.0 K $_{d 1 S N}$ + 0.4 K $_{d 1 D U}$ + R $_{d}$ + 1.0 E $_{d N S}$
	地長)时 (1)	2-2	D L + P $_{25}$ + [T $_{25}$] + 1.0 K $_{d1WE}$ + 0.4 K $_{d1DU}$ + R $_{d}$ + 1.0 E $_{dEW}$
		2-3	D L + P $_{25}$ + [T $_{25}$] - 1.0 K $_{d1SN}$ + 0.4 K $_{d1DU}$ + R $_{d}$ + 1.0 E $_{dNS}$
		2-4	D L + P $_{25}$ + [T $_{25}$] - 1.0 K $_{d1WE}$ + 0.4 K $_{d1DU}$ + R $_{d}$ + 1.0 E $_{dEW}$
		2-5	D L + P $_{25}$ + [T $_{25}$] + 1.0 K $_{d1SN}$ - 0.4 K $_{d1DU}$ + R $_{d}$ + 1.0 E $_{dNS}$
		2-6	D L + P $_{25}$ + [T $_{25}$] + 1.0 K $_{d1WE}$ - 0.4 K $_{d1DU}$ + R $_{d}$ + 1.0 E $_{dEW}$
		2-7	D L + P $_{25}$ + [T $_{25}$] - 1.0 K $_{d1SN}$ - 0.4 K $_{d1DU}$ + R $_{d}$ + 1.0 E $_{dNS}$
		2-8	D L + P $_{25}$ + [T $_{25}$] - 1.0 K $_{d1WE}$ - 0.4 K $_{d1DU}$ + R $_{d}$ + 1.0 E $_{dEW}$
		2-9	D L + P $_{25}$ + [T $_{25}$] + 0. 4 K $_{d1SN}$ + 1. 0 K $_{d1DU}$ + R $_{d}$ + 0. 4 E $_{dNS}$
		2-10	D L + P $_{25}$ + [T $_{25}$] + 0. 4 K $_{d1WE}$ + 1. 0 K $_{d1DU}$ + R $_{d}$ + 0. 4 E $_{dEW}$
		2-11	D L + P $_{25}$ + [T $_{25}$] - 0. 4 K $_{d1SN}$ + 1. 0 K $_{d1DU}$ + R $_{d}$ + 0. 4 E $_{dNS}$
		2-12	D L + P $_{25}$ + [T $_{25}$] - 0. 4 K $_{d1WE}$ + 1. 0 K $_{d1DU}$ + R $_{d}$ + 0. 4 E $_{dEW}$
		2-13	D L + P $_{25}$ + [T $_{25}$] + 0. 4 K $_{d1SN}$ - 1. 0 K $_{d1DU}$ + R $_{d}$ + 0. 4 E $_{dNS}$
		2-14	D L + P $_{25}$ + [T $_{25}$] + 0. 4 K $_{d1WE}$ - 1. 0 K $_{d1DU}$ + R $_{d}$ + 0. 4 E $_{dEW}$
		2-15	D L + P $_{25}$ + [T $_{25}$] - 0. 4 K $_{d1SN}$ - 1. 0 K $_{d1DU}$ + R $_{d}$ + 0. 4 E $_{dNS}$
		2-16	D L + P $_{25}$ + [T $_{25}$] - 0. 4 K $_{d1WE}$ - 1. 0 K $_{d1DU}$ + R $_{d}$ + 0. 4 E $_{dEW}$
		2-17	$D L + P_{25} + [T_{25}] + 1.0 K_{d2SN} + 1.0 K_{d2DU} + R_{d} + 1.0 E_{dNS}$
		2-18	$D L + P_{25} + [T_{25}] + 1.0 K_{d2WE} + 1.0 K_{d2DU} + R_{d} + 1.0 E_{dEW}$
		2-19	$D L + P_{25} + [T_{25}] - 1.0 K_{d2SN} + 1.0 K_{d2DU} + R_{d} + 1.0 E_{dNS}$
		2-20	D L + P $_{2 5}$ + [T $_{2 5}$] - 1.0 K $_{d 2 WE}$ + 1.0 K $_{d 2 D U}$ + R $_{d}$ + 1.0 E $_{d E W}$
		2-21	D L + P $_{25}$ + [T $_{25}$] + 1.0 K $_{d2SN}$ - 1.0 K $_{d2DU}$ + R $_{d}$ + 1.0 E $_{dNS}$
		2-22	D L + P $_{25}$ + [T $_{25}$] + 1.0 K $_{d2WE}$ - 1.0 K $_{d2DU}$ + R $_{d}$ + 1.0 E $_{dEW}$
		2-23	D L + P $_{25}$ + [T $_{25}$] - 1.0 K $_{d2SN}$ - 1.0 K $_{d2DU}$ + R $_{d}$ + 1.0 E $_{dNS}$
		2-24	D L + P $_{25}$ + [T $_{25}$] - 1.0 K $_{d2WE}$ - 1.0 K $_{d2DU}$ + R $_{d}$ + 1.0 E $_{dEW}$

表 2-1 荷重の組合せケース (2/6)

注:[]は応力状態2に対する荷重を表す。

荷重	荷重時	ケース	世子の知人に			
状態	名 称	No.	何里の組合セ			
IV	地震時	3-1	D L + P $_{1}$ + H $_{1}$ + 1.0 K $_{s S N}$ + 0.4 K $_{s D U}$ + R $_{s}$ + 1.0 E $_{s N S}$			
	(2)	3-2	D L + P $_{1}$ + H $_{1}$ + 1.0 K $_{s WE}$ + 0.4 K $_{s D U}$ + R $_{s}$ + 1.0 E $_{s E W}$			
		3-3	D L + P ₁ +H ₁ -1.0K _{s S N} +0.4K _{s D U} +R _s +1.0E _{s N S}			
		3-4	D L + P $_{1}$ + H $_{1}$ - 1.0 K $_{s WE}$ + 0.4 K $_{s D U}$ + R $_{s}$ + 1.0 E $_{s E W}$			
		3-5	D L + P $_{1}$ + H $_{1}$ + 1.0 K $_{s S N}$ - 0.4 K $_{s D U}$ + R $_{s}$ + 1.0 E $_{s N S}$			
		3-6	D L + P ₁ + H ₁ + 1.0 K _{s WE} - 0.4 K _{s DU} + R _s + 1.0 E _{s EW}			
		3-7	D L + P $_{1}$ + H $_{1}$ - 1.0 K $_{s S N}$ - 0.4 K $_{s D U}$ + R $_{s}$ + 1.0 E $_{s N S}$			
		3-8	D L + P $_{1}$ + H $_{1}$ - 1.0 K $_{s WE}$ - 0.4 K $_{s D U}$ + R $_{s}$ + 1.0 E $_{s E W}$			
			3-9	D L + P $_{1}$ + H $_{1}$ + 0. 4 K $_{s S N}$ + 1. 0 K $_{s D U}$ + R $_{s}$ + 0. 4 E $_{s N S}$		
		3-10	D L + P $_{1}$ + H $_{1}$ + 0. 4 K $_{s WE}$ + 1. 0 K $_{s D U}$ + R $_{s}$ + 0. 4 E $_{s E W}$			
					3-11	D L + P $_{1}$ + H $_{1}$ - 0. 4 K $_{s S N}$ + 1. 0 K $_{s D U}$ + R $_{s}$ + 0. 4 E $_{s N S}$
		3-12	D L + P $_{1}$ + H $_{1}$ - 0. 4 K $_{s WE}$ + 1. 0 K $_{s D U}$ + R $_{s}$ + 0. 4 E $_{s E W}$			
		3-13	D L + P $_{1}$ + H $_{1}$ + 0. 4 K $_{s S N}$ - 1. 0 K $_{s D U}$ + R $_{s}$ + 0. 4 E $_{s N S}$			
		3-14	D L + P $_{1}$ + H $_{1}$ + 0. 4 K $_{s WE}$ - 1. 0 K $_{s D U}$ + R $_{s}$ + 0. 4 E $_{s E W}$			
		3-15	D L + P ₁ +H ₁ -0.4K _{s S N} -1.0K _{s D U} +R _s +0.4E _{s N S}			
		3-16	$D L + P_1 + H_1 - 0.4 K_{sWE} - 1.0 K_{sDU} + R_s + 0.4 E_{sEW}$			

表 2-1 荷重の組合せケース (3/6)

荷重	荷重時	ケース	共産の知会は
状態	名 称	No.	何里の組合セ
IV	(異常+	4-1	D L + P $_{2 1}$ + 1. 0 K $_{d 1 S N}$ + 0. 4 K $_{d 1 D U}$ + R $_{d}$ + 1. 0 E $_{d N S}$
	地展)时 (2)	4-2	D L + P $_{21}$ + 1.0 K $_{d1WE}$ + 0.4 K $_{d1DU}$ + R $_{d}$ + 1.0 E $_{dEW}$
		4-3	D L + P $_{2 1}$ - 1.0 K $_{d 1 S N}$ + 0.4 K $_{d 1 D U}$ + R $_{d}$ + 1.0 E $_{d N S}$
		4-4	D L + P $_{2 1}$ - 1.0 K $_{d 1 W E}$ + 0.4 K $_{d 1 D U}$ + R $_{d}$ + 1.0 E $_{d E W}$
		4-5	D L + P $_{2 1}$ + 1.0 K $_{d 1 S N}$ - 0.4 K $_{d 1 D U}$ + R $_{d}$ + 1.0 E $_{d N S}$
		4-6	D L + P $_{2 1}$ + 1.0 K $_{d 1 W E}$ - 0.4 K $_{d 1 D U}$ + R $_{d}$ + 1.0 E $_{d E W}$
		4-7	D L + P $_{2 1}$ - 1.0 K $_{d 1 S N}$ - 0.4 K $_{d 1 D U}$ + R $_{d}$ + 1.0 E $_{d N S}$
		4-8	D L + P $_{21}$ - 1.0 K $_{d1WE}$ - 0.4 K $_{d1DU}$ + R $_{d}$ + 1.0 E $_{dEW}$
		4-9	D L + P $_{2 1}$ + 0. 4 K $_{d 1 S N}$ + 1. 0 K $_{d 1 D U}$ + R $_{d}$ + 0. 4 E $_{d N S}$
		4-10	D L + P $_{2 1}$ + 0. 4 K $_{d 1 W E}$ + 1. 0 K $_{d 1 D U}$ + R $_{d}$ + 0. 4 E $_{d E W}$
		4-11	D L + P $_{2 1}$ - 0. 4 K $_{d 1 S N}$ + 1. 0 K $_{d 1 D U}$ + R $_{d}$ + 0. 4 E $_{d N S}$
		4-12	D L + P $_{2 1}$ - 0. 4 K $_{d 1 W E}$ + 1. 0 K $_{d 1 D U}$ + R $_{d}$ + 0. 4 E $_{d E W}$
		4-13	D L + P $_{2 1}$ + 0. 4 K $_{d 1 S N}$ - 1. 0 K $_{d 1 D U}$ + R $_{d}$ + 0. 4 E $_{d N S}$
		4-14	D L + P _{2 1} + 0. 4 K _{d 1 W E} - 1. 0 K _{d 1 D U} + R _d + 0. 4 E _{d E W}
		4-15	D L + P $_{21}$ - 0. 4 K $_{d1SN}$ - 1. 0 K $_{d1DU}$ + R $_{d}$ + 0. 4 E $_{dNS}$
		4-16	D L + P $_{2 1}$ - 0. 4 K $_{d 1 W E}$ - 1. 0 K $_{d 1 D U}$ + R $_{d}$ + 0. 4 E $_{d E W}$
		4-17	D L + P $_{2 1}$ + 1. 0 K $_{d 2 S N}$ + 1. 0 K $_{d 2 D U}$ + R $_{d}$ + 1. 0 E $_{d N S}$
		4-18	D L + P $_{21}$ + 1.0 K $_{d2WE}$ + 1.0 K $_{d2DU}$ + R $_{d}$ + 1.0 E $_{dEW}$
		4-19	D L + P $_{2 1}$ - 1. 0 K $_{d 2 S N}$ + 1. 0 K $_{d 2 D U}$ + R $_{d}$ + 1. 0 E $_{d N S}$
		4-20	D L + P $_{21}$ - 1.0 K $_{d2WE}$ + 1.0 K $_{d2DU}$ + R $_{d}$ + 1.0 E $_{dEW}$
		4-21	D L + P $_{2 1}$ + 1.0 K $_{d 2 S N}$ - 1.0 K $_{d 2 D U}$ + R $_{d}$ + 1.0 E $_{d N S}$
		4-22	D L + P $_{2 1}$ + 1.0 K $_{d 2 W E}$ - 1.0 K $_{d 2 D U}$ + R $_{d}$ + 1.0 E $_{d E W}$
		4-23	D L + P $_{2 1}$ - 1. 0 K $_{d 2 S N}$ - 1. 0 K $_{d 2 D U}$ + R $_{d}$ + 1. 0 E $_{d N S}$
		4-24	D L + P $_{2 1}$ - 1. 0 K $_{d 2 W E}$ - 1. 0 K $_{d 2 D U}$ + R $_{d}$ + 1. 0 E $_{d E W}$

表 2-1 荷重の組合せケース (4/6)

