可搬型重大事故等対処設備の保管場所及びアクセスルートに係る 補足説明資料

1.	荒浜側高台保管場所に対する 500kV 南新潟幹線 No.1 送電鉄塔及び No.2 送電鉄塔の	
	影響評価について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	斜面崩壊後の堆積土砂の設定における考え方について ・・・・・・・・・・・・・・・・・・・	8
3.	保管場所の敷地下斜面のすべりに対する影響評価について ・・・・・・・・・・・・・・・	10
4.	液状化及び揺すり込みによる沈下量の算定方法について ・・・・・・・・・・・・・・・・・・	28
5.	保管場所における液状化及び揺すり込みによる不等沈下・傾斜、液状化に伴う浮上りによ	る
	影響評価について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
6.	保管場所における地盤支持力評価について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	59
7.	保管場所及び屋外アクセスルート近傍の障害となり得る構造物と影響評価について ・・・	66
8.	保管場所及び屋外アクセスルート周辺構造物の耐震性評価について ・・・・・・・・・	100
9.	屋外アクセスルートの段差緩和対策について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	112
10.	屋外アクセスルートの側方流動評価について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	160
11.	土砂撤去時のホイールローダ作業量及び建屋直近の段差の仮復旧時間について ・・・・	164
12.	仮復旧作業の検証について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	174
13.	仮復旧作業の成立性について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	181
14.	屋内アクセスルートの設定について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	185
15.	屋内アクセスルート確保のための対策について ・・・・・・・・・・・・・・・・・・・・・・・・・・・	210
16.	可搬型重大事故等対処設備の保管場所について	219
17.	森林火災時における屋外アクセスルートへの影響について ・・・・・・・・・・・・・・・・	226
18.	5 号機東側保管場所の変更について	227
19.	宿直棟位置の変更に伴う影響について	230
20.	復水移送ポンプ廻りの手動弁の電動弁化に伴う屋内アクセスルートの変更について・・・	231
21.	主要変圧器の火災発生防止対策について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	233

目 次

- 1. 荒浜側高台保管場所に対する 500kV 南新潟幹線 No.1 送電鉄塔及び No.2 送電鉄塔の影響評価に ついて
- 1.1 概要

荒浜側高台保管場所に, 倒壊及び損壊により影響を与える周辺構造物として, 荒浜側高台保 管場所に最も近接している 500kV 南新潟幹線 No.1 送電鉄塔及び No.2 送電鉄塔(以下「送電鉄 塔」という。)が挙げられることから,送電鉄塔の倒壊及び損壊評価を実施し, 荒浜側高台保管 場所に及ぼす影響について確認する。

なお,荒浜側高台保管場所周辺には,154kV 荒浜線及び 500kV 新新潟幹線も設置されている が,荒浜側高台保管場所と十分な離隔距離を確保しており,影響を及ぼすものではないことか ら,本評価の検討対象外とする。

図 1-1 に、荒浜側高台保管場所及び送電鉄塔との位置関係図を示す。

 \sim

1.2 評価方法及び評価結果

送電鉄塔について,送電鉄塔が施設されている周辺の地盤変状の影響による被害要因(盛土の崩壊,地すべり及び急傾斜地の崩壊)を評価項目とし,送電鉄塔基礎の安定性に影響がない ことを評価することにより,荒浜側高台保管場所に及ぼす影響について確認する。

また,保守的な評価として,送電鉄塔が荒浜側高台保管場所方向に全倒壊した場合でも,送 電線の影響範囲が荒浜側高台保管場所に影響がないことを評価することにより,荒浜側高台保 管場所に保管している可搬型重大事故等対処設備に及ぼす影響について確認する。

- 1.2.1 送電鉄塔敷地周辺における地盤変状の影響について
 - (1) 評価方法

経済産業省原子力安全・保安院指示文書「原子力発電所及び再処理施設の外部電源の信 頼性確保について(指示)」(平成23・04・15原院第3号)に基づき実施した地質専門家によ る現地調査結果等を踏まえ,送電鉄塔敷地周辺の地盤変状の影響による二次的被害要因で ある盛土の崩壊,地すべり及び急傾斜地の崩壊を評価項目とし,送電鉄塔基礎の安定性に 影響がないことを評価する。

- (2) 評価項目
 - a. 盛土の崩壊

送電鉄塔敷地周辺に,盛土崩壊時に基礎の安定性に影響を与えるような盛土の存在の 有無について確認する。盛土崩壊の概念図を図1-2に示す。

図1-2 盛土崩壊の概念図

b. 地すべり

送電鉄塔敷地周辺に,地すべり時に基礎の安定性に影響を与えるような地すべり箇所 の存在の有無について確認する。地すべりの概念図を図1-3に示す。

図 1-3 地すべりの概念図

c. 急傾斜地の崩壊

送電鉄塔敷地周辺に,崩壊時に基礎の安定性に影響を与えるような急傾斜地の存在の 有無について確認する。急傾斜地の崩壊の概念図を図1-4に示す。

逆T基礎 崩壞 以上

図1-4 急傾斜地の崩壊の概念図

- (3) 評価結果
 - a. 盛土の崩壊

現地調査等により,盛土の立地状況や形状及び規模,送電鉄塔との距離等を確認した 結果,送電鉄塔脚から盛土までの距離が十分離れており,仮に盛土が崩壊したとしても 当該送電鉄塔への土砂流入はないと評価した。*

また,盛土の崩壊の有無等については,毎年定期点検にて前年と変化がないことを確認している。

b. 地すべり

現地調査等により、送電鉄塔は、地すべり地形内、又は地すべり地形近傍に存在しな いことから、地すべりによる影響はないと評価した。*

また,周辺地盤の変状の有無等については,毎年定期点検にて前年と変化がないこと を確認している。

c. 急傾斜地の崩壊

現地調査等により,送電鉄塔に近接する斜面に,崩壊時に基礎の安定性に影響を与え るような急傾斜地の存在が確認されなかったことから,急傾斜地の崩壊による影響はな いと評価した。*

また,崩壊や崩壊跡地の有無等については,毎年定期点検にて前年と変化がないこと を確認している。

注記*:「原子力発電所及び再処理施設の外部電源における送電鉄塔基礎の安定性評価 について(平成24年2月17日 東京電力株式会社)」

以上の評価結果より,地盤変状の影響による被害要因が送電鉄塔基礎の安定性に及ぼ す影響はないと評価し,荒浜側高台保管場所に及ぼす影響がないことを確認した。

併せて,自主対策工事として,送電鉄塔基礎の脚間不動変位抑制対策としてのコンク リート舗装による基礎補強及び送電鉄塔敷地周辺下側の法面のすべり安定性向上として のアンカーによる安定対策工事を実施することにより,更なる信頼性向上を図っている。 自主対策工事については,図1-5及び図1-6に示す。

(500kV 新新潟幹線 No.1 送電鉄塔)

(500kV南新潟幹線 No.1 送電鉄塔)

図 1-5 500kV 新新潟幹線及び 500kV 南新潟幹線 No.1 送電鉄塔の基礎 補強状況写真(脚間不同変位抑制対策)

図 1-6 500kV 新新潟幹線及び 500kV 南新潟幹線 No.1 送電鉄塔下側の法面の補強状況写真

- 1.2.2 送電線の影響について
 - (1) 評価方法

保守的な評価として,送電鉄塔が既設位置において荒浜側高台保管場所方向に全倒壊し, 送電鉄塔の高さに相当する範囲で鉄塔に付随する送電線が荒浜側高台保管場所に影響を与 えると想定した場合でも,荒浜側高台保管場所に影響がないことを評価することにより, 荒浜側高台保管場所に保管している可搬型重大事故等対処設備に及ぼす影響について確認 する。

送電鉄塔及び荒浜側高台保管場所位置図を図1-7に示す。

図1-7 送電鉄塔及び荒浜側高台保管場所位置図

(2) 評価結果

図1-7に示すとおり、送電鉄塔の全倒壊時においては、送電線の影響範囲が荒浜側高台 保管場所に僅かに干渉する可能性が生じるが、送電線の影響範囲と荒浜側高台保管場所に 保管している可搬型重大事故等対処設備の保管場所を確認し、送電線の影響範囲に荒浜側 高台保管場所に保管している可搬型重大事故等対処設備が含まれていないことを確認した。 なお、万一、送電鉄塔が倒壊した際に、干渉する送電線を撤去できるよう電線カッター

を配備している。

- 2. 斜面崩壊後の堆積土砂の設定における考え方について
- 2.1 概要

保管場所及びアクセスルートにおける斜面の崩壊による影響評価については,斜面崩壊後の 堆積土砂形状(以下「崩壊形状」という。)及び到達範囲の予測により評価を行っている。こ こでは,斜面の崩壊形状及び到達範囲の設定の考え方について説明する。

2.2 斜面の崩壊形状及び到達範囲

斜面の崩壊形状は、安息角と内部摩擦角の関係*及び土砂の移動時の内部摩擦角の下限値を 考慮して設定する。

(1) 安息角について

安息角とは,自然にとりうる土の最大傾斜角で,乾燥した粗粒土の場合は高さに関係しないが,粘性土の場合は高さに影響されるので,安息角は一定の値にならない。

図2-1 斜面の応力状態

図 2-1 の応力状態時の斜面が安定するには、すべり力Tと抵抗力Sの間にT≦Sの条件 が成り立つ必要がある。これを展開すると以下のようになる。

 $\mathbb{W} \boldsymbol{\cdot} \sin\beta \leq \mathbb{W} \boldsymbol{\cdot} \cos\beta \boldsymbol{\cdot} \tan\phi$

 $\tan\beta \leq \! \tan\phi$

- $\phi \geqq \beta$
- ここで,
 - ϕ : 内部摩擦角(°)

すなわち、内部摩擦角 ϕ は、斜面勾配 β 以上の値であり、安全率 1.0 の極限状態では内部 摩擦角 ϕ は斜面勾配 β と等しくなる。

注記*:技術手帳1(土質工学会 1978年)

(2) 土砂の移動時の内部摩擦角 φ について

以下文献を参考に、土砂の移動時の内部摩擦角 φ の下限値を 15°と設定する。

- ・「土砂災害防止に関する基礎調査の手引き(砂防フロンティア整備推進機構 2001年)」 急傾斜地の崩壊に伴う土石等の内部摩擦角φ:15°~40°
- ・「砂防設計公式集(マニュアル)(全国治水砂防協会 1984年)」
 普通土(固いもの) : 25°~35°
 普通土(やや軟らかいもの) : 20°~30°
 普通土(柔らかいもの) : 15°~25°
- (3) 斜面の崩壊形状及び到達範囲の設定

斜面のすべり範囲に応じた崩壊形状のイメージを図 2-2 に示す。

すべり線が大きいほど,崩壊後の堆積土砂の到達距離は長くなり,崩壊形状の法肩位置は, 崩壊前の斜面形状の法肩位置に近づくことから,崩壊前の斜面形状の法肩位置を起点にして, 勾配が15°となる斜面の崩壊形状及び到達範囲を保守的に設定する。

図 2-2 斜面のすべり範囲に応じた崩壊形状のイメージ

- 3. 保管場所の敷地下斜面のすべりに対する影響評価について
- 3.1 概要

保管場所の敷地下斜面のすべりに対する影響評価については,敷地下斜面のすべりによる保 管場所への影響を評価している。

ここでは、敷地下斜面のすべりに対する影響評価において実施する、すべり安定性評価の詳 細について説明する。

- 3.2 基本方針
 - (1) 影響評価断面位置

保管場所の位置,敷地下斜面のすべりに対する影響評価断面位置及び断面図を図 3-1 に示す。

影響評価断面位置は,敷地下斜面の形状,高さ等を考慮して抽出する。荒浜側高台保管場 所及び大湊側高台保管場所については,敷地下斜面の形状,高さ等が各保管場所内で同一で あることから,埋戻土の厚い保管場所中心付近を影響評価断面位置として選定する(②断面, ④断面)。なお,5号機東側保管場所及び5号機東側第二保管場所については,評価対象とな る敷地下斜面が存在しない。荒浜側高台保管場所及び大湊側高台保管場所にて選定した影響 評価断面位置における解析モデルを図 3-2 に示す。

図 3-1 影響評価断面位置及び断面図

(大湊側高台保管場所(②断面))

図 3-2 荒浜側高台保管場所及び大湊側高台保管場所の影響評価断面の解析モデル図

(2) 評価方針

保管場所への影響評価は,基準地震動Ssに対するすべり安定性評価を行い,すべり線の 影響を受けない位置に保管場所を設定していることを確認する。

- 3.3 評価方法
 - (1) 評価方法

すべり安定性評価については,基準地震動Ssに対する地震応答解析を2次元動的有限要素 法解析により行う。地震応答解析は,周波数応答解析手法を用い,等価線形化法によりせん 断弾性係数及び減衰定数のひずみ依存性を考慮する。地震時の応力は,静的解析による常時 応力と地震応答解析による動的応力を重ね合わせることにより算出する。静的解析には,解 析コード「stress_nlap」を,地震応答解析には解析コード「Super FLU SH/2D」を,すべり安全率算定には解析コード「suberi_sf」を使用する。

(2) 解析用物性值

解析用物性値は、V-2「耐震性に関する説明書」のうちV-2-別添 3-2「可搬型重大事故等 対処設備の保管場所における入力地震動」における荒浜側高台保管場所及び大湊側高台保管 場所と同様に、原位置で実施したボーリング調査結果に基づき設定する。すべり安定性評価 に用いる解析用物性値を表 3-1 及び表 3-2 に、物性値の設定根拠を表 3-3 及び表 3-4 に 示す。

	性値	地質区分	埋戻土	新期砂層	沖積層下部	番神砂層 , 大湊砂層
	物理特性	密度 ρ (g/cm ³)	1.86	2.02 (1.93)	2.01	1.90
	静的	変形係数 E ₀ (N/mm ²)	18.7+48.1 • P	27.8+23.9 • P	13.4+369 • P	8.65+317 · P
	変形特性	静ポアソン比 ν	0.48	0.495	0.48	0.49
変形	動的 変形特性	初期動せん断弾性係数 G ₀ (N/mm ²)	79.7	203 (194)	330	309
特性		動ポアソン比 _{V d}	0. 430	0.477 (0.350)	0. 466	0.470
		動せん断弾性係数の ひずみ依存特性 $G/G_0 \sim \gamma$	$1/(1+12.0 \cdot \gamma^{0.873})$	$1/(1+4.77 \cdot \gamma^{0.801})$	$1/(1+2.95 \cdot \gamma^{0.498})$	$1/(1+6.42 \cdot \gamma^{0.569})$
		減衰定数の ひずみ依存特性 h ~ γ	$\gamma / (0.0738 \cdot \gamma + 0.00608) + 2.59$	$\gamma / (0.0325 \cdot \gamma + 0.0140) + 1.02$	$\gamma / (0.0286 \cdot \gamma + 0.0170) + 0.853$	$\gamma / (0.147 \cdot \gamma + 0.00657) + 1.57$
		C_u (N/mm ²)	0.0554+0.316 • P	0.354+0.971 · P	0.0438+0.920 • P	0.113+0.688 • P
強度	ピーク強度	φ _u (°)	0	0	0	0
特性		σ_{t} (N/mm ²)	-	-	-	-
	茂留強度 Cur (N/mm ²)		0.0554+0.295 • P	0.300+1.08 • P	0.0214+0.950 • P	0.112+0.688 • P

表 3-1 解析用物性值(荒浜側高台保管場所)(1/3)

注記*1 : Pは, 平均有効拘束圧(N/mm¹)を示す。 *2 : yは, せん断ひずみ(%)を示す。 *3 : 括弧内の数字は, 地下水位以浅の物性値を表す。

<u> </u>	<u> </u>	地質区分				古安	田層			
物	生値		A3c層	A3a1層	A2c層	A2a1層	A2s層	A2g層(砂質)	A1g層	A1c層
	物理特性	密度 ρ (g/cm ³)	1.65	1.87	1.77	1.77	1.92	1.92	1.92	1.77
	静的	変形係数 E ₀ (N/mm ²)	74.4+91.6 • P	40.1+234 • P	103+72.6 • P	22.3+209 • P	35.6+255 • P	35.6+255 • P	35.6+255 • P	103+72.6 • P
変	変形特性	静ボアソン比 v	0.49	0.48	0.49	0.49	0.48	0.48	0.48	0.49
		初期動せん断弾性係数 G ₀ (N/mm ²)	85. 8	199	155	156	243	243	243	155
形特性	動的 変形特性	動ポアソン比 _{V d}	0.488	0.479	0.482	0.482	0.475	0.475	0.475	0.482
		動せん断弾性係数の ひずみ依存特性 G/G ₀ ~ γ	$1/(1+2.79 \cdot \gamma^{0.695})$	$1/(1+4.75 \cdot \gamma^{0.812})$	$1/(1+4.59 \cdot \gamma^{0.603})$	$1/(1+3.90 \cdot \gamma^{0.791})$	1/(1+3.83 • y ^{0.844})	$1/(1+3.83 \cdot \gamma^{0.844})$	1/(1+3.83 • y ^{0.844})	$1/(1+4.59 \cdot \gamma^{0.603})$
		減衰定数の ひずみ依存特性 h ~ γ	$\gamma / (0.124 \cdot \gamma + 0.0189) + 1.60$	$\gamma / (0.0678 \cdot \gamma + 0.0180) + 3.79$	$\gamma / (0.0948 \cdot \gamma + 0.00893) + 1.95$	$\gamma / (0.0398 \cdot \gamma + 0.0243) + 1.92$	$\gamma / (0.0333 \cdot \gamma + 0.0143)$	$\gamma / (0.0333 \cdot \gamma + 0.0143) +$	$\gamma / (0.0333 \cdot \gamma + 0.0143)$	$\gamma / (0.0948 \cdot \gamma + 0.00893) + 1.95$
		C _u (N/mm ²)	0.271+0.156 · P	0.306+0.235 · P	0.452+0.0151 • P	0.0712+0.323 • P	0.717+0.259 · P	0.717+0.259 · P	0.717+0.259 · P	0.452+0.0151 · P
強度	ピーク強度	ф _и (°)	0	0	0	0	0	0	0	0
反特性		σ_{t} (N/mm ²)	-	_	-	_	-	_	_	_
	残留強度	C_{ur} (N/mm ²)	0.0712+0.227 • P	0.301+0.150 · P	0.220	0.0712+0.103 • P	0.533+0.409 · P	0.533+0.409 · P	0.533+0.409 · P	0.220

表 3-1 解析用物性值(荒浜側高台保管場所)(2/3)

注記*1 : Pは, 平均有効拘束圧(N/mm²)を示す。 *2 : yは, せん断ひずみ(%)を示す。

	<u> </u>	地質区分	西山層			
物	性値		西山層 (T.M.S.L56.57m以浅)	西山層 (T.M.S.L56.57m ~ -142.57m)		
	物理特性	密度 ρ (g/cm ³)	1.58-0.00076 · Z			
	静的	変形係数 E ₀ (N/mm ²)	381-2.	07 • Z		
	変形特性	静ポアソン比 ν	0.	46		
変形	動的 変形特性	初期動せん断弾性係数 G ₀ (N/mm ²)	$320 - 0.154 \cdot Z$	495-0.238 · Z		
が特性		動ポアソン比 _{V d}	0.459	0.441		
		動せん断弾性係数の ひずみ依存特性 $G/G_0 \sim \gamma$	1/(1+2.6	5 • γ ^{1.37})		
		減衰定数の ひずみ依存特性 h ~ γ	27.4 • γ ^{1.}	⁰⁰ +0.700		
		C _u (N/mm ²)	低圧部:0.58 高圧部:0.83	$-0.0011 \cdot Z$ $-0.0056 \cdot Z$		
強度	ピーク強度	φ _u (°)	6.5+0.	021 · Z		
特性		σ_t (N/mm ²)	0.	48		
	残留強度	C_{ur} (N/mm^2)	0.49-0.0016 · Z			

表 3-1 解析用物性值(荒浜側高台保管場所)(3/3)

注記*1 : Zは, T.M.S.L.(m)を示す。 *2 : γは, せん断ひずみ(%)を示す。

表 3-2	解析用物性值	(大湊側高台保管場所)	(1/3)
- · · ·			(- / - /

物	性値	地質区分	埋戻土	新期砂層	沖積層上部 (砂質)	沖積層下部	番神砂層 大湊砂層
	物理特性	密度 ρ (g/cm ³)	1. 77	1.89 (1.71)	1.90	2.00	1.94
	静的	変形係数 E ₀ (N/mm ²)	16.1+55.6 • P	36.9+195 • P	39.6+308 • P	28.8+201 • P	0.551+377 · P
	変形特性	静ポアソン比 v	0. 48	0.49	0.49	0.49	0.49
変形		初期動せん断弾性係数 G ₀ (N/mm ²)	77.3	112 (101)	125	184	223
形特性	動的 変形特性	動ポアソン比 _{v d}	0.403	$\begin{array}{c} 0.\ 476 \\ (0.\ 353) \end{array}$	0. 487	0.479	0.479
		動せん断弾性係数の ひずみ依存特性 G/G ₀ ~ γ	$1/(1+7.98 \cdot \gamma^{0.849})$	$1/(1+4.99 \cdot \gamma^{0.921})$	$1/(1+15.0 \cdot \gamma^{1.03})$	$1/(1+6.72 \cdot \gamma^{0.845})$	$1/(1+5.20 \cdot \gamma^{0.756})$
		減衰定数の ひずみ依存特性 h ~ γ	$\gamma / (0.0731 \cdot \gamma + 0.0102) + 4.35$	$\gamma / (0.0417 \cdot \gamma + 0.0113) + 0.605$	$\gamma / (0.0409 \cdot \gamma + 0.00416) + 0.241$	$\gamma / (0.0609 \cdot \gamma + 0.00676) + 1.88$	$\gamma / (0.0620 \cdot \gamma + 0.00970) + 1.53$
		C_u (N/mm ²)	0.0695+0.464 • P	0.309+0.608 · P	0.384+0.961 · P	0.0491+0.526 • P	0.151+0.458 · P
強度	ピーク強度	φ _u (°)	0	0	0	0	0
(特性		$\sigma_{\rm t}$ (N/mm ²)	_	_	_	_	_
	残留強度	C_{ur} (N/mm ²)	0.0695+0.461 • P	0.306+0.614 · P	0.253+1.17 • P	$0.0489 \pm 0.526 \cdot P$	0.143+0.465 · P

注記*1 : Pは,平均有効拘束圧(N/mm³)を示す。 *2 : γは,せん断ひずみ(%)を示す。 *3 :括弧内の数字は,地下水位以浅の物性値を表す。

地質区分						古安田層					
物	性値		A3c層	A3a1層	A2c層	A2a1層	A2s層	A4c層	A4a1層	A3s層	A2g層(砂質)
物理特性		密度 ρ (g/cm ³)	1.66	1.80	1.73	1.88	1.83	1.66	1.80	1.83	1.83
	静的	変形係数 E ₀ (N/mm ²)	35.5+152 • P	22.5+274 • P	38.2+206 • P	41.7+131 • P	22.8+214 • P	35.5+152 • P	22.5+274 • P	22.8+214 • P	22.8+214 • P
	変形特性	静ボアソン比 v	0.49	0.49	0.49	0.43	0.48	0.49	0.49	0.48	0.48
変	動的 変形特性	初期動せん断弾性係数 G ₀ (N/mm ²)	129	157	164	161	257	129	157	257	257
物性		動ポアソン比 _{V d}	0. 484	0.483	0.480	0.483	0.474	0.484	0.483	0.474	0.474
		動せん断弾性係数の ひずみ依存特性 G/G ₀ ~ γ	1/(1+3.46 • y ^{0.839})	$1/(1+3.88 \cdot \gamma^{0.732})$	$1/(1+2.84 \cdot \gamma^{0.717})$	$1/(1+5.79 \cdot \gamma^{0.722})$	$1/(1+4.79 \cdot \gamma^{0.882})$	$1/(1+3.46 \cdot \gamma^{0.839})$	$1/(1+3.88 \cdot \gamma^{0.732})$	1/(1+4.79 • γ ^{0.882})	$1/(1+4.79 \cdot \gamma^{0.882})$
		減衰定数の ひずみ依存特性 h ~ y	$\gamma / (0.0956 \cdot \gamma + 0.0110) + 1.61$	$\gamma / (0.0897 \cdot \gamma + 0.00901) + 2.40$	$\gamma / (0.120 \cdot \gamma + 0.0110) + 2.30$	$\begin{array}{c} \gamma \ / \ (0.\ 0764 \ \cdot \ \gamma \ + \\ 0.\ 00929) \ + \ 1.\ 62 \end{array}$	$\gamma / (0.0840 \cdot \gamma + 0.0100) + 1.46$	$\gamma / (0.0956 \cdot \gamma + 0.0110) + 1.61$	$\gamma / (0.0897 \cdot \gamma + 0.00901) + 2.40$	$\gamma / (0.0840 \cdot \gamma + 0.0100) + 1.46$	$\begin{array}{c} \gamma \; / \; (0.\; 0840 \; \cdot \; \gamma \; + \\ 0.\; 0100) \; + \; 1.\; 46 \end{array}$
		Cu (N/mm ²)	0.159+0.446 • P	0.234+0.475 • P	0.268+0.358 • P	0.232+0.280 • P	0.0997+0.500 • P	0.159+0.446 • P	0.234+0.475 • P	0.0997+0.500 • P	0.0997+0.500 · P
強度	ピーク強度	φ (°)	0	0	0	0	0	0	0	0	0
反特性		σ_{t} (N/mm ²)	-	-	-	-	-	-	_	-	-
	残留強度	C_{ur} (N/mm ²)	0.0825+0.224 • P	0.226+0.311 • P	0.0765+0.457 • P	0.200+0.160 • P	0.0683+0.521 • P	0.0825+0.224 • P	0.226+0.311 • P	0.0683+0.521 • P	0.0683+0.521 • P

表 3-2 解析用物性值(大湊側高台保管場所)(2/3)

注記*1 : Pは, 平均有効拘束圧(N/mm[?])を示す。
 *2 : yは, せん断ひずみ(%)を示す。

		地質区分	西山層		
物	性値		西山層 (T. M. S. L75. 98m以浅)	西山層 (T.M.S.L75.98m ~ -129.98m)	
	 物理特性 密度 ρ (g/cm³) 		1.69-0.00048 · Z		
	静的	変形係数 E ₀ (N/mm ²)	502-2.29 · Z		
	変形特性	静ポアソン比 ν	0.48+0.0	00024 • Z	
変形	動的 変形特性	初期動せん断弾性係数 G ₀ (N/mm ²)	475-0.135 · Z	650-0.185 · Z	
か特性		動ポアソン比 _{V d}	0.445	0.428	
		動せん断弾性係数の ひずみ依存特性 $G/G_0 \sim \gamma$	1/(1+4.1	0 · γ ^{1.37})	
		減衰定数の ひずみ依存特性 h ~ γ	25.0•γ ⁰	⁹⁴ +0.700	
		C_u (N/mm ²)	1.37-0.0	00504 • Z	
強度	ピーク強度	φ _u (°)	0		
特性		σ_{t} (N/mm ²)	0.335-0.	00157 · Z	
	残留強度	C _{ur} (N/mm ²)	0.673-0.	00201 · Z	

表 3-2 解析用物性值(大湊側高台保管場所)(3/3)

注記*1 : Zは, T.M.S.L. (m)を示す。 *2 : yは, せん断ひずみ(%)を示す。

物	性値	地質区分	埋戻土	新期砂層	沖積層下部	番神砂層 大湊砂層			
	物理特性	密度 ρ (g/cm ³)	物理試験						
	静的 変形特性	変形係数 E ₀ (N/mm ²) 静ポアソン比 v		三軸圧縮試験					
変形	動的 変形特性	初期動せん断弾性係数 G ₀ (N/mm ²)							
か特性		動ポアソン比 _{V d}		PS検層によるP波速度,S波速度に基づき設定					
		 動せん断弾性係数の ひずみ依存特性 G/G₀ ~ γ 減衰定数の ひずみ依存特性 h ~ γ 	変形特性を求めるための構返し三軸試験						
		C_u (N/mm ²)			(1) 3-2 8-4				
強度	ピーク強度	ф _и (°)	三軸圧縮試験						
特性		σ_{t} (N/mm ²)	-	-	_	-			
	残留強度	C _{ur} (N/mm ²)	三軸圧縮試験						

表 3-3 解析用物性値の設定根拠(荒浜側高台保管場所)(1/3)

表 3-3 解析用物性値の設定根拠(荒浜側高台保管場所)(2/3)

地質区分			古安田層								
物性值			A3c層	A3a1層	A2c層	A2a1層	A2s層	A2g層(砂質)	A1g/m	A1c層	
物理特性				物理試験							
	静的	変形係数 E ₀ (N/mm ²)									
変形 特性	変形特性	静ボアソン比 ν									
		初期動せん断弾性係数 G ₀ (N/mm ²)		PS検層に	よるS波速度,密度に基						
	動的	動ポアソン比 _{v d}		PS検層によ	るP波速度,S波速度に						
	変形特性	 動せん断弾性係数の ひずみ依存特性 G/G₀ ~ γ 減衰定数の ひずみ依存特性 h ~ γ 		変形特性	さ求めるための繰返し	A2s層	A2c層で代用				
16	ピーク強度	C_u (N/mm ²) ϕ_u			三軸圧縮試験						
強度特点	- / 1844	(°)									
之性		(N/mm ²)	-	-	-	-	-	-			
	残留強度	C_{ur} (N/mm ²)			三軸圧縮試験						

/		地質区分	西口	山函	
物	性値		西山層 (T.M.S.L56.57m以浅)	西山層 (T.M.S.L56.57m ~ -142.57m)	
	物理特性	密度 ρ (g/cm ³)	物理	試験	
	静的	変形係数 E ₀ (N/mm ²)	二十日	谷谷市東安	
	変形特性	静ポアソン比 v	二. 単山/工	相由 武力規定	
変形	動的 変形特性	初期動せん断弾性係数 G ₀ (N/mm ²)	PS検層によるS波速度	, 密度に基づき設定	
特性		動ポアソン比 _{v d}	PS検層によるP波速度,	S波速度に基づき設定	
		 動せん断弾性係数の ひずみ依存特性 G/G₀ ~ γ 減衰定数の ひずみ依存特性 h ~ γ 	動的単純せん断試験		
		C_u (N/mm ²)	二十日	谷谷市東	
強度	ピーク強度	φ _u (°)	¥u /	nii paar	
特性		$\sigma_{\rm t}$ (N/mm ²)	圧裂引張強度試験		
	残留強度	C _{ur} (N/mm ²)	三軸圧	縮試験	

表 3-3 解析用物性値の設定根拠(荒浜側高台保管場所)(3/3)

表 3-4 解析用物性値の設定根拠(大湊側高台保管場所)(1/3)

物	性値	地質区分	埋戻土	新期砂層	沖積層上部 (砂質)	沖積層下部	番神砂層 大湊砂層		
	物理特性	密度 ρ (g/cm ³)	物理試験						
	静的	変形係数 E ₀ (N/mm ²)			三軸圧縮試験				
	変形特性	静ポアソン比 v	三軸圧	縮試験	沖積層下部で代用	三軸圧	縮試験		
変形特性		初期動せん断弾性係数 G ₀ (N/mm ²)		PS検層によるS波速度,密度に基づき設定					
	動的	動ポアソン比 _{v d}		PS検層によるP波速度,S波速度に基づき設定					
	変形特性	 動せん断弾性係数の ひずみ依存特性 G/G₀ ~ γ 減衰定数の ひずみ依存特性 h ~ γ 	変形特性を求めるための繰返し三軸試験						
碖	ピーク強度	C_u (N/mm ²) ϕ_u	三軸圧縮試験						
强度特性		σ _t (N/mm ²)		_	_	_	_		
	残留強度	C_{ur} (N/mm^2)		三軸圧縮試験					

地質区分				古安田層							
物	物性值		A3c層	A3a1層	A2c層	A2a1層	A2s層	A4c層	A4a1層	A3s層	A2g層(砂質)
物理特性		密度 ρ (g/cm ³)	物理試験								
	静的 変形特性	変形係数 E ₀ (N/mm ²)	- 41 12 00 01			74.64					
		静ボアソン比 v	二和注意的								
変形	iết és	初期動せん断弾性係数 G ₀ (N/mm ²)		PS検層に	よるS波速度,密度に基	づき設定					
特性		動ボアソン比 _{V d}	PS検腸によるP波道度、S波道度に基づき設定								
	変形特性	 動せん断弾性係数の ひずみ依存特性 G/G₀ ~ γ 減衰定数の ひずみ依存特性 h ~ γ 	変形特性を求めるための構図し三輪試験			A3c層で代用	A3c層で代用 A3a1層で代用	A25層で代用			
		C。 (N/m ²) 三帕庄裕於號									
強度	ピーク強度	¢ (°)									
~特性		a , (N/mm ²)	_	_	_	_	-				

表 3-4 解析用物性値の設定根拠(大湊側高台保管場所)(2/3)

表 3-4 解析用物性値の設定根拠(大湊側高台保管場所)(3/3)

地質区分			西山層		
物性値			西山層 (T.M.S.L56.57m以浅)	西山層 (T.M.S.L56.57m ~ -142.57m)	
物理特性 密度 ρ (g/cm ³			物理試験		
	静的	変形係数 E ₀ (N/mm ²)	三軸圧縮試験		
	変形特性	静ポアソン比 v			
変形	動的 変形特性	初期動せん断弾性係数 G ₀ (N/mm ²)	PS検層によるS波速度	, 密度に基づき設定	
が特性		動ポアソン比 _{v d}	PS検層によるP波速度,S波速度に基づき設		
		動せん断弾性係数の ひずみ依存特性 G/G ₀ ~ γ 減衰定数の	動的単純さ	せん断試験	
		ひずみ依存特性 h ~ γ			
		C_u (N/mm ²)	三軸氏	統試驗	
強度	ピーク強度	φ _u (°)	+++ 1/	110 IF V824	
特性		$\sigma_{\rm t}$ (N/mm ²)	圧裂引張強度試験		
	残留強度	C_{ur} (N/mm^2)	三軸圧縮試験		

(3) 地下水位

地下水位は、V-2「耐震性に関する説明書」のうちV-2-別添 3-2「可搬型重大事故等対処 設備の保管場所における入力地震動」における荒浜側高台保管場所及び大湊側高台保管場所 と同様に、地下水位観測記録、PS 検層結果等に基づき設定する。地下水位の設定を図 3-3 に示す。

荒浜側高台保管場所の地下水位の設定

大湊側高台保管場所の地下水位の設定 図 3-3 地下水位の設定

(4) 地盤改良体のモデル化

大湊側高台保管場所では,表3-5に示す柱列状の地盤改良体を設置しており,その効果を 考慮するため,地盤改良体の改良率を考慮した等価剛性を設定してモデル化する。等価剛性 の設定にあたっては,V-2「耐震性に関する説明書」のうちV-2-1-3「地盤の支持性能に係 る基本方針」及びV-2-別添3-2「可搬型重大事故等対処設備の保管場所における入力地震動」 を基に設定する。

地盤改良体のモデル化範囲と改良率を図 3-4 に,地盤改良体のモデル化範囲(断面図)を 図 3-5 に,地盤改良体の解析用物性値を表 3-6 に示す。

			-	
改良径直径	瓦粉 (木)	汀線直交方向	汀線平行方向	み白索 (%)
ϕ (m)	列致 (平)	杭ピッチ(m)	杭ピッチ(m)	以及平 (加
2.0	2	4.00	2.50	46.5

表 3-5 地盤改良体の配置

図 3-4 地盤改良体のモデル化範囲と改良率

	対	象施設	大湊側高台保管場所
		種別	置换
	物理特性	密度 ρ (g/cm ³)	1.81
	静的	変形係数 E ₀ (N/mm ²)	16.1+55.6 • P
	変形特性	静ポアソン比 ν	0. 48
変		初期動せん断弾性係数 G ₀ (N/mm ²)	651
形特性	動的 変形特性	動ポアソン比 _{v d}	0. 28
		動せん断弾性係数の ひずみ依存特性 G/G ₀ ~ γ	$1/\left(1+G_{0}$ + ($_{\gamma}$ /100) /C_{u}\right)
		減衰定数の ひずみ依存特性 h ~ γ	5.00 • $(1 - G/G_0)$
		C_u (N/mm ²)	2. 33
強度	ピーク強度	φ _u (°)	0
特性		$\sigma_{\rm t}$ (N/mm ²)	0. 894
	残留強度	C _{ur} (N/mm ²)	0

表 3-6 地盤改良体の解析用物性値

 注記*1 : Pは, 平均有効拘束圧(N/mm²)を示す。

 *2 : yは, せん断ひずみ(%)を示す。

(5) 入力地震動

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを1次元 波動論により地震応答解析モデルの底面位置で評価したものを用いる。

入力地震動算定の考え方を図3-6に示す。入力地震動の算定には,解析コード「SLOK」 を用いる。

各評価対象における基準地震動を表 3-7 に,解放基盤表面標高を表 3-8 に示す。解放基 盤表面の位置及び地下構造モデルは、V-2「耐震性に関する説明書」のうちV-2-別添 3-2「可 搬型重大事故等対処設備の保管場所における入力地震動」における荒浜側高台保管場所及び 大湊側高台保管場所と同様に,原位置で実施したボーリング調査結果に基づき設定する。

図 3-6 入力地震動算定の考え方

表 3-7	各評価対象に用	いろ基準地震動
AU 1		

評価対象	基準地震動
荒浜側高台保管場所	荒浜側の基準地震動(Ss-1~7)
大湊側高台保管場所	荒浜側の基準地震動(Ss-1~7)

解放基盤表面標高 (T.M.S.L.m)	
-280	
-154	

表 3-8 各評価対象における解放基盤表面標高

(6) 評価基準値

すべり安定性評価の評価基準値としては、「道路土工-盛土工指針(日本道路協会 平成22 年4月)」において、盛土の安定性照査について、「レベル2地震動に対する設計水平震度に 対して、円弧すべり面を仮定した安定解析法によって算出した地震時安全率の値が1.0以上で あれば、盛土の変形量は限定的なものにとどまると考えられるため、レベル2地震動の作用に 対して性能2を満足するとみなしてよい。」と記載されている。

また,性能2とは、「安全性及び修復性を満たすものであり,盛土の機能が応急復旧程度の 作業により速やかに回復できる。」と記載されており、斜面に隣接する施設等に影響を与え る規模の崩壊ではなく、修復可能な小規模の損傷であると判断される。

本評価では、水平・鉛直震度を同時に考慮した基準地震動Ssに対する動的解析により、 保守的にすべり安全率を算定していることから、すべり安定性の評価基準値としては、すべ り安全率が1.0とする。

具体的には、保管場所への影響評価における評価基準値は、すべり安全率が1.0を下回る すべり線の範囲(法肩から最大崩壊範囲までの距離)が保管場所に到達しないこととする。 3.4 評価結果

敷地下斜面のすべりによる影響評価結果について、すべり安定性評価結果を図 3-7 及び図 3 -8 に、保管場所とすべり線の離隔を表 3-9 に、保管場所への影響評価結果を表 3-10 に示す。

荒浜側高台保管場所については、すべり安全率が1.0を下回るすべり線が存在しないこと、 大湊側高台保管場所については、すべり安全率が1.0を下回るすべり線の範囲(法肩から最大 崩壊範囲までの距離)が保管場所に到達しないことから『問題なし』と評価し、敷地下斜面の すべりが保管場所に影響を及ぼさないことを確認した。

また,5号機東側保管場所及び5号機東側第二保管場所については,評価対象となる敷地下 斜面が存在しないことから『該当なし』と評価し,敷地下斜面のすべりが保管場所に影響を及 ぼさないことを確認した。

図 3-7 荒浜側高台保管場所の敷地下斜面のすべり安定性評価結果

すべり安全率を算定したすべり線

注記*:Ss-1, Ss-3 は, 地震動を位相反転したケースを含む 最小値

図 3-8 大湊側高台保管場所の敷地下斜面のすべり安定性評価結果

表 3-9 保管場所とすべり線の離隔

評価対象	 ①法肩から 保管場所までの 距離(m) 	②法肩から最大崩壊範囲までの距離(m)	1/2	評価 (>1.0)
荒浜側高台保管場所	す~	べり線発生なし		問題なし
大湊側高台保管場所	21.5	15.5	1.39	問題なし

表 3-10 敷地下斜面のすべりによる影響評価結果

	評価結果			
被害要因	荒浜側高台	大湊側高台	5 号機東側	5 号機東側第二
	保管場所	保管場所	保管場所	保管場所
敷地下斜面のすべり	問題なし	問題なし	該当なし	該当なし

- 4. 液状化及び揺すり込みによる沈下量の算定方法について
- 4.1 概要

ここでは,保管場所及びアクセスルートにおける液状化及び揺すり込みによる沈下量の算定 方法について説明する。

4.2 沈下量の算定方針

沈下量の算定方法を図 4-1 に示す。

液状化による沈下量については、Ishiharaほか(1992)の地盤の相対密度に応じた最大せん断 ひずみ及び体積ひずみ(沈下率)の関係*1に基づき設定した液状化による沈下率(A)を,対象 地点の地下水位以深における液状化の検討対象層の層厚を乗じて算定する。

また,揺すり込みによる沈下量については,新潟県中越沖地震後に原子炉建屋周辺の不飽和 地盤を対象に実施した繰り返しせん断試験結果から得られたせん断応力,繰り返し回数及び体 積ひずみとの関係*²に基づき設定した揺すり込みによる沈下率(B)を,対象地点の地下水位以 浅における揺すり込みの検討対象層の層厚を乗じて算定する。

図 4-1 沈下量の算定方法

- 注記*1 : Kenji Ishihara, Mitsutoshi Yoshimine : Evaluation of settlements in sand deposits following liquefaction during earthquakes, Soils and Foundations, 1992
 - *2 :繰返しせん断による不飽和砂質土の体積収縮特性と沈下量推定に関する基礎的検 討, 土木学会論文集 C(地圏工学), 2012 (北爪 貴史, 酒井 俊朗, 佐藤 博, 佐 藤 正行)

- 4.3 液状化による沈下量の算定方法
 - (1) 液状化による沈下量の検討対象層 液状化による沈下量の検討対象層については、地下水位以深の飽和砂質地盤全て(埋戻土, 新期砂層・沖積層、番神砂層・大湊砂層及び古安田層*)とする。ただし、検討対象地点近 傍において地質調査結果が得られている場合には、地下水位以深の液状化検討対象層を液状 化による沈下量の検討対象層とする。
 - (2) 液状化による沈下率

液状化による沈下率は、最大せん断ひずみ及び体積ひずみ(沈下率)の関係と、敷地内に おける液状化検討対象層の相対密度の調査結果に基づき設定する。

a. 相対密度の設定

液状化検討対象層の相対密度の調査結果を表 4-1 及び図 4-2~図 4-4 に示す。液状化 による沈下量の設定に用いる相対密度については、各地層の平均相対密度の調査結果を保 守的に丸めて 80%と設定する。

地層	平均相対密度(%)	備考(調査位置)
埋戻土	85	図 4-2 参照
新期砂層・沖積層	99	図 4-3 参照
古安田層中の砂層	89	図 4-4 参照

表 4-1 液状化検討対象層の相対密度調査結果

注記*:安田層下部層の MIS10~MIS7 と MIS6 の境界付近の堆積物については,本資料では『古 安田層』と仮称する。

埋戻土の相対密度

図 4-2 埋戻土の相対密度

対象層の相対密度 6号炉 スクリーン室 7号炉 スクリーン室 平均 備考 地層 相対密度(%) (調査位置) 6号炉 取水路 新期砂層 A-3 及びその周辺, 7号炉 取水路 99 常設代替交流 電源設備基礎 ・沖積層 7号機軽油タンク周辺 13 1 E? 6号炉 補機冷却用 海水取水路 7号炉 補機冷却用 海水取水路 L #5T. B -a # 0 デー -57 ■#8 R. B 均: 99% 一夕数: 79 #5 Ŧ 140 平 均 1 6号炉燃料移送系 配管ダクト 8 E 120 . L € 100 I. 6号炉 軽油タンク基礎 7号炉 軽油タンク基礎 相対啟度 09 08 08 -0 大湊側 試料採取地点位置図 40 20 П 新期砂層・沖積層の相対密度 荒浜側 試料採取地点位置図 🔘 新期砂層・沖積層調査位置 🔵 埋戻土調査位置 図 4-3 新期砂層・沖積層の相対密度

