本資料のうち、枠囲みの内容 は、機密事項に属しますので 公開できません。

柏崎刈羽原子力発電所第	育7号機 工事計画審査資料
資料番号	KK7 補足-025-2 改 9
提出年月日	2020年9月18日

タービン建屋の地震応答計算書に関する補足説明資料

2020年9月 東京電力ホールディングス株式会社

1. 工事計画添付書類に係る補足説明資料

V-2-2-5「タービン建屋の地震応答計算書」の記載内容を補足するための資料を以下に示す。

別紙1 地震応答解析における既工認と今回工認の解析モデル及び手法の比較

別紙 1-1 タービン建屋の地震応答解析モデルの変更点について

別紙2 地震応答解析における耐震壁及び鉄骨部のせん断スケルトン曲線の設定

別紙3 地震応答解析における材料物性の不確かさに関する検討

別紙3-1 材料物性の不確かさを考慮した検討に用いる地震動の選定について

別紙3-2 材料物性の不確かさを考慮した地震応答解析

別紙4 タービン建屋のねじれによる影響について

別紙 5 水平つなぎばねの諸元及び非線形性を考慮した解析

別紙 6 タービン建屋と T/G 架台の相対変位について

(参考資料1)計算機プログラム(解析コード)の概要

別紙1 地震応答解析における既工認と今回工認の 解析モデル及び手法の比較

目 次

1.	概要			別紙1-1
2.	地震応	「答解析モデル及び手法の比較 ・・・・・・・		別紙1-2
別紙	$\xi_1 - 1$	タービン建屋の地震応答解析モデルの変	更点について	

1. 概要

本資料は、タービン建屋の既工認時及び今回工認時の地震応答解析モデル及び手法の 比較を示すものである。

2. 地震応答解析モデル及び手法の比較

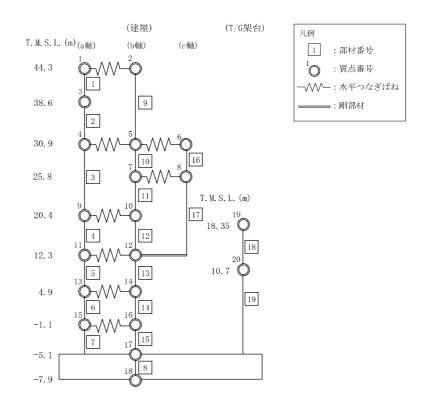
タービン建屋の地震応答解析モデル及び手法の比較を表2-1に示す。鉛直モデルの諸元の設定方法を表2-2に示す。また、今回工認時の地震応答解析モデルを図2-1及び図2-2に示す。

比較に用いる既工認時の地震応答解析モデル及び手法は,建設工認である。

表 2-1 地震応答解析モデル及び手法の比較

項目	内容	既工認*1	今回工認	備考
入力地震動	水平	設計用模擬地震波を用いて,一次元波動論 により算定	同左	_
の算定法	鉛直	*2	設計用模擬地震波を用いて,一次元波動論 により算定	_
解析コ	ード	DYNA2	TDAS	_
	モデル	多質点系SRモデル	同左	_
建屋のモデル化	材料物性	検討時の各規準に基づき設定 ・コンクリートのヤング係数 建屋部及びT/G架台 E = 26.5kN/mm² (SI換算) 基礎スラブ E = 25.5kN/mm² (SI換算) ・コンクリートのポアソン比 v = 0.167 ・鉄骨のヤング係数 E = 205kN/mm² (SI換算) ・鉄骨のポアソン比 v = 0.3	 適用規準の見直しによる再設定 ・コンクリートのヤング係数 建屋部及びT/G架台 E = 28.8kN/mm² 基礎スラブ E = 27.9kN/mm² ・コンクリートのポアソン比 v = 0.2 ・鉄骨のヤング係数 E = 205kN/mm² ・鉄骨のポアソン比 v = 0.3 	①,②
	剛性評価	耐震壁を考慮 (設計基準強度)	耐震壁及び補助壁を考慮(実強度)	3, 4
	減衰定数	・水平方向: RC (SRC含む): 5% S: 2%	・水平方向:RC (SRC含む):5% S:2% ・鉛直方向:RC (SRC含む):5% S:2%	_
	回転拘束ばね	_	・鉛直方向:屋根トラス端部回転拘束ばね(K。) 屋根トラス端部の柱による曲げ変形を 拘束する効果として,屋根トラス端部 が柱に剛接されているものとした場合 の回転ばね剛性を考慮	_
地盤の	底面ばね	振動アドミッタンス理論に基づく近似法 ・水平方向:水平及び回転ばねを考慮	振動アドミッタンス理論に基づく近似法 ・水平方向:水平及び回転ばねを考慮 ・鉛直方向:鉛直ばねを考慮	5
モデル化	側面ばね	Novakの方法により設定 ・水平ばねのみ考慮	Novakの方法により設定 ・水平ばねのみ考慮(表層の新期砂層は無 視)	6
非線形特性	耐震壁	・水平方向:考慮せず	・水平方向:非線形特性を考慮 ・鉛直方向:考慮せず	5, 7
2 F 10K 112 114 T.	底面ばね	・水平方向:考慮せず ・鉛直方向:一*2	・水平方向:考慮せず ・鉛直方向:考慮せず	, v

注記*1:柏崎刈羽原子力発電所7号機『既工事計画認可申請書 添付資料IV-2-9「タービン建屋の耐震性についての計算書」(3資庁第6675号平成3年8月23日認可)』


*2: 既工認時は、水平方向のみ地震応答解析を実施し、鉛直方向は静的地震力を考慮。

【具体的な反映事項】(表の備考欄に対応)

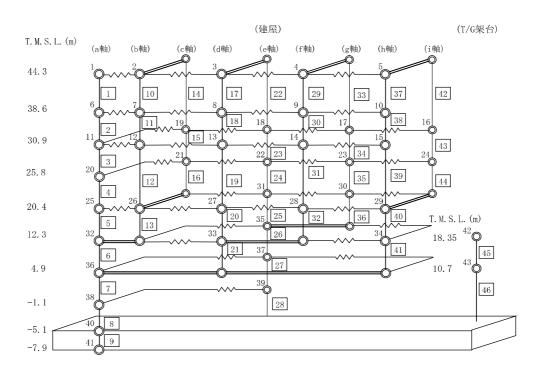
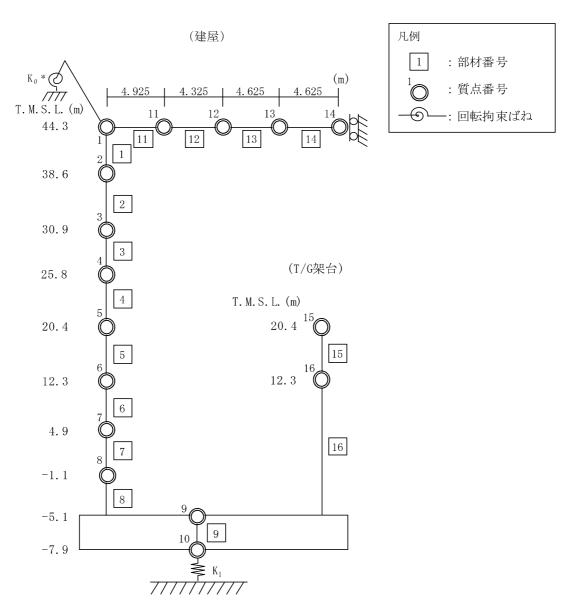

- ① コンクリートのヤング係数及びポアソン比は、「鉄筋コンクリート構造計算 規準・同解説一許容応力度設計法一」((社)日本建築学会、1999改定)に 基づく。
- ② 鉄骨部のヤング係数は、「鋼構造設計規準一許容応力度設計法一」((社)日本建築学会、2005改定)に基づく。
- ③ 地震時の挙動をより実応答に近い形で評価するため、実際には耐震壁として 考慮可能であると考えられる壁を補助壁として、その分の剛性を考慮。補助壁の評価方法については原子炉建屋の地震応答計算書についての補足説 明資料「別紙1-3 地震応答解析モデルにおける補助壁の評価方法について」に示す。
- ④ 地震時の挙動をより実応答に近い形で評価するため、建屋剛性の評価においてコンクリート実強度に基づき評価される実剛性を考慮。コンクリート実剛性の採用については原子炉建屋の地震応答計算書についての補足説明資料「別紙1-4 地震応答解析モデルにおけるコンクリート実剛性の採用について」に示す。
- ⑤ 「原子力発電所耐震設計技術指針 JEAG 4 6 0 1-1991 追補版」((社) 日本電気協会)に基づく。
- ⑥ 地震時の挙動をより実応答に近い形で評価するため、地盤表層部(新期砂層)の地盤ばねを考慮しない。地盤表層部(新期砂層)の地盤ばねの取扱いについては原子炉建屋の地震応答計算書についての補足説明資料「別紙1-6表層ばねの取扱いについて」に示す。
- ⑦ 耐震壁及び鉄骨部の非線形特性の設定については別紙2に示す。

表2-2 鉛直モデルの諸元の設定方法

部位	質量	剛性
耐震壁 補助壁 柱	鉛直モデルに対応する 水平モデルの質点の質量	水平方向モデルにおいて剛性を考慮している耐震壁及び補助壁の全軸断面積及び鉛直剛性として考慮できる柱の軸断面積の和より軸剛性を算出
屋根トラス	質点の支配面積より算出	曲げ変形とせん断変形を生 じる質点系の曲げせん断変形と りモデルとして剛性は, 出。カス上で剛性は,軸に 関する断面2次モーメント 関する断面2次モーメント 関する断面2次モーメント 関する断面で 関いて が、 は、 は、 は、 は、 は に は に は に は に は に は に は


NS方向

EW方向

注:東京湾平均海面(以下「T.M.S.L.」という。)

図 2-1 地震応答解析モデル (水平方向)

注記*:屋根トラス端部回転拘束ばね

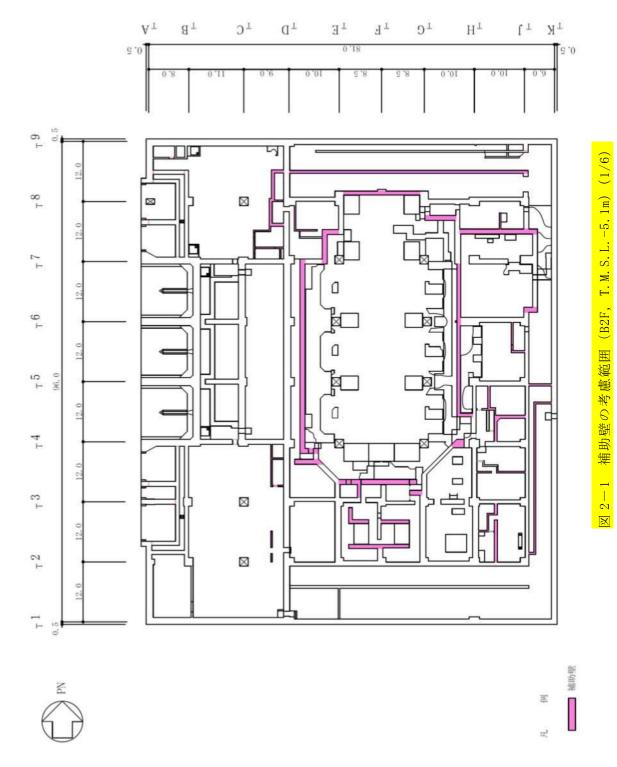
図2-2 地震応答解析モデル (鉛直方向)

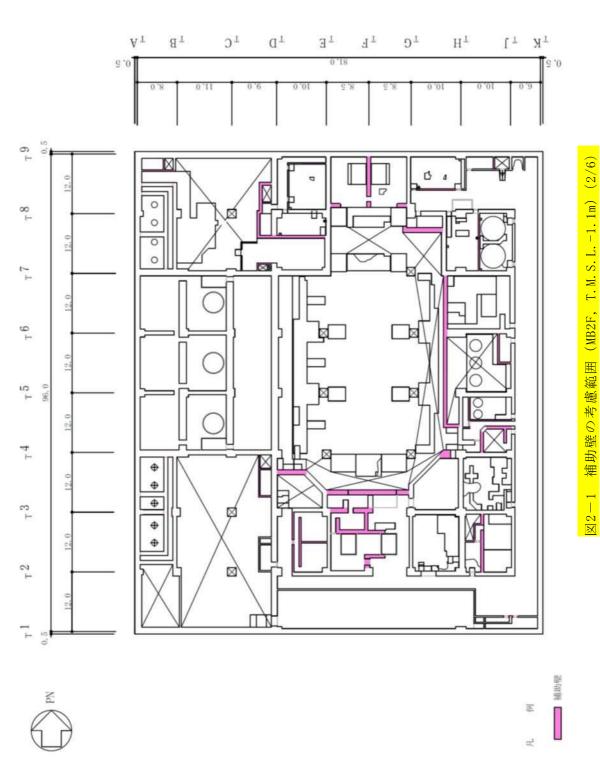
別紙1-1 タービン建屋の地震応答解析モデルの変更点について

目 次

1.	概要	別紙1-1-1
2.	タービン建屋の地震応答解析モデルの変更について ・・・・・・・・・・・	別紙1-1-1
2.1	補助壁の考慮 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙1-1-1
2.2	コンクリート実剛性の考慮 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙1-1-8
2.3	表層地盤ばねの変更 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙1-1-9
2.4	既工認モデルと今回工認モデルの諸元の比較 ・・・・・・・・・・・・・・・	別紙1-1-10

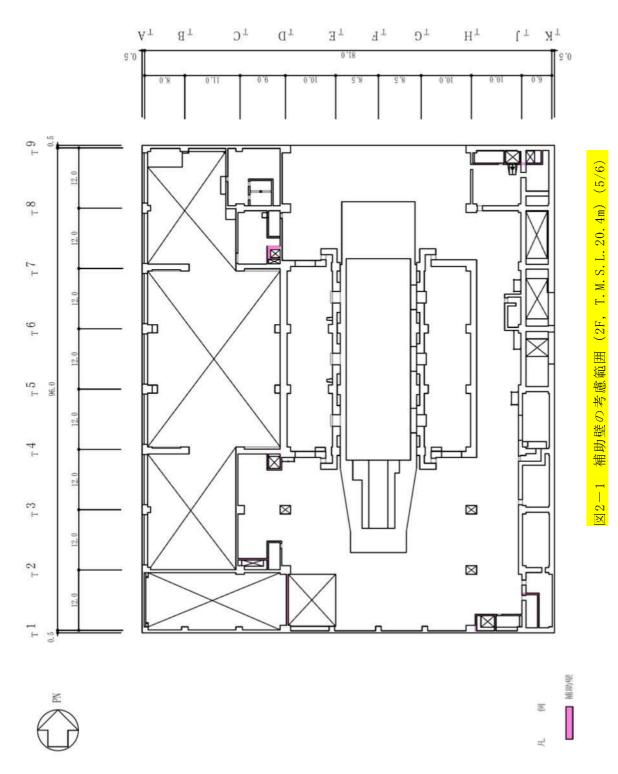
1. 概要

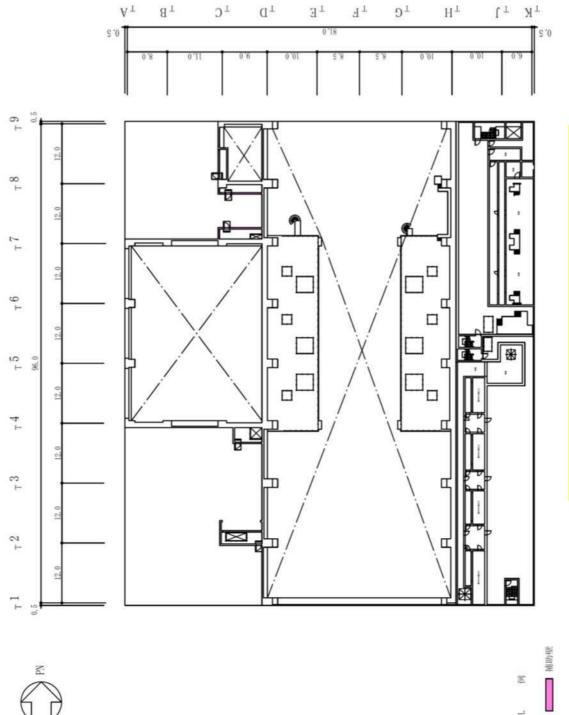

今回工認におけるタービン建屋の水平方向の地震応答解析モデル(以下「今回工認モデル」という。)は基本的には既工認時の地震応答解析モデル(以下「既工認モデル」という。)に基づいて設定しているが、解析モデルの精緻化を目的とし、既工認モデルから変更を行っている。本資料では、変更の概要を示す。


2. タービン建屋の地震応答解析モデルの変更について

2.1 補助壁の考慮

今回工認においては、地震時の挙動をより実応答に近い形で評価するため、動的 地震荷重算定時の地震応答解析において使用する建屋剛性の評価に関して、既工認モ デルでは耐震要素として考慮しなかったが、実際には耐震壁として考慮可能であると 考えられる壁を補助壁として、その分の剛性を考慮する。


補助壁の選定基準の設定に当たっては、「原子力施設鉄筋コンクリート構造計算規準・同解説 ((社) 日本建築学会、2005制定)」を参考にした。図2-1に補助壁として剛性を考慮する範囲を示す。



2.2 コンクリート実剛性の考慮

今回工認においては、地震時の挙動をより実応答に近い形で評価するため、動的 地震荷重算定時の地震応答解析において使用する建屋剛性の評価に関して、コンク リート実強度に基づき評価される実剛性を用いる。ただし、許容値の算定に当たって は、設計基準強度(330kgf/cm²: 32.3N/mm²)を用いる。表2-1に既工認モデル及び 今回工認モデルで用いるコンクリートの材料物性値を示す。

表2-1 地震応答解析に用いるコンクリートの材料物性値の設定

材料物性値	既工認モデル	今回工認モデル
	設計基準強度	実強度
コンクリート	建屋部, T/G架台:32.3(N/mm²)	建屋部, T/G架台:43.1(N/mm²)
強度	(330(kgf/cm ²))	(440(kgf/cm ²))
Fc	基礎スラブ:29.4(N/mm²)	基礎スラブ:39.2(N/mm²)
	$(300(kgf/cm^2))$	(400(kgf/cm ²))
コンクリートの 単位体積重量 γ	22.6(kN/m³) (2.3(tf/m³))	23.5(kN/m³) (2.4(tf/m³))
ヤング係数 E	2. $1 \times 10^{5} \times \left(\frac{\gamma}{2.3}\right)^{1.5} \times \sqrt{\frac{F c}{200}}$ (kgf/cm ²)	$3.35\times10^{4}\times\left(\frac{\gamma}{24}\right)^{2}\times\left(\frac{\mathrm{F \ c}}{60}\right)^{\frac{1}{3}}$ $(\mathrm{N/mm^{2}})$
せん断弾性係数 G	$\frac{E}{2(1+\nu)}$	$\frac{E}{2 (1+\nu)}$
ポアソン比 v	0. 167	0. 2
適用規準		原子力施設鉄筋コンクリート構造 計算規準・同解説 ((社)日本建 築学会,2005制定)

2.3 表層地盤ばねの変更

既工認モデルでは地盤表層部(新期砂層)についても地盤ばねとして考慮していたが、今回工認モデルでは、基準地震動Ssによる地盤応答レベルを踏まえ、表層部では建屋-地盤相互作用が見込めないと判断し、地震時の挙動をより実応答に近い形で評価するため、この部分の地盤ばねを考慮しない。図2-2に地震応答解析モデルにおける表層地盤ばねの変更の概念図を示す。

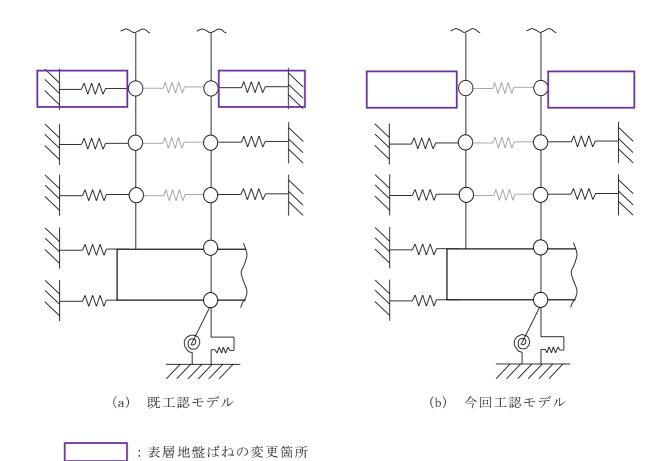


図2-2 表層地盤ばねの変更(概念図)

2.4 既工認モデルと今回工認モデルの諸元の比較 表2-2に既工認モデルと今回工認モデルの諸元の比較を示す。

表2-2 既工認モデルと今回工認モデルの諸元の比較(NS方向)(1/4)

(a) 既工認モデル

T. M. S. L. (m)	T/G架台		建屋			
		(1)	(2)			
44.3		3, 490	2, 132			
		2, 510	681			
		(3)				
38.6		5, 335				
		1, 157				
		(4)	(5)	(6)		
30.9		10,907	4, 207	845		
		3, 123	7, 658	140		
			(7)	(8)		
25.8			4, 221	2, 365		
			45, 062	25, 191		
	(19)	(9)	(10)			
20.4	10, 551	19,023	9, 960			
	-	35, 409	39, 879			
	(20)	(11)	(12)			
12.3	7, 159	17, 465	20, 883			
	-	61, 510	51, 560			
		(13)	(14)			
4. 9		16, 692	21, 037			
		58, 791	75, 605			
		(15)	(16)			
-1.1		11,854	15,095			
		39, 286	104, 103			
		(17)				
-5.1	50, 405					
		385, 830				
7.0		(18)				
-7.9	27, 015					
		151, 634				

	T/G架台	建屋				
44. 3		(1) 4.0 -	(2)			
38. 6		(3) 5.8 -	_			
30. 9		(4) 200. 0	(5) 94. 6 64, 644	(6) 1.1 -		
25. 8		84, 328	(7) 115. 0 50, 284	(8) 4. 5		
20. 4	(19) 13. 9	(9) 153. 2 82, 226	(10) 133. 7 72, 329	_		
12. 3	(20)	(11) 235. 7 148, 356	(12) 255, 6 108, 286			
4. 9	10. 2	(13) 220, 5 129, 870	(14) 349. 1 178, 046			
-1.1	-	(15) 241. 9 145, 704	(16) 327. 9 171, 477			
-5. 1		(17) 7, 954 –				

部材番号
せん断断面積(m²)
断面二次モーメント(m⁴)

(質点番号) 重量(t) 回転慣性重量 (×10²t・m²)

①コンクリート部 建屋及びT/G架台

台 ②コンクリート部 基礎スラブ 0°(+/m²) セング係数F96

ヤング係数E 2.7 ×10⁶ (t/m²) せん断弾性係数G 1.2 ×10⁶ (t/m²) ポアソン比ャ 0.167 減衰定数h 5% ヤング係数E 2.6 ×10⁶ (t/m²) せん断弾性係数G 1.1 ×10⁶ (t/m²)

ポアソン比 v 0.167 減衰定数 h 5%

基礎形状 97.0m(NS方向)×82.0m(EW方向)×2.0m又は2.8m(厚さ)

:「2.1 補助壁の考慮」による変更箇所

表2-2 既工認モデルと今回工認モデルの諸元の比較(NS方向)(2/4)