荷重	荷重時	ケース	共手の知人は
状態	名 称	No.	何里の組合セ
V	(異常+	5-1	$DL + P_{SAL} + HS_{SAL} + H_{SA} + 1.0K_{d1SN} + 0.4K_{d1DU} + R_{d} + 1.0E_{dNS}$
	地長)时 (3)	5-2	$DL + P_{SAL} + HS_{SAL} + H_{SA} + 1.0K_{d1WE} + 0.4K_{d1DU} + R_{d} + 1.0E_{dEW}$
		$DL + P_{SAL} + HS_{SAL} + H_{SA} - 1.0K_{d1SN} + 0.4K_{d1DU} + R_{d} + 1.0E_{dNS}$	
		5-4	$DL + P_{SAL} + HS_{SAL} + H_{SA} - 1.0K_{d1WE} + 0.4K_{d1DU} + R_{d} + 1.0E_{dEW}$
		5-5	$DL + P_{SAL} + HS_{SAL} + H_{SA} + 1.0K_{d1SN} - 0.4K_{d1DU} + R_{d} + 1.0E_{dNS}$
		5-6	$DL + P_{SAL} + HS_{SAL} + H_{SA} + 1.0K_{d1WE} - 0.4K_{d1DU} + R_{d} + 1.0E_{dEW}$
		5-7	$DL + P_{SAL} + HS_{SAL} + H_{SA} - 1.0K_{d1SN} - 0.4K_{d1DU} + R_{d} + 1.0E_{dNS}$
		5-8	$DL + P_{SAL} + HS_{SAL} + H_{SA} - 1.0K_{d1WE} - 0.4K_{d1DU} + R_{d} + 1.0E_{dEW}$
		5-9	$DL + P_{SAL} + HS_{SAL} + H_{SA} + 0.4K_{d1SN} + 1.0K_{d1DU} + R_{d} + 0.4E_{dNS}$
		5-10	$D L + P_{SAL} + H S_{SAL} + H_{SA} + 0.4 K_{d 1WE} + 1.0 K_{d 1DU} + R_{d} + 0.4 E_{d EW}$
		5-11	$DL + P_{SAL} + HS_{SAL} + H_{SA} - 0.4K_{d1SN} + 1.0K_{d1DU} + R_{d} + 0.4E_{dNS}$
		5-12	$DL + P_{SAL} + HS_{SAL} + H_{SA} - 0.4K_{d1WE} + 1.0K_{d1DU} + R_{d} + 0.4E_{dEW}$
		5-13	$DL + P_{SAL} + HS_{SAL} + H_{SA} + 0.4K_{d1SN} - 1.0K_{d1DU} + R_{d} + 0.4E_{dNS}$
		5-14	$DL + P_{SAL} + HS_{SAL} + H_{SA} + 0.4K_{d1WE} - 1.0K_{d1DU} + R_{d} + 0.4E_{dEW}$
		5-15	$DL + P_{SAL} + HS_{SAL} + H_{SA} - 0.4K_{d1SN} - 1.0K_{d1DU} + R_{d} + 0.4E_{dNS}$
		5-16	$DL + P_{SAL} + HS_{SAL} + H_{SA} - 0.4K_{d1WE} - 1.0K_{d1DU} + R_{d} + 0.4E_{dEW}$

表 2-1 荷重の組合せケース (5/6)

荷重	荷重時	ケース	左手の知会社
状態	名 称	No.	何里の組合セ
V	(異常+	6-1	$D L + P_{SALL} + H S_{SALL} + 1.0 K_{SSN} + 0.4 K_{SDU} + R_{s} + 1.0 E_{SNS}$
	地辰)时 (4)	6-2	$D L + P_{SALL} + H S_{SALL} + 1.0K_{sWE} + 0.4K_{sDU} + R_{s} + 1.0E_{sEW}$
		6-3	DL + P_{SALL} + HS_{SALL} - 1.0 K_{SSN} + 0.4 K_{SDU} + R_{s} + 1.0 E_{SNS}
		6-4	DL + P_{SALL} + HS_{SALL} - 1.0 K_{sWE} + 0.4 K_{sDU} + R_{s} + 1.0 E_{sEW}
		6-5	D L + P _{S A L L} + H S _{S A L L} + 1.0 K _{s S N} - 0.4 K _{s D U} + R _s + 1.0 E _{s N S}
		6-6	DL + P_{SALL} + HS_{SALL} + $1.0K_{sWE}$ - $0.4K_{sDU}$ + R_s + $1.0E_{sEW}$
		6-7	D L + P _{S A L L} + H S _{S A L L} - 1.0 K _{s S N} - 0.4 K _{s D U} + R _s + 1.0 E _{s N S}
		6-8	$D L + P_{SALL} + H S_{SALL} - 1.0 K_{sWE} - 0.4 K_{sDU} + R_{s} + 1.0 E_{sEW}$
		6-9	DL + P_{SALL} + HS_{SALL} + 0.4 K_{SSN} + 1.0 K_{SDU} + R_{S} + 0.4 E_{SNS}
		6-10	$D L + P_{SALL} + H S_{SALL} + 0.4K_{sWE} + 1.0K_{sDU} + R_{s} + 0.4E_{sEW}$
		6-11	DL + P_{SALL} + HS_{SALL} - 0.4 K_{SSN} + 1.0 K_{SDU} + R_s + 0.4 E_{SNS}
		6-12	DL + P_{SALL} + HS_{SALL} - 0.4 K_{sWE} + 1.0 K_{sDU} + R_s + 0.4 E_{sEW}
		6-13	DL + P_{SALL} + HS_{SALL} + 0.4 K_{SSN} - 1.0 K_{SDU} + R_s + 0.4 E_{SNS}
		6-14	$DL + P_{SALL} + HS_{SALL} + 0.4K_{sWE} - 1.0K_{sDU} + R_{s} + 0.4E_{sEW}$
		6-15	$DL + P_{SALL} + HS_{SALL} - 0.4K_{SSN} - 1.0K_{SDU} + R_{S} + 0.4E_{SNS}$
		6-16	DL + P_{SALL} + HS_{SALL} - 0.4 K_{sWE} - 1.0 K_{sDU} + R_s + 0.4 E_{sEW}

表 2-1 荷重の組合せケース (6/6)

2.1 シェル部

シェル部の配筋領域図を図2-1に、配筋一覧を表2-2に示す。

各評価項目の検定値一覧を表2-3に、断面力ごとの検定値が最大となる要素及び断面の評価結果を図2-2に、断面の評価部位の選定に関する荷重組合せケースの断面力 コンター図を図2-3に示す。

表 2-2 配筋一覧 (シェル部)

T. M. S. L. (m)	配 筋 *
21.3	3×320-D51
-8.2	2×320-D51 +1×320-D41
0.2	

(a) 子午線(¢)方向

注記*:内側及び外側とも、同一配筋。

T. M. S. L. (m)	配筋*
21.3	2-D51@300
0 7	3-D51@300
8.7	2-D51@300 + 1-D41@300
4.5	2-D51@300 + 1-D41@600
0.2	

(b) 円周(θ)方向

注記*:内側及び外側とも,同一配筋。

表 2-3 各評価項目の検定値一覧(1/3)

	評価項目	方向	要素番号	組合せ ケース	検定値
等価膜力 + 曲げモーメント	コンクリート圧縮応力度	子午線	13	1-21	0.351
	鉄筋引張応力度	子午線	9	1-3	0.680
面内せん断力	面内せん断応力度	-	21	1-23	0.552
面外せん断力	面外せん断応力度	子午線	100010	1-19	0.407

(a) 荷重状態**Ⅲ**・地震時(1)

(b) 荷重状態Ⅲ·(異常+地震)時(1)

	評価項目	方向	要素番号	組合せ ケース	検定値
等価膜力 + 曲げモーメント	コンクリート圧縮応力度	子午線	9	2-23	0.350
	鉄筋引張応力度	子午線	9	2-3	0.770
面内せん断力	面内せん断応力度	_	100210	2-23	0.505
面外せん断力	面外せん断応力度	子午線	100432	2-8	0.426

注: ____ は、検定値が最大となる要素を示す。

表 2-3 各評価項目の検定値一覧(2/3)

	評価項目	方向	要素番号	組合せ ケース	検定値
等価膜力 + 曲げモーメント	コンクリート圧縮ひずみ	子午線	11	3-1	0.228
	鉄筋引張ひずみ	子午線	109	3-3	0.171
膜力	圧縮応力度	子午線	11	3-1	0.692
面内せん断力	面内せん断応力度	_	111	3-5	0.698
面外せん断力	面外せん断応力度	子午線	431	3-8	0.500

(c) 荷重状態**W**・地震時(2)

(d) 荷重状態IV · (異常+地震) 時 (2)

	評価項目	方向	要素番号	組合せ ケース	検定値
等価膜力 + 曲げモーメント	コンクリート圧縮ひずみ	子午線	11	4-17	0.092
	鉄筋引張ひずみ	子午線	177	4-3	0.086
膜力	圧縮応力度	子午線	11	4-5	0.301
面内せん断力	面内せん断応力度	_	100	4-17	0. 423
面外せん断力	面外せん断応力度	子午線	431	4-8	0.266

表 2-3 各評価項目の検定値一覧(3/3)

(e) 何 里 仄 態 V ・ (異 吊 + 地	震) 時	(3)
---------------------------	------	-----

	評価項目	方向	要素番号	組合せ ケース	検定値
等価膜力 + 曲げモーメント	コンクリート圧縮ひずみ	子午線	11	5-1	0.146
	鉄筋引張ひずみ	子午線	40	5-4	0.216
膜力	圧縮応力度	子午線	100011	5-7	0.393
面内せん断力	面内せん断応力度	_	111	5-5	0.429
面外せん断力	面外せん断応力度	子午線	94	5-4	0.514

(f) 荷重状態V・(異常+地震)時(4)

	評価項目	方向	要素番号	組合せ ケース	検定値
等価膜力 + 曲げモーメント	コンクリート圧縮ひずみ	子午線	11	6-1	0.255
	鉄筋引張ひずみ	子午線	39	6-4	0.218
膜力	圧縮応力度	子午線	11	6-1	0.739
面内せん断力	面内せん断応力度	-	111	6-5	0.679
面外せん断力	面外せん断応力度	子午線	100003	6-4	0.485

(a) 荷重状態**Ⅲ**・地震時(1)

図 2-2 断面力ごとの検定値が最大となる要素及び断面の評価結果(1/6)

(b) 荷重状態Ⅲ•(異常+地震)時(1)

図 2-2 断面力ごとの検定値が最大となる要素及び断面の評価結果(2/6)

(c) 荷重状態IV · 地震時(2)

図 2-2 断面力ごとの検定値が最大となる要素及び断面の評価結果(3/6)

⁽d) 荷重状態Ⅳ • (異常+地震) 時 (2)

図 2-2 断面力ごとの検定値が最大となる要素及び断面の評価結果(4/6)

図 2-2 断面力ごとの検定値が最大となる要素及び断面の評価結果(5/6)

(f) 荷重状態V・(異常+地震)時(4)
 図 2-2 断面力ごとの検定値が最大となる要素及び断面の評価結果(6/6)

(a) 等価膜力(子午線方向,ケース 2-3)

(b) 曲げモーメント (子午線方向, ケース 2-3)

図 2-3 断面の評価部位の選定に関する荷重組合せケースの断面力コンター図

2.2 トップスラブ部

トップスラブ部の配筋領域図を図2-4に、配筋一覧を表2-4に示す。

各評価項目の検定値一覧を表2-5に、断面力ごとの検定値が最大となる要素及び断面の評価結果を図2-5に、断面の評価部位の選定に関する荷重組合せケースの断面力 コンター図を図2-6に示す。

注:配筋はR4通りに対して対称である。 図2-4 配筋領域図(トップスラブ部)(単位:m)
表 2-4 配筋一覧 (トップスラブ部)

領域	方向	配筋*			
А	NS	3-D41@300			
	EW	3-D41@300			
В	NS	1-D41@150 +2-D41@300			
	EW	3-D41@300			
С	NS	2-D41@150 +1-D41@300			
	EW	3-D41@300			

(a) 主筋

注記*:上ば筋及び下ば筋とも、同一配筋。

(b) せん断補強筋

領域	せん断補強筋
а	D19@300×300
b	D19@150 $ imes$ 150

表 2-5 各評価項目の検定値一覧(1/3)

評価項目		方向	要素番号	組合せ ケース	検定値
軸力 + 曲げモーメント	コンクリート圧縮応力度	EW	101425	1-14	0.341
	鉄筋引張応力度	NS	1411	1-23	0.544
面外せん断力	面外せん断応力度	NS	101413	1-23	0.839

(a) 荷重状態Ⅲ・地震時 (1)

(b) 荷重状態Ⅲ • (異常+地震) 時 (1)

評価項目		方向	要素番号	組合せ ケース	検定値
軸力 + 曲げモーメント	コンクリート圧縮応力度	EW	101425	2-14	0.358
	鉄筋引張応力度	NS	1411	2-23	0.559
面外せん断力	面外せん断応力度	NS	101413	2-23	0.887

表 2-5 各評価項目の検定値一覧(2/3)