図4-4 古安田層中の砂層の相対密度

b. 液状化による沈下率の設定

Ishihara ほか(1992)の地盤の相対密度に応じた最大せん断ひずみ及び体積ひずみ(沈下率)の関係及び想定する沈下率を図 4-5 に示す。

液状化による沈下率(A)は、液状化による沈下量の設定に用いる相対密度(80%)を重 ね合わせた 1.7%を保守的に丸めて、2.0%と設定する。

図 4-5 Ishihara ほか(1992)の地盤の相対密度に応じた最大せん断ひずみ及び体積ひずみ(沈下率)の関係及び想定する沈下率

- 4.4 揺すり込みによる沈下量の算定
 - (1) 揺すり込みによる沈下量の検討対象層揺すり込みによる沈下量の検討対象層は、地下水位以浅の不飽和砂質地盤全てとする。
 - (2) 揺すり込みによる沈下率

揺すり込みによる沈下率の設定にあたっては,基準地震動の大きい荒浜側で標高や地層構成が異なる4地点を選定し,各地点で基準地震動Ssによる地震応答解析を行う。新潟県中越沖地震後に原子炉建屋周辺の不飽和地盤を対象に実施した繰返しせん断試験結果から得られたせん断応力,繰返し回数及び体積ひずみの関係(式(1))及び累積損傷の考え方*に基づき不飽和砂質地盤における沈下量を算定し,不飽和砂質地盤の層厚で除すことで沈下率を算定する。不飽和砂質地盤の揺すり込みによる沈下量の算定方法を図4-6に示す。

$$\varepsilon_{v} = \left[\frac{\tau_{d}}{(0.464\sigma'_{m} + 9.81)N^{-0.207}}\right]^{\frac{1}{0.355N^{-0.0199}}} \cdot \cdot \cdot \vec{x}(1)$$

ここで, ϵ_{v} :体積ひずみ(%), τ_{d} :せん断応力(kN/m²), σ'_{m} :平均拘束圧(kN/m²), N: 繰返し回数(回)である。

図 4-6 不飽和砂質地盤の揺すり込みによる沈下量の算定方法

注記*:盛土の耐震性能と耐震設計,鉄道総研報告,1999(舘山 勝, 堀井 克己, 小島 謙 一) a. 地震応答解析

評価対象とした各地点について,基準地震動Ssに対する地震応答解析を1次元波動論に 基づく等価線形解析により行う。地震応答解析には解析コード「SLOK」を使用する。

(a) 評価対象地点

図4-7に評価対象地点及び地盤モデルを示す。

大湊側の基準地震動より大きい荒浜側の基準地震動を適用する範囲から,標高や地層 構成が異なる4 地点(T.M.S.L.+5m(①,②),+13m(③),+37m(④))を選定する。

図 4-7 評価対象地点及び地盤モデル
(b) 解析用物性值

解析用物性値は、柏崎刈羽原子力発電所原子炉設置変更許可申請書(3号及び4号) における基礎地盤の安定性評価に用いたものを使用する。解析用物性値を表 4-2 に示す。

物	性值	地層区分	西山層 (泥岩)	西山層 (へき開含有帯)	灰爪層	古安田層
	物理特性	ρ_t (g/cm^3)	$1.58 - 0.00076 \cdot Z$	1.61	1, 71	1, 75
	静的	<i>E</i> ₀ (N/mm ²)	381-2.07·Z	$193\!+\!178\cdot P$	$255 \pm 434 \cdot P$	$19.6 \pm 140 \cdot P$
	変形特性	ν	0.46	0, 43	0.49	0.46
変形	動的 変形特性	G_0 (N/mm ²)	251-2.10·Z	332	395	161
特性		νd	$0.463 \! + \! 0.00017 \! \cdot Z$	0.44	0.46	0.48
		$G/G_0 \sim \gamma$	$1/(1+2.65 \gamma^{1.37})$	$1/(1+2.97 \gamma^{0.96})$	$1/(1+3.03 \gamma^{0.852})$	1/(1+3. 71 γ ^{0.97})
		$h \sim \gamma$ (%)	$27.4\gamma^{1.00}\!+\!0.7$	23. 0 γ ^{0.93} +2. 3	8.49 y ^{0.323}	26. 4 γ ^{0.75} +1. 2
		С _и (N/шт ²)	低圧部: r _R =0.58-0.0011・Z 高圧部: C _u =0.83-0.0056・Z	$0.42 \pm 0.31 \cdot P$	$0.98 \pm 0.66 \cdot P$	$0.076 \pm 0.69 \cdot P$
強度	ピーク強度	ф _и (°)	6.5+0.021 · Z	0	0	0
特性		σ_t (N/mm ²)	0, 48	=	-	-
	残留强度	C_w (N/mm ²)	0.49-0.0016·Z	$0.42 \pm 0.22 \cdot P$	$0.62 \pm 0.72 \cdot P$	$0.065 \pm 0.41 \cdot P$

表 4-2 解析用物性值 (1/2)

注記*1 Zは, T.M.S.L.(m)を示す。 *2 Pは,平均有効拘束圧(N/mm²)を示す。 *3 yは,せん断ひずみ(%)を示す。

- 4X エ - ム パキル1/11/2011上11日 (4/4	衣 4-2
----------------------------------	-------

物	性値	地層区分	香神砂層	新期砂層	埋戻土	備考
t.	物理特性	ρ ; (g/cm ³)	1.83	1.89	1.90	5 us
	静的	E_0 (N/mm ²)	147	29. 4	58.8	
	変形特性	ν	0.32	0.32	0. 32	reading and a second se
変形	動的 変形特性	G_{0} (N/mm ²)	133	66.7	198 σ _v ^{+ 0, 667}	3日-95 田-91 世-92 田-95 日本10 日本10 日本10 日本10 日本10 日本10 日本10 日本10
特性		v d	0.44	0.41	0.33	
		$G / G_0 \sim \gamma$	備考を参照	備考を参照	$1/(1+9, 42 \gamma^{1.05})$	
		$h \sim \gamma$ (%)	備考を参照	備考を参照	36.7γ ^{0.545}	■ 0 12 00 12 00 12 00 12 00 12 00 10 10 10 10 10 10 10 10 10 10 10 10
		C_u (N/mm ²)	0.07	-		
強度	ピーク強度	φ _u (°)	29. 2	-	-	
特性		σ_1 (N/mm ²)	-	-	-	
	残留强度	C_{ur} (N/mm ²)	0	-		

注記*1 Zは, T.M.S.L. (m)を示す。 *2 γは, せん断ひずみ (%)を示す。 *3 σ_v'は,有効上載圧(N/mm²)を示す。

(c) 入力地震動

入力地震動は荒浜側の基準地震動(Ss-1~7)とし,解析モデル下端に入力する。 なお,解放基盤表面標高は T.M.S.L. - 300m とする。

(d) 地下水位

地下水位は柏崎刈羽原子力発電所原子炉設置変更許可申請書(3 号及び4 号)における基礎地盤の安定性評価に用いたもののほか,地下水位観測記録に基づき設定する。各評価対象地点における地下水位の設定を表4-3に示す。

• • • –	
評価対象地点	地下水位
\bigcirc	T.M.S.L.1.0m
2	T.M.S.L.1.0m
3	T. M. S. L. 10. Om
4	T. M. S. L. 15. Om

表 4-3 地下水位の設定

b. 揺すり込みによる沈下率の設定

揺すり込みによる沈下率の算定結果を表 4-4 に示す。

算定した沈下率は全て2.0%以下となっていることから,可搬型重大事故等対処設備の保 管場所及び屋外アクセスルートにおける揺すり込みによる沈下量の算定に用いる沈下率 (B)は、2.0%と設定する。

₩	揮亭		不飽和層における揺すり込み沈下率(%)										
(東) 	(下MSI)	C - 1	Ss	-2	C - 0	Ss	-4	Ss	-5	Ss	-6	Ss	-7
地尽	(1. M. S. L)	55-1	EW	NS	55-3	EW	NS	EW	NS	EW	NS	EW	NS
1	5m	0.73	1.24	1.09	0.86	1.02	0.62	0.96	0.33	1.22	0.71	1.19	0.45
2	5m	0.22	1.12	0.69	0.27	0.59	0.43	0.26	0.16	0.43	0.34	0.30	0.21
3	13m	0.20	0.66	0.49	0.21	0.48	0.33	0.24	0.13	0.41	0.27	0.28	0.18
4	37m	1.09	0.88	0.81	1.09	0.75	0.34	1.11	0.44	1.15	0.53	1.26	0.38

表 4-4 揺すり込みによる沈下率の算定結果

- 4.5 不等沈下量及び傾斜量の算定方法
 - (1) 不等沈下量の算定方法

不等沈下量については、地中埋設構造物(地盤改良体を含む)と埋戻部等との境界部に生 ずる段差量を評価する。不等沈下量の算定方法を表 4-5 に示す。

沈下量評価位置に着目すると、その前後で連続して同じ地層が分布していることから、その堆積状況が不等沈下量の算定に対して影響を与えることはない。また、表 4-5 に示すとおり、地中埋設構造物と埋戻部等との境界部に生ずる不等沈下量は、地下水位及び西山層の高低によらず、地中埋設構造物高さ×2.0%で表される。

表 4-5 地中埋設構造物(地盤改良体を含む)位置における不等沈下量の算定方法

(2) 保管場所におけ傾斜量の算定方法

保管場所における傾斜量の算定については、各評価地点(中央部及び両端部)における地 盤沈下量に基づき算定する。保管場所における傾斜量の算定方法を表 4-6 に示す。

傾斜量の算定にあたっては、地層の分布及び傾きを保守的に考慮するため、各評価地点で 算定した沈下量の最大値と沈下量無しを組み合わせて傾斜量を算定する。

表 4-6 保管場所における傾斜量の算定方法

- 5. 保管場所における液状化及び揺すり込みによる不等沈下・傾斜,液状化に伴う浮上りによる 影響評価について
- 5.1 概要

可搬型重大事故等対処設備の保管場所においては,液状化及び揺すり込みによる不等沈下・ 傾斜,液状化に伴う浮上りによる保管場所への影響を評価している。

ここでは,可搬型重大事故等対処設備の保管場所における液状化及び揺すり込みによる不等 沈下・傾斜,液状化に伴う浮上りによる影響評価について説明する。

- 5.2 液状化及び揺すり込みによる不等沈下・傾斜
 - (1) 評価方法

液状化及び揺すり込みによる不等沈下・傾斜に対する影響評価については、液状化及び揺 すり込みによる不等沈下・傾斜による保管場所への影響を評価する。

保管場所への影響評価では,液状化及び揺すり込みによる沈下量及び傾斜量を算定し,評 価基準内に収まることを確認する。

a. 不等沈下に対する影響評価方法

不等沈下に対する影響評価では、「4. 液状化及び揺すり込みによる沈下量の算定方法に ついて」に示すとおり、保管場所直下の地盤改良等とアクセスルート(地山)の境界部に 生ずる相対沈下量を算定する。

不等沈下に対する影響評価位置は,相対沈下量が保守的となるように,液状化及び揺す り込みによって沈下しないアスファルト舗装,コンクリート舗装及び地盤改良体の施工厚 さが最も大きくなる保管場所の境界部とする。保管場所における液状化及び揺すり込みに よる不等沈下に対する影響評価位置及び断面図を図 5-1 に示す。

図 5-1 液状化及び揺すり込みによる不等沈下に対する影響評価位置及び断面図

b. 傾斜に対する影響評価方法

傾斜に対する影響評価では、「4. 液状化及び揺すり込みによる沈下量の算定方法につい て」に示すとおり、保管場所の端部及び中央部の評価地点での沈下量を保管場所の長さで 除した傾斜量により評価する。なお、保管場所の長さは、傾斜量が保守的となるように、 短辺方向(汀線直角方向)の長さとする。

傾斜に対する影響評価断面位置及び断面図を図 5-2 に示す。

図 5-2 液状化及び揺すり込みによる傾斜に対する影響評価断面位置及び断面図

c. 液状化による沈下量

液状化による沈下量については、地下水位以深の飽和砂質地盤全て(埋戻土,新期砂 層・沖積層、番神砂層・大湊砂層及び古安田層)を対象層とし、「4. 液状化及び揺すり 込みによる沈下量の算定方法について」に示すとおり、対象層厚の2.0%を沈下量として 算定する。

d. 揺すり込みによる沈下量

揺すり込みによる沈下量については、地下水位以浅の不飽和砂質地盤全てを対象層と し、「4. 液状化及び揺すり込みによる沈下量の算定方法について」に示すとおり、対 象層厚の 2.0%を沈下量として算定する。

e. 地下水位の設定

評価箇所周辺に工認対象の施設がある場合はその設計地下水位を、工認対象の施設が ない場合には、建設時の設計地下水位あるいは既往の観測記録に基づいて設定する。沈 下量及び傾斜量の算定に用いる地下水位は、V-2「耐震性に関する説明書」のうちV-2-別添 3-2「可搬型重大事故等対処設備の保管場所における入力地震動」における各保管 場所の地震応答解析モデルに基づき、荒浜側高台保管場所については T.M.S.L. 9.0m~ T.M.S.L. 15.5m,大湊側高台保管場所については T.M.S.L. 13.0m~T.M.S.L. 19.2m, 5 号機 東側保管場所及び 5 号機東側第二保管場所については T.M.S.L. 12.0m (地表面)と設定 する。

ただし、液状化による沈下量と揺すり込みによる沈下量は、ともに層厚の2.0%として 算定されるため、地下水位の設定による沈下量への影響はない。

f. 評価基準

評価基準については,可搬型重大事故等対処設備が徐行により走行可能な段差量15cm *1及び登坂可能な勾配15%*2とする。なお,可搬型重大事故等対処設備の段差量15cmの通行性及び段差通行後の健全性の検証については,「9. 屋外アクセスルートの段差緩和対策について」に示す。

- 注記*1 : 地震時の段差被害に対する補修と交通解放の管理・運用方法について (佐藤ら 2007 年)
 - *2 :小規模道路の平面線形及び縦断勾配の必要水準に関する基礎的検討 (濱本ら 2012年)

- (2) 評価結果
 - a. 不等沈下の評価

液状化及び揺すり込みによる不等沈下に対する影響評価結果について,不等沈下量の算 定結果を表 5-1 に,保管場所への影響評価結果を表 5-2 に示す。

評価の結果,算定した沈下量は評価基準を満足することから『問題なし』と評価し,液 状化及び揺すり込みによる不等沈下が保管場所に影響を及ぼさないことを確認した。

保管場所	概略断面図	対象厚さ (m)	不等 沈下量 (cm)	評価基準 (cm)
荒浜側高台 保管場所	▽T. M. S. L. 約37m 不等沈下評価位置 アスファルト舗装:5cm コンクリート舗装:40cm 地盤改良:100cm	1.4	2.8	
大湊側高台 保管場所	▽T. M. S. L. 約35m F 不等沈下評価位置 アスファルト舗装:5cm 路盤:30cm 地盤改良:40cm	0.4	0.8	
5 号機東側 保管場所	▼T. M. S. L. 約12m 不等沈下評価位置 アスファルト舗装:10cm 路盤:15cm 鉄筋コンクリート:200cm (排水路に対する浮上り対策)	2.0	4. 0	15
5 号機東側第二 保管場所	▼T. M. S. L. 約12m 不等沈下評価位置 アスファルト舗装:5cm 路盤:10cm 地盤改良:300cm	3. 0	6. 0	

表 5-1 不等沈下の算定結果

		評価	結果	
被害要因	荒浜側高台	大湊側高台	5 号機東側	5号機東側第二
	保管場所	保管場所	保管場所	保管場所
液状化及び揺すり込みによ				
る不等沈下・傾斜(不等沈	問題なし	問題なし	問題なし	問題なし
下)				

表 5-2 液状化及び揺すり込みによる不等沈下に対する影響評価結果

b. 傾斜の評価

液状化及び揺すり込みによる傾斜に対する影響評価結果について,各保管場所の液状化 及び揺すり込みによる影響評価断面位置及び断面図を図 5-3~図 5-6 に,各保管場所の 液状化及び揺すり込みによる傾斜量の算定結果を表 5-3~表 5-6 に,保管場所への影響 評価結果を表 5-7 に示す。

算定した傾斜量は評価基準を満足することから『問題なし』と評価し、液状化及び揺す り込みによる傾斜が保管場所に影響を及ぼさないことを確認した。

H

5号機東側保管場所

【T.M.S.L.約12m】

影響評価断面

図 5-3 荒浜側高台保管場所の液状化及び揺すり込みによる影響評価断面位置及び断面図

							•	
		西	側	中央部		東側		
沈下対象層		(地下水位:T.M.S.L.9.0m)		(地下水位:T.M.S.L.12.8m)		(地下水位:T.M.S.L.15.5m)		
		対象厚さ	沈下量	対象厚さ	沈下量	対象厚さ	沈下量	
		(m)	(cm)	(m)	(cm)	(m)	(cm)	
地下水	埋戻土	19.7	40	18.7	38	6.0	12	
位以浅	新期砂層	8.3	17	5.5	11	15.5	31	
地下水	番神砂層	11 5	0.9	11 4	0.0	C 4	10	
	・大湊砂層	11. 5	23	11.4	23	0.4	13	
世以保	古安田層	20.5	41	21.9	44	21.2	43	
糸	総沈下量	121cm 116cm 99cm					cm	
最	大沈下量	121cm						
保管場所の長さ		約 100m						
保管場所の傾斜 (θ)								
(最大沈下量/保管場		約 1.2%						
所	の長さ)							

表 5-3 荒浜側高台保管場所の液状化及び揺すり込みによる傾斜評価結果

影響評価断面

図 5-4 大湊側高台保管場所の液状化及び揺すり込みによる影響評価断面位置及び断面図

沈下対象層		西	側	中央部		東側		
		(地下水位:T.M.S.L.13.0m)		(地下水位:T.	M. S. L. 18. 5m)	(地下水位:T.M.S.L.19.2m)		
		対象厚さ	沈下量	対象厚さ	沈下量	対象厚さ	沈下量	
		(m)	(cm)	(m)	(cm)	(m)	(cm)	
地下水	埋戻土	22.0	44	16.5	33	6.7	14	
位以浅	新期砂層					9.1	19	
地下水	新期砂層	16 6	9.4	14.0	00	0 1	F	
	・沖積層	10. 0	34	14.0	20	2.1	Ð	
世以休	古安田層	13.7	28	26.1	53	35.8	72	
糸	総沈下量	106cm 114cm 110cm						
最	大沈下量	114cm						
保管場所の長さ		約 80m						
保管場所の傾斜 (θ)								
(最大沈下量/保管場		約 1.4%						
所	の長さ)							

表 5-4 大湊側高台保管場所の液状化及び揺すり込みによる傾斜評価結果

影響評価断面

図 5-5 5号機東側保管場所の液状化及び揺すり込みによる影響評価断面位置及び断面図

沈下対象層		西俱	IJ	中央部		東側		
		(地下水位:T.M.S.L.9.0m)		(地下水位:T.M.S.L.12.0m)		(地下水位:T.M.S.L.12.0m)		
		対象厚さ	沈下量	対象厚さ	沈下量	対象厚さ	沈下量	
		(m)	(cm)	(m)	(cm)	(m)	(cm)	
地下水位	埋戻土	12.0	24	12.0	24	12.8	26	
以深	古安田層	19.7	40	20.3	41	20.2	41	
総沈下量		64 cm 65 cm 67 cm					m	
最大社	冘下量	67 cm						
保管場所	所の長さ	約 14m						
保管場所の傾斜(θ)								
(最大沈下量/保管場		約 4.8%						
所の	長さ)							

表 5-5 5号機東側保管場所の液状化及び揺すり込みによる傾斜評価結果

影響評価断面位置

影響評価断面

図 5-6 5号機東側第二保管場所の液状化及び揺すり込みによる影響評価断面位置及び断面図

		西側		中央部		東側			
※下-	沈下対象層		(地下水位:T.M.S.L.12.0m)		(地下水位:T.M.S.L.12.0m)		(地下水位:T.M.S.L.12.0m)		
亿下对家唐		対象厚さ	沈下量	対象厚さ	沈下量	対象厚さ	沈下量		
		(m)	(cm)	(m)	(cm)	(m)	(cm)		
地下水位	埋戻土	3.1	7	2.0	4	2.0	4		
以深	古安田層	23.9	48	25.0	50	25.1	51		
総沈	下量	55cm	55cm						
最大江	冘下量	55cm							
保管場所	所の長さ	約 10m							
保管場所の傾斜 (θ)									
(最大沈下量/保管場		約 5.5%							
所の	長さ)								

表 5-6 5号機東側第二保管場所の液状化及び揺すり込みによる傾斜評価結果

		評価	結果	
被害要因	荒浜側高台	大湊側高台	5 号機東側	5 号機東側第二
	保管場所	保管場所	保管場所	保管場所
液状化及び揺すり込				
みによる不等沈下・傾	問題なし	問題なし	問題なし	問題なし
斜 (傾斜)				

表 5-7 液状化及び揺すり込みによる傾斜に対する影響評価結果

- 5.3 液状化に伴う浮上り
 - (1) 評価方法

液状化に伴う浮上りに対する影響評価については,液状化に伴う浮上りに対する保管場所 への影響を評価する。保管場所への影響評価では,「トンネル標準示方書(土木学会 2006)」 (以下「トンネル標準示方書」という。)に基づき評価対象とする地中埋設構造物の揚圧力と 抵抗力から浮上りに対する安全率を算定し,算定した浮上り安全率が評価基準以上となるこ とを評価する。評価基準は,浮上りに対する安全率が1.0とする。

a. 浮上りに対する安全率の算定方法

浮上りに対する安全率については、「トンネル標準示方書」に示される式(1)に基づき算 定する。

(浮上りに対する安全率Fsの算定)

Fs= (Ws+WB+2Qs+2QB)
$$/\gamma_i$$
 (Us+UD) ・・・・・式(1)
ここで,

- Ws:上載土の荷重(水の重量を含む)(kN/m)
- W_B:構造物の自重(kN/m)
- Qs:上載土のせん断抵抗力(kN/m)
- QB:構造物側面の摩擦抵抗力(kN/m)
- γ_i:構造物係数
- Us:構造物底面に作用する静水圧による揚圧力(kN/m)
- UD:構造物底面に作用する過剰間隙水圧による揚圧力(kN/m)

図 5-7 力の定義

非液状化層におけるせん断抵抗 Q_s 及び摩擦抵抗 Q_B の算定は、「トンネル標準示方書」 に示される以下の式(2)及び式(3)を用いて評価を実施する。なお、地下水位以深の砂質土 は液状化するものとして扱い、 $Q_s = 0$ 、 $Q_B = 0$ とする。

 $Q_{s} = f_{uw} (c_{s} + K_{0} \cdot \sigma'_{v} \cdot t a n \phi_{s}) H' \cdot \cdots \cdot \vec{x} (2)$ $Q_{B} = f_{us} (c_{B} + K_{0} \cdot \sigma'_{v} \cdot t a n \phi_{B}) H \cdot \cdots \cdot \vec{x} (3)$ $zz \tau,$

- c s:上載土の粘着力
- c_B:側面の粘着力
- φs:上載土のせん断抵抗角
- ϕ_{B} :側面の壁面摩擦角で、 $\phi_{B}=2\phi/3$ とする (ϕ :周辺地盤の内部摩擦角)
- K₀:静止土圧定数
- σ'_v:有効上載圧
- H':上載土の厚さ
- H:構造物の高さ
- fuw, fus: 液状化時の浮上りに関する安全係数

 $(f_{uw} = 1.0, f_{us} = 1.0)$

(a) 荷重·重量

表 5-8 に、上載土の荷重及び構造物の自重に関する評価条件を示す。 地盤の単位体積重量は、V-2「耐震性に関する説明書」のうちV-2-1-3「地盤の支持 性能に係る基本方針」に基づき設定する。地下水の単位体積重量は、地下水の比重を 1.0 として設定する。鉄筋コンクリートの単位体積重量は、コンクリート標準示方書[構造 性能照査編](土木学会、2002 年制定)に基づき設定する。

種別	単位体積重量 γ (kN/m ³)	備考
埋戻土(地下水位以浅)	17.6	湿潤重量
埋戻土 (地下水位以深)	19.0	飽和重量
鉄筋コンクリート	24.0	コンクリート標準示方書 [構造性能照査編] (土木学会,2002 年制定)
地下水	9.8	比重1.0

表 5-8 荷重・重量に関する評価条件

(b) 地盤のせん断抵抗

地盤のせん断抵抗に関する評価条件を表 5-9 に示す。 地盤の粘着力 c 及び内部摩擦角 φ は、V-2「耐震性に関する説明書」のうちV-2-1-3 「地盤の支持性能に係る基本方針」に基づき設定する。

表 5-9 地盤のせん断抵抗に関する評価条件

括则	粘着力	内部摩擦角
个里力リ	$c (kN/m^2)$	ϕ (°)
埋戻土(地下水位以浅)	9.6	34.8

(c) 構造物側方の摩擦抵抗

構造物側方の摩擦抵抗に関する評価条件を表 5-10 に示す。 構造物側方の摩擦抵抗は,式(4)に基づき地盤改良体の設計一軸圧縮強度 qu から算定 した粘着力 c とする。

種別	粘着力 c (kN/m²)	内部摩擦角 φ (°)	備考
構造物一地盤改良体	1500	0	設計一軸圧縮強度 qu=3000kN/m ²

表 5-10 構造物側方の摩擦抵抗に関する評価条件

(d) 地下水位

地下水位は、「5.2 液状化及び揺すり込みによる不等沈下・傾斜」と同様に、評価箇 所周辺に工認対象の施設がある場合はその設計地下水位を、工認対象の施設がない場合 には、建設時の設計地下水位あるいは既往の観測記録に基づいて設定する。浮上り評価 に用いる地下水位は、V-2「耐震性に関する説明書」のうちV-2-別添 3-2「可搬型重大 事故等対処設備の保管場所における入力地震動」における各保管場所の地震応答解析モ デルから各々最も高い水位を選定し、荒浜側高台保管場所については T.M.S.L. 17.0m、 大湊側高台保管場所については T.M.S.L. 19.2m,5 号機東側保管場所及び 5 号機東側第二 保管場所については T.M.S.L. 12.0m(地表面)と設定する。

また,構造物底面に作用する静水圧による揚圧力Usの算定は,「トンネル標準示方書」 に基づき式(5)により算定する。 ここで,

- γw:地下水の単位体積重量
- Z_B:地表から構造物底面までの深さ
- Zw:地表から地下水面までの深さ
- B :構造物の幅

(e) 揚圧力

共同溝設計指針*では,粘性土等への根入れが不十分(根入れ長が1m未満)な場合に は,安全側の配慮から式(6)に示すとおり,過剰間隙水圧による揚圧力を基礎底面に作 用させ,浮上りの検討を行うものとしている。構造物の側方に地盤改良体が存在しない, 粘性土への根入れ長が1m未満の構造物に対しては,構造物底面に作用する過剰間隙水圧 による揚圧力Upを作用させるものとする。

また,共同溝設計指針では,図 5-8 に示す液状化に対する抵抗率F_Lと過剰間隙水圧 比L_uの関係が示されているが,本検討では過剰間隙水圧比L_u=1(最大値)として過 剰間隙水圧による揚圧力U_Dを算出する。

 $U_D = L_u \cdot \sigma_v' \cdot B$ · · · · · · · · · · · · · · 式(6) ここで,

- L_u:過剰間隙水圧比(=1)
- σ v': 基礎底面位置における初期有効上載荷圧
- B :構造物の幅

注記*:共同溝設計指針(日本道路協会,1986) 図 5-8 液状化に対する抵抗率F_Lと過剰間隙水圧比L_uの関係 b. 浮上り評価対象の抽出

図 5-9 及び図 5-10 に保管場所を横断する地中埋設構造物位置及び断面図を示す。 浮上り評価対象構造物は,保管場所を横断する地中埋設構造物とする。なお,荒浜側 高台保管場所及び大湊側高台保管場所については,対象となる地中埋設構造物が存在し ない。

図 5-9 保管場所を横断する地中埋設構造物位置及び断面図(5号機東側保管場所)

図 5-10 保管場所を横断する地中埋設構造物位置及び断面図(5号機東側第二保管場所)

(2) 評価結果

液状化に伴う浮上りに対する影響評価結果について,浮上りに対する安全率算定結果を表 5-11に,評価結果を表 5-12に示す。

荒浜側高台保管場所及び大湊側高台保管場所については,対象となる地中埋設構造物が存 在しないことから『該当なし』と評価し,液状化に伴う浮上りが保管場所に影響を及ぼさな いことを確認した。

また,5号機東側保管場所及び5号機東側第二保管場所については,評価対象とした地中 埋設構造物の浮上りに対する安全率が評価基準を満足することから『問題なし』と評価し, 液状化に伴う浮上りが保管場所に影響を及ぼさないことを確認した。

保管場所	名称	揚圧力 (kN/m)	浮上り 抵抗力 (kN/m)	浮上りに対する安全率	評価基準
5 号機東側 保管場所	排水路 ヒューム管 (φ900)	133. 1	139.0	1.04	
5 号機東側	排水路 ヒューム管 (φ1200)	112.9	5264	46.6	1.0
第二保管場所	排水路 ヒューム管 (φ 900)	63.0	1462	23.2	

表 5-11 浮上りに対する安全率算定結果

表 5-12 液状化に伴う浮上りに対する影響評価結果

	評価結果			
被害要因	荒浜側高台	大湊側高台	5 号機東側	5 号機東側第二
	保管場所	保管場所	保管場所	保管場所
液状化に伴う浮上り	該当なし	該当なし	問題なし	問題なし

- 6. 保管場所における地盤支持力評価について
- 6.1 概要

可搬型重大事故等対処設備の保管場所における地盤支持力評価は,地盤支持力の不足による 保管場所への影響を評価する。

ここでは、上記評価方法及び評価結果について説明する。

6.2 評価方法

保管される可搬型重大事故等対処設備の地震時接地圧に対する安全率を算定し,算定した地 震時接地圧に対する安全率が評価基準を上回ることを確認する。

(1) 地震時接地圧の算定

地震時接地圧については、V-2「耐震性に関する説明書」のうちV-2-別添 3-2「可搬型重 大事故等対処設備の保管場所における入力地震動」に基づき、各保管場所の地表面での鉛直 最大応答加速度から鉛直震度係数を算定し、常時接地圧に鉛直震度係数を乗じて算定する。 表 6-1に基準地震動Ssによる各保管場所の鉛直震度係数を示す。

保管場所	地表面での鉛直最大応答加速度 (m/s ²)	鉛直震度係数
荒浜側高台保管場所	10.69	2.09
大湊側高台保管場所	14. 78	2.51
5 号機東側保管場所	5.74	1.59
5号機東側第二保管場所	5. 76	1.59

表 6-1 基準地震動 Ssによる各保管場所の鉛直震度係数

(2) 常時接地圧の算定

常時接地圧は,総重量が最大となる可搬型重大事故等対処設備を保管場所ごとにそれぞれ 選定し,当該可搬型重大事故等対処設備の軸重量を用いて,保管場所の舗装及び地盤改良に よる荷重分散を考慮して地山上の接地圧を算定する。

地山上の接地圧 Pは、下式に基づき算定する。なお、地山上における輪荷重の載荷面が隣 り合う車輪の輪荷重の載荷面と重複する場合は、その重複を考慮する。

P = W / 2 / A

ここで,

W:対象車両の軸重量(kN)

A:地山上における輪荷重の載荷面の面積(m²)

 $A = (W_1 \cdot W_b)$

ここで,

W1:地山上における輪荷重の載荷面延長(m)

 $W_1 = 1_0 + 2 \cdot (h \cdot \tan \theta)$

ここで,

- 1₀:「道路橋示方書・同解説 I 共通編(日本道路協会,平成14年3 月)」におけるT荷重の載荷面延長(m)(=0.2m)
- h:路面から地山までの厚さ(m)
- θ:「道路土工 擁壁工指針(日本道路協会 平成24年3月)」における荷重の分散角度(°)(=30°)
- W_b: 地山上における輪荷重の載荷面幅(m)

 $W_b = W_0 + 2 \cdot (h \cdot \tan \theta)$

- ここで,
 - W₀:「道路橋示方書・同解説 I 共通編(日本道路協会, 平成14年3

月)」におけるT荷重の載荷面幅をもとに設定した幅で、片側2輪の場合は0.5m、片側1輪の場合は0.25m

各保管場所に保管している可搬型重大事故等対処設備一覧表及び選定理由を表 6-2 に,評価の対象とする可搬型重大事故等対処設備の選定結果を表 6-3 に示す。

また,評価対象に選定した大容量送水車(熱交換器ユニット用)の仕様を図 6-1 に,5号 機原子炉建屋内緊急時対策所用可搬型電源設備の仕様を図 6-2 に,可搬型代替注水ポンプ (A-2 級)の仕様を図 6-3 に,各保管場所の舗装構成を図 6-4 に示す。なお,評価する舗 装構成の位置については,保守的な評価となるように地山までの距離が最も小さくなる箇所 を選定する。

保管場所名	設備名	車両総重量	選定理由
	ホイールローダ (6,7 号機共用)	約 15t	
	タンクローリ(4kL)(6,7 号機共用)	約 4t	
	タンクローリ(16kL)(6,7 号機共用)	約 9t	
	可搬型代替注水ポンプ(A-2 級) (6, 7 号機共用)	約 5t	・最大重量である「大容量 送水車 (熱交換器ユニッ
	可搬型代替注水ポンプ(A-1 級) (6,7 号機共用)	約 7t	 ト用)(6,7号機共用)」, 「大容量送水車(原子炉 建屋放水設備用)(67
荒浜側高台 保管場所	電源車(6,7号機共用)	約 8t	号機共用)」,「大容量送 水車(海水取水用)(6,7
	熱交換器ユニット 代替原子炉補機 冷却系熱交換器(6,7号機共用)*	約 15t	 号機共用)」のうち、「大 容量送水車(熱交換器ユ ニット用)(6.7 号機共
	大容量送水車(熱交換器ユニット用) (6,7号機共用)	約 22t	用)」を代表設備として 選定。
	大容量送水車(原子炉建屋放水設備 用)(6,7号機共用)	約 22t	・なお,大容量送水車につ いては,熱交換器ユニッ ト用,原子炉建屋放水設
	大容量送水車(海水取水用) (6,7号機共用)	約 22t	備用, 海水取水用がある が, 全て同じ仕様でぁ
	可搬型窒素供給装置(6,7号機共用)	約 12t	る。
	原子炉建屋放水設備 放水砲 (6,7号機共用)	約 2t	
	泡原液搬送車(6,7号機共用)	約 7t	

表 6-2 各保管場所に保管している可搬型重大事故等対処設備一覧表及び選定理由(1/3)

注記*:熱交換器ユニットについては、保管時に限り、熱交換器、ポンプ、ストレーナ等を内装す るコンテナを車両から取外し、コンテナを専用架台に取付け、地面に固定せずに保管して いるため、車両部(トラクタ・トレーラ部)のみの重量となる。

保管場所名	設備名	車両総重量	選定理由
	ホイールローダ (6,7 号機共用)	約 15t	
	タンクローリ(4kL)(6,7 号機共用)	約 4t	
	タンクローリ(16kL)(6,7 号機共用)	約 9t	
	可搬型代替注水ポンプ(A-2 級) (6,7 号機共用)	約 5t	・最大重量である「大容量
	可搬型代替注水ポンプ(A-1 級) (6,7 号機共用)	約 7t	送水車 (熱交換器ユニッ ト用) (6,7 号機共用)」,
大湊側高台 保管場所	電源車(6,7号機共用)	約 8t	建屋放水設備用)(6,7 号機共用)」,「大容量送
	熱交換器ユニット 代替原子炉補機 冷却系熱交換器(6,7号機共用)*	約 15t	水車(海水取水用)(6,7 号機共用)」のうち,「大 容量送水車(執卒施署コ
	大容量送水車(熱交換器ユニット用) (6,7号機共用)	約 22t	キュレバ軍 (然又換給ユ ニット用) (6,7 号機共 用)」を代表設備として
	大容量送水車(原子炉建屋放水設備 用)(6,7号機共用)	約 22t	選定。 ・なお,大容量送水車につ いては 熱交換器ユニッ
	大容量送水車(海水取水用) (6,7号機共用)	約 22t	ト用,原子炉建屋放水設 備用,海水取水用がある
	可搬型窒素供給装置(6,7号機共用)	約 12t	が,全て同じ仕様であ ろ-
	原子炉建屋放水設備 放水砲 (6,7号機共用)	約 2t	~ ₀
	泡原液搬送車(6,7号機共用)	約 7t	
	5 号機原子炉建屋内緊急時対策所用 可搬型電源設備(6,7号機共用)	約 9t	

表 6-2 各保管場所に保管している可搬型重大事故等対処設備一覧表及び選定理由(2/3)

注記*:熱交換器ユニットについては、保管時に限り、熱交換器、ポンプ、ストレーナ等を内装す るコンテナを車両から取外し、コンテナを専用架台に取付け、地面に固定せずに保管して いるため、車両部(トラクタ・トレーラ部)のみの重量となる。

		[ſ
保管場所名	設備名	車両総重量	選定理由
5 号機東側 保管場所	5 号機原子炉建屋内緊急時対策所用 可搬型電源設備(6,7 号機共用)	約 9t	・保管している設備が1種 類のみであるため,「5 号機原子炉建屋内緊急 時対策所用可搬型電源 設備(6,7号機共用)」を 代表設備として選定。
	タンクローリ(4kL)(6,7 号機共用)	約 4t	 ・車両総重量が大きい、「可 搬型代替注水ポンプ
5 号機東側 第二保管場所	可搬型代替注水ポンプ(A-2 級) (6,7 号機共用)	約 5t	(A-2 級)(6,7 号機共 用)」を代表設備として 選定。

表 6-2 各保管場所に保管している可搬型重大事故等対処設備一覧表及び選定理由(3/3)

表 6-3 可搬型重大事故等対処設備の選定結果

保管場所	保管場所 設備名称	
荒浜側高台保管場所	大容量送水車 (熱交換器ユニット用)	約 22t
大湊側高台保管場所	大容量送水車 (熱交換器ユニット用)	約 22t
「县地東側伊勞担訴	5号機原子炉建屋内緊急時対策所用	Ý5 0+
3 亏機果則休官场別	可搬型電源設備	
5 号機東側第二保管場所	可搬型代替注水ポンプ(A-2 級)	約 5t

図 6-1 大容量送水車(熱交換器ユニット用)の仕様

図 6-2 5号機原子炉建屋内緊急時対策所用可搬型電源設備の仕様

図 6-3 可搬型代替注水ポンプ(A-2 級)の仕様

(3) 地震時接地圧に対する安全率の算定

地震時接地圧に対する安全率は、保管場所の地山部における地盤の種類による地盤支持力 を、地震時接地圧で除すことで算出する。地盤支持力については、荒浜側高台保管場所、大 湊側高台保管場所及び5号機東側保管場所は主に砂質土で構成されていることから、「道路橋 示方書(IV下部工編)・同解説(日本道路協会、平成24年3月)」を参考に砂質地盤の最大地 盤反力度(常時)の400kN/m²を、5号機東側第二保管場所は主に粘性土で構成されているこ とから、粘性土地盤の最大地盤反力度(常時)の200kN/m²を設定する。

(4) 評価基準

評価基準は、地震時接地圧による安全率が1.0以上とする。

6.3 評価結果

評価結果を表 6-4 に示す。

いずれも地震時接地圧に対する安全率が評価基準を上回っており,地盤支持力の不足による 保管場所への影響はないことを確認した。

被害要因	保管場所	地震時 接地圧 (kN/m ²)	地盤 支持力 (kN/m ²)	地震時接地圧 に対する 安全率	評価 基準
	荒浜側高台保管場所	87	400	4.6	
地盤支持力の	大湊側高台保管場所	74	400	5.4	1.0
不足	5号機東側保管場所	32	400	12.5	1.0
	5号機東側第二保管場所	9	200	22.2	

表 6-4 地盤支持力に対する影響評価結果

- 7. 保管場所及び屋外アクセスルート近傍の障害となり得る構造物と影響評価について 保管場所及び屋外アクセスルート近傍の障害となり得る構造物を抽出し、抽出した構造物に対 し保管場所及び屋外アクセスルートへの影響評価を実施した。また、影響評価における建屋の倒 壊による影響範囲については、過去の地震時の建屋被害事例から損傷モードを想定し、設定した。
- 7.1 保管場所及び屋外アクセスルート近傍の構造物の抽出

図面確認及び現場調査により、保管場所及び屋外アクセスルート近傍の障害となり得る構造物を抽出した。保管場所については、抽出結果を表 7-1 及び表 7-2 に、抽出した構造物の配置を図 7-1~図 7-3 に示す。屋外アクセスルートについては、抽出結果を表 7-3 及び表 7-4 に、抽出した構造物の配置を図 7-4~図 7-9 に示す。

管理番号	構造物名称	参照図面
1	環境管理棟	<u>v</u> 7 1
109	荒浜側高台資機材倉庫	
71	大湊側緊急用電気品室	
72	大湊側高台資機材倉庫	
102	自衛消防センター	⊠ 7-2
103	大湊高台宿直棟	
104	暫定宿直棟	
67	5号機格納容器圧力逃がし装置基礎	
70	5 号機サービス建屋	⊠ 7-3
108	5 号機連絡通路	

表 7-1 保管場所の周辺構造物(建屋)

表 7-2 保管場所の周辺構造物(建屋以外)

T 5 号機主排	均衡 図 7-3
----------	----------

管理番号	構造物名称	参照図面	
1	環境管理棟		
2	水循環ポンプ小屋	図 7-4	
33	荒浜側緊急用 M/C 建屋		
34	154kV 変電所遮風壁		
3	社員駐車場連絡通路(東側)		
4	No.2保全部倉庫		
5	総務部倉庫		
6	詰所		
7	発電所車庫 (F棟)		
8	電気自動車電源設備用倉庫		
9	情報センター棟増築		
10	総合情報センター棟		
11	事務建屋(第Ⅲ期)		
12	事務建屋(第I期)		
13	事務建屋(第Ⅱ期)		
14	免震重要棟	図 7-5	
15	免震重要棟雑排水槽用貯水槽ポンプ室		
16	500kV 開閉所遮風壁		
17	重量品倉庫1		
18	重量品倉庫2		
19	技術部倉庫		
20	燃料G倉庫		
21	備品倉庫		
22	純水移送ポンプ室		
23	飲料水ポンプ室		
24	No.1 倉庫		
110	安全施設建設センター事務所		

表 7-3	屋外アクセスルー	トの周辺構造物	(建屋)	(1/5)
-------	----------	---------	------	-------

管理番号	構造物名称	参照図面
25	保安倉庫	
26	荒浜側発電倉庫	
27	第二資材倉庫	
28	No.1~3 高圧ガスボンベ倉庫	
29	荒浜側予備品倉庫	<u> X</u> 1-5
30	潤滑油倉庫 (危険物倉庫)	
31	北側 66kV 開閉所	
32	荒浜立坑換気塔	
35	大湊立坑換気塔	
36	協力企業I社事務所	
37	給水建屋	
38	大湊側ディーゼル駆動消火ポンプ建屋	
39	5 号機地震観測計器室	
40	出入管理建屋(大湊側)(増築)	
41	出入管理建屋(大湊側)	
42	7 号機 H ₂ , O ₂ , CO ₂ ボンベ建屋	
43	7号機ボール捕集器ピット上屋	
44	7号機復水器連続洗浄装置制御盤室他	図 7-6
45	6 号機 H ₂ , O ₂ , CO ₂ ボンベ建屋	
46	6 号機ボール捕集器ピット上屋	
47	6号機復水器連続洗浄装置制御盤建屋	
48	6 号機 CO ₂ ボンベ建屋	
49	7 号機タービン建屋	
50	7号機原子炉建屋	
51	6/7号機廃棄物処理建屋	
52	6/7 号機コントロール建屋	
53	6/7 号機サービス建屋	

表 7-3 屋外アクセスルートの周辺構造物(建屋) (2/5)