(b) 今回工認モデル

T. M. S. L. (m)	T/G架台		建屋	
44. 3		1 34230 24. 6	2 20910 6. 7	
38. 6		3 52320 11. 3		
30. 9		4 106960 30. 6	5 41250 75. 1	6 8290 1.4
25. 8			7 41390 441. 9	8 23190 247. 0
20. 4	19 103470 -	9 186550 347. 2	10 97680 391. 1	
12. 3	20 70210	11 171270 603. 2	12 204800 505, 6	
4. 9		13 163700 576. 5	14 206300 741. 4	
-1. 1		15 116250 385. 3	16 148030 1020. 9	
-5. 1		17 494300 3783. 7		
-7. 9		18 264930 1487. 0		
	•		質点番号 重量(kN	

T. M. S. L. (m)	T/G架台		建屋	
44. 3		1	9	
		4.00		
		_	2.70	
38. 6		2		
		5.80		
		_	-	
30. 9	1	3	10	16
			95. 4	1.1
		204. 1	64600	-
25.8			11	17
		84300	120. 5	
		04300	50300	4.5
20.4	18	4	12	
	13. 9	168.6	146. 5	_
	-	82200	72300	
12. 3	19	5	13	
		248. 0	282, 0	
	10.2	148400	108300	
4.9	10. 2	6	14	
		251. 5	393. 6	
		129900	178000	
-1.1		7	15	
	_	273.8	392.0	
		145700	171500	
-5. 1		8		
		7954. 0		
			alore Is Is with 127	

部材番号 せん断断面積(m²) 断面二次モーメント(m4)

①コンクリート部 建屋及びT/G架台 ヤング係数E 2.88 ×10¹ (N/mm²) せん断弾性係数G 1.20 ×10⁴ (N/mm²)

回転慣性重量(×10⁵kN・m²)

②コンクリート部 基礎スラブ ヤング係数E 2.79 ×10¹ (N/mm²) せん断弾性係数G 1.16 ×10⁴ (N/mm²)

ポアソン比ァ 0.20 減衰定数 h 5%

ポアソン比ν 0.20 減衰定数 h 5%

基礎形状 97.0m(NS方向)×82.0m(EW方向)×2.0m又は2.8m(厚さ)

:「2.1 補助壁の考慮」による変更箇所

表2-2 既工認モデルと今回工認モデルの諸元の比較(EW方向)(3/4)

(a) 既工認モデル

T. M. S. L. (m)	T/G架台	建屋								
		(1)	(2)		(3)		(4)		(5)	
44.3		451	1,341		1, 339		1, 358		1, 133	
		17	645		644		653		325	
		(6)	(7)		(8)		(9)		(10)	
38.6		577	1,300		1,274		1, 207		977	
		36	637		624		590		288	
		(11)	(12)	(19)	(13)	(18)	(14)	(17)	(15)	(16)
30.9		1, 145	1,609	221	3, 171	2,029	3, 384	2, 023	1,913	464
		146	794	0	1,010	617	1,088	615	606	69
		(20)		(21)		(22)		(23)		(24)
25.8		1,113		1,705		1.171		1,263		1, 334
		73		827		81		95		388
	(42)	(25)	(26)		(27)	(31)	(28)	(30)	(29)	
20.4	10, 551	1, 541	5, 375		4, 832	2, 548	5, 214	2,631	6, 842	
	-	79	8, 085		2, 537	1, 409	2,776	1,588	9, 342	
	(43)	(32)			(33)	(35)			(34)	
12.3	7, 159	12, 798			7, 738	8, 542			9, 270	
	-	32, 897			15, 075	16, 960			19, 378	
		(36)				(37)	_			
4.9		29, 538				8,191				
		107, 002				16, 673	_			
		(38)				(39)				
-1.1		18, 867				8,082	J			
		68, 159				10, 738				
		(40)								
-5.1		50, 405								
		538, 238								
		(41)								
-7.9		27, 015 212, 080								

(質点番号)
重量(t)
回転慣性重量 (×10 ² t・m ²)

T. M. S. L. (m)	T/G架台					建屋				
		(1)	(2)		(3)		(4)		(5)	
44. 3		1, 30 -	0, 72 -	0, 06	0, 72 -	0, 09	0.72 -	0.09	0.72 -	0.09
		(6)	(7)		(8)		(9)		(10)	
38. 6		1 <u>.90</u>	0. 91 _	_	0.21	_	0.91	_	0.91	_
		(11)	(12)	(19)	(13)	(18)	(14)	(17)	(15)	(16)
30.9		25. 3	(13)	0, 3	(10)	29, 2	(11)	29, 2	(10)	13. 0
		7, 074	14. 4	-	26.8	3, 772	26.8	3,772	35. 2	233
		(20)		(21)]	(22)	1	(23)		(24)
25.8		42. 2		8. 4		26. 4		26. 4		24. 2
		25, 111	222	99	452	559	294	559	1, 318	1, 436
	(42)	(25)	(26)		(27)	(31)	(28)	(30)	(29)	
20.4	25.3	59. 9	57. 2		45.9	30. 4	11.9	16. 2	101.0	
	-	38, 110	12, 036		2, 247	1,022	157	372	27, 633	
	(43)	(32)			(33)	(35)	(33)	(35)	(34)	-
12.3		153.0			60. 7	109.5			97. 9	
		69, 335			3,640	14, 180			55, 072	
		(36)			(36)	(37)			(36)	
4.9	11.4	357.4				108.7				
		141,670				13, 128				
		(38)				(39)				
-1.1	-	376.7				132. 2				
		147, 630				11, 394	l			
-5. 1	-	(40)								
-0.1	ļ	7, 954								

部材番号 せん断断面積(m²) 断面二次モーメント(m⁴)

②コンクリート部 基礎スラブ ヤング係数E 2.6

①コンクリート部 建屋及びT/G架台 ヤング係数E 2.7 ×10⁶ (t/m²) せん断弾性係数G 1.2 ×10⁵ (t/m²)

ヤング係数E 2.6 ×10⁶ (t/m²) せん断弾性係数G 1.1 ×10⁶ (t/m²)

ポアソン比_ν 0.167 減衰定数 h 5%

ポアソン比ν 0.167 減衰定数 h 5% 基礎形状 97.0m(NS方向)×82.0m(EW方向)×2.0m又は2.8m(厚さ)

:「2.1 補助壁の考慮」による変更箇所

表2-2 既工認モデルと今回工認モデルの諸元の比較(EW方向)(4/4) (b) 今回工認モデル

T. M. S. L. (m)	T/G架台	建屋								
44. 3		1 2 4430 13150 0.2 6.3			3 13130 6. 3		4 13320 6. 4		5 11110 3. 2	
38. 6		6 5660 0. 4	7 12750 6. 2		8 12490 6. 1		9 11840 5. 8		10 9580 2.8	
30. 9		11 11230 1.4	12 15770 7.8	19 2170 0.0	13 31100 9.9	18 19900 6. 1	14 33180 10.7	17 19840 6. 0	15 18760 5. 9	16 4550 0. 7
25. 8		20 10920 0. 7		21 16720 8. 1		22 11480 0.8		23 12390 0. 9		24 13070 3, 8
20. 4	42 103470 -	25 15110 0. 8	26 52710 79. 3		27 47390 24. 9	31 24990 13.8	28 51130 27. 2	30 25800 15. 6	91.6	
12. 3	43 70210 -	32 125510 322. 6			33 75880 147. 8	35 83770 166. 3			34 90910 190. 0	
4. 9		36 289670 1049. 3				37 80330 163, 5				
-1. 1		38 185020 668, 4				39 79260 105. 3				
-5. 1		40 494300 5278. 3								
-7. 9		41 264930 2079. 8								

質点	番号
重量	(kN)
回転慣性重量	$(\times 10^5 kN \cdot m^2)$

T. M. S. L. (m)	T/G架台					建屋				
44. 3		1	10	14	17	22	29	33	37	42
		1. 30	0.72		0.72		0.72		0.72	
		-	1	0.06	-	0.09	_	0.09	_	0.09
38. 6		2	11		18		30		38	
		1. 90	0.91	_	0.91	_	0.91	_	0.91	
		-	_				-			
30. 9		3	12	15	19	23	31	34	39	43
		25.3		0.3		29. 2		31.1		14.9
		7100	15. 0	_	26.8	3800	26.8	3800	37.8	200
25. 8		4		16		24		35		44
		42. 9 25100	200	9. 6 100	500	26, 9 600	300	28. 2 600	1300	24. 2 1400
00.4	45	25100 5	13	100	20	25	32	36	40	1400
20. 4		61.4	62. 8			37.6	11.9	19. 3	107. 4	+
	25. 3 _	38100	12000		45. 9 2200	1000	200	400	27600	1
12. 3	46	6	12000	l	21	26	200	100	41	†
12. 0	10	175.5			67.3	111.4	1		117.1	†
		69300			3600	14200			55100	1 1
4. 9	11.4	7			0000	27	i		33100	1
		427.5				128. 3	Ī			
		141700				13100				
-1.1		8				28				
	-	495.7				154.9	[
		147600				11400				
-5. 1		9								
	<u> </u>	7954.0								
	l	-								

部材番号 せん断断面積(m²) 断面二次モーメント(m')

①コンクリート部 建屋及びT/G架台

②コンクリート部 基礎スラブ

ャング係数E $2.88 \times 10^4 \text{ (N/mm}^2)$ せん断弾性係数G $1.20 \times 10^4 \text{ (N/mm}^2)$ ポアソン比v 0.20

マング係数E 2.79 ×10⁴ (N/mm²) せん断弾性係数G 1.16 ×10⁴ (N/mm²)

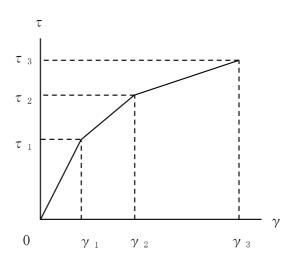
ポアソン比ν 0.20

減衰定数 h 5% 減衰定数 h 5% 減衰定数 h 5% 基礎形状 97.0m(NS方向)×82.0m(EW方向)×2.0m又は2.8m(厚さ)

:「2.1 補助壁の考慮」による変更箇所

別紙2 地震応答解析における耐震壁及び鉄骨部の せん断スケルトン曲線の設定

目 次


1. 概要 · · · · · · · · · · · · · · · · · ·	別紙 2-1
2. 耐震壁の非線形特性の設定について	別紙 2-2
2.1 第1折点の設定	別紙 2-3
2.2 第2折点の設定	別紙 2-3
2.3 終局点の設定	別紙 2-4
3. 補助壁の非線形特性の設定について	別紙 2-6
3.1 第1折点の設定	別紙 2-7
4. 鉄骨部の非線形特性の設定について	別紙 2-8
4.1 第1折点の設定	別紙 2-9
5. せん断スケルトン曲線の設定について	別紙 2-11
5.1 タービン建屋	別紙 2-11
5.1.1 水平方向モデル	別紙 2-11
5.1.2 使用材料の物性値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 2-17
5.1.3 RC 造耐震壁のせん断スケルトン曲線の諸数値 ······	別紙 2-18
5.1.4 RC 造補助壁のせん断スケルトン曲線の諸数値 ······	別紙 2-31
5.1.5 鉄骨部のせん断スケルトン曲線の諸数値 ・・・・・・・・・・・・・	別紙 2-33
6. まとめ	別紙 2-34

1. 概要

柏崎刈羽原子力発電所のタービン建屋については、鉄筋コンクリート造の耐震壁を主体とした構造物で、屋根部分が鉄骨造(トラス構造)となっている。このため、これらの建物・構築物の地震応答解析においては、鉄筋コンクリート造耐震壁(以下「RC造耐震壁」という。)、鉄筋コンクリート造補助壁(以下「RC造補助壁」という。)及び鉄骨部の非線形特性を考慮している。本資料は、これらの耐震壁、補助壁及び鉄骨部のせん断スケルトン曲線の設定について説明するものである。

2. 耐震壁の非線形特性の設定について

RC造耐震壁のせん断応力度-せん断ひずみ関係($\tau - \gamma$ 関係)は、「原子力発電所耐震設計技術指針 J E A G 4 6 0 1 -1991 追補版((社)日本電気協会)」(以下「J E A G 4 6 0 1 -1991追補版」という。)に基づき、トリリニア型スケルトン曲線とする。せん断応力度-せん断ひずみ関係を図2-1に示す。

τ1: 第1折点のせん断応力度

τ2: 第2折点のせん断応力度

τ3:終局点のせん断応力度

γ1:第1折点のせん断ひずみ

γ2:第2折点のせん断ひずみ

γ₃:終局点のせん断ひずみ (4.0×10⁻³)

図 2-1 せん断応力度-せん断ひずみ関係

2.1 第1折点の設定

RC造耐震壁におけるせん断スケルトン曲線の第1折点は、 J E A G 4 6 0 1 -1991追補版に基づき、以下の式より算出している。

$$\tau_{1} = \sqrt{\sqrt{F \ c} \left(\sqrt{F \ c} + \sigma_{V}\right)}$$

$$\gamma_{1} = \tau_{1} / G$$

ここで,

F c : コンクリートの圧縮強度(kgf/cm²)

G : コンクリートのせん断弾性係数(kgf/cm²)σ_ν : 縦軸応力度(kgf/cm²) (圧縮を正とする。)

2.2 第2折点の設定

RC造耐震壁におけるせん断スケルトン曲線の第2折点は、 JEAG 4 6 0 1-1991追補版に基づき、以下の式より算出している。

$$\tau_2 = 1.35 \tau_1$$
$$\gamma_2 = 3\gamma_1$$

2.3 終局点の設定

RC造耐震壁におけるせん断スケルトン曲線の終局点は、JEAG4601-1991追補版に基づき、以下の式より算出している。

$$\tau_s \le 4.5\sqrt{Fc}$$
 の場合

$$\tau_{3} = \left(1 - \frac{\tau_{S}}{4.5\sqrt{F \ c}}\right) \tau_{0} + \tau_{S}$$

$$\tau_3 = 4.5 \sqrt{F \ c}$$

$$\gamma_3 = 4.0 \times 10^{-3}$$

ここで,

$$\tau_0 = \left(3 - \frac{1.8 \text{M}}{\text{Q D}}\right) \sqrt{\text{F c}}$$

ただし,M/<mark>(</mark>QD<mark>)</mark>>1のときM/<mark>(</mark>QD<mark>)</mark>=1

$$\tau_{\mathrm{S}} = \frac{\left(\mathrm{P_{\mathrm{V}}} + \,\mathrm{P_{\mathrm{H}}}\right) \cdot \,\,_{\mathrm{s}} \sigma_{\mathrm{y}}}{2} + \frac{\left(\sigma_{\mathrm{V}} + \,\sigma_{\mathrm{H}}\right)}{2}$$

ここで,

F c : コンクリートの圧縮強度 (kgf/cm²)

P_v, P_H : 縦, 横筋比(実数)

 $\sigma_{_{
m V}}$, $\sigma_{_{
m H}}$:縦,横軸応力度(kgf/cm²) (圧縮を正とする。)

.σ, : 鉄筋降伏応力度(kgf/cm²)

・・ M/<mark>(</mark>QD) :シアスパン比

ただし, 耐震壁のうち内壁の終局せん断強度は, 以下の式により算定している。

$$\tau_{3} = \frac{0.068 \, p_{\text{t e}}^{-0.23} \, (F \, c + 18)}{\sqrt{M / (Q \, D) + 0.12}} + 0.85 \sqrt{p_{\text{w h}} \sigma_{\text{w h}}} + 0.1 \, \sigma_{0}$$

$$\gamma_{3} = 4.0 \times 10^{-3}$$

ここで,

F c : コンクリートの圧縮強度 (N/mm²)

P_{te} : 等価引張鉄筋比(%)

 p_{wh} : b_e を厚さと考えた場合の水平せん断補強筋比 (実数)

ただし、Pwhの値が1.2%以上の場合は、1.2%として計算する。

b。: I型断面と長さ及び断面積が等しい矩形断面の幅 (mm)

ただし, b。は壁厚 t の1.5倍以下とする。

σ_{wh} :水平せん断補強筋の材料強度(N/mm²)

M/(QD) :シアスパン比

σ₀: 耐震壁の全断面積に対する平均軸方向応力度 (N/mm²)

3. 補助壁の非線形特性の設定について

RC造補助壁のせん断応力度-せん断ひずみ関係(τ $-\gamma$ 関係)は, J E A G 4 6 0 1 -1991 追補版で評価される第1折点で降伏する,完全弾塑性型のスケルトン曲線として評価する方針とする。終局点を与えるせん断ひずみについても J E A G 4 6 0 1 -1991 追補版の記載による値を採用する。せん断応力度-せん断ひずみ関係を図3-1に示す。

τι: 第1折点のせん断応力度

τ3:終局点のせん断応力度 (τ3=τ1)

γι: 第1折点のせん断ひずみ

γ₃:終局点のせん断ひずみ (4.0×10⁻³)

図3-1 せん断応力度-せん断ひずみ関係

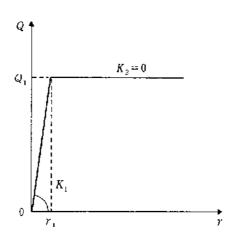
3.1 第1折点の設定

RC造補助壁におけるせん断スケルトン曲線の第1折点は、 J E A G 4 6 0 1 -1991追補版に基づき、以下の式より算出している。

$$\tau_{1} = \sqrt{\sqrt{F \ c} \left(\sqrt{F \ c} \ + \sigma_{V}\right)}$$

$$\gamma_{1} = \tau_{1} / G$$

ここで,


F c : コンクリートの圧縮強度(kgf/cm²)

G : コンクリートのせん断弾性係数(kgf/cm²)

 σ_v : 縦軸応力度(kgf/cm²) (圧縮を正とする。)

4. 鉄骨部の非線形特性の設定について

鉄骨部のせん断力ーせん断ひずみ関係($Q-\gamma$ 関係)は,JEAG4601-1991追補版に基づき,バイリニア型スケルトン曲線とする。せん断力ーせん断ひずみ関係を図4-1に示す。

Q1: 第1折点のせん断力

γ1:第1折点のせん断ひずみ

K₁:第1せん断剛性 K₂:第2せん断剛性

図 4-1 せん断力-せん断ひずみ関係

4.1 第1折点の設定

鉄骨造におけるせん断スケルトン曲線の第 1 折点は、J E A G 4 6 0 1 - 1991 追補版に基づき、以下の式より算出している。

$$Q_{1} = \frac{2 F A \cos \theta}{0.710 + 1.12 \lambda_{e}}$$
$$\gamma_{1} = Q_{1} / K_{1}$$

ここで、 $Q_1 \leq 2A F \cos \theta$

F:ブレースの許容応力度を決定する場合の基準値(tf/cm²)

A : ブレースの断面積(cm²)

θ : ブレースとはりのなす角度(rad)

 $\bar{\lambda}_{e}$: ブレースの一般化細長比= $\lambda_{e}\sqrt{\frac{F}{\pi^{2}E}}$

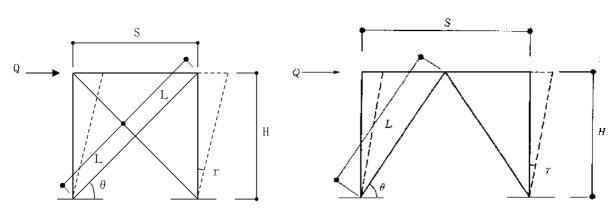
 λ_e :有効細長比= $\alpha \cdot \lambda$

α :座屈長さ係数

 λ : ブレースの端部及び中央交差部をピンとした場合の細長比= L/i_v

 $ext{L}$:ブレースの端部及び中央交差部の節点間距離 $=rac{1}{2}\sqrt{ ext{S}^2+ ext{H}^2}$

S:架構の柱間の距離(cm)


H :架構の階高(cm)

i, :ブレースの弱軸についての断面二次半径(cm)

E : 鋼材のヤング係数(tf/cm²)

K₁ : 第1せん断剛性(tf/rad)

K₂ : 第2せん断剛性(tf/rad)

(a) X型ブレース

(b) K型ブレース

図 4-2 ブレース付きラーメン架構

前述で設定したスケルトン曲線を完全弾塑性型モデルのバイリニア型スケルトン 曲線と、スリップ型モデルのバイリニア型スケルトン曲線に分離する。

両者への分離は、分配率 β_1 により定める。なお、 β_1 はブレースの一般化細長比の関数により、次式で算定する。

$$\beta_1 = 1.29 - 1.12 \bar{\lambda}_{e}$$

完全弾塑性型モデルのスケルトン曲線は、次式により算定する(図4-3参照)。

$$Q_{P1} = Q_1 \cdot \beta_1$$

 $\gamma_{P1} = \gamma_1$

スリップ型モデルのスケルトン曲線は、次式により算定する(図4-4参照)。

$$Q_{S1} = Q_1 (1 - \beta_1)$$

 $\gamma_{S1} = \gamma_1$

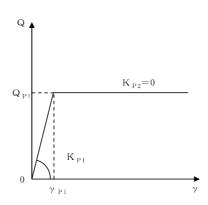


図 4-3 完全弾塑性型モデルのスケルトン曲線

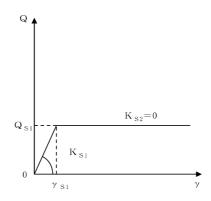
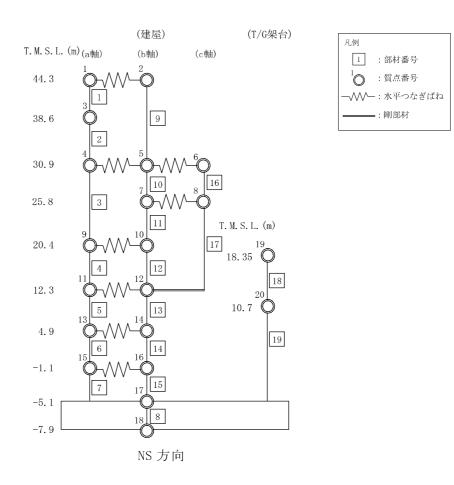



図 4-4 スリップ型モデルのスケルトン曲線

- 5. せん断スケルトン曲線の設定について
- 5.1 タービン建屋
 - 5.1.1 水平方向モデル

水平方向は、地盤との相互作用を考慮し、耐震壁等の曲げ及びせん断剛性を評価した多質点系モデルとしている。地震応答解析モデルを図5-1に、解析モデルの諸元を表5-1及び表5-2に示す。

また、各部材のモデル化について表5-3に示す。なお、基礎部、TG架台及びモデル化範囲に耐震壁・鉄骨ブレースのない部材は線形でモデル化している。

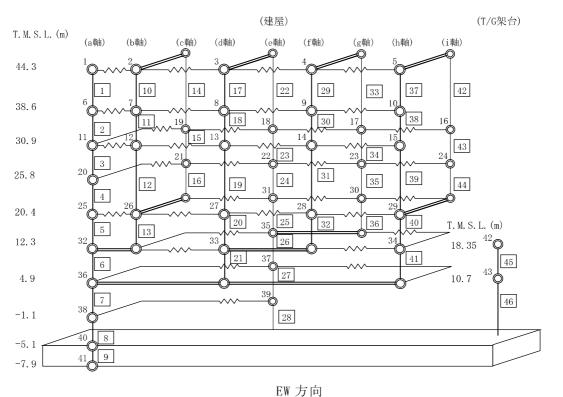


図 5-1 地震応答解析モデル (水平方向)

別紙 2-12

表 5-1 地震応答解析モデル諸元 (NS 方向)