評価項目		方向	要素番号	組合せ ケース	検定値
軸力 + 曲げモーメント	コンクリート圧縮ひずみ	NS	101412	3-5	0.069
	鉄筋引張ひずみ	NS	101412	3-5	0.041
面外せん断力	面外せん断応力度	NS	1413	3-3	0.875

(c) 荷重状態**W**・地震時(2)

(d) 荷重状態Ⅳ • (異常+地震) 時 (2)

評価項目		方向	要素番号	組合せ ケース	検定値
軸力 + 曲げモーメント	コンクリート圧縮ひずみ	NS	101411	4-19	0.054
	鉄筋引張ひずみ	NS	1411	4-17	0.039
面外せん断力	面外せん断応力度	NS	101413	4-17	0.742

表 2-5 各評価項目の検定値一覧(3/3)

評価項目		方向	要素番号	組合せ ケース	検定値
軸力 + 曲げモーメント	コンクリート圧縮ひずみ	NS	1401	5-9	0.105
	鉄筋引張ひずみ	NS	1413	5-12	0.162
面外せん断力	面外せん断応力度	EW	1471	5-4	0.860

(e) 荷重状態V · (異常+地震) 時 (3)

(f) 荷重状態V · (異常+地震) 時 (4)

評価項目		方向	要素番号	組合せ ケース	検定値
軸力 + 曲げモーメント	コンクリート圧縮ひずみ	NS	101411	6-3	0.055
	鉄筋引張ひずみ	EW	1472	6-2	0.033
面外せん断力	面外せん断応力度	NS	1413	6-3	0. 897

注: 二は、検定値が最大となる要素を示す。

⁽b) 荷重状態Ⅲ·(異常+地震)時(1)

図 2-5 断面力ごとの検定値が最大となる要素及び断面の評価結果(1/3)

(c) 荷重状態Ⅳ·地震時(2)

(d) 荷重状態Ⅳ·(異常+地震)時(2)

図 2-5 断面力ごとの検定値が最大となる要素及び断面の評価結果(2/3)

注:
は,検定値が最大となる要素を示す。

(f) 荷重状態V・(異常+地震)時(4)

図 2-5 断面力ごとの検定値が最大となる要素及び断面の評価結果(3/3)

面外せん断力(NS方向,ケース 6-3)

図 2-6 断面の評価部位の選定に関する荷重組合せケースの断面力コンター図

2.3 底部

底部の配筋領域図を図2-7に、配筋一覧を表2-6に示す。

各評価項目の検定値一覧を表2-7に、断面力ごとの検定値が最大となる要素及び断面の評価結果を図2-8に、断面の評価部位の選定に関する荷重組合せケースの断面力 コンター図を図2-9に示す。

図 2-7 配筋領域図(底部)

別紙 4-32

表 2-6 配筋一覧(底部)

(a) 主筋

府市	上ば筋		下ば筋		
限坝	方向	配筋	方向	配筋	
Δ	NS	3-D38@130	NS	5-D38@200	
A	EW	3-D38@130	EW	5-D38@200	
D	放射	5×160-D38	NS	5-D38@200	
В	円周	2-D38@200 + 3-D38@400	EW	5-D38@200	
С	放射	5×320-D38	NS	5-D38@200	
	円周	2-D38@200 + 3-D38@400	EW	5-D38@200	
E .	放射	5×320-D38	NS	5-D38@200	
U	円周	5-D38@200	EW	5-D38@200	

(b) せん断補強筋

領域	配筋
а	D35@200×80/周
b	D35@200×160/周
С	D35@200×160/周
d	D35@400 \times 400

表 2-7 各評価項目の検定値一覧(1/3)

評価項目		方向	要素番号	組合せ ケース	検定値
軸力 + 曲げモーメント	コンクリート圧縮応力度	放射	10002161	1-19	0.464
	鉄筋引張応力度	NS	10002161	1-19	0.525
面外せん断力	面外せん断応力度	放射	10002374	1-22	0.592

(a) 荷重状態Ⅲ・地震時 (1)

(b) 荷重状態Ⅲ • (異常+地震) 時 (1)

評価項目		方向	要素番号	組合せ ケース	検定値
軸力 + 曲げモーメント	コンクリート圧縮応力度	放射	10002161	2-19	0.519
	鉄筋引張応力度	放射	10002180	2-23	0.653
面外せん断力	面外せん断応力度	放射	10002374	2-22	0.575

表 2-7 各評価項目の検定値一覧(2/3)

評価項目			要素番号	組合せ ケース	検定値
軸力	コンクリート圧縮ひずみ	放射 10002171		3-2	0.153
ー 曲げモーメント	鉄筋引張ひずみ	NS	10002141	3-1	0.067
面外せん断力	面外せん断応力度	放射	10002371	3-2	0.832 (1.02)

(c) 荷重状態IV・地震時(2)

_____ 注1: □ は、検定値が最大となる要素を示す。

注2:()内は、応力平均化前の値を示す。

(d) 荷重状態IV · (異常+地震) 時 (2)

評価項目			要素番号	組合せ ケース	検定値
軸力	コンクリート圧縮ひずみ	放射	10002161	4-19	0.065
曲げモーメント	鉄筋引張ひずみ	NS	10002161	4-19	0.025
面外せん断力	面外せん断応力度	放射	10002374	4-22	0. 502

表 2-7 各評価項目の検定値一覧(3/3)

評価項目			要素番号	組合せ ケース	検定値
軸力	コンクリート圧縮ひずみ	放射	10002171	5-2	0.083
+ 曲げモーメント	鉄筋引張ひずみ	NS	10002141	5-5	0.062
面外せん断力	面外せん断応力度	放射	10002250	5-2	0.872

(e) 荷重状態V · (異常+地震) 時 (3)

(f) 荷重状態V · (異常+地震) 時 (4)

評価項目			要素番号	組合せ ケース	検定値
軸力	コンクリート圧縮ひずみ	放射 1000217		6-2	0.160
ー 曲げモーメント	鉄筋引張ひずみ	NS	10002141	6-1	0.080
面外せん断力	面外せん断応力度	放射	10002371	6-2	0.967

(a) 荷重状態**Ⅲ**・地震時(1)

図 2-8 断面力ごとの検定値が最大となる要素及び断面の評価結果(1/6)

(b) 荷重状態Ⅲ·(異常+地震)時(1)

図 2-8 断面力ごとの検定値が最大となる要素及び断面の評価結果(2/6)

注: は,検定値が最大となる要素を示す。

(c) 荷重状態IV · 地震時(2)

図 2-8 断面力ごとの検定値が最大となる要素及び断面の評価結果(3/6)

図 2-8 断面力ごとの検定値が最大となる要素及び断面の評価結果(4/6)

(e) 荷重状態V・(異常+地震)時(3)図 2-8 断面力ごとの検定値が最大となる要素及び断面の評価結果(5/6)

(f) 荷重状態V · (異常+地震) 時 (4)

図 2-8 断面力ごとの検定値が最大となる要素及び断面の評価結果(6/6)

面外せん断力(放射方向,ケース 3-2)

図 2-9 断面の評価部位の選定に関する荷重組合せケースの断面力コンター図

2.4 貫通部

貫通部の開口補強筋概要図を図2-10に示す。

各評価項目の検定値一覧を表2-8に、断面力ごとの検定値が最大となる領域及び断面の評価結果を図2-11~図2-16に、断面の評価部位の選定に関する荷重組合せケースの断面力コンター図を図2-17に示す。

表 2-8 各評価項目の検定値一覧(1/3)

(a)	荷重状態Ⅲ	・地震時(1)

部位		評価項目	方向	領域番号	組合せ ケース	検定値
	等価膜力	コンクリート圧縮応力度	子午線	MA3	1-16	0.377
MS/FDW 開口	+ 曲げモーメント	鉄筋引張応力度	円周	MD4	1-17	0.675
	面外せん断力	面外せん断応力度	円周	MA5	1-9	0.743
	等価膜力	コンクリート圧縮応力度	子午線	LDH13	1-6	0.334
L/Dアクセス トンネル開口	+ 曲げモーメント	鉄筋引張応力度	円周	LDA16	1-19	0.529
	面外せん断力	面外せん断応力度	子午線	LDA3	1-8	0.156

(b) 荷重状態Ⅲ·(異常+地震)時(1)

部位		評価項目	方向	領域番号	組合せ ケース	検定値
	等価膜力	コンクリート圧縮応力度	子午線	MA3	2-16	0.316
MS/FDW 開口	+ 曲げモーメント	鉄筋引張応力度	円周	MB6	2-19	0.785
	面外せん断力	面外せん断応力度	円周	MA5	2-9	0.729
	等価膜力	コンクリート圧縮応力度	子午線	LDH14	2-6	0.365
L/Dアクセス トンネル開口	+ 曲げモーメント	鉄筋引張応力度	円周	LDA16	2-19	0.511
	面外せん断力	面外せん断応力度	子午線	LDA16	2-17	0.187

表 2-8 各評価項目の検定値一覧(2/3)

部位		評価項目	方向	領域番号	組合せ ケース	検定値
	等価膜力	コンクリート圧縮ひずみ	子午線	MA5	3-8	0.122
MS/FDW 開口	+ 曲げモーメント	鉄筋引張ひずみ	円周	MB15	3-7	0.100
	面外せん断力	面外せん断応力度	円周	MD13	3-13	0.716
	等価膜力	コンクリート圧縮ひずみ	子午線	LDH14	3-6	0.280
L/Dアクセス トンネル開口	+ 曲げモーメント	鉄筋引張ひずみ	子午線	LDH14	3-4	0.284
	面外せん断力	面外せん断応力度	子午線	LDA5	3-3	0.174

(c) 荷重状態**W**・地震時(2)

(d) 荷重状態IV · (異常+地震)時(2)

部位		評価項目	方向	領域番号	組合せ ケース	検定値
	等価膜力	コンクリート圧縮ひずみ	子午線	MA12	4-23	0.081
MS/FDW 開口	曲げモーメント	鉄筋引張ひずみ	子午線	MB14	4-19	0.100
	面外せん断力	面外せん断応力度	円周	MA5	4-13	0.535
	等価膜力 + 曲げモーメント	コンクリート圧縮ひずみ	子午線	LDH14	4-6	0.161
L/Dアクセス トンネル開口		鉄筋引張ひずみ	円周	LDA16	4-19	0.132
	面外せん断力	面外せん断応力度	子午線	LDA6	4-3	0.155

表 2-8 各評価項目の検定値一覧(3/3)

(e) 荷重状態V · (異常+地震) 時 (3)

部位		評価項目	方向	領域番号	組合せ ケース	検定値
	等価膜力	コンクリート圧縮ひずみ	子午線	MD15	5-4	0.168
MS/FDW 開口	+ 曲げモーメント	鉄筋引張ひずみ	子午線	MB13	5-3	0.230
	面外せん断力	面外せん断応力度	子午線	FA11	5-3	0.894
	等価膜力	コンクリート圧縮ひずみ	子午線	LDH14	5-6	0.295
L/Dアクセス トンネル開口	₊ 曲げモーメント	鉄筋引張ひずみ	子午線	LDA12	5-2	0.376
	面外せん断力	面外せん断応力度	子午線	LDA3	5-16	0.329

注: ____ は、検定値が最大となる領域を示す。

(f)	荷重状態V	•	(異常+地震)	時	(4)
-----	-------	---	---------	---	-----

部位		評価項目	方向	領域番号	組合せ ケース	検定値
	等価膜力	コンクリート圧縮ひずみ	子午線	MA3	6-4	0.133
MS/FDW 開口	曲げモーメント	鉄筋引張ひずみ	子午線	MB13	6-3	0.131
	面外せん断力	面外せん断応力度	円周	MA5	6-13	0.709
	等価膜力	コンクリート圧縮ひずみ	子午線	LDH14	6-6	0.325
L/Dアクセス トンネル開口	曲げモーメント	鉄筋引張ひずみ	子午線	LDH14	6-4	0.324
	面外せん断力	面外せん断応力度	子午線	LDA3	6-7	0. 264

図 2-11 断面力ごとの検定値が最大となる領域及び断面の評価結果 荷重状態Ⅲ・地震時(1)

図 2-12 断面力ごとの検定値が最大となる領域及び断面の評価結果 荷重状態Ⅲ・(異常+地震)時(1)

図 2-13 断面力ごとの検定値が最大となる領域及び断面の評価結果 荷重状態Ⅳ・地震時(2)

図 2-14 断面力ごとの検定値が最大となる領域及び断面の評価結果 荷重状態Ⅳ・(異常+地震)時(2)

図 2-15 断面力ごとの検定値が最大となる領域及び断面の評価結果荷重状態V・(異常+地震)時(3)

図 2-16 断面力ごとの検定値が最大となる領域及び断面の評価結果荷重状態V・(異常+地震)時(4)

面外せん断力(子午線方向,ケース 5-3)

図 2-17 断面の評価部位の選定に関する荷重組合せケースの断面力コンター図

2.5 局部

局部の局部補強筋範囲を図2-18に、局部補強筋一覧を表2-9に示す。

各評価項目の検定値一覧を表2-10に、断面力ごとの検定値が最大となる要素及び 断面の評価結果を図2-19に、断面の評価部位の選定に関する荷重組合せケースの断 面力コンター図を図2-20に示す。