管理番号	構造物名称	参照図面
54	6/7 号機連絡通路	
55	6 号機タービン建屋	
56	7号機大物搬入建屋	
57	OF-CV 洞道入口建屋	
58	5 号機 H ₂ , O ₂ , CO ₂ ボンベ建屋	
59	5 号機 N ₂ , CO ₂ ボンベ建屋	
60	5号機海水熱交換器建屋排風機室	
61	5号機ボール捕集器ピット上屋	
62	5号機大物搬入建屋	N 7 6
63	5 号機タービン建屋	⊠ 7−0
64	補助ボイラー建屋	
65	雑固体廃棄物焼却設備建屋(大湊側)	
66	5 号機サービス建屋車庫	
67	5号機格納容器圧力逃がし装置基礎	
68	5 号機主排気モニタ建屋	
69	5 号機原子炉建屋	
70	5 号機サービス建屋	
101	7 号機格納容器圧力逃がし装置基礎	
71	大湊側緊急用電気品室	
72	大湊側高台資機材倉庫	
73	大湊側津波対策品倉庫	
74	固体廃棄物処理建屋	
75	固体廃棄物貯蔵庫	
76	固体廃棄物ポンプ室建屋	
102	大湊高台自衛消防センター	
103	大湊高台宿直棟	
104	暫定宿直棟	
107	廃棄物一時保管庫	

表 7-3 屋外アクセスルートの周辺構造物(建屋) (3/5)
管理番号	構造物名称	参照図面
77	協力企業 A 社 事務所	
78	協力企業A社 倉庫	
79	協力企業 B 社 柏崎事業所	
80	協力企業C社事務所棟	
81	協力企業C社 食堂売店棟	
82	協力企業 D 社/E 社合同棟 事務所・詰所	
83	協力企業 D 社/E 社合同棟 仮設事務所	
84	協力企業 D 社/E 社合同棟 倉庫棟	
85	協力企業 D 社/E 社合同棟 仮設事務所 2	
86	協力企業 F 社 事業所	図 7-8
87	協力企業事務所	
88	協力企業 G 社 仮設詰所・倉庫	
89	協力企業 G 社 仮設詰所・倉庫 2	
90	協力企業 G 社 仮設詰所・倉庫 3	
91	協力企業 G 社 事務所	
92	協力企業G社 詰所	
93	協力企業 H 社 事務所	
105	第2企業センター合同棟	
106	協力企業J社事務所	
94	土木企業体 現場事務所①	₩ 7 O
95	土木企業体 現場事務所②	因 7 — 9

表 7-3 屋外アクセスルートの周辺構造物(建屋) (4/5)

• •		
管理番号	構造物名称	参照図面
96	土木企業体 現場事務所③	
97	土木企業体 現場事務所④	
98	土木企業体 現場事務所⑤	図 7-9
99	土木企業体 現場事務所⑥	
100	土木企業体 現場事務所⑦	

表 7-3 屋外アクセスルートの周辺構造物(建屋) (5/5)

管理番号	構造物名称	参照図面
А	154kV 荒浜線鉄塔 No. 25, No. 26	
В	500kV 新新潟幹線鉄塔 No. 1, No. 2	図 7-4
С	500kV 南新潟幹線鉄塔 No. 1, No. 2	
D	通信鉄塔	
Е	1/2 号機主排気筒	
F	3号機主排気筒	
G	4号機主排気筒	図 7-5
Н	免震重要棟屋外遮蔽壁	
Ι	No.1 ろ過水タンク	
J	No.2 ろ過水タンク	
К	6 号機軽油タンク	
L	7 号機軽油タンク	
М	7 号機主変圧器	
Ν	6/7 号機非放射性廃液収集タンク	
0	5 号機非放射性廃液収集タンク	
Р	5 号機軽油タンク(A)	
Q	5 号機軽油タンク(B)	
R	泡原液貯蔵タンク	⊠ 7-6
S	圧力抑制室プール水サージタンク (大湊側)	
Т	5 号機主排気筒	
U	大湊側 純水タンク No. 3	
V	6 号機主排気筒	
W	7 号機主排気筒	
Х	6 号機主変圧器	

表 7-4 屋外アクセスルートの周辺構造物(建屋以外)

図 7-3 保管場所の周辺構造物(5号機東側保管場所及び5号機東側第二保管場所)

図 7-4 屋外アクセスルートの周辺構造物(発電所全体図)

図 7-5 屋外アクセスルートの周辺構造物(荒浜側詳細図)

76

図 7-6 屋外アクセスルートの周辺構造物(大湊側詳細図)

図 7-7 屋外アクセスルートの周辺構造物(大湊側高台詳細図)

図 7-8 屋外アクセスルートの周辺構造物(企業棟詳細図)

図 7-9 屋外アクセスルートの周辺構造物(企業棟詳細図)

- 7.2 構造物の倒壊による保管場所及び屋外アクセスルートへの影響範囲の評価方法
 - (1) 評価方法

保管場所及び屋外アクセスルート近傍の障害となり得るとして抽出した構造物のうち,S クラスもしくはSクラス以外で基準地震動Ssにより倒壊に至らないことを確認している構 造物以外の構造物については,基準地震動Ssにより保守的に倒壊するものとして保管場所 及び屋外アクセスルートへの影響評価を実施した。

ただし、Sクラスの構造物及びSクラス以外で基準地震動Ssにより倒壊に至らないこと を確認している構造物については、保管場所及び屋外アクセスルートへの影響を及ぼさない 構造物とする。

構造物のうち建屋の倒壊による影響範囲は,過去の地震時の建屋被害事例から建屋の損傷 モードを想定し評価した。表 7-5 に示すとおり,建屋の損傷モードを層崩壊及び転倒崩壊と し,影響範囲は全層崩壊,又は建屋の根元から転倒するものとして建屋高さ分を設定した。

建屋以外の構造物の損壊による影響範囲は,構造物が根元から保管場所及び屋外アクセス ルート側に倒壊するものとして設定し評価した。

損傷モード	層崩壊	転倒崩壊
阪神・淡路 大震災時の 被害の特徴	 ○崩壊形状としては、1階層崩壊・中間層崩壊・全層崩壊。 ○柱の耐力不足・剛性の偏在や層間での急な剛性・耐力の違い・重量偏在が崩壊の主な原因に挙げられる。 ○1階層崩壊の被害事例はピロティ構造物の被害率が著しく高い。 ○中間層崩壊は、6~12階建ての建築物に確認されている。 	○1 層層崩壊後に建築物が大きく傾き 転倒に至ったケースが確認されて いる。
想定される 損傷モード	隣接する保管場所及び屋外アクセス ルートへの影響範囲が大きくなると 想定される全層崩壊を損傷モードに 選定した。 損壊 W	1 階層崩壊後に転倒に至る崩壊を想定。 ↓ 1 階層崩壊により 建屋が傾斜し、倒壊 ↓ 1 階層崩壊により
想定する 建屋の 倒壊範囲	全層崩壊は地震時に構造物が受ける エネルギーを各層で配分することから、各層の損傷は小さいため、建屋全体の傾斜は過去の被害事例からも小 さいが、各層が各層高さ分、保管場所 及び屋外アクセスルート側へ大きく 傾斜するものとして設定。	上述の損傷モードに基づき,建屋高さ H 分には到達しないものの H として設 定。
建屋の 倒壊による	[] (建屋高)	H H さ分を設定)
影響範囲		

表 7-5 建屋の損傷モード及び倒壊による影響範囲

(2) 評価基準

評価基準として,保管場所については,倒壊影響範囲との離隔距離0.0m以上を確保できない場合は、倒壊の影響を受けると評価した。なお,保管場所内に施設されている構造物もしくは倒壊影響範囲に保管場所が含まれる構造物については,倒壊影響範囲と可搬型重大事故等対処設備との離隔距離0.0m以上を確保できない場合は,倒壊の影響を受けると評価した。

屋外アクセスルートについては,可搬型重大事故等対処設備が通行可能な道路幅員とし可 搬型重大事故等対処設備として最も全幅の大きい大型車両である熱交換器ユニット 代替原 子炉補機冷却系熱交換器の全幅約 2.5m を考慮し,3.0m とする。3.0m を確保できない場合は, 倒壊の影響を受けると評価した。

評価基準である保管場所若しくは可搬型重大事故等対処設備と倒壊影響範囲との離隔距離 及び可搬型重大事故等対処設備が通行可能な道路幅員の設定方針について,図7-10及び図 7-11に示す。また,図中に示す建屋高さは屋上設置設備を含めた高さと設定した。

図 7-10 保管場所若しくは可搬型重大事故等対処設備と倒壊影響範囲との 離隔距離の設定方針

図 7-11 可搬型重大事故等対処設備が通行可能な道路幅員の設定方針

7.3 構造物の倒壊による保管場所及び屋外アクセスルートへの影響評価結果

構造物の倒壊による保管場所及び屋外アクセスルートへの影響評価結果について,保管場所 への影響評価結果を表 7-6 及び表 7-7 に,倒壊により影響を与える構築物の位置を図 7-12 ~図 7-14 に示す。屋外アクセスルートへの影響評価結果を表 7-8 及び表 7-9 に,倒壊によ り影響を与える構築物の位置を図 7-15~図 7-20 に示す。また,周辺構造物の屋上に設置さ れている設備による屋外アクセスルートへの影響評価結果を表 7-10 に示す。

なお、屋上に設備が設置されている周辺構造物は、V-1-1-7-別添 1「可搬型重大事故等対 処設備の保管場所及びアクセスルート」において仮復旧ルートとして選定したルート周辺に存 在しておらず、柏崎刈羽原子力発電所発電用原子炉設置許可申請書(6号及び7号発電用原子 炉施設の変更)のうち添付資料十「5. 重大事故の発生及び拡大の防止に必要な措置を実施す るために必要な技術的能力」の追補 1.1~1.19 に影響を及ぼさないことを確認した。

					構造物諸	行元			影響評価		
参照 図面	管理 番号	保管場所周辺構造物名称	耐震 クラス	建物 構造	階数 n	高さ(m) H	保管場所との 離隔距離(m) L1	評価方法	判定値 (L1-H)	判定	
	1	環境管理棟	Ν	RC 造	2	8.65	74.54	倒壊による影響範囲を H として評価	65.89	保管場所へ影響なし	
⊠ 7-12	109	荒浜側高台資機材倉庫	Ν	S 造	1	7.05	*1	倒壊による影響範囲を H として評価	*1	倒壊による影響範囲に可搬型重大 事故等対処設備が含まれていない ことを確認し,影響なしと評価。	
	71	大湊側緊急用電気品室	N	S 造	1	5.95	3. 00	倒壊による影響範囲をHとして評価	-2.95*2	倒壊による影響範囲に可搬型重大 事故等対処設備が含まれていない ことを確認し,影響なしと評価。	
図 7-13	72	大湊側高台資機材倉庫	Ν	S 造	1	7.45	*1	倒壊による影響範囲を H として評価	*1	倒壊による影響範囲に可搬型重大 事故等対処設備が含まれていない ことを確認し,影響なしと評価。	
	102	大湊高台自衛消防センター	Ν	RC 造	1	6.05	47.1	倒壊による影響範囲を H として評価	41.05	保管場所へ影響なし	
	103	大湊高台宿直棟	Ν	RC 造	2	8.30	32.1	倒壊による影響範囲を H として評価	23.8	保管場所へ影響なし	
	104	暫定宿直棟	Ν	S 造	1	6.80	97.76	倒壊による影響範囲を H として評価	90.96	保管場所へ影響なし	
	67	5 号機格納容器圧力逃がし装置基礎	В	RC 造	—	_	—	耐震評価に基づき影響がないことを確認		保管場所へ影響なし	
	70	5 号機サービス建屋	Ν	RC 造	3	17.89	29.27	倒壊による影響範囲をHとして評価	11.38	保管場所へ影響なし	
図 7-14	108	5 号機連絡通路	N	RC 造	1	3. 45	3.00	倒壊による影響範囲をHとして評価	-0. 45*2	倒壊による影響範囲に可搬型重大 事故等対処設備が含まれていない ことを確認し,影響なしと評価。	

表 7-6 建屋の損傷モード及び倒壊による影響範囲における保管場所への影響評価結果(建屋)

注記*1:保管場所内に施設されているため、保管場所に保管されている可搬型重大事故等対処設備との距離について評価を実施。

*2: 倒壊による影響範囲に保管場所が含まれるため、保管場所に保管されている可搬型重大事故等対処設備との距離について評価を実施。

表 7-7 構造物の損傷モード及び倒壊による影響範囲における保管場所への影響評価結果(建屋以外)

() 57	6464			構造物諸意	元		影響評価		
参照 図面	管理 番号	保管場所周辺構造物名称	耐震 クラス	高さ(m) H	保管場所との離 隔距離(m)L1	評価方法	判定値 (L1-H)	判定	
図 7-14	Т	5 号機排気筒	С	_	—	耐震評価に基づき影響がないことを確認	—	保管場所へ影響なし	

					構造物諸	元				影響評価
参照 図面	管理 番号	屋外アクセスルート周辺構造物名称	耐震 クラス	建物 構造	階数 n	高さ(m) H	屋外アクセスルート 対象距離(m) L2	評価方法	判定値 (L2-H)	判定
	1	環境管理棟	Ν	RC 造	2	8.65	31.20	倒壊による影響範囲を H として評価	22.55	屋外アクセスルートへ影響なし
	2	水循環ポンプ小屋	Ν	S 造	1	3.17	33.15	倒壊による影響範囲を H として評価	29.98	屋外アクセスルートへ影響なし
図 7-15	33	荒浜側緊急用 M/C 建屋	С	RC 造	1	5.50	15.00	倒壊による影響範囲を H として評価	9.50	屋外アクセスルートへ影響なし
	34	154kV 変電所遮風壁	Ν	RC 造	1	10.90	10.60	倒壊による影響範囲をHとして評価	-0.30	影響あり(徒歩ルート:周辺平坦で あり迂回可)
	3	社員駐車場連絡通路(東側)	Ν	S 造	1	3.39	12.80	倒壊による影響範囲を H として評価	9.41	屋外アクセスルートへ影響なし
	4	No.2保全部倉庫	Ν	S 造	1	6.37	16.50	倒壊による影響範囲をHとして評価	10.13	屋外アクセスルートへ影響なし
-	5	総務部倉庫	Ν	S 造	1	6.30	16.50	倒壊による影響範囲を H として評価	10.20	屋外アクセスルートへ影響なし
	6	詰所	Ν	S 造	2	6.98	16.00	倒壊による影響範囲を H として評価	9.02	屋外アクセスルートへ影響なし
	7	発電所車庫 (F棟)	Ν	S 造	1	2.70	15.80	倒壊による影響範囲を H として評価	13.10	屋外アクセスルートへ影響なし
	8	電気自動車電源設備用倉庫	Ν	S 造	1	2.58	16.30	倒壊による影響範囲を H として評価	13.72	屋外アクセスルートへ影響なし
	9	情報センター棟増築	Ν	S 造	3	14.35	18.00	倒壊による影響範囲をHとして評価	3.65	屋外アクセスルートへ影響なし
	10	総合情報センター棟	Ν	S 造	3	18.05	18.00	倒壊による影響範囲を H として評価	-0.05	影響あり
	11	事務建屋 (第Ⅲ期)	Ν	S 造	2	14.10	13.00	倒壊による影響範囲を H として評価	-1.10	影響あり
	12	事務建屋(第I期)	Ν	S 造	2	14.10	24.00	倒壊による影響範囲をHとして評価	9.90	屋外アクセスルートへ影響なし
	13	事務建屋(第Ⅱ期)	Ν	S 造	2	14.10	14.50	倒壊による影響範囲を H として評価	0.40	影響あり
	14	免震重要棟	Ν	S 造	2	12.56	20.10	倒壊による影響範囲を H として評価	7.54	屋外アクセスルートへ影響なし
	15	免震重要棟雑排水槽用貯水槽ポンプ室	Ν	S 造	1	2.63	16.00	倒壊による影響範囲を H として評価	13.37	屋外アクセスルートへ影響なし
	16	500kV 開閉所遮風壁	Ν	S 造	1	18.00	31.00	倒壊による影響範囲を H として評価	13.00	屋外アクセスルートへ影響なし
	17	重量品倉庫1	Ν	S 造	1	7.84	13.00	倒壊による影響範囲を H として評価	5.16	屋外アクセスルートへ影響なし
図 7-16	18	重量品倉庫2	Ν	S 造	1	9.36	13.00	倒壊による影響範囲を H として評価	3.64	屋外アクセスルートへ影響なし
	19	技術部倉庫	Ν	S 造	1	10.32	12.20	倒壊による影響範囲を H として評価	1.88	影響あり
	20	燃料 G 倉庫	Ν	S 造	2	12.25	12.20	倒壊による影響範囲を H として評価	-0.05	影響あり
	21	備品倉庫	Ν	S 造	1	12.83	22.00	倒壊による影響範囲をHとして評価	9.17	屋外アクセスルートへ影響なし
	22	純水移送ポンプ室	Ν	S 造	1	5.75	13.00	倒壊による影響範囲を H として評価	7.25	屋外アクセスルートへ影響なし
	23	飲料水ポンプ室	Ν	S 造	1	5.90	13.00	倒壊による影響範囲を H として評価	7.10	屋外アクセスルートへ影響なし
	24	No.1 倉庫	Ν	S 造	1	8.60	14.80	倒壊による影響範囲をHとして評価	6.20	屋外アクセスルートへ影響なし
	25	保安倉庫	Ν	S 造	2	5.88	11.50	倒壊による影響範囲をHとして評価	5.62	屋外アクセスルートへ影響なし
	26	荒浜側発電倉庫	Ν	S 造	2	6.13	11.50	倒壊による影響範囲を H として評価	5.37	屋外アクセスルートへ影響なし
	27	第二資材倉庫	Ν	S 造	2	6.85	11.50	倒壊による影響範囲をHとして評価	4.65	屋外アクセスルートへ影響なし
	28	No.1~3 高圧ガスボンベ倉庫	Ν	S 造	1	4.07	11.50	倒壊による影響範囲を H として評価	7.43	屋外アクセスルートへ影響なし
	29	荒浜側予備品倉庫	Ν	S 造	1	8.55	11.50	倒壊による影響範囲をHとして評価	2.95	影響あり
	30	潤滑油倉庫(危険物倉庫)	Ν	S 造	1	4.10	11.50	倒壊による影響範囲をHとして評価	7.40	屋外アクセスルートへ影響なし
	31	北側 66kV 開閉所	С	S 造	1	5.90	29.00	倒壊による影響範囲をHとして評価	23.10	屋外アクセスルートへ影響なし
	32	荒浜立坑換気塔	Ν	RC 造	1	7.00	18.00	倒壊による影響範囲をHとして評価	11.00	屋外アクセスルートへ影響なし
	<mark>110</mark>	安全施設建設センター事務所	N	<mark>S 造</mark>	2	<mark>7.60</mark>	10. 98	倒壊による影響範囲を Hとして評価	<mark>3. 38</mark>	屋外アクセスルートへ影響なし

表 7-8 建屋の損傷モード及び倒壊による影響範囲における屋外アクセスルートへの影響評価結果(建屋)(1/4)

					構造物諸	沅				影響評価
参照 図面	管理 番号	屋外アクセスルート周辺構造物名称	耐震 クラス	建物 構造	階数 n	高さ(m) H	屋外アクセスルート 対象距離 (m) L2	評価方法	判定値 (L2-H)	判定
	35	大湊立坑換気塔	Ν	RC 造	1	6.30	30.00	倒壊による影響範囲を H として評価	23.70	屋外アクセスルートへ影響なし
	36	協力企業 I 社事務所	Ν	S 造	2	6.52	13.00	倒壊による影響範囲を H として評価	6.48	屋外アクセスルートへ影響なし
	37	給水建屋	Ν	S 造	1	5.70	14.20	倒壊による影響範囲を H として評価	8.50	屋外アクセスルートへ影響なし
	38	大湊側ディーゼル駆動消火ポンプ建屋	В	RC 造	1	7.90	14.00	倒壊による影響範囲を H として評価	6.10	屋外アクセスルートへ影響なし
	39	5 号機地震観測計器室	Ν	RC 造	1	2.95	17.00	倒壊による影響範囲を H として評価	14.05	屋外アクセスルートへ影響なし
	40	出入管理建屋 (大湊側) (増築)	Ν	RC 造	2	8.92	13.00	倒壊による影響範囲を H として評価	4.08	屋外アクセスルートへ影響なし
	41	出入管理建屋(大湊側)	Ν	RC 造	2	8.92	25.50	倒壊による影響範囲を H として評価	16.58	屋外アクセスルートへ影響なし
	42	7 号機 H2, 02, C02 ボンベ建屋	Ν	RC 造	1	3.80	20.00	倒壊による影響範囲を H として評価	16.20	屋外アクセスルートへ影響なし
	43	7 号機ボール捕集器ピット上屋	Ν	S 造	1	5.15	9.70	倒壊による影響範囲を H として評価	4.55	屋外アクセスルートへ影響なし
	44	7 号機復水器連続洗浄装置制御盤室他	Ν	RC 造	1	4.20	12.00	倒壊による影響範囲を H として評価	7.80	屋外アクセスルートへ影響なし
	45	6 号機 H ₂ , O ₂ , CO ₂ ボンベ建屋	Ν	RC 造	1	4.45	15.00	倒壊による影響範囲を H として評価	10.55	屋外アクセスルートへ影響なし
	46	6 号機ボール捕集器ピット上屋	Ν	S 造	1	5.15	12.00	倒壊による影響範囲を H として評価	6.85	屋外アクセスルートへ影響なし
	47	6 号機復水器連続洗浄装置制御盤建屋	Ν	RC 造	1	4.20	12.00	倒壊による影響範囲を H として評価	7.80	屋外アクセスルートへ影響なし
	48	6 号機 CO2ボンベ建屋	Ν	RC 造	1	4.40	6.10	倒壊による影響範囲を H として評価	1.70	影響あり
	49	7 号機タービン建屋	В	RC 造	_	_	—	耐震評価に基づき影響がないことを確認	-	屋外アクセスルートへ影響なし
	50	7号機原子炉建屋	S	RC 造	_	_	—	耐震評価に基づき影響がないことを確認	-	屋外アクセスルートへ影響なし
	51	6/7 号機廃棄物処理建屋	В	RC 造		—	—	耐震評価に基づき影響がないことを確認	—	屋外アクセスルートへ影響なし
図 7-17	52	6/7 号機コントロール建屋	S	RC 造	_	—	—	耐震評価に基づき影響がないことを確認	-	屋外アクセスルートへ影響なし
	53	6/7 号機サービス建屋	Ν	RC 造	_	—	—	耐震評価に基づき影響がないことを確認	-	屋外アクセスルートへ影響なし
	54	6/7 号機連絡通路	Ν	RC 造	1	3.96	12.43	倒壊による影響範囲を H として評価	8.47	屋外アクセスルートへ影響なし
	55	6号機タービン建屋	В	RC 造	_	—	—	耐震評価に基づき影響がないことを確認	-	屋外アクセスルートへ影響なし
	56	7 号機大物搬入建屋	В	RC 造	_	—	—	耐震評価に基づき影響が無いことを確認		屋外アクセスルートへ影響なし
	57	OF-CV 洞道入口建屋	Ν	RC 造	1	3.60	14.00	倒壊による影響範囲を H として評価	10.40	屋外アクセスルートへ影響なし
	58	5 号機 H ₂ , O ₂ , CO ₂ ボンベ建屋	Ν	RC 造	1	3.30	17.00	倒壊による影響範囲を H として評価	13.70	屋外アクセスルートへ影響なし
	59	5 号機 N ₂ , CO ₂ ボンベ建屋	Ν	RC 造	1	6.08	17.00	倒壊による影響範囲を H として評価	10.92	屋外アクセスルートへ影響なし
	60	5 号機海水熱交換器建屋排風機室	С	RC 造	1	6.50	9.50	倒壊による影響範囲を H として評価	3.00	屋外アクセスルートへ影響なし
	61	5 号機ボール捕集器ピット上屋	Ν	S 造	1	4.85	13.00	倒壊による影響範囲を H として評価	8.15	屋外アクセスルートへ影響なし
	62	5号機大物搬入建屋	Ν	RC 造	1	10.70	18.00	倒壊による影響範囲を H として評価	7.30	屋外アクセスルートへ影響なし
	63	5号機タービン建屋	В	RC 造	—	—	—	耐震評価に基づき影響がないことを確認	—	屋外アクセスルートへ影響なし
	64	補助ボイラー建屋	Ν	S 造	2	12.70	9.00	倒壊による影響範囲を H として評価	-3.70	影響あり
	65	雑固体廃棄物焼却設備建屋(大湊側)	С	S 造	4	21.30	9.00	倒壊による影響範囲をHとして評価	-12.30	影響あり
	66	5 号機サービス建屋車庫	Ν	RC 造	1	3.30	22.00	倒壊による影響範囲をHとして評価	18.70	屋外アクセスルートへ影響なし
	67	5号機格納容器圧力逃がし装置基礎	В	RC 造	_	_		耐震評価に基づき影響がないことを確認	—	屋外アクセスルートへ影響なし
	68	5号機主排気モニタ建屋	Ν	RC 造	1	5.40	15.00	倒壊による影響範囲をHとして評価	9.60	屋外アクセスルートへ影響なし
	69	5 号機原子炉建屋	S	RC 造		_	_	耐震評価に基づき影響がないことを確認	_	屋外アクセスルートへ影響なし

表 7-8 建屋の損傷モード及び倒壊による影響範囲における屋外アクセスルートへの影響評価結果(建屋)(2/4)

					構造物諸	行元				影響評価
参照 図面	管理 番号	屋外アクセスルート周辺構造物名称	耐震 クラス	建物 構造	階数 n	高さ(m) H	屋外アクセスルート 対象距離(m) L2	評価方法	判定値 (L2-H)	判定
図 7-17	70	5 号機サービス建屋	Ν	RC 造	3	17.89	10.00	倒壊による影響範囲を H として評価	-7.89	影響あり(徒歩ルート : 周辺平坦で あり迂回可)
	101	7 号機格納容器圧力逃がし装置基礎	В	RC 造	—	_		耐震評価に基づき影響が無いことを確認	_	屋外アクセスルートへ影響なし
	71	大湊側緊急用電気品室	Ν	S 造	1	5.95	33.00	倒壊による影響範囲をHとして評価	27.05	屋外アクセスルートへ影響なし
	72	大湊側高台資機材倉庫	Ν	S 造	1	7.45	56.00	倒壊による影響範囲をHとして評価	48.55	屋外アクセスルートへ影響なし
	73	大湊側津波対策品倉庫	N	S 造	1	7.35	25.50	倒壊による影響範囲をHとして評価	18.15	屋外アクセスルートへ影響なし
	74	固体廃棄物処理建屋	В	RC 造	1	13.60	10.80	倒壊による影響範囲をHとして評価	-2.80	影響あり(徒歩ルート : 周辺平坦で あり迂回可)
図 7-18	75	固体廃棄物貯蔵庫	В	RC 造	1	5.20	27.50	倒壊による影響範囲をHとして評価	22.30	屋外アクセスルートへ影響なし
	76	固体廃棄物ポンプ室建屋	В	RC 造	1	5.00	15.00	倒壊による影響範囲をHとして評価	10.00	屋外アクセスルートへ影響なし
	102	大湊高台自衛消防センター	N	RC 造	1	6.05	11.50	倒壊による影響範囲を H として評価	5.45	屋外アクセスルートへ影響なし
	103	大湊高台宿直棟	Ν	RC 造	2	8.30	19.50	倒壊による影響範囲をHとして評価	11.20	屋外アクセスルートへ影響なし
	104	暫定宿直棟	N	S 造	1	6.80	10.00	倒壊による影響範囲をHとして評価	3.20	屋外アクセスルートへ影響なし
	107	廃棄物一時保管庫	N	S 造	1	7.40	34.00	倒壊による影響範囲を H として評価	26.60	屋外アクセスルートへ影響なし
	77	協力企業 A 社 事務所	N	S 造	3	12.00	16.00	倒壊による影響範囲をHとして評価	4.00	屋外アクセスルートへ影響なし
	78	協力企業 A 社 倉庫	Ν	S 造	2	9.00	14.60	倒壊による影響範囲をHとして評価	5.60	屋外アクセスルートへ影響なし
	79	協力企業 B 社 柏崎事業所	N	S 造	2	7.45	27.85	倒壊による影響範囲をHとして評価	20.40	屋外アクセスルートへ影響なし
	80	協力企業 C 社 事務所棟	N	S 造	2	7.50	32.00	倒壊による影響範囲をHとして評価	24.50	屋外アクセスルートへ影響なし
	81	協力企業 C 社 食堂売店棟	N	S 造	1	3.65	15.96	倒壊による影響範囲をHとして評価	12.31	屋外アクセスルートへ影響なし
	82	協力企業 D 社/E 社合同棟 事務所・詰所	N	S 造	2	9.08	16.28	倒壊による影響範囲をHとして評価	7.20	屋外アクセスルートへ影響なし
	83	協力企業 D 社/E 社合同棟 仮設事務所	N	S 造	2	6.00	13.00	倒壊による影響範囲をHとして評価	7.00	屋外アクセスルートへ影響なし
	84	協力企業 D 社/E 社合同棟 倉庫棟	N	S 造	2	9.23	13.00	倒壊による影響範囲をHとして評価	3.77	屋外アクセスルートへ影響なし
	85	協力企業 D 社/E 社合同棟仮設事務所 2	N	S 造	2	6.00	13.00	倒壊による影響範囲をHとして評価	7.00	屋外アクセスルートへ影響なし
図 7-19	86	協力企業 F 社 事業所	N	S 造	2	8.70	25.00	倒壊による影響範囲をHとして評価	16.30	屋外アクセスルートへ影響なし
	87	協力企業事務所	Ν	S 造	2	6.00	15.40	倒壊による影響範囲を H として評価	9.40	屋外アクセスルートへ影響なし
	88	協力企業 G 社 仮設詰所・倉庫	N	S 造	2	6.00	14.90	倒壊による影響範囲をHとして評価	8.90	屋外アクセスルートへ影響なし
	89	協力企業 G 社 仮設詰所・倉庫 2	Ν	S 造	1	3.00	11.40	倒壊による影響範囲をHとして評価	8.40	屋外アクセスルートへ影響なし
	90	協力企業 G 社 仮設詰所・倉庫 3	Ν	S 造	1	3.00	11.40	倒壊による影響範囲をHとして評価	8.40	屋外アクセスルートへ影響なし
	91	協力企業 G 社 事務所	Ν	S 造	2	6.00	11.80	倒壊による影響範囲をHとして評価	5.80	屋外アクセスルートへ影響なし
	92	協力企業 G 社 詰所	N	S 造	2	6.00	11.90	倒壊による影響範囲を H として評価	5.90	屋外アクセスルートへ影響なし
	93	協力企業 H 社 事務所	Ν	S 造	2	9.03	19.00	倒壊による影響範囲を H として評価	9.97	屋外アクセスルートへ影響なし
	105	第2企業センター合同棟	Ν	S 造	3	12.30	25.00	倒壊による影響範囲を H として評価	12.70	屋外アクセスルートへ影響なし
	106	協力企業J社事務所	N	S 造	2	7.90	25.00	倒壊による影響範囲をHとして評価	17.10	屋外アクセスルートへ影響なし

表 7-8 建屋の損傷モード及び倒壊による影響範囲における屋外アクセスルートへの影響評価結果(建屋)(3/4)

					構造物諸	行元			影響評価		
参照 図面	管理 番号	屋外アクセスルート周辺構造物名称	耐震 クラス	建物 構造	階数 n	高さ(m) H	屋外アクセスルート 対象距離(m) L2	評価方法	判定値 (L2-H)	判定	
	94	土木企業体 現場事務所①	Ν	S 造	2	5.30	15.60	倒壊による影響範囲をHとして評価	10.30	屋外アクセスルートへ影響なし	
	95	土木企業体 現場事務所②	Ν	S 造	1	5.80	19.00	倒壊による影響範囲をHとして評価	13.20	屋外アクセスルートへ影響なし	
	96	土木企業体 現場事務所③	Ν	S 造	2	5.60	10.90	倒壊による影響範囲をHとして評価	5.30	屋外アクセスルートへ影響なし	
図 7-20	97	土木企業体 現場事務所④	Ν	S 造	2	5.50	13.40	倒壊による影響範囲を H として評価	7.90	屋外アクセスルートへ影響なし	
	98	土木企業体 現場事務所⑤	Ν	S 造	1	3.00	12.10	倒壊による影響範囲を H として評価	9.10	屋外アクセスルートへ影響なし	
	99	土木企業体 現場事務所⑥	Ν	S 造	1	2.75	9.50	倒壊による影響範囲をHとして評価	6.75	屋外アクセスルートへ影響なし	
	100	土木企業体 現場事務所⑦	Ν	S 造	2	5.60	9.50	倒壊による影響範囲を H として評価	3.90	屋外アクセスルートへ影響なし	

表 7-8 建屋の損傷モード及び倒壊による影響範囲における屋外アクセスルートへの影響評価結果(建屋)(4/4)

				構造物諸	元		影響評価		
参照 図面	管理 番号	屋外アクセスルート周辺構造物名 称	耐震 クラス	高さ(m) H	屋外アクセスルート 対象距離(m) L2	評価方法	判定値 (L2-H)	判定	
	А	154kV 荒浜線鉄塔 No. 25, No. 26	Ν	No. 25:44 No. 26:33	_	送電線の影響を評価(1.参照)	_	_	
図 7-15	В	500kV 新新潟幹線鉄塔 No. 1, No. 2	Ν	No. 1:72 No. 2:68	_	送電線の影響を評価(1.参照)	_	-	
	С	500kV 南新潟幹線鉄塔 No. 1, No. 2	Ν	No. 1:73 No. 2:77	_	送電線の影響を評価(1.参照)	_	_	
	D	通信鉄塔	Ν	47.00	16.00	倒壊による影響範囲をHとして評価	-31.00	影響あり	
	E	1/2 号機主排気筒	С	155.00	74.00	倒壊による影響範囲をHとして評価	-81.00	影響あり	
	F	3号機主排気筒	С	155.00	164.60	倒壊による影響範囲をHとして評価	9.60	屋外アクセスルートへ影響なし	
図 7-16	G	4号機主排気筒	С	155.00	164.60	倒壊による影響範囲をHとして評価	9.60	屋外アクセスルートへ影響なし	
	Н	免震重要棟屋外遮蔽壁	Ν	3.85	13.00	倒壊による影響範囲をHとして評価	9.15	屋外アクセスルートへ影響なし	
	Ι	No.1 ろ過水タンク	Ν	7.40	22.50	倒壊による影響範囲をHとして評価	15.10	屋外アクセスルートへ影響なし	
	J	No.2 ろ過水タンク	Ν	13.50	22.50	倒壊による影響範囲をHとして評価	9.00	屋外アクセスルートへ影響なし	
	K	6 号機軽油タンク	S	_	—	耐震評価により倒壊しないことを確認	_	屋外アクセスルートへ影響なし	
	L	7 号機軽油タンク	S		_	耐震評価により倒壊しないことを確認		屋外アクセスルートへ影響なし	
	М	5 号機主変圧器	С	10.15	15.05	倒壊による影響範囲をHとして評価	4.90	屋外アクセスルートへ影響なし	
	Ν	6/7 号機非放射性廃液収集タンク	С	3.00	9.00	倒壊による影響範囲をHとして評価	6.00	屋外アクセスルートへ影響なし	
	0	5 号機非放射性廃液収集タンク	С	3.00	17.80	倒壊による影響範囲をHとして評価	14.80	屋外アクセスルートへ影響なし	
	Р	5 号機軽油タンク(B)	S		_	耐震評価により倒壊しないことを確認		屋外アクセスルートへ影響なし	
	Q	5 号機軽油タンク(A)	S		_	耐震評価により倒壊しないことを確認		屋外アクセスルートへ影響なし	
図 7-17	R	泡原液貯蔵タンク	С	1.75	7.35	倒壊による影響範囲をHとして評価	5.60	屋外アクセスルートへ影響なし	
	S	圧力抑制室プール水サージタンク (大湊側)	В	11.52	20.20	倒壊による影響範囲を H として評価	8.68	屋外アクセスルートへ影響なし	
	Т	5 号機排気筒	С	_	—	耐震評価に基づき影響がないことを確認	_	屋外アクセスルートへ影響なし	
	U	大湊側 純水タンク No.3	С	12.30	29.10	倒壊による影響範囲をHとして評価	16.80	屋外アクセスルートへ影響なし	
	V	6号機主排気筒	С		—	耐震評価に基づき影響がないことを確認		屋外アクセスルートへ影響なし	
	W	7号機主排気筒	С			耐震評価に基づき影響がないことを確認		屋外アクセスルートへ影響なし	
	Х	6号機主変圧器	С	11.2	10.9	倒壊による影響範囲をHとして評価	-0.30	 影響あり	

表 7-9 構造物の損傷モード及び倒壊による影響範囲における屋外アクセスルートへの影響評価結果(建屋以外)

	66		て日本		設備諸テ	Ċ			
参照 図面	管埋 番号	屋外アクセスルート周辺構造物名称	耐震 クラス	屋上設置設備名称	台数	最大高さ(m) H	最大重量 (t)	影響評価*	対応内容
図 7-15	1	環境管理棟	Ν	空調用屋外機	2	2.35	1.38	屋外アクセスルートへ影響なし	_
	9	情報センター棟増築	Ν	空調用屋外機	7	1.18	0.205	屋外アクセスルートへ影響なし	_
	11	事務建屋(第Ⅲ期)	N	空調用屋外機	20	2. 30	0.22	屋外アクセスルートへ影響あり	 影響がある屋外アクセスルートは通行せず,迂回する。(徒歩の場合, 影響のある場所を避けて通行する。) 屋外アクセスルートの復旧が必要な 場合には、ホイールローダにて撤去 可能である。
	12	事務建屋(第I期)	屋(第 I 期) N 空調用屋外機 氷蓄熱ユニット(屋外機+水槽)		7 2	2. 40 2. 61	1.13 4.37	屋外アクセスルートへ影響なし	_
⊠ 7−16	13	事務建屋(第Ⅱ期)	N	空調用屋外機	15	2. 30	0. 22	屋外アクセスルートへ影響あり	 影響がある屋外アクセスルートは通行せず,迂回する。(徒歩の場合, 影響のある場所を避けて通行する。) 屋外アクセスルートの復旧が必要な 場合には、ホイールローダにて撤去 可能である。
	14	免震重要棟	Ν	空調用屋外機 給湯ユニット (屋外機+水槽) 衛星アンテナ	20 1 1	$ 1.84 \\ 2.10 \\ 3.81 $	0.38 3.86 0.74	屋外アクセスルートへ影響なし	_
	19	技術部倉庫	N	避雷設備	3	4.00	0.02	屋外アクセスルートへ影響あり	 影響がある屋外アクセスルートは通行せず,迂回する。(徒歩の場合, 影響のある場所を避けて通行する。) 屋外アクセスルートの復旧が必要な 場合には、ホイールローダにて撤去 可能である。
図 7-15	34	154kV 変電所遮風壁	Ν	引留鉄塔 1 引留鉄塔 2	1 2	8.75 3.55	1.22 0.16	屋外アクセスルートへ影響あり	 ・徒歩ルートであり、周辺は平坦であることから、徒歩により迂回する。
図 7-17	64	補助ボイラー建屋	N	補助ボイラーサイレンサー 排風機	1 3	2.00 1.50	1.30 0.80	屋外アクセスルートへ影響あり	 ・影響がある屋外アクセスルートは通行せず,迂回する。(徒歩の場合, 影響のある場所を避けて通行する。) ・屋外アクセスルートの復旧が必要な 場合には、ホイールローダにて撤去 可能である。
⊠ 7−18	74	固体廃棄物処理建屋	В	空調用屋外機 非常用自家発電機 消火用補給水槽	7 1 1	2.40 1.21 1.00	3.44 0.67 0.50	屋外アクセスルートへ影響あり	 ・徒歩ルートであり、周辺は平坦であることから、徒歩により迂回する。

表 7-10 周辺構造物の屋上に設置されている設備による屋外アクセスルートへの影響評価結果(屋上設置設備)

注記*:建物高に設備高を加えた高さ(=最大高さ)を倒壊影響範囲と設定し、倒壊影響範囲と屋外アクセスルートとの離隔距離が 3.0m以上確保で きるか影響評価を実施。3.0m以上確保できない場合は、周辺構造物の屋上に設置されている設備の影響を受けると評価した。

図 7-14 建屋倒壊時の保管場所への影響評価結果(5号機東側保管場所及び5号機東側第二保管場所)

図 7-15 建屋倒壊時の屋外アクセスルートへの影響評価結果(発電所全体図)

図 7-16 建屋倒壊時の屋外アクセスルートへの影響評価結果(荒浜側詳細図)

 $\overline{6}$

図 7-17 建屋倒壊時の屋外アクセスルートへの影響評価結果(大湊側詳細図)

図 7-18 建屋倒壊時の屋外アクセルートへの影響評価結果(大湊側高台詳細図)

図 7-20 建屋倒壊時の屋外アクセルートへの影響評価結果(企業棟詳細図)

- 保管場所及び屋外アクセスルート周辺構造物の耐震性評価について 保管場所及び屋外アクセスルートの周辺構造物のうち、タービン建屋、原子炉建屋、廃棄物処 理建屋、コントロール建屋等については、以下の資料において基準地震動Ssに対する耐震性を 有していることを説明している。
 - (1) 7号機タービン建屋の耐震性に関する計算書
 - ・V-2-2-6 タービン建屋の耐震性についての計算書
 - (2) 7号機原子炉建屋の耐震性に関する計算書
 - ・V-2-2-2 原子炉建屋の耐震性についての計算書
 - ・V-2-2-3 原子炉建屋基礎スラブの耐震性についての計算書
 - ・V-2-9-3-1 原子炉建屋原子炉区域(二次格納施設)の耐震性についての計算書
 - ・V-2-9-3-4 原子炉建屋基礎スラブの耐震性についての計算書
 - (3) 6/7 号機廃棄物処理建屋の耐震性に関する計算書
 - ・V-2-2-12 廃棄物処理建屋の耐震性についての計算書
 - (4) 6/7 号機コントロール建屋の耐震性に関する計算書
 ・ V-2-2-10 コントロール建屋の耐震性についての計算書
 - (5) 7号機格納容器圧力逃がし装置基礎の耐震性に関する計算書
 ・V-2-2-14 格納容器圧力逃がし装置基礎の耐震性についての計算書
 - (6) 5号機タービン建屋の耐震性に関する計算書
 ・KK7 補足-024-3 資料-3下位クラス施設の波及的影響の検討について(添付資料8)
 - (7) 5号機原子炉建屋の耐震性に関する計算書
 ・V-2-2-16 緊急時対策所の耐震性についての計算書
 - (8) 5号機主排気筒の耐震性に関する計算書
 KK7 補足-024-3 資料-3 下位クラス施設の波及的影響の検討について(添付資料7)
 - (9) 7号機主排気筒の耐震性に関する計算書
 - ・V-2-2-8 主排気筒の耐震性についての計算書
 - ・ V-2-7-2-1 主排気筒の耐震性についての計算書
 - (10) 7号機大物搬入口の耐震性に関する計算書
 - ・V-2-9-3-1 原子炉建屋原子炉区域(二次格納施設)の耐震性についての計算書

- (11) 7号機軽油タンクの耐震性に関する計算書
 ・V-2-10-1-2-1-6 軽油タンクの耐震性についての計算書
- (12) 6号機軽油タンクの耐震性に関する計算書
 - ・V-2-10-1-2-2-5 軽油タンク(6号機設備)の耐震性についての計算書

- (13) 5号機格納容器圧力逃がし装置基礎の東側保管場所への影響評価について
 - a. 概要

本資料はV-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及びアクセスルート」 に基づき、5号機格納容器圧力逃がし装置基礎(以下「装置基礎」という。)が、隣接する 5号機東側保管場所に保管される5号機原子炉建屋内緊急時対策所用可搬型電源設備(以 下「5号機可搬電源」という。)に影響を及ぼさないことを説明するものである。