(a) 重量·回転慣性重量

T. M. S. L. (m)	T/G架台		建屋	
44.3		1 34230 24. 6	2 20910 6. 7	
38.6		3 52320 11.3		
30. 9		4 106960 30.6	5 41250 75. 1	6 8290 1.4
25. 8		30.0	73. 1 7 41390 441. 9	8 23190 247. 0
20.4	19 103470	9 186550 347. 2	10 97680 391. 1	211.0
12. 3	20 70210 -	11 171270 603, 2	12 204800 505, 6	
4. 9		13 163700 576, 5	14 206300 741. 4	
-1.1		15 116250 385. 3	16 148030 1020. 9	
-5.1		17 494300 3783. 7		
-7.9		18 264930 1487. 0		

質点番号
重量(kN)
回転慣性重量(×10 ⁵ kN・m ²)

(b) せん断断面積・断面二次モーメント

T. M. S. L. (m)	T/G架台		建屋	
44.3		1	9	
		4.00 -	2. 70	
38. 6		2	2	
00.0		5. 80 -	_	
30. 9	Ť	3	10	16
		204. 1	95. 4 64600	1 <u>. 1</u>
25. 8			11	17
		84300	120. 5 50300	4. 5
20. 4	18	4	12	
	13. 9	168.6	146. 5	_
	-	82200	72300	
12. 3	19	5	13	
		248. 0	282. 0	
	10. 2	148400	108300	
4. 9	10. 2	6	14	
		251. 5	393. 6	
		129900	178000	
-1.1	_	7	15	
		273.8	392. 0	
		145700	171500	
-5.1		8		
	•••••	7954. 0 -		

①コンクリート部 建屋及びT/G架台

ャング係数 E $2.88 \times 10^4 \, (\text{N/mm}^2)$ せん断弾性係数 G $1.20 \times 10^4 \, (\text{N/mm}^2)$

ポアソン比 v 0.20 減衰定数 h 5%

②コンクリート部 基礎スラブ

ヤング係数E 2.79 ×10⁴ (N/mm²)

せん断弾性係数G 1.16 ×10⁴ (N/mm²)

ポアソン比ν 0.20

減衰定数 h 5%

③鉄骨部

ヤング係数E 2.05 $\times 10^5$ (N/mm^2) せん断弾性係数G 7.90 $\times 10^4$ (N/mm^2)

ポアソン比 v 0.30 減衰定数 h 2%

> 基礎形状 97.0m(NS方向)×82.0m(EW方向) ×2.0m又は2.8m(厚さ)

部材番号
せん断断面積(m²)
断面二次モーメント(m4)

表 5-2 地震応答解析モデル諸元 (EW 方向) (1/2)

(a) 重量·回転慣性重量

質点	番号
重量	(kN)
同転慣性重量	$(\times 10^5 \text{kN} \cdot \text{m}^2)$

								四颗	≾慣性重量(×1	.0°kN • m⁻)
T. M. S. L. (m)	T/G架台					建屋				
		1	2		3		4		5	
44.3		4430	13150		13130		13320		11110	
	1	0. 2	6. 3		6.3		6. 4		3. 2	
		6	7		8		9		10	I
38.6		5660	12750		12490		11840		9580	I
		0.4	6.2		6.1		5.8		2.8	
		11	12	19	13	18	14	17	15	16
30. 9		11230	15770	2170	31100	19900	33180	19840	18760	4550
	_	1.4	7.8	0.0	9. 9	6. 1	10.7	6.0	5. 9	0.7
		20		21	1	22	1	23		24
25.8		10920		16720		11480	1 1	12390		13070
		0. 7		8. 1		0.8		0.9		3.8
	42	25	26		27	31	28	30	29	
20.4	103470	15110	52710		47390	24990	51130	25800	67100	
		0.8	79. 3		24. 9	13.8	27. 2	15.6	91.6	
	43	32			33	35			34	
12.3	70210	125510			75880	83770			90910	
	-	322.6			147.8	166. 3	1		190.0	
		36				37	1			
4. 9		289670				80330				
	4	1049. 3				163. 5	4			
		38				39	4			
-1.1		185020				79260	-			
		668. 4				105. 3				
- ,		40								
-5.1		494300								
		5278, 3								
-7. 9		41								
-7.9		264930 2079. 8		•••••						
		2019.8								

表 5-2 地震応答解析モデル諸元 (EW 方向) (2/2)

(b) せん断断面積・断面二次モーメント

部材番号
せん断断面積(m²)
断面二次モーメント(m4)

T. M. S. L. (m)	T/G架台					建屋				
44. 3		1	10	14	17	22	29	33	37	42
		1.30	0.72	0.06	0.72	0.09	0.72	0.09	0.72 _	0.09
38. 6	+	2	11	0.06	18	0.09	30	0.09	38	0.09
36. 0		1.90	0. 91		0. 91		0.91		0.91	
		-	_	-	_	-	_	-		-
30. 9	İ	3	12	15	19	23	31	34	39	43
		25. 3		0.3		29. 2		31. 1		14. 9
		7100	15.0	_	26.8	3800	26.8	3800	37.8	200
25. 8		4		16		24		35		44
		42. 9 25100	200	9.6 100	500	26. 9 600	300	28. 2 600	1300	24. 2 1400
20. 4	45	5	13		20	25	32	36	40	
	25. 3	61.4	62.8		45. 9	37.6	11.9	19.3	107.4	
	-	38100	12000		2200	1000	200	400	27600	
12. 3	46	6			21	26			41	
		175. 5 69300			67. 3 3600	111. 4 14200			117. 1 55100	
4. 9	11.4	7			3600	27			55100	1
4. 9	11.4	427. 5				128. 3				
		141700				13100				i
-1. 1		8	•			28				
	=	495. 7 147600	·			154. 9 11400				
-5. 1		9				11100				
]		7954. 0								
		_								

①コンクリート部 建屋及びT/G架台

ヤング係数E 2.88 $\times 10^4$ (N/mm²) せん断弾性係数G 1.20 $\times 10^4$ (N/mm²)

ポアソン比ν 0.20

減衰定数 h 5%

②コンクリート部 基礎スラブ

ヤング係数E 2.79 ×10⁴ (N/mm²) せん断弾性係数G 1.16 ×10⁴ (N/mm²)

ポアソン比ν 0.20

減衰定数 h 5%

③鉄骨部

ヤング係数 E 2.05 $\times 10^5$ (N/mm²)

せん断弾性係数G 7.90 $\times 10^4 \, (\mathrm{N/mm}^2)$

ポアソン比ν 0.30

減衰定数 h 2%

基礎形状 97.0m(NS方向)×82.0m(EW方向) ×2.0m又は2.8m(厚さ)

表 5-3 各部材のモデル化

	せん断スケル	線形でモデル化			
	設定して	している部材			
	RC 部材	S部材	RC 部材	S部材	
NS 方向	3, 4, 5, 6, 7, 10, 11,	1, 2, 9, 16	8, 17, 18, 19		
N2 /J [H]	12, 13, 14, 15	1, 2, 9, 10	0, 17, 10, 19		
	3, 4, 5, 6, 7, 8, 12, 13,				
	16, 19, 20, 21, 23, 24,	1, 2, 10, 11, 17, 18,			
EW方向	25, 26, 27, 28, 31, 32,	29, 30, 37, 38	9, 15, 45, 46	14, 22, 33, 42	
	34, 35, 36, 39, 40, 41,	29, 50, 51, 50			
	43, 44				

5.1.2 使用材料の物性値

地震応答解析に用いるタービン建屋の使用材料の物性値を表5-4及び表5-5に示す。

表 5-4 使用材料の物性値 (コンクリート)

使用材料	ヤング係数 E (N/mm²)	せん断弾性係数 G(N/mm²)	減衰定数 h(%)	
コンクリート*: $\sigma_{C} = 43.1 (N/mm^{2})$ $(\sigma_{C} = 440 \text{kgf/cm}^{2})$	2.88×10^4	1. 20×10 ⁴	5	

注記<mark>*:</mark>実強度に基づくコンクリート強度<mark>。</mark>

表 5-5 使用材料の物性値(鉄筋)

使用材料	降伏応力度 sσy(N/mm²)
鉄筋:SD35(SD345相当 <mark>*)</mark>	345

注記*:建設当時の鉄筋の種類はSD35であるが、現在の規格 (SD345) に読み替えた降伏応力度を示す。

- 5.1.3 RC造耐震壁のせん断スケルトン曲線の諸数値
 - (1) 第1折点

RC造耐震壁の各要素におけるせん断スケルトン曲線の第1折点の設定根拠を表5-6に示す。

表 5-6 せん断スケルトン曲線($\tau-\gamma$ 関係,第 1 折点)(1/3)
(a) NS方向

Sept	部材		コンクリート	せん断弾性	断面積	縦軸応力度		
The (T4~T7)		通り	強度 F _C (N/mm ²)	係数 G (×10 ⁴ N/mm ²)	A _S (m ²)	σ_V (N/mm^2)	τ_1 (N/mm^2)	$(\times 10^{-3})$
TH (T4+77)		TG (T4~T7)				 		0, 180
Time						+		0. 198
TR (T1~T5)	3					1		0. 192
TK (T8~P9)								0. 183
Tell (T2~T3)						_		0. 186
TH (T8~T9)		TG (T2~T3)	43. 1	1. 20	11.0	0.31	2. 21	0. 185
Ty (73~75) 43.1 1.20 29.8 0.67 2.37 0. TK (T1~P) 43.1 1.20 73.5 0.72 2.39 0. TG (72~H) 43.1 1.20 30.4 0.50 2.29 0. TH (73~75) 43.1 1.20 38.6 1.47 2.70 0. TH (77~P) 43.1 1.20 38.6 1.47 2.70 0. TJ (72~T) 43.1 1.20 38.6 1.47 2.70 0. TK (T1~P) 43.1 1.20 52.7 1.27 2.62 0. TK (T1~P) 43.1 1.20 92.2 0.88 2.46 0. TK (T1~P) 43.1 1.20 92.2 0.88 2.46 0. TG (72~T3) 43.1 1.20 99.6 0.99 2.51 0. TG (72~T3) 43.1 1.20 10.7 0.74 2.40 0. TH (72~T5) 43.1 1.20 26.4 1.56 2.73 0. TJ (72~T8) 43.1 1.20 26.4 1.56 2.73 0. TJ (72~T8) 43.1 1.20 10.6 1.47 2.69 0. TK (T1~P) 43.1 1.20 10.6 1.01 2.51 0. TG (72~T3) 43.1 1.20 10.6 1.01 2.51 0. TG (72~T3) 43.1 1.20 10.6 1.01 2.51 0. TG (72~T3) 43.1 1.20 10.6 1.01 2.51 0. TH (72~T5) 43.1 1.20 10.6 1.01 2.51 0. TH (72~T5) 43.1 1.20 10.6 1.01 2.51 0. TG (72~T3) 43.1 1.20 10.6 0.00 2.06 0. TJ (72~T9) 43.1 1.20 16.0 0.00 2.06 0. TJ (72~T9) 43.1 1.20 16.0 0.00 2.06 0. TJ (72~T9) 43.1 1.20 16.0 0.00 2.06 0. TJ (72~T9) 43.1 1.20 10.3 1.19 2.58 0. TE (74~T7) 43.1 1.20 32.3 0.34 2.22 0. TE (74~T7) 43.1 1.20 32.3 0.32 2.17 0. TC (72~T9) 43.1 1.20 32.3 0.32 2.17 0. TC (72~T9) 43.1 1.20 56.5 0.35 2.23 0. TE (72~T9) 43.1 1.20 56.5 0.36 2.23 0. TE (72~T3) 43.1 1.20 56.5 0.36 2.23 0. TE (72~T3) 43.1 1.20 56.5 0.57 2.23 0. TE (72~T3) 43.1 1.20 56.5 0.55 2.23 0. TE (72~T3) 43.1 1.20 56.5 0.57 2.22 0. TE (72~T3) 43.1		TH (T3∼T6)	43. 1	1. 20	23. 8	0.77	2. 41	0. 202
TK (T1~T9)	4	TH (T8∼T9)	43. 1	1. 20	15. 1	0.60	2.34	0. 195
The (T2~T4)		TJ (T3~T5)	43. 1	1. 20	29.8	0.67	2. 37	0. 198
Till (T3~T5)		TK (T1~T9)	43. 1	1. 20	73. 5	0.72	2. 39	0. 200
5 TH (T7~T9) 43.1 1.20 38.6 1.47 2.70 0.3 TJ (T2~T7) 43.1 1.20 52.7 1.27 2.62 0.3 TG (T2~T3) 43.1 1.20 9.2 0.88 2.46 0.2 TG (T8~T9) 43.1 1.20 9.6 0.99 2.51 0.3 TG (T8~T9) 43.1 1.20 10.7 0.74 2.40 0.3 TJ (T2~T8) 43.1 1.20 10.6 1.47 2.29 0.3 TK (T1~T9) 43.1 1.20 106.6 1.01 2.51 0. TK (T2~T3) 43.1 1.20 106.6 1.01 2.51 0. TG (T2~T3) 43.1 1.20 16.8 1.27 2.62 0. TG (T2~T3) 43.1 1.20 16.9 0.00 2.06 0. TH (T7~T8) 43.1 1.20 16.9 0.00 2.06 0. TM (T1~T9) 43.1 <th< td=""><td></td><td>TG (T2~T4)</td><td>43. 1</td><td>1. 20</td><td>30. 4</td><td>0.50</td><td>2. 29</td><td>0. 192</td></th<>		TG (T2~T4)	43. 1	1. 20	30. 4	0.50	2. 29	0. 192
TJ (T2~T7)		TH (T3~T5)	43. 1	1. 20	21.8	1. 39	2. 66	0. 223
TK (T1~T9)	5	TH (T7∼T9)	43. 1	1. 20	38. 6	1.47	2. 70	0. 225
TG (T2~T3)			43. 1		52. 7			0. 219
TG (T8~T9)		TK (T1~T9)	43. 1	1. 20	92. 2	0.88	2. 46	0, 205
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TG (T2∼T3)	43. 1	1. 20	9.6	0.99	2. 51	0. 209
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						_		0.200
TJ (T2~T8)	6					+		0, 228
TK (T1~T9) 43.1 1.20 106.6 1.01 2.51 0.3 TF (T2~T3) 43.1 1.20 5.9 0.31 2.21 0. TG (T2~T3) 43.1 1.20 16.8 1.27 2.62 0.3 TH (T2~T5) 43.1 1.20 34.6 1.64 2.76 0.3 TH (T7~T8) 43.1 1.20 16.0 0.00 2.06 0. TK (T1~T9) 43.1 1.20 64.3 1.71 2.78 0.3 TC (T8~T9) 43.1 1.20 3.8 0.09 2.10 0. TC (T8~T9) 43.1 1.20 3.8 0.09 2.10 0. TC (T2~T4) 43.1 1.20 38.5 0.34 2.22 0. TC (T7~T9) 43.1 1.20 38.5 0.34 2.22 0. TC (T7~T9) 43.1 1.20 32.3 0.13 2.12 0. TC (T7~T9) 43.1 1.20			43. 1			1.47		0. 225
TF (Τ2~T3) 43.1 1.20 5.9 0.31 2.21 0. TG (Τ2~T3) 43.1 1.20 16.8 1.27 2.62 0.1 TH (Τ2~T5) 43.1 1.20 16.8 1.27 2.62 0.1 TH (Т7~T8) 43.1 1.20 16.0 0.00 2.06 0.1 TJ (Т2~T9) 43.1 1.20 64.3 1.71 2.78 0.2 TK (Т1~T9) 43.1 1.20 3.8 0.09 2.10 0. 10 TD (Т1~T9) 43.1 1.20 38.8 0.09 2.10 0. TE (Т4~T7) 43.1 1.20 38.5 0.34 2.22 0. TE (Т2~T4) 43.1 1.20 7.6 0.18 2.14 0. TE (Т2~T4) 43.1 1.20 7.6 0.18 2.14 0. TD (Т2~T9) 43.1 1.20 7.3 0.23 2.15 0. TE (Т4~T7) 43.1 1.20 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>0. 210</td>						1		0. 210
TH (Τ2~T5)		TF (T2∼T3)	43. 1	1.20	5. 9	0.31	2. 21	0, 185
TH (T7~T8) 43.1 1.20 16.0 0.00 2.06 0. TJ (T2~T9) 43.1 1.20 64.3 1.71 2.78 0.1 TK (T1~T9) 43.1 1.20 104.3 1.19 2.58 0.1 TC (T8~T9) 43.1 1.20 3.8 0.09 2.10 0. TD (T1-T9) 43.1 1.20 58.5 0.34 2.22 0. TE (T4~T7) 43.1 1.20 7.6 0.18 2.14 0. TC (T7~T9) 43.1 1.20 32.3 0.13 2.12 0. TC (T2~T4) 43.1 1.20 7.6 0.18 2.14 0. TC (T7~T9) 43.1 1.20 32.3 0.13 2.12 0. TC (T2~T4) 43.1 1.20 7.6 0.18 2.14 0. TC (T7~T9) 43.1 1.20 32.3 0.22 2.15 0. TE (T4~T7) 43.1 1.20 65.1 0.38 2.24 0. TE (T4~T7) 43.1 1.20 32.3 0.22 2.16 0. TC (T7~T9) 43.1 1.20 32.3 0.22 2.16 0. TC (T7~T9) 43.1 1.20 7.3 0.23 2.17 0. TC (T7~T9) 43.1 1.20 7.3 0.23 2.17 0. TC (T7~T9) 43.1 1.20 9.6 0.37 2.23 0. TC (T7~T9) 43.1 1.20 9.6 0.37 2.23 0. TC (T7~T9) 43.1 1.20 42.5 0.45 2.27 0. TD (T7~T9) 43.1 1.20 52.4 0.61 2.34 0. TE (T2~T3) 43.1 1.20 52.4 0.61 2.34 0. TE (T2~T3) 43.1 1.20 3.7 0.39 2.24 0. TC (T4~T7) 43.1 1.20 56.7 0.25 2.18 0. TD (T7~T9) 43.1 1.20 56.7 0.25 2.18 0. TD (T7~T9) 43.1 1.20 56.7 0.25 2.18 0. TC (T4~T7) 43.1 1.20 3.7 0.39 2.24 0. TC (T4~T7) 43.1 1.20 56.7 0.25 2.18 0. TD (T7~T9) 43.1 1.20 56.7 0.25 2.18 0. TC (T4~T7) 43.1 1.20 13.0 0.89 2.46 0.5 TE (T2~T3) 43.1 1.20 13.0 0.89 2.46 0.5 TE (T2~T8) 43.1 1.20 13.6 1.12 2.56 0.5 TE (T2~T8) 43.1 1.20 39.2 1.23 2.60 0.5 TC (T4~T7) 43.1 1.20 39.2 1.23 2.60 0.5 TE (T7~T9) 43.1 1.20 39.2 1.23 2.60 0.5 TE (T7~T9) 43.1 1.20 39.2 1.23 2.60 0.5 TE (T7~T9) 43.1 1.20 39.2 1.23 2.00 0. TC (T4~T7) 43.1 1.20 39.2 1.23 2.00 0. TC (T4~T7) 43.1 1.20 39.2 1.23 2.00 0. TE (T7~T9) 43.1 1.20 39.2 1.23 2.20 0. TE (T		TG (T2~T3)	43. 1	1. 20	16.8	1.27	2.62	0.219
TH (T7~T8) 43.1 1.20 16.0 0.00 2.06 0. TJ (T2~T9) 43.1 1.20 164.3 1.71 2.78 0.1 TK (T1~T9) 43.1 1.20 104.3 1.71 2.78 0.1 TC (T8~T9) 43.1 1.20 3.8 0.09 2.10 0. TC (T8~T9) 43.1 1.20 3.8 0.09 2.10 0. TC (T1~T9) 43.1 1.20 32.3 0.13 2.12 0. TC (T2~T4) 43.1 1.20 32.3 0.13 2.12 0. TC (T2~T4) 43.1 1.20 7.6 0.18 2.14 0. TC (T7~T9) 43.1 1.20 7.6 0.18 2.15 0. TC (T7~T9) 43.1 1.20 32.3 0.22 2.16 0. TD (T1~T9) 43.1 1.20 32.3 0.22 2.16 0. TC (T2~T4) 43.1 1.20 32.3 0.22 2.16 0. TC (T2~T4) 43.1 1.20 32.3 0.22 2.16 0. TC (T2~T4) 43.1 1.20 7.3 0.23 2.17 0. TC (T2~T4) 43.1 1.20 7.3 0.23 2.17 0. TC (T7~T9) 43.1 1.20 7.3 0.23 2.17 0. TC (T7~T9) 43.1 1.20 52.4 0.61 2.34 0. TC (T2~T3) 43.1 1.20 31.7 0.36 2.23 0. TA (T1~T9) 43.1 1.20 31.7 0.36 2.23 0. TA (T1~T9) 43.1 1.20 31.7 0.36 2.23 0. TA (T1~T9) 43.1 1.20 46.5 0.76 2.41 0.1 TD (T7~T9) 43.1 1.20 46.5 0.76 2.41 0.1 TD (T7~T9) 43.1 1.20 11.4 1.0 2.5 0.7 TE (T2~T3) 43.1 1.20 11.4 1.0 48 2.28 0.1 TE (T2~T3) 43.1 1.20 11.4 1.0 48 2.28 0.1 TE (T2~T3) 43.1 1.20 11.4 1.0 48 2.28 0.1 TE (T2~T3) 43.1 1.20 39.2 1.23 2.60 0.1 TC (T4~T7) 43.1 1.20 39.2 1.23 2.60 0.1 TC (T4~T7) 43.1 1.20 39.2 1.23 2.60 0.1 TC (T4~T7) 43.1 1.20 39.2 1.23 2.60 0.1 TE (T2~T3) 43.1 1.20 39.2 1.23 2.60 0.1 TC (T4~T7) 43.1 1.20 39.2 1.23 2.20 0.0 TC (T4~T7) 43.1 1.20 39.2 1.23 2.60 0.1 TC (T4~T7) 43.1 1.20 39.2 1.23 2.20 0.0 TC (T4~T7) 43.1 1.20 39.2 1.23 2.20 0.0 TC (T4~T7) 43.1 1.20 39.2 1.23 2.20 0.0 TC (T4~T7) 43.1 1.20 39.2 2.5 0.90 2.47 0.2 TC (T4~T7) 43.	7	TH (T2∼T5)	43. 1	1. 20	34. 6	1.64	2. 76	0. 231
TK (T1~T9) 43.1 1.20 104.3 1.19 2.58 0.3 10 TC (T8~T9) 43.1 1.20 3.8 0.09 2.10 0. TC (T2~T9) 43.1 1.20 58.5 0.34 2.22 0. TC (T2~T4) 43.1 1.20 32.3 0.13 2.12 0. TC (T2~T4) 43.1 1.20 10.0 0.20 2.15 0. TC (T2~T9) 43.1 1.20 10.0 0.20 2.15 0. TD (T2~T9) 43.1 1.20 32.3 0.22 2.16 0. TC (T2~T4) 43.1 1.20 32.3 0.22 2.16 0. TC (T7~T9) 43.1 1.20 32.3 0.22 2.16 0. TC (T7~T7) 43.1 1.20 32.3 0.22 2.16 0. TD (T7~T9) 43.1 1.20 42.5 0.45 2.27 0. TD (T7~T9) 43.1 1.2		TH (T7∼T8)	43. 1	1. 20	16. 0	0.00	2.06	0.172
TC (T8~T9)		TJ (T2∼T9)	43. 1	1. 20	64. 3	1.71	2. 78	0. 233
TD (T1~T9)		TK (T1~T9)	43. 1	1.20	104. 3	1.19	2.58	0.216
TE (T4~T7) 43.1 1.20 32.3 0.13 2.12 0. TC (T2~T4) 43.1 1.20 7.6 0.18 2.14 0. TC (T7~T9) 43.1 1.20 10.0 0.20 2.15 0. TD (T2~T9) 43.1 1.20 65.1 0.38 2.24 0. TE (T4~T7) 43.1 1.20 32.3 0.22 2.16 0. TC (T2~T4) 43.1 1.20 32.3 0.22 2.16 0. TC (T2~T4) 43.1 1.20 9.6 0.37 2.23 0. TC (T2~T4) 43.1 1.20 9.6 0.37 2.23 0. TC (T2~T4) 43.1 1.20 9.6 0.37 2.23 0. TD (T2~T9) 43.1 1.20 9.6 0.37 2.23 0. TD (T2~T9) 43.1 1.20 42.5 0.45 2.27 0. TD (T7~T9) 43.1 1.20 52.4 0.61 2.34 0. TE (T2~T3) 43.1 1.20 52.4 0.61 2.34 0. TE (T2~T3) 43.1 1.20 31.9 0.13 2.12 0. TA (T1~T9) 43.1 1.20 31.7 0.36 2.23 0. TA (T1~T9) 43.1 1.20 3.7 0.39 2.24 0. TC (T4~T7) 43.1 1.20 3.7 0.39 2.24 0. TD (T7~T9) 43.1 1.20 56.7 0.25 2.18 0. TD (T7~T9) 43.1 1.20 46.5 0.76 2.41 0.5 TD (T7~T9) 43.1 1.20 19.5 0.57 2.32 0. TE (T2~T3) 43.1 1.20 19.5 0.57 2.32 0. TE (T2~T3) 43.1 1.20 19.5 0.57 2.32 0. TE (T2~T3) 43.1 1.20 114.1 0.48 2.28 0. TA (T1~T9) 43.1 1.20 114.1 0.48 2.28 0. TA (T1~T9) 43.1 1.20 39.2 1.23 2.60 0. TC (T4~T7) 43.1 1.20 39.2 1.23 2.60 0. TC (T4~T7) 43.1 1.20 39.2 1.23 2.60 0. TC (T4~T7) 43.1 1.20 39.2 1.23 2.60 0. TD (T7~T9) 43.1 1.20 39.2 1.23 2.60 0. TD (T7~T9) 43.1 1.20 39.2 1.23 2.60 0. TC (T4~T7) 43.1 1.20 39.2 1.23 2.60 0. TC (T4~T7) 43.1 1.20 39.2 1.23 2.60 0. TE (T2~T3) 43.1 1.20 39.2 1.23 2.60 0. TE (T7~T9) 43.1 1.20 39.2 1.23 2.60 0. TE (T2~T3) 43.1 1.20 39.2 1.23 2.00 0. TE (T2~T3		TC (T8∼T9)	43. 1	1.20	3.8	0.09	2. 10	0.176
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	TD (T1~T9)	43. 1	1. 20	58. 5	0.34	2. 22	0.186
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TE (T4~T7)	43. 1	1. 20	32. 3	0.13	2. 12	0.177
TD (T2~T9)		TC (T2~T4)	43. 1	1. 20	7.6	0.18	2.14	0.179
TD (T2~T9)	11	TC (T7~T9)	43. 1	1. 20	10.0	0. 20	2. 15	0.180
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	TD (T2~T9)	43. 1	1. 20	65. 1	0.38	2. 24	0. 187
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TE (T4~T7)	43. 1	1. 20	32. 3	0. 22	2. 16	0. 181
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TC (T2~T4)	43. 1	1. 20	7.3	0. 23	2. 17	0.181
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TC (T7~T9)	43. 1	1. 20	9. 6	0.37	2, 23	0. 187
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	TD (T2~T4)	43. 1	1. 20	42. 5	0.45	2. 27	0. 190
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TD (T7~T9)	43. 1	1. 20	52. 4	0.61	2.34	0. 196
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TE (T2∼T3)	43. 1	1. 20	21. 9	0.13	2. 12	0.177
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TA (T1~T9)	43. 1	1. 20	91.7	0. 36	2. 23	0. 187
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TB (T1∼T2)	43. 1	1. 20	3. 7	0.39	2. 24	0.188
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TC (T4~T7)	43. 1	1. 20	56. 7	0. 25	2. 18	0.182
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	TD (T1~T4)	43. 1	1. 20	46. 5	0. 76	2. 41	0.201
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TD (T7~T9)	43. 1	1. 20	24. 5	1.10	2, 55	0.213
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TE (T2~T3)	43. 1	1. 20	19. 5	0. 57	2. 32	0.194
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TE (T7∼T8)	43. 1	1. 20	13. 0	0.89	2. 46	0. 206
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TA (T1~T9)	43. 1	1. 20	114. 1	0.48	2. 28	0.191
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TB (T2∼T8)	43. 1	1. 20	78. 1	0. 51	2. 30	0.192
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	TC (T4~T7)	43. 1	1. 20	55. 6	0. 52	2.30	0. 193
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TD (T1~T4)	43. 1	1. 20	39. 2	1. 23	2. 60	0. 217
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TD (T7~T9)	43. 1	1. 20	26. 0	1. 22	2. 60	0. 217
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	TE (T2~T3)	43. 1	1. 20	13. 6	1. 12	2. 56	0.214
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TE (T7~T9)	43. 1	1. 20	22. 5	0. 90	2. 47	0. 206
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TA (T1~T2)	43. 1	1. 20	18. 3	0. 33	2. 22	0. 185
15 TC (T4~T7) 43.1 1.20 56.6 0.77 2.41 0.5 TD (T1~T9) 43.1 1.20 114.4 1.31 2.63 0.5 TE (T2~T3) 43.1 1.20 16.8 1.27 2.62 0.5		TA (T8~T9)	43. 1	1. 20	12.8	0. 32	2. 21	0.185
15 TC (T4~T7) 43.1 1.20 56.6 0.77 2.41 0.0 TD (T1~T9) 43.1 1.20 114.4 1.31 2.63 0.0 TE (T2~T3) 43.1 1.20 16.8 1.27 2.62 0.0		TB (T2∼T8)	43. 1	1. 20	89. 2	0.52	2.30	0. 193
TD (T1~T9) 43.1 1.20 114.4 1.31 2.63 0.1 TE (T2~T3) 43.1 1.20 16.8 1.27 2.62 0.1	15	TC (T4~T7)	43. 1	1. 20	56. 6	0.77	2.41	0. 202
		TD (T1~T9)	43. 1	1. 20	114. 4	1. 31	2. 63	0. 220
TE (T70,T9) 49.1 1.90 19.4 1.94 0.64 0.6		TE (T2∼T3)	43. 1	1. 20	16.8	1. 27	2.62	0.219
		TE (T7~T8)	43. 1	1. 20	13. 4	1. 34	2.64	0. 221 0. 185