図 2-18 局部補強範囲

表 2-9 局部補強筋一賢

方向	配筋*		
円周 (θ)	3-D51@300		

注記*:内側及び外側とも,同一配筋。

表 2-10 各評価項目の検定値一覧(1/3)

評価項目		方向	要素番号	組合せ ケース	検定値
等価膜力	コンクリート圧縮応力度	子午線	401	1-24	0.368
曲げモーメント	鉄筋引張応力度	円周	361	1-17	0.590
面内せん断力	面内せん断応力度	-	404	1-23	0.586
面外せん断力	面外せん断応力度	円周	100318	1-6	0.577

(a) 荷重状態**Ⅲ**・地震時(1)

(b) 荷重状態Ⅲ·(異常+地震)時(1)

評価項目		方向	要素番号	組合せ ケース	検定値
等価膜力	コンクリート圧縮応力度	子午線	401	2-24	0.316
+ 曲げモーメント	鉄筋引張応力度	円周	361	2-17	0.583
面内せん断力	面内せん断応力度	-	435	2-21	0.558
面外せん断力	面外せん断応力度	円周	100318	2-6	0.689
表 2-10 各評価項目の検定値一覧(2/3)

(c)	荷重状態IV	•	地震時	(2)
< - /				

評価項目			要素番号	組合せ ケース	検定値
等価膜力	コンクリート圧縮ひずみ	子午線	401	3-8	0.093
曲げモーメント	鉄筋引張ひずみ	円周	406	3-7	0.043
膜力	圧縮応力度	子午線	100284	3-15	0.250
面内せん断力	面内せん断応力度	-	100284	3-3	0.541
面外せん断力	面外せん断応力度	円周	100283	3-6	0.967

注: ____ は、検定値が最大となる要素を示す。

評価項目			要素番号	組合せ ケース	検定値		
等価膜力 コンクリート圧縮ひずみ		子午線	303	4-21	0.063		
+ 曲げモーメント	+ 曲げモーメント 鉄筋引張ひずみ		100309	4-17	0.047		
膜力	圧縮応力度	子午線	100284	4-7	0.153		
面内せん断力	面内せん断応力度	-	100336	4-21	0.348		
面外せん断力	新力 面外せん断応力度		100318	4-6	0.487		

(d) 荷重状態Ⅳ · (異常+地震) 時 (2)

表 2-10 各評価項目の検定値一覧(3/3)

	(e)	荷重状態V	•	(異常+地震)	時	(3)
--	-----	-------	---	---------	---	-----

	方向	要素番号	組合せ ケース	検定値	
等価膜力	コンクリート圧縮ひずみ	子午線	401	5-4	0.158
曲げモーメント	鉄筋引張ひずみ	子午線	305	5-3	0.176
膜力	圧縮応力度	子午線	278	5-8	0.052
面内せん断力	面内せん断応力度	_	283	5-1	0.253
面外せん断力	面外せん断応力度	子午線	395	5-12	0.677

(f) 荷重状態V・(異常+地震)時(4)

	方向	要素番号	組合せ ケース	検定値	
等価膜力	コンクリート圧縮ひずみ	子午線	401	6-4	0.123
+ 曲げモーメント 鉄筋引張ひずみ		子午線	100284	6-1	0.075
膜力	圧縮応力度	子午線	284	6-8	0.220
面内せん断力	面内せん断応力度	-	100284	6-3	0.524
面外せん断力	面外せん断応力度	円周	100283	6-6	0.944

(a) 荷重状態**Ⅲ**・地震時(1)

⁽b) 荷重状態**Ⅲ** • (異常+地震) 時(1)

図 2-19 断面力ごとの検定値が最大となる要素及び断面の評価結果(1/3)

(c) 荷重状態IV · 地震時 (2)

⁽d) 荷重状態IV · (異常+地震) 時 (2)

図 2-19 断面力ごとの検定値が最大となる要素及び断面の評価結果(2/3)

(e) 荷重状態 V · (異常+地震) 時 (3)

(f) 荷重状態V · (異常+地震) 時(4)

図 2-19 断面力ごとの検定値が最大となる要素及び断面の評価結果(3/3)

面外せん断力(円周方向,ケース 3-6)

図 2-20 断面の評価部位の選定に関する荷重組合せケースの断面力コンター図

別紙5 応力解析における応力平均化の考え方

目 次	
-----	--

1.	概	要		別紙 5-1
2.	応え	力平均化の考え方		別紙 5-2
2.	1 万	芯力平均化を実施し	た領域における断面の評価要素 ・・・・・・・・・	別紙 5-2
2.2	2 万	芯力平均化の方法		別紙 5-4
2.	3 Г	芯力平均化の結果		別紙 5-10
2.4	4 🛛	断面の評価結果 ・		別紙 5-12

1. 概要

3次元 FEM モデルを用いた応力の算定において,FEM 要素に応力集中等が見られる場合 については,「原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会, 2005)」(以下「RC-N 規準」という。)に基づき,応力の再配分等を考慮してある一定の 領域の応力を平均化したうえで断面の評価を行っている。この場合,当該要素における 応力度ではなく,周囲の複数の要素で平均化した応力度に対して断面の評価を実施して いることから,本資料では,原子炉格納容器コンクリート部(以下「RCCV」という。) における複数の要素での応力平均化の考え方及びその結果を示す。

- 2. 応力平均化の考え方
- 2.1 応力平均化を実施した領域における断面の評価要素

断面の評価要素は、応力平均化を行うことによって応力が変わることから、応力平 均化前の断面力に対する検定値を元に選定している。

RCCV 底部では,応力平均化前の応力分布において,局所的に大きな面外せん断力が 発生している要素を断面の評価要素とし,応力平均化を行い,応力平均化後の値に対 する断面の評価を実施した。

応力平均化を実施した要素を表 2-1,要素位置図を図 2-1 に示す。

部位	評価	項目	方向	要素番号	組合せ ケース	平均化前の検定値 (発生値/許容値)
古如	面外	面外	放射	10002370	3-2 (荷重状態Ⅳ・ 地震時(2))	1.01
底部 せん断力	応力度	放射	10002371	3-2 (荷重状態Ⅳ・ 地震時(2))	1.02	

表 2-1 応力平均化要素

図 2-1 要素位置図

2.2 応力平均化の方法

3 次元 FEM モデルを用いた応力解析においては、部材断面やモデル形状が大きく変化して不連続になっている箇所は、局部的な応力集中が発生しやすい。

図 2-2 に RCCV の 3 次元 FEM モデルを示す。図 2-2 に示すように、当該部はシェル 部との接続部分であり、応力が集中しやすい。図 2-3 に示す面外せん断力のコンター 図を見ると、当該要素周辺では大きな面外せん断力が発生していることが分かる。

そこで、今回の RCCV の応力解析においては、RC-N 規準を参考に、コンクリートの ひび割れによる応力の再配分を考慮し、応力の平均化を行った。なお、今回の RCCV の 応力解析には弾塑性解析を採用し、材料の非線形特性を設定しているが、面外せん断 力に対しては非線形特性を考慮できないことから、算出された応力に対して平均化を 行った。

RC-N 規準においては、「線材では、部材端に生じる斜めせん断ひび割れによって部 材有効せい程度離れた断面の引張鉄筋の応力度が部材端と同じ大きさまで増大する現 象(テンションシフト)が生じるが、面材では、斜めひび割れが発生した場合におい ても、材軸直交方向への応力再配分によって、線材におけるテンションシフトのよう な現象は生じにくいと考えられる。」とされており、耐震壁の面外せん断力について、 「面材であるため、局部的に応力の集中があったとしても、応力の再配分を生じ、破 壊に至ることはない。」とされている。また、基礎スラブのような大断面を有する面 材の面外せん断力について、「通常の場合、FEM 解析の要素サイズは、基礎スラブ版厚 より小さいため、付図 2.2 に模式的に示されるように設計用面外せん断力は想定され るひび割れ領域での平均面外せん断力に対して大きめの評価となっているといえる。 また、基礎スラブにおいても、耐震壁と同様、面材における面外せん断力の再配分も 期待できる。」とされている。RC-N 規準の付図 2.2 を図 2-4 に示す。

壁,床スラブ,基礎スラブのような面材については,RC-N規準に示されるように, 面材に荷重を作用させる直交部材からせん断破壊面が45度の角度で進展すると考えら れることから,せん断破壊面が面材の表面から裏面まで貫通する範囲,すなわち部材 厚の範囲に応力が再配分されると考えられる。RCCV底部における面外せん断力に対す る応力平均化の考え方を図2-5に示す。

以上より,応力の平均化は,応力コンター図及び基礎スラブの直上の壁配置等を考慮し,当該要素の壁から離れる側の応力方向に位置する隣接要素に対して,壁面から 基礎スラブの部材厚である 5.5m 分の範囲で行った。各要素について応力平均化範囲を 図 2-6 に示す。なお,応力平均化範囲には中間壁が存在するが,図 2-5 のとおり, せん断破壊面が中間壁の下部を通ること,図 2-3 のとおり,中間壁の位置でせん断力 分布が不連続になっていないことから,中間壁の下部も応力平均化範囲として考慮す る。

組合せケース 3-2 (放射方向) 図 2-3 面外せん断力のコンター図

□ 応力平均化実施要素

平均化実施に用いた周辺要素壁直下の範囲(平均化対象外)

(a) 要素番号 10002370

図 2-6 応力平均化範囲 (1/2)

□ 応力平均化実施要素

平均化実施に用いた周辺要素

壁直下の範囲(平均化対象外)

(b) 要素番号 10002371

図 2-6 応力平均化範囲(2/2)

2.3 応力平均化の結果

応力平均化の手法として、下式のとおり、要素面積を考慮した重み付け平均で平均 化を行っている。応力平均化に用いる各要素の発生値、面積及び重み付け値を表2-2 に示す。また、応力平均化の結果を表2-3に示す。

 $\tau_{ave} = \Sigma (\tau_i \times A_i) \diagup \Sigma A_i$

ここで,

- τ_{ave}: 平均化後の面外せん断応力度
- τ_i : 平均化前の各要素の面外せん断応力度(発生値)
- A_i : 応力平均化範囲における各要素の面積

応力平均化 対象要素	方向	組合せ ケース	要素番号	発生値 _{て i} (N/mm ²)	要素面積 A _i (m ²)	重み付け値 _{τ i} ×A _i (×10 ⁶ N)
			10001125	1.23	3.27	4.01
			10001126	1.28	2.91	3.71
			10001153	1.89	2.32	4.39
10002370	放射	3-2	10001154	1.86	2.25	4.19
			10002410	2.35	2.28	5.37
			10002432	2.22	0.87	1.93
			10002370	3.04	2.66	8.08
				合計	16.56	31.68
			10001127	1.28	2.91	3.73
		3-2	10001128	1.25	3.27	4.08
			10001155	1.87	2.25	4.21
10002371	放射		10001156	1.92	2.32	4.46
			10002411	2.37	2.28	5.40
			10002433	2.28	0.87	1.98
			10002371	3.07	2.66	8.18
				合計	16.56	32.04

表2-2 応力平均化に用いる各要素の発生値,面積及び重み付け値

要素番号	方向	組合せケース	面外せん断応力度 (N/mm ²)		
安示面方	221.1		平均化前	平均化後	
10002370	放射	3-2	3.04	1.91	
10002371	放射	3-2	3.07	1.93	

表2-3 応力平均化結果

- 2.4 断面の評価結果
 - 2.4.1 断面の評価方法

荷重状態IV・地震時(2)の面外せん断応力度について,発生値が許容値を超 えないことを確認する。許容値は,「発電用原子力設備規格 コンクリート製原 子炉格納容器規格((社)日本機械学会,2003)」に基づき算出する。

2.4.2 断面の評価結果

応力平均化後の評価結果を表 2-4 に示す。表 2-4 より,応力平均化後の面外 せん断応力度の発生値が許容値を超えないことを確認した。

要素番号	要素番号 方向		面外せん断応力度 (N/mm ²)		平均化後の検定値	
	231.1	ケース	発生値	許容値	(発生値/許容値)	
10002370	放射	3-2	1.91	2.32	0.824	
10002371	放射	3-2	1.93	2.32	0.832	

表 2-4 応力平均化後の評価結果

別紙6 地震荷重の算定方法

目 次

1.	概要			 	 	••••	•••••		別紙 6-1
2.	動的地	也震力の算	算定 ···	 	 	••••	••••		別紙 6-2
2	.1 上音	『構造物		 	 	••••	•••••		別紙 6-6
	2.1.1	動的水	平地震力	 	 	••••	•••••		別紙 6-6
	2.1.2	動的鉛i	直地震力	 	 	••••	•••••		別紙 6-13
2	.2 基礎	陸スラブ		 	 	••••	•••••		別紙 6-14
	2.2.1	動的水	平地震力	 	 	••••	•••••		別紙 6-14
	2.2.2	動的鉛i	直地震力	 	 	••••	•••••		別紙 6-20
3.	静的地	也震力の算	算定 ・・・	 	 	••••	•••••		別紙 6-22
4.	地震時	寺土圧荷 [重の算定	 	 	••••	•••••	• • • • •	別紙 6-23
4	.1 算定	ミ方法 ・	•••••	 	 	••••	•••••		別紙 6-23
4	.2 算定	ミ結果 ・	•••••	 	 	••••	•••••		別紙 6-25
5.	地震時	寺配管荷1	重の算定	 	 	••••	•••••		別紙 6-26