その影響評価は、5 号機可搬電源の有する機能が保持されることを確認するために、装置基礎を対象に、液状化に伴う地盤の不等沈下による影響を確認することで行う。

- b. 基本方針
 - (a) 位置

装置基礎の設置位置を図 8-1 に示す。

図 8-1 装置基礎の設置位置

(b) 構造概要

装置基礎は、基礎スラブ及びフィルタベント遮蔽壁(以下「遮蔽壁」という。)で構成 され、主要構造が鉄筋コンクリート造のボックス形状の構築物である。装置基礎の杭伏 図及び概略平面図を図 8-2 に、概略断面図を図 8-3 に示す。

遮蔽壁の平面は, 9.6m (NS 方向) ×14.1m (EW 方向),地上高さは14.3m であり,一部 を除いて耐震壁として考慮する。装置基礎に加わる地震時の水平力は全て耐震壁で負担 する。

基礎スラブは、平面が 14.6m (NS 方向) ×15.1m (EW 方向),厚さ 2.5m であり、場所 打ち鋼管コンクリート杭(外径 1.2m,24本,以下「杭」という。)を介して西山層に支 持させている。

なお,装置基礎直下から支持層である西山層の間には埋戻土層及び古安田層が存在す る。

(単位:m)

(a) 杭伏図

(単位:m)

(b) 概略平面図(T.M.S.L.12.3m)

図8-2 装置基礎の杭伏図及び概略平面図

(単位:m)

⁽a) A-A断面

(単位:m)

(b) B-B 断面図 8-3 装置基礎の概略断面図

(c) 評価方針

装置基礎の影響評価は、V-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及び アクセスルート」に基づき、隣接する東側保管場所に保管される5号機可搬電源への影 響評価として行う。

装置基礎においては液状化対策を実施していないため、基準地震動Ssにより装置基礎直下に存在する埋戻土層及び古安田層が液状化するおそれがある。埋戻土層及び古安田層が液状化した場合,地盤の水平変位の増大に伴い基礎スラブを支持する杭が損傷し, 鉛直支持能力が低下する可能性がある。

よって、基準地震動Ssに対して、液状化のおそれが否定できない埋戻土層及び古安 田層に着目し、その液状化による沈下量を用いて求められる装置基礎の傾斜角が、装置 基礎の転倒に至る傾斜角に達しないことを確認することで、5号機可搬電源を損壊させ ないことを評価する。

この装置基礎の傾斜角は,保守的な条件として,杭を無視し,かつ,埋戻土層及び古 安田層の全層が液状化した状態の最大限の沈下量が,装置基礎の一端にのみ生じたと仮 定して評価する。

装置基礎の影響評価フローを図 8-4 に示す。

注記*1:保守的な条件として,杭を無視し,かつ,埋戻土及び古安田層の沈 下量が装置基礎の一端にのみに生じたと仮定した場合の装置基礎の 傾斜角。

*2:表8-2による。

図 8-4 装置基礎の影響評価フロー

- c. 評価方法
 - (a) 評価対象部位装置基礎の評価対象部位は、装置基礎全体とする。
 - (b) 地盤条件

装置基礎が立地する地盤の地質構成を表 8-1 に示す。

この地盤構成は,装置基礎が隣接する5号機原子炉建屋の地盤モデルに基づく地盤構成であり, T.M.S.L.-134.0mの解放基盤表面以浅に西山層,古安田層及び埋戻土層が存在する。

標高		
T. M. S. L.	地質	備考
(m)		
12.0	—	
0.0	埋戻土層	埋戻土層全層を液状化層と仮定
-9.0	古安田層	古安田層全層を液状化層 と仮定
-60.0		
	西山層	
-100.0		
-134.0		▼解放基盤表面
∞	椎谷層	

表 8-1 装置基礎が立地する地盤の地質構成

(c) 許容限界

装置基礎の傾斜角の許容限界は、装置基礎の転倒限界角 θ_Lとする。なお、転倒限界 角 θ_Lは、装置基礎の転倒により 5 号機可搬電源に影響を及ぼさない最大傾斜角とし、5 号機可搬電源が装置基礎端部にある場合を仮定して、装置基礎の遮蔽壁が 5 号機可搬電 源に接する沈下量より設定する。

影響評価における許容限界を表 8-2 に示す。

機能設計上の 性能目標	地震力	部位	機能維持のための考え方	許容限界 (転倒限界角 θ _L)
5 号機可搬電源に 影響を及ぼさな い	基準地震動 S s	装置基礎全体	最大傾斜角が 5 号機可搬 電源に影響を及ぼさない ための許容限界を超えな いことを確認	1/3.3

表 8-2 影響評価における許容限界

図 8-5 装置基礎の転倒限界角

(d) 評価方法

装置基礎の影響評価は、支持層である西山層との間に存在する埋戻土層及び古安田層 の液状化による影響が否定できないことから、埋戻土層及び古安田層の全層が液状化し た状態の最大限の沈下量が、装置基礎の一端にのみ生じたと仮定した場合の装置基礎の 傾斜角を用いて、装置基礎全体が転倒に至らないことを確認することで行う。

最大沈下量については、V-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及び アクセスルート」に基づき、埋戻土層及び古安田層の層厚の2.0%とする。

以上より,最大沈下量Uz及び最大限の沈下量Uzに基づく装置基礎の傾斜角 θzは, 図 8-6 に示すとおり装置基礎の短辺方向長さをLとすれば、下式で算定できる。

- に伴う沈下率(=2.0%)
- θz:装置基礎の傾斜角
- L:装置基礎の短辺方向長さ(=14.6m)

液状化層(埋戻土層及び古安田層)の最大沈下量が,装置基礎の一端にのみ生じた と仮定した場合の装置基礎の傾斜角 θ z を評価する。

図 8-6 装置基礎の傾斜角の考え方

d. 評価結果

支持層である西山層との間に存在する埋戻土層及び古安田層が液状化した状態における 最大沈下量及びその沈下量から求めた最大傾斜角を表 8-3 に示す。

	沈下量 (mm)	最大傾斜角	許容限界
最大値	370	1/39	1/3.3

表 8-3 埋戻土層及び古安田層の液状化を考慮した沈下量及び最大傾斜角

e. まとめ

以上より,液状化により埋戻土層及び古安田層が最大限に沈下したと仮定しても,装置 基礎は,転倒に至ることはなく,5号機可搬電源は損壊しない。 9. 屋外アクセスルートの段差緩和対策について

屋外アクセスルート下の地中埋設構造物の位置を図9-1に示す。

屋外アクセスルート下の地中埋設構造物を評価対象として,不等沈下,浮上り及び地中埋設構 造物の損壊による影響評価を行い,影響評価の結果,通行性に影響を及ぼすものと評価された場 合には,地震時において優先的な仮復旧により通路を確保するアクセスルート(以下「仮復旧ル ート」という。図9-2,図9-3及び図9-4参照。)について,不等沈下対策等の段差緩和対策 を実施している。ここでは,屋外アクセスルートの段差緩和対策に関わる影響評価及び段差緩和 対策の設計内容について説明する。

図 9-1 屋外アクセスルート下の地中埋設構造物の位置

図 9-2 仮復旧ルート (大湊側高台保管場所利用)

図 9-3 仮復旧ルート (荒浜側高台保管場所利用)

図 9-4 仮復旧ルート(5号機東側保管場所までのルート, 荒浜側高台保管場所利用の場合)

- 9.1 液状化及び揺すり込みによる不等沈下,側方流動,液状化に伴う浮上り
 - (1) 不等沈下(地中埋設構造物と埋戻部等との境界部)
 - a. 評価方法

地中埋設構造物と埋戻部等との境界部における不等沈下による影響評価については,保 管場所における影響評価と同様に,液状化及び揺すり込みによる不等沈下によるアクセス ルートの通行性への影響を評価する。

地中埋設構造物と埋戻部等との境界部における不等沈下の評価位置を図 9-1 に示す。評価の対象とする位置については、アクセスルート下の地中埋設構造物と埋戻部等との境界 位置を網羅的に選定する。

通行性への影響評価では、保管場所における影響評価と同様に、液状化による沈下量及 び揺すり込みによる沈下量の合計値を算定し、地中埋設構造物と埋戻部等との境界部で生 じる相対沈下量が評価基準以下となることを評価する。なお、浮上り対策として置換えコ ンクリート及び地盤改良を実施した箇所については、それらを考慮して沈下量を算定する。 評価基準については、保管場所と同様に、可搬型重大事故等対処設備が徐行により走行可 能な段差量 15cm とする。

また,通行性への影響評価に用いる地下水位については,保管場所における影響評価と 同様に,評価箇所周辺に工認対象の施設がある場合はその設計地下水位を,工認対象の施 設がない場合には,建設時の設計地下水位あるいは既往の観測記録に基づいて設定する。 ただし,液状化による沈下量及び揺すり込みによる沈下量は,ともに地層厚さの2.0%とし て算定されるため,地下水位の設定による沈下量への影響はない。

なお,評価箇所のうち仮復旧ルート上で評価基準を満足しない箇所については,図9-5 に示すような不等沈下対策をあらかじめ実施しておくことにより,液状化及び揺すり込み による不等沈下が通行性に対して影響を及ぼさない設計とし,V-1-1-7-別添1「可搬型重 大事故等対処設備の保管場所及びアクセスルート」において,ホイールローダによる当該 区間の仮復旧に要する時間を考慮不要とする。

b. 評価結果

地中埋設構造物と埋戻部等との境界部における不等沈下による影響評価結果を表 9-1 に示す。

評価の結果,算定した相対沈下量が評価基準を満足する箇所及びあらかじめ不等沈下対 策を実施している箇所については『問題なし』と評価し,不等沈下が当該箇所の通行性に 対して影響を及ぼさないことを確認した。

また,相対沈下量が評価基準を満足しない箇所については『問題あり』と評価し,当該 箇所を可搬型重大事故等対処設備が通行するためには,ホイールローダによる仮復旧が必 要となることを確認した。このため,V-1-1-7-別添1「可搬型重大事故等対処設備の保管 場所及びアクセスルート」において可搬型重大事故等対処設備が『問題あり』と評価した 区間を通行することを想定する場合には,ホイールローダによる仮復旧時間を考慮する。 表 9-1 地中埋設構造物と埋戻部等との境界部における不等沈下に対する影響評価結果(1/7)

(凡例)

■: 段差(相対沈下量)が15cmを超え,通行性に影響を及ぼす箇所

NT #1	<i>t</i> 7 ∓4-	路面高	構造物 上端	構造物 下端	基礎 下端	構造物高 +基礎	地下水位	相対 沈下量	⇒亚/亚分十田
NO. * 1	石松	T. M. S. L.	(m)	T. M. S. L.	(m)	計価格未			
		(m)	(m)	(m)	(m)		(m)		
1	排水路 ボックスカルバート	13.0	11.0	8.9	8.6	2.4	10.0	0.05	問題なし
2	事務建屋周辺電線管路	13.0	12.5	11.4	11.2	1.4	10.0	0.03	問題なし
3	1号機重油配管トレンチ	13.0	11.5	9.2	8.8	2.7	8.0	0.05	問題なし
4	1 号機 0F ケーブルダクト	13.0	11.8	8.6	8.2	3.6	8.0	0.07	問題なし
5	荒浜側ガスタービン発電機用 ケーブルダクトハンドホール	13. 0	12. 5	8.4	0.5	12.0	8.0	0. 18*2	問題あり
6	荒浜側ガスタービン発電機用 ケーブルダクトハンドホール側面部地盤改良	13. 0	11.5	8.3	8.3	3.2	8.0	0.06	問題なし
7	水配管ダクト	13.6	11.5	8.9	8.5	3.0	8.0	0.06	問題なし
8	1 号機及び 2 号機 CV ケーブルダクト, 2 号機 0F ケーブルダクト	13. 0	9.0	5.6	5.2	3.8	10.0	0.08	問題なし
9	3 号機 0F ケーブルダクト	13.0	9.2	6.5	6.2	3.0	10.0	0.06	問題なし
10	3号機及び4号機CVケーブルダクト	13.0	11.4	8.4	8.1	3. 3	10.0	0.07	問題なし

──: 不等沈下対策の実施により通行性に影響を及ぼさない箇所

注記*1:図9-1の番号を示す。

*2:5と6は一連の構造物であり、5と6の境界に発生する段差。

表 9-1 地中埋設構造物と埋戻部等との境界部における不等沈下に対する影響評価結果(2/7)

(凡例)

■: 段差(相対沈下量)が15cmを超え,通行性に影響を及ぼす箇所

1- vi 1	名称	路面高	構造物 上端	構造物 下端	基礎 下端	構造物高 +基礎	地下水位	相対 沈下量	
No. *1	名杯	T.M.S.L.	T.M.S.L.	T.M.S.L.	T.M.S.L.	()	T.M.S.L.	()	評価結果
		(m)	(m)	(m)	(m)	(m)	(m)	(m)	
11	4 号機 0F ケーブルダクト	13.0	11.5	8.4	8.1	3.4	10.0	0.07	問題なし
12	新 500kV ケーブル洞道	13.0	10.6	7.4	7.4	3.2	10.0	0.06	問題なし
13	1号機重油配管トレンチ	13.6	13.6	12.5	12.4	1.2	10.0	0.02	問題なし
14	新 500kV ケーブル洞道	14.4	-13.7	-16.9	-16.9	3.2	10.0	0.06	問題なし
15	500kV ケーブルダクト	20.6	18.6	13.9	13.5	5.1	10.0	0.10	問題なし
16	排水路 ボックスカルバート	13.7	11.3	9.1	8.9	2.4	10.0	0.05	問題なし
17	免震重要棟連絡ダクト	13.1	10.3	7.9	7.9	2.4	10.0	0.05	問題なし
18	排水路 ボックスカルバート	13.1	11.6	9.5	9.3	2.4	10.0	0.05	問題なし
19	水配管ダクト	33.9	32.4	29.8	29.4	3.0	15.0	0.06	問題なし
20	水配管ダクト	37.7	35.7	33.1	32.7	3.0	15.0	0.06	問題なし
21	水配管ダクト	35.5	34.5	32.2	31.7	2.7	10.0	0.05	問題なし
22	水配管ダクト	42.2	41.2	38.8	38.4	2.7	15.0	0.05	問題なし
23	排水路 ヒューム管	44.0	18.5	17.0	17.0	1.6	30.0	0.03	問題なし

──: 不等沈下対策の実施により通行性に影響を及ぼさない箇所

注記*1:図9-1の番号を示す。

*2:5と6は一連の構造物であり、5と6の境界に発生する段差。

表 9-1 地中埋設構造物と埋戻部等との境界部における不等沈下に対する影響評価結果(3/7)

(凡例)

■: 段差(相対沈下量)が15cmを超え,通行性に影響を及ぼす箇所

NT #1	h 14	路面高	構造物 上端	構造物 下端	基礎 下端	構造物高 +基礎	地下水位	相対 沈下量	苏尔尔中田
No. ¹¹	名朳	T. M. S. L.	T.M.S.L.	T.M.S.L.	T. M. S. L.	(m)	T.M.S.L.	(m)	評価結果
		(m)	(m)	(m)	(m)		(m)	(111)	
24	排水路 ヒューム管	42.6	18.4	17.0	16.9	1.5	30.0	0.03	問題なし
25	排水路 ヒューム管	44.7	21.8	20.4	20.1	1.7	30.0	0.03	問題なし
26	排水路 ボックスカルバート	42.5	42.0	40.1	39.7	2.3	30.0	0.05	問題なし
27	排水路 ボックスカルバート	42.5	41.7	39.7	39.3	2.4	30.0	0.05	問題なし
28	水配管ダクト	40.3	38.9	36.5	36.1	2.7	25.0	0.05	問題なし
29	新 500kV ケーブル洞道	15.0	-4.3	-7.5	-7.5	3.2	12.0	0.06	問題なし
30	500kV ケーブルダクト	18.0	16.4	11.7	11.3	5.1	13.0	0.10	問題なし
31	水配管ダクト	19.4	18.4	15.8	15.4	3.0	19.4	0.06	問題なし
32	500kV ケーブルダクト	12.0	11.7	6.5	6.2	5.5	12.0	0.11	問題なし
33	新 500kV ケーブルダクト	12.0	11.7	6.5	6.5	5.2	12.0	0.10	問題なし
34	7 号機 OF ケーブルダクト	12.0	11.7	6.3	5.9	5.8	12.0	0.12	問題なし
35	7 号機 OF ケーブルダクト	12.0	10.3	6.6	6.2	4.1	12.0	0.08	問題なし
36	6 号機 0F ケーブルダクト	12.0	10.7	3.8	3.4	7.3	12.0	0.15	問題なし

──: 不等沈下対策の実施により通行性に影響を及ぼさない箇所

注記*1:図9-1の番号を示す。

*2:5と6は一連の構造物であり、5と6の境界に発生する段差。

表 9-1 地中埋設構造物と埋戻部等との境界部における不等沈下に対する影響評価結果(4/7)

(凡例)

■: 段差(相対沈下量)が15cmを超え,通行性に影響を及ぼす箇所

		收工士	構造物	構造物	基礎	構造物高	地下水传	相対	
No *1	k7 #h+		上端	下端	下端	+基礎	地下水位	沈下量	莎 在 ⁄ 田 ⁄ 田
NO.	石竹	T. M. S. L.	T. M. S. L.	T.M.S.L.	T. M. S. L.	(m)	T.M.S.L.	(m)	計Ш茄木
		(m)	(m)	(m)	(m)		(m)		
37	6 号機 OF ケーブルダクト	12.0	11.0	7.5	7.1	4.0	12.0	0.08	問題なし
38	6号機補給水系連絡ダクト	12.0	10.7	7.5	7.1	3.6	12.0	0.07	問題なし
39	5 号機 OF ケーブルダクト	12.0	11.5	7.6	7.3	4.3	12.0	0.09	問題なし
40	水配管ダクト	12.2	11.3	8.7	8.3	3.0	12.0	0.06	問題なし
41	排水路 ヒューム管	12.0	10.5	8.7	8.5	2.0	8.0	0.04	問題なし
42	第一ガスタービン発電機用ケーブルダクト	12.0	11.9	-15.0	-15.0	27.0	8.0	0.29^{*3}	問題なし
43	排水路 ボックスカルバート	12.0	9.7	8.4	8.2	1.5	8.0	0.03	問題なし
44	7 号機ボンベ庫連絡ダクト	12.0	10.9	8.4	8.0	2.9	8.0	0.06	問題なし
45	7 号機取水路	12.0	-2.5	-10.8	-10.9	8.4	8.0	0.17	問題なし
4.6	7号機タービン建屋~ボール捕集器ピット間	10.0	10.0	7 0	7 5	2 5	0.0	0.07	日日日古チェリ
46	連絡ダクト	12.0	10.9	1.8	1.5	1.0 3.5	8.0	0.07	间펞なし
47	7 号機補機放水路	12.0	9.9	8.1	7.8	2.1	8.0	0.04	問題なし

注記*1:図9-1の番号を示す。

*2:5と6は一連の構造物であり、5と6の境界に発生する段差。

表 9-1 地中埋設構造物と埋戻部等との境界部における不等沈下に対する影響評価結果(5/7)

(凡例)

■: 段差(相対沈下量)が15cmを超え,通行性に影響を及ぼす箇所

NT #1	h th	路面高	構造物 上端	構造物 下端	基礎 下端	構造物高 +基礎	地下水位	相対 沈下量	苏尔尔伊田
No. ^{w1}	名朳	T. M. S. L.	T.M.S.L.	T.M.S.L.	T.M.S.L.	(m)	T.M.S.L.	()	評価結果
		(m)	(m)	(m)	(m)	(m)	(m)	(11)	
48	6号機補機放水路	12.0	10.8	9.0	8.6	2.1	8.0	0.04	問題なし
49	6号機ボンベ庫連絡ダクト	12.0	10.7	8.0	7.7	3.1	8.0	0.06	問題なし
50	6号機取水路	12.0	-2.5	-10.8	-10.9	8.4	8.0	0.17	問題なし
51	6号機タービン建屋~スクリーン室間 連絡ダクト	12.0	10.8	6.7	6.4	4.4	8.0	0.09	問題なし
52	6号機補機放水路	12.0	10.4	8.6	8.3	2.1	8.0	0.04	問題なし
53	5号機循環水配管 取水側	12.0	3.3	-0.1	-0.7	3.9	8.0	0.08	問題なし
54	5 号機タービン建屋〜海水熱交換器建屋 連絡ダクト(南側)	12.0	-0.7	-6.4	-6.5	5.8	8.0	0.12	問題なし
55	5 号機ボンベ庫連絡ダクト	12.0	10.7	7.8	7.5	3.2	8.0	0.06	問題なし
56	5 号機タービン建屋〜海水熱交換器建屋 連絡ダクト(北側)	12.3	1.5	-4.3	-4.4	5.8	8.0	0.12	問題なし

注記*1:図9-1の番号を示す。

*2:5と6は一連の構造物であり、5と6の境界に発生する段差。

表 9-1 地中埋設構造物と埋戻部等との境界部における不等沈下に対する影響評価結果(6/7)

(凡例)

■: 段差(相対沈下量)が15cmを超え,通行性に影響を及ぼす箇所

		收盂古	構造物	構造物	基礎	構造物高	また	相対	
No *1	夕 升	的॥向	上端	下端	下端	+基礎	地下小位	沈下量	莎 /
NO.	石桥	T.M.S.L.	T.M.S.L.	T. M. S. L.	T.M.S.L.	()	T.M.S.L.	()	計៕相未
		(m)	(m)	(m)	(m)	(111)	(m)	(m)	
E 7	5 号機タービン建屋~ボール捕集器ピット間	19.4	10.0	10.9	0.0	0.1	<u> </u>	0.04	目目すチョー
97	連絡トレンチ	12.4	12.2	10.2	9.9	2.1	0.0	0.04	问題なし
58	5号機循環水配管 放水側	12.3	9.1	5.8	5.8	3. 3	8.0	0.07	問題なし
FO	5 号機タービン建屋北西 圧力抑制室プール	10 1	10.9	7 4	4 6	6.9	<u> </u>	0 19	日日日ゴナント
59	水排水系サージタンクダクト	12.1	10. 0	1.4	4.0	0.2	0.0	0.12	问題なし
60	6号機軽油タンク部地盤改良-A	12.0	12.0	1.1	1.1	11.0	12.0	0.22	問題あり
61	6号機軽油タンク部地盤改良-B	12.0	12.0	-9.5	-9.5	21.5	12.0	0.43	問題あり
62	6号機軽油タンク部地盤改良-C	12.0	12.0	-8.0	-8.0	20.0	12.0	0.40	問題あり
63	6号機軽油タンク部地盤改良-D	12.0	12.0	3.0	3.0	9.0	12.0	0.18	問題あり
64	6号機軽油タンク部地盤改良-E	12.0	12.0	1.5	1.5	10.5	12.0	0.21	問題あり
65	6号機燃料移送系配管ダクト	12.0	11.4	8.5	0.0	11.4	12.0	0. 23	問題あり
66	5 号機 OF ケーブルダクト	12.0	7.1	-0.4	-0.8	8.0	12.0	0.16	問題あり

──: 不等沈下対策の実施により通行性に影響を及ぼさない箇所

注記*1:図9-1の番号を示す。

*2:5と6は一連の構造物であり、5と6の境界に発生する段差。

表 9-1 地中埋設構造物と埋戻部等との境界部における不等沈下に対する影響評価結果(7/7)

(凡例)

■: 段差(相対沈下量)が15cmを超え,通行性に影響を及ぼす箇所

NT #1	kt the	路面高	構造物 上端	構造物 下端	基礎 下端	構造物高 +基礎	地下水位	相対 沈下量	现在分开
NO.	石竹	T. M. S. L.	(m)	T. M. S. L.	(m)	計価結末			
		(m)	(m)	(m)	(m)		(m)		
67	5 号機低起動二次側ケーブルダクト	12.0	6.7	0.3	0.2	6.6	12.0	0.13	問題なし
68	5号機低起動二次側ケーブルダクト	12.0	10.9	0.3	0.2	10.7	12.0	0.21	問題あり
69	5 号機 OF ケーブルダクト	12.0	10.9	7.3	6.9	4.0	12.0	0.08	問題なし
70	排水路 ヒューム管	12.0	10.9	9.0	8.8	2.1	12.0	0.04	問題なし
71	排水路 ヒューム管	27.3	27.1	25.5	25.3	1.8	27.3	0.04	問題なし
72	排水路 遠心ボックスカルバート	18.1	17.5	16.3	16.1	1.4	18.1	0.03	問題なし
73	排水路 ヒューム管	12.0	11.3	9.7	9.5	1.8	12.0	0.04	問題なし
74	排水路 ヒューム管	12.3	12.0	9.1	9.1	2.9	8.0	0.06	問題なし
75	排水路 ヒューム管	12.0	10.4	9.1	8.8	1.6	8.0	0.03	問題なし
76	排水路 ヒューム管	12.0	10.8	9.6	9.4	1.4	12.0	0.03	問題なし
77	排水路 ヒューム管	12.0	11.7	9.5	9.3	2.4	12.0	0.05	問題なし
78	5号機東側第二保管場所部地盤改良-A	12.0	11.9	9.0	9.0	2.9	12.0	0.06	問題なし
79	5号機東側第二保管場所部地盤改良-B	12.0	11.9	9.6	9.6	2.3	12.0	0.05	問題なし

──: 不等沈下対策の実施により通行性に影響を及ぼさない箇所

注記*1:図9-1の番号を示す。

*2:5と6は一連の構造物であり、5と6の境界に発生する段差。

- (2) 不等沈下(地山と埋戻部との境界部)
 - a. 評価方法

地山と埋戻部との境界部における不等沈下による影響評価については,地山と埋戻部と の境界部における不等沈下によるアクセスルートの通行性への影響を評価する。

通行性への影響評価では,アクセスルートの直下における地山と埋戻部の断面形状等を 確認することで,両者の不等沈下が通行性に与える影響を評価する。

b. 評価結果

地山と埋戻部との境界部における不等沈下による影響評価結果について,地山と埋戻部 との境界部の断面形状を図 9-6 に,通行性への影響評価結果を表 9-2 に示す。

地山と埋戻部との境界部の断面形状は,図9-6(a)又は(b)に大別される。図9-6 (a)は、地山を法面に成形して掘削した際の断面形状であり、地山の勾配は1:1.0~1: 1.5程度である。また、図9-6(b)は、両脇に土留め壁を設置して掘削した際の断面形状 であり、地山の勾配は90°である。

なお、図 9-6の(a)又は(b)にて施工された箇所の地山は原子炉建屋等を直接支持す る岩盤ではなくいずれも沖積層あるいは洪積層であり、新潟県中越沖地震時に確認された ように地震によって沈下が生じる地層であるため、地山と埋戻部との境界部において有意 な相対沈下を生じることはないと考えられることから『問題なし』と評価し、地山と埋戻 部との境界部における不等沈下が通行性に対して影響を及ぼさないことを確認した。

対象箇所	被害想定	評価内容	評価結果
地山と 埋戻部 との境界部	 ・地山と埋戻部との 境界部における不 等沈下による通行 不可 	・図 9-6の(a) 又は(b) にて施工された箇 所の地山は原子炉建屋等を直接支持する岩 盤ではなくいずれも沖積層あるいは洪積層 であり,新潟県中越沖地震時に確認されたよ うに地震によって沈下が生じる地層である ため,地山と埋戻部との境界部において有意 な相対沈下を生じることはないと考えられ る。	問題なし

表 9-2 地山と埋戻部との境界部における不等沈下による影響評価結果

- (3) 液状化に伴う浮上り
 - a. 評価方法

液状化に伴う浮上りによる影響評価については,保管場所における影響評価と同様に, 液状化に伴う浮上りによるアクセスルートの通行性への影響を評価する。

アクセスルート下に設置されている地中埋設構造物の位置を図 9-1 に示す。

通行性への影響評価では、地中埋設構造物下端よりも地下水位が高い箇所(条件①)、仮 復旧ルート上の箇所(条件②)、斜面崩壊の影響を受けない箇所(条件③)の観点から評価 対象とする地中埋設構造物を抽出し、保管場所における影響評価と同様に、評価対象とす る地中埋設構造物の揚圧力と抵抗力から浮上りに対する安全率を算定し、算定した浮上り に対する安全率が評価基準以上となることを評価する。評価基準は、保管場所と同様に、 浮上りに対する安全率が1.0とする。

また,通行性への影響評価に用いる地下水位は,「9.1(1) 不等沈下(地中埋設構造物と 埋戻部等との境界部)」と同様に,評価箇所周辺の工認対象の施設の設計地下水位,建設時 の設計地下水位あるいは既往の観測記録に基づいて設定する。地下水位の設定の結果は, 表 9-1 に示す。

なお、仮復旧ルート上の評価対象のうち評価基準を満足しない箇所は、図9-7に示すような浮上り対策をあらかじめ実施し、浮上りが通行性に対して影響を及ぼさない設計とし、 V-1-1-7-別添 1「可搬型重大事故等対処設備の保管場所及びアクセスルート」において、 ホイールローダによる当該区間の仮復旧に要する時間を考慮不要とする。

図 9-7 浮上り対策

b. 評価結果

液状化に伴う浮上りによる影響評価結果について,評価対象とする地中埋設構造物を抽 出した結果を表 9-3 に,通行性への影響評価結果を表 9-4 に示す。

評価の結果,浮上りに対する安全率が評価基準を満足する箇所については『問題なし』 と評価し,浮上りが通行性に対して影響を及ぼさないことを確認した。

なお,浮上り対策として置換えコンクリート及び地盤改良を実施した箇所については, 「9.1(1) 不等沈下(地中埋設構造物と埋戻部等との境界部)」において,置換えコンクリ ート及び地盤改良を考慮して相対沈下量を算定している。

条件②:仮復旧ルート上の箇所

条件③:斜面崩壊の影響を受けない箇所

(凡例)

- :条件に該当する場合
- 一 :条件に該当しない場合
- :浮上り評価対象

:浮上り対策の実施により通行性に影響を及ぼさない箇所

No. *1	名称	条件①	条件②	条件③
1	排水路 ボックスカルバート	0		0
2	事務建屋周辺 電線管路			
3	1号機重油配管トレンチ			0
4	1 号機 OF ケーブルダクト		_	0
5	荒浜側ガスタービン発電機用ケーブルダクト			\bigcirc
0	ハンドホール			0
6	荒浜側ガスタービン発電機用ケーブルダクト	 *2	<u>*</u> 2	<u>*</u> 2
0	ハンドホール側面部地盤改良			
7	水配管ダクト	—	_	0
8	1 号機及び2 号機 CV ケーブルダクト,	\cap		
0	2 号機 OF ケーブルダクト	0		
9	3 号機 OF ケーブルダクト	0	_	_
10	3 号機及び 4 号機 CV ケーブルダクト	0		
11	4 号機 OF ケーブルダクト	0	_	_
12	新 500kV ケーブル洞道	0		
13	1号機重油配管トレンチ		_	
14	新 500kV ケーブル洞道	0	_	_
15	500kV ケーブルダクト	—	_	_
16	排水路ボックスカルバート	0		
17	免震重要棟連絡ダクト	0	_	0
18	排水路ボックスカルバート	0		
19	水配管ダクト			0

注記*1:図9-1の番号を示す。

*2:地盤改良部のため、浮上り評価の対象から除く。

*3:浮上り対策を実施しているため、浮上り評価の対象から除く。

*4: 杭を介して岩盤に支持する構造であるため、浮上り評価の対象から除く。

条件②:仮復旧ルート上の箇所

条件③:斜面崩壊の影響を受けない箇所

(凡例)

○ :条件に該当する場合

一 :条件に該当しない場合

:浮上り評価対象

:浮上り対策の実施により通行性に影響を及ぼさない箇所

No. *1	名称	条件①	条件②	条件③
20	水配管ダクト			0
21	水配管ダクト	—	0	0
22	水配管ダクト	—	—	—
23	排水路ヒューム管	0	—	0
24	排水路ヒューム管	0	0	0
25	排水路ヒューム管	0	—	0
26	排水路ボックスカルバート		0	0
27	排水路ボックスカルバート			0
28	水配管ダクト		_	0
29	新 500kV ケーブル洞道	0		
30	500kV ケーブルダクト	0		
31	水配管ダクト	0	0	
32	500kV ケーブルダクト ^{*3}	—	—	—
33	新 500kV ケーブルダクト*3	—	—	—
34	7 号機 OF ケーブルダクト* ³	—	—	—
35	7 号機 0F ケーブルダクト	0	—	0
36	6 号機 0F ケーブルダクト* ³	—	—	—
37	6 号機 0F ケーブルダクト	0	—	0
38	6号機補給水系連絡ダクト	0	—	0
39	5 号機 OF ケーブルダクト	0		0
40	水配管ダクト	0		
41	排水路 ヒューム管		0	0

注記*1:図9-1の番号を示す。

*2:地盤改良部のため、浮上り評価の対象から除く。

*3:浮上り対策を実施しているため、浮上り評価の対象から除く。

*4 : 杭を介して岩盤に支持する構造であるため、浮上り評価の対象から除く。

条件②:仮復旧ルート上の箇所

条件③:斜面崩壊の影響を受けない箇所

(凡例)

- :条件に該当する場合
- 一 :条件に該当しない場合
- :浮上り評価対象

____ :浮上り対策の実施により通行性に影響を及ぼさない箇所

No. *1	名称	条件①	条件②	条件③
42	第一ガスタービン発電機用ケーブルダクト*4			
43	排水路 ボックスカルバート		0	0
44	7号機ボンベ庫連絡ダクト	0	0	0
45	7号機取水路*3	_	_	
46	7 号機タービン建屋~ボール捕集器ピット間 連絡ダクト	0	0	0
47	7号機補機放水路	0	0	0
48	6号機補機放水路		0	0
49	6号機ボンベ庫連絡ダクト	0	0	0
50	6号機取水路*3	_	_	
51	6 号機タービン建屋~スクリーン室間 連絡ダクト	0	0	0
52	6号機補機放水路			0
53	5号機循環水配管 取水側	0		0
54	5 号機タービン建屋〜海水熱交換器建屋連絡 ダクト(南側)	0		0
55	5 号機ボンベ庫連絡ダクト	0		0
56	5 号機タービン建屋~海水熱交換器建屋連絡 ダクト(北側)	0		0
57	5 号機タービン建屋~ボール捕集器ピット間 連絡トレンチ	_	_	0
58	5号機循環水配管 放水側	0		0

注記*1:図9-1の番号を示す。

*2:地盤改良部のため、浮上り評価の対象から除く。

*3:浮上り対策を実施しているため、浮上り評価の対象から除く。

*4 : 杭を介して岩盤に支持する構造であるため、浮上り評価の対象から除く。

条件②:仮復旧ルート上の箇所

条件③:斜面崩壊の影響を受けない箇所

(凡例)

- :条件に該当する場合
- 一 :条件に該当しない場合
- : 浮上り評価対象

:浮上り対策の実施により通行性に影響を及ぼさない箇所

No. *1	名称	条件①	条件②	条件③
59	5 号機タービン建屋北西圧力抑制室プール水 排水系サージタンクダクト	0		0
60	6号機軽油タンク部地盤改良-A*2		_	
61	6号機軽油タンク部地盤改良-B*2			
62	6号機軽油タンク部地盤改良-C*2			
63	6号機軽油タンク部地盤改良-D*2			
64	6号機軽油タンク部地盤改良-E*2			
65	6 号機燃料移送系配管ダクト*4			
66	5 号機 OF ケーブルダクト	0		0
67	5号機低起動二次側ケーブルダクト	0		0
68	5号機低起動二次側ケーブルダクト	0		0
69	5 号機 OF ケーブルダクト* ³		_	—
70	排水路 ヒューム管*3			
71	排水路 ヒューム管	0		
72	排水路 遠心ボックスカルバート	0	_	
73	排水路 ヒューム管	0		
74	排水路 ヒューム管		_	0
75	排水路 ヒューム管		_	0
76	排水路 ヒューム管*3		_	
77	排水路 ヒューム管*3			
78	5号機東側第二保管場所部地盤改良-A*2		_	
79	5号機東側第二保管場所部地盤改良-B*2			

注記*1:図9-1の番号を示す。

*2:地盤改良部のため、浮上り評価の対象から除く。

*3:浮上り対策を実施しているため、浮上り評価の対象から除く。

*4: 杭を介して岩盤に支持する構造であるため、浮上り評価の対象から除く。

No. *	名称	揚圧力 (kN/m)	浮上り 抵抗力 (kN/m)	安全率	評価基準	評価結果
24	排水路 ヒューム管	654	1689	2.58		問題なし
44	7 号機ボンベ庫連絡ダクト	127	231	1.83		問題なし
46	7号機タービン建屋~ボール 捕集器ピット間 連絡ダクト	232	294	1.27		問題なし
47	7 号機補機放水路	134	240	1.80	1.0	問題なし
49	6 号機ボンベ庫連絡ダクト	175	263	1.50		問題なし
51	6 号機タービン建屋~スクリ ーン室間連絡ダクト	272	326	1.20		問題なし

表9-4 液状化に伴う浮上りによる影響評価結果

- 9.2 地中埋設構造物の損壊
 - (1) 評価方法

地中埋設構造物の損壊による影響評価については,地中埋設構造物の損壊によるアクセス ルートの通行性への影響を評価する。

アクセスルート上に設置されている地中埋設構造物の位置を図 9-1 に示す。

通行性への影響評価では,評価対象とする地中埋設構造物のうち仮復旧ルート上の箇所(条件①)に対して,Sクラスとして設計された設備や地盤改良体ではなく(条件②),ヒューム 管又は浮上り対策によりコンクリートで巻き立てられた構造物ではなく地表面付近に設置さ れており(条件③),周辺斜面の崩壊及び道路面のすべりにおいて通行性に影響を及ぼさない 区間に位置する(条件④)地中埋設構造物を,通行性に影響を及ぼす地中埋設構造物が存在 する箇所として評価する。

なお、上記4つの条件を満たす地中埋設構造物については、図9-8に示すような損壊対策 をあらかじめ実施することにより、通行性に対して影響を及ぼさない設計とし、V-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及びアクセスルート」において、ホイールロ ーダによる当該区間の仮復旧に要する時間を考慮不要とする。

図 9-8 損壊対策のイメージ図

(2) 評価結果

地中埋設構造物の損壊による影響評価結果を表 9-5 に示す。

評価の結果,条件①~④全てに該当する箇所については,あらかじめ損壊対策を実施して いることから,地中埋設構造物の損壊が当該箇所の通行性に影響を及ぼさないことを確認し た。

- 条件①:仮復旧ルート上の箇所
- 条件②: Sクラスで設計された構造物又は地盤改良体でない箇所

条件③:ヒューム管又は浮上り対策によりコンクリートで巻き立てられた構造物ではなく,地表面 付近に設置されている地中埋設構造物

条件④:斜面崩壊の影響を受けない箇所

(凡例)

- :条件に該当する場合
- :条件に該当しない場合

| : 損壊対策の実施により通行性に影響を及ぼさない箇所

No. *	名称	条件①	条件②	条件③	条件④
1	排水路 ボックスカルバート		0		0
2	事務建屋周辺 電線管路		0	0	
3	1号機重油配管トレンチ	—	0	—	0
4	1 号機 OF ケーブルダクト	—	0	—	0
5	荒浜側ガスタービン発電機用 ケーブルダクトハンドホール	_	0	0	0
6	荒浜側ガスタービン発電機用 ケーブルダクトハンドホール側面部 地盤改良				0
7	水配管ダクト		0		0
8	1 号機及び2 号機 CV ケーブルダクト, 2 号機 0F ケーブルダクト	_	0	_	—
9	3 号機 OF ケーブルダクト		0		_
10	3 号機及び4 号機 CV ケーブルダクト	—	0		_
11	4 号機 OF ケーブルダクト		0		_
12	新 500kV ケーブル洞道	—	0	—	_
13	1号機重油配管トレンチ		0	0	_
14	新 500kV ケーブル洞道		0		
15	500kV ケーブルダクト	_	0		
16	排水路 ボックスカルバート		0		
17	免震重要棟連絡ダクト		0		0
18	排水路 ボックスカルバート		0		_
19	 水配管ダクト		0		0

条件①:仮復旧ルート上の箇所

条件②: Sクラスで設計された構造物又は地盤改良体でない箇所

条件③:ヒューム管又は浮上り対策によりコンクリートで巻き立てられた構造物ではなく,地表面 付近に設置されている地中埋設構造物

条件④:斜面崩壊の影響を受けない箇所

(凡例)

- :条件に該当する場合
- :条件に該当しない場合

| : 損壊対策の実施により通行性に影響を及ぼさない箇所

No. *	名称	条件①	条件②	条件③	条件④
20	水配管ダクト		0		0
21	水配管ダクト	0	0		0
22	水配管ダクト		0		
23	排水路 ヒューム管		0		0
24	排水路 ヒューム管	0	0		0
25	排水路 ヒューム管		0		0
26	排水路 ボックスカルバート	0	0	0	0
27	排水路 ボックスカルバート		0	0	0
28	水配管ダクト		0		0
29	新 500kV ケーブル洞道		0		
30	500kV ケーブルダクト		0		_
31	水配管ダクト	\bigcirc	0		
32	500kV ケーブルダクト	\bigcirc	0		0
33	新 500kV ケーブルダクト	\bigcirc	0		0
34	7 号機 OF ケーブルダクト	\bigcirc	0		0
35	7 号機 OF ケーブルダクト		0		0
36	6 号機 OF ケーブルダクト	\bigcirc	0		0
37	6 号機 OF ケーブルダクト		0		0
38	6 号機補給水系連絡ダクト		0		0
39	5 号機 OF ケーブルダクト		0	0	0
40	水配管ダクト		0	0	
41	排水路 ヒューム管	0	0		0
42	第一ガスタービン発電機用ケーブルダクト	0		0	0

条件①:仮復旧ルート上の箇所

条件②: Sクラスで設計された構造物又は地盤改良体でない箇所

条件③:ヒューム管又は浮上り対策によりコンクリートで巻き立てられた構造物ではなく,地表面 付近に設置されている地中埋設構造物

条件④:斜面崩壊の影響を受けない箇所

(凡例)

- :条件に該当する場合
- :条件に該当しない場合

| : 損壊対策の実施により通行性に影響を及ぼさない箇所

No. *	名称	条件①	条件②	条件③	条件④
43	排水路 ボックスカルバート	0	0		0
44	7号機ボンベ庫連絡ダクト	0	0		0
45	7号機取水路	0			0
46	7号機タービン建屋~ボール捕集器ピット間 連絡ダクト	0	0	_	0
47	7 号機補機放水路	0	0		0
48	6 号機補機放水路	0	0		0
49	6号機ボンベ庫連絡ダクト	0	0		0
50	6号機取水路	0		_	0
51	6号機タービン建屋~スクリーン室間 連絡ダクト	0	0		0
52	6 号機補機放水路		0		0
53	5号機循環水配管 取水側	_	0	_	0
54	5 号機タービン建屋〜海水熱交換器建屋 連絡ダクト(南側)	_	_		0
55	5 号機ボンベ庫連絡ダクト		0		0
56	5号機タービン建屋〜海水熱交換器建屋 連絡ダクト(北側)	_	_	_	0
57	5号機タービン建屋~ボール捕集器ピット間 連絡トレンチ	_	0	0	0
58	5号機循環水配管 放水側		0		0
59	5 号機タービン建屋北西 圧力抑制室プール 水排水系サージタンクダクト		0		0

条件①:仮復旧ルート上の箇所

条件②: Sクラスで設計された構造物又は地盤改良体でない箇所

条件③:ヒューム管又は浮上り対策によりコンクリートで巻き立てられた構造物ではなく,地表面 付近に設置されている地中埋設構造物

条件④:斜面崩壊の影響を受けない箇所

(凡例)