表5-6 せん断スケルトン曲線($\tau-\gamma$ 関係,第1折点)(2/3) (b) EW方向

部材		コンクリート	せん断弾性	断面積	縦軸応力度		
番号	通り	強度 Fc	係数G	As	σν	τι	γ1
ш У		(N/mm ²)	$(\times 10^4 \text{N/mm}^2)$	(m ²)	(N/mm ²)	(N/mm^2)	(×10 ⁻³)
3	T1 (TD∼TK)	43. 1	1. 20	25. 3	0.38	2. 24	0.187
4	T1 (TA∼TK)	43. 1	1. 20	42. 2	0.69	2. 38	0. 199
5	T1 (TA∼TK)	43. 1	1. 20	59. 9	0.51	2.30	0.192
	T1 (TA∼TK)	43. 1	1. 20	80. 4	0.73	2.40	0.200
	T2 (TD∼TH)	43. 1	1. 20	47. 6	0.76	2.41	0. 201
6	T3 (TD∼TE)	43. 1	1. 20	15. 1	0.42	2. 26	0.189
	T3 (TH~TJ)	43. 1	1. 20	7. 1	0.80	2. 42	0. 203
	T1 (TA~TK)	43. 1	1. 20	98. 8	0.85	2.44	0. 204
	T2 (TE~TJ)	43. 1	1. 20	32. 2	1. 23	2. 60	0. 217
	T3 (TG~TJ)	43. 1	1. 20	19. 5	1. 15	2. 57	0. 215
	T4 (TH~TJ)	43. 1	1. 20	16. 8	1. 35	2. 65	0. 221
	T5 (TH~TJ)	43. 1	1. 20	11.9	1. 47	2.70	0. 225
7			1. 20		1		
	T6 (TH~TJ)	43. 1		16.8	2.00	2. 89	0. 241
	T7 (TH~TJ)	43. 1	1. 20	15. 3	2. 15	2. 94	0. 246
	T8 (TD~TE)	43. 1	1. 20	11.5	0.94	2. 48	0. 208
	T8 (TG~TJ)	43. 1	1. 20	19. 1	2. 11	2. 93	0. 245
	T9 (TA∼TK)	43. 1	1. 20	97. 5	0. 78	2. 42	0. 202
	T1 (TA∼TK)	43. 1	1. 20	98.8	1.00	2. 51	0. 209
	T2 (TD~TJ)	43. 1	1. 20	39. 1	1.54	2.72	0. 227
	T3 (TD∼TJ)	43. 1	1. 20	37. 2	1.07	2.54	0, 212
	T4 (TH∼TJ)	43. 1	1. 20	15. 3	1.51	2.71	0. 226
8	T5 (TH~TJ)	43. 1	1. 20	11. 9	1.66	2.76	0. 231
	T6 (TH∼TJ)	43. 1	1. 20	16.0	2. 14	2.94	0, 246
	T8 (TD∼TE)	43. 1	1.20	11.9	1.38	2.66	0. 222
	T8 (TG∼TJ)	43. 1	1. 20	19. 6	2.59	3. 09	0. 258
	T9 (TA∼TK)	43. 1	1. 20	98.8	1. 13	2. 56	0.214
	T2 (TJ~TK)	43. 1	1. 20	7. 2	0.49	2. 29	0. 191
12	T3 (TJ~TK)	43. 1	1. 20	7. 2	0.38	2. 24	0. 187
	T2 (TC~TJ)	43. 1	1. 20	31. 1	0.81	2. 43	0. 203
13	T3 (TD~TE)	43. 1	1. 20	19. 0	0. 28	2. 19	0. 183
10	T3 (TH~TJ)	43. 1	1. 20	7. 1	0. 81	2. 43	0. 203
16	T2 (TC~TD)	43. 1	1. 20	8. 4	0. 24	2. 17	0. 182
10	· ` ·				+		
10	T4 (TG~TH)	43. 1	1. 20	12. 4	0. 44	2. 27	0. 189
19	T4 (TJ~TK)	43. 1	1. 20	7. 2	0. 27	2. 19	0. 183
	T5 (TJ~TK)	43. 1	1. 20	7. 2	0. 28	2. 19	0. 183
20	T4 (TG~TJ)	43. 1	1. 20	30. 4	0. 71	2. 39	0. 200
	T5 (TH~TJ)	43. 1	1. 20	15. 5	0.91	2. 47	0. 207
	T4 (TG~TJ)	43. 1	1. 20	12. 9	0. 79	2. 42	0. 202
21	T5 (TH~TJ)	43. 1	1. 20	7. 1	1. 13	2. 56	0.214
	T6 (TH~TJ)	43. 1	1. 20	16.8	1. 17	2. 58	0. 215
	T7 (TG~TJ)	43. 1	1. 20	23. 9	0.89	2.46	0. 206
23	T4 (TA∼TE)	43. 1	1. 20	29. 2	0.55	2. 32	0. 194
24	T4 (TA∼TB)	43. 1	1. 20	7.5	0.25	2. 18	0.182
27	T4 (TC∼TE)	43. 1	1. 20	18. 9	0.34	2. 22	0. 185
25	T4 (TA∼TB)	43. 1	1. 20	7.4	0.31	2. 20	0.184
40	T4 (TC∼TE)	43. 1	1.20	23. 0	0.72	2. 39	0. 200
	T4 (TA∼TD)	43. 1	1. 20	32. 2	0.69	2.38	0.199
0.0	T5 (TA~TC)	43. 1	1. 20	16. 0	0. 27	2. 19	0.183
26	T6 (TA∼TC)	43. 1	1. 20	16. 0	0. 26	2. 18	0. 182
	T7 (TA~TE)	43. 1	1. 20	38. 7	0.75	2. 40	0. 201
	T4 (TA~TD)	43. 1	1.20	31. 5	0.88	2.46	0, 205
	T5 (TA~TC)	43. 1	1. 20	15. 6	0. 25	2. 18	0.182
27	T6 (TA~TC)	43. 1	1. 20	15. 6	0. 26	2. 18	0. 183
	T7 (TA~TE)	43. 1	1. 20	39. 4	0.92	2. 47	0. 207
	T4 (TA~TD)	43. 1	1. 20	35. 8	0.92	2. 47	0. 207
	T5 (TA~TC)		1. 20	25. 0	0. 92	2. 35	0. 207
28		43. 1			1		
	T6 (TA~TC)	43. 1	1. 20	25. 0	0. 62	2. 35	0. 196
	T7 (TA∼TD)	43. 1	1. 20	39. 8	0.86	2. 45	0. 205

表5-6 せん断スケルトン曲線($\tau-\gamma$ 関係,第1折点)(3/3)

(b) EW方向

den de de		コンクリート	せん断弾性	断面積	縦軸応力度		
部材 番号	通り	強度 Fc	係数 G	As	σν	τ 1	γ 1
省 万		(N/mm^2)	$(\times 10^4 \text{N/mm}^2)$	(m^2)	(N/mm^2)	$(\mathrm{N/mm}^2)$	$(\times 10^{-3})$
	T6 (TJ∼TK)	43. 1	1. 20	7.2	0.30	2.20	0.184
31	T7 (TG∼TH)	43. 1	1. 20	12. 4	0.43	2. 26	0. 189
	T7 (TJ∼TK)	43. 1	1.20	7.2	0. 26	2. 19	0. 183
32	T6 (TH∼TJ)	43. 1	1.20	11.9	1.28	2.62	0.219
34	T7 (TA~TE)	43. 1	1. 20	29. 2	0. 57	2. 33	0. 194
35	T7 (TA∼TB)	43. 1	1.20	7.5	0. 25	2. 18	0.182
35	T7 (TC∼TE)	43. 1	1.20	18.9	0.38	2. 24	0.187
36	T7 (TA∼TB)	43. 1	1. 20	7.5	0.30	2. 20	0.184
30	T7 (TC∼TD)	43. 1	1.20	8. 7	0. 63	2. 35	0. 196
39	T8 (TH∼TK)	43. 1	1.20	17. 6	0.45	2. 27	0.190
29	T9 (TH∼TK)	43. 1	1. 20	17. 6	0.63	2.35	0. 197
	T8 (TC∼TD)	43. 1	1.20	6.8	0. 16	2.14	0. 179
40	T8 (TG∼TJ)	43. 1	1. 20	20. 5	0. 95	2. 49	0. 208
40	T9 (TA∼TB)	43. 1	1.20	5	0.31	2. 21	0.185
	T9 (TC∼TJ)	43. 1	1.20	68.7	0.37	2.24	0. 187
41	T8 (TG∼TH)	43. 1	1. 20	11.6	1. 19	2.58	0. 216
41	T9 (TA∼TK)	43. 1	1. 20	80.4	0.74	2.40	0. 201
43	T8 (TC∼TD)	43. 1	1. 20	6. 5	0.16	2.14	0.179
40	T9 (TC∼TD)	43. 1	1. 20	6. 5	0.13	2. 12	0. 177
44	T8 (TC∼TD)	43. 1	1.20	6.5	0.16	2.14	0.179
44	T9 (TA∼TD)	43. 1	1, 20	17. 7	0.24	2. 18	0. 182

(2) 第2折点

RC造耐震壁の各要素におけるせん断スケルトン曲線の第2折点の設定根拠を表5-7に示す。

表 5-7 せん断スケルトン曲線($\tau-\gamma$ 関係,第 2 折点)(1/3) (a) NS方向

	(4)	323 1.4	
部材			
番号	通り	τ 2	γ 2
ш.,		(N/mm^2)	$(\times 10^{-3})$
	TG (T4∼T7)	2.91	0.541
	TH (T4~T7)	3. 20	0.594
3	TJ (T3~T9)	3. 10	0.576
	TK (T1~T5)	2. 96	0.550
	TK (T8∼T9)	3.00	0.557
	TG (T2~T3)	2. 98	0.554
	TH (T3~T6)	3. 26	0.605
4	TH (T8~T9)	3. 15	0.586
1	TJ (T3~T5)	3. 20	0.594
		3. 23	0.599
	TG (T2~T4)	3. 10	0.575
_	TH (T3~T5)	3. 59	0.668
5	TH (T7~T9)	3. 64	0.676
	TJ (T2~T7)	3. 53	0.656
	TK (T1∼T9)	3. 32	0.616
1	TG (T2∼T3)	3. 38	0.628
	TG (T8∼T9)	3. 24	0.601
6	TH (T2∼T5)	3. 68	0.684
1	тј (т2∼т8)	3.64	0.675
1	TK (T1~T9)	3. 39	0.630
	TF (T2~T3)	2. 98	0.554
	TG (T2~T3)	3, 53	0.656
	TH (T2~T5)	3, 72	0.692
7	TH (T7~T8)	2. 78	0.516
			0.698
		3. 76	
	TK (T1~T9)	3. 49	0.648
	TC (T8~T9)	2. 84	0.527
10	TD (T1~T9)	3. 00	0.557
	TE (T4~T7)	2. 87	0.532
	TC (T2~T4)	2. 90	0.538
11	TC (T7~T9)	2. 91	0.540
11	TD (T2~T9)	3.02	0.561
	TE (T4~T7)	2.92	0.542
	TC (T2~T4)	2. 93	0.543
	TC (T7~T9)	3. 02	0.560
12	TD (T2~T4)	3. 06	0.569
	TD (T7~T9)	3. 16	0. 587
	TE (T2~T3)	2. 86	0.532
—	TA (T1~T9)	3. 01	0.552
1	TB (T1~T2)	3. 03	0.563
1.9	— : : : : :	2.94	0.546
13	TD (T1~T4)	3. 25	0.604
	TD (T7~T9)	3. 44	0.639
	TE (T2~T3)	3. 14	0. 583
	TE (T7~T8)	3. 32	0.617
	TA (T1~T9)	3. 08	0.573
	TB (T2∼T8)	3. 10	0.576
	TC (T4~T7)	3. 11	0.578
14	TD (T1~T4)	3.51	0.652
	TD (T7~T9)	3. 51	0.651
	TE (T2~T3)	3. 45	0.641
	TE (T7∼T9)	3. 33	0.619
	TA (T1~T2)	2. 99	0.556
	TA (T8~T9)	2. 99	0, 555
	TB (T2~T8)	3. 11	0.578
		0.11	-
		3 26	0 605
15	TC (T4~T7)	3. 26	0.605
15	TC (T4~T7) TD (T1~T9)	3. 56	0.660
15	TC (T4~T7)		

別紙 2-23

表5-7 せん断スケルトン曲線($\tau-\gamma$ 関係,第2折点)(2/3)

(b) EW方向

部材番号	通り	τ 2	γ 2
т.		(N/mm^2)	$(\times 10^{-3})$
3	T1 (TD~TK)	3. 02	0.561
4	T1 (TA~TK)	3. 21	0. 596
5	T1 (TA~TK)	3. 10	0.577
	T1 (TA~TK)	3. 24	0.601
6	T2 (TD~TH) T3 (TD~TE)	3. 25 3. 05	0. 604 0. 566
	T3 (TH~TJ)	3. 27	0. 608
	T1 (TA~TK)	3. 30	0.613
	T2 (TE~TJ)	3. 51	0.652
	T3 (TG~TJ)	3. 47	0.644
	T4 (TH~TJ)	3. 57	0.664
7	T5 (TH~TJ)	3.64	0.676
7	T6 (TH∼TJ)	3. 90	0.724
	T7 (TH~TJ)	3. 97	0. 738
	T8 (TD∼TE)	3. 35	0.623
	T8 (TG∼TJ)	3. 95	0. 734
	T9 (TA∼TK)	3. 26	0.606
	T1 (TA~TK)	3. 38	0. 628
	T2 (TD~TJ)	3. 67	0.682
	T3 (TD~TJ)	3. 42	0.636
8	T4 (TH~TJ)	3. 66 3. 73	0.679
	T5 (TH~TJ) T6 (TH~TJ)	3. 73	0, 693 0, 737
	T8 (TD~TE)	3. 59	0. 667
	T8 (TG~TJ)	4. 17	0. 775
	T9 (TA~TK)	3. 46	0.642
	T2 (TJ~TK)	3. 09	0.574
12	ТЗ (ТЈ∼ТК)	3. 02	0. 561
	T2 (TC∼TJ)	3. 28	0.609
13	T3 (TD~TE)	2.96	0.549
	тз (тн~тј)	3. 28	0.609
16	T2 (TC~TD)	2. 93	0. 545
	T4 (TG~TH)	3. 06	0. 568
19	T4 (TJ~TK)	2.95	0.549
	T5 (TJ~TK)	2.96	0.549
20	T4 (TG~TJ) T5 (TH~TJ)	3. 22 3. 34	0. 599 0. 620
	T4 (TG~TJ)	3. 27	0.620
	T5 (TH~TJ)	3. 45	0.642
21	T6 (TH~TJ)	3. 48	0.646
	T7 (TG~TJ)	3. 32	0.617
23	T4 (TA∼TE)	3. 13	0.581
9.4	T4 (TA∼TB)	2. 94	0.546
24	T4 (TC∼TE)	2. 99	0.556
25	T4 (TA∼TB)	2. 98	0.553
	T4 (TC∼TE)	3. 22	0. 599
	T4 (TA~TD)	3. 21	0.596
26	T5 (TA~TC)	2. 95	0.549
	T6 (TA~TC) T7 (TA~TE)	2.95	0.547
	T7 (TA~TE) T4 (TA~TD)	3. 24	0.602
	T5 (TA~TC)	2. 94	0. 616 0. 546
27	T6 (TA~TC)	2. 95	0.548
	T7 (TA~TE)	3. 34	0.620
	T4 (TA~TD)	3. 34	0.620
	T5 (TA~TC)	3. 17	0. 588
28	T6 (TA~TC)	3. 17	0.588
	T7 (TA~TD)	3. 31	0.614
-			-

表5-7 せん断スケルトン曲線 $(\tau - \gamma 関係, 第2折点)$ (3/3)

(b) EW方向

部材番号	通り	τ ₂ (N/mm ²)	$^{\gamma}_{2}$ (×10 ⁻³)
	Т6 (ТЈ∼ТК)	2. 98	0. 553
31	T7 (TG∼TH)	3. 05	0. 567
	Т7 (ТЈ∼ТК)	2. 95	0.548
32	T6 (TH∼TJ)	3. 54	0.657
34	T7 (TA∼TE)	3. 14	0. 583
35	T7 (TA∼TB)	2. 94	0.546
35	T7 (TC∼TE)	3. 02	0. 561
36	T7 (TA∼TB)	2. 97	0.552
30	T7 (TC∼TD)	3. 17	0. 589
39	T8 (TH∼TK)	3. 07	0.570
39	T9 (TH∼TK)	3. 18	0. 590
	T8 (TC∼TD)	2.89	0. 536
40	T8 (TG∼TJ)	3. 36	0.623
40	T9 (TA∼TB)	2. 98	0. 554
	T9 (TC∼TJ)	3. 02	0.561
41	T8 (TG∼TH)	3. 49	0.648
41	T9 (TA∼TK)	3. 24	0.602
43	T8 (TC∼TD)	2. 88	0. 536
40	T9 (TC∼TD)	2.86	0. 532
44	T8 (TC∼TD)	2.88	0. 536
44	T9 (TA∼TD)	2.94	0.545