別紙 6-1 原子炉建屋の 3 次元 FEM モデルを用いたせん断力負担割合の検討

1. 概要

本資料は,原子炉格納容器コンクリート部(以下「RCCV」という。)の応力解析にお けるSd地震荷重,Ss地震荷重,地震時土圧荷重及び地震時配管荷重の算定方法につ いて示すものである。

なお, Sd 地震荷重は,弾性設計用地震動Sd に対する地震応答解析より計算される 動的地震力と静的地震力の2つに分類されるため,それぞれの算定方法を示す。

2. 動的地震力の算定

動的地震力は、V-2-2-1「原子炉建屋の地震応答計算書」における材料物性の不確か さ等を考慮した地震応答解析により算定する地震荷重である。具体的には、「工事計画 に係る説明資料(建屋・構築物の地震応答計算書)」のうち「原子炉建屋の地震応答計 算書に関する補足説明資料」の別紙 3-2「材料物性の不確かさを考慮した地震応答解析 結果」に示す弾性設計用地震動Sd及び基準地震動Ssに対する地震応答解析結果にお ける水平方向の最大応答せん断力及び最大応答曲げモーメント並びに鉛直方向の最大応 答加速度及び最大応答軸力を用いて算定する。

ここで、応力解析モデルは、RCCV、使用済燃料貯蔵プール(以下「SFP」という。), 蒸気乾燥器・気水分離器ピット、ダイヤフラムフロア及び基礎スラブを一体としたモデ ルであるが、本章では、応力解析モデルのうち基礎スラブを除いた部分(以下「上部構 造物」という。)と基礎スラブについて、それぞれの動的地震力の算定方法を示す。

なお、今回工認の地震応答解析モデルにおいて考慮している補助壁については、応力 解析モデルにおいてモデル化している補助壁とモデル化していない補助壁があるため、 本資料ではそれらを分類して取り扱う。応力解析モデルにおける補助壁の分類を図 2-1 に示す。

(a) B3F, T.M.S.L.-8.2m

図 2-1 応力解析モデルにおける補助壁の分類(単位:m)(1/3)

図 2-1 応力解析モデルにおける補助壁の分類(単位:m)(2/3)

図 2-1 応力解析モデルにおける補助壁の分類(単位:m)(3/3)

2.1 上部構造物

2.1.1 動的水平地震力

上部構造物に入力する動的水平地震力は、水平方向の地震応答解析における RCCV 部の各階の最大応答せん断力及び最大応答曲げモーメントを用いて、入力せん断力及び入力曲げモーメントを算定する。

(1) 入力せん断力

上部構造物の入力せん断力の算定フローを図 2-2 に示す。

まず,水平方向の地震応答解析における基本ケース(ケース 1)及び材料物性の不確かさを考慮したケース(ケース 2~6)(以下「パラスタケース」という。)の RCCV 部の最大応答せん断力を各層で包絡する。

次に、各層で包絡した最大応答せん断力からモデル化範囲外の補助壁が負担す るせん断力を減じる。モデル化範囲外の補助壁が負担するせん断力は、せん断断 面積比より算定したせん断力と、モデル化範囲外の補助壁のせん断スケルトン曲 線における第1折れ点のせん断耐力の90%のうち、小さい方とする。これは、モ デル化範囲の負担せん断力と整合させるためであり、また、地震応答解析におけ る補助壁の耐力の設定に対して、応力解析における補助壁負担分を保守的に小さ く設定するためである。

さらに,モデル化範囲外の補助壁が負担するせん断力を減じたせん断力から, 中間壁が負担するせん断力を減じる。中間壁が負担するせん断力は,せん断断面 積比より算定する。

以上の手順により算定した上部構造物の入力せん断力を表 2-1 及び表 2-2 に 示す。

(2) 入力曲げモーメント

上部構造物の入力曲げモーメントの算定フローを図 2-3 に示す。

まず,水平方向の地震応答解析における RCCV 部の基本ケース及びパラスタケースの最大応答曲げモーメントを各層で包絡する。

次に,各層で包絡した最大応答曲げモーメントから中間壁が負担する曲げモー メントを減じる。中間壁が負担する曲げモーメントは,既工認における RCCV と中 間壁の曲げモーメントの負担比率より算定する。なお,曲げモーメントについて は,地震応答解析と同様に補助壁負担分を考慮せず,保守的にすべて耐震壁が負 担することとしている。

以上の手順により算定した上部構造物の入力曲げモーメントを表 2-3 及び表 2-4 に示す。

③ Q₂から中間壁負担分Q_{中間壁}を減じて入力せん断力Q₃を算定
 Q₃ = Q₂ - Q_{中間壁}
 Q_{中間壁} = Q₂ × A_s + 間壁/(A_s - A_{s 補助壁})
 A_s + 間壁のせん断断面積

図 2-2 上部構造物の入力せん断力の算定フロー

① RCCV 部の最大応答曲げモーメントの包絡値M₁を算定

(地震応答解析における基本ケース及びパラスタケースの包絡値)

注記*1:中間壁負担分は,既工認における RCCV と中間壁の曲げモー メントの負担比率より算定する。

*2:曲げモーメントの符号は既工認と同様とする。

図 2-3 上部構造物の入力曲げモーメントの算定フロー

表 2-1 上部構造物の入力せん断力の鼻足結果(Sc

	最大応知	入力	
T.M.S.L.	包絡値	決定ケース	せん断力
	\mathbf{Q}_{1}	以足りノ	Q_3
(m)	$(\times 10^3 \text{kN})$		$(\times 10^3 \text{kN})$
23.5 \sim 31.7	23.1	Sd-1 ケース6	20.9
18.1 \sim 23.5	95.3	Sd-1 ケース6	81.8
12.3~18.1	125	Sd-8 ケース3	86.6
4.8~12.3	159	Sd-8 ケース3	111
$-1.7 \sim 4.8$	206	Sd-8 ケース3	137
-8.2~-1.7	261	Sd-8 ケース3	137

(a) NS 方向

(b) EW 方向

	最大応知	入力	
T.M.S.L.	包絡値	決定ケース	せん断力
	\mathbf{Q}_{1}		\mathbf{Q}_{3}
(m)	$(\times 10^3 \text{kN})$		$(\times 10^3 \text{kN})$
23. 5 \sim 31. 7	49.9	Sd-2 ケース6	44.4
18.1~23.5	149	Sd-2 ケース3	129
12.3~18.1	152	Sd-2 ケース3	97.8
4.8~12.3	177	Sd-2 ケース6	113
$-1.7 \sim 4.8$	229	Sd-2 ケース6	124
-8.2~-1.7	232	Sd-2 ケース3	138

表 2-2 上部構造物の入力せん断力の算定結果(S)	s))
----------------------------	----	---

	最大応知	入力	
T.M.S.L.	包絡値	決定ケース	せん断力
	\mathbf{Q}_{1}		\mathbf{Q}_{3}
(m)	$(\times 10^3 \text{kN})$		$(\times 10^3 \text{kN})$
23. 5 \sim 31. 7	86.1	Ss-1 ケース5	77.7
18.1~23.5	185	Ss-1 ケース5	161
12.3~18.1	261	Ss-1 ケース5	182
4.8~12.3	340	Ss-8 ケース3	254
$-1.7 \sim 4.8$	382	Ss-1 ケース4	279
-8.2~-1.7	447	Ss-1 ケース3	246

(a) NS 方向

(b) EW 方向

	最大応知	入力	
T.M.S.L.	包絡値	決定ケーフ	せん断力
	\mathbf{Q}_{1}	Q_1 $\mathcal{R}E^{j-\chi}$	
(m)	$(\times 10^3 \text{kN})$		$(\times 10^3 \text{kN})$
23.5 \sim 31.7	82.5	Ss-2 ケース4	73.4
18.1~23.5	259	Ss-2 ケース5	223
12.3~18.1	302	Ss-2 ケース5	194
4.8~12.3	379	Ss-2 ケース6	268
$-1.7 \sim 4.8$	462	Ss-2 ケース4	299
-8.2~-1.7	434	Ss-2 ケース2	268

表 2-3	上部構造物0)入力曲げモー	・メン	トの算定結果	(S)	d)
-------	--------	---------	-----	--------	-------	-----

	最大応答曲 <i>i</i>	入力曲げ	
T. M. S. L	包絡値 M_1	包絡値 M ₁ 決定ケース	
(m)	$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$		$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$
31.7	0.0711	Sd-1 ケース2	0.0720
22 5	0.213	Sd-1 ケース2	0.213
23. 5	1.00	Sd-1 ケース2	1.00
18 1	1.45	Sd-1 ケース2	1.45
10.1	2.03	Sd-1 ケース2	2.04
10 3	2.63	Sd-1 ケース2	2.63
12.0	3.28	Sd-1 ケース2	3.28
1 8	4.16	Sd-1 ケース2	4.16
4.0	4.59	Sd-1 ケース2	4.59
-1 7	5.43	Sd-1 ケース2	5.27
1. (5.73	Sd-1 ケース2	5.27
-8.2	6.91	Sd-8 ケース3	6.08

(a) NS 方向

(b) EW 方向

	最大応答曲	げモーメント	入力曲げ
T.M.S.L	包絡値 M ₁	決定ケース	モーメント M_2
(m)	$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$		$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$
31.7	0.615	Sd-1 ケース6	0.616
99 E	0.905	Sd-1 ケース6	0.906
23. 5	1.16	Sd-2 ケース5	-1.16
18 1	0.582	Sd-2 ケース2	-0.583
10.1	0.796	Sd-2 ケース2	-0.797
10 2	1.27	Sd-1 ケース2	1.28
12.0	1.97	Sd-1 ケース2	1.97
1 8	2.92	Sd-1 ケース2	2.93
4.0	3.48	Sd-1 ケース2	3.48
-1 7	4.49	Sd-2 ケース3	4.49
1. (4.84	Sd-2 ケース3	4.84
-8.2	6.21	Sd-2 ケース3	5.78
回転ばね*	2.39	Sd-1 ケース2	2.40

注記*:プール壁がRCCVの曲げ変形を拘束する影響を考慮した回転ばね。

表 2-4	上部構造物の入力曲げモーメントの算定結果(Ss)					
		(a)	NS 方向			
		最大応答曲	由げモーメント	入力曲げ		

		入力曲げ	
T.M.S.L	包絡值 M_1	決定ケース	モーメント M_2
(m)	$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$		$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$
31.7	0.136	Ss-1 ケース5	0.137
23 5	0.644	Ss-1 ケース5	0.644
23. 5	1.53	Ss-1 ケース4	1.53
18 1	2.17	Ss-1 ケース4	2.17
10.1	3.13	Ss-1 ケース6	3.13
19 3	4.19	Ss-1 ケース2	4.19
12. 5	5.10	Ss-1 ケース2	5.10
1.8	6.79	Ss-1 ケース2	6.79
4.0	7.86	Ss-1 ケース2	7.86
-1 7	9.38	Ss-1 ケース2	9.11
1. (9.91	Ss-1 ケース2	9.11
-8.2	12.1	Ss-8 ケース3	10.7

(b) EW 方向

	最大応答曲げモーメント		入力曲げ
T.M.S.L	包絡値	決定ケース	モーメント
	M_1		\mathbf{M}_2
(m)	$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$		$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$
31. 7	1.26	Ss-1 ケース6	1.26
23.5	1.63	Ss-1 ケース6	1.63
	3.49	Ss-2 ケース3	-3.49
18.1	2.19	Ss-2 ケース3	-2.19
	1.58	Ss-2 ケース5	-1.58
12.3	1.81	Ss-1 ケース4	1.81
	3.01	Ss-1 ケース2	3. 01
4.8	4.66	Ss-1 ケース4	4.66
	5.73	Ss-1 ケース2	5.73
-1.7	7.45	Ss-2 ケース3	7.46
	8.06	Ss-2 ケース3	8.06
-8.2	10.3	Ss-2 ケース1	9.60
回転ばね*	5.18	Ss-1 ケース2	5.18

注記*:プール壁がRCCVの曲げ変形を拘束する影響を考慮した回転ばね。

2.1.2 動的鉛直地震力

上部構造物に入力する動的鉛直地震力は,鉛直方向の地震応答解析における外壁・RCCV 部の各質点の最大応答加速度を用いて鉛直震度として算定する。ここで,最大応答加速度は,地震応答解析における基本ケース及びパラスタケースの誘発上下動を考慮した最大応答加速度を各質点で包絡したものとする。

鉛直震度の算定結果を表 2-5 に示す。

(a) S d						
T. M. S. L (m)	最大応答加速度					
	包絡値 (m/s²)	決定ケース	鉛直震度			
31.7	4.63	Sd-1 ケース 2	0.47			
23.5	4.51	Sd-1 ケース 2	0.46			
18.1	4.38	Sd-1 ケース 2	0.45			
12.3	4.23	Sd-1 ケース 2	0.43			
4.8	4.10	Sd-1 ケース 3	0.42			
-1.7	4.03	Sd-1 ケース 3	0.41			
-8.2	4. 02	Sd-1 ケース 3	0.41			