- :条件に該当する場合
- :条件に該当しない場合

: 損壊対策の実施により通行性に影響を及ぼさない箇所

No. *	名称	条件①	条件②	条件③	条件④
60	6号機軽油タンク部地盤改良-A	_	—	0	0
61	6号機軽油タンク部地盤改良-B			0	0
62	6号機軽油タンク部地盤改良-C			0	0
63	6号機軽油タンク部地盤改良-D			0	0
64	6号機軽油タンク部地盤改良-E			0	0
65	6号機燃料移送系配管ダクト			0	0
66	5 号機 OF ケーブルダクト		0		0
67	5 号機低起動二次側ケーブルダクト		0		0
68	5号機低起動二次側ケーブルダクト		0		0
69	5 号機 OF ケーブルダクト	0	0		0
70	排水路 ヒューム管	0	0		0
71	排水路 ヒューム管		0		
72	排水路 遠心ボックスカルバート		0		
73	排水路 ヒューム管		0		
74	排水路 ヒューム管		0		0
75	排水路 ヒューム管		0		0
76	排水路 ヒューム管	0	0		0
77	排水路 ヒューム管	0	0		0
78	5号機東側第二保管場所部地盤改良-A	0		0	0
79	5号機東側第二保管場所部地盤改良-B	0		0	0

9.3 段差緩和対策(不等沈下対策等)の整理

これまでの評価結果を踏まえ、不等沈下対策等の段差緩和対策の実施箇所について対策の 種類を整理した結果を表 9-6 に、段差緩和対策の実施箇所を図 9-9 に、段差緩和対策の概 念図を図 9-10 に示す。

図 9-9 に示す箇所はあらかじめ段差緩和対策を実施しておくことにより, V-1-1-7-別添 1「可搬型重大事故等対処設備の保管場所及びアクセスルート」において,ホイールローダに よる当該区間の仮復旧に要する時間を考慮不要とする。

(凡例)

:該当する場合

- :該当しない場合

: 段差緩和対策の対象構造物

No. *1	名称	評価結果 ①	評価結果 ②	評価結果 ③	対策の 種類 ^{*2}
1	排水路 ボックスカルバート	_			
2	事務建屋周辺 電線管路				
3	1号機重油配管トレンチ			_	
4	1 号機 0F ケーブルダクト				
5	荒浜側ガスタービン発電機用 ケーブルダクトハンドホール		_		
6	荒浜側ガスタービン発電機用 ケーブルダクトハンドホール側面部 地盤改良	_	_	_	_
7	水配管ダクト	_	_		
8	1 号機及び 2 号機 CV ケーブルダクト, 2 号機 OF ケーブルダクト	_	_		
9	3 号機 0F ケーブルダクト	_	_		
10	3 号機及び4号機 CV ケーブルダクト		—		
11	4 号機 0F ケーブルダクト		—		
12	新 500kV ケーブル洞道				
13	1号機重油配管トレンチ		_		
14	新 500kV ケーブル洞道				
15	500kV ケーブルダクト		_		
16	排水路 ボックスカルバート	_			
17	免震重要棟連絡ダクト	_			
18	排水路 ボックスカルバート				

注記*1:図9-1の番号を示す。

(凡例)

:該当する場合

- :該当しない場合

: 段差緩和対策の対象構造物

No *1	<i>by</i> ∓h-	評価結果	評価結果	評価結果	対策の
NO.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1	2	3	種類*2
19	水配管ダクト	_	—		
20	水配管ダクト		—		
21	水配管ダクト	—	—	—	—
22	水配管ダクト		—	—	—
23	排水路 ヒューム管		—	—	—
24	排水路 ヒューム管		—	—	—
25	排水路 ヒューム管				
26	排水路 ボックスカルバート	—	—	0	D
27	排水路 ボックスカルバート	—	—	—	—
28	水配管ダクト	—	—	—	—
29	新 500kV ケーブル洞道		—	—	—
30	500kV ケーブルダクト		—	—	—
31	水配管ダクト	_	—		
32	500kV ケーブルダクト	—	0	—	В
33	新 500kV ケーブルダクト	—	0	—	В
34	7 号機 0F ケーブルダクト	—	0	—	В
35	7 号機 0F ケーブルダクト				
36	6 号機 OF ケーブルダクト		0	_	С
37	6 号機 0F ケーブルダクト				
38	6号機補給水系連絡ダクト		_		
39	5 号機 OF ケーブルダクト				
40	水配管ダクト				
41	排水路 ヒューム管				
42	第一ガスタービン発電機用ケーブルダクト	0			А

注記*1:図9-1の番号を示す。

(凡例)

 :該当する場合

- :該当しない場合

: 段差緩和対策の対象構造物

No. *1	57 Fh-	評価結果	評価結果	評価結果	対策の
NO.	石桥	1	2	3	種類*2
43	排水路 ボックスカルバート	—	—	_	
44	7 号機ボンベ庫連絡ダクト	—	—	_	
45	7号機取水路	0	0	—	A+C
46	7号機タービン建屋~				
40	ボール捕集器ピット間連絡ダクト				
47	7号機補機放水路	—	—	—	—
48	6号機補機放水路	—	—	—	—
49	6号機ボンベ庫連絡ダクト	—	—	—	—
50	6号機取水路	0	0		A+C
51	6号機タービン建屋~スクリーン室間				
51	連絡ダクト				
52	6号機補機放水路				
53	5号機循環水配管 取水側				
54	5号機タービン建屋~海水熱交換器建屋				
54	連絡ダクト(南側)				
55	5号機ボンベ庫連絡ダクト	—	—	—	—
56	5号機タービン建屋~海水熱交換器建屋				
50	連絡ダクト(北側)				
57	5号機タービン建屋~ボール捕集器ピット間				
01	連絡トレンチ				
58	5号機循環水配管 放水側	—	—	—	—
50	5 号機タービン建屋北西 圧力抑制室プール				
	水排水系サージタンクダクト				
60	6号機軽油タンク部地盤改良-A				

注記*1:図9-1の番号を示す。

(凡例)

 :該当する場合

- :該当しない場合

: 段差緩和対策の対象構造物

No. *1	名称	評価結果 ①	評価結果 ②	評価結果 ③	対策の 種類 ^{*2}
61	6号機軽油タンク部地盤改良-B				
62	6号機軽油タンク部地盤改良-C		—		
63	6号機軽油タンク部地盤改良-D		—		
64	6号機軽油タンク部地盤改良-E		—		
65	6号機燃料移送系配管ダクト		—		
66	5 号機 OF ケーブルダクト		—		
67	5号機低起動二次側ケーブルダクト		—		
68	5 号機低起動二次側ケーブルダクト		—		
69	5 号機 OF ケーブルダクト	—	0		С
70	排水路 ヒューム管		0	_	С
71	排水路 ヒューム管		—	_	
72	排水路 遠心ボックスカルバート				
73	排水路 ヒューム管				
74	排水路 ヒューム管				
75	排水路 ヒューム管		—	_	
76	排水路 ヒューム管	—	0	_	С
77	排水路 ヒューム管	_	0		В
78	5号機東側第二保管場所部地盤改良-A	_			
79	5号機東側第二保管場所部地盤改良-B				

注記*1:図9-1の番号を示す。

図 9-9 段差緩和対策の実施箇所

図 9-10 段差緩和対策の概念図

- 9.4 段差緩和対策(不等沈下対策等)の設計
 - (1) 不等沈下対策

段差緩和対策のうち不等沈下対策は、地中埋設構造物と埋戻部等との境界部において、路 面下に敷設した路盤補強材が滑らかに変形することによって路面の連続性を確保し、地表面 に生じる段差を緩和することで車両の通行性を確保するものである。不等沈下対策の設計は、 不等沈下発生時に車両が通行することを想定し、路盤補強材へ作用する引張力(ΣT_G)が、 路盤補強材の許容引張力(T_{max})を下回ることを確認する。

a. 構造概要

不等沈下対策は,路盤補強材4枚と砕石3層の積層構造となっており,路盤補強材と砕 石層は拘束部材により緊結されている。概要図を図9-11に示す。

走行状況*

図 9-11 概要図

注記*:アスファルト舗装の地震対策型段差抑制工法に関する実物大現場実験 (石垣ら 2012年)

b. 評価方法

屋外アクセスルートにおける不等沈下発生状況と類似した条件で実施した実物大現場実 験(以下「実物大現場実験」という。)の実験結果をもとに,路盤補強材に作用する引張力 を算定し,路盤補強材の許容引張力と比較を行う。なお,路盤補強材の許容引張力は製品 基準強度である 200kN/m とする。

- c. 評価条件
- (a) 不等沈下発生時に路盤補強材に発生する引張力(T_G)

実物大現場実験において路盤補強材に発生した引張力を測定した結果,不等沈下量 55cmの最大引張力が 67kN/m であった。不等沈下対策実施箇所における不等沈下量の最 大箇所は,第一ガスタービン発電機用ケーブルダクト(相対沈下量:29cm)であるが, ここでは保守的に不等沈下量 55cmに相当する T_G=67kN/m を用いる。 (b) 車両走行により路盤補強材に発生する引張力(ΔT_G)

実物大現場実験での不等沈下後における路面状況は、図9-12に示すように滑らかな曲 線状に変形している。ここで、路盤補強材の変曲点において引張力が最大となり、4層の 補強材に均等に引張力が作用するものと仮定すると、車両走行により路盤補強材に発生 する引張力ΔT_Gは下式により算定される。

$$\Delta T_{G} = (W \cdot W_{1} \cdot \sin \theta) / N$$

ここで,

W:路盤補強材上面位置の輪荷重(kN/m²)

$$W = W_0 / (n \cdot (W_1 \cdot W_b))$$

ここで,

W₀:車両の軸重量(kN)

- n:車軸数
- W1:路盤補強材上面位置における輪荷重の載荷面延長(m)

 $W_1 = 1_0 + 2 \cdot (h \cdot \tan \theta_b)$

- ここで,
 - 1₀:「道路橋示方書・同解説 I 共通編(日本道路協会,平成14年3月)」
 における, T荷重の載荷面延長(m) (=0.2m)
 - h:路面から路盤補強材上面までの厚さ(m)
 - θ_b:「道路土工 擁壁工指針(日本道路協会 平成24年3月)」における 荷重の分散角度(°)(=30°)
- W_b:路盤補強材上面位置における輪荷重の載荷面幅(m)

 $W_b = W_0 + 2 \cdot (h \cdot \tan \theta_b)$

ここで,

W₀:「道路橋示方書・同解説 I 共通編(日本道路協会, 平成14

年3月)」における, T荷重の載荷面幅(m) (=0.5m)

- θ:路盤補強材の変曲点における垂線と鉛直線のなす角(図9-13参照)
- N:路盤補強材の層数(=4層)

図9-12 不等沈下後における路面状況

図 9-13 路盤補強材の変曲点における垂線と鉛直線のなす角* 注記*:アスファルト舗装の地震対策型段差抑制工法に関する実物大現場実験(石垣ら 2012年)に加筆

走行を想定する車両は、走行時における車両総重量が最も大きい、熱交換器ユニット 代替原子炉補機冷却系熱交換器とし、後軸重量(3軸)から路盤補強材上面における輪荷 重を算定する。熱交換器ユニット 代替原子炉補機冷却系熱交換器の仕様を図9-14に、 輪荷重の算定イメージを図9-15に示す。

図 9-15 輪荷重算定のイメージ図

d. 評価結果

評価の結果,路盤補強材に発生する引張力(ΣT_{G})は,路盤補強材の許容引張力(T_{m} a_{x})を十分に下回っていることを確認した。したがって,あらかじめ不等沈下対策を実施 することにより,不等沈下が当該箇所の通行性に対して影響を及ぼさないことを確認した。

$$\begin{split} W_{1} &= 1_{0} + 2 \cdot (h \cdot \tan \theta_{b}) = 0.2 + 2 \times (0.35 \times \tan 30^{\circ}) = 0.6 \, (m) \\ W_{b} &= W_{0} + 2 \cdot (h \cdot \tan \theta_{b}) = 0.5 + 2 \times (0.35 \times \tan 30^{\circ}) = 0.9 \, (m) \\ W &= W_{0} \swarrow (h \cdot (W_{1} \cdot W_{b})) \\ &= ((32457 \swarrow 1000) \times 9.80665) \swarrow (3 \times 0.6 \times 0.9) = 196.5 \, (kN/m^{2}) \\ \Delta T_{G} &= (W \cdot W_{1} \cdot \sin \theta) \swarrow N = 196.5 \times 0.6 \times 0.237 \swarrow 4 = 6.986 \, (kN/m) \end{split}$$

 $\therefore \Sigma T_{G} = T_{G} + \Delta T_{G} = 67 + 6.986 = 73.99 (kN/m) < T_{max} = 200 (kN/m)$

(2) 浮上り対策

段差緩和対策のうち浮上り対策は、以下の2つのタイプとする。浮上り対策の設計例として、タイプBは500kVケーブルダクト及び新500kVケーブルダクト(図9-1中におけるNo.32 及びNo.33)、タイプCは排水路ヒューム管(図9-1中におけるNo.70)を代表として示す。 なお、ほかの対策箇所についても同様の設計を行うものとする。

タイプBの浮上り対策は、浮上り評価において、浮上りに対する安全率が1.0以上となるよう、揚圧力(U)と浮上り抵抗力(W)の差分である不足抵抗力(△W)を、置換えコンク リート等による付加抵抗力(W⁺)により確保する。ここでは、浮上り対策実施構造物のう ち、500kVケーブルダクト及び新500kVケーブルダクトを代表として示す。

また、タイプCの浮上り対策は、浮上り評価において、安全率1.0以上となるよう、揚圧力 (U)と浮上り抵抗力(W)の差分である不足抵抗力(△W)を、構造物と側面の地盤改良 体による付加摩擦抵抗力(Q_B')により確保する。ここでは、浮上り対策実施構造物のう ち、排水路ヒューム管を代表として示す。

- a. タイプB(置換えコンクリート)
- (a) 評価対象構造物

評価対象構造物は、500kVケーブルダクト及び新500kVケーブルダクト(図9-1中におけるNo.32及びNo.33) である。500kVケーブルダクト及び新500kVケーブルダクトはお互い近接していることから、2構造物を一体とした置換えコンクリートによる浮上り対策工を構築し、付加抵抗力を確保する構造としている。

500kVケーブルダクト及び新500kVケーブルダクト(図9-1中におけるNo. 32及びNo. 33)の段差緩和対策工の断面図を図9-16に示す。

図 9-16 500kV ケーブルダクト及び新 500kV ケーブルダクト(図 9-1 中における No. 32 及び No. 33) の段差緩和対策工の断面図

(単位:mm)

(b) 評価条件

浮上り評価の評価条件を以下に示す。

イ. 荷重・重量

表 9-7 に荷重・重量に関する評価条件を示す。

種別	単位体積重量 γ (kN/m ³)	備考
埋戻土(地下水位以深)	19.0	飽和重量
鉄筋コンクリート	24.0	コンクリート標準示方書 [構造性能照査編] (土木学会,2002 年制定)
重量コンクリート	25.2	設計値
既設流動化処理土	17.0	実績値
地下水	9.8	比重 1.0

表 9-7 荷重・重量に関する評価条件

口. 地下水位

地下水位は、V-2「耐震性に関する説明書」のうちV-2-1-3「地盤の支持性能の基本方針」を参考に、T.M.S.L.12.0mとする。

(c) 評価結果

不足抵抗力(△W)の算出結果を表9-8に、付加抵抗力(W⁺)の算出結果を表9-9 に示す。評価の結果、浮上り対策による付加抵抗力(W⁺)が不足抵抗力(△W)を上 回っていることを確認した。したがって、あらかじめ浮上り対策を実施することにより、 液状化に伴う浮上りが当該箇所の通行性に対して影響を及ぼさないことを確認した。

河江为在排生地	揚圧力(U)	浮上り抵抗力(W)	不足抵抗力 (△W)
計៕利家傳垣物	(kN/m)	(kN/m)	(kN/m)
500kVケーフ゛ルタ゛クト	429.8	230.8	199.0
新500kVケーブルタ゛クト	313. 1	148.6	164.5
計	742.9	379.4	363.5

表 9-8 不足抵抗力(△W)の算出結果

亚 価 対象 構 造 物	揚圧力(U')	浮上り抵抗力(W')	付加抵抗力(W+)
計画內然特色物	(kN/m)	(kN/m)	(kN/m)
浮上り対策工	1150 7	1545 4	296 7
(置換えコンクリート)	1108.7	1040.4	300. /

表9-9 付加抵抗力(W⁺)の算出結果

b. タイプC(地盤改良体)

(a) 対象構造物

評価対象構造物は,排水路ヒューム管(図9-1中におけるNo.70)である。排水路ヒューム管側面の埋戻土をセメント改良土(流動化処理土)に置き換え,付加摩擦抵抗力を確保する構造としている。排水路ヒューム管(図9-1中におけるNo.70)の段差緩和対策工の断面図を図9-17に示す。

図 9-17 排水路ヒューム管(図 9-1 中における No. 70)の段差緩和対策工の断面図 (単位:mm)

(b) 評価条件

浮上り評価の評価条件を以下に示す。

イ. 荷重・重量

表 9-10 に荷重・重量に関する評価条件を示す。

	単位体積重量	備老
「生力」	γ (kN/m ³)	с~~ шv
埋戻土 (地下水位以深)	19.0	飽和重量
		コンクリート標準示方書
鉄筋コンクリート	24.0	[構造性能照査編]
		(土木学会, 2002 年制定)
地下水	9.8	比重1.0

表 9-10 荷重・重量に関する評価条件

ロ. 構造物側方の摩擦抵抗

構造物側方の摩擦抵抗に関する評価条件を表 9-11 に示す。

構造物側方の摩擦抵抗は、下式に基づき地盤改良体の設計一軸圧縮強度 qu から算 定した粘着力 c とする。

 $c = q_u / 2$

表 9-11	構造物側方の摩擦抵抗に関わる評価条件	:
AU II		

種別	粘着力 c (kN/m ²)	内部摩擦角 φ (°)	備考
構造物一地盤改良体	1500	0	設計一軸圧縮強度 q _u =3000kN/m ²

ハ. 地下水位

V-2「耐震性に関する説明書」のうちV-2-1-3「地盤の支持性能の基本方針」を参 考に, T. M. S. L. 12. 0mとする。

(c) 評価結果

不足抵抗力(Δ W)の算出結果を表 9-12に、付加摩擦抵抗力(Q_B ')の算出結果 を表 9-13に示す。評価の結果、浮上り対策工による付加摩擦抵抗力(Q_B ')が不足 抵抗力(Δ W)を上回っていることを確認した。したがって、あらかじめ浮上り対策を 実施することにより、液状化に伴う浮上りが当該箇所の通行性に対して影響を及ぼさな いことを確認した。

亚在去在推`生h m	揚圧力(U)	浮上り抵抗力(W)	不足抵抗力 (△W)
評価対象備宣物	(kN/m)	(kN/m)	(kN/m)
排水路ヒューム管	109.4	73.2	36.2

表 9-12 不足抵抗力(△W)の算出結果

表9-13 付加摩擦抵抗力(Q_B')の算出結果

評価対象構造物	付加摩擦抵抗力(Q _B ') (kN/m)	
浮上り対策工 (流動化処理土)	4095.0	

(3) 損壊対策

段差緩和対策のうち,損壊対策の設計例として,排水路ボックスカルバート(図9-1中におけるNo.26)を示す。

損壊対策は、地中埋設構造物が損壊した状態を想定し、可搬型重大事故等対処設備の通行 時に鋼材に作用する曲げ応力度、せん断応力度及び鋼材に生じるたわみ量が評価基準値を下 回ることを確認する。各評価値は、単純はりモデルにて算定する。

- a. 評価方法
 - (a) 構造

排水路ボックスカルバート(図9-1中におけるNo.26)の損壊対策工の断面図を図9-18に示す。

図 9-18 排水路ボックスカルバート(図 9-1 中における No. 26)の損壊対策工の断面図

(b) 評価条件

- ・角型鋼管 BCR295
- ・寸法 300(mm)×300(mm)×6.0(m), t=9(mm), 腐食1.5mm考慮
- ・スパン長 L=4.0(m) (側壁の損壊を想定したスパン長:図9-18参照)
- (c) 荷重の設定(構造物奥行き1mあたり)

イ. 死荷重 (W_{SP})

角型鋼管重量

 $(1 本 あ た り : 80.1(kg/m) \times 9.80665(m/s²) = 785.5(N/m)=0.7855(kN/m))$

0.7855(kN/m·本)×3.34(本)=2.624(kN/m)

路盤荷重 (t=0.2(m))

20. $0 (kN/m^3) \times 0.2 (m) \times 1 (m) = 4.000 (kN/m)$

アスファルト舗装荷重(t=0.05(m))

22. $5 (kN/m^3) \times 0.05 (m) \times 1 (m) = 1.125 (kN/m)$

 \therefore 2. 624 (kN/m) + 4. 000 (kN/m) + 1. 125 (kN/m) = 7. 749 (kN/m)

口. 車両荷重(P)

車両荷重は,走行時における車両総重量が最も大きい,熱交換器ユニット 代替原 子炉補機冷却系熱交換器を対象車両とし,後軸重量から算定する。

熱交換器ユニット 代替原子炉補機冷却系熱交換器の車両諸元を表9-14に,仕様を 図9-19に示す。

表 9-14 熱交換器ユニット 代替原子炉補機冷却系熱交換器の車両諸元

図 9-19 熱交換器ユニット 代替原子炉補機冷却系熱交換器の仕様

後軸荷重=32457(kg)×9.80665(m/s²)/2.49(m)×1.0(m) =127800(N)=127.8(kN)

衝撃係数 i =20/(50+L) =20/(50+4) =0.3704 (道路橋示方書 I 共通編) 車両荷重 P = 127.8 (kN/m) × (1+0.3704) = 175.1 (kN)

ハ. 荷重図

荷重図を図9-20に示す。

図 9-20 荷重図

(d) 評価基準値

角型鋼管(BCR295)に関する評価基準値は、冷間成形角型鋼管設計・施工マニュアル(一般財団法人日本建築センター 2018年)に基づき設定する短期許容応力度とする。

・ B C R 295 短期許容応力度 曲げ応力度 σ_a = 295 (N/mm²)

せん断応力度 τ_a=170(N/mm²)

また,角型鋼管を桁として見立てたときの車両荷重によるたわみの許容値は,道路橋 示方書 Ⅱ鋼橋編に基づき設定する。

・たわみの許容値 $\delta = L / 600 = 4 / 600 = 6.7 (mm)$

b. 評価結果

評価の結果,下記に示すとおり,曲げ応力度,せん断応力度およびたわみ量はいずれも 評価基準値を下回っていることを確認した。したがって,あらかじめ損壊対策を実施する ことにより,地中埋設構造物の損壊が当該箇所の通行性に対して影響を及ぼさないことを 確認した。

(a) 曲げ応力度

死荷重による最大曲げモーメント (M_{max}¹) $M_{max}^{1} = W_{sp} \cdot L^{2} / 8 = 7.749 \times 4.0^{2} / 8 = 15.50 (kN \cdot m)$ 車両荷重による最大曲げモーメント (M_{max}²) $M_{max}^2 = P \cdot L / 4 = 175.1 \times 4.0 / 4 = 175.1 (kN \cdot m)$ 最大曲げモーメント合計 (M_{max}) $M_{max} = M_{max}^{1} + M_{max}^{2} = 15.50 + 175.1 = 190.6 (kN \cdot m)$ 最大曲げ応力度 (σ_{max}) $\sigma_{max} = M_{max} / Z = 190.6 \times 10^6 / (2217.9 \times 10^3)$ $= 85.94 \,(\text{N/mm}^2) < \sigma_a = 295 \,(\text{N/mm}^2)$ ここで, Z:断面係数(cm³) (奥行き 1m あたり: 664.04($cm^3/$ 本)×3.34(本)=2217.9(cm^3)) (b) せん断応力度 死荷重によるせん断力 (Smax¹) $S_{max}^{1} = W_{sp} \cdot L/2 = 7.749 \times 4.0/2 = 15.50 (kN)$ 車両荷重によるせん断力 (S_{max}²) $S_{max}^2 = P / L = 175.1 / 4.0 = 43.78 (kN)$ せん断力合計 (S_{max}) $S_{max} = S_{max}^{1} + S_{max}^{2} = 15.50 + 43.78 = 59.28 (kN)$ せん断応力度 (τ_{max}) $\tau_{\text{max}} = S_{\text{max}} / A = 59.28 \times 10^3 / (233.3 \times 10^2)$

=2.541(N/mm²) < τ_a=170(N/mm²) ここで, A:断面積(cm²) (1本あたり 69.84(cm²/本)×3.34(本)=233.3(cm²))

(c) たわみ量

車両荷重による最大たわみ量 (
$$\delta_{max}$$
)
 $\delta_{max} = P \cdot (1/2) \frac{4}{3 \cdot E \cdot I \cdot L}$
= 3.6(mm) < δ = 6.7(mm)

ここで,

- E:鋼材のヤング係数断面積(200kN/m²)
- I:断面二次モーメント(cm⁴)
 - (1 本 あ た 9 861.1(cm⁴/本) × 3.34(本) = 32936(cm⁴))

- 9.5 車両通行性能の検証
 - (1) 概要

表 9-15 に示す可搬型重大事故等対処設備を対象として,15cm 段差の通行性及び段差通行 後の健全性について検証を行った。

No.	設備名称
1	ホイールローダ (6,7号機共用)
2	タンクローリ(4kL)(6,7号機共用)
3	タンクローリ(16kL)(6,7号機共用)
4	可搬型代替注水ポンプ(A-2級)(6,7号機共用)
5	可搬型代替注水ポンプ(A-1級)(6,7号機共用)
6	電源車(6,7号機共用)
7	熱交換器ユニット 代替原子炉補機冷却系熱交換器(6,7号機共用)
8	大容量送水車(熱交換器ユニット用)(6,7号機共用)
9	大容量送水車(原子炉建屋放水設備用)(6,7号機共用)
10	大容量送水車(海水取水用)(6,7号機共用)
11	可搬型窒素供給装置(6,7号機共用)
12	原子炉建屋放水設備 放水砲 (6,7号機共用)
13	泡原液搬送車(6,7号機共用)
14	5号機原子炉建屋内緊急時対策所用可搬型電源設備(6,7号機共用)

表 9-15 可搬型重大事故等対処設備

(2) 検証結果

- a. 15cm 段差の通行性
 表 9-15 に示す各設備について、15cm 段差の通行が可能であることを確認した。
- b. 段差通行後の健全性

表 9-15 に示す各設備について,15cm 段差通行後の健全性確認として,各設備の機能に 応じた確認を実施し,設備が問題なく動作することを確認した。

15cm 段差通行後の健全性確認方法と結果を,表 9-16 に示す。

設備名称	確認事項	
	 ・外観点検により、設備に要求される機能に影響を及ぼす損傷、 	
	燃料漏えい等の異常が無いことを確認した。	
ホイールローダ(6,7号機共用)	・起動試験を行い、土砂撤去等アクセスルート確保に問題が無い	
	ことを確認した。	
	 ・走行試験により、自走機能に問題が無いことを確認した。 	
	 ・外観点検により、設備に要求される機能に影響を及ぼす損傷、 	
タンクローリ(4kL)(6,7 号機共	燃料漏えい等の異常が無いことを確認した。	
用)	・起動試験を行い、給油機能に問題が無いことを確認した。	
	 ・走行試験により、自走機能に問題が無いことを確認した。 	
	 ・外観点検により、設備に要求される機能に影響を及ぼす損傷、 	
タンクローリ(16kL)(6,7 号機	燃料漏えい等の異常が無いことを確認した。	
共用)	・起動試験を行い、給油機能に問題が無いことを確認した。	
	 ・走行試験により、自走機能に問題が無いことを確認した。 	
	 ・外観点検により、設備に要求される機能に影響を及ぼす損傷、 	
可搬型代替注水ポンプ(A-2 級)	燃料漏えい等の異常が無いことを確認した。	
(6,7号機共用)	・起動試験を行い、送水機能に問題が無いことを確認した。	
	・走行試験により、自走機能に問題が無いことを確認した。	
	・外観点検により、設備に要求される機能に影響を及ぼす損傷,	
可搬型代替注水ポンプ(A-1 級)	燃料漏えい等の異常が無いことを確認した。	
(6,7号機共用)	・起動試験を行い、送水機能に問題が無いことを確認した。	
	 ・走行試験により、自走機能に問題が無いことを確認した。 	
	・外観点検により、設備に要求される機能に影響を及ぼす損傷,	
雲酒市 (6.7 - 上掛井田)	燃料漏えい等の異常が無いことを確認した。	
电你平(0,1万做共用)	・起動試験を行い、発電機能に問題が無いことを確認した。	
	 ・走行試験により、自走機能に問題が無いことを確認した。 	
教 広 施 思 コ ー ット 化 恭 百 二 に	 ・外観点検により、設備に要求される機能に影響を及ぼす損傷、 	
熱交換器ユニット 補機冷却系熱交換器(6,7号機共 用)	燃料漏えい等の異常が無いことを確認した。	
	・起動試験を行い、除熱機能に問題が無いことを確認した。	
	・走行試験により、自走機能に問題が無いことを確認した。	

表 9-16 15cm 段差通行後の健全性確認方法及び結果(1/2)

設備名称	確認事項
	・外観点検により、設備に要求される機能に影響を及ぼす損傷、
大容量送水車(熱交換器ユニット	燃料漏えい等の異常が無いことを確認した。
用) (6,7 号機共用)	・起動試験を行い、送水機能に問題が無いことを確認した。
	 ・走行試験により、自走機能に問題が無いことを確認した。
	 ・外観点検により、設備に要求される機能に影響を及ぼす損傷、
大容量送水車(原子炉建屋放水設	燃料漏えい等の異常が無いことを確認した。
備用)(6,7号機共用)	・起動試験を行い、送水機能に問題が無いことを確認した。
	 ・走行試験により、自走機能に問題が無いことを確認した。
	 ・外観点検により、設備に要求される機能に影響を及ぼす損傷、
大容量送水車(海水取水用)(6,7	燃料漏えい等の異常が無いことを確認した。
号機共用)	・起動試験を行い、送水機能に問題が無いことを確認した。
	 ・走行試験により、自走機能に問題が無いことを確認した。
	 ・外観点検により、設備に要求される機能に影響を及ぼす損傷、
可搬型窒素供給装置(6,7号機共	燃料漏えい等の異常が無いことを確認した。
用)	・起動試験を行い,窒素供給機能に問題が無いことを確認した。
	 ・走行試験により、自走機能に問題が無いことを確認した。
	 ・外観点検により、設備に要求される機能に影響を及ぼす損傷等
原子 后建 医 故水 設 備 故水 砲	の異常が無いことを確認した。
(6.7 号楼北田)	 ・放水試験を行い、放水機能に問題が無いことを確認した。
	 ・走行試験により、牽引等による自走機能に問題が無いことを確
	認した。
	 ・外観点検により、設備に要求される機能に影響を及ぼす損傷、
泡原液搬送車(6,7号機共用)	燃料漏えい等の異常が無いことを確認した。
	 ・走行試験により、自走機能に問題が無いことを確認した。
5 号楼原子炉建屋内竪急時対策	 ・外観点検により、設備に要求される機能に影響を及ぼす損傷、
所用可搬型電源設備(67号機共	燃料漏えい等の異常が無いことを確認した。
用)	・起動試験を行い、発電機能に問題が無いことを確認した。
(11)	 ・走行試験により、自走機能に問題が無いことを確認した。

表 9-16 15cm 段差通行後の健全性確認方法及び結果(2/2)

- 10. 屋外アクセスルートの側方流動評価について
- 10.1 概要

液状化に伴う側方流動による影響評価については、タービン建屋のアクセスルートを対象と した有効応力解析を行い、アクセスルートの通行性への影響を評価する。ここでは、側方流動 評価の評価条件の詳細を説明する。

10.2 解析方法

地震応答解析は,構造物と地盤の動的相互作用を考慮できる2次元動的有限要素法を用いて, 基準地震動Ssに基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の 時刻歴応答解析を行う。

また,本評価では液状化に伴う残留変位の影響を適切に評価する必要があることから,解析 コード「FLIP」による有効応力解析を実施する。

10.3 入力地震動

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを1次元波 動論により地震応答解析モデルの底面位置で評価したものを用いる。入力地震動の設定におい ては, V-2「耐震性に関する説明書」のうちV-2-1-3「地盤の支持性能に係る基本方針」に示 す地下構造モデルを用いる。

入力地震動算定の考え方を図 10-1 に示す。入力地震動の算定には解析コード「SLOK」 を使用する。

図10-1 入力地震動算定の考え方

- 10.4 解析モデル及び諸元
 - a. 解析モデル

側方流動検討位置及び地質断面図を図10-2に,解析モデルを図10-3に示す。 評価対象としては,護岸部から約130m離れたタービン建屋海側のアクセスルートを選定する。

側方流動検討位置

図 10-2 側方流動検討位置及び地質断面図

図 10-3 解析モデル

- (a) 解析モデル領域
 解析モデル領域は、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさないよう、
 十分広い領域とする。
- (b) 境界条件

解析モデル領域の側面及び底面には,エネルギーの逸散効果を評価するため,粘性境界を 設ける。

- (c) 構造物のモデル化 構造物は、非線形はり要素又は線形平面ひずみ要素でモデル化する。
- (d) 地盤のモデル化

地盤は、V-2「耐震性に関する説明書」のうちV-2-1-3「地盤の支持性能に係る基本方針」 における区分に基づき、マルチスプリング要素及び間隙水要素にてモデル化し、地震時の有 効応力の変化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

(e) 潮位条件

潮位は朔望平均満潮位(T.M.S.L.1.0m)とする。

b. 地盤物性値

地盤及び地盤改良体の諸定数は、V-2「耐震性に関する説明書」のうちV-2-1-3「地盤の支 持性能に係る基本方針」にて設定している物性値を用いる。なお、液状化パラメータは平均値 とする。

c. 地下水位

地下水位は、V-2「耐震性に関する説明書」のうちV-2-1-3「地盤の支持性能に係る基本方 針」にて設定している地下水位を設定する。 10.5 評価結果

液状化に伴う側方流動による影響評価結果を図 10-4 に示す。

タービン建屋海側のアクセスルート位置において,側方流動による残留鉛直変位量は小さく 段差等も生じていないことから,側方流動が通行性に対して影響を及ぼさないことを確認した。 また,アクセスルート下は基本的に連続して同じ地層が分布していることから,アクセスル ート進行方向については,通行性に影響を及ぼすような段差は生じにくい。ただし,地中埋設 構造物が存在する箇所については,その地中埋設構造物に応じた段差が生じるが,必要に応じ て不等沈下対策等の段差緩和対策を講ずる設計としており,当該箇所の通行性に影響を及ぼす ことはない。

図10-4 液状化に伴う側方流動による影響評価結果

- 土砂撤去時のホイールローダ作業量及び建屋直近の段差の仮復旧時間について
 ここでは、V-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及びアクセスルート」の
 うち、仮復旧時間の算定に用いる算定条件について説明する。
- 11.1 土砂撤去時のホイールローダ作業量について
 - (1) 作業体制重機操作要員 2 名
 - (2) ホイールローダ仕様
 ○バケット容量(山積):3.0m³
 ○バケット全幅:約3m(270cm)
 - (3) 堆積土砂撤去量の算定
 - a. 算定条件 柏崎刈羽原子力発電所に配備されているホイールローダの規格(バケット容量 3.0m³) と同規模の重機を例示している図書*を参考に作業量を算定する。
 - 注記*:ダム技術センター:ダム工事積算の解説,2011 日本道路協会:道路土工 施工指針,1986 東日本高速道路株式会社,中日本高速道路株式会社,西日本高速道路株式会社: 土木工事積算基準,2014
 - b. 撤去方法

土砂撤去方法イメージ図を図 11-1 に示す。

- ・アクセスルート上に流入した土砂を押土及び集積し、道路脇に撤去する。
- ・1 サイクルの作業は,道路上①→②に土砂を押土及び集積し,次に道路脇③の方向に 撤去する。
- ・土砂を道路脇に撤去した後,道路上の②→①→②の区間において転圧を行うとともに 撤去による不陸を低減する。

・1 サイクルの押土及び集積で移動できる長さは、
 バケット容量 3.0m³/流入箇所の平均的な土砂断面積 0.825m^{2*}≒4m
 注記*:ホイールローダ2台で復旧幅 3.0m を確保する場合の1台分の土砂撤去量

- ・1 サイクル当りの移動距離は,
- A:押し出し (①→②→③) : 7m
- B:後進 (③→②) : 3m
- C:転圧:後進(②→①) : 4m
- D:転圧 (①→②) : 4m
- c. 土砂撤去量の算定
 - ・当該作業におけるホイールローダの作業量を決定するにあたり,表 11-1 のとおり作業量を算定した。
 - ・このうち,作業量が保守的(少ない)である「土木工事積算基準」にて算出される作業量 76m³/h を採用する。

			東日本高速道路株式会社,
	ダム技術センター:	日本道路協会:	中日本高速道路株式会社,
参考図書	ダム工事積算の解説	道路土工 施工指針	西日本高速道路株式会社:
	, 2011	, 1986	土木工事積算基準
			, 2014
図書に例示されて			
いる重機の規格(バ	3.1m ³ 級~10.3m ³ 級	1.0m ³ 級~2.1m ³ 級	1.3m ³ 級~6.0m ³ 級
ケット容量)			
作業量	$100 \text{m}^3/\text{h}$	84m³/h	76m³/h

表 11-1 ホイールローダの作業量算定

項目	ダム工事積算の解説	道路土工施工指針	土木工事積算基準				
作業量Q 算定式	Q=3600×Q×F×E/Cm ここで、 Q:運転時間当たり作業量(m ³ /h) Q:1サイクル当たりの作業量(m ³ /h) F:土量換算係数 E:作業効率 Cm:サイクルタイム(s)	Q=3600×Q ₀ ×K×F×E/Cm ここで, Q:運転時間当たり作業量(m ³ /h) Q ₀ :バケット容量(m ³) K:バケット係数 F:土量換算係数 E:作業効率 Cm:サイクルタイム(s)					
作業量 Q	$100 \mathrm{m}^3/\mathrm{h}$	$84 m^3/h$	$76 \text{m}^3/\text{h}$				
バケット容量	柏崎刈羽原子力発電所に配備されているホイールローダの規格から設定						
\mathbf{Q}_0	【採用值:3.0m ³ 】						
バケット係数	設定されていないが,関係式から逆算 一度切り崩された崩壊土であり,不規則な空隙を生じにくくバケットに入り ³ いものであることから,土質(普通土・砂質土)に応じた上限値を採用						
K	【採用值:0.829】	【採用值:0.90】	【採用值:0.8】				
1 サイクル当た りの作業量 Q	$Q = Q_0 \times K$						
	【採用值:2.49m ³ /h】	【採用值:2.70m ³ /h】	【採用值:2.40m ³ /h】				
土量換算係数 F	堆積土砂(ほぐした土量)を作業の対象としており、土量換算係数は1.0						
	【採用值:1.0】						
作業効率 E	堆積土砂上の作業であり作業効率はかなり低下するものと想定し、土質(普通土・砂質土)に応じた最も保守的な値を採用						
	【採用值:0.45】	【採用值:0.4】	【採用值:0.40】				
サイクルタイム Cm	ホイール型の値を採用	表 4-2 作業量算定におけるパラメータ	の考え方(その2)の算定式により算定				
	【採用值:40s】	【採用值:46s】	【採用值:45s】				

表 11-2 作業量算定におけるパラメータの考え方 (1/2)

項目	道路土工施工指針	土木工事積算基準					
サイクルタイム Cm算定式	Cm=ML+T ₁ +T ₂ ここで, Cm:トラクタショベルのサイクルタイム(s) M:トラクタショベルの足回りによる係数(m/s) L:片道運搬距離(m) T ₁ :すくい上げ時間(s) T ₂ :積込み及び運搬車両進入のための待ち時間,ギ アの入れかえ,段取り等に要する時間(s)	Cm=L ₁ /V ₁ +L ₂ /V ₂ +T ₁ +T ₂ ここで, Cm:トラクタショベルのサイクルタイム(s) L ₁ :運搬距離(m) L ₂ :帰り距離(m) T ₁ :すくい上げ時間(s) T ₂ :積込み及び運搬車両進入のための待ち時間,ギ アの入れかえ,段取り等に要する時間(s) V ₁ :運搬速度(m/s) V ₂ :帰り速度(m/s)					
サイクルタイム Cm	46s	45s					
運搬距離	土砂撤去方法及び転圧距離から設定						
L , L_1 , L_2	【採用值:11m】	【採用值:L1 11m, L2 7m】					
足回り係数	ホイール形を採用						
М	【採用值:1.8m/s】						
すくい上げ時間 T ₁	堆積土砂上の作業であり、すくい上げは容易でないことから最も保守的な値を採用						
	【採用值:20s】						
積込みほか時間 T ₂	運搬重機への積込み作業がないため、下限値の半分程度の時間を採用						
	【採用值:6s】	【採用值:8s】					
運搬速度 V1		柏崎刈羽原子力発電所の実機から設定					
		【採用值:1.1m/s】					
帰り速度 V ₂		柏崎刈羽原子力発電所の実機から設定					
		【採用值:1.1m/s】					

表 11-2 作業量算定におけるパラメータの考え方 (2/2)

11.2 建屋直近の地盤沈下に伴う段差の仮復旧時間について

建屋直近の地盤沈下の際,熱交換器ユニット 代替原子炉補機冷却系熱交換器を使用する場合,専用ホースが重く,はしご等を用いたホース接続作業が困難なこと及び対応操作のため建 屋内への車両アクセスが必要となることから,ホイールローダを用いて建屋直近の段差の仮復 旧を行なうこととしている。

以下では、当該作業に想定される時間を評価する。

- (1) 沈下量の想定
 - a. 一般部の沈下量

一般部の沈下量は、タービン建屋西側における液状化及び揺すり込み沈下の対象層厚 26mに沈下率2.0%を乗じた0.52mと想定する。図11-2にタービン建屋西側の沈下対象層 を示す。

図 11-2 想定する沈下対象層厚

b. 建屋直近の沈下量

建屋直近の沈下量は,新潟県中越沖地震における実績で一般部の沈下量の3.5 倍であったことを踏まえ,上記「a. 一般部の沈下量」で想定した一般部の沈下量 0.52m に 3.5 を 乗じた 1.82m を保守的に丸めて,2.0m と想定する。新潟県中越沖地震における実績を図 11 -3 に,想定する建屋直近の沈下形状を図 11-4 に示す。

1号機原子炉建屋南側における沈下例

図 11-3 新潟県中越沖地震における実績*

注記*:総合資源エネルギー調査会原子力安全・保安部会 耐震・構造設計小委員会 地震・津波、地質・地盤合同WG(第3回:平成19年12月25日)資料に加筆

図 11-4 建屋直近の沈下形状

c. 地震後の想定地盤形状

「a. 一般部の沈下量」及び「b. 建屋直近の沈下量」の沈下想定を踏まえ、地震後に 想定される地盤形状を図11-5に示す。

図 11-5 地震後の想定地盤形状

- (2) 段差の仮復旧方法及び時間の評価
 - a. 段差の仮復旧方法

建屋直近の段差の仮復旧のイメージを図11-6に示す。

- ① 建屋直近は、砕石を用いてホイールローダにより埋戻す。
- ② ①の作業後,砕石を用いてホイールローダにより建屋との段差を仮復旧し,地震前 の高さに戻す。

- b. 段差の仮復旧時間の評価
 - (a) 評価方法

砕石による段差の仮復旧訓練実績を基に仮復旧時間を評価する。なお、訓練は、図 11-6に示す段差の仮復旧のイメージとおおむね同様の作業の流れである。

- (b) 段差の仮復旧訓練実績
 - イ. 訓練概要

ホイールローダを使用し,段差の仮復旧用として配備している砕石(運搬距離平均約100m)を用いて,1箇所50cmの段差(上り・下り)を仮復旧した際の作業時間を, 重機操作要員A,B,Cそれぞれ1回計測した。訓練概念図を図11-7に示す。

図 11-7 訓練概念図

- □. 重機操作要員経歴 重機操作要員A:勤続38年 免許取得後約5年 重機操作要員B:勤続22年 免許取得後約5年 重機操作要員C:勤続11年 免許取得後約3年
- ハ. ホイールローダの仕様