(3) 終局点

RC造耐震壁の終局点は、「2.3 終局点の設定」に基づき、各層の終局せん断応力度を算出する。 $\sigma_{\rm H}$ は安全側に0.0としている。

RC造耐震壁の各要素におけるせん断スケルトン曲線の終局点の設定根拠を表5-8に示す。また、タービン建屋のT. M. S. L. 12.3 m \sim T. M. S. L. 20.4 mについて、各耐震壁の配筋(一例)を示したものを図5-2に示す。

表 5-8 せん断スケルトン曲線($\tau-\gamma$ 関係,終局点)(1/3) (a) NS方向

			(a) NS	刀间			
部材		Pv	P_{II}	縦軸応力度			
番号	通り	(p _{te} *)	(p _{wh} *)	σv	M/QD	τ 3	γ 3
				(N/mm^2)		(N/mm ²)	(×10 ⁻³)
	TG (T4~T7) *	0.00073	0.00296	0. 21	0.400	4. 05	4. 000
	111 (11 11)	0.00065	0.00303	0.67	0.784	3. 29	4. 000
3	13 (10 15)	0,00036	0.00360	0.51	0.400	3. 71	4.000
	TK (T1~T5) TK (T8~T9)	0. 00509	0. 00455 0. 00497	0. 29 0. 34	0. 400 1. 000	5. 66 3. 76	4. 000 4. 000
	TG (T2~T3) *	0.00347	0.00497	0.34	0. 400	4, 84	4. 000
	TH (T3~T6) *	0.00133	0.00298	0. 77	1. 917	2, 93	4. 000
4	TH (T8~T9) *	0. 00156	0.00274	0.60	1. 915	2. 81	4. 000
	TJ (T3~T5) *	0.00106	0.00431	0. 67	0. 920	3. 57	4.000
	TK (T1~T9)	0. 00556	0.00484	0. 72	0. 635	5. 18	4.000
	TG (T2∼T4) *	0.00085	0.00306	0.50	0.400	4. 21	4.000
	TH (T3∼T5) *	0.00122	0.00334	1. 39	1.071	3. 42	4.000
5	TH (T7∼T9) *	0.00097	0.00273	1. 47	1. 100	3. 19	4.000
	TJ (T2∼T7) *	0.00048	0.00354	1. 27	0.400	3. 96	4. 000
	TK (T1∼T9)	0.00760	0.00533	0.88	0.400	6.11	4.000
	TG (T2~T3) *	0.00211	0. 00303	0. 99	0. 949	3. 80	4. 000
	TG (T8~T9) *	0.00207	0.00291	0.74	2. 153	2.87	4. 000
6	111 (12 10)	0.00102	0.00468	1. 56	0. 795	3. 84	4.000
	TJ (T2~T8) * TK (T1~T9)	0. 00048 0. 00657	0. 00506 0. 00461	1. 47 1. 01	0. 400 0. 400	4. 17 5. 98	4. 000 4. 000
	TF (T2~T3) *	0.00037	0.00401	0. 31	0. 400	4. 76	4. 000
	TG (T2~T3) *	0.00170	0.00432	1. 27	1. 032	3, 77	4, 000
_	TH (T2~T5) *	0.00079	0.00447	1.64	0. 770	3. 71	4.000
7	TH (T7∼T8) *	0. 00143	0.00458	0.00	2. 232	2. 84	4.000
	TJ (T2∼T9) *	0.00035	0.00508	1.71	0.400	3. 99	4. 000
	TK (T1∼T9)	0.00657	0.00461	1. 19	0.400	6. 02	4. 000
	TC (T8∼T9) *	0.00281	0.00387	0.09	0.400	5. 31	4.000
10	TD (T1~T9) *	0.00050	0.00482	0.34	0.400	4. 05	4.000
	TE (T4~T7) *	0.00073	0.00296	0. 13	0.400	4. 05	4.000
	TC (T2~T4) * TC (T7~T9) *	0. 00210 0. 00157	0. 00422 0. 00391	0. 18 0. 20	0.400	5. 09 4. 79	4. 000 4. 000
11	TD (T2~T9) *	0.00137	0.00331	0. 38	0.400	3, 93	4. 000
	TE (T4~T7) *	0.00073	0.00296	0. 22	0. 400	4. 06	4.000
	TC (T2~T4) *	0.00300	0.00319	0. 23	0.889	4. 07	4.000
	TC (T7∼T9) *	0.00157	0.00564	0. 37	0. 477	4. 77	4.000
12	TD (T2∼T4) *	0.00102	0.00392	0, 45	0.751	3, 69	4. 000
	TD (T7~T9) *	0.00080	0.00340	0.61	0. 763	3. 48	4.000
	TE (T2~T3) *	0. 00123	0.00312	0. 13	0. 656	3. 83	4. 000
	TA (T1~T9) TR (T1~T2) *	0.00868	0.00533	0.36	0.400	6. 09	4.000
	TB (T1~T2) * TC (T4~T7) *	0.00300	0.00460 0.00424	0. 39 0. 25	0, 553 0, 400	4, 97 3, 89	4.000
13	TD (T1~T4) *	0.00044	0.00424	0. 25	0. 400	3. 47	4. 000 4. 000
10	TD (T7~T9) *	0.00104	0.00392	1. 10	1. 050	3. 41	4. 000
	TE (T2~T3) *	0. 00143	0.00277	0. 57	0. 899	3, 54	4.000
	TE (T7~T8) *	0. 00173	0.00244	0.89	0.819	3. 75	4.000
	TA (T1∼T9)	0.00804	0.00429	0.48	0.400	5. 96	4.000
	TB (T2∼T8) *	0.00032	0.00446	0.51	0.400	3. 75	4.000
	TC (T4~T7) *	0.00044	0.00424	0. 52	0. 478	3. 73	4.000
14	TD (T1~T4) *	0.00067	0. 00539	1. 23	0. 741	3. 72	4.000
	TD (T7~T9) * TE (T2~T3) *	0.00097	0.00523	1. 22	1.096	3. 50	4. 000
	18 (18 10)	0. 00211 0. 00094	0.00408	1. 12	1. 220	3, 66	4.000
	TE (T7~T9) * TA (T1~T2)	0.00094	0. 00346 0. 00459	0. 90 0. 33	0. 539 1. 000	4. 01 3. 99	4. 000 4. 000
	TA (T8~T9)	0.00599	0.00459	0.33	1.000	4. 05	4. 000
	TB (T2~T8) *	0.00032	0.00402	0. 52	0. 400	3. 69	4. 000
ļ . <u>-</u>	TC (T4~T7) *	0.00044	0.00424	0. 77	0. 555	3. 60	4. 000
15	TD (T1~T9) *	0.00034	0.00446	1. 31	0.400	3. 86	4. 000
	TE (T2∼T3) *	0.00170	0.00432	1. 27	1. 486	3. 38	4.000
	TE (T7~T8) *	0.00194	0.00533	1.34	1. 390	3. 64	4. 000
	TF (T2~T3) *	0. 00195	0. 00281	0. 31	0. 422	4. 76	4. 000

注記*:内壁を示す。

表5-8 せん断スケルトン曲線($\tau-\gamma$ 関係,終局点)(2/3) (b) EW方向

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				(0) L")) I _P 1			
Temperature	☆ ₽ ± ±		Р.,	P.,	縦軸応力度			
No.		通り			σv	M/QD	τ_3	γ 3
1	H 7		(Pte)	(P _{wh})	(N/mm^2)		(N/mm^2)	$(\times 10^{-3})$
Ti (TA~Ti)	3	T1 (TD∼TK)	0.00893	0.00423	0.38	0.400	6.01	4.000
## Ti (TA~TK)	4	T1 (TA∼TK)	0.00593	0.00562	0.69	0.400	5. 94	4.000
6 T2 (TD−TII) * 0.00129 0.00271 0.76 1.881 2.91 4.000	5	T1 (TA∼TK)	0.00355	0.00392	0.51	0.400	5. 51	4.000
6		T1 (TA∼TK)	0.00781	0.00517	0.73	0.400	6, 08	4.000
T3 (Th-TIS) * 0.00161		T2 (TD~TH) *	0.00129	0.00271	0.76	1. 581	2. 91	4.000
T1 (TA~TK)	6	T3 (TD∼TE) *	0.00161	0.00271	0.42	3.000	2. 43	4.000
T2 (TE~T]) * 0.00134		T3 (TH∼TJ) *	0.00242	0.00301	0.80	2.618	2. 78	4. 000
Ta (The-Ti) * 0.00123		T1 (TA∼TK)	0.00684	0.00422	0.85	0.400	5. 93	4. 000
T4 (TH-TJ) * 0.00188		T2 (TE~TJ) *	0.00134	0.00513	1. 23	2. 479	2. 92	4. 000
Ta (TH-TI)		T3 (TG∼TJ) *	0.00123	0.00382	1. 15	0. 750	3. 87	4.000
T6 (TH~TJ) * 0.00188		T4 (TH∼TJ) *	0.00188	0.00316	1.35	3, 000	2.65	4. 000
T6 (TR-TJ) * 0.00188	_	T5 (TH∼TJ) *	0.00188	0.00316	1. 47	3.000	2.66	4.000
T8 (TD~TE) * 0.00188	1	T6 (TH∼TJ) *	0.00188	0.00414	2.00	2. 273	3. 08	4. 000
T8 (T6~T)		T7 (TH~TJ) *	0.00188	0.00316	2. 15	3.000	2. 73	4.000
T9 (TA-TR)		T8 (TD∼TE) *	0.00188	0.00316	0.94	0. 985	3. 70	4.000
T1 (TA~TK)		T8 (TG∼TJ) *	0.00123	0.00284	2. 11	1. 302	3. 23	4. 000
T2 (TD~TJ) * 0.00064 0.00445 1.54 0.570 3.89 4.000		T9 (TA∼TK)	0.00572	0.00422	0.78	0.400	5. 81	4.000
T3 (TD-TJ) * 0.00000		T1 (TA~TK)	0.00684	0.00422	1.00	0.400	5. 97	4. 000
T4 (TH~TJ) * 0.00188		T2 (TD~TJ) *	0.00064	0.00445	1. 54	0. 570	3. 89	4. 000
To (THA-TJ) * 0.00192		T3 (TD∼TJ) *	0.00090	0.00428	1.07	1. 325	3. 16	4.000
Te (TH-TJ) * 0.00188		T4 (TH∼TJ) *	0.00188	0.00414	1.51	3.000	2. 80	4. 000
T8 (TD-TE) * 0.00191 0.00517 1.38 1.025 3.96 4.000 T8 (TG~TJ) * 0.00123 0.00392 2.59 1.164 3.54 4.000 T9 (TA~TK) 0.00572 0.00422 1.13 0.400 5.90 4.000 12 T2 (TJ~TK) * 0.00253 0.00405 0.49 2.482 2.96 4.000 T3 (TJ~TK) * 0.00253 0.00405 0.49 2.482 2.96 4.000 T2 (TC~TJ) * 0.00253 0.00405 0.38 3.000 2.79 4.000 T2 (TC~TJ) * 0.00137 0.00366 0.81 1.233 3.33 4.000 T3 (TJ~TK) * 0.00242 0.00209 0.81 3.000 2.52 4.000 T3 (TJ~TK) * 0.00255 0.00203 0.24 0.806 3.90 4.000 T4 (TG~TJ) * 0.00255 0.00203 0.24 0.806 3.90 4.000 T4 (TG~TH) * 0.00255 0.00455 0.44 1.548 3.42 4.000 T4 (TJ~TK) * 0.00253 0.00405 0.28 3.000 2.78 4.000 T5 (TJ~TK) * 0.00253 0.00405 0.28 3.000 2.78 4.000 T5 (TJ~TK) * 0.00253 0.00405 0.28 3.000 2.78 4.000 T5 (TJ~TK) * 0.00263 0.00405 0.28 3.000 2.78 4.000 T6 (TH~TJ) * 0.00161 0.00271 0.91 3.000 2.48 4.000 T4 (TG~TJ) * 0.00163 0.00258 0.79 3.000 2.46 4.000 T6 (TH~TJ) * 0.00168 0.00316 1.17 1.782 3.08 4.000 T6 (TH~TJ) * 0.00188 0.00316 1.17 1.782 3.08 4.000 23 T4 (TG~TE) * 0.00188 0.00316 1.17 1.782 3.08 4.000 24 T4 (TG~TE) * 0.00188 0.00316 1.17 1.782 3.08 4.000 25 T4 (TG~TE) * 0.00161 0.00271 0.91 3.000 2.46 4.000 T6 (TH~TJ) * 0.00188 0.00316 1.17 1.782 3.08 4.000 T6 (TH~TJ) * 0.00163 0.00282 0.89 3.000 2.36 4.000 24 T4 (TG~TE) * 0.00164 0.00282 0.89 3.000 2.36 4.000 T6 (TH~TD) * 0.00188 0.00316 1.17 1.782 3.08 4.000 T7 (TG~TJ) * 0.00168 0.00366 0.55 0.400 4.41 4.000 T6 (TA~TE) * 0.00036 0.0036 0.55 0.400 4.41 4.000 T6 (TA~TE) * 0.00036 0.0036 0.55 0.400 4.41 4.000 T6 (TA~TE) * 0.00141 0.00301 0.27 0.531 4.19 4.000 T6 (TA~TE) * 0.00086 0.00360 0.69 0.670 3.70 4.000 T6 (TA~TE) * 0.00086 0.00360 0.69 0.670 3.70 4.000 T6 (TA~TE) * 0.00066 0.00368 0.75 0.438 4.03 T6 (TA~TE) * 0.00066 0.00368 0.75 0.438 4.03 T6 (TA~TE) * 0.00066 0.00368 0.75 0.438 4.03 T6 (TA~TE) * 0.00066 0.00368 0.75 0.684 4.14 4.000 T6 (TA~TE) * 0.00066 0.00368 0.75 0.684 4.14 4.000 T6 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T6 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.85 4.000 T6 (TA~TE) * 0.00084 0.00	8	T5 (TH~TJ) *	0.00192	0.00535	1.66	3.000	2. 97	4. 000
T8 (TG-Tj) * 0.00123		T6 (TH∼TJ) *	0.00188	0.00525	2. 14	2. 405	3. 18	4. 000
T9 (TA~TK)		T8 (TD∼TE) *	0.00191	0.00517	1. 38	1. 025	3. 96	4. 000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T8 (TG∼TJ) *	0.00123	0.00392	2.59	1. 164	3. 54	4.000
12		T9 (TA∼TK)	0.00572	0.00422	1. 13	0.400	5. 90	4.000
T3 (T)~TK) * 0.00253 0.00405 0.38 3.000 2.79 4.000 T2 (TC~TJ) * 0.00137 0.00366 0.81 1.233 3.33 4.000 T3 (TD~TE) * 0.00141 0.00311 0.28 1.368 3.10 4.000 T3 (TH~TJ) * 0.00242 0.00209 0.81 3.000 2.52 4.000 16 T2 (TC~TD) * 0.00255 0.00203 0.24 0.806 3.90 4.000 T4 (TG~TH) * 0.00255 0.00455 0.44 1.548 3.42 4.000 T4 (TJ~TK) * 0.00253 0.00512 0.27 2.340 3.12 4.000 T5 (TJ~TK) * 0.00253 0.00512 0.27 2.340 3.12 4.000 T6 (TJ~TK) * 0.00253 0.00405 0.28 3.000 2.78 4.000 T6 (TJ~TK) * 0.00253 0.00405 0.28 3.000 2.78 4.000 T6 (TH~TJ) * 0.00161 0.00271 0.91 3.000 2.46 4.000 T5 (TH~TJ) * 0.00163 0.00258 0.79 3.000 2.46 4.000 T6 (TH~TJ) * 0.00163 0.00258 0.79 3.000 2.46 4.000 T6 (TH~TJ) * 0.00168 0.00251 1.13 3.000 2.62 4.000 T7 (TG~TJ) * 0.00166 0.00282 0.89 3.000 2.36 4.000 23 T4 (TA~TE) * 0.00093 0.00366 1.17 1.782 3.08 4.000 24 T4 (TA~TE) * 0.0003 0.0036 0.55 0.400 4.41 4.000 25 T4 (TA~TB) * 0.0011 0.0016 0.00282 0.89 3.000 2.36 4.000 T4 (TC~TE) * 0.0011 0.00419 0.34 0.522 4.33 4.000 T6 (TA~TB) * 0.00257 0.00374 0.25 1.150 3.71 4.000 T6 (TA~TB) * 0.0012 0.00340 0.72 0.727 3.69 4.000 T5 (TA~TD) * 0.00102 0.00340 0.72 0.727 3.69 4.000 T5 (TA~TD) * 0.00102 0.00340 0.72 0.727 3.69 4.000 T6 (TA~TD) * 0.00161 0.00301 0.27 0.531 4.19 4.000 T6 (TA~TD) * 0.00066 0.00368 0.75 0.438 4.03 4.000 T6 (TA~TC) * 0.00141 0.00301 0.27 0.531 4.19 4.000 T6 (TA~TC) * 0.00141 0.00301 0.27 0.531 4.19 4.000 T6 (TA~TC) * 0.00141 0.00301 0.27 0.531 4.19 4.000 T7 (TA~TE) * 0.00066 0.00368 0.75 0.438 4.03 4.000 T7 (TA~TE) * 0.00066 0.00368 0.75 0.438 4.03 4.000 T7 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T7 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.666 3.85 4.000 T6 (TA~TC) * 0.00044 0.00492 0.62 0.666 3.85 4.000	10	T2 (TJ~TK) *	0.00253	0.00405	0.49	2. 482	2.96	4.000
T3 (TD-TE) * 0.00141	12	T3 (TJ∼TK) *	0.00253	0.00405	0.38	3.000	2. 79	4.000
T3 (TH~TJ) * 0.00242 0.00209 0.81 3.000 2.52 4.000 16 T2 (TC~TD) * 0.00255 0.00203 0.24 0.806 3.90 4.000 174 (TG~TH) * 0.00225 0.00455 0.44 1.548 3.42 4.000 18 T4 (TJ~TK) * 0.00253 0.00512 0.27 2.340 3.12 4.000 T5 (TJ~TK) * 0.00253 0.00405 0.28 3.000 2.78 4.000 T5 (TJ~TK) * 0.00253 0.00405 0.28 3.000 2.78 4.000 T5 (TJ~TK) * 0.00267 0.71 2.655 2.34 4.000 T5 (TH~TJ) * 0.00161 0.00271 0.91 3.000 2.48 4.000 T5 (TH~TJ) * 0.00161 0.00271 0.91 3.000 2.46 4.000 T6 (TH~TJ) * 0.00188 0.00258 0.79 3.000 2.46 4.000 T6 (TH~TJ) * 0.00188 0.00316 1.17 1.782 3.08 4.000 T7 (TG~TJ) * 0.00160 0.00282 0.89 3.000 2.36 4.000 T7 (TG~TJ) * 0.00030 0.00396 0.55 0.400 4.41 4.000 24 T4 (TA~TB) * 0.00257 0.00374 0.25 1.150 3.71 4.000 T4 (TC~TE) * 0.00131 0.00419 0.34 0.522 4.33 4.000 25 T4 (TA~TB) * 0.00257 0.00277 0.31 1.603 3.20 4.000 T4 (TC~TE) * 0.00162 0.00340 0.72 0.727 3.69 4.000 T6 (TA~TD) * 0.00086 0.00360 0.69 0.670 3.70 4.000 T6 (TA~TC) * 0.00141 0.00301 0.27 0.531 4.19 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T6 (TA~TC) * 0.00141 0.00301 0.27 0.531 4.19 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T6 (TA~TC) * 0.00141 0.00360 0.88 0.771 3.56 4.000 T6 (TA~TC) * 0.00141 0.00360 0.88 0.771 3.56 4.000 T6 (TA~TC) * 0.00141 0.00360 0.88 0.771 3.56 4.000 T7 (TA~TE) * 0.00066 0.00368 0.75 0.684 4.14 4.000 T6 (TA~TC) * 0.00141 0.00531 0.26 0.666 3.85 4.000 T6 (TA~TC) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T6 (TA~TC) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T6 (TA~TC) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T6 (TA~TC) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T6 (TA~TC) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T6 (TA~TC) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T6 (TA~TC) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T6 (TA~TC) * 0.00066 0.00368 0.92 0.508 3.88 4.000		T2 (TC∼TJ) *	0.00137	0.00366	0.81	1. 233	3. 33	4. 000
To the transport To the tran	13	T3 (TD∼TE) *	0.00141	0.00311	0. 28	1. 368	3. 10	4. 000
THE TITLE (TO TH) * 0.00225		T3 (TH~TJ) *	0.00242	0.00209	0.81	3.000	2. 52	4.000
19	16	T2 (TC∼TD) *	0.00255	0.00203	0. 24	0.806	3. 90	4. 000
T5 (TJ~TK) * 0.00253 0.00405 0.28 3.000 2.78 4.000 20		T4 (TG∼TH) *	0.00225	0.00455	0.44	1. 548	3. 42	4. 000
20 T4 (TG~TJ) * 0.00087 0.00267 0.771 0.91 3.000 2.48 4.000 T5 (TH~TJ) * 0.00161 0.00271 0.91 3.000 2.48 4.000 T4 (TG~TJ) * 0.00163 0.00258 0.79 3.000 2.46 4.000 T5 (TH~TJ) * 0.00242 0.00251 1.13 3.000 2.62 4.000 T6 (TH~TJ) * 0.00188 0.00316 1.17 1.782 3.08 4.000 T7 (TG~TJ) * 0.00106 0.00282 0.89 3.000 2.36 4.000 23 T4 (TA~TE) * 0.00093 0.00396 0.55 0.400 4.41 4.000 T4 (TC~TE) * 0.00131 0.00419 0.34 0.522 4.33 4.000 T4 (TA~TB) * 0.00257 0.00277 0.31 1.603 3.20 4.000 T4 (TC~TE) * 0.00102 0.00340 0.72 0.727 3.69 4.000 T4 (TA~TD) * 0.00086 0.00360 0.69 0.670 3.70 4.000 T5 (TA~TC) * 0.00141 0.00301 0.27 0.531 4.19 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T7 (TA~TE) * 0.00086 0.00368 0.75 0.438 4.03 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T7 (TA~TE) * 0.00066 0.00368 0.75 0.438 4.03 4.000 T6 (TA~TC) * 0.00141 0.00531 0.26 0.683 4.16 4.000 T7 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T6 (TA~TC) * 0.00044 0.00492 0.62 0.666 3.85 4.000	19	T4 (TJ∼TK) *	0.00253	0.00512	0. 27	2. 340	3. 12	4. 000
To (TH~TJ)		T5 (TJ∼TK) *	0.00253	0.00405	0. 28	3.000	2. 78	4. 000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	T4 (TG∼TJ) *	0.00087	0.00267	0.71	2.655	2. 34	4.000
T5 (TH~TJ) * 0.00242 0.00251 1.13 3.000 2.62 4.000 T6 (TH~TJ) * 0.00188 0.00316 1.17 1.782 3.08 4.000 T7 (TG~TJ) * 0.00166 0.00282 0.89 3.000 2.36 4.000 23 T4 (TA~TE) * 0.00093 0.00396 0.55 0.400 4.41 4.000 24 T4 (TA~TE) * 0.00257 0.00374 0.25 1.150 3.71 4.000 25 T4 (TA~TE) * 0.00131 0.00419 0.34 0.522 4.33 4.000 26 T4 (TA~TE) * 0.0012 0.00374 0.72 0.727 3.69 4.000 27 T4 (TC~TE) * 0.00102 0.00340 0.72 0.727 3.69 4.000 28 T4 (TA~TE) * 0.00141 0.00301 0.27 0.531 4.19 4.000 29 T5 (TA~TC) * 0.00141 0.00301 0.27 0.531 4.19 4.000 20 T6 (TA~TE) * 0.00066 0.00368 0.75 0.438 4.03 4.000 21 T5 (TA~TE) * 0.00066 0.00360 0.88 0.771 3.56 4.000 22 T5 (TA~TC) * 0.00141 0.00531 0.26 0.683 4.16 4.000 23 T4 (TA~TE) * 0.00066 0.00368 0.92 0.684 4.14 4.000 24 T5 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 25 T4 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 26 T5 (TA~TC) * 0.00141 0.00531 0.26 0.683 4.16 4.000 27 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 28 T4 (TA~TE) * 0.00065 0.00477 0.92 0.857 3.46 4.000 28 T5 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000 28 T6 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000	20	T5 (TH~TJ) *	0.00161	0.00271	0. 91	3.000	2. 48	4. 000
21		T4 (TG∼TJ) *	0.00163	0.00258	0.79	3.000	2.46	4. 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91	T5 (TH∼TJ) *	0.00242	0.00251	1. 13	3.000	2. 62	4.000
23 T4 (TA~TE) * 0.00093 0.00396 0.55 0.400 4.41 4.000 24 T4 (TA~TB) * 0.00257 0.00374 0.25 1.150 3.71 4.000 T4 (TC~TE) * 0.00131 0.00419 0.34 0.522 4.33 4.000 25 T4 (TA~TB) * 0.00257 0.00277 0.31 1.603 3.20 4.000 T4 (TC~TE) * 0.00102 0.00340 0.72 0.727 3.69 4.000 T4 (TC~TE) * 0.00102 0.00340 0.72 0.727 3.69 4.000 T5 (TA~TC) * 0.00141 0.00301 0.27 0.531 4.19 4.000 T6 (TA~TC) * 0.00141 0.00301 0.27 0.531 4.19 4.000 T7 (TA~TE) * 0.00066 0.00368 0.75 0.438 4.03 4.000 T7 (TA~TE) * 0.00066 0.00360 0.88 0.771 3.56 4.000 T5 (TA~TC) * 0.00141 0.0051 0.25 0.684 4.14 4.000 T6 (TA~TC) * 0.00141 0.0051 0.25 0.684 4.14 4.000 T6 (TA~TC) * 0.00141 0.00531 0.26 0.683 4.16 4.000 T7 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T4 (TA~TD) * 0.00065 0.00477 0.92 0.857 3.46 4.000 T5 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000	21	T6 (TH∼TJ) *	0.00188	0.00316	1. 17	1. 782	3. 08	4. 000
24		T7 (TG∼TJ) *	0.00106	0.00282	0.89	3, 000	2, 36	4. 000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	11 (111 12)	0.00093	0.00396		0.400		4.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	94		0.00257	0.00374	0. 25	1. 150	3. 71	4.000
25 T4 (TC~TE) * 0.00102 0.00340 0.72 0.727 3.69 4.000 T4 (TA~TD) * 0.00086 0.00360 0.69 0.670 3.70 4.000 T5 (TA~TC) * 0.00141 0.00301 0.27 0.531 4.19 4.000 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T7 (TA~TE) * 0.00066 0.00368 0.75 0.438 4.03 4.000 T4 (TA~TD) * 0.00086 0.00360 0.88 0.771 3.56 4.000 T5 (TA~TC) * 0.00134 0.00543 0.25 0.684 4.14 4.000 T6 (TA~TC) * 0.00141 0.00531 0.26 0.683 4.16 4.000 T7 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T4 (TA~TD) * 0.00065 0.00477 0.92 0.857 3.46 4.000 T5 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000	24	11 (10 15)	0.00131	0.00419	0.34		4. 33	4.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	II (III IB)		0.00277			3, 20	4. 000
$ \begin{array}{c} 26 \\ \hline 15 \\ \hline (TA \cap TC) & * & 0.00141 \\ \hline (TA \cap TC) & * & 0.00141 \\ \hline (TA \cap TC) & * & 0.00141 \\ \hline (TA \cap TC) & * & 0.00141 \\ \hline (TA \cap TC) & * & 0.00141 \\ \hline (TA \cap TC) & * & 0.00066 \\ \hline (TA \cap TC) & * & 0.00066 \\ \hline (TA \cap TC) & * & 0.00066 \\ \hline (TA \cap TC) & * & 0.00086 \\ \hline (TA \cap TC) & * & 0.00086 \\ \hline (TA \cap TC) & * & 0.00134 \\ \hline (TA \cap TC) & * & 0.00141 \\ \hline (TA \cap TC) & * & 0.00141 \\ \hline (TA \cap TC) & * & 0.00141 \\ \hline (TA \cap TC) & * & 0.00141 \\ \hline (TA \cap TC) & * & 0.00066 \\ \hline (TA \cap TC) & * & 0.00066 \\ \hline (TA \cap TC) & * & 0.00066 \\ \hline (TA \cap TC) & * & 0.00066 \\ \hline (TA \cap TC) & * & 0.00065 \\ \hline (TA \cap TC) & * & 0.00084 \\ \hline (TA \cap TC$		T4 (TC∼TE) *	0.00102	0.00340	0.72	0. 727	3. 69	4. 000
26 T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T7 (TA~TE) * 0.00066 0.00368 0.75 0.438 4.03 4.000 T4 (TA~TD) * 0.00086 0.00360 0.88 0.771 3.56 4.000 T5 (TA~TC) * 0.00134 0.00543 0.25 0.684 4.14 4.000 T6 (TA~TC) * 0.00141 0.00531 0.26 0.683 4.16 4.000 T7 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T4 (TA~TD) * 0.00065 0.00477 0.92 0.857 3.46 4.000 T5 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000 T6 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000		11 (111 11)	0.00086			0.670	3. 70	
T6 (TA~TC) * 0.00141 0.00301 0.26 0.559 4.12 4.000 T7 (TA~TE) * 0.00066 0.00368 0.75 0.438 4.03 4.000 T4 (TA~TD) * 0.00086 0.00360 0.88 0.771 3.56 4.000 T5 (TA~TC) * 0.00134 0.00543 0.25 0.684 4.14 4.000 T6 (TA~TC) * 0.00141 0.00531 0.26 0.683 4.16 4.000 T7 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T4 (TA~TD) * 0.00065 0.00477 0.92 0.857 3.46 4.000 T5 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000 T6 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000	26	10 (111 10)						
T4 (TA~TD) * 0.00086 0.00360 0.88 0.771 3.56 4.000 T5 (TA~TC) * 0.00134 0.00543 0.25 0.684 4.14 4.000 T6 (TA~TC) * 0.00141 0.00531 0.26 0.683 4.16 4.000 T7 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T4 (TA~TD) * 0.00065 0.00477 0.92 0.857 3.46 4.000 T5 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000 T6 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000		10 (111 10)		0.00301		0. 559		
27 T5 (TA~TC) * 0.00134 0.00543 0.25 0.684 4.14 4.000 T6 (TA~TC) * 0.00141 0.00531 0.26 0.683 4.16 4.000 T7 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T4 (TA~TD) * 0.00065 0.00477 0.92 0.857 3.46 4.000 T5 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000 T6 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000		II (III IE)						
27 T6 (TA~TC) * 0.00141 0.00531 0.26 0.683 4.16 4.000 T7 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T4 (TA~TD) * 0.00065 0.00477 0.92 0.857 3.46 4.000 T5 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000 T6 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000		11 (111 11)						
T6 (TA~TC) * 0,00141 0.00531 0.26 0.683 4.16 4.000 T7 (TA~TE) * 0.00066 0.00368 0.92 0.508 3.88 4.000 T4 (TA~TD) * 0.00065 0.00477 0.92 0.857 3.46 4.000 T5 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000 T6 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000	27			0.00543		0.684		
T4 (TA~TD) * 0.00065 0.00477 0.92 0.857 3.46 4.000 T5 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000 T6 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000		10 (111 10)	0.00141	0.00531	0. 26	0.683	4. 16	
28 T5 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000 T6 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000		11 (111 112)	0.00066	0.00368	0. 92	0.508	3. 88	4.000
28 T6 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000		11 (111 11)	0.00065			0.857	3. 46	
T6 (TA~TC) * 0.00084 0.00492 0.62 0.666 3.85 4.000	28	10 (111 10)	0.00084	0.00492	0, 62		3, 85	4. 000
T7 (TA~TD) * 0.00065 0.00505 0.86 0.764 3.60 4.000	1 20		0.00084	0.00492	0.62	0.666	3. 85	4. 000
		T7 (TA~TD) *	0.00065	0.00505	0.86	0.764	3. 60	4.000