表 2-5 上部構造物の鉛直震度の算定結果

(b) S s

T.M.S.L (m)	最大応答加速度		
	包絡値 (m/s²)	決定ケース	鉛直震度
31.7	9.33	Ss-1 ケース 2	0.95
23.5	9.09	Ss-1 ケース 2	0.93
18.1	8.83	Ss-1 ケース 2	0.90
12.3	8.52	Ss-1 ケース 2	0.87
4.8	8.17	Ss-1 ケース 3	0.83
-1.7	8.13	Ss-1 ケース 3	0.83
-8.2	8.18	Ss-1 ケース 3	0.84

2.2 基礎スラブ

上部構造物から基礎スラブに入力する動的地震力は,補助壁を介さず,既工認と同様に RCCV,中間壁及び外壁を介して基礎スラブに入力する。これは,補助壁を介した 基礎スラブへの入力を考慮しないことで荷重を集中させ,基礎スラブを保守的に評価 するためである。

2.2.1 動的水平地震力

基礎スラブに入力する動的水平地震力の算定フローを図 2-4 に示す。図 2-4 に示す RCCV 部及び外壁部最下層部材の応答値は,水平方向の地震応答解析におけ る基本ケース及びパラスタケースの最大応答せん断力及び最大応答曲げモーメン トをそれぞれ包絡したものである。

外壁部の応答値については,基礎スラブの外壁(以下「ボックス壁」という。) 脚部位置に入力する。

RCCV 部の応答値については、せん断断面積比に応じて中間壁負担分と RCCV 負 担分に分配し、中間壁負担分は基礎スラブの中間壁脚部位置に入力する。一方、 原子炉本体基礎(以下「RPV 基礎」という。)負担分は、V-2-2-4「原子炉本体の 基礎の地震応答計算書」における RPV 基礎の最下層の応答を包絡した値を、RPV 基 礎脚部位置に入力する。RCCV 負担分は、RPV 基礎負担分を減じた上で基礎スラブ の RCCV シェル部脚部位置に入力する。

以上の手順により算定した基礎スラブに入力する動的水平地震力の算定結果を 表 2-6 及び表 2-7 に示す。

- 注記*1:地震応答解析における基本ケース及びパラスタケースの包絡値。
 - *2: V-2-2-4「原子炉本体の基礎の地震応答計算書」における RPV 基礎の最下 層の応答を包絡した値。
 - *3:入力曲げモーメントを算定する際は,最大応答曲げモーメントが基礎スラ ブ上端位置での曲げモーメントであることを考慮して,基礎スラブの厚さ 中心位置での曲げモーメントに補正する。補正は,下式から算定する付加 曲げモーメントΔMを加算することで行う。

 $\Delta M = Q \times t / 2$

Q:入力せん断力, t:基礎スラブ厚(5.5m)

図 2-4 基礎スラブに入力する動的水平地震力の算定フロー

表 2-6 基礎スラブに入力する動的水平地震力の算定結果(Sd)(1/2)

最大応答せん断力		入力せん断力		
応答軸	包絡値	決定ケース	部位	入力値
	$(\times 10^3 \text{kN})$			$(\times 10^3 \text{kN})$
从	249	Sd_0 5-72	ボックス壁(_R A通り)	174
小型司	540	3u-0 / 1 / 3	ボックス壁(_R G通り)	174
			中間壁(_R B通り)	49.0
RCCV部	261	Sd-8 ケース3	中間壁(_R F通り)	36.7
			RCCV	133
			RPV基礎	43.3

(a) NS 方向 せん断力

(b) EW 方向 せん断力

最大応答せん断力		入力せん断力		
応答軸	包絡値	決定ケース	部位	入力値
	$(\times 10^3 \text{kN})$			$(\times 10^3 \text{kN})$
从 辟 立(415	Sd-9 5-72	ボックス壁(_R 1通り)	208
ア室印	2前) 415 Sd-2 グ	Su-2 7 × 73	ボックス壁(_R 7通り)	208
RCCV部 232 Sd-2 ケース3		中間壁(_R 2通り)	26.6	
	中間壁(_R 3通り)	15.7		
	232	・ん断力 入力せん断力 決定ケース 部位 入 N) ボックス壁(R1通り) (× 1) Sd-2 ケース3 ボックス壁(R7通り) P 中間壁(R2通り) Sd-2 ケース3 中間壁(R3通り) P 中間壁(R5通り) P 中間壁(R6通り) RCCV RPV基礎	中間壁(_R 5通り)	12.7
			17.0	
			RCCV	117
			RPV基礎	43.3

表 2-6 基礎スラブに入力する動的水平地震力の算定結果(Sd)(2/2)

最大応答曲げモーメント		入力曲げモーメント		
応答軸	包絡値	決定ケース	部位	入力値
	$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$			$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$
か 時空	め 陸立 7 10 0	Sd_1 F_2 76	ボックス壁(_R A通り)	6.62
2下生司	12. 3	3u-1 / × ×0	ボックス壁(_R G通り)	$ \begin{array}{r} (\times 10^{6} \text{kN} \cdot \text{m}) \\ \hline 6. 62 \\ \hline 6. 62 \\ 1. 43 \\ 1. 07 \\ \hline $
			中間壁(_R B通り)	1.43
RCCV部	6.91	Sd-8 ケース3	中間壁(_R F通り)	1.07
			RCCV	4.23
			RPV基礎	0.904

(c) NS 方向 曲げモーメント

(d) EW 方向 曲げモーメント

最大応答曲げモーメント		入力曲げモーメント		
応答軸	包絡値	決定ケース	部位	入力値
	$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$			$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$
办 辟立	12 6	Sd-2 ケース3 -	ボックス壁(_R 1通り)	6.87
小型印	12.6 Sa-2 // -		ボックス壁(_R 7通り)	6.87
RCCV部 6.21 Sd-2 ケース3			中間壁(_R 2通り)	0. 782
	中間壁(_R 3通り)	0.462		
	6.21	ボーメント 入力曲げモーメ 直 決定ケース 部位 N·m) パックス壁(R1通り) パックス壁(R1通り) Sd-2 ケース3 ボックス壁(R7通り) 中間壁(R2通り) 中間壁(R3通り) 中間壁(R3通り) 中間壁(R5通り) 中間壁(R6通り) RCCV RPV基礎 RPV基礎	中間壁(_R 5通り)	0.374
			0.501	
			RCCV	3.83
			RPV基礎	0.904

表 2-7 基礎スラブに入力する動的水平地震力の算定結果(Ss)(1/2)

最大応答せん断力		入力せん断力		
応答軸	包絡値	決定ケース	部位	入力値
	$(\times 10^3 \text{kN})$			$(\times 10^3 \text{kN})$
AL 辟立 [$G24$ $S_{\alpha} \circ F = 74$	ボックス壁(_R A通り)	312	
27堂司 (024	35-8 7 74	ボックス壁(_R G通り)	312
			中間壁(_R B通り)	83.6
RCCV部	447	Ss-1 ケース3	中間壁(_R F通り)	62.7
			RCCV	241
			RPV基礎	59.3

(a) NS 方向 せん断力

(b) EW 方向 せん断力

最大応答せん断力		入力せん断力		
応答軸	包絡値	決定ケース	部位	入力値
	$(\times 10^3 \text{kN})$			$(\times 10^3 \text{kN})$
从 辟立(758	Sa-2 5-71	ボックス壁(_R 1通り)	379
小型印	150	55-2 7 - 74	ボックス壁(_R 7通り)	379
	中間壁(_R 2通り)	49.7		
	RCCV部 434 Ss-2 ケース2	中間壁(_R 3通り)	29.3	
RCCV部		中間壁(_R 5通り)	23.8	
		ん断力 決定ケース	31.8	
			RCCV	241
			RPV基礎	59.3

表 2-7 基礎スラブに入力する動的水平地震力の算定結果(Ss)(2/2)

最大応答曲げモーメント		入力曲げモーメント		
応答軸	包絡値	決定ケース	部位	入力値
	$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$			$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$
从	01.0	Sa-1 5-76	ボックス壁(_R A通り)	11.5
2下生司	21. 3	35-1 7 × ×0	ボックス壁(_R G通り)	メント 入力値 (×10 ⁶ kN·m) 11.5 11.5 2.50 1.88 7.79 1.20
			中間壁(_R B通り)	2.50
RCCV部	12.1	Ss-8 ケース3	中間壁(_R F通り)	1.88
			RCCV	7.79
			RPV基礎	1.20

(c) NS 方向 曲げモーメント

(d) EW 方向 曲げモーメント

最大応答曲げモーメント		入力曲げモーメント		
応答軸	包絡値	決定ケース	部位	入力値
	$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$			$(\times 10^6 \mathrm{kN} \cdot \mathrm{m})$
从 辟 立 [21 /	Sc-2 5-76	ボックス壁(_R 1通り)	11.8
이미 프한거인	外壁部 21.4 58-	3S-2 / - X0	ボックス壁(_R 7通り)	11.8
		中間壁(_R 2通り)	1.31	
		中間壁(_R 3通り)	0.776	
RCCV部 10.3	10.3	モーメント 入力曲げモーメント 決定ケース 部位 入 (×10) ボックス壁(R1通り) 1 Ss-2 ケース6 ボックス壁(R7通り) 1 中間壁(R2通り) 1 中間壁(R3通り) 中間壁(R5通り) 中間壁(R6通り) RCCV RPV基礎	中間壁(_R 5通り)	0.629
			0.841	
			RCCV	6.75
			RPV基礎	1.20

2.2.2 動的鉛直地震力

上部構造物から基礎スラブに入力する動的鉛直地震力は,鉛直方向の地震応答 解析における最下層の最大応答軸力を上部構造物の重量で除すことにより,軸力 係数として算定する。最大応答軸力は,地震応答解析における基本ケース及びパ ラスタケースの包絡値とする。ここで,最大応答軸力は,誘発上下動の影響を考 慮したものである。上部構造物から入力する動的鉛直地震力(軸力係数)の算定 結果を表 2-8 に示す。

RPV 基礎から基礎スラブに入力する動的鉛直地震力は, V-2-2-4「原子炉本体の基礎の地震応答計算書」における RPV 基礎の最下層の軸力を包絡した値を, RPV 基礎の重量で除すことにより, 軸力係数として算定する。RPV 基礎から入力する 動的鉛直地震力(軸力係数)の算定結果を表 2-9に示す。

基礎スラブ全体に作用する動的鉛直地震力は,鉛直方向の地震応答解析におけ る底面地盤ばねの鉛直力から,上部構造物から基礎スラブに入力する動的鉛直地 震力を減じた値と等価になる荷重(以下「付加軸力」という。)を基礎スラブの 重量で除した付加軸力係数として算定する。付加軸力は,地震応答解析における 基本ケース及びパラスタケースの包絡値とする。ここで,付加軸力係数は,誘発 上下動の影響を考慮したものである。付加軸力係数の算定結果を表 2-10 に示す。

	最大応答軸力		
地震動	包絡値 (×10 ⁴ kN)	決定ケース	軸力係数
S d	60.9	Sd-1 ケース 2	0.44
Ss	122	Ss-1 ケース 2	0.88

表 2-8 上部構造物から入力する動的鉛直地震力(軸力係数)の算定結果

表 2-9 RPV 基礎から入力する動的鉛直地震力(軸力係数)の算定結果

地震動	最大応答軸力* (×10 ⁴ kN)	軸力係数
S d	4.02	0.49
S s	7.97	0.96

注記*: V-2-2-4「原子炉本体の基礎の地震応答計算書」における RPV 基礎の最下層の軸力を包絡した値。

	付加	1軸力	/
地震動	包絡値 (×10 ⁴ kN)	決定ケース	軸力係数
S d	21.3	Sd-1 ケース 3	0.38
S s	42.2	Ss-1 ケース 3	0.76

表 2-10 付加軸力係数の算定結果

3. 静的地震力の算定

上部構造物及び基礎スラブに入力する静的水平地震力及び静的鉛直地震力は,既工認 の値を用いる。

- 4. 地震時土圧荷重の算定
- 4.1 算定方法

図 4-1 に地震時土圧荷重の算定方法を示す。地震時土圧荷重は、「原子力発電所耐 震設計技術指針 JEAG4601-1991 追補版 ((社)日本電気協会)」に基づき、 常時土圧に地震時増分土圧を加えて算定した地震時土圧を包絡させて設定する。

地震時増分土圧は,建物・構築物に対し加力側に作用する地震時増分土圧と建物・ 構築物を支える支持側の地震時増分土圧を算定し,地盤一般部は加力側増分土圧及び 支持側増分土圧を包絡した値とし,岩盤部は支持側増分土圧とする。

地表面から古安田層まで(T.M.S.L.-6.0m~T.M.S.L.12.0m)の荷重は,基本ケース 及びパラスタケースごとに算定した地震時土圧を包絡するように,既工認の荷重分布 形状に合わせて設定する。

西山層 (T.M.S.L.-13.7m~T.M.S.L.-6.0m) については, 基本ケース及びパラスタ ケース毎に算定した地震時土圧のうち T.M.S.L.-13.7m~T.M.S.L.-6.0m の地震時土圧 の包絡値を一定として設定する。