全長:735cm バケット全幅:270cm
 高さ:340cm 車両総重量:14.66t(定員2人含む)
 車両重量:14.55t バケット容量:3.0m³

ニ. 測定結果 測定結果を表 11-3 に示す。

	復旧箇所	時間(分)	サイクル (移動〜す くい上げ〜 撒出し〜転 圧)	1 サイクル あたりの時間	使用砕石量 (m ³)	1 サイクル あたりの作 業量
重機操	上り	21	4	約6分		約 1.0m ³
作要員 A	下り	29	6	約5分		約 0.7m ³
重機操	上り	24	4	約6分	4 9	約 1.0m³
作要員 B	下り	25	6	約5分	4.2	約 0.7m ³
重機操	上り	18	4	約5分		約 1.0m ³
作要員C	下り	26	6	約5分		約 0.7m ³

表 11-3 測定結果

(c) 評価結果

図11-6に示す段差の仮復旧のイメージの各ステップに必要な砕石量を図11-8に,建 屋直近の段差の仮復旧作業時間評価結果を表11-4に示す。仮復旧により確保する道路幅 をアクセスルートの仮復旧幅である3mとすると,段差の仮復旧作業に必要となる砕石量 は「① 埋戻し」で5.6m³,「② 段差復旧」で4.6m³となる。また,段差の仮復旧訓練 の実績で,約4.2m³の砕石について4~6回のサイクル(約0.7~約1.0m³/サイクル,約5~ 約6分/サイクル)で作業完了していることから,「① 埋戻し」では2サイクル分(1.4m³, 12分),「② 段差復旧」では1サイクル分(0.7m³,6分)の作業を追加することで, 段差の仮復旧作業に必要となる砕石量を満たす作業量となる。

よって、建屋直近の段差の仮復旧時間は、78分と想定する。

 ① 埋戻し

② 段差の仮復旧

図 11-8 段差の仮復旧のイメージの各ステップに必要な砕石量

作業	作業の流れ	使用する 砕石量 (m ³)	50cm の段差の仮復旧 に使用する砕石量・ 作業時間等	50cmの段差の仮復旧 作業量と比較して追 加で必要な砕石量及 び作業サイクル	想定 作業 時間* ² (分)
①埋戻し	移動~すくい 上げ~移動~ 埋戻し(最終サ イクルは転圧 も実施)	5.6	 ・砕石量:約4.2m³ ・作業時間:約30分 ・4~6サイクル 	必要砕石量:約1.4m ³ 2サイクル (1.4m ³ ,12分)*1	30+12 =42
 ②段差の仮 復旧 	移動~すくい 上げ~移動~ 撤出し (最終サ イクルは転圧 も実施)	4. 6	・約 0.7~約 1.0m ³ / サイクル ・約 5~約 6 分/サイ クル	必要砕石量:約0.4m ³ 1サイクル (0.7m ³ ,6分)*1	30+6 =36
1+2		10.2			78

表 11-4 建屋直近の段差の仮復旧作業時間評価結果

注記*1:保守的に 0.7m³/サイクル,6分/サイクルを採用。

*2:段差復旧訓練実績時間(約30分)に、追加が必要な作業サイクルの時間を加えた時間。

12. 仮復旧作業の検証について

ここでは、「11. 土砂撤去時のホイールローダ作業量及び建屋直近の段差の仮復旧時間について」にて設定した土砂撤去量及び仮復旧後の検証について説明する。

- 12.1 斜面崩壊により発生する堆積土砂の撤去
 - (1) 重機操作要員経歴
 重機操作要員 A: 勤続 37 年 免許取得後約 5 年
 重機操作要員 B: 勤続 21 年 免許取得後約 5 年
 - (2) ホイールローダの仕様
 全長:735cm バケット全幅:270cm
 高さ:340cm 車両総重量:14.66t(定員2人含む)
 車両重量:14.55t バケット容量:3.0m³
 - (3) 測定結果
 - a. 概要

図 12-1 のとおり,斜面崩壊後の堆積土砂を模擬し,アクセスルートを確保するための 時間を重機操作要員 A, B の組合せで1回計測した。検証試験における土砂撤去状況を図 12-2 に示す。

図 12-1 斜面崩壊後の堆積土砂を模擬した土砂

図 12-2 土砂撤去状況

b. 測定結果

測定結果を表 12-1 に示す。

重機操	土砂	作業時間	作業能力	目標値	仮復旧	仮復旧	評価	(参考)
作要員	撤去量				道路幅	必要道路幅		撤去延長
A, B	43. $5m^3$	28分12秒	92.5m³/h	$76 \mathrm{m}^3/\mathrm{h}$	4.2m	3. Om	0	15m

表 12-1 測定結果

(4) 検証結果

ホイールローダによる堆積土砂撤去は、V-1-1-7-別添1「可搬型重大事故等対処設備の保 管場所及びアクセスルート」のうち「3.3 屋外アクセスルートの評価方法及び結果」に示す とおり、76m³/h以上の速度で実施できることを確認した。

- 12.2 車両走行性能の検証
 - (1) 概要

ホイールローダにより柏崎刈羽原子力発電所に配備している砕石を用いて,約20cm及び約50cmの段差を仮復旧した際の可搬型重大事故等対処設備の通行性について検証する。

段差仮復旧後の走行性は、走行時において車両の重量が最も大きい熱交換器ユニット 代 替原子炉補機冷却系熱交換器を代表車両として検証する。

約 20cm の段差の仮復旧状況を図 12-3~図 12-5 に,約 50cm の段差の仮復旧状況を図 12-6~図 12-8 図に示す。

復旧前の段差状況

段差復旧状況①

段差復旧状況②

段差復旧状況③

図 12-6 約 50cm の段差の仮復旧(1)

図 12-7 約 50cmの段差の仮復旧(2)

図 12-8 約 50cmの段差の仮復旧(3)

(2) 検証結果

検証状況を図 12-9 及び図 12-10 に示す。

検証の結果,熱交換器ユニット 代替原子炉補機冷却系熱交換器については,ホイールロ ーダで仮復旧した段差箇所の走行が可能であることを確認した。なお,可搬型代替注水ポン プ,電源車及びタンクローリについても,念のため同様に走行性を検証し,図12-11~図12 -13 に示すとおりホイールローダで仮復旧した段差箇所の走行が可能であることを確認し た。

図 12-9 検証状況(約 20cm の段差)
【上り】

【下り】

図 12-10 検証状況(約 50cm の段差)

図 12-11 検証状況(可搬型代替注水ポンプ)

図 12-12 検証状況(電源車)

図 12-13 検証状況 (タンクローリ)

13. 仮復旧作業の成立性について

ここでは、V-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及びアクセスルート」に おいて算定した屋外アクセスルートの仮復旧に要する時間について、その作業の成立性につい て説明する。

13.1 仮復旧作業の成立性について

V-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及びアクセスルート」において算 定した屋外アクセスルートの仮復旧に要する時間は、下記の3ケースである。

- ・ケース1 7号機建屋寄り付き箇所までのルート
 - : V-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及びアクセスルート」のうち 図 3-20 及び図 3-21
- ・ケース2 5号機東側保管場所までのルート

- : V-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及びアクセスルート」のうち 図 3-22
- ・ケース3 淡水貯水池からの淡水送水に必要なホースの敷設を優先したルート (事故シーケンス「全交流動力電源喪失+主蒸気逃し安全弁1個開固着」(以下 「TBP シーケンス」という。)を想定)
 - : V-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及びアクセスルート」のうち 図 3-23~図 3-26

柏崎刈羽原子力発電所発電用原子炉設置許可申請書(6号及び7号発電用原子炉施設の変更) (以下「設置変更許可申請書」という。)における有効性評価で想定している可搬型重大事故 等対処設備を用いた作業の想定時間と,各ケースの仮復旧時間を整理した結果を,表13-1~ 表13-3に示す。

仮復旧に要する作業時間は,設置変更許可申請書における有効性評価で想定している可搬型 重大事故等対処設備を用いた作業の想定時間内に収まることから,設置変更許可申請書におい て確認された重大事故等への対処に係る措置の成立性に影響を及ぼさないことを確認した。

表 13-1 有効性評価の想定時間のある可搬型重大事故等対処設備を用いた作業の成立性評価結果 (荒浜側高台保管場所~可搬型重大事故等対処設備設置場所) (TBP シーケンスを除く)

	作業名	アクセス ルート 仮復旧時間 ^{*1} ①	その他考 慮すべき 時間 ②	移動 時間* ² ③	作業時間 ④	有効性評価 想定時間*3	評価結果 (①又は②) +③+④
可搬型 (A 淡: 復水)	⊍代替注水ポンプ −2 級)による 水貯水池から 貯蔵槽への補給	約4時間	_	約 30 分	約5時間30分	12 時間	問題なし (約 10 時間)
低圧代替注水系 (可搬型)による 原子炉注水準備操作		約4時間	10 時間 ^{*4} (要員参集)	約30分	約2時間20分	22 時間	問題なし (約12時間50分)
可搬型代替注水ポンプ (A-2 級) による淡水 貯水池から使用済燃料 貯蔵プールへの注水 (常用スプレイヘッダ (約 4 時間	_	約 30 分	約5時間20分	12 時間	問題なし (約9時間50分)
給油	タンクローリ (4kL)	約4時間	_	約 30 分	約1時間20分	12 時間	問題なし (約5時間50分)
準備	タンクローリ (16kL)	約4時間	_	約 30 分	約1時間30分	12 時間	問題なし (約6時間)
代替原子炉補機 冷却系準備操作		約5時間20分	10 時間 ^{*4} (要員参集)	約 30 分	約8時間30分	20 時間	問題なし (約 19 時間)

注記*1:荒浜側高台保管場所のホイールローダを使用した場合で,当該作業が対応可能なアクセ スルート仮復旧時間とする(放射線防護具着用時間を含む)。なお,大湊側高台保管場 所のホイールローダを使用した場合は各作業共約10分短くなる(V-1-1-7-別添1「可 搬型重大事故等対処設備の保管場所及びアクセスルート」のうち図3-20及び図3-21 参照)。

*2:5 号機原子炉建屋内緊急時対策所から荒浜側高台保管場所までの移動時間。大湊側高台 保管場所の場合は約20分。崩壊土砂範囲の通行等も想定されるが、早期の作業開始等の 対応により有効性評価の成立性に影響はない。

*3 : 重要事故シーケンスごとに有効性評価の想定時間が異なる場合には、最短の想定時間を 記載。

*4:有効性評価では、「代替原子炉補機冷却系準備操作」、「低圧代替注水系(可搬型)に よる原子炉注水準備操作」を行う緊急時対策要員の参集時間を事象発生から10時間後と しており,要員が参集するまでの10時間以内にアクセスルートの仮復旧が可能であるた め、仮復旧時間は要員参集までの10時間に包含している。

表 13-2 5号機原子炉建屋内緊急時対策所用可搬型電源設備への給油作業の成立性評価結果

作業名	アクセス ルート 仮復旧時間*1 ①	その他考 慮すべき 時間 ②	移動 時間* ² ③	作業時間 ④	有効性評価 想定時間	評価結果 (①又は②) +③+④
給油準備	約4時間	10 時間* ³ (要員参集)	約 30 分	約1時間 41分	23 時間* ⁴	問題なし (約12時間11分)

注記*1:荒浜側高台保管場所のホイールローダを使用した場合で,当該作業が対応可能なアクセ スルート仮復旧時間とする(放射線防護具着用時間を含む)。なお,大湊側高台保管場 所のホイールローダを使用した場合は各作業共約10分短くなる(V-1-1-7-別添1「可 搬型重大事故等対処設備の保管場所及びアクセスルート」のうち図3-20及び図3-21 参照)。

*2:5号機原子炉建屋内緊急時対策所から荒浜側高台保管場所までの移動時間。大湊側高台 保管場所の場合は約20分。崩壊土砂範囲の通行等も想定されるが、早期の作業開始等の 対応により有効性評価の成立性に影響はない。

*3:要員が参集するまでの10時間以内にアクセスルートの仮復旧が可能であるため、仮復旧時間は要員参集までの10時間に包含している。

*4 : 原子炉格納容器が破損した場合の対応時間。5 号機原子炉建屋内緊急時対策所の必要な 負荷運転時における給油間隔の目安は運転開始後約 66 時間。 表 13-3 有効性評価の想定時間のある可搬型重大事故等対処設備を用いた作業のうち

	作業名	アクセス ルート 仮復旧時間 ^{*1} ①	その他考 慮すべき 時間 ②	移動 時間 ③	作業時間 ④	有効性評価 想定時間	評価結果 (①又は②) +③+④
低圧代替注水系 (可搬型)による 原子炉注水準備操作		0分*1	_	約1時間 *2	約2時間 40分* ³	4 時間	問題なし (約3時間40分)
給油	タンクローリ (4kL)	0分*1	約2時間*4	約10分*5	約1時間20分	4 時間	問題なし* [%] (約3時間30分)
準備	タンクローリ (16kL)	約4時間	_	約30分*7	約1時間30分	28 時間	問題なし (約6時間)
代替原子炉補機 冷却系準備操作		約7時間10分	10 時間 ^{*8} (要員参集)	約30分*7	約8時間30分	24 時間	問題なし (約 19 時間)

TBP シーケンスの場合の成立性評価結果

注記*1:当該作業が対応可能となるアクセスルートの仮復旧時間は約3時間20分を想定している (V-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及びアクセスルート」のうち 図3-24参照)。しかし、アクセスルートの仮復旧時間で別の緊急時対策要員が低圧代 替注水系(可搬型)による原子炉注水準備操作や給油準備を並行して行えるため、考慮 しなくてよい。

- *2 : 待機場所から5号機原子炉建屋内緊急時対策所へ移動し、その後荒浜側高台保管場所ま で移動する時間。
- *3 : 10 名で 2 箇所(高台側, 7 号機周辺) に分かれて作業を行うことで作業時間の短縮を図る。
- *4 : 低圧代替注水系(可搬型)による原子炉への注水準備操作の対応時間。
- *5 : 低圧代替注水系(可搬型)による原子炉への注水準備操作終了後,5 号機東側第二保管 場所までの移動時間。
- *6 : 淡水貯水池近傍に配備した可搬型代替注水ポンプ(A-2 級) への給油は,事象発生後の 約6時間後から可能となる。可搬型代替注水ポンプ(A-2 級)は,事象発生から約3時 間40分後に運転を開始し,その約3時間後(事象発生後の約6時間40分後)に給油が 必要になると想定しており,可搬型代替注水ポンプ(A-2 級)への給油に問題は無い。
- *7:5号機原子炉建屋内緊急時対策所から荒浜側高台保管場所までの移動時間。大湊側高台 保管場所までの場合は約20分。崩壊土砂範囲の通行も想定されるが、早期の作業開始等 の対応により、有効性評価の成立性に影響はない。
- *8 : 有効性評価では、「代替原子炉補機冷却系準備操作」を行う緊急時対策要員の参集時間 を事象発生から 10 時間後としており,要員が参集するまでの時間内にアクセスルートの 仮復旧が可能であるため、仮復旧時間は要員参集までの 10 時間に包含している。

14. 屋内アクセスルートの設定について

屋内アクセスルートは,重大事故等時において必要となる現場活動場所まで外部事象を想定 しても移動が可能であり,また,移動時間を考慮しても要求される時間までに必要な措置を完 了させることが重要である。外部事象のうち一番厳しい事象は地震であり,地震起因による火 災及び溢水を考慮してもアクセス性に与える影響がないことを確認し設定する。

14.1 屋内アクセスルート設定における考慮事項

屋内での各階層におけるアクセスルートを選定する場合,地震随伴火災の恐れがある油内包 機器又は水素内包機器及び地震随伴溢水を考慮しても移動可能なルートをあらかじめ設定す る。

14.2 屋内アクセスルートの成立性

技術的能力 1.1~1.19 で整備した重大事故等時において期待する手順について,外部事象に よる影響を考慮しても屋内に設定したアクセスルートを通行できることを確認した。また,屋 内アクセスルートの幅が,最も狭いところでも 60cm 以上確保されているため,通行に支障が ないことを確認した。その結果を表14-1に,屋内アクセスルートについては図14-1に示す。 なお,表14-1の屋内アクセスルート欄及び代替屋内アクセスルート欄に記載されている数 字「①~⑧」は、図14-1の図名に記載されている「①~⑧」と関連付けがなされている。

14.3 屋外アクセスルートとの関係

重大事故等時は屋内での活動はもとより,屋外での可搬型重大事故等対処設備の設置作業と の連携が重要である。そのため,重大事故等対処設備を使用する場合には,緊急時対策要員(現 場要員)の滞在場所から現場に向かうことで,連携を図る。

表 14-1 技術的能力における対応手段で期待する屋内現場操作一覧(7号機)(1/16)

Γ					操作・作業	所	
		条文	対応手段	中央	屋内アクセス ルート	代替屋内アクセス ルート	
	1.1	緊急停止失 敗時に発電	代替制御棒挿入機能による制御 棒緊急挿入(自動)				
		用原子炉を 未臨界にす	代替制御棒挿入機能による制御 棒緊急挿入(手動操作)	0			
		るための手 順等	原子炉冷却材再循環ポンプ停止 による原子炉出力抑制(代替冷 却材再循環ポンプ・トリップ機				
			能) 原子炉冷却材再循環ポンプ停止	/			
			による原子炉出力抑制(原子炉 冷却材再循環ポンプ手動停止操 作)	0			
			自動減圧系の起動阻止スイッチ による原子炉出力急上昇防止	0			
			ほう酸水注入	0			
	1.2	原子炉冷却 材圧力バウ ンダリ高圧	高圧代替注水系の中央制御室か らの操作による発電用原子炉の 冷却	0			
		時に発電用 原子炉を冷 却するため の手順等	高圧代替注水系の現場操作によ る発電用原子炉の冷却	0	高圧代替注水ポンプ現場起動 【中央制御室→(④階段 M⑤)→(⑤階 段 E⑥)→[⑥-11]→[⑥-10]→(⑥階段 E⑤)→[⑤-18]】	高圧代替注水ボンブ現場起動 【中央制御室→(④階段 M5)→(⑤階段 F⑥)→[⑥-11]→[⑥-10]→(⑥階段 F ⑤)→[⑤-18]】	
			原子炉隔離時冷却系の現場操作 による発電用原子炉の冷却(運 転員操作)	0	原子炉隔離時冷却系ポンプ起動 【中央制御室→(④階段 M5)→(⑤階 段 E①)→[⑦ハッチ開放]→(⑦ハッチ 梯子⑧)→[③-10]→(⑧ハッチ 梯子)→(⑦階段 E⑥)→[⑥-10]→(⑥階 段 E⑦)→(⑦ハッチ梯子®)→[⑧-10] →(⑧ハッチ梯子⑦)→(⑦階段 E⑥)→ [⑥-10]】	原子炉隔離時冷却系ポンプ起動 【中央制御室→(④階段 M5)→(⑤階段 F ⑧)→[⑧-10]→(⑧階段 F ⑥)→[⑥ -10]→(⑥階段 F ⑧)→[⑧-10]→(⑧階 段 F⑥)→[⑥-10]】	
			監視及び制御(中央制御室の監 視計器)	0			
			ほう酸水注入系による進展抑制 (ほう酸水注入系貯蔵タンクを 水源とした原子炉圧力容器への ほう酸水注入)	0	ほう酸水注入系ポンプ起動 【中央制御室→(④階段 M⑤)→(⑤階 段F③)→[③-11]→(③階段F⑤)→(⑤ 階段 I<連絡通路>階段 J⑤)→(⑤階段 J⑥)→[⑥-39]】 ほう酸水注入系ポンプ電源受電 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]】	ほう酸水注入系ボンブ起動 【中央制御室→(④階段 M5)→(⑤階段 B3)→[③-11]→(③階段 E5)→(⑤階 段M④)→(④階段 L⑥)→[⑥-39]】 ほう酸水注入系ボンブ電源受電 【中央制御室→(④階段 M5)→(⑤階段 G⑥)→[⑥-13]→[⑥-14]】	
			原子炉隔離時冷却系による発電 用原子炉の冷却(設計基準拡張)	0			
			原子炉隔離時冷却系による発電 用原子炉の冷却(原子炉隔離時 冷却系の水源切替え)	0			
			高圧炉心注水系による発電用原 子炉の冷却(設計基準拡張)	0			
			高圧炉心注水系による発電用原 子炉の冷却(高圧炉心注水系の オ源切詰き)	0			
	1.3	原子炉冷却 材圧力バウ	 (代替自動減圧機 能) 				
		ンダリを減 圧するため	手動操作による減圧(逃がし安 全弁の手動操作による減圧)	0			
		エッコにめの手順等	常設代替直流電源設備による逃 がし安全弁機能回復	0	逃がし安全弁の開保持用の駆動源(高 圧窒素ガス)確保 【中央制御室→(④階段 M⑤)→(⑤階 段E⑥)→[⑥-12]】 逃がし安全弁の開保持用の駆動源(高 圧窒素ガス)確保 【中央制御室→(④階段 L⑥)→(⑥階 段 G①)→[①-11]→[①-12]】	透がし安全弁の開保持用の駆動源(高 圧窒素ガス)確保 【中央制御室→(④階段 M5)→(⑤階段 F⑥)→[⑥-12]】 透がし安全弁の開保持用の駆動源(高 圧窒素ガス)確保 【中央制御室→(④階段M⑤)→(⑤階 段 H①)→[①-11]→[①-12]】	

表 14-1	技術的能力におけ	る対応手段で期待す	る屋内現場操作一覧	(7 号機)	(2/16)
X 1 T					(4/1)

				操作・作業	場所
	条文	対応手段	中央	屋内アクセス	代替屋内アクセス
1.3	原子炉冷却 材圧力パウ ンダリを減 圧するため の手順等	逃がし安全弁用可搬型蓄電池 による逃がし安全弁機能回復	0	透がし安全弁の開保特用の駆動源(高 圧窒素ガス)確保 【中央制御室→(④階段 M⑤)→(⑤階 段 E⑥)→[⑥-12]] 透がし安全弁用の駆動源(電源)と逃 がし安全弁の開保持用の駆動源(高圧 窒素ガス)確保 【中央制御室→(④階段 L⑥)→(⑥階 段 G①)→[①-11]→[①-12]→(①階段 G ①)→[①-11]→[①-12]]	透がし安全弁の開保持用の駆動源(高 圧窒素ガス)確保 【中央制錬室→(④階段 M⑤)→(⑤階段 F⑥)→[⑥-12]】 逐がし安全弁の開保持用の駆動源(電源)と逃が し安全弁の開保持用の駆動源(高圧窒 素ガス)確保 【中央制御室→(④階段M⑤)→(⑤階 段H①)→[①-11]→[①-12]→(①階段G ⑥)→[⑥-17]→[⑥-13]→(⑥階段 H①) →[①-11]→[①-12]】
		高圧窒素ガス供給系による窒素 ガス確保(不活性ガス系から高 圧窒素ガス供給系への切替え)	0	遙がし安全弁の開保持用の駆動源(高 圧窒素ガス)確保 【中央制御室→(④階段 M⑤)→(⑤階 段E⑥)→[⑥-12]】 【中央制御室→(④階段 L⑥)→(⑥階 段 G①)→[①-11]→[①-12]】	遙がし安全弁の開保持用の駆動源(高 圧窒素ガス)確保 【中央制御室→(④階段 M5)→(⑤階段 F⑥)→[⑥-12]】 【中央制御室→(④階段M⑤)→(⑤階 段 H①)→[①-11]→[①-12]】
		高圧窒素ガス供給系による窒素 ガス確保(高圧窒素ガスボンベ の切替え及び取替え)		逃がし安全弁の開保持用の駆動源(高 圧窒素ガス)確保 【中央制御室→(④階段 L⑥)→(⑥階 段 G①)→[①-11]→[①-12]】	遙がし安全弁の開保持用の駆動源(高 圧窒素ガス)確保 【中央制御室→(④階段M⑤)→(⑤階 段H①)→[①-11]→[①-12]】
	1	逃し安全弁の背圧対策	/		
		インターフェイスシステムLOCA 発生時の対応(中央制御室から の遠隔操作)	0		
		インターフェイスシステム LOCA 発生時の対応(現場での隔離操 作)	0	現場での隔離 【中央制御室→(④階段 M⑤)→[⑤ -12]→[⑤-14]→(⑤階段 E④)→各系 統へ A 系→(④MS トンネル室⑤)→[⑤-17] B 系[⑤-12], C 系[⑤-14]】	現場での隔離 【中央制御室→(④階段 M5)→[⑤-12] →[⑤-14]→(⑤階段 F④)→各系統へ A 系→(④MS ▷ネネ塗⑤)→[⑤-17] B 系[⑤-12], C 系[⑤-14]】
		インターフェイスシステムLOCA 発生時の対応(ブローアウトパ ネルによる環境改善)			
1.4	原子炉冷却 材圧カバウ ンダリ低圧 時に発電用	低圧代替注木系(常設)による発 電用原子炉の冷却(残留熱除去 系(B)又は残留熱除去系(A)注入 配管使用)	0	低圧代替注水系(常設)による原子炉 圧力容器への注水の系統構成 【中央制御室→(④階段 J⑥)→[⑥ -39]】	低圧代替注水系(常設)による原子炉圧 力容器への注水の系統構成 【中央制御室→(④階段 L⑤) →[⑥ -39]】
	原子炉を 冷め の手順等	低圧代替注水系(可搬型)による 発電用原子炉の冷却 (仕誌示流電道部曲に上を座の軸	0	低圧代替注水系(可搬型)による原子 炉圧力容器への注水の系統構成 交流電源が確保されている場合 【中央制御室→(④階段 M⑤)→(⑤階 段 E④)→[④-8]又は,中央制御室→ (④階段 M⑤)→[⑤-15]] 全交流電源が喪失で残留熱除去系A系 使用の場合 【中央制御室→(④階段 M⑤)→(⑤階 段 E⑦)→[⑦-4]→(⑦階段 E④)→[④ -8]→(④MS $\lor \lor i \gg s = 5$) は、中央制御室→(④階段 M⑤)→(⑤階 段 E⑦)→[⑦-4]→(⑦階段 E⑤)→[⑤ -15]→(⑤階段 E④)→(④MS $\lor \lor i \gg s = 5$) →[⑤-17]] 全交流電源が喪失で残留熱除去系 B 系使用の場合 【中央制御室→(④階段 M⑤)→(⑤階 段 E⑦)→[⑦-4]→(⑦階段 E⑥)→[⑤ -15]→(⑤階段 E⑤)→[⑤-15]→[⑤ -14]又は、中央制御室→(④階段 M⑤) →(⑤階段 E⑦)→[⑦-14]]	低圧代替注水系(可搬型)による原子炉 圧力容器への注水の系統構成 交流電源が確保されている場合 【中央制御室→(④階段 MS)→(⑤階段 F④)→[④-8]又は、中央制御室→(④階 段 MS)→[⑤-15]] 全交流電源が喪失で残留熟除去系 A 系 使用の場合 【中央制御室→(④階段 MS)→(⑤ 階段 F①)→[⑦-4]→(⑦階段 F④)→[④-8] →(④ (④ 階段 MS))→(⑤ 常段 F⑦)→ [⑦-4]→(⑦階段 F⑤)→[⑤-17]] 全交流電源が喪失で残留熟除去系 B 系 使用の場合 【中央制御室→(④階段 MS)→(⑤ 階段 F①)→[⑦-4]→(⑦階段 F④)→[⑤-17]] 全交流電源が喪失で残留熟除去系 B 系 使用の場合 【中央制御室→(④階段 MS)→(⑤ 階段 F⑦)→[⑦-4]→(⑦階段 F④)→[⑤-14]] 之交流電源が喪失(④階段 MS)→(⑤ 階 P⑦)→[⑦-4]→(⑦階段 F④)→[⑤-14]] は、中央制御室→(④階段 MS)→(⑤ 階 段 F⑦)→[⑦-4]→(⑦階段 F⑤)→[⑤
		除去系(低圧注水モード)の復旧	0		

± 1 / 1	甘生的化力にわけて対応系の不知法力で見力可相思か 影 (7月機)	(9/10)
衣 14-1	技術的能力にわける対応手段で期付りる産内現場傑作― 見(「	(3/10)

	At the state of the			操作・作業場所				
	条文	対応手段	中央	屋内アクセス ルート	代替屋内アクセス ルート			
1.4	原子 炉 方 た が 近 年 す す 順 第 新 か が 低 電 た た め の 手 町 町 近 が に 子 す す に 子 す す 加 う で た が に 子 す す 順 原 子 す す 加 い 低 完 古 す 加 順 の 手 す う で 動 の う の 手 の う の で か た つ る 加 う か い 低 電 か た つ る 加 う か い 低 電 か た つ る の 手 す す 順 の う で る た た め の の の う の う の の の の の の の の う の の の の の の の の の の の の の	代替交流電源設備による残留熱 除去系(原子炉停止時冷却モー ド)の復旧	o	残留熱除去系A系の場合 残留熱除去系電源復旧 【中央制御室→(④階段 L⑥)→[⑥ -13]】 残留熱除去系封水ボンブの隔離 (重大事故時は省略可) 【中央制御室→(④階段 M⑤)→(⑤階 段 E⑧)→[⑧→9]】 残留熱除去系電源復旧 【中央制御室→(④階段 L⑥)→[⑥ -14]】 残留熱除去系封水ボンブの隔離 (重大事故時は省略可) 【中央制御室→(④階段 M⑤)→(⑤階 段 E⑧)→[⑧-11]】	携留熱除去系A系の場合 残留熱除去系電源復旧 【中央制御室→(④階段M⑤)→(⑤階 段G⑥)→[⑥-13]] 残留熱除去系封水ポンプの隔離 (重大事故時は省略可) 【中央制御室→(④階段M⑤)→(⑤階段 F⑧)→[⑧-9]] 残留熱除去系B系の場合 残留熱除去系B系の場合 残留熱除去系で濃度旧 【中央制御室→(④階段M⑤)→(⑤階 段G⑥)→[⑥-14]] 残留熱除去系封水ポンプの隔離 (重大事故時は省略可) 【中央制御室→(④階段M⑤)→(⑤階段 F⑧)→[⑧-11]]			
		残留熱除去系(低圧注水モード) による発電用原子炉の冷却(設 計基準拡張)	0					
		残留熱除去系(原子炉停止時冷 却モード)による発電用原子炉 からの除熱(設計基準拡張)	0	残留熱除去系 A 系の場合 残留熱除去系電源復旧 【中央制御室→(④階段 L⑥)→[⑥ -13]] 残留熱除去系封水ポンプの隔離 (重大事故時は省略可) 【中央制御室→(④階段 M⑤)→(⑤階 段 E⑧)→[⑧-9]] 残留熱除去系電源復旧 【中央制御室→(④階段 L⑥)→[⑥ -14]] 残留熱除去系封水ポンプの隔離 (重大事故時は省略可) 【中央制御室→(④階段 M⑤)→(⑤階 段 E⑧)→[⑧-11]]	務留熱除去系A系の場合 務留熱除去系電源復旧 【中央制御室→(④階段M⑤)→(⑤階 段G⑥)→[⑥-13]】 務留熱除去系封木ポンプの隔離 (重大事故時は省略可) 【中央制御室→(④階段M⑤)→(⑤階段 F⑧)→[⑧→9]】 務留熱除去系電源復旧 【中央制御室→(④階段M⑤)→(⑤階 段G⑥)→[⑥-14]】 務留熱除去系封木ポンプの隔離 (重大事故時は省略可) 【中央制御室→(④階段 M⑤)→(⑤階段 F⑧)→[⑧-11]】			
1.5	最終ヒート シンクへ熱 を輸送する ための手順 等	格納容器圧力逃がし装置による 原子炉格納容器内の減圧及び除 熱	0	格納容器圧力逃がし装置の減圧及び 除熱 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]→(⑥階段 H①)→[① -16]→(①階段 H②)→[②-3]】	格納容器圧力逃がし装置の減圧及び除 熱 【中央制御室→(④階段M⑤)→(⑤階 段G⑥)→[⑥-13]→[⑥-14]→(⑤階段 G①)→(①階段 H①)→[①-16]→(①階 段G②)→[②-3]】			
		原子炉格納容器ベント弁駆動源 確保(予備ボンベ)	0	原子炉格納容器ベント弁の駆動源確 保 ウェットウェルベント弁の場合 【中央制御室→(④階段 L⑥)→[⑥ -16]】 ドライウェルベント弁の場合 【中央制御室→(④階段 L⑥)→(⑥階 段 H④)→[④-11]】	原子炉格納容器ペント弁の駆動源確保 ウェットウェルペント弁の場合 【中央制御室→(④階段M⑤)→(⑤階 段G⑥)→[⑥-16]】 ドライウェルペント弁の場合 【中央制御室→(④階段M⑤)→(⑤階 段G③)→(③階段H④)→ [④-11]】			
		フィルタ装置ドレン移送ポンプ 水張り	/					
		フィルタ装置水位調整(水抜き) 格納容器圧力逃がし装置停止後 の容素ガスパージ	0					
	9	フィルタ装置スクラパ水pH調整 ドレン移送ライン窒素ガスパー	0					
	8	2 2	\square					
	0	ドレンタンク水抜き	/	厳ロ ぬしょうし ファトス 思えたせん	with the first of the second s			
1		耐圧強化ベント系による原子炉 格納容器内の減圧及び除熱	0	町止無化ペント糸による原子炉格納容器内の減圧及び除熱 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]→(⑥階段 H③)→[③ -14]→(③階段 H②)→[②-3]】	町止無化ペント糸による原子炉格納容 器内の減圧及び除熱 【中央制御室→(④階段M⑤)→(⑤階 段G⑥)→(⑥-13]→[⑥-14]→(⑥階段 G③)→[③-14]→(③階段 G②)→[② -3]】			

表 14-1 技術的能力における対応手段で期待する屋内現場操作一覧(7号機)(4/16)

1	naratan katan a		操作・作業場所			
	条文	対応手段	中央	屋内アクセス ルート	代替屋内アクセス ルート	
1.5	戦約とつ シンクを輸 をための手順 等	格納容器圧力逃がし装置による 原子炉格納容器内の滅圧及び除 熱(現場操作)	0	格納容器圧力逃がし装置による原子 炉格納容器内の滅圧及び除熱 ウェットウェルベントの場合 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑤-14]→(⑥階段 H①)→[① -16]→[①階段 H⑥]→[⑥-15]→(⑥階 段 H②)→[②-3]] ドライウェルベントの場合 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]→(⑧階段 H①)→[① -16]→(①階段 H④)→[④-12]→(④階 段 H②)→[②-3]]	格納容器圧力逃がし装置による原子炉 格納容器内の減圧及び除熱 ウェットウェルベントの場合 【中央制御室→(④階段M⑤)→(⑤階 段G⑥)→[⑥-13]→[⑥-14]→(⑥階段 G①)→(①階段H①)→[①-16]→(① 階段H①)→(①階段G⑥)→[⑤-15] →(⑥階段G②)→[②-3]] ドライウェルベントの場合 【中央制御室→(④階段M⑤)→(⑤階 段G⑥)→(⑤-13]→[⑥-14]→(⑥階段 G①)→(①階段H①)→[①-16]→(① 階段G⑤)→(⑤階段H①)→[①-12]→ (④階段H⑤)→(⑤階段G②)→[②-3]]	
		耐圧強化ベント系による原子炉 格納容器内の減圧及び除熱(現 場操作)	0	耐圧強化ベント系による原子炉格納 容器内の減圧及び除熱 ウェットウェルベントの場合 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]→(⑥階段 H②)→[② -4]→[②-3]→(②階段 H⑥)→[⑥-15] →(⑤階段 H②)→[②-3]] ドライウェルベントの場合 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]→(⑥階段 H②)→[② -4]→[②-3]→(②階段 H④)→[④-12] →(④階段 H②)→[②-3]]	耐圧強化ベント系による原子炉格納容 器内の滅圧及び除熱 ウェットウェルベントの場合 【中央制御室→(④階段M⑤)→(⑤階 段G⑥)→[⑥-13]→[⑥-14]→(⑤階段 G②)→[②-4]→[②-3]→(②階段G⑥) →[⑥-15]→(⑥階段G②)→[②-3]] ドライウェルベントの場合 【中央制御室→(④階段M⑤)→(⑤) 段G⑥)→[⑥-13]→[⑥-14]→(⑥階段 G②)→[②-4]→[②-3]→(②階段G⑤) →(⑤階段H④)→[④-12]→(④階段H ⑤)→(⑤階段G②)→[②-3]]	
		代替原子炉補機冷却系による除 熱	0	代替原子炉補機冷却系による補機冷 却木確保(現場状況によっては省略 可) 補機冷却海水系A系使用の場合 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑤-20]→[⑥-21]→(⑥階段 J ⑧)→[⑧-14]→(⑧階段 J⑤)→(⑤階段 J ®)→[⑧-14]→(⑧階段 J⑥)→(⑤階段 B)→(⑧階段 V②)→[②-5]→(⑤階段 B 3)→[③-10]→(⑧階段 E⑤)→[⑤-11]→ [⑤-13]→(⑤階段 E⑦)→[⑦-4]→(⑦ 階段 E⑧)→[⑧-9]→[⑧-10]→[⑧ -13]] 補機冷却海水系 B系使用の場合 【中央制御室→(④階段 L⑥)→[⑥ -14]→(⑥階段 T⑤)→(⑤階段 U⑥)→ [⑥-22]→[⑥-23]→(⑥階段 U⑥)→ [⑤=22]→[⑥-23]→(⑥階段 U⑥)→ (⑤階段 T⑥)→(⑥階段 L⑧)→(③階段 D②)) (⑤階段 T⑥)→(⑤階段 L⑧)→(③階段 D③) (⑤階段 T⑥)→(⑤階段 L⑥)→(③階段 F⑤)) →[⑤-13]→(⑤階段 F⑦)→(③ ² 5]→ (⑦階段 F⑧)→[⑧-11]→[⑧-12]] 【屋外→[⑤-23]→[⑤-24]]	代替原子炉補機冷却系による補機冷却 木確保(現場状況によっては省略可) 補機冷却海水系A系使用の場合 【中央制鋼室→(④階段 K⑤)→(⑤階段 G⑥)→[⑥-13]→(⑥階段 G⑤)→(⑤階段 取 T⑥)→[⑥-20]→[⑥-21]→(⑥階段 T⑤)→(⑤階段 M④)→(④階段 K⑧ →(⑤階段 F③)→(③階段 V②)→ [②-5]→(⑧階段 F③)→(③階段 V②)→ [②-5]→(②階段 F③)→(③階段 V②)→ [②-5]→(②階段 F③)→[③-10]→(③ 階段 F④)→[①-7]→[④-9]→(④階段 F⑦) →[⑦-4]→(⑦階段 F⑥)→[⑧-9]→(⑧ 下③)→[⑤-11]→[⑤-13]→(⑤階段 F⑦) →[⑦-4]→(⑦階段 F⑧)→[⑧-9]→[⑧ -10]→[⑧-13]] 補機冷却海水系 B系使用の場合 【中央制鋼室→(④階段 K⑥)→(⑤)→[⑤) (⑤)→[⑤-22]→[⑥-23]→(⑤階 段 U⑤)→(⑤= № № №))→(⑤) № №) (⑤ (⑤ № № №))→(③ № № №) (⑤ № № №))→(③ № №)) →(⑤ 階段 K④))→(⑤ № № №)) →(⑤ № № №))→(③ № № №)) →(⑤ № № №))→(③ № № №)) →(⑤ № № №))→(⑤ № № №))) →(⑤ № № №))→(③ № № ∞)))→(⑤ № № №)) →(⑤ № № №))→(③ № № №))) (⑤ № № №))→(③ № № №)))→(⑤ № № №))) →(⑤ № № №)))→(③ № № №))) (⑤ № № №)))→(③ № № №)))) (⑤ № № №)))) (⑤ № № №)))(③ № № №)))) (⑤ № № №))))(③ № № № №)))) (⑤ № № №)))(⑤ № № №))))(③ № № №))))(⑤ № № №))))(③ № № №))))(0)) (⑤ № № №)))(0))(0))(0))(0))(0))(0))(0))(0))(0))	
		原子炉補機冷却系による除熱 (設計基準拡張)	0			

	2020 (1920) (1920)		操作・作業場所				
	条文	対応手段	中央	屋内アクセス ルート	代替屋内アクセス ルート		
1.6	原子炉格納 容器内の冷 却等のため の手順等	代替格納容器スプレイ冷却系 (常設)による原子炉格納容器内 の冷却	0	代替格納容器スプレイ冷却系による原 子炉格納容器スプレイ系統構成 【中央制御室→(④階段 J⑥)→[⑥ -39]】	代替格納容器スプレイ冷却系による原子 炉格納容器スプレイ系統構成 【中央制御室→(④階段 K⑥)→[⑥ -39]】		
		代替格納容器スプレイ 冷却系 (可搬型)による原子炉格納容器 内の冷却	0	交流電源が確保されている場合 【中央制御室→(④階段 M⑤)→(⑤階 段 E④)→[④-8]又は、中央制御室→ (④階段 M⑤)→[⑤-15]] 全交流電源が喪失しておりD/Wスプレ イを実施する場合 【中央制御室→(④階段 M⑤)→(⑤階 段 E⑦)→[⑦-4]→(⑦階段 E④)→[④ -8]→(④階段 E⑤)→[⑤-14]又は、中 央制御室→(④階段 M⑤)→(⑤階段 E ⑦)→[⑦-4]→(⑦階段 E⑤)→[⑤-15] →[⑤-14]] 全交流電源が喪失しておりS/Pスプレ イを実施する場合 【中央制御室→(④階段 M⑤)→(⑤階 段 E⑦)→[⑦-4]→(⑦階段 E④)→[④ -8]→(④階段 E⑤)→[⑤-14]→(⑤階 段 F⑥)→[⑥-29]又は、中央制御室→ (④階段 M⑤)→(⑤=29]]	交流電源が確保されている場合 【中央制鋼室→(④階段 M⑤)→(⑤階段 F④)→[④-8]又は、中央制鋼室→(④階段 B(M⑤)→[⑤-15]] 全交流電源が喪失しており D/W スプレ イを実施する場合 【中央制鋼室→(④階段 M⑤)→(⑤階段 F⑦)→[⑦-4]→(⑦階段 F④)→[④-8] →(④階段 F⑤)→[⑤-14]又は、中央制 貚室→(④階段 M⑤)→(⑤階段 F⑦)→ [⑦-4]→(⑦階段 F⑤)→[⑤-15]→[⑤ -14]] 全交流電源が喪失しており S/P スプレ イを実施する場合 【中央制鋼室→(④階段 M⑤)→(⑤階段 B F⑦)→[⑦-4]→(⑦階段 F④)→[④-8] →(④階段 F⑤)→[⑤-14]→(⑤階段 B ⑥)→[⑥-29]又は、中央制鋼室→(④階段 B ⑥)→[⑤-15]→[⑤-14]→(⑤階段 B ⑥)→[⑤-15]→[⑤-14]→(⑤階段 B ⑥)→[⑤-29]]		
		代替交流電源設備による残留熱 除去系(格納容器スプレイ冷却 モード)の復旧	0				
		代替交流電源設備による残留熱 除去系(サプレッション・チェン バ・プール水冷却モード)の復旧	0				
		残留熱除去系(格納容器スプレ イ冷却モード)による原子炉格 納容器内の除熱(設計基準拡張)	0				
		残留熱除去系(サプレッショ ン・チェンバ・プール水冷却モ ード)によるサプレッション・チ ェンバ・プールの除熱(設計基準 拡張)	0				

表 14-1 技術的能力における対応手段で期待する屋内現場操作一覧(7号機)(5/16)

表 14-1	技術的能力におけ	る対応毛船で開待す	ス 民 内 相 捍 榀 作 一 覧	(7 县桃)	(6/16)
衣 14-1	収削的肥力にわり	る刈心于段 (別付)	₩2000000000000000000000000000000000000	(「万饿」	(0/10)