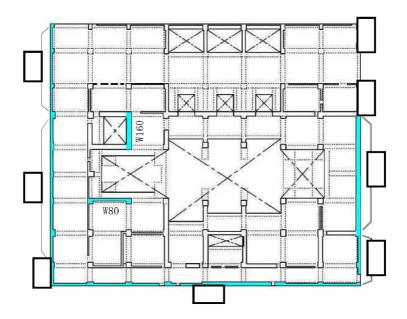

注記*:内壁を示す。

表5-8 せん断スケルトン曲線($\tau-\gamma$ 関係,終局点)(3/3) (b) EW方向

部材番号	通り	P _V (p _{te} *)	P _H (p _{wh} *)	縦軸応力度 σ _V (N/mm ²)	M/QD	τ ₃ (N/mm ²)	$^{\gamma}_{3}$ (×10 ⁻³)
	T6 (TJ∼TK) *	0.00239	0.00425	0.30	3.000	2. 79	4.000
31	T7 (TG∼TH) *	0.00225	0.00455	0.43	1. 571	3.41	4.000
	T7 (TJ~TK) *	0.00253	0.00512	0. 26	2. 379	3.11	4.000
32	T6 (TH∼TJ) *	0.00188	0.00316	1. 28	1. 523	3. 25	4.000
34	T7 (TA∼TE) *	0.00093	0.00396	0.57	0.400	4. 41	4.000
35	T7 (TA∼TB) *	0.00257	0.00374	0. 25	1. 188	3, 67	4.000
30	T7 (TC∼TE) *	0.00131	0.00419	0.38	0.540	4. 29	4.000
36	T7 (TA∼TB) *	0.00257	0.00374	0.30	1. 583	3. 35	4.000
30	T7 (TC∼TD) *	0.00216	0.00363	0.63	1. 365	3. 44	4.000
39	T8 (TH∼TK) *	0.00115	0.00450	0.45	1. 257	3, 29	4.000
39	T9 (TH∼TK)	0. 01185	0.00794	0.63	1.000	5. 44	4.000
	T8 (TC∼TD) *	0.00255	0.00203	0.16	3.000	2. 47	4.000
40	T8 (TG∼TJ) *	0.00123	0.00287	0.95	3.000	2. 42	4.000
40	T9 (TA∼TB)	0.00395	0.00478	0.31	1.000	3, 79	4.000
	T9 (TC∼TJ)	0.00479	0.00247	0. 37	0.400	5. 46	4.000
41	T8 (TG∼TH) *	0.00188	0.00235	1. 19	3.000	2.51	4.000
41	T9 (TA∼TK)	0.00644	0.00517	0.74	0.400	5. 95	4.000
43	T8 (TC∼TD) *	0.00255	0.00203	0.16	1. 194	3. 39	4.000
43	T9 (TC∼TD)	0.00312	0.00478	0.13	1.000	3.61	4.000
44	T8 (TC∼TD) *	0.00255	0.00203	0.16	1. 194	3. 39	4.000
44	T9 (TA∼TD)	0.00346	0.00478	0. 24	1.000	3. 70	4.000

注記*:内壁を示す。

記号*	縦筋	横筋
	内:D16@200 外:D16@200	内:D16@200 外:D16@200
	内: D19@200 外: D19@200	内: D19@200 外: D19@200
	内: D19@200 外: D19@200	内: D19@200 外: D19@200
	内: D22@200 外: D22@200	内: D22@200 外: D22@200
	内: D22@200 外: D22@200	内: D22@200 外: D22@200
	内: D29@200 外: D29@200	内: D29@200 外: D29@200
W160	内: D25@200 外: D25@200	内: D25@200 外: D25@200

注記*:記号に含まれる数値は壁厚(cm)を表す。

(例:_____

図 5-2 耐震壁の配筋図 (T.M.S.L.12.3m~T.M.S.L.20.4m)

- 5.1.4 RC造補助壁のせん断スケルトン曲線の諸数値
 - (1) 第1折点

RC造補助壁の各要素におけるせん断スケルトン曲線の第1折点の設定根拠を表5-9に示す。

表 5-9 せん断スケルトン曲線($\tau-\gamma$ 関係,第 1 折点) (a) NS方向

部材番号	コンクリート 強度 F _C	せん断弾性 係数 G	当該部分が 支える重量	断面積	縦軸応力度 σ _V *	τ1	γ1
	(N/mm^2)	$(\times 10^4 \text{N/mm}^2)$	(kN)	(m ²)	(N/mm^2)	(N/mm ²)	$(\times 10^{-3})$
3	43. 1	1.20	64580	633. 7	0.10	2.11	0. 176
4	43. 1	1. 20	284230	732. 1	0.39	2. 24	0. 187
5	43. 1	1.20	376070	1036.5	0.36	2. 23	0.186
6	43. 1	1.20	370000	1211.6	0.31	2. 20	0.184
7	43. 1	1.20	264280	1290.4	0.20	2. 16	0.180
10	43. 1	1. 20	156500	640.8	0.24	2. 18	0. 181
11	43. 1	1.20	64580	633. 7	0.10	2. 11	0.176
12	43. 1	1. 20	284230	732. 1	0.39	2. 24	0. 187
13	43. 1	1. 20	376070	1036. 5	0.36	2. 23	0.186
14	43. 1	1. 20	370000	1211.6	0.31	2. 20	0. 184

注記*:縦軸応力度 σ v=当該部分が支える重量/断面積。

(b) EW方向

264280

1290.4

0.180

部材番号	コンクリート 強度 F _C (N/mm²)	せん断弾性 係数 G (×10 ⁴ N/mm ²)	当該部分が 支える重量 (kN)	断面積 (m²)	縦軸応力度 σ _V * (N/mm²)	$ au_1$ (N/mm 2)	γ ₁ (×10 ⁻³)
4	43. 1	1. 20	64580	633. 7	0.10	2.11	0.176
5	43. 1	1. 20	284230	732. 1	0.39	2. 24	0. 187
6	43. 1	1. 20	376070	1036. 5	0.36	2. 23	0. 186
7	43. 1	1. 20	370000	1211.6	0.31	2. 20	0.184
8	43. 1	1. 20	264280	1290. 4	0.20	2. 16	0. 180
12	43. 1	1. 20	64580	633. 7	0.10	2.11	0. 176
13	43. 1	1. 20	284230	732. 1	0.39	2. 24	0. 187
16	43. 1	1. 20	64580	633. 7	0.10	2. 11	0.176
21	43. 1	1. 20	376070	1036. 5	0.36	2, 23	0.186
24	43. 1	1. 20	64580	633. 7	0.10	2. 11	0. 176
25	43. 1	1.20	284230	732. 1	0.39	2. 24	0. 187
26	43. 1	1. 20	376070	1036. 5	0.36	2. 23	0. 186
27	43. 1	1. 20	370000	1211.6	0.31	2. 20	0. 184
28	43. 1	1. 20	264280	1290. 4	0.20	2. 16	0.180
34	43. 1	1. 20	156500	640.8	0.24	2. 18	0. 181
35	43. 1	1. 20	64580	633. 7	0.10	2. 11	0. 176
36	43. 1	1. 20	284230	732. 1	0.39	2. 24	0. 187
39	43. 1	1. 20	64580	633. 7	0.10	2.11	0.176
40	43. 1	1. 20	284230	732. 1	0.39	2. 24	0. 187
41	43. 1	1. 20	376070	1036. 5	0.36	2. 23	0.186
43	43. 1	1. 20	156500	640.8	0.24	2. 18	0. 181

注記*:縦軸応力度σν=当該部分が支える重量/断面積。

5.1.5 鉄骨部のせん断スケルトン曲線の諸数値

(1) 第1折点

鉄骨部の各要素におけるせん断スケルトン曲線の第1折点の諸数値を表5-10に示す。

表 5-10 せん断スケルトン曲線 ($Q-\gamma$ 関係, 第 1 折点)

(a) NS方向

部材	第1折点						
番号	Q ₁ (kN)	Q _{P1} (kN)	Q _{S1} (kN)	$\gamma_1 \times 10^{-3}$			
1	102152	68434	33719	2. 267			
2	144630	81384	63245	2. 210			
9	39258	23165	16093	1. 345			
16	10695	6087	4607	0.860			

(b) EW方向

₩	第1折点							
部材 番号	$egin{array}{c c} Q_1 & Q_{P1} \\ (kN) & (kN) \end{array}$		Q _{S1} (kN)	$(\times 10^{-3})$				
1	51436	34029	17407	3. 474				
10	25094	15399	9695	3. 088				
17	25094	15399	9695	3. 088				
29	25094	15399	9695	3. 088				
37	25094	15399	9695	3. 088				
2	73864	45701	28163	3. 442				
11	54999	39973	15026	5. 351				
18	54999	39973	15026	5. 351				
30	54999	39973	15026	5. 351				
38	54999	39973	15026	5. 351				

6. まとめ

柏崎刈羽原子力発電所のタービン建屋におけるせん断スケルトン曲線の設定について整理した。耐震壁及び補助壁について算出したせん断スケルトン曲線の諸数値を表6-1に、鉄骨部について算出したせん断スケルトン曲線の諸数値を表6-2に示す。

表 6-1 せん断スケルトン曲線($\tau-\gamma$ 関係)(1/2) (a) NS 方向

	第13	折点	第2	折点	終局点		
部材 番号	$ au_1$ $({ m N/mm}^2)$	$\gamma_{1} \times 10^{-3}$)	$ au_2$ (N/mm 2)	$\gamma_2 \ (\times 10^{-3})$	$ au_3$ (N/mm 2)	$\gamma_{3} \times 10^{-3}$)	
3	2. 19	0. 182	2. 94	0. 541	3. 95	4. 000	
4	2. 36	0. 197	3. 11	0. 554	4. 08	4. 000	
5	2. 51	0. 210	3, 36	0.575	4. 54	4. 000	
6	2. 38	0. 199	3. 12	0.601	4. 35	4. 000	
7	2. 57	0. 214	3. 38	0.516	4. 45	4. 000	
10	2. 18	0. 182	2. 94	0.527	4. 09	4. 000	
11	2. 20	0. 183	2. 94	0.538	4. 02	4. 000	
12	2. 26	0. 189	2. 99	0.532	3. 60	4. 000	
13	2. 29	0. 191	3. 02	0.546	4. 32	4. 000	
14	2. 35	0. 196	3. 09	0. 573	4. 20	4. 000	
15	2. 41	0. 201	3. 13	0.554	3. 50	4. 000	

表 6-1 せん断スケルトン曲線 $(\tau - \gamma$ 関係) (2/2)

/ 1 \		
(h)	EW方	Ħ
(U)	ピリノノ	$_{\parallel}$

	第13	折点	第2	折点	終局点		
部材番号	$ au_1 \ (ext{N/mm}^2)$	$(\times 10^{-3})$	$ au_2 ext{(N/mm}^2)$	$\gamma_{2} \times 10^{-3}$	$ au_3$ $(\mathrm{N/mm}^2)$	$\gamma_{3} \times 10^{-3}$)	
3	2. 24	0. 187	3. 02	3. 02 0. 561 6. 01		4. 000	
4	2.37	0. 198	3. 19	0. 596	5. 87	4. 000	
5	2.30	0. 191	3. 08	0. 577	5. 43	4. 000	
6	2. 33	0. 194	3. 04	0. 566	4. 18	4. 000	
7	2. 39	0. 199	3. 09	0. 606	4. 09	4. 000	
8	2. 36	0. 197	3. 01	0. 628	3. 92	4. 000	
12	2, 26	0.188	3, 02	0. 561	2.85	4. 000	
13	2. 34	0. 195	3. 09	0. 549	3. 07	4. 000	
16	2. 16	0. 180	2.83	0. 545	3. 68	4. 000	
19	2. 22	0. 185	3.00	0. 549	3. 17	4. 000	
20	2. 42	0. 201	3. 26	0. 599	2. 39	4. 000	
21	2. 47	0. 206	3. 26	0.607	2. 57	4. 000	
23	2. 32	0. 193	3. 13	0. 581	4. 41	4. 000	
24	2. 20	0. 184	2. 96	0. 546	4. 12	4. 000	
25	2.32	0. 194	2. 99	0. 553	3. 31	4. 000	
26	2. 19	0. 182	2. 94	0. 547	3. 70	4. 000	
27	2. 23	0. 186	2.89	0. 546	3. 41	4. 000	
28	2. 27	0. 190	2.96	0. 588	3. 28	4. 000	
31	2. 23	0. 185	3. 01	0. 548	3. 16	4. 000	
32	2.62	0. 218	3. 54	0. 657	3. 25	4. 000	
34	2.32	0. 193	3. 08	0, 583	4. 28	4. 000	
35	2. 21	0. 184	2. 94	0. 546	3. 99	4. 000	
36	2. 28	0. 190	2. 94	0. 552	3. 21	4. 000	
39	2.30	0. 192	3. 05	0. 570	4. 21	4. 000	
40	2, 28	0. 190	3. 03	0. 536	4. 42	4. 000	
41	2. 27	0. 189	2. 94	0.602	4. 70	4. 000	
43	2. 13	0.178	2. 79	0. 532	3. 33	4. 000	
44	2. 16	0.180	2. 92	0. 536	3. 61	4. 000	

表 6-2 せん断スケルトン曲線 $(Q-\gamma$ 関係)

(a) NS方向

部材番号	第1折点							
	Q ₁ (kN)	Q _{P1} (kN)	Q _{S1} (kN)	γ_1 $(\times 10^{-3})$				
1	102152	68434	33719	2. 267				
2	144630	81384	63245	2. 210				
9	39258	23165	16093	1.345				
16	10695	6087	4607	0.860				

(b) EW方向

** 77.4-4	第1折点							
部材 番号			Q _{S1} (kN)	$\gamma_{1} \times 10^{-3}$				
1	51436	34029	17407	3. 474				
10	25094	15399	9695	3. 088				
17	25094	15399	9695	3. 088				
29	25094	15399	9695	3. 088				
37	25094	15399	9695	3. 088				
2	73864	45701	28163	3. 442				
11	54999	39973	15026	5. 351				
18	54999	39973	15026	5. 351				
30	54999	39973	15026	5. 351				
38	54999	39973	15026	5. 351				

別紙3 地震応答解析における材料物性の不確かさに関する検討

目 次

1.	概要										 別紙 3-1
1.1	検討	け概要 ・									 別紙 3-1
1.2	検討	ナカ針・									 別紙 3-1
2.	材料物	1性の不確	雀かさの分	析・・							 別紙 3-2
2.1	建屋	と剛性の 不	「確かさ								 別紙 3-2
2.2	地盤	と剛性の 不	に確かさ								 別紙 3-2
3.	材料物	性の不確	雀かさを考	慮した	設計用:	地震力	の設定				 別紙 3-3
3. 1	設計	用地震力	」の設定方	法							 別紙 3-3
3.2	材料	物性の不	に確かさの	設定							 別紙 3-5
4.	地震応	答解析に	こよる建屋	剛性及	び地盤	剛性の	不確か	さの影	響検診	† ··	 別紙 3-6
4. 1	検討	け概要・									 別紙 3-6
4.2	不確	重かさの景	/響検討								 別紙 3-9
4.	. 2. 1	建屋剛性	上及び地盤	剛性の	変動に	よる影響	響		• • • • •		 別紙 3-9
4.	. 2. 2	建屋剛性	生の変動に	よる影	響 …						 別紙 3-48
4.3	まと	め …									 別紙 3-87
5.	機器·	配管系割	呼価への影	響							 別紙 3-88