(a) S d 地震時土圧

(b) S s 地震時土圧

図 4-1 地震時土圧荷重の算定方法

4.2 算定結果

表 4-1 に地震時土圧荷重の算定結果,図 4-2 に地震時土圧による荷重分布を示す。

T. M. S. L. (m)	S d 地震時土圧荷重 (kN/m ²)	S s 地震時土圧荷重 (kN/m ²)
-6.0~12.0	$260 + 0.65 \cdot \gamma \cdot h$	$460 \pm 0.65 \cdot \gamma \cdot h$
-8.2~-6.0	710	1180

表 4-1 地震時土圧荷重の算定結果

注:記号は以下のとおり。

- γ:土の単位体積重量(kN/m³)
- h:地表面からの深さ(m)

S d 地震時土圧荷重

S s 地震時土圧荷重

図 4-2 地震時土圧による荷重分布

5. 地震時配管荷重の算定

地震時配管荷重については、設計荷重として設定している。設計荷重は主蒸気配管に ついてはV-2-5-2-1-2「管の耐震性についての計算書」に、給水配管についてはV-2-5-1(2)「管の耐震性についての計算書」において実施する解析の結果を包絡するよう設 定する。

別紙 6-1 原子炉建屋の 3 次元 FEM モデルを用いた

せん断力負担割合の検討

1.	概要	別紙 6-1-1
2.	検討方針	別紙 6-1-2
3.	檢討条件	別紙 6-1-3
3.1	モデル化の基本方針	別紙 6-1-3
3.2	2 せん断力負担割合の算出方針	別紙 6-1-6
4.	検討結果	別紙 6-1-8
5.	まとめ	別紙 6-1-9

1. 概要

本資料は、原子炉建屋の外壁(以下「ボックス壁」という。),鉄筋コンクリート製 原子炉格納容器(以下「RCCV」という。),RCCV とボックス壁の間の耐震壁(以下「中 間壁」という。)及び補助壁が負担するせん断力の割合を,3次元 FEM を用いて確認し た結果を示すものである。

なお、本検討は、原子炉建屋の高さ及び平面形状が共通であることを踏まえ、柏崎刈 羽原子力発電所6号機原子炉建屋を対象に実施したものである。 2. 検討方針

原子炉建屋の一層分を取り出した 3 次元 FEM モデルを用いて,上階の床スラブ位置に 単位長さの強制変位を入力した際のボックス壁, RCCV,中間壁及び補助壁が負担するせ ん断力の割合を算定し,応力解析に用いているせん断力負担割合が妥当であることを確 認する。

本検討においては、以下の理由により B3F を代表して検討を行う。

- ・地震応答解析で発生する層せん断力が最も大きく, RCCV 部のせん断力が最も大きく なる層である。
- ・中間壁はB3FのNS方向及びEW方向とB2FのNS方向の一部のみに存在しており、ボ ックス壁,RCCV,中間壁及び補助壁へのせん断力の分配が網羅的に確認できる層で ある。
- ・一層分を取り出し、地震応答解析モデルと同様の床剛の仮定に基づき一様の強制変 位を入力し各壁のせん断力負担割合を算定した場合、他の階でも同様の結果となる ことが予想される。
- ・建屋上層まで3次元 FEM でモデル化し、上部に強制変形を加え最下層で評価する検 討方法も考えられるが、原子炉建屋の耐震壁の変形はせん断変形の割合が大きく、 最下層のみをモデル化し強制変形を与えた場合と同等の結果になると予想される。

3. 検討条件

3.1 モデル化の基本方針

本検討では、3次元 FEM モデルを用いた弾性応力解析を実施する。

応力解析モデルは、原子炉建屋のB3Fのボックス壁、RCCV、中間壁、補助壁及びB2Fの床スラブを取り出したモデルである。

解析モデルに使用する FEM 要素は、シェル要素とする。使用する要素は四辺形及び 三角形で、この要素は均質等方性材料によるシェル要素である。

境界条件は,B3Fの各壁脚部を固定条件とし,B2Fの床スラブ全節点にNS方向とEW 方向のそれぞれに単位長さの強制変位を与える。B2Fの床スラブ全節点は,NS方向と EW 方向の水平方向の強制変位以外の拘束は考慮せず,B2F床スラブの面外剛性のみが 壁部材の鉛直方向の変形を拘束する条件としている。

なお、基準地震動Ssにより各壁部材の剛性が低下することが考えられるが、外壁 部及びRCCV部が同様に剛性低下した場合、強制変位を与えた際の各壁のせん断力負担 割合は剛性低下を考慮しない場合と変わらないことから、弾性応力解析を用いる。

3次元 FEM モデルを図 3-1 に、使用材料の物性値を表 3-1 に示す。

図 3-1 3 次元 FEM モデル図

諸元	物性値
ヤング係数 (N/mm ²)	2.88×10 ⁴ *
ポアソン比	0.2

表 3-1 使用材料(コンクリート)の物性値

注記*:剛性はコンクリートの実強度(43.1N/mm²)に基づく。

3.2 せん断力負担割合の算出方針

3 次元 FEM モデルの各壁脚部に生じる加力方向と同方向の水平反力値を,ボックス 壁,RCCV,中間壁及び補助壁ごとに集計し,各壁の水平反力値の合計値に対する各壁 の水平反力値の比率をせん断力の負担割合として算出する。その際,集計する各壁は, 地震応答解析モデルで考慮している壁と同様とするが,地震応答解析モデルで考慮し ている壁に,直交して取り付く壁(以下「直交壁」という。)に発生する水平反力値 についても,取り付いている壁の水平反力値として集計する。

6号機原子炉建屋の B3F の各壁分類を図 3-2 に示す。

図 3-2 B3F の各壁の分類(6号機原子炉建屋)

PN

4. 検討結果

本検討によるせん断力負担割合(以下「3次元 FEM せん断力負担割合」という。)を, 別紙 6「地震荷重の算定方法」の「2.1.1(1) 入力せん断力」の方法で算定したせん断 力に基づくせん断力負担割合(以下「応力解析せん断力負担割合」という。)と比較し て表 4-1に示す。

3 次元 FEM せん断力負担割合は、応力解析せん断力負担割合と概ね同程度となっていることを確認した。

なお,直交壁に発生する水平力の割合は,表 4-2 に示すとおり 10%程度となってお り,直交壁のせん断力負担割合に対する影響は小さい。また,表 4-1 に示す応力解析せ ん断力負担割合のうち,補助壁の負担割合は,せん断断面積比により算定した補助壁が 負担するせん断力と,補助壁のせん断スケルトン曲線における第 1 折れ点のせん断耐力 の 90%のうち,小さい方のせん断力による負担割合を示している。

3次元FEM せん断力負担割合		応力解析 せん断力負担割合	
ボックス壁	0.51	0.53	
RCCV	0.24	0.24	
中間壁	0.12	0.11	
補助壁	0.13	0.12	

表 4-1(a) 各壁せん断力負担割合 NS 方向

表 4-1(b) 各壁せん断力負担割合 EW 方向

	3次元FEM せん断力負担割合	応力解析 せん断力負担割合
ボックス壁	0.53	0.54
RCCV	0.22	0.23
中間壁	0.08	0.10
補助壁	0.17	0.13

表 4-2 直交壁に発生する水平力の割合

方向	3次元FEM水平力合計 (直交壁含む) (×10 ⁶ kN)	3次元FEM水平力合計 (直交壁のみ) (×10 ⁶ kN)	直交壁に発生する 水平力の割合
NS方向	699	73	0.10
EW方向	721	78	0.11

5. まとめ

3 次元 FEM モデルを用いて算出したせん断力負担割合を,応力解析で用いているせん 断力負担割合と比較し,応力解析に用いているせん断力負担割合が妥当であることを確 認した。 別紙7 貫通部における平均応力の考え方

目 次

1.	概要	別紙 7-1
2.	貫通部における平均応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 7-2
3.	まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 7-4

1. 概要

原子炉格納容器コンクリート部(以下「RCCV」という。)の応力解析においては,弾 塑性解析を採用している。一方,貫通部の断面の評価においては,発電用原子力設備規 格 コンクリート製原子炉格納容器規格((社)日本機械学会,2003)(以下「CCV規格」 という。)の CVE-3531 に基づく平均応力を用いている。本資料は,その妥当性について 説明するものである。 2. 貫通部における平均応力

RCCV の応力解析では、V-2-9-2-1「原子炉格納容器コンクリート部の耐震性についての計算書」(以下「RCCV の耐震計算書」という。)に示すとおり、荷重状態IV及びVに対する評価では弾塑性解析を採用している。また、CCV 規格の CVE-3531 では、弾性解析により求まる応力に対して検討を行う場合、開口の直径の 3/4 倍を超えない範囲の平均応力を用いることができるとされている。

RCCV の耐震計算書の「6.1.2 貫通部の評価結果」における荷重状態IV及びVに対す る貫通部の断面の評価のうち, 膜力及び曲げモーメント並びに面外せん断力に対する断 面の評価の検定値が最大となる領域及び断面の評価結果を図 2-1 に示す。

膜力及び曲げモーメントに対する断面の評価に用いるコンクリート及び鉄筋のひずみ については、材料の非線形特性を考慮して算定しているため、平均応力を用いず、各領 域内で要素ごとに算定されたひずみの最大値を用いた評価を行っている。

それに対して,面外せん断力に対する断面の評価に用いる面外せん断力については, 弾塑性解析においても材料の非線形特性を考慮できないことから,平均応力を用いた断 面の評価を行っている。なお,応力解析モデルにおける開口の周辺は,シェル部厚の1 /2 程度以下の幅で詳細にモデル化している。このような場合には,開口の縁から適切 な範囲での平均的な応力に対して構造の検討を実施することができると考えられる。

以上より、今回工認では荷重状態IV及びVに対する評価において弾塑性解析を採用しているものの、貫通部の断面の評価において CCV 規格における平均応力の規定を適用することは妥当である。

(a) 主蒸気配管及び給水配管開口

.

(b) 下部ドライウェルアクセストンネル開口

図 2-1 膜力及び曲げモーメント並びに面外せん断力に対する断面の評価の 検定値が最大となる領域及び断面の評価結果(荷重状態N及びV)

3. まとめ

RCCV の貫通部の断面の評価において,弾塑性解析を用いた評価を行う場合に,CCV 規格に基づき平均応力の規定を適用することの妥当性を確認した。

別紙8 重大事故等時の高温による剛性低下の考え方

目 次

1.	概要	別紙 8-1
2.	重大事故等時の高温による剛性低下の考え方	別紙 8-2
3.	先行審査実績との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 8-4
4.	まとめ	別紙 8-6

1. 概要

原子炉格納容器コンクリート部の応力解析について、V-2-9-2-1「原子炉格納容器コ ンクリート部の耐震性についての計算書」(以下「耐震計算書」という。)では、重大事 故等時の高温による剛性低下を考慮していない。一方、V-3-3-6-1-1-1「原子炉格納容 器コンクリート部の強度計算書」(以下「強度計算書」という。)では、重大事故等時の 高温による剛性低下を考慮している。本資料は、その考え方について示すものである。 2. 重大事故等時の高温による剛性低下の考え方

耐震計算書の「別紙 鉄筋コンクリート構造物の重大事故等時の高温による影響(原 子炉格納容器コンクリート部)」において示しているとおり,重大事故等時の高温状態 に対して鉄筋コンクリート構造物の強度及び剛性への影響が小さいことから,鉄筋コン クリート構造物においては剛性低下を考慮しないことを基本としている。

図 2-1 に重大事故等時の原子炉格納容器温度の変化を示す。原子炉格納容器気相部の 温度は一時的に 200℃を超えるが,構造健全性評価上考慮すべき壁面の温度は最高で約 165℃である。

耐震計算書における温度の考え方は、「工事計画に係る説明資料(耐震性に関する説明書)」のうち「重大事故等対処施設の耐震設計における重大事故と地震の組合せについて」に示すとおり、事象発生後以降の最高となる壁面温度である約 165℃を包絡する値として、限界圧力(0.62MPa)における飽和温度(約 168℃)を考慮することとしている。

一方,強度計算書における温度の考え方は, V-1-8-1「原子炉格納施設の設計条件に 関する説明書」において示している。重大事故等時の原子炉格納容器の放射性物質閉じ 込め機能の確認を行うために,評価温度として設定しており,その温度は,産業界でシ ビアアクシデント時の原子炉格納容器の耐性の指標として用いられている 200℃として いる。この温度は,耐震計算書における温度の考え方を踏まえると,実現象を超えた保 守的な設定値となっていると言える。

以上より,鉄筋コンクリート構造物においては剛性低下を考慮しないことが基本であ るが,強度計算書においては,実現象を超えた評価温度として高い値を設定しているこ とから,重大事故等時の温度影響を確認する観点から剛性低下を考慮することとしてい る。

図 2-1 重大事故等時の原子炉格納容器温度の変化

(V-1-8-1「原子炉格納施設の設計条件に関する説明書」より引用)

3. 先行審査実績との比較

耐震計算書及び強度計算書における重大事故等時の剛性低下についての先行審査実績 との比較を表 3-1 に示す。なお、比較対象は、原子炉格納容器がコンクリート製原子炉 格納容器である大飯 3/4 号と、BWR の最新審査実績である東海第二とした。