Ĩ.			操作・作業場所				
	条文	対応手段	中央	屋内アクセス ルート	代替屋内アクセス ルート		
1.7	原子炉格納 容器損を助 るための 手順等	格納容器圧力逃がし装置による 原子炉格納容器内の減圧及び除 熱	0	格納容器圧力透がし装置による原 子炉格納容器内の減圧及び除熱 ウェットウェルベントの場合 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]→(⑥階段 H①)→[① -16]→(①階段 H②)→[②-3]→(②) 階段 H⑥)→[⑥-15]】 ドライウェルベントの場合 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]→(⑥階段 H①)→[① -16]→(①階段 H②)→[②-3]→(②) 階段 H④)→[④-12]】	格納容器圧力逃がし装置による原子炉格 納容器内の減圧及び除熟 ウェットウェルベントの場合 【中央制御室→(④階段M⑤)→(⑤階段 G⑥)→[⑥-13]→[⑥-14]→(⑥階段 G ①)→(①階段 H①)→[①-16]→(①階段 H ①)→(①階段 G②)→[②-3]→(②階段 G ⑥)→[⑥-15]】 ドライウェルベントの場合 【中央制御室→(④階段M⑤)→(⑤階段 G⑥)→[⑥-13]→[⑥-14]→(⑥階段 G①) →(①階段 H①)→[①-16]→(①階段 H①) →(①階段 G②)→[②-3]→(②階段 G⑤) →(⑤階段H④)→[④-12]】		
		フィルタ装置ドレン移送ポンプ 水張り					
		フィルタ装置水位調整(水抜き)	0				
		格納容器圧力逃がし装置停止後 の窒素ガスパージ	0				
		フィルタ装置スクラバ木 pH調整	0				
		ドレン移送ライン窒素ガスパー ジ					
		ドレンタンク水抜き	0				
		格納容器圧力逃がし装置による 原子炉格納容器内の減圧及び除 熱(現場操作)	0	格納容器圧力逃がし装置による原 子炉格納容器内の減圧及び除熱 系統構成 【中央制御室→(④階段 M⑤)→(⑤) 階段 E①)→[①-8]→(①階段 E③)→ [③-10]】 格納容器圧力逃がし装置による原 子炉格納容器内の減圧及び除熱 ウェットウェルベントの場合 【中央制御室→(④階段 L⑥)→(⑥) 階段 H①)→[①-16]→(①階段 H2)) →[②-3]→[②-4]→[②-3]→(②階 段 H⑤)→[⑥-15]】 ドライウェルベントの場合 【中央制御室→(④階段 L⑥)→(⑥) 階段 H①)→[①-16]→(①階段 H2)) →[②-3]→[②-4]→[②-3]→(②階 段 H①)→[①-16]→(①階段 H2))	格納容器圧力進がし装置による原子炉格 納容器内の減圧及び除熱 系統構成 【中央制御室→(④階段 M⑤)→(⑤階段 F ①)→[①+8]→(①階段 F③)→[③-10]] 格納容器圧力進がし装置による原子炉格 納容器内の減圧及び除熟 ウェットウェルベントの場合 【中央制御室→(④階段M⑤)→(⑤階段 G①)→(①階段 H①)→[①-16]→(①階段 G②)→[②-3]→[②-4]→[②-3]→(②階 及G①)→(①階段 H①)→[①-16]→(①階段 G①)→(①階段 H①)→[①-16]→(①階段 G①)→(①階段 H①)→[①-16]→(①階段 G②)→(③)→(⑤階段 H④)→[④-12]]		
		不活性ガス(蜜素ガス)による系 統内の置換	/				
		代替循環冷却系による原子炉格 納容器内の減圧及び除熱	0	代替種彙冷却系による原子炉格納 容器内の減圧及び除熱系統構成 【中央制御室→(④階段 J⑥)→[⑥ -39]】 代替種彙冷却系による原子炉格納 容器内の減圧及び除熱系統構成 【中央制御室→(④階段 L⑥)→(⑥ 階段 G③)→[③-15]→[③-16]→[③ -17]】	代替循環冷却系による原子炉格納容器内 の減圧及び除熱系統構成 【中央制御室→(④階段K⑥)→[⑥-39]】 代替循環冷却系による原子炉格納容器内 の減圧及び除熱系統構成 【中央制御室→(④階段M⑤)→(⑤階段 H③)→[③-15]→[③-16]→[③-17]】		
		代替循環冷却系使用時における 代替原子炉補機冷却系による除 熱	0	代替原子炉補機冷却系による補機 冷却水確保 【中央制御室→(④階段 L⑤)→[⑥ -14]→(⑥階段 T⑤)→(⑤階段 U⑥) →[⑤-22]→[⑥-23]→(⑤階段 U ⑤)→(⑤階段 T⑥)→(⑥階段 J⑧) →[⑧-15]】 【屋外→[⑤-23]→[⑤-24]】	代替原子炉補機冷却系による補機冷却木 確保 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑥-14]→(⑥階段G⑤)→(⑤階段 U⑥)→[⑥-22]→[⑥-23]→(⑥階段U⑤) →(⑤階段M⑥)→(⑥階段K⑧)→[⑧ -16]】 【屋外→[⑤-23]→[⑤-24]】		

表 14-1	技術的能力におけ	ろ対応手段で期待す	ス屋内現場操作― 管	(7 号機)	(7/16)
X 1 T I					(1/10)

195.5 Sec. 19. Sec. 19		操作・作業場所			
	条文	対応手段	中央	屋内アクセス ルート	代替屋内アクセス ルート
1.8	原子炉格納 容器下部の 溶融炉心を 冷却するた めの手順等	格納容器下部注水系(常設)によ る原子炉格納容器下部への注水	0	格納容器下部注水系(常設)による 原子炉格納容器下部への注水電源 受電 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-18]】 格納容器下部注水系(常設)による 原子炉格納容器下部への注水系統 構成 【中央制御室→(④階段 J⑥)→[⑥ -39]】	格納容器下部注水系(常設)による原子炉 格納容器下部への注水電源受電 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑥-13]→(⑥階段G⑤)→(⑤階段 M④)→(④階段L⑥)→[⑥-18]】 格納容器下部之水系(常設)による原子炉 格納容器下部への注水系統構成 【中央制御室→(④階段K⑤)→[⑥-39]】
		格納容器下部注水系(可搬型)に よる原子炉格納容器下部への注 水	0	 格納容器下部注水系(可搬型)による原子炉格納容器下部への注水電 源受電 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-18]】 格納容器下部注水系(可搬型)による原子炉格納容器下部への注水系 統構成 【中央制御室→(④階段 L⑥)→(⑥) 階段 G④)→[④-15]] 	格納容器下部注水系(可變型)による原子 炉格納容器下部への注水電源受電 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑤-13]→(⑥階段G⑤)→(⑤階段 M④)→(④階段L⑥)→[⑥-18]] 格納容器下部注水系(可變型)による原子 炉格納容器下部への注水系統構成 【中央制御室→(④階段M⑤)→(⑤階段 H③)→(③階段G④)→[④-15]]
		低圧代替注水系(常設)による原 子炉圧力容器への注水	0	低圧代替注水系(常設)による原子 炉圧力容器への注水系統構成 【中央制御室→(④階段 J⑥)→[⑥ -39]】	低圧代替注水系(常設)による原子炉圧力 容器への注水系統構成 【中央制御室→(④階段 K⑥)→[⑤-39]】
		低圧代替注水系(可搬型)による 原子炉圧力容器への注水	0	低圧代替注水系(可搬型)による原 子炉圧力容器への注水系統構成 【中央制御室→(④階段 L⑥)→(⑥ 階段 G④)→[④-15]】	低圧代替注水系(可搬型)による原子炉圧 力容器への注水系統構成 【中央制御室→(④階段M⑤)→(⑤階段 H③)→(③階段G④)→[④-15]】
		ほう酸水注入系による原子炉圧 力容器へのほう酸水注入	0	ほう酸水注入系電源受電 ほう酸水注入系A系の場合 【中央制御室→(④階段 L⑤)→[⑥ -13] ほう酸水注入系B系の場合 【中央制御室→(④階段 L⑥)→[⑥ -14]	ほう酸水注入系電源受電 ほう酸水注入系A系の場合 【中央制御室→(④階段M⑤)→(⑤階段G ⑤)→[⑤-13]】 ほう酸水注入系B系の場合 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑤-14]】
1.9	水素爆発に よる原子炉 格納容器の	原子炉格納容器内の不活性化に よる原子炉格納容器水素爆発防 止			
	破する防止 する防 手順等	格納容器圧力逃がし装置による 原子炉格納容器内の水素ガス及 び酸素ガスの排出	0	格納容器圧力逃がし装置による原 子炉格納容器内の水素ガス及び酸 素ガスの排出 ウェットウェルベントの場合 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]→(⑥階段 H①)→[① -16]→(①階段 H②)→[②-3]→(② 階段 H⑥)→[⑥-15]】 ドライウェルベントの場合 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]→(⑥階段 H①)→[① -16]→(①階段 H②)→[②-3]→(② 階段 H④)→[④-12]】	格納容器圧力逃がし装置による原子炉格 納容器内の水素ガス及び酸素ガスの排出 ウェットウェルベントの場合 【中央制御室→(④階段M⑤)→(⑤階段G①)→ (①階段H①)→[①-16]→(①階段G①)→ (①階段G②)→[②-13]→(②階段G①)→ (①階段G②)→[②-13]→(②階段G⑥)→ [⑥-15]】 ドライウェルベントの場合 【中央制御室→(④階段M⑤)→(⑤階段G①)→ (①階段H①)→[①-16]→(①階段G①)→ (①階段G②)→[②-13]→(②階段G①)→ (①階段G②)→[②-13]→(②階段G⑤)→ (⑤階段H④)→[③-12]]
		耐圧強化ペント系(₩/₩)による 原子炉格納容器内の水素ガス及 び酸素ガスの排出	0	耐圧強化ベント系による原子炉格 納容器内の水素ガス及び酸素ガス の排出 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]→(⑥階段 H③)→[③ -14]→(③階段 H②)→[②-4]→[② -3]→(②階段 H⑥)→[⑥-15]】	耐圧強化ベント系による原子炉格納容器 内の木素ガス及び酸素ガスの排出 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑥-13]→[⑥-14]→(⑥階段G③)→ [③-14]→(③階段G②)→[②-4]→[②-3] →(②階段G⑥)→[⑥-15]】
		耐圧強化ラインの窒素ガスパー ジ	/		
		水素濃度及び酸素濃度の監視 (格納容器内水素濃度(SA)によ る原子炉格納容器内の監視)	0		
		水素濃度及び酸素濃度の監視 (格納容器内雰囲気計装による 原子炉格納容器内の監視)	0	格納容器内雰囲気計装電源受電 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]】	格納容器内雰囲気計装電源受電 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑥-13]→[⑥-14]】

表 14-1 技術的能力における対応手段で期待する屋内現場操作一覧(7号機)(8/16)

		操作・作業場所				
	条文	対応手段	中央	屋内アクセス ルート	代替屋内アクセス ルート	
1. 10	水素爆発に よる原子炉	静的触媒式水素再結合器による 水素濃度抑制				
	建屋等の損	原子炉建屋内の水素濃度監視	0			
. 5	働を防止す るための手 順等	原子炉建屋内の水素濃度監視 (非常用ガス処理系の停止操作)	0			
1. 11	使用済燃料 貯蔵槽の冷 却等のため の手順等	燃料プール代替注水系による常 設スプレイヘッダを使用した使 用済燃料プールへの注水	0			
		燃料プール代替注水系による可 搬型スプレイヘッダを使用した 使用済燃料プールへの注水(SFP 可搬式接続口を使用した場合)	0	燃料プール代替注水系による可搬 型スプレイヘッダを使用した使用 済燃料プール注水(淡水/海水)系統 構成 【中央制御室→(④階段 M⑤)→[⑤ -16]→(⑤階段 F①)→[①-9]→(① 階段 F⑤)→[⑤-16]】	燃料プール代替注水系による可搬型スプ レイヘッダを使用した使用済燃料プール 注水(淡水/海水)系統構成 【中央制御室→(④階段 M⑤)→[⑤-16]→ (⑤階段 E①)→[①-9]→(①階段 E⑤)→ [⑤-16]】	
		燃料プール代替注水系による可 搬型スプレイヘッダを使用した 使用済燃料プールへの注水(原 子炉建屋大物搬入口からの接続 の場合)	0	燃料プール代替注水系による可搬 型スプレイヘッダを使用した使用 済燃料プール注水系統構成 【中央制御室→(④階段 M⑤)→[⑤ -19]→(⑤階段 E①)→[①-10]→(① 階段 E⑤)→[⑤-19]】	燃料ブール代替注水系による可搬型スプ レイヘッダを使用した使用済燃料プール 注水系統構成 【中央制御室→(④階段M5)→[5-19]→ (⑤階段F①)→[①-10]→(①階段F5)→ [⑤-19]】	
		漏えい抑制	0	使用済燃料ブール冷却浄化系隔離 【中央制御室→(④階段 M⑤)→(⑤) 階段 E④)→[④-10]】	使用済燃料プール冷却浄化系隔離 【中央制御室→(④階段 M⑤)→(⑤階段 F ④)→[④-10]】	
		燃料プール代替注水系による常 設スプレイヘッダを使用した使 用済燃料プールへのスプレイ	0			
		燃料プール代替注水系による可 搬型スプレイヘッダを使用した 使用済燃料プールへのスプレイ (SFP 可搬式接続口を使用した場 合)	0	燃料プール代替注水系による可搬 型スプレイヘッダを使用した使用 済燃料プールスプレイ系統構成 【中央制御室→(④階段 M⑤)→[⑤ -16]→(⑤階段 F①)→[①-9]→(① 階段 F⑤)→[⑤-16]】	燃料プール代替注水系による可搬型スプ レイヘッダを使用した使用済燃料プール スプレイ系統構成 【中央制御室→(④階段M5))→[5-16]→ (⑤階段 E①)→[①-9]→(①階段 E5)→ [⑤-16]】	
		燃料プール代替注木系による可 搬型スプレイヘッダを使用した 使用済燃料プールへのスプレイ (原子炉建屋大物搬入口からの 接続の場合)	0	燃料プール代替注水系による可搬 型スプレイヘッダを使用した使用 済燃料プールスプレイ系統構成 【中央制御室→(④階段 M⑤)→[⑤ -19]→(⑤階段 E①)→[①-10]→(① 階段 E⑤)→[⑤-19]】	燃料ブール代替注水系による可搬型スプ レイヘッダを使用した使用済燃料プール スプレイ系統構成 【中央制御室→(④階段M⑤)→[⑤-19]→ (⑤階段F①)→[①-10]→(①階段F⑤)→ [⑤-19]】	
		使用済燃料プールの監視	/			
		使用済燃料貯蔵プール監視カメ ラ用空冷装置起動	0	使用済燃料貯蔵プール監視カメラ 用空冷装置起動 【中央制御室→(④階段 L⑥)→(⑥ 階段 G①)→[①-14]】	使用済燃料貯蔵プール監視カメラ用空冷 装置起動 【中央制御室→(④階段M⑤)→(⑤階段G ①)→[①-14]】	
		代替交流電源設備を使用した燃 料プール冷却浄化系による使用 済燃料プールの除熱	0	燃料プール冷却浄化系A系使用の 場合 燃料プール冷却浄化系電源受電 【中央制御室→(④階段 L⑤)→[⑥ -13]] 燃料プール冷却浄化系による使用済 燃料プール冷却浄化系による使用済 燃料プール冷却浄化系B系使用の 場合 燃料プール冷却浄化系B系使用の 場合 [中央制御室→(④階段 M⑤)→(⑤ 階段F④)→[①-9]] 燃料プール冷却浄化系電源受電 【中央制御室→(④階段 L⑥)→[⑥ -14]] 燃料プール冷却浄化系による使用済 燃料プール冷却浄化系による使用済 燃料プール冷却浄化系による使用済 燃料プール冷却浄化系による使用済 燃料プール冷却浄化系による使用済	燃料ブール冷却浄化系A系使用の場合 燃料ブール冷却浄化系電源受電 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑥-13]] 燃料ブール冷却浄化系による使用済燃料ブ ール除熱系統構成 【中央制御室→(④階段M⑤)→(⑤階段E ④)→[④-9]] 燃料ブール冷却浄化系B系使用の場合 燃料ブール冷却浄化系電源受電 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑥-14]] 燃料ブール冷却浄化系による使用済燃料ブ ール除熱系統構成 【中央制御室→(④階段M⑤)→(⑤階段E ④)→[④-9]]	

97 C		操作・作業場所				
	条文	対応手段	中央	屋内アクセス ルート	代替屋内アクセス ルート	
1. 12	発電所外へ の放射性物 質の拡散を	大容量送水車(原子炉建屋放水 設備用)及び放水砲による大気 への放射性物質の拡散抑制				
	抑制するた めの手順等	放射性物質吸着材による海洋へ の放射性物質の拡散抑制	/			
		汚濁防止膜による海洋への放射 性物質の拡散抑制				
		大容量送水車(原子炉建屋放水 設備用),放木砲,泡原液搬送車 及び泡原液混合装置による航空 機燃料火災への泡消火				
1.13	重大事故等 の収束に必	防火水槽を水源とした可搬型代 替注水ポンプによる送水				
	要となる水 の供給手順 等	淡水貯水池を水源とした可搬型 代替注水ポンプによる送水(あ らかじめ敷設してあるホースが 使用できない場合)				
	5	海を水源とした大容量送水車 (海水取水用)による可搬型代替 注水ポンプへの送水				
		海を水源とした大容量送水車 (海水取水用)及び可搬型代替注 水ポンプによる送水				
		原子炉冷却材圧力パウンダリ低 圧時の海を水源とした原子炉圧 力容器への注水	0	低圧代替注水系(可搬型)による原 子炉圧力容器への注水の系統構成 【中央制御室→(④階段 L⑥)→(⑥ 階段 G④)→[④-15]】	低圧代替注水系(可搬型)による原子炉圧 力容器への注水の系統構成 【中央制御室→(④階段M⑤)→(⑤階段 H③)→(③階段G④)→[④-15]】	
		海を水源とした原子炉格納容器 内の冷却(代替格納容器スプレ イ冷却系(可搬型)による冷却)	0	代替格納容器スプレイ冷却系によ る原子炉格納容器冷却の系統構成 【中央制御室→(④階段 L⑥)→(⑥ 階段 G④)→[④-15]】	代替格納容器スプレイ冷却系による原子 炉格納容器冷却の系統構成 【中央制御室→(④階段M⑤)→(⑤階段 H③)→(③階段 G④)→[④-15]】	
		海を水源とした原子炉格納容器 下部への注水(格納容器下部注 水系(可搬型)による注水)	0	格納容器下部注水系(可搬型)によ る原子炉格納容器下部への注水系 統構成 【中央制御室→(④階段 L⑥)→(⑥ 階段 G④)→[④-15]】	格納容器下部注水系(可搬型)による原子 炉格納容器下部への注水系統構成 【中央制御室→(④階段M⑤)→(⑤階段 H③)→(③階段 G④)→[④-15]】	
		海を木源とした使用済燃料プー ルへの注水/スプレイ(燃料プー ル代替注水系による常設スプレ イヘッダを使用した注水)	0			
		海を木源とした使用済燃料プー ルへの注水/スプレイ(燃料プー ル代替注水系による可搬型スプ レイヘッダを使用した注水(SFP 可搬式接続口を使用した場合))	0	燃料ブール代替注水系による可搬型ス プレイヘッダを使用した使用済燃料プ ール注水系統構成 【中央制御室→(①階段M⑤)→[⑤-16] →(⑤階段 F①)→[①-9]→(①階段 F ⑤)→[⑤-16]】	燃料プール代替注水系による可搬型スプレ イヘッダを使用した使用済燃料プール注水 系統構成 【中央制御室→(④階段 M⑤)→[⑤-16]→ (⑤階段 E①)→[①-9]→(①階段 E⑤)→ [⑤-16]】	
		海を木源とした使用済燃料プー ルへの注水/スプレイ(燃料プー ル代替注水系による可搬型スプ レイヘッダを使用した注水(原 子炉建屋大物搬入口から接続し た場合))	0	燃料ブール代替注水系による可搬型ス ブレイヘッダを使用した使用済燃料プ ール注水系統構成 【中央制御室→(①階段M5))→[⑤-19] →(⑤階段 E①)→[①-10]→(①階段 E ⑤)→[⑤-19]】	燃料プール代替注水系による可搬型スプレ イヘッダを使用した使用済燃料プール注水 系統構成 【中央制御室→(④階段 M⑤)→[⑤-19]→ (⑤階段 F①)→[①-10]→(①階段 F⑤)→ [⑤-19]】	
		海を水源とした使用済燃料プー ルへの注水/スプレイ(燃料プー ル代替注水系による常設スプレ イヘッダを使用したスプレイ)	0			

表 14-1 技術的能力における対応手段で期待する屋内現場操作一覧(7号機)(9/16)

表 14-1 - 技術的能刀における対応丰段で期待する屋内現場操作一覧(7 号機	(10/16)
--	---------

			操作・作業場所				
	条文	対応手段	中央	屋内アクセス ルート	代替屋内アクセス ルート		
1. 13	重大事故等 の収束に必 要となる水 の供給手順 等	海を水源とした使用済燃料ブー ルへの注水/スプレイ(燃料ブー ル代替注水系による可搬型スプ レイヘッダを使用したスプレイ (SFP 可搬式接続口を使用した場 合))	0	燃料ブール代替注水系による可搬型ス ブレイヘッダを使用した使用済燃料ブ ール注水系統構成 【中央制御室→(④階段M⑤)→[⑤-16] →(⑤階段F①)→[①-9]→(①階段F ⑤)→[⑤-16]】	燃料ブール代替注水系による可搬型スプレ イヘッダを使用した使用済燃料ブール注水 系統構成 【中央制御室→(④階段 M⑤)→[⑤-16]→ (⑤階段 E①)→[①-9]→(①階段 E⑤)→ [⑤-16]】		
		海を木源とした使用済燃料プー ルへの注木/スプレイ(燃料プー ル代替注水系による可搬型スプ レイヘッダを使用したスプレイ (原子炉建屋大物搬入口から接 続した場合))	0	燃料プール代替注水系による可搬型ス プレイヘッダを使用した使用済燃料プ ール注水系統構成 【中央制御室→(④階段M5))→[⑤-19] →(⑤階段 E①)→[①-10]→(①階段 E ⑤)→[⑤-19]】	燃料ブール代替注水系による可搬型スプレ イヘッダを使用した使用済燃料ブール注水 系統構成 【中央制御室→(④階段 M⑤)→[⑤-19]→ (⑤階段 F①)→[①-10]→(①階段 F⑤)→ [⑤-19]】		
		可搬型代替注水ボンプによる復 水貯蔵槽への補給(防火水槽を 水源とした補給)	0				
		可搬型代替注水ボンプによる復 水貯蔵槽への補給(淡水貯水池 を水源とした補給)	0				
		大容量送水車(海水取水用)によ る可搬型代替注水ポンプへの送 水					
		大容量送水車(海水取水用)及び 可搬型代替注水ポンプによる復 水貯蔵槽への補給(海を水源と した補給)	0				
		淡水貯水池から防火水槽への補給					
		海から防火水槽への補給(可搬 型代替注水ボンプによる補給)					
		海から防火水槽への補給(大容 量送水車(海水取水用)による補 給)					
		淡水から海水への切替え(防火 水槽を水源とした可搬型代替注 水ポンプによる送水中の場合)					
1. 14	電 源の確保 に関する手 順等	常設代替交流電源設備による給 電(M/C D 系受電)	0	常設代替交流電源設備による M/C D 系受電 【中央制御室→(④階段 L⑥)→[⑥ -14]】	常設代替交流電源設備による M/C D 系受 電 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑥-14]】		
		常設代替交流電源設備による給 電(M/C C系受電)	0	常設代替交流電源設備による M/C C 系及び M/C D 系受電 【中央制御室→(④階段 L⑥)→[⑥ -14]→[億-13]】	常設代替交流電源設備による M/C C 系及 び M/C D 系受電 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑥-14]→[⑥-13]】		
		可搬型代替交流電源設備による 給電(P/C C 系動力変圧器の一次 側に接続し, P/C C 系及び P/C D 系を受電する場合)	0	可搬型代替交流電源設備による P/C C 系及び P/C D 系受電 【中央制御室→(④階段 L⑤)→[⑥ -19] → [⑥-18]→[⑥-13]→[⑥ -14]→(⑤階段 J④)→[④-13]→(④ 階段 J⑥)→[⑤-13]→[⑥-14]→[⑥ -13]】 【屋外→[⑤-28]→[⑤-29]→(⑤階 段 G⑥)→[⑥-36]→[⑥-37]】 【屋外→[⑤-30]→(⑤階段 H⑥)→ [⑥-37]】	可搬型代替交流電源設備による P/C C 系 及び P/C D 系受電 【中央制御室→(④階段 J ⑥)→[⑥-19] →[⑤-18]→(⑥階段 J ①)→(④階段M ⑤)→(⑤階段G⑥)→(⑤ 階段M(①)→[④-14]→ (⑥階段G⑤)→(⑤階段M(①)→[④-13] →(①階段M(⑤)→(⑤階段G ⑥)→[⑥ -13]→[⑥-14]→[⑥-13] 【屋外→[⑤-28]→[⑤-29]→(⑤階段H ⑥)→[⑥-36]→[⑥-37]】 【屋外→[⑤-30]→(⑤階段M④)→(④階 段 L ⑥)→[⑥-37]]		

表 14-1	技術的能力におけ	る対応手段で期待す	-る屋内現場操作-	- 覧 (7 号機)	(11/16)
--------	----------	-----------	-----------	------------	---------

Allocation and a second		and a fill a state of the second	操作・作業場所				
	条文	対応手段		屋内アクセス ルート	代替屋内アクセス		
1.14	電源の確保 に関する手 順等	可搬型代替交流電源設備による 給電(緊急用電源切替箱接続装 置に接続し, P/C C 系及び P/C D 系を受電する場合)	O	可搬型代替交流電源設備による P/C C 系及び P/C D 系受電 【中央制御室→(④階段 L⑤)→[⑥ -19] →[⑥-18]→[⑥-13]→[⑥ -14]→(⑥階段 J④)→[④-13]→(④ 階段 J⑥)→[⑥-13]→[⑥-14]→[⑥ -13]】 【屋外→[⑤-28]→(⑤階段 G④)→ [④-18]】	可搬型代替交流電源設備による P/C C 系 及び P/C D 系受電 【中央制御室→(④階段 J ⑤)→[⑤-19] →[⑤-18]→(⑥階段 J ④)→(④階段M ⑤)→(⑤階段G⑤)→[⑥-13]→[⑥-14] →(⑥階段G⑤)→(⑤階段M④)→[④ -13]→(④階段M⑤)→(⑤階段G⑥)→ [⑥-13]→[⑥-14]→[⑥-13]】 【屋外→[⑤-28]→(⑤階段H③)→(③階 段G④)→[④-18]】		
		電力融通による給電(号炉間電 力融通ケーブル(常設)を使用 し、M/C C 系又は M/C D 系を受 電する場合)	0	号炉間電力融通ケーブルによる電 力融通 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]】 【屋外→(⑤階段 M④)→[④-16]→ [④-17]】	号炉間電力融通ケーブルによる電力融通 【中央制御室→(④階段K⑥)→[⑤-13]→ [⑥-14]】 【屋外→(⑤階段 M④)→(④階段L⑥)→ (⑥階段 J④)→[④-16]→[④-17]】		
		電力融通による給電(号炉間電 力融通ケーブル(可搬型)を使用 し, M/C C 系又は M/C D 系を受 電する場合)	0	号炉間電力融通ケーブルによる電 力融通 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]】 【屋外→(⑤階段 M④)→[④-16]→ [④-17]】	号炉間電力融通ケーブルによる電力融通 【中央制御室→(④階段K⑥)→[⑥-13]→ [⑥-14]】 【屋外→(⑤階段 M④)→(④階段L⑥)→ (⑥階段J④)→[④-16]→[④-17]】		
		所内蓄電式直流電源設備による 給電(直流 125V 蓄電池からの給 電)	0				
		所内蓄電式直流電源設備による 給電(直流125V 蓄電池Aから直 流125V 蓄電池A-2への受電切替 え)	0	直流 125V 蓄電池 A から直流 125V 蓄 電池 A-2 への受電切替え 【中央制御室→(④階段 L⑥)→[⑥ -18]】	直流 125V 蓄電池 A から直流 125V 蓄電池 A-2 への受電切替え 【中央制御室→(④階段 J ⑥)→[⑥-18]】		
		所内蓄電式直流電源設備による 給電(直流 125V 蓄電池 A-2 から AM 用直流 125V 蓄電池への受電 切替え)	0	直流 125V 蓄電池 A-2 から AM 用直流 125V 蓄電池への受電切替え 【中央制御室→(④階段 L⑤)→(⑥ 階段 G①)→[①-14]→(①階段 G⑥) →[⑥-18]】	直流 125V 蓄電池 A-2 から AM 用直流 125V 蓄電池への受電切替え 【中央制御室→(④階段M⑤)→(⑤階段 H ①)→[①-14]→(①階段 H⑥)→[⑥-18]】		
		代替交流電源設備による所内蓄 電式直流電源設備への給電(直 流125V充電器盤Aの受電)	0	直流 125V 充電器盤 A 受電 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-18]】	直流125V 充電器盤 A 受電 【中央制御室→(④階段M⑤)→(⑤階段H ⑥)→[⑥-13] →(⑥階段H⑤)→(⑤階段 M④)→(④階段 J ⑥)→[⑥-18]】		
		代替交流電源設備による所内蓄 電式直流電源設備への給電(直 流125V 充電器盤Bの受電)	0	直流 125V 充電器盤 B 受電 【中央制御室→(④階段 L⑥)→[⑥ -14]→[⑥-19]】	直流125V充電器盤B受電 【中央制御室→(④階段M⑤)→(⑤階段 G⑥)→[⑥-14]→(⑥階段G⑤)→(⑤階 段M④)→(④階段J⑥)→[⑥-19]】		
		代替交流電源設備による所内蓄 電式直流電源設備への給電(直 流125V 充電器盤A-2の受電)	0	直流 125V 充電器盤 A-2 受電 【中央制御室→(④階段 L⑤)→[⑥ -13]→[⑥-18]】	直流125V充電器盤A-2受電 【中央制御室→(④階段M⑤)→(⑤階段H ⑥)→[⑥-13]→(⑥階段H⑤)→(⑤階段 M④)→(④階段J⑥)→[⑥-18]】		
		代替交流電源設備による所内蓄 電式直流電源設備への給電(AM 用直流 125V 充電器盤の受電)	0	所内蓄電式直流電源設備による給 電 【中央制御室→(④階段 L⑥)→(⑥ 階段 G⑤)→[⑤-20]→(⑤階段 G⑥) →[⑥-13]→(⑥階段 G①)→[① -14]】	所内蓄電式直流電源設備による給電 【中央制御室→(④階段M⑤)→[⑤-20] →(⑤階段H⑥)→[⑥-13]→(⑥階段H①) →[①-14]】		
		中央制御室監視計器 C 系及び D 系の復旧	0	AM 用直流 125V 充電器整受電 【中央制御室→(④階段 L⑥)→[⑥ -13]→[⑥-14]】	AM 用直流 125V 充電器整受電 【中央制御室→(④階段M⑤)→(⑤階段 G⑥)→[⑥-13]→[⑥-14]】		
		可搬型直流電源設備による給電 (荒浜側緊急用 M/C 経由による AM 用直流 125V 充電器盤の受電)	0	可搬型直流電源設備による AM 用直 流 125V 充電器盤の受電 【中央制御室→(④階段 L⑥)→(⑥ 階段 H①)→[①-13]→(①階段 G③) →[③-13]→(③階段 H①)→[① -14]】	可搬型直流電源設備による AM 用直流 125V 充電器盤の受電 【中央制御室→(④階段M⑤)→(⑤階段 G ①)→[①-13]→(①階段H③)→[③ -13]→(③階段 G①)→[①-14]】		
		可搬型直流電源設備による給電 (AM 用動力変圧器への接続によ る AM 用直流 125V 充電器盤の受 電)	0	 可穀型直流電源設備による AM 用直流 125V 充電器整の受電 【中央制御室→(④階段 L⑥)→(⑥) 階段 H①)→[①-13]→(①階段 G③) →[③-13]→(③階段 H①)→[① -14]】 【屋外→[⑤-30]→(⑤階段 H③)→ [③-18]→[③-13]】 	可要型直流電源設備による AM 用直流 125V 充電器盤の受電 【中央制御室→(④階段M⑤)→(⑤階段 G①)→[①-13]→(①階段B③)→[③-13] →(③階段G①)→[①-14]】 【屋外→[⑤-30]→(⑤階段G③)→[③ -18]→[③-13]】		

1			<u> </u>	揭作 ,作	金 掲 予
	条文	対応手段	中央	量内アクセス ルート	米海内 代替屋内アクセス ルート
1.14	電源の確保 に関する手 順等	可搬型直流電源設備による給 電(緊急用電源切替箱接続装置 への接続による AM 用直流 125V 充電器盤の受電)	0	可搬型直流電源設備による AM 用直 流 125V 充電器整の受電 【中央制御室→(④階段 L⑥)→(⑥ 階段 H①)→[①-13]→(①階段 G③) →[③-13]→(③階段 H①)→[① -14]】 【屋外→[⑤-28]→(⑤階段 G④)→ [④-18]】	 可搬型直流電源設備による AM 用直流 125V 充電器盤の受電 【中央制御室→(④階段M⑤)→(⑤階段 G①)→[①-13]→(①階段H③)→[③-13] →(③階段 G①)→[①-14]] 【屋外→[⑤-28]→(⑤階段H③)→(③階 段G④)→[④-18]]
		常設直流電源喪失時の遮斯器用 制御電源確保(AM 用直流 125V 蓄 電池による直流 125V 主母線盤 A 受電)	0	AM 用直流 125V 蓄電池による直流 125V 主母線盤 A 受電 【中央制御室→(④階段 L⑥)→[⑥ -18】	AM 用直流 125V 蓄電池による直流 125V 主 母線盤 A 受電 【中央制御室→(④階段 J ⑥)→[⑥-18】
		常設直流電源喪失時の遮斯器用 制御電源確保(常設代替交流電 源設備による直流125V主母線盤 B 受電)	0	常設代替交流電源設備による直流 125V 主母線盤 B 受電 【中央制御室→(④階段 L⑥)→[⑥ -19]→[⑥-14]→[⑥-19]】	常設代替交流電源設備による直流 125V 主母線盤 B 受電 【中央制御室→(④階段 J ⑥)→[⑥-19] →[⑥-14]→[⑥-19]】
		常設直流電源喪失時の遮断器用 制御電源確保(可樂型代替交流電 源設備(緊急用電源切替箱接続装 置に接続)による直流 125V 主母 線盤 B 受電)	0	可搬型直流電源設備による直流 125V主母線盤B受電 【中央制御室→(④階段L⑥)→[⑥ -19]→[⑥-14]→[⑥-19]】 【屋外→[⑤-28]→(⑤階段G④)→ [④-18]】	可搬型直流電源設備による直流 125V 主 母線盤 B 受電 【中央制御室→(④階段 J ⑥)→[⑥-19] →[⑥-14]→[⑥-19]】 【屋外→[⑤-28]→(⑤階段 H③)→(③階 段G④)→[④-18]】
		常設直流電源喪失時の遮断器用 制御電源確保(号炉間電力融通 ケーブル(常設)による直流125V 主母線盤B受電)	0	号炉間電力融通ケーブル電力融通 による直流 125V 主母線盤 B 受電 【中央制御室→(④階段 L⑥)→[⑥ -19]→[⑥-14]→[⑥-19]】 【屋外→(⑤階段 M④)→[④-16]→ [④-17]】	号炉間電力融通ケーブル電力融通による 直流125V 主母線盤 B 受電 【中央制御室→(④階段J ⑤)→[⑥-19] →(⑤階段K④)→(④階段M⑤)→(⑤階 段G⑥)→[⑥-14]→(⑥階段G⑤)→(⑤階 (⑤階段M④)→(④階段K⑥)→[⑥-19]] 【屋外→(⑤階段 M④)→(④階段L⑥)→ (⑥階段 J ④)→[④-16]→[④-17]]
		常設直流電源喪失時の遮斯器用 制御電源確保(号炉間電力融通 ケーブル(可搬型)による直流 125V主母線盤B受電)	0	号炉間電力融通ケーブル電力融通 による直流 125V 主母線盤 B 受電 【中央制御室→(④階段 L⑥)→[⑥ -19]→[③-14]→[⑥-19]】 【屋外→(⑤階段 M④)→[④-16]→ [④-17]】	号炉間電力融通ケーブル電力融通による 直流125V 主母線盤 B 受電 【中央制御室→(④階段 J ⑥)→[⑥-19] →(⑤階段K(0)→(④階段M(⑤)→(⑤階 段G(⑥)→[⑥-14]→(⑥階段G(⑤)→ (⑤階段M(④)→(④階段K(⑥)→[⑥-19]] 【屋外→(⑤階段 M(④)→(④階段L ⑥)→ (⑥階段 J ④)→(④-161→(Ф-17)]
		常設直流電源喪失時の遮斯器用 制御電源確保(可擬型代替交流 電源設備(P/C C 系動力変圧器の 一次側に接続)による直流 125V 主母線盤 B 受電)	0	可搬型直流電源設備による直流 125V 主母線盤 B 受電 【中央制御室→(④階段 L⑤)→[⑥ -19]→[⑥-14]→[⑥-19]】 【屋外→[⑤-28]→[⑤-29]→(⑤階 段 G⑥)→[⑥-36]→[⑥-37]】 【屋外→[⑤-30]→(⑤階段 H⑥)→ [⑥-37]】	可搬型直流電源設備による直流 125V 主 母線盤 B 受電 【中央制御室→(④階段 J ⑥)→[⑥-19] →(⑤階段K(Q)→(④階段M⑤)→(⑤階 段 G ⑥)→[⑧-14]→(⑥階段G ⑤)→ (⑤階段MQ)→(④階段K ⑥)→[⑥-19]] 【屋外→[⑤-28]→[⑤-29]→(⑤階段 G ⑥)→[⑤-36]→(⑥-37]] 【屋外→[⑤-30]→(⑤階段 G ⑥)→[⑥ -37]]
		常設代替交流電源設備による AM 用 MCC への給電	0	常設代替交流電源設備による AM 用 MCC への給電 【中央制御室→(④階段 L⑥)→(⑥ 階段 J④)→[④-13]→(④階段 J⑥) →(⑥階段 H①)→[①-13]→(①階段 G③)→[③-13]→[③-16]】	常設代替交流電源設備によるAM用MCC ~ の給電 【中央制御室→[④-13]→(④階段M⑤) →(⑤階段 G①)→[①-13]→(①階段 H③) →[③-13]→[③-16]】
		号炉間電力融通ケーブル(常設) による AM 用 MCC への給電	0	号炉間電力融通ケーブル電力融通 による AM 用 MCC への給電 【中央制御室→(④階段 L⑥)→(⑥) 階段 H①)→[①-13]→(①階段 G③) →(③-13]→[③-16]] 【屋外→(⑤階段 M④)→[④-16]→ [④-17]】	号炉間電力融通ケーブル電力融通による AM 用 MCC への給電 【中央制御室→(④階段M⑤)→(⑤階段 H①)→[①-13]→(①階段 H③)→[③-13] →[③-16]] 【屋外→(⑤階段 M④)→(④階段 L⑥)→ (⑥階段 J④)→[④-16]→[④-17]]
		号炉間電力融通ケーブル(可搬型)による AM 用 MCC への給電	0	号炉間電力融通ケーブル電力融通 による AM 用 MCC への給電 【中央制御室→(④階段 L⑥)→(⑥) 階段 H①)→[①-13]→(①階段 G③) →[③-13]→[③-16]】 【屋外→(⑤階段 M④)→[④-16]→ [④-17]】	号炉間電力融通ケーブル電力融通による AM 用 MCC への給電 【中央制御室→(④階段M⑤)→(⑤階段 G①)→[①-13]→(①階段H③)→[③-13] →[③-16]】 【屋外→(⑤階段 M④)→(④階段L⑥)→ (⑥階段 I④)→[①-16]→[④-17]】

表 14-1 技術的能力における対応手段で期待する屋内現場操作一覧(7号機)(12/16)

		操作・作業場所				
	条文	対応手段	中央	屋内アクセス ルート	代替屋内アクセス ルート	
1.14	電源の確保 に関する手 順等	可搬型代替交流電源設備(AM 用 動力変圧器に接続)による AM 用 MCC への給電	0	可搬型代替交流電源設備による AM 用 MCC への給電 【中央制御室→(④階段 L⑥)→(⑥ 階段 J④)→(④-13]→(④階段 J⑥) →(⑥階段 H①)→[①-13]→(④階段 G③)→[③-13]→[③-16]】 【屋外→[⑤-30]→(⑤階段 H③)→ [③-18]→[③-13]】	可搬型代替交流電源設備による AM 用 MCC への給電 【中央制御室→[④-13]→(④階段 J⑥)→ (⑥階段 G①)→[①-13]→(①階段 H③)→ [③-13]→[③-16]】 【屋外→[⑤-30]→(⑤階段 G③)→[③ -18]→[③-13]】	
		可搬型代替交流電源設備(緊急 用電源切替箱接続装置に接続) による AM 用 MCC への給電	0	可搬型代替交流電源設備による AM 用 MCC への給電 【中央制御室→(④階段 L⑥)→(⑥ 階段 J④)→[④-13]→(④階段 J⑥) →(⑥階段 H①)→[①-13]→(①階段 G③)→[③-13]→[③-16]] 【屋外→[⑤-28]→(⑤階段 G④)→ [④-18]】	可搬型代替交流電源設備によるAM用MCC への給電 【中央制御室→[④-13]→(④階段M⑤) →(⑤階段 GD)→[①-13]→(①階段 H③) →[③-13]→[③-16]] 【屋外→[⑤-28]→(⑤階段H③)→(③階 段 G④)→[④-18]]	
		燃料補給設備による給油(軽油タ ンクからタンクローリ(4kL)への 補給)				
		燃料補給設備による給油(軽油タ ンクからタンクローリ(16kL)へ の補給)				
		燃料補給設備による給油(タンク ローリ(4kL)による給油対象設備 への給油)				
		燃料補給設備による給油(タンク ローリ(16kL)による第一ガスタ ービン発電機用燃料タンクへの 会社)				
		 ・お1(2) 非常用交流電源設備による給電 (設計基準拡張) 	0			
		非常用直流電源設備による給電 (設計基準拡張)	0			
		非常用直流電源設備による給電 (設計基準拡張)(不要な負荷の切 離し操作)	0	非常用直流電源設備の不要な負荷 切離し操作 【中央制御室→(④階段 L⑤)→[⑥ -19]→[⑥-32]→[⑥-33]】	非常用直流電源設備の不要な負荷切離し 操作 【中央制御室→(④階段 J⑥)→[⑥-19]→ [⑥-32]→[⑥-33]】	
1.15	 事故時の計 装に関する 手順等 	計器の故障時に状態を把握する ための手段(他チャンネルによる 計測、代替パラメータにる推定)	0			
		計器の計測範囲を超えた場合に 状態を把握するための手段(他チ ャンネルによる計測,代替バラメ ータにる推定)	0			
		計器の計測範囲を超えた場合に 状態を把握するための手段(可搬 型計測器(現場)による計測)	0	可搬型計測器(現場)による計測 多重伝送盤 DIV-Iの場合 【中央制御室→(④階段 L⑥)→[⑥ -13] 多重伝送盤 DIV-IIの場合 【中央制御室→(④階段 L⑥)→[⑥ -14] 多重伝送盤 DIV-IIの場合 【中央制御室→(④階段 L⑥)→[⑥ -30] 中央制御室→(④階段 L⑥)→[⑥ -30] 中央制御室→(④階段 L⑥)→[⑥ -31]	可搬型計測器(現場)による計測 多重伝送盤 DIV-Iの場合 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑥-13]] 多重伝送盤 DIV-IIの場合 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑥-14]] 多重伝送盤 DIV-IIの場合 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑥-30]] 中央制御室外原子炉停止時制御盤の場合 【中央制御室→(④階段M⑤)→(⑤階段G ⑥)→[⑥-31]]	
		計器の計測範囲を超えた場合に 状態を把握するための手段(可搬 型計測器(中央制御室)による計 測)	0			
		計器電源が喪失した場合の手段 (可搬型計測器(現場)によるパラ メータ計測又は監視)	0			
		計器電源が喪失した場合の手段 (可搬型計測器(中央制御室)によ るパラメータ計測又は監視)	0			

表 14-1	技術的能力におけ	ス対広手段で期待す	る屋内珇堤堝作―『	皆 (7 巳樽	(13/16)
X 1 1					χ (10/10)