別紙 3-1 材料物性の不確かさを考慮した検討に用いる地震動の選定について 別紙 3-2 材料物性の不確かさを考慮した地震応答解析

1. 概要

1.1 検討概要

本資料は、柏崎刈羽原子力発電所7号機のタービン建屋の地震応答解析における 材料物性の不確かさに関する検討について説明するものである。

地震応答解析に用いる材料定数は材料物性の不確かさの変動幅を適切に考慮することとしているが、本資料では、地震応答解析に影響を及ぼす建屋剛性(コンクリート剛性)、地盤剛性(地盤のせん断波速度)の不確かさについて検討を行うとともに、その変動幅を設定し、地震応答解析結果における影響を検討する。また、検討結果を踏まえ、建物・構築物の耐震計算書において、材料物性の不確かさを考慮して設定する設計用地震力を検討する。さらに、材料物性の不確かさの影響評価として、機器・配管系の評価への影響についても検討する。

1.2 検討方針

建物・構築物の動的地震力は、建物・構築物の地震応答解析(時刻歴応答解析法)により求められており、地盤剛性、建屋剛性、地盤のばね定数の算定及び減衰定数、地震動の位相特性などの影響を受ける。特に床応答スペクトルの変動に影響を及ぼす要因は、建屋剛性及び地盤剛性であることが確認されている。*

地震応答解析モデルの建屋剛性は、建設時コンクリートの 91日強度の平均値に基づく実強度を用いて算出しているが、平均値に対するばらつきを考慮する必要があると考えられる。また、建物・構築物と地盤との相互作用を考慮したモデルによる地震応答解析において、地盤のせん断波速度の不確かさが建屋応答へ影響を及ぼすことが考えられる。

よって、建屋剛性の不確かさ要因としてはコンクリート剛性を、地盤剛性の不確かさ要因としては地盤のせん断波速度を考慮することとし、それぞれの不確かさが建屋応答及び耐震安全性に及ぼす影響について考察を行い、耐震評価における材料物性の不確かさを考慮した設計用地震力の設定について検討する。また、建屋剛性及び地盤剛性の不確かさを考慮したモデルにより地震応答解析を実施し、建屋応答並びに建物・構築物及び機器・配管系の耐震安全性に及ぼす影響について確認する。

注記*:日本電気協会:「参考資料 4.7 鉛直方向の設計用床応答スペクトルの拡幅率」,第29回耐震設計分科会資料 No.29-4-5-7,平成20年1月18日

2. 材料物性の不確かさの分析

2.1 建屋剛性の不確かさ

建屋剛性の不確かさとして、建屋剛性の算定に用いるコンクリート実強度のばら つきがある。コンクリート実強度については、91日強度の平均値に基づく値を基本 ケースとし、プラス側とマイナス側を考慮する。

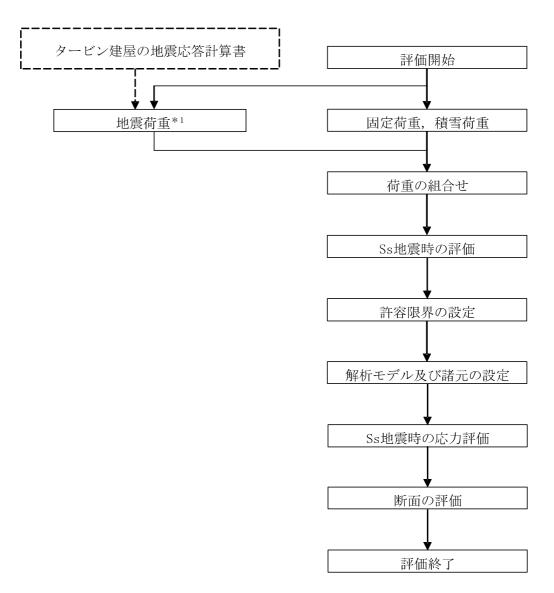
建屋剛性の不確かさを考慮することにより、部材の発生応力、変位及びせん断ひずみが不確かさを考慮しないケース(以下「基本ケース」という。)に対して変動すると考えられる。

よって、建物・構築物の耐震評価において、設計用地震力に建屋剛性の不確かさ を考慮する。

2.2 地盤剛性の不確かさ

地盤剛性の不確かさについては, 地盤のせん断波速度が変動することにより, 地 盤剛性が変動する。

地盤剛性の不確かさを考慮することにより, 部材の発生応力, 変位及びせん断ひずみが基本ケースに対して変動すると考えられる。


よって、建物・構築物の耐震評価において、設計用地震力に地盤剛性の不確かさを考慮する。

3. 材料物性の不確かさを考慮した設計用地震力の設定

3.1 設計用地震力の設定方法

基本ケース及び材料物性の不確かさを考慮したケースの地震荷重を用いた解析を実施することで、材料物性の不確かさを設計用地震力として考慮する。不確かさを考慮したケースの質点系モデルの応答値の算出にあたっては、基本ケースにおける建屋応答を確認したうえで、建屋応答への影響の大きい波に対して実施する(別紙3-1「材料物性の不確かさを考慮した検討に用いる地震動の選定について」参照)。材料物性の不確かさを設計用地震力として考慮した建屋耐震性評価フローの例を図3-1に示す。

応力解析による耐震評価において、地震荷重は、質点系モデルによる地震応答解析より得られた最大応答値から算出するが、地震応答解析から得られた最大応答値は、Ss-1~Ss-8 の入力地震動ごとに異なるため、保守的な評価として、入力地震動ごとに得られた応答値のうち最大の応答値から算出される地震荷重を採用することとする。なお、材料物性の不確かさを考慮した地震応答解析結果は別紙 3-2「材料物性の不確かさを考慮した地震応答解析結果」に示す。

注記*1:建屋剛性及び地盤剛性の不確かさを考慮する。

図 3-1 建屋耐震性評価フロー(応力解析による評価)

3.2 材料物性の不確かさの設定

材料物性の不確かさを考慮した質点系モデルの応答値の算出にあたり、建屋剛性(コンクリート強度)、地盤のせん断波速度の不確かさを設定する。

建屋の地震応答解析モデルにおける建屋剛性の算定に用いるコンクリート実強度の評価は、基本ケースでは建設時コンクリートの91日強度の平均値に基づき設定する。ここでは、保守的に材齢91日以降の強度上昇を無視している。不確かさの検討にあたっては、データベースである91日強度の分布を考慮し、平均値に対して ± 1 のびらつきを考慮する。さらに、実強度値のマイナス側については、91日強度の値として95%信頼区間の下限値に相当する値(平均値 -2σ)を、プラス側については、実機の経年後のコア強度の平均値を考慮する。

地震応答解析モデル	コンクリート強度
基本ケース	実強度(91 日強度) 43.1N/mm ²
不確かさ	・+1 σ 46. 0N/mm ² ・-1 σ 40. 2N/mm ² ・コア強度平均 55. 7N/mm ² ・-2 σ 37. 2N/mm ²

表 3-1 コンクリート強度の不確かさ検討の考え方

地盤剛性の不確かさの影響評価においては、弾性波速度試験結果に基づく地盤の せん断波速度の不確かさを考慮する。

基本ケースでは、地盤調査結果の平均値を元に設定した地盤のせん断波速度により地盤剛性を設定している。地盤剛性の不確かさ検討にあたっては、初期せん断波速度に対して、標準偏差に相当するばらつきを考慮する。

=	ŧ	3 -	- 2	地盤剛性の不確かさ検討の考え方
-	_	-	_	

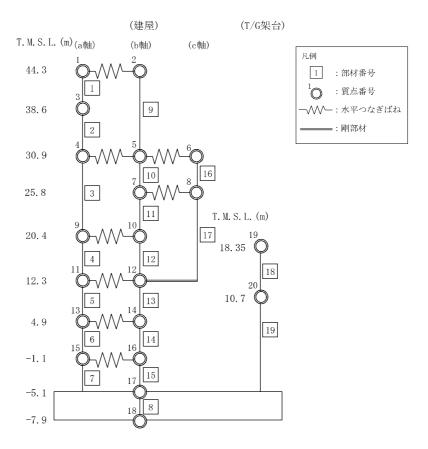
地震応答解析モデル	せん断波速度		
基本ケース	標準地盤 (平均値)		
不確かさ	 ・+地盤 新期砂層(+13%), 古安田層(+25%), 西山層(+10%) ・一地盤 新期砂層(-13%), 古安田層(-25%), 西山層(-10%) 		

4. 地震応答解析による建屋剛性及び地盤剛性の不確かさの影響検討

4.1 検討概要

建屋剛性(コンクリート強度)及び地盤剛性(地盤のせん断波速度)の不確かさ を考慮したケースの建屋応答への影響を確認する。

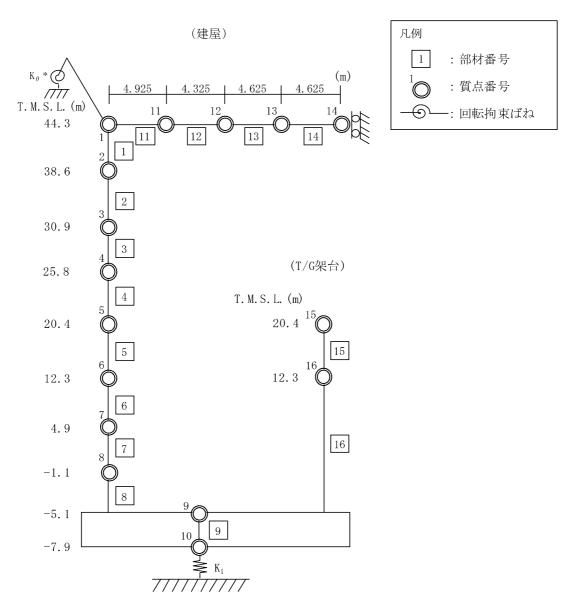
検討ケースを表 4-1 に、地震応答解析モデル図を図 4-1 及び図 4-2 に示す。ここで、コンクリート剛性を実強度($43.1 N/mm^2$)、地盤のせん断波速度を標準地盤とした検討ケースを基本ケースとする。


建物のコンクリート強度の不確かさのうち、 $\pm 1\sigma$ のケースと地盤剛性の不確かさについては、建屋-地盤連成モデルの剛性が最も硬い側(全体系の固有周期が短い側)及び最も柔らかい側(全体系の固有周期が長い側)の組合せで検討を行う。表 4-1 中の塗りつぶし部分は、基本ケースとの差異を示す。

検討ケースのうち、 $コンクリート剛性を<math>\pm 1\sigma$ より大きく変動させたケース 4(コア平均 55.7N/mm^2)及びケース 5(実強度 -2σ)においては、地盤剛性は標準地盤とする。

本資料においては、代表として、Ss-1による影響検討の結果を示す。

表 4-1 検討ケース


検討ケース	コンクリート 剛性	地盤剛性	備考
①ケース 1 (工認モデル)	実強度 (43.1N/mm ²)	標準地盤	基本ケース
②ケース 2 (建屋剛性+σ, 地盤剛性+σ)	実強度+σ (46.0N/mm²)	標準地盤+ σ (新期砂層+13%, 古安田層+25%, 西山層+10%)	
③ケース 3 (建屋剛性-σ, 地盤剛性-σ)	実強度-σ (40.2N/mm²)	標準地盤 — σ (新期砂層 <mark>—</mark> 13%, 古安田層 <mark>—</mark> 25%, 西山層 <mark>—</mark> 10%)	
④ケース 4(建屋剛性コア平均)	実強度 (コア平均) (55.7N/mm²)	標準地盤	
⑤ケース 5 (建屋剛性-2σ)	実強度-2σ (37.2N/mm²)	標準地盤	

NS 方向

図 4-1 タービン建屋の地震応答解析モデル (水平方向)

注記*:屋根トラス端部回転拘束ばね

図 4-2 タービン建屋の地震応答解析モデル (鉛直方向)

4.2 不確かさの影響検討

4.2.1 建屋剛性及び地盤剛性の変動による影響

(1) 影響検討方針

建屋剛性及び地盤剛性を変動させた地震応答解析モデルにより固有値解析及び 地震応答解析を実施し、基本ケースの結果と比較する。入力地震動は Ss-1 とす る。建屋剛性は、基本ケース(実強度 43.1N/mm²)に対して $\pm 1\,\sigma$ の変動を、地 盤剛性は標準地盤に対して $\pm \sigma$ の変動を考慮する。

(2) 固有值解析結果

建屋剛性及び地盤剛性を変動させた地震応答解析モデルにより固有値解析を実施した。固有値解析結果を表 4-2、刺激関数図を図 $4-3\sim$ 図 4-8 に示す。表、図中では基本ケースをケース 1、建屋剛性 $+\sigma$ 地盤剛性 $+\sigma$ としたケースをケース 2、建屋剛性 $-\sigma$ 地盤剛性 $-\sigma$ としたケースをケース 3 として示す。

基本ケースに対する建屋剛性及び地盤剛性を変動させたモデルの固有振動数の変動幅は、 $-9\%\sim +9\%$ 程度である。

表 4-2 固有値解析結果 (ケース 1~3, Ss-1)

(単位:Hz)

	NS方向			EW方向		鉛直方向			
次数	ケース1	ケース2	ケース3	ケース1	ケース2	ケース3	ケース1	ケース2	ケース3
,	2. 74	2. 89	2. 54	2. 56	2. 68	2. 40	2. 56	2. 57	2. 56
1	2.74	(1.06)	(0.93)	2. 56	(1.05)	(0.94)	2. 50	(1.00)	(1.00)
2	3. 40	3. 52	3. 30	3. 22	3, 27	3. 16	4. 32	4.70	3. 93
2	3. 40	(1.04)	(0.97)	3. 22	(1.02)	(0.98)	4. 32	(1.09)	(0.91)
3	4, 65	4. 76	4. 55	3, 95	4. 12	3.80	11. 56	11.57	11. 56
3	4.00	(1.02)	(0.98)	ა, ყე	(1.04)	(0.96)	11. 50	(1.00)	(1.00)
4	5. 52	5, 58	5. 43	4. 44	4. 47	4. 42	14. 22	14. 25	14. 20
4	0. 02	(1.01)	(0.98)		(1.01)	(0.99)		(1.00)	(1.00)
5	5, 63	5. 66	5. 60	5, 85	5. 87	5. 72	17. 75	17. 92	17.54
Э	ე. ნა	(1.01)	(1.00)	5. 65	(1.00)	(0.98)	11.15	(1.01)	(0.99)
6	7. 49	8. 08	6. 92	6.01	6. 16	5. 84	20. 62	20.62	20. 61
0	1.49	(1.08)	(0.92)	0.01	(1.03)	(0.97)	20.02	(1.00)	(1.00)
7	0.19	9. 29	9. 06	6. 56	6.64	6. 35	24. 70	24. 70	24. 69
7 9.18	9.10	(1.01)	(0.99)	0.00	(1.01)	(0.97)	24.70	(1.00)	(1.00)
8	10, 89	10. 91	10.87	6. 72	6. 92	6. 65	28. 40	28. 73	28. 03
	10.09	(1.00)	(1.00)	0.72	(1.03)	(0.99)	20.40	(1.01)	(0.99)

注:()内は、ケース1に対する比率を示す。

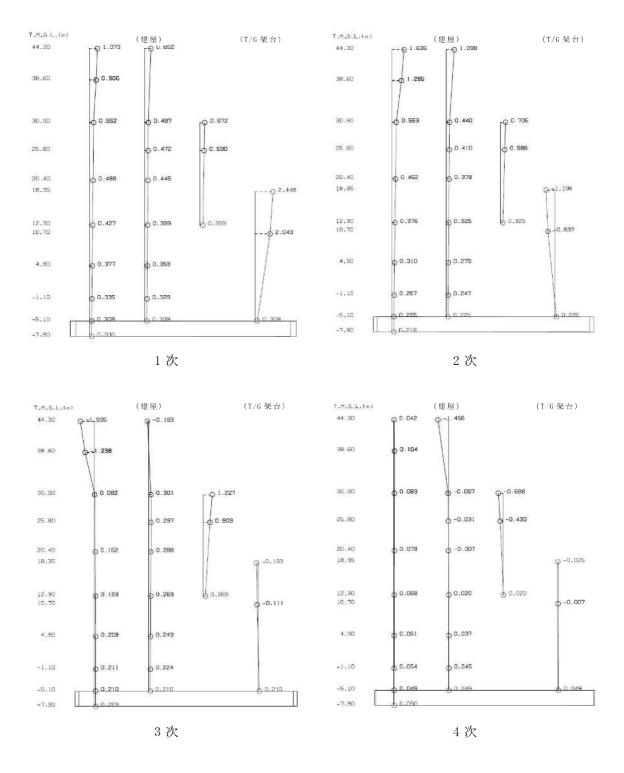


図 4-3 刺激関数図 (ケース 2) (NS 方向, Ss-1) (1/2)

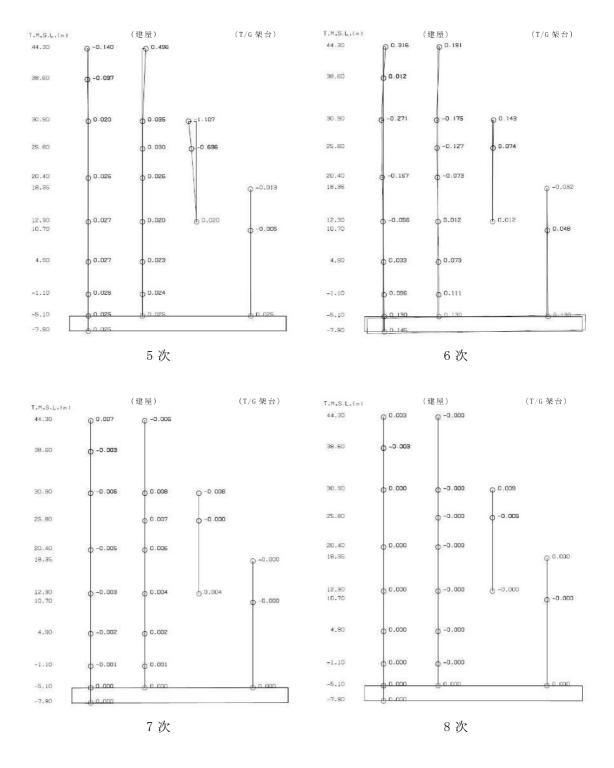


図 4-3 刺激関数図 (ケース 2) (NS 方向, Ss-1) (2/2)

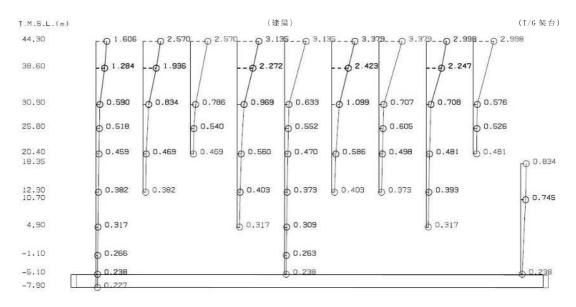
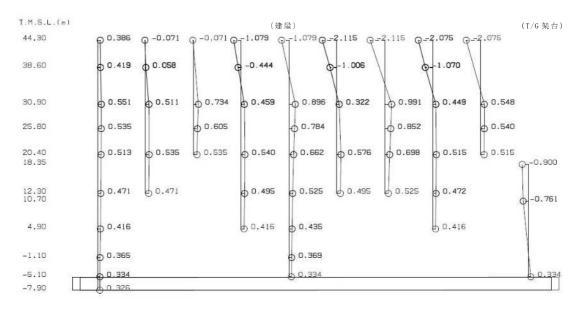



図 4-4 刺激関数図 (ケース 2) (EW 方向, Ss-1) (1/4)

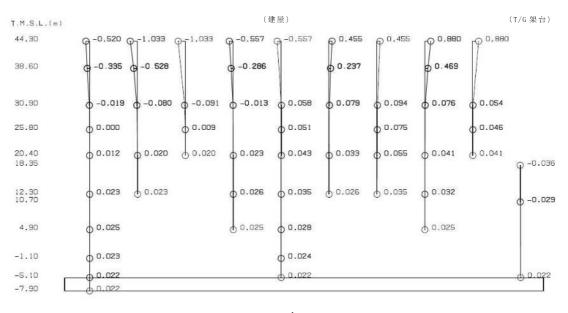
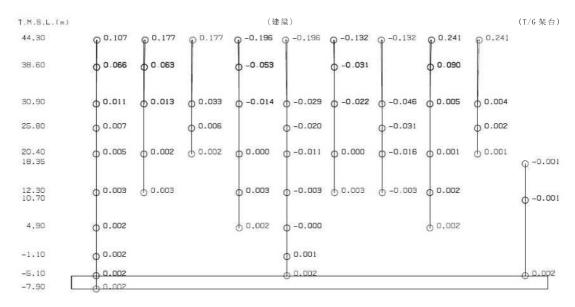



図 4-4 刺激関数図 (ケース 2) (EW 方向, Ss-1) (2/4)

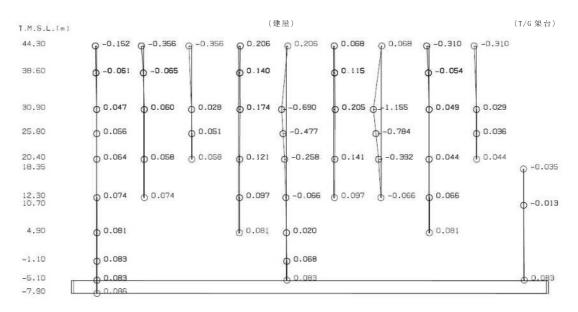
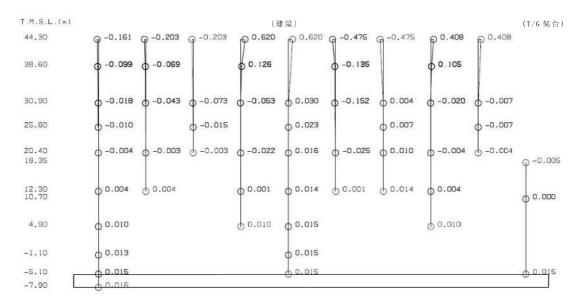



図 4-4 刺激関数図 (ケース 2) (EW 方向, Ss-1) (3/4)

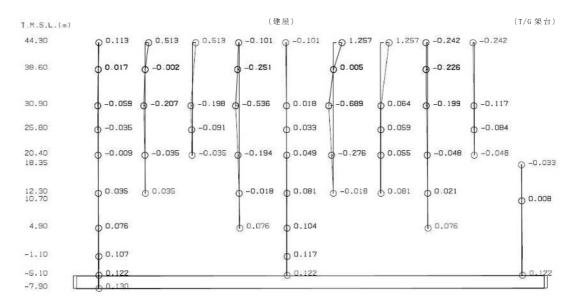


図 4-4 刺激関数図 (ケース 2) (EW 方向, Ss-1) (4/4)