耐震計算書において剛性低下を考慮せず,強度計算書において剛性低下を考慮すると いう考え方は,柏崎刈羽7号と整合していることが確認できる。

		大飯 3/4 号	東海第二	柏崎刈羽7号
耐震計算書 ^{*1, *2}	剛性低下の考慮	考慮していない	考慮していない	考慮していない
	剛性低下の考慮	考慮している	考慮している	考慮している
強度計算書* ^{3, *4}	原子炉格納容器内の 評価温度	200°C	200°C	200°C

表 3-1 先行審査実績との比較

注記*1: 大飯 3/4 号については, 資料 13-17-7-5-1 「原子炉格納容器の耐震計算書(コンクリート部)」を指す。

*2:東海第二については、V-2-9-2-2「原子炉格納容器底部コンクリートマットの耐震性についての計算書」を指す。

*3: 大飯 3/4 号については、資料 36 別添 1「原子炉格納容器 重大事故等時の閉じ込め機能健全性について」を指す。大飯 3/4 号

の資料 14-3-6「重大事故等クラス 2 容器の強度計算書」においては,資料 36 別添 1「原子炉格納容器 重大事故等時の閉じ込 め機能健全性について」を引用している。

*4:東海第二については、V-3-9-1-1-7「原子炉格納容器底部コンクリートマットの強度計算書」を指す。

注: 大飯 3/4 号及び東海第二の欄の記載内容については、公開資料を基に解釈したものである。
4. まとめ

原子炉格納容器コンクリート部の応力解析について,重大事故等時の高温による剛性 低下を,耐震計算書では考慮せず,強度計算書では考慮することの考え方を整理した上 で,先行審査実績との整合性を確認した。 別紙9 床スラブによる拘束条件に対する補助壁等の影響

目 次

1.	概要		別紙 9-1
2.	床スラ	ブによる拘束条件に対する補助壁等の影響 ・・・・・・・・・・	別紙 9-2
2.	1 床ス	ラブの拘束効果の変動による感度解析 ・・・・・・・・・・・・	別紙 9-2
	2.1.1	檢討方法	別紙 9-2
	2.1.2	検討ケース ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 9-3
	2.1.3	檢討結果	別紙 9-4
2.	2 補助	壁等による床スラブの拘束効果への影響 ・・・・・・・・・・・	別紙 9-5
	2.2.1	既工認時の検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 9-5
	2.2.2	檢討方法	別紙 9-7
	2.2.3	檢討結果	別紙 9-12
3.	まとめ	,	別紙 9-16

1. 概要

原子炉格納容器コンクリート部(以下「RCCV」という。)の応力解析では,RCCV に取り付く床スラブの剛性による拘束効果を考慮している。本資料は,床スラブの剛性について,コンクリート強度のばらつきや補助壁等の考慮により拘束効果が大きくなった場合に,RCCVの評価結果に与える影響を検討するものである。

まず,RCCVの応力解析において,RCCVに対して床スラブの剛性が極端に大きくなった 場合を想定した感度解析を実施し,評価結果に与える影響が小さいことを確認する。次 に,補助壁等の考慮の有無による床スラブの拘束効果の変動を確認し,その変動が上記 の感度解析で考慮した変動に比べて小さいことを確認する。

- 2. 床スラブによる拘束条件に対する補助壁等の影響
- 2.1 床スラブの拘束効果の変動による感度解析
 - 2.1.1 検討方法

感度解析は、図 2-1 に示す RCCV の応力解析モデルと同一のモデルを用いて、 床スラブによる拘束効果として考慮しているロッド要素及びはり要素の剛性のみ を変更した弾塑性応力解析として実施する。

床スラブの剛性の変動は、コンクリート強度を 43.1N/mm²(ヤング係数 2.88× 10⁴N/mm²)から実機のコア平均の強度 55.7N/mm²(ヤング係数 3.27×10⁴N/mm²)に することで考慮し、ヤング係数比で約 14%大きくする。実際には RCCV と床スラ ブのコンクリートが同一であることを踏まえると、このような拘束効果の変動は 生じないものと考えられるが、床スラブに加えて RCCV のコンクリート強度も大き くする場合、両者の剛性が同等となり、解析結果の差が小さくなると予測され、 拘束効果及び評価結果に与える影響の把握には適さないと考えられるため、RCCV の剛性に対して床スラブの剛性が極端に大きくなるように、RCCV のコンクリート 強度は変更しないこととする。

図 2-1 RCCV の応力解析モデル

2.1.2 検討ケース

表 2-1 に弾塑性解析による RCCV の評価における検定値一覧を示す。検討用の 組合せケースは, RCCV に対する床スラブの拘束効果の影響が大きいと考えられる シェル部及び局部で検定値が最も大きい組合せケース No.3-6(荷重状態Ⅳ・地震 時(2), 水平1.0, W→E方向, 鉛直下向き)とする。

評価項目		シェル部	トップ スラブ部	底部	貫通部	局部
等価膜力*1	コンクリート 圧縮ひずみ	0.255 (6-1)	0.105 (5-9)	0.160 (6-2)	0.325 (6-6)	0.158 (5-4)
+ 曲げモーメント	鉄筋ひずみ	0.218 (6-4)	0.162 (5-12)	0.080 (6-1)	0.376 (5-2)	0.176 (5-3)
膜力	圧縮応力度	0.739 (6-1)	_	_	_	0.250 (3-15)
面内せん断力	面内せん断 応力度	0.698 (3-5)	_	_	_	0.541 (3-3)
面外せん断力	面外せん断 応力度	0.514 (5-4)	0.897 (6-3)	0.832* ² (3-2)	$0.894^{*2} \\ (5-3)$	0.9 <mark>67</mark> (3-6)

表 2-1 弾塑性解析による RCCV の評価における検定値一覧

注1:()内は検定値に対応する組合せケース No. を示す。

注2: は、シェル部及び局部で最大の検定値を示す。

注記*1:トップスラブ部及び底部では軸力+曲げモーメントを示す。

*2:応力平均化後の値を示す。

2.1.3 検討結果

表 2-2 に影響検討における検定値一覧を示す。コンクリート強度による床スラ ブの拘束効果の変動としてヤング係数比で約 14%の増加を考慮したが,各評価項 目に対して剛性の変更前後で検定値の変化はほとんどなく,検定値は 1.0 以下で ある。したがって,床スラブの拘束効果の変動が RCCV の評価結果に与える影響は 小さいと考えられる。

表 2-2 影響検討における検定値一覧(組合せケース No. 3-6)

評価項目		シェル部	トップ スラブ部	底部	貫通部	局部
等価膜力*1	コンクリート 圧縮ひずみ	0.163	0.050	0.054	0.280	0.070
ー 曲げモーメント	鉄筋ひずみ	0.085	0.026	0.021	0.165	0.028
膜力	圧縮応力度	0.571	_	_	_	0.191
面内せん断力	面内せん断 応力度	0.602	_	_	_	0.330
面外せん断力	面外せん断 応力度	0.344	0.599	0.708	0.480*2	0.967

(a) 剛性変更前

注記*1:トップスラブ部及び底部では軸力+曲げモーメントを示す。

*2:応力平均化後の値を示す。

(b) 剛性変更後トップ

評価項目		シェル部	トップ スラブ部	底部	貫通部	局部
等価膜力*1	コンクリート 圧縮ひずみ	0.162	0.049	0.054	0.279	0.068
+ 曲げモーメント	鉄筋ひずみ	0.085	0.025	0.021	0.164	0.027
膜力	圧縮応力度	0.571	—	_	_	0.192
面内せん断力	面内せん断 応力度	0.600	—	_	_	0.332
面外せん断力	面外せん断 応力度	0.345	0.593	0.708	0.480^{*2}	0.964

注記*1:トップスラブ部及び底部では軸力+曲げモーメントを示す。

*2:応力平均化後の値を示す。

- 2.2 補助壁等による床スラブの拘束効果への影響
 - 2.2.1 既工認時の検討

RCCV の応力解析モデルにおいて, RCCV に取り付く床スラブは, その円周方向の 剛性により, RCCV が圧力等を受けた場合の半径方向の変位を拘束するロッド要素 として考慮している。ロッド要素の円周方向剛性は, 図 2-2 に示すように内圧を 作用させた場合の半径方向の変位が, 床スラブを面積が等価な穴あき円盤に置換 した場合の変位と同一になるように既工認時から設定している。

また,既工認時においては,構造が類似した第6号機と併せて,図2-3に示す ように床スラブをシェル要素,外壁をはり要素でモデル化した FEM 解析による床 スラブの半径方向ばね剛性と,穴あき円盤の半径方向ばね剛性がほぼ等しいこと により,ロッド要素の妥当性を確認している。表2-3に,半径方向のばね剛性の 比較を示す。表に示すように,外壁等の影響による拘束効果の変動は約 5~9%で ある。

図 2-2 RCCV に取り付く床スラブのロッド要素への置換方法

外壁(はり要素)

図 2-3 既工認時の FEM 解析モデル (1 階, T.M.S.L. 12.3m)

	①FEM 解析 (×10 ⁴ t/m)	②円盤置換 (×10 ⁴ t/m)	2/1
第6号機	8.737	8.313	0.95
第7号機	9.235	8.367	0.91

表 2-3 半径方向ばね剛性の比較

2.2.2 検討方法

今回工認では、RCCV に取り付く床スラブについて、既工認時に外壁を考慮した FEM モデルにより剛性の妥当性を確認していたことを考慮し、補助壁及び中間壁 の考慮の有無が拘束効果に与える影響を確認する。具体的には、各階を取り出し た床スラブの補助壁及び中間壁がない場合とある場合の FEM モデルを作成し、 RCCV 側から半径方向の単位荷重を入力した弾性応力解析を実施し、半径方向の変 位の比較を行う。

図 2-4~図 2-6 に各階床スラブの FEM モデルを示す。床スラブから立ち上がる 外壁,補助壁及び中間壁のモデル化範囲は、上下階の中心間の高さまでとする。 材料物性については、ヤング係数を 2.88×10⁴N/mm²、ポアソン比を 0.2 としてい る。境界条件については、壁の上下端の節点及び RCCV 外周の節点を鉛直方向固定 としている。入力荷重については、1.0kN/m の単位荷重を床スラブの最内周節点 の支配長さに応じた節点荷重として、半径方向に作用させる。図 2-7 に入力荷重 図の例を示す。

PN

- (b) 補助壁及び中間壁がある場合
- 図 2-4 地下 2 階床スラブの FEM モデル(T.M.S.L.-1.7m)

PN

- (b) 補助壁及び中間壁がある場合
- 図 2-5 地下1階床スラブの FEM モデル(T.M.S.L. 4.8m)

(a) 補助壁及び中間壁がない場合

- (b) 補助壁及び中間壁がある場合
- 図 2-6 1 階床スラブの FEM モデル (T.M.S.L. 12.3m)

2.2.3 検討結果

表 2-4 に半径方向変位の比較を示す。ここで、半径方向変位は、図 2-8~図 2 -10 の変形図に示すように、床スラブの最内周節点の半径方向変位の分布はほぼ 均等となっていることから、各階床スラブの最内周節点の半径方向変位の平均値 としている。表に示すように補助壁及び中間壁がない場合とある場合で半径方向 変位に大きな差がなく、拘束効果は約 5%の増大となっており、補助壁及び中間 壁の影響は小さいと考えられる。これは、補助壁及び中間壁の拘束効果に寄与す る剛性が、床スラブ自体の面内剛性に比べて小さいためと考えられる。

フロア	① 補助壁及び 中間壁がない場合 (×10 ⁻⁶ m)	② 補助壁及び 中間壁がある場合 (×10 ⁻⁶ m)	比率 (②/①)
1 階 (T.M.S.L.12.3m)	0.921	0.873	0.95
地下1階 (T.M.S.L. 4.8m)	1.16	1.10	0.95
地下 2 階 (T.M.S.L1.7m)	1.11	1.05	0.95

表 2-4 半径方向変位の比較

図 2-8 地下 2 階床スラブの変形図(T.M.S.L.-1.7m)

黒破線:変形前 赤実線:変形後

図 2-9 地下1階床スラブの変形図(T.M.S.L. 4.8m)

黒破線:変形前 赤実線:変形後

図 2-10 1 階床スラブの変形図 (T.M.S.L. 12.3m)

3. まとめ

RCCV の応力解析において, RCCV に取り付く床スラブの拘束効果がコンクリート強度の ばらつきや補助壁等の考慮により大きくなった場合に, RCCV の評価結果に与える影響を 検討した。

2.1 では、コンクリート強度による床スラブの拘束効果の変動として、床スラブのコ ンクリート強度を大きくし、RCCV に対してヤング係数比で約14%増加させた感度解析を、 床スラブの拘束効果の影響が大きいと考えられる RCCV シェル部及び局部で検定値が最も 大きいケースについて実施した。解析の結果、検定値の変化はほとんどないことから、 床スラブの拘束効果の変動が評価結果に与える影響が小さいことを確認した。

2.2 では、補助壁等による床スラブの拘束効果の変動は、外壁等により約 5~9%、補助壁及び中間壁により約 5%となり、小さいことを確認した。

以上より,床スラブの拘束効果の変動は,外壁等と補助壁及び中間壁で併せて約 10~ 14%となり,2.1における感度解析で考慮した変動と同程度であることから,2.1で床ス ラブの拘束効果の変動による感度が小さかったことを踏まえると,補助壁等による床ス ラブの拘束効果の変動が評価結果に与える影響も小さいと考えられる。