î –			操作・作業場所				
	条文	対応手段	中央	屋内アクセス ルート	代替屋内アクセス ルート		
1. 15	 事故時の計 装に関する 手順等 	バラメータを記録する手段(安 全パラメータ表示システム (SPDS)による記録)					
		パラメータを記録する手段(現 場指示計の記録)					
		パラメータを記録する手段(可 搬型計測器の記録)	0				
1.16	原子炉制御 室の居住性 等に関する 手順等	中央制御室換気空調系設備の運 転手順等(中央制御室可搬型腸 圧化空調機への切替え手順)	0	中央制御室可搬型陽圧化空調機起 動 【中央制御室→(④階段 J⑤)→[⑤ -21]】	中央制御室可搬型陽圧化空調機起動 【中央制御室→(④階段 L⑥)→(⑥階段 J ⑤)→[⑤-21]】		
		中央制御室換気空調系設備の運 転手順等(全交流動力電源が喪 失した場合の隔離弁現場閉操 作)		中央制御室可搬型陽圧化空調機起 動 【中央制御室→[④-13]→(④階段 J ⑤)→[⑤-21]】	中央制御室可搬型陽圧化空調機起動 【中央制御室→(④階段 L⑤)→(⑥階段 J ④) → [④-13]→(④階段 J⑤)→[⑤ -21]】		
		中央制御室待避室の準備手順 (中央制御室待避室陽圧化装置 による加圧準備操作)		中央制御室待避室の準備 【中央制御室→(④階段 M⑤)→[⑤ -8]→[⑤-10]】	中央制御室待避室の準備 【中央制御室→(④階段 J⑤)→(⑤階段 J 〈連絡通路>階段 I⑤)→[⑤-8]→[⑤-10]】		
		中央制御室待避室の準備手順 (中央制御室待避室陽圧化装置 による加圧操作)	0				
		中央制御室の照明を確保する手 順	0				
		中央制御室の酸素ガス及び二酸 化炭素ガスの濃度測定と濃度管 理手順					
		中央制御室待避室の照明を確保 する手順	0				
		中央制御室待避室の酸素及び二 酸化炭素の濃度測定と濃度管理 手順					
		中央制御室待避室データ表示装 置によるプラントパラメータ等 の監視手順	0				
		その他の放射線防護措置等に関 する手順等					
		チェンジングエリアの設置及び 運用手順					
		非常用ガス処理系による運転員 等の被ばく防止手順(非常用ガ ス処理系起動手順)	0				
		非常用ガス処理系による運転員 等の被ばく防止手順(非常用ガ ス処理系停止手順)	0				
		非常用ガス処理系による運転員 等の被ばく防止手順(原子炉建 屋ブローアウトバネルの閉止手 順)	0	原子炉建屋ブローアウトパネルの 閉止 【中央制御室→(④階段 M⑤)→(⑤) 階段 E④)→(④MS レンネャ室⑤)→[⑤ -17]】 【中央制御室→(④階段 M⑤)→(⑤) 階段 F①)→[①-9]]	原子炉建屋ブローアウトパネルの閉止 【中央制御室→(①階段 M⑤)→(⑤階段 F④)→(④MS トンネル室⑤)→[⑤-17]】 【中央制御室→(④階段 M⑤)→(⑤階段 E ①)→[①-9]】		
1.17	監視測定等 に関する手	可搬型モニタリングポストによ る放射線量の測定及び代替測定					
	700,92	可搬型放射線計測器による空気 中の放射性物質の濃度の代替測 定					
		可搬型放射線計測器による空気 中の放射性物質の濃度の測定					
		可搬型放射線計測器による水中 の放射性物質の濃度の測定					
		可搬型放射線計測器による土壌 中の放射性物質の濃度の測定					
		海上モニタリング モニタリング・ポストのパック	-				
		グラウンド低減対策	/				

表 14-1 技術的能力における対応手段で期待する屋内現場操作一覧(7号機)(14/16)

		ř	· · · · · · · · · · · · · · · · · · ·		を掲載	
	条文	対応手段	中央	操TF・TF 屋内アクセス ルート	米徳の 代替屋内アクセス ルート	
1.17	監視測定等 に関する手	可搬型モニタリングポストのバ ックグラウンド低減対策				
	順等	放射性物質の濃度の測定時のパ ックグラウンド低減対策				
		敷地外でのモニタリングにおけ る他の機関との連携体制				
		可搬型気象観測装置による気象 観測項目の代替測定				
		モニタリング・ポストの電源をモ ニタリング・ポスト用発電機から 給電する手順等				
1. 18	緊急時対策 所の居住性 等に関する 手順等	緊急時対策所立ち上げの手順(5 号炉原子炉建屋内緊急時対策所 (対策本部)可搬型陽圧化空調機 操作手順)				
		緊急時対策所立ち上げの手順(5 号炉原子炉建屋内緊急時対策所 (待機場所)可搬型踢圧化空調機 操作手順)				
		緊急時対策所立ち上げの手順(5 号炉原子炉建屋内緊急時対策所 可搬型エリアモニタの設置手順)				
		緊急時対策所立ち上げの手順(5 号炉原子炉建屋内緊急時対策所 内の酸素濃度及び二酸化炭素濃 度の測定手順)				
		放射線防護等に関する手順等(5 号炉原子炉建屋内緊急時対策所 (対策本部)可搬型腸圧化空調機 から腸圧化装置(空気ボンベ)へ の切替え手順)				
		放射線防護等に関する手順等(5 号炉原子炉建屋内緊急時対策所 (待機場所)可搬型腸圧化空調機 から腸圧化装置(空気ボンベ)へ の切替え手順)				
		放射線防護等に関する手順等(5 号炉原子炉建屋内緊急時対策所 (対策本部)腸圧化装置(空気ボン べ)から可搬型陽圧化空調機への 切替え手順)				
		放射線防護等に関する手順等(5 号炉原子炉建屋内緊急時対策所 (待機場所)陽圧化装置(空気ボン べ)から可搬型陽圧化空調機への 切替え手順)				
		放射線防護等に関する手順等(5 号炉原子炉建屋内可搬型外気取 入送風機による通路部のパージ 手順)				
		必要な指示及び通信連絡に関す る手順等(安全パラメータ表示シ ステム(SPDS)によるプラントパ ラメータ等の監視手順)				
		必要な指示及び通信連絡に関す る手順等(対策の検討に必要な資 料の整備)				
		要員の収容に係る手順等(放射線 管理用資機材の維持管理等)	/			
		要員の収容に係る手順等(チェン ジングエリア(南側アクセスルー ト)の設置及び運用手順)				

表 14-1 技術的能力における対応手段で期待する屋内現場操作一覧(7号機)(15/16)

100000			操作・作業場所		
	条文	对応手段	中央	屋内アクセス ルート	代替屋内アクセス ルート
1.18	緊急時対策 所の居住性 等に関する	要員の収容に係る手順等(チェ ンジングエリア(北東側アクセ スルート)の設置及び運用手順)			
	手順等	要員の収容に係る手順等(5 号炉 原子炉建屋内緊急時対策所可搬 型陽圧化空調機の切替え手順)			
		代替電源設備からの給電手順(5 号炉原子炉建屋内緊急時対策所 用可搬型電源設備による給電)			
		代替電源設備からの給電手順(5 号炉原子炉建屋内緊急時対策所 用可搬型電源設備の切替え手 順)			
		代替電源設備からの給電手順(5 号炉原子炉建屋内緊急時対策所 用可搬型電源設備の燃料タンク への燃料給油手順)			
		代替電源設備からの給電手順(5 号炉原子炉建屋内緊急時対策所 用可搬型電源設備の待機運転手 順)			
		代替電源設備からの給電手順(5 号炉原子炉建屋内緊急時対策所 用可搬型電源設備(予備)の切替 え手順)			
1.19	通信連絡に関する手順等	発電所内の通信連絡をする必要 のある場所と通信連絡を行うた めの手順等			
		発電所内の通信連絡をする必要 のある場所と通信連絡を行うた めの手順等(無線連絡設備を中 央制御室待避室で使用する場合 の切替え)	0		
		発電所外(社内外)の通信連絡を する必要のある場所と通信連絡 を行うための手順等			

表 14-1 技術的能力における対応手段で期待する屋内現場操作一覧(7号機)(16/16)

図 14-1 屋内アクセスルート①

図 14-1 屋内アクセスルート②

203

図 14-1 屋内アクセスルート④

図 14-1 屋内アクセスルート⑤

図 14-1 屋内アクセスルート⑥

図 14-1 屋内アクセスルート⑦

208

図 14-1 屋内アクセスルート⑧

209

- 15. 屋内アクセスルート確保のための対策について
- 15.1 屋内アクセスルート上の機器等の転倒防止対策確認結果 屋内アクセスルート上の機器等の転倒防止対策確認結果及び転倒防止対策の例を表 15-1

に示す。

項目		設置箇所	対応内容	
扉・ゲート	サービス建屋 ・コントロール 建屋連絡水密 扉	コントロール建 屋 地下1階 (非管理区域) T.M.S.L.6500mm	 ・壁面に固定用アンカーを打設し、転倒防止を実施。 ・転倒した場合でも通行可能な通路幅を確保。また、乗り越え又は迂回が可能なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写真1参照) 	0
	コントロール建屋 ・クリーンアク セス通路連絡 水密扉	コントロール建 屋 地下1階 (非管理区域) T.M.S.L.6500mm	 ・壁面に固定用アンカーを打設し、転倒防止を実施。 ・転倒した場合でも通行可能な通路幅を確保。また、乗り越え又は迂回が可能なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写真1参照) 	0
	サービス建屋私服 更衣室 ・ロッカー	サービス建屋 1 階 (非管理区域) T.M.S.L. 12300mm	 一般的な転倒防止対策を実施。 転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真2参照) 	0
棚・ラック等	サービス建屋西側 EV ホール ・清掃用具保管 棚	サービス建屋 地下1階 (非管理区域) T.M.S.L.6500mm	 一般的な転倒防止対策を実施。 転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真3参照) 	0
	サービス建屋西側 EV ホール ・工具棚(S-2)	サービス建屋 地下1階 (非管理区域) T.M.S.L.6500mm	 一般的な転倒防止対策を実施。 転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真3参照) 	0

表 15-1 機器等の転倒防止対策確認結果(1/4)

項目		設置箇所	対応内容	評価 結果
棚・ラック等	廃棄物処理建屋東 側通路 ・長期保管工具棚	廃棄物処理建屋 1 階 (管理区域) T.M.S.L.12300mm	 一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真3参照) 	0
	廃棄物処理建屋北 側通路 ・長期保管工具棚	廃棄物処理建屋 1 階 (管理区域) T.M.S.L.12300mm	 一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真4参照) 	0
	廃棄物処理建屋西 側通路 ・工具棚 ・長期保管工具棚	廃棄物処理建屋 1 階 (管理区域) T.M.S.L.12300mm	 一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真3参照) 	0
	廃棄物処理建屋- 海水熱交換器エリ ア連絡通路 ・PHS 関連機器 ・長期保管工具棚	廃棄物処理建屋 地下1階 (非管理区域) T.M.S.L.12300mm	 一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図15-1における写 真3参照) 	0
	廃棄物処理建屋北 側通路 ・工具棚 ・長期保管工具棚	廃棄物処理建屋 地下3階 (管理区域) T.M.S.L6100mm	 一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真 3 参照) 	0
	廃棄物処理建屋南 側通路 ・工具棚 ・長期保管工具棚	廃棄物処理建屋 地下3階 (管理区域) T.M.S.L6100mm	 一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真 3 参照) 	0

表 15-1 機器等の転倒防止対策確認結果(2/4)

項目		設置箇所	対応内容	評価 結果
	南側壁 ・工具棚	7 号機 原子炉建屋 4 階 (管理区域) T.M.S.L.31700mm	 ・一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真 5 参照) 	0
棚・ラック等	北側通路 ・潤滑油保管棚 (7-2A, 7-2B)	7 号機 原子炉建屋 2 階 (管理区域) T.M.S.L.18100mm	 ・一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真3参照) 	0
	東側通路 ・工具棚	7 号機 タービン建屋 1 階 (管理区域) T.M.S.L.12300mm	 ・一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真3参照) 	0
ボンベ	コントロール建屋 ダーティ通路 ・空気ボンベ	コントロール建屋 1 階 (管理区域) T.M.S.L. 12300mm	 ・ボンベ固定器具の耐震補強による転倒 防止の実施又はアクセスルート近傍から撤去する。 (転倒防止対策例は図 15-1 における写真6参照) 	0
クレーン	MUWC ポンプ弁室 ・MUWC ポンプ点 検用クレーン	7 号機 廃棄物処理建屋 地下3階 (管理区域) T.M.S.L6100mm	 一般的な転倒防止対策を実施。 転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真7参照) 	0

表15-1 機器等の転倒防止対策確認結果(3/4)

項目		設置箇所	対応内容	評価 結果
	南東 EV 付近 ・移動はしご	7 号機 原子炉建屋 1 階 (管理区域) T.M.S.L.12300mm	 ・一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真8参照) 	0
リフ	A系非常用電気品室 ・リフター	7 号機 原子炉建屋 地下1階 (非管理区域) T.M.S.L.4800mm	 ・一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真8参照) 	0
タ 	B系非常用電気品室 ・リフター	7 号機 原子炉建屋 地下 1 階 (非管理区域) T.M.S.L.4800mm	 ・一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真8参照) 	0
	C系非常用電気品室 ・リフター	7 号機 原子炉建屋 地下1階 (非管理区域) T.M.S.L.4800mm	 ・一般的な転倒防止対策を実施。 ・転倒した場合でも通行可能な通路幅を 確保。また,乗り越え又は迂回が可能 なためアクセス性の問題なし。 (転倒防止対策例は図 15-1 における写 真8参照) 	0

表 15-1 機器等の転倒防止対策確認結果(4/4)

	設置物の外観	転倒防止対策
扉・ゲート(写真1)		
棚・ラック等(写真2)		
棚・ラック等(写真3)		-
棚・ラック等(写真4)		

図 15-1 転倒防止対策 (1/3)

図 15-1 転倒防止対策 (2/3)

図 15-1 転倒防止対策 (3/3)

柏崎刈羽原子力発電所の屋内設置物(仮置,保管物品)は,新潟県中越沖地震時に,仮置き していた資機材が地震動により移動し,ほう酸水注入系配管の保温材を変形させた事象を踏ま え,以下の方針に基づき拘束を実施する運用としている。

- 屋内設置物については、その物品の形状や保管状態、人の退避空間の確保、現場への アクセスルート確保を検討の上、改善すべき点があれば固定、固縛、転倒防止、レイ アウトの変更等を行う。
- ② 屋内設置物については、本設の重要設備近傍には近づけない(重要設備近傍に設置する場合は、固定、固縛等を実施する。)。

15.2 屋内アクセスルートにおける資機材設備の転倒等による影響について

屋内アクセスルートにおける資機材設備の転倒等による影響について,有効性評価の時間余 裕が短い場合であっても時間内にアクセス可能であることを,以下のとおり評価した。

[評価対象操作]

有効性評価の各事象の対応操作において,最も時間的余裕がなく,現場への移動を要する 操作として,ガスタービン発電設備から交流電源を受電するための非常用電源室での操作を 選定する。(要求時間:15分)

[評価条件]

- ・屋内アクセスルート近傍の資機材設備は、転倒防止対策を施している物を含めすべて転 倒等するものとする。
- ・資機材設備が転倒等した際,最も通路がふさがれるパターンを想定しても通行可能な幅が 30cm あれば通過可能とする。
- ・資機材設備が転倒等した際に資機材設備の移動が可能な場合(重量物でない場合)は, 通過可能とする。
- ・転倒等した資機材設備の乗り越え通過時間については、屋内アクセスルート上で乗り越える資機材設備のうち最大のものについて乗り越え通過時間を計測し、その計測時間をそのほかの乗り越え資機材設備の通過時間とする(例えば、アクセスルート上で異なる5つの資機材設備を乗り越える場合、最大の乗り越え通過時間を要する資機材設備を5回乗り越えるものとする。)。

[評価結果]

中央制御室から非常用電源室までの屋内アクセスルートにおいて,乗り越えないと通過 できないものの中で最大の乗り越え通過時間を要する資機材設備は,サービス建屋地下 1 階に設置されている工具棚であった(棚の寸法,高さ約 1900mm,奥行き約 900mm,幅約 1150mm)。

この工具棚が転倒したことを想定し,操作員6名による乗り越え時間を測定した結果, 最も乗り越え通過時間を要した操作員の乗り越え通過時間は5.4秒であった。

また、中央制御室から非常用電源室までの屋内アクセスルート上における資機材設備の 乗り越え箇所は2箇所である。よって2箇所の乗り越え時間は10.8秒となる。

	写真	1回目 タイム	2回目 タイム
① 女性		4.9秒	3.9秒
② 男性		4.9秒	4. 0秒
③ 男性		4. 7秒	3. 8秒
④ 男性		5. 4秒	3. 9秒
⑤ 男性		2. 9秒	2. 5秒
⑥ 男性		5. 0秒	4.8秒

図 15-2 工具棚転倒時における乗り越え通過時間の評価

中央制御室から非常用電源室までのアクセス時間は,通常の歩行で4分程度であり,転倒等した 資機材設備の乗り越え通過時間によるアクセス時間への影響はほとんどないことを確認した。 16. 可搬型重大事故等対処設備の保管場所について

可搬型重大事故等対処設備の保管場所については、V-1-1-7-別添 1「可搬型重大事故等対処 設備の保管場所及びアクセスルート」のうち「2.1 保管場所の基本方針」に示すとおり、地震、 津波その他の自然現象及び外部人為事象による影響を考慮し、位置的分散を図り複数箇所に分散 して保管を行う。

対象となる可搬型重大事故等対処設備を表 16-1 に, 屋外の可搬型重大事故等対処設備の保管 場所を図 16-1 に示す。

No.	設備名称	保管場所
1	ホイールローダ(6,7号機共用)	荒浜側高台保管場所 大湊側高台保管場所
2	タンクローリ(4kL)(6,7 号機共用)	荒浜側高台保管場所 大湊側高台保管場所 5 号機東側第二保管場所
3	タンクローリ(16kL)(6,7 号機共用)	荒浜側高台保管場所 大湊側高台保管場所
4	可搬型代替注水ポンプ(A-2 級)(6,7 号機共用)	荒浜側高台保管場所 大湊側高台保管場所 5号機東側第二保管場所
5	可搬型代替注水ポンプ(A-1 級)(6,7 号機共用)	荒浜側高台保管場所 大湊側高台保管場所
6	電源車(6,7号機共用)	荒浜側高台保管場所 大湊側高台保管場所
7	熱交換器ユニット 代替原子炉補機冷却系熱交換器(6,7号機 共用)	荒浜側高台保管場所 大湊側高台保管場所
8	大容量送水車(熱交換器ユニット用)(6,7号機共用)	荒浜側高台保管場所 大湊側高台保管場所
9	大容量送水車(原子炉建屋放水設備用)(6,7号機共用)	荒浜側高台保管場所 大湊側高台保管場所
10	大容量送水車(海水取水用)(6,7号機共用)	荒浜側高台保管場所 大湊側高台保管場所
11	可搬型窒素供給装置(6,7号機共用)	荒浜側高台保管場所 大湊側高台保管場所
12	原子炉建屋放水設備 放水砲 (6,7号機共用)	荒浜側高台保管場所 大湊側高台保管場所
13	泡原液搬送車(6,7号機共用)*	荒浜側高台保管場所 大湊側高台保管場所
14	5 号機原子炉建屋内緊急時対策所用可搬型電源設備(6,7 号機 共用)	大湊側高台保管場所 5 号機東側保管場所
15	スクラバ水 pH 制御設備用ポンプ(6,7 号機共用)	荒浜側高台保管場所 大湊側高台保管場所
16	水酸化ナトリウム水溶液(6,7号機共用)	荒浜側高台保管場所 大湊側高台保管場所
17	放射性物質吸着材(6,7号機共用)	荒浜側高台保管場所 大湊側高台保管場所

表 16-1 可搬型重大事故等対処設備一覧表 (1/5)

注記*:泡消火薬剤を内包する。

No.	設備名称	保管場所
10	· 汚濁防止時 (6.7.县懋士田)	荒浜側高台保管場所
10	行週的工展(0,7万 版共用)	大湊側高台保管場所
10	小刑叭站 (海溜防止購設費用) (6.7.县继州用)	荒浜側高台保管場所
19	小生加加(行週份工族改直用)(0,1万亿共用)	大湊側高台保管場所
20	沟原液混合壮器 (6.7 县继廿田)	荒浜側高台保管場所
20	他亦似他百袭匣(0,1 万候共用)	大湊側高台保管場所
	お射線管理田計測准置 可搬刑エータリングポスト (67 号機	荒浜側高台保管場所
21		大湊側高台保管場所
		5 号機原子炉建屋
22	可搬型与象観測装置(67号機共用)	荒浜側高台保管場所
22		大湊側高台保管場所
23	小型船舶(海上モニタリング用)(67号機共用)	荒浜側高台保管場所
20		大湊側高台保管場所
24	可搬ケーブル(6,7号機共用)	5 号機東側保管場所
	や 恭給水設備 可搬型代 恭注水ポンプ 屋外田 20m ホース(67)	荒浜側高台保管場所
25		大湊側高台保管場所
		5 号機東側第二保管場所
26	代基給水設備 可搬刑代基注水ポンプ屋内田 20m ホース	大湊側高台保管場所
20		原子炉建屋
27	代替給水設備 可搬型代替注水ポンプ燃料プール代替注水用	荒浜側高台保管場所
21	屋外 20m ホース(6,7 号機共用)	大湊側高台保管場所
28	原子炉建屋放水設備 大容量送水車(原子炉建屋放水設備用)	荒浜側高台保管場所
20	吸込 20m ホース(6,7 号機共用)	大湊側高台保管場所
29	代替原子炉補機冷却系(大容量送水車(熱交換器ユニット用)	荒浜側高台保管場所
20	吸込 20mホース(6,7 号機共用)	大湊側高台保管場所
30	代替給水設備 大容量送水車(海水取水用)吸込 20m ホース(6,7	荒浜側高台保管場所
00	号機共用)	大湊側高台保管場所
31	代替給水設備 大容量送水車(海水取水用)5m,10m,50mホース	荒浜側高台保管場所
01	(6,7号機共用)	大湊側高台保管場所
39	原子炉建屋放水設備 大容量送水車吐出放水砲用 5m, 10m, 50m	荒浜側高台保管場所
02	ホース (6,7号機共用)	大湊側高台保管場所
33	代替原子炉補機冷却系 熱交換器ユニット淡水用 5m フレキシ	荒浜側高台保管場所
55	ブルホース(6,7号機共用)	大湊側高台保管場所
3/1	代替原子炉補機冷却系 熱交換器ユニット海水用 10m, 25m, 50m	荒浜側高台保管場所
04	ホース(6,7号機共用)	大湊側高台保管場所

表 16-1	可搬型重大事故等対机設備一覧表	(2/5)
1 10 1	可顺主里八手以寸八处以佣 見公	(2/0)

No.	設備名称	保管場所
25	格納容器圧力逃がし装置 可搬型窒素供給装置用 20m ホース	荒浜側高台保管場所
35	(6,7号機共用)	大湊側高台保管場所
9.0	格納容器圧力逃がし装置 スクラバ水 pH 制御設備用 3m, 5m ホ	荒浜側高台保管場所
36	ース (6,7号機共用)	大湊側高台保管場所
37	緊急安全対策資機材系 タンクローリ給油ライン接続用 20m ホ ース(6,7号機共用)	5 号機東側第二保管場所
		荒浜側高台保管場所
38	梁志女主対東貫機材ボークシクローリ和曲ノイン接続用40mmが	大湊側高台保管場所
		5 号機東側第二保管場所
20	緊急安全対策資機材系 タンクローリ給油ライン接続用 3m ホ	荒浜側高台保管場所
39	ース(6,7号機共用)	大湊側高台保管場所
40	号炉間電力融通ケーブル(可搬型)(6,7号機共用)	荒浜側高台保管場所
41	高圧窒素ガスボンベ	原子炉建屋
42	遠隔空気駆動弁操作用ボンベ	原子炉建屋
43		コントロール建屋
	中天前御主苻姬主陽江化表直(至太小ノ、)(0,7万機共用)	廃棄物処理建屋
4.4	5号機原子炉建屋内緊急時対策所(対策本部)陽圧化装置(空	「县地百乙后建長
44	気ボンベ)(6,7号機共用)	3万城床丁炉建座
45	5号機原子炉建屋内緊急時対策所(待機場所)陽圧化装置(空	5 早烨百之后建民
40	気ボンベ)(6,7号機共用)	3 万城床1 炉建座
46	燃料プール冷却浄化系 可搬型スプレイヘッダ(6,7号機共用)	原子炉建屋
47	可搬型蓄電池内蔵型照明(6,7号機共用)	コントロール建屋
48	中央制御室用乾電池内蔵型照明(ランタンタイプ)(6,7号機共 用)	コントロール建屋
49	5号機原子炉建屋内緊急時対策所用乾電池内蔵型照明(ランタ ンタイプ)(6,7号機共用)	5号機原子炉建屋
50	可搬型計測器	コントロール建屋
51	可搬型計測器(6,7号機共用)(予備)	5号機原子炉建屋
59		コントロール建屋
52		5 号機原子炉建屋
52	放射線管理用計測装置 NaI シンチレーションサーベイメータ	コントロール建屋
03	(6,7号機共用)	5号機原子炉建屋
51	放射線管理用計測装置 ZnS シンチレーションサーベイメータ	コントロール建屋
54	(6,7号機共用)	5号機原子炉建屋

表 16-1 可搬型重大事故等対処設備一覧表 (3/5)

No.	設備名称	保管場所
		コントロール建屋
55	放射線管理用計測装置 電離相サーヘイメータ(6,7 号機共用)	5号機原子炉建屋
56	5号機原子炉建屋内緊急時対策所用差圧計(6,7号機共用)	5号機原子炉建屋
57	中央制御室用差圧計(6,7号機共用)	コントロール建屋
50	可拠刑ダフト・トる表サンプラ (67 号渉サ田)	コントロール建屋
00	可 臧 至 ク へ 下 ・ よ	5 号機原子炉建屋
59	中央制御室待避室遮蔽(可搬型)(6,7号機共用)	コントロール建屋
60	中央制御室可搬型陽圧化空調機(ファン)(6,7号機共用)	コントロール建屋
61	中央制御室可搬型陽圧化空調機(フィルタユニット)(6,7号機 共用)	コントロール建屋
62	5号機原子炉建屋内緊急時対策所(対策本部)可搬型陽圧化空 調機(ファン)(6,7号機共用)	5 号機原子炉建屋
63	5号機原子炉建屋内緊急時対策所(対策本部)可搬型陽圧化空 調機(フィルタユニット)(6,7号機共用)	5号機原子炉建屋
64	5 号機原子炉建屋内緊急時対策所(対策本部)可搬型外気取入送風機(6,7 号機共用)	5号機原子炉建屋
65	緊急時対策所換気空調系 5号機原子炉建屋内緊急時対策所 (対策本部)可搬型陽圧化空調機用 10m 仮設ダクト(6,7号機 共用)	5号機原子炉建屋
66	5 号機原子炉建屋内緊急時対策所(待機場所)可搬型陽圧化空 調機(ファン)(6,7 号機共用)	5号機原子炉建屋
67	5 号機原子炉建屋内緊急時対策所(待機場所)可搬型陽圧化空 調機(フィルタユニット)(6,7 号機共用)	5号機原子炉建屋
68	緊急時対策所換気空調系 5号機原子炉建屋内緊急時対策所 (待機場所)可搬型陽圧化空調機用 10m 仮設ダクト(6,7号機 共用)	5 号機原子炉建屋
69	放射線管理用計測装置 可搬型エリアモニタ(6,7号機共用)	5号機原子炉建屋
70	無線連絡設備(可搬型)(6,7号機共用)	5号機原子炉建屋
71	衛星電話設備(可搬型)(6,7号機共用)	5号機原子炉建屋
72	酸素濃度・二酸化炭素濃度計(6,7号機共用)	コントロール建屋

表 16-1 可搬型重大事故等対処設備一覧表 (4/5)

No.	設備名称	保管場所
73	酸素濃度計(6,7号機共用)	5号機原子炉建屋
74	二酸化炭素濃度計(6,7号機共用)	5号機原子炉建屋
75	逃がし安全弁用可搬型蓄電池	原子炉建屋
76	逃がし安全弁用可搬型蓄電池(6,7号機共用)(予備)	原子炉建屋
77	携带型音声呼出電話設備(携帯型音声呼出電話機)	コントロール建屋
78	携带型音声呼出電話設備(携帯型音声呼出電話機)(6,7号機共用)	5号機原子炉建屋
79	可搬型 Y 型ストレーナ(6,7 号機共用)	荒浜側高台保管場所 大湊側高台保管場所 5号機東側第二保管場所
80	中央制御室陽圧化換気空調系 中央制御室可搬型陽圧化空調 機用 5m 仮設ダクト(6,7号機共用)	コントロール建屋
81	熱交換器ユニット 代替原子炉補機冷却系熱交換器(6,7号機 共用)	荒浜側高台保管場所 大湊側高台保管場所
82	逃がし安全弁の作動に必要な窒素ガス喪失時の減圧設備 高 圧窒素ガスボンベ〜高圧窒素ガスボンベ接続口(A)及び高圧窒 素ガスボンベ接続口(B)	原子炉建屋
83	遠隔空気駆動弁操作設備	原子炉建屋
84	中央制御室待避室陽圧化換気空調系 中央制御室待避室陽圧 化装置(配管)ボンベ接続管(6,7号機共用)	コントロール建屋 廃棄物処理建屋
85	中央制御室待避室陽圧化換気空調系 中央制御室待避室陽圧 化装置(配管)1.25m 高圧ホース(6,7 号機共用)	コントロール建屋 廃棄物処理建屋
86	緊急時対策所換気空調系 5号機原子炉建屋内緊急時対策所 (対策本部)陽圧化装置(配管)1.5m,1.2m,1.0m高圧ホース(6,7 号機共用)	5号機原子炉建屋
87	緊急時対策所換気空調系 5号機原子炉建屋内緊急時対策所 (対策本部)陽圧化装置(配管)ボンベ接続ロ~高圧ホース接 続口(上流側)(6,7号機共用)	5 号機原子炉建屋
88	緊急時対策所換気空調系 5号機原子炉建屋内緊急時対策所 (待機場所)陽圧化装置(配管)1.5m,1.2m,1.0m高圧ホース(6,7 号機共用)	5号機原子炉建屋
89	緊急時対策所換気空調系 5号機原子炉建屋内緊急時対策所 (待機場所)陽圧化装置(配管)ボンベ接続ロ~高圧ホース接 続口(上流側)(6,7号機共用)	5号機原子炉建屋

表 16-1 可搬型重大事故等対処設備一覧表 (5/5)

図 16-1 屋外の可搬型重大事故等対処設備の保管場所

17. 森林火災時における屋外アクセスルートへの影響について

森林火災が発生し発電所構内へ延焼するおそれがある場合には,構内道路の一部を防火帯とし て機能させる。その際には,防火帯内の車両通行を規制し,防火帯内に車両がない状態を確立す る。

森林火災発生時の屋外アクセスルートは、図 17-1 のとおりである。アクセスルートが防火帯 に近接しており,通行不可能な場合の影響が大きい中央交差点における森林火災時の放射熱強度 を評価したところ,最大でも 2.1kW/m²*程度であり,車両の通行に影響を及ぼすことはないこと を確認している。

よって、森林火災が発生した場合においても、屋外アクセスルートは通行が可能である。

なお、中央交差点近傍における森林火災の燃焼継続時間(約14時間)のうち、中央交差点に おいて、人が長時間さらされても苦痛を感じない放射熱強度(1.6kW/m²)*を超えている時間は 数十秒程度であることから、屋外アクセスルートの通行に影響はない。

図 17-1 森林火災発生時の屋外アクセスルート

- 18. 5号機東側保管場所の変更について
- 18.1 はじめに

5号機東側保管場所については、柏崎刈羽原子力発電所発電用原子炉設置許可申請書(6号 及び7号発電用原子炉施設の変更)における補足説明資料(以下「EPまとめ資料」という。) から保管場所を変更している。以下に、保管場所の変更内容とその影響について整理する。

18.2 変更内容

5号機原子炉建屋内緊急時対策所用可搬型電源設備(以下「5号機可搬電源」という。)につ いて,万一の故障時における復旧の迅速性向上のため,保管場所に固定する設計から保管場 所にて車両に積載し配備する設計への変更に伴い,5号機原子炉建屋東側から北寄りに保管場 所を変更した。

5号機東側保場所の変更について、図18-1に示す。

図 18-1 5号機東側保管場所の変更について

18.3 影響評価

(1) 5号機東側保管場所に対する影響評価

V-1-1-7-別添1「可搬型重大事故等対処設備の保管場所及びアクセスルート」にて抽出した,保管場所に対する被害要因について影響評価を行う。

5 号機東側保管場所の変更前後における断面図を図 18-2 に,影響評価結果を表 18-1 に 示す。

図 18-2 5号機東側保管場所の変更前後における断面図

		変更前	
	被害要因	(EP まとめ資料よ	変更後
		り抜粋)	
① 周辺相	構造物の倒壊(建屋,鉄塔及び主排気筒)	問題なし	問題なし
② 周辺:	タンク等の損壊	問題なし	問題なし
③ 周辺組	斜面の崩壊	問題なし	問題なし
④ 敷地	下斜面のすべり	該当なし	該当なし
⑤ 液状化	ヒ及び揺すり込みによる不等沈下(段差量)	該当なし	問題なし
⑤ 液状体	化及び揺すり込みによる不等沈下(傾斜)	該当なし	問題なし
⑤ 液状(化に伴う浮上り	該当なし	問題なし
⑥ 地盤	支持力の不足	問題なし	問題なし
⑦ 地中共	里設構造物の損壊	該当なし	問題なし
⑧ 淡水則	庁水池の堰堤及び送水配管の損壊	問題なし	問題なし

表 18-1 保管場所変更に伴う保管場所への影響評価比較結果

(2) 5号機可搬電源への給油作業の成立性に関する影響評価

5 号機可搬電源への給油作業の成立性評価結果を表 18-2 に,5 号機東側保管場所へのアク セスルートを図 18-3 に示す。アクセスルートの仮復旧時間については,保管場所の変更前 後において仮復旧作業を必要とする区間(図 18-3 中,③→④区間)に変更が無く,仮復旧 時間は変わらない。また,作業時間については,5 号機東側保管場所へ進入するルートが変 わることにより移動距離が約 60m 延伸するため,変更前より作業時間が約1分追加となる。 しかし,作業の成立性評価結果としては,想定時間に対して余裕が 10 時間以上あることから, 5 号機可搬電源への給油作業の成立性に影響はない。

	アクセスルート	その他考慮	移動時間	作業時間		評価結果
	仮復旧時間*1	すべき時間			想定時間	(①又は②) +
	1	2	0	(4)		3+4
変更前		10 時間* ²				0
(EP まとめ資料よ	約4時間10分	10时间 (西吕杂集)	約 30 分* ³	約1時間40分	23 時間 ^{*4}	(約19時間10八)
り抜粋)		(安貝//朱)				(示り12時间10万)
亦再必	約4時間	10 時間 ^{*2}	約 20 八米3	約1時間41八	0.0 吐用*4	0
<u> </u>	〒11 〒11 〒11 〒11 〒11 〒11 〒11 〒11 〒11 〒11	(要員参集)	約 30 分***	邢リⅠ卅同 41 万	23 时间	(約12時間11分)

表 18-2 5号機可搬電源への給油作業の成立性評価結果

注記*1:当該作業が対応可能なアクセスルート仮復旧時間とする(放射線防護具着用時間を含む)。 荒浜側高台保管場所のホイールローダを使用した場合。大湊側高台保管場所のホイールロ ーダを使用した場合は各作業共約10分短くなる。

- *2:要員が参集するまでの10時間以内にアクセスルートの仮復旧が可能であるため、仮復旧 時間は要員参集までの10時間に包含している。
- *3:5号機原子炉建屋内緊急時対策所から荒浜側高台保管場所の場合。大湊側高台保管場所の 場合は約20分。
- *4 : 原子炉格納容器が破損した場合の対応時間。

図 18-3 5号機東側保管場所へのアクセスルート

- 19. 宿直棟位置の変更に伴う影響について
- 19.1 はじめに

初動対応要員が滞在する宿直棟については,柏崎刈羽原子力発電所発電用原子炉設置許可申 請書(6号及び7号発電用原子炉施設の変更)における補足説明資料(以下「EPまとめ資料」 という。)から設置位置を変更している。有効性評価における屋外アクセスルートの仮復旧時 間評価では,宿直棟から5号機原子炉建屋内緊急時対策所へ集合(徒歩移動)する時間が含ま れている。以下に,宿直棟の位置変更に伴う影響評価結果を整理する。

19.2 変更内容

宿直棟の設置位置については、変更前(EP まとめ資料)は「第2企業センター」としていたが、変更後は「大湊側高台保管場所」(大湊高台宿直棟)に変更する。宿直棟の位置を図19-1に示す。

19.3 影響評価

宿直棟位置変更前後における移動時間算定結果を表 19-1 に示す。宿直棟の位置変更により 移動距離が短くなり、移動時間が短縮されることから、有効性評価への影響はない。

表 19-1 宿直棟位置変更前後における	移動時間算定結果
----------------------	----------

宿直棟の位置	宿直棟から5号機原子炉建屋内 緊急時対策所までの距離*1 (m)	移動時間*2 (分)
変更前(EP まとめ資料): 第2企業センター	約 1340	約 24
変更後:大湊側高台保管場所	約 980	約 19

注記*1:崩壊土砂上の移動を約170mを含む。

*2:徒歩での移動速度は、4km/h(崩壊土砂上の移動は2km/h)とする。

20. 復水移送ポンプ廻りの手動弁の電動弁化に伴う屋内アクセスルートの変更について

代替循環冷却系の操作性向上のため,低圧代替注水系/代替格納容器スプレイ冷却系/格納容器下部注水系/代替循環冷却系の系統構成時に現場操作が必要な手動弁のうち,復水移送ポンプ エリア内に存在する10個の手動弁を電動化し,遠隔操作可能な設計とする。系統概要図を図20 -1に,電動弁化対象手動弁の配置概要及び屋内アクセスルートの変更概要を図20-2に示す。

なお,駆動電源が喪失した場合も考慮し,弁設置場所での手動操作も可能とする。本変更によ り代替循環冷却系の系統構成に要する時間を短縮することができ,安全性も向上することとなる。 具体的には,低圧代替注水系/格納容器代替注水系から代替循環冷却系への切替時間(復水移送 ポンプ停止時間)が短縮される。

また,弁設置場所である管理区域にアクセスすることなく、雰囲気線量が高くなるおそれの少 ない非管理区域から遠隔操作することにより,被ばくリスクも低減される。

なお、弁操作場所の変更に伴い、図 20-2 に示すとおり屋内アクセスルートが変更となる。

図 20-1 代替循環冷却系 系統概要図

図 20-2 電動弁化対象手動弁の配置概要及び屋内アクセスルートの変更概要

21. 主要変圧器の火災発生防止対策について

21.1 概要

屋外アクセスルートに影響を与えるおそれのある被害要因のうち,周辺タンク等の損壊に伴 う被害事象としている可燃物施設の損壊による通行性への影響評価結果における主要変圧器 の火災発生防止対策について説明する。

21.2 火災発生防止対策について

地盤の沈下による相対変位に起因する主要変圧器の損傷及び変圧器内の絶縁油の漏えいに 伴う変圧器火災の発生防止対策として,変圧器と二次側接続母線部ダクトの基礎で沈下量の差 を発生させないために,以下の対策を実施している。

①二次側接続母線部ダクトの基礎をタービン建屋と同じ支持地盤にて支持。

②二次側接続母線部ダクトの基礎部を杭基礎構造へ変更,又は変圧器と二次側接続母線部ダ クトの基礎部を一体化。

例として,所内変圧器(7号機)における変圧器火災の発生防止対策を図21-1に示す。な お,6号機は,建設時から一体化された基礎を人工岩盤にて直接支持する構造となっており, 沈下量差の発生を防止する構造となっている。

図 21-1 所内変圧器(7号機)における変圧器火災の発生防止対策

核物質防護設備の安全施設及び重大事故等対処設備への 波及的影響の防止について

1.	概要	••••	•••••		• • • • • •	••••	•••••	•••••		• • • • • • •	•••••		• • • • • • • • •	• 1
2.	基本フ	ち針・	•••••		••••	••••	•••••	•••••		••••	•••••		• • • • • • • • •	• 1
2	.1 波及	及的影響	響の防止	につい	τ	••••	•••••	•••••	• • • • • • • •	• • • • • •	•••••		• • • • • • • • •	• 1
	2.1.1	地震	••••		• • • • • •	••••	•••••	•••••		••••	•••••	• • • • • • •	• • • • • • • • •	• 2
	2.1.2	火災	••••		• • • • • •	••••	•••••	•••••		•••••	•••••		•••••	• 2
	2.1.3	溢水	••••			••••	••••	•••••		• • • • • •	•••••		• • • • • • • • •	• 2
	2.1.4	竜巻	••••			••••	•••••	• • • • • • •		• • • • • •	•••••			• 2
	2.1.5	津波	••••		• • • • • •	••••	•••••	•••••		•••••	•••••		•••••	• 2
	2.1.6	積雪·	·火山	• • • • • •	• • • • • •	••••	•••••	•••••		• • • • • •	•••••		• • • • • • • • •	• 2

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則(以下「技術基準 規則」という。)」第9条及び「実用発電用原子炉及びその附属施設の技術基準に関する規則の 解釈(以下「解釈」という。)」に基づく発電用原子炉施設への人の不法な接近等の防止に係る 核物質防護設備(以下「防護設備」という。)の安全施設及び重大事故等対処設備への波及的影 響評価の防止について補足説明する。

- 2. 基本方針
- 2.1 波及的影響の防止について

安全施設及び重大事故等対処設備は,地震,火災,溢水及びその他の自然現象並びに外部人 為事象による他設備の損傷等に伴う波及的影響により,発電用原子炉施設としての安全機能が 損なわれないよう措置を講じた設計とする。

このため,防護設備は,基本的に建屋の外周等に設置し,防護設備が損傷,倒壊等した場合に おいても,安全施設及び重大事故等対処設備に影響を与えないよう原則,離隔距離をとること とする。

また,防護上,安全施設及び重大事故等対処設備に近接して防護設備を設置する場合もある ため,損傷,倒壊等の起因事象となる可能性のある地震,火災,溢水,竜巻,津波,積雪及び火 山に対する防護設備の波及的影響について,以下のとおり評価する。(添付-1)

2.1.1 地震

2.1.2 火災

火災区域,区画に設置する防護設備は,適切な系統分離対策を実施し,内部火災影響評 価等で適切に評価しているので,安全施設及び重大事故等対処設備に影響を与えることは ない。

また,外部火災対策の防火帯内については,延焼防止効果に影響を与えるような大型の 可燃物を含む機器は,原則,設置しないこととする。 2.1.3 溢水

なお,屋内の防護設備については床面積算定に考慮するため,溢水影響評価に包含される。

2.1.4 竜巻

防護設備の大半は,設計飛来物より小型の設備であり,設計飛来物である鋼製足場板(長 さ4m×幅0.25m×奥行0.04m,重量14kg,飛来時の水平速度55m/s,飛来時の鉛直速度18m/s) 及び足場パイプ(長さ4m×幅0.25m×奥行0.04m,重量14kg,飛来時の水平速度55m/s,飛来 時の鉛直速度18m/s)の運動エネルギに包含されるため,安全施設及び重大事故等対処設備 に影響を与えることはない。

2.1.5 津波

2.1.6 積雪·火山

屋外の防護設備については,荷重の影響を受けにくい構造であるため,損傷等すること なく安全施設及び重大事故等対処設備に影響を与えることはない。

核物質防護設備の波及的影響の防止について

損傷、倒壊等の起因事象となる可能性のある地震、火災、溢水、竜巻、津波、積雪及び火山に対する防護設備の波及的影響の防止について以下に示す。

種類	機器・設備	地震	火災	溢水	竜巻	津波	積雪・火山