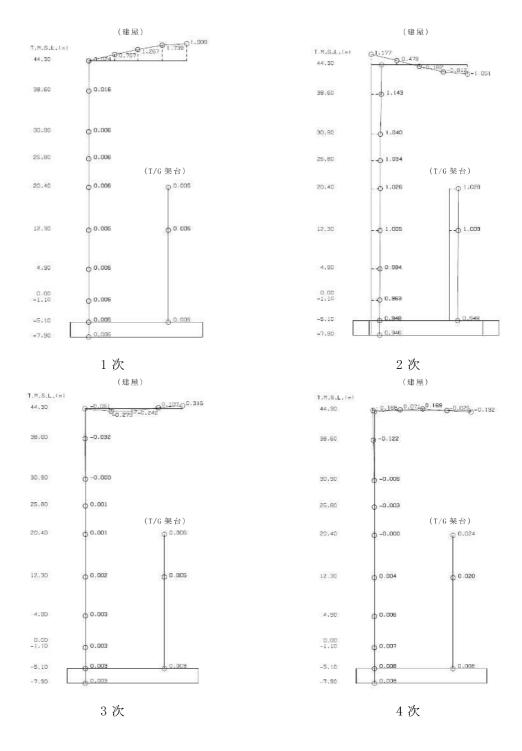


図 4-5 刺激関数図 (ケース 2) (鉛直方向, Ss-1) (1/2)

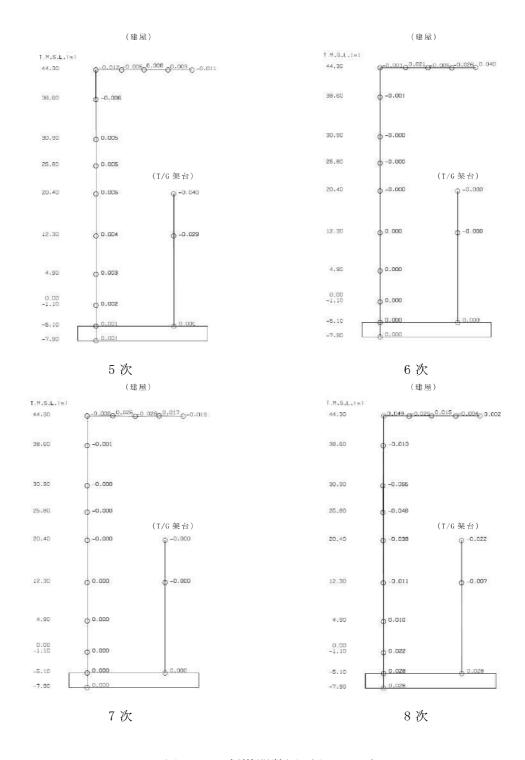


図 4-5 刺激関数図 (ケース 2) (鉛直方向, Ss-1) (2/2)

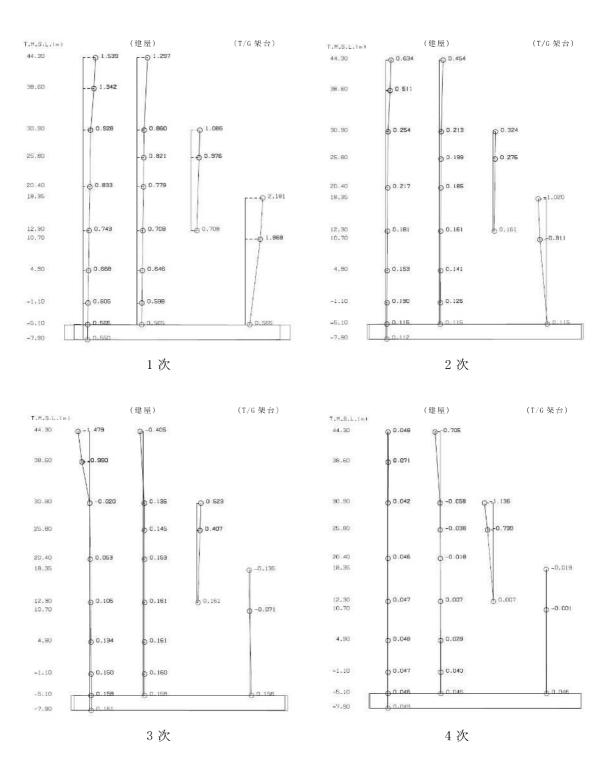
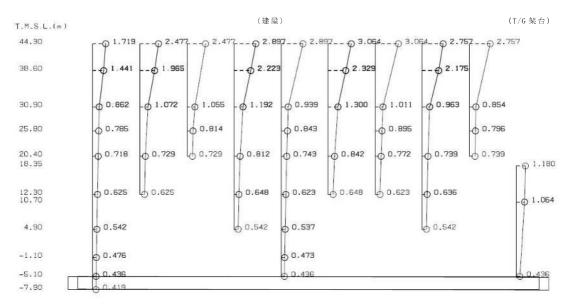



図 4-6 刺激関数図 (ケース 3) (NS 方向, Ss-1) (1/2)

図 4-6 刺激関数図 (ケース 3) (NS 方向, Ss-1) (2/2)

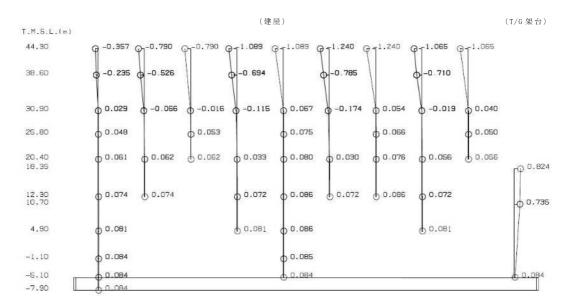
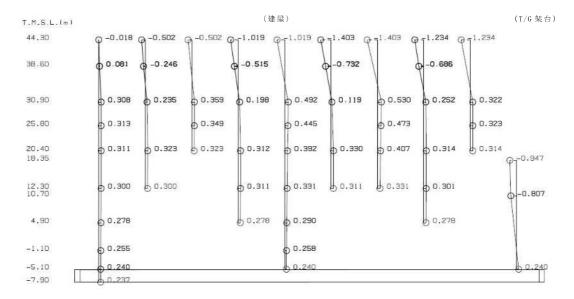



図 4-7 刺激関数図 (ケース 3) (EW 方向, Ss-1) (1/4)

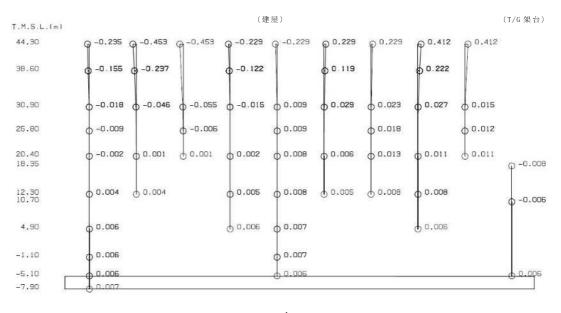
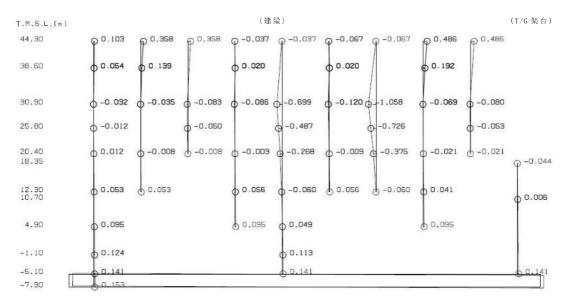



図 4-7 刺激関数図 (ケース 3) (EW 方向, Ss-1) (2/4)

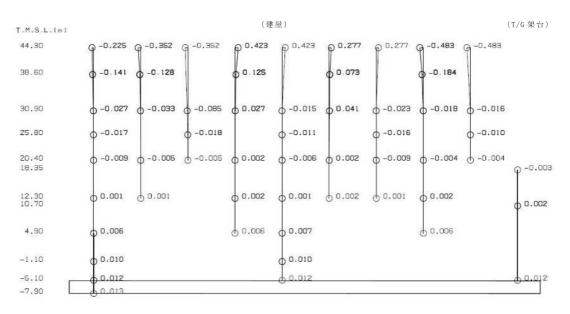
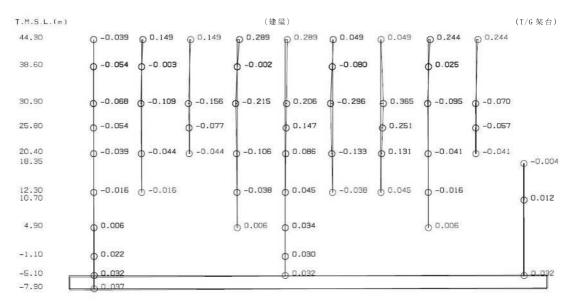



図 4-7 刺激関数図 (ケース 3) (EW 方向, Ss-1) (3/4)

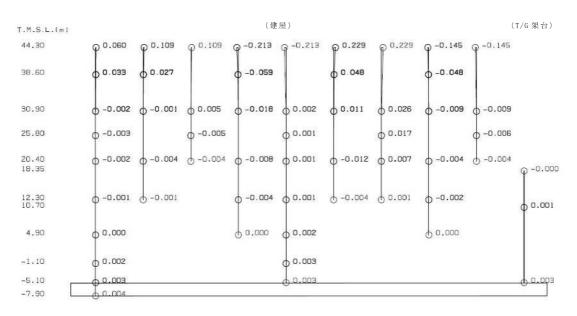


図 4-7 刺激関数図 (ケース 3) (EW 方向, Ss-1) (4/4)

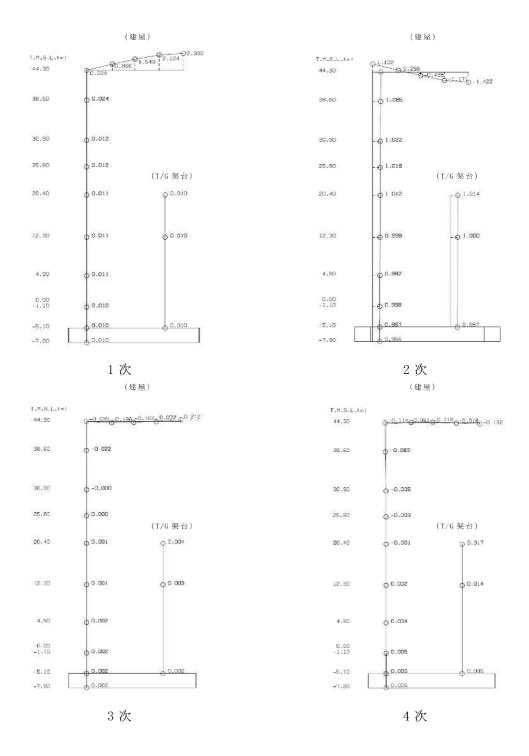


図 4-8 刺激関数図 (ケース 3) (鉛直方向, Ss-1) (1/2)

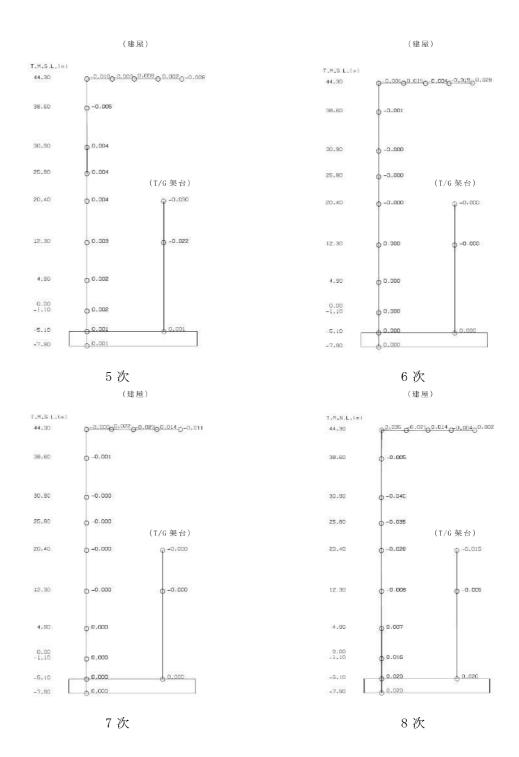


図 4-8 刺激関数図 (ケース 3) (鉛直方向, Ss-1) (2/2)

(3) 地震応答解析結果

建屋剛性及び地盤剛性を変動させた地震応答解析モデルによる地震応答解析結果を基本ケースの結果と比較した。入力地震動は Ss-1 とする。最大応答値の比較を図 4-9~図 4-21 及び表 4-3~表 4-13 に示す。また,接地率を表 4-14~表 4-16 に示す

水平方向について、ケース 1~3 の最大応答加速度、最大応答せん断力、最大 応答曲げモーメント、最大せん断ひずみは概ね同等である。最大応答変位につい ては、ケース 2 で小さくなり、ケース 3 で大きくなる傾向であることを確認した。 鉛直方向についても、水平方向と同様にケース 1~3 の最大応答加速度、最大 応答軸力は概ね同等であり、最大応答変位については、ケース 2 で小さくなり、 ケース 3 で大きくなる傾向であることを確認した。

これらは、建屋剛性及び地盤剛性が大きくなる側に変動する場合は、モデル剛性の増加に伴い変位は小さくなり、小さくなる側に変動する場合は、モデル剛性の減少に伴い変位は大きくなったと考えられる。

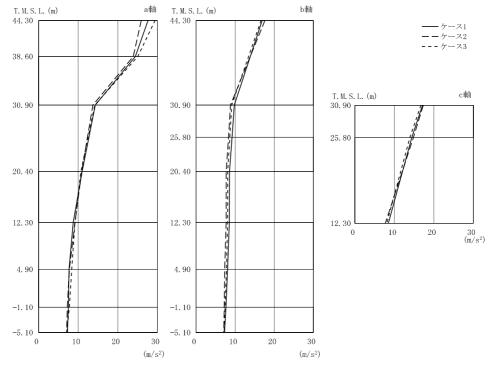


図 4-9 最大応答加速度 (Ss-1, NS 方向)

表 4-3 最大応答加速度 (Ss-1, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s^2)		
11/	号	1	2	3
	1	27.6	25.9	29.4
	3	24.4	23.9	25.0
	4	14.3	13.7	14.2
a 軸	9	11.0	10.9	10.7
1,14	11	8.73	9.18	9.20
	13	7.69	7.76	8.38
	15	7.51	7.23	7.79
	2	16.9	17.6	16.6
	5	9.77	8.79	9.10
	7	9.18	8.28	8.62
b	10	8.55	7.67	8.10
軸	12	8.48	7.70	8.07
	14	8.07	7.32	7.76
	16	7.66	7.18	7.39
	17	7.29	7.08	7.13
С	6	17.1	17.3	16.7
軸	8	14.4	14.8	13.9

②建屋剛性・地盤剛性(+ σ)考慮モデル

別紙 3-28

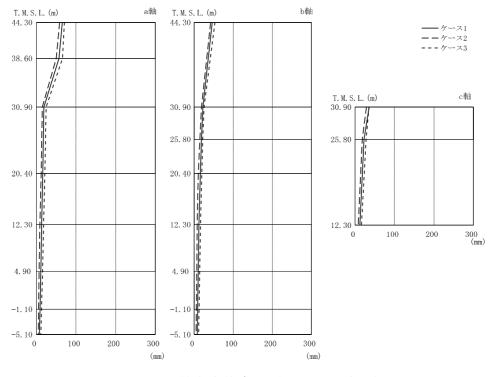


図 4-10 最大応答変位 (Ss-1, NS 方向)

表 4-4 最大応答変位 (Ss-1, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
137.	号	1	2	3
	1	65.5	58.6	70.9
	3	56.8	50.0	65.9
	4	19.1	14.9	24.6
a 軸	9	16.3	11.9	21.2
	11	13.5	9.10	18.2
	13	11.3	7.14	15.7
	15	9.29	5.70	13.1
	2	46.2	41.9	53.0
	5	22.2	18.8	25.1
	7	18.8	14.6	21.9
b	10	15.9	10.4	19.4
軸	12	12.2	7.89	16.1
	14	10.4	6.53	14.1
	16	8.96	5.49	12.5
	17	7.93	4.75	11.3
С	6	35.4	28.9	35.0
軸	8	22.8	18.2	27.9

②建屋剛性・地盤剛性(+ σ)考慮モデル

③建屋剛性・地盤剛性 $(-\sigma)$ 考慮モデル

別紙 3-29

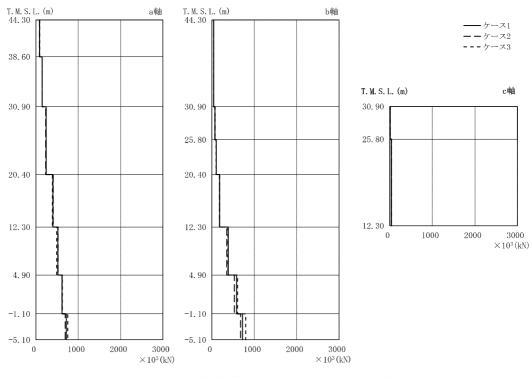


図 4-11 最大応答せん断力 (Ss-1, NS 方向)

表 4-5 最大応答せん断力 (Ss-1, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
111.	号	1	2	3
	1	86.3	80.8	90.3
	2	145	145	145
	3	241	232	241
a 軸	4	401	406	388
	5	519	521	490
	6	617	618	624
	7	716	692	753
	9	41.2	41.2	41.2
	10	70.4	70.0	69.7
	11	99.4	98.6	97.9
b 軸	12	180	178	178
	13	384	350	377
	14	581	527	605
	15	718	676	794
с	16	10.8	10.8	10.8
軸	17	38.0	38.6	38.2

②建屋剛性・地盤剛性(+ σ)考慮モデル

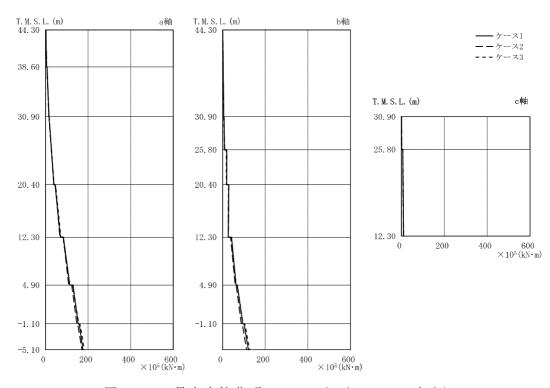


図 4-12 最大応答曲げモーメント (Ss-1, NS 方向)

表 4-6 最大応答曲げモーメント (Ss-1, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
132.	号	1	2	3
	1	1.27 5.18	1.44 4.83	1.16 5.36
	2	7.18 16.4	6.65 16.1	6.75 16.7
	3	16.7 39.8	16.3 39.3	17.0 40.4
a 軸	4	44.8 69.7	46.6 67.8	47.2 71.9
	5	84.3 114	83.3 109	81.9 114
	6	129 153	123 147	127 156
	7	159 176	151 171	162 183
	9	0.673 5.54	0.778 5.54	0.587 5.54
	10	6.44 9.14	6.89 9.13	5.79 9.13
	11	19.5 19.3	20.1 19.7	17.6 18.3
b 軸	12	29.3 26.8	29.8 26.9	27.8 26.8
	13	41.9 63.4	37.4 59.2	40.2 64.2
	14	68.9 94.7	63.6 87.8	68.2 96.3
	15	101 121	92.1 113	105 127
С	16	0.272 0.638	0.247 0.634	0.246 0.607
軸	17	6.30 9.76	5.60 8.80	6.50 9.63

②建屋剛性・地盤剛性(+ σ)考慮モデル

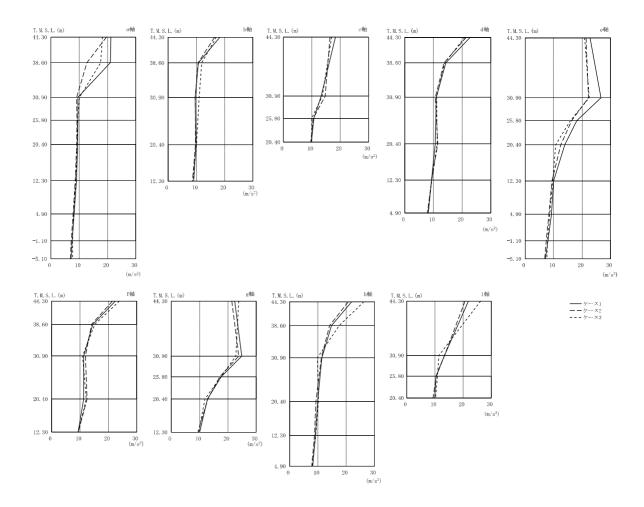


図 4-13 最大応答加速度 (Ss-1, EW 方向)

表 4-7 最大応答加速度 (Ss-1, EW 方向)

部	質点	最大応		一覧表
位	番		(m/s^2)	Г
	号	1)	2	3
	1	21.2	19.6	18.2
	6	21.0	12.7	17.6
	11	9.53	9.07	10.1
	20	9.55	9.23	9.46
a 軸	25	9.42	9.07	9.25
	32	9.02	8.58	8.75
	36	8.19	7.85	8.02
	38	7.50	7.19	7.62
	40	7.10	6.90	7.64
	2	18.3	16.4	17.0
b	7	10.7	10.6	11.9
軸	12	9.57	9.62	11.0
	26	9.85	9.66	10.0
с	19	13.3	14.7	13.7
軸	21	10.7	10.5	10.0
	3	22.8	21.4	20.9
	8	14.3	13.7	13.9
d 軸	13	11.0	10.7	11.1
тш	27	10.6	11.5	11.3
	33	9.34	9.37	9.41
	18	26.6	22.2	22.5
	22	18.1	16.3	15.9
е	31	13.9	12.5	10.7
軸	35	9.98	9.39	9.68
	37	9.22	8.36	8.59
	39	7.98	7.40	7.84
	4	22.4	21.4	23.8
f	9	14.5	14.1	15.2
軸	14	11.3	11.9	10.9
	28	11.3	12.5	12.2
	17	24.9	23.8	22.8
g 軸	23	17.6	17.1	17.5
, 144	30	12.8	12.9	11.9
	5	21.9	20.7	26.2
١.	10	14.8	14.1	17.5
h 軸	15	11.4	11.2	9.81
牛田	29	9.90	9.29	10.2
	34	9.12	8.76	9.25
i	16	13.4	13.4	11.4
軸	24	10.4	10.5	10.9

②建屋剛性・地盤剛性(+ σ)考慮モデル

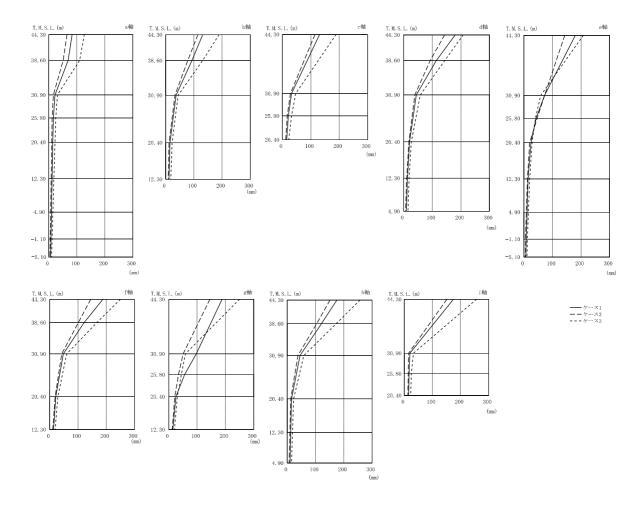


図 4-14 最大応答変位 (Ss-1, EW 方向)

表 4-8 最大応答変位 (Ss-1, EW 方向)

部	質点	最大応答変位一覧表 (mm)		
位	番号	(1)	2	(3)
	1	83.1	65.1	127
	6	69.2	51.4	110
	11	22.3	16.6	30.9
	20	16.3	11.9	24.7
a	25	14.4	10.6	21.9
軸	32	12.0	8.72	18.1
	36	9.72	6.60	14.7
	38	7.84	4.95	12.1
	40	6.65	3.97	10.2
	2	131	114	189
b	7	93.0	78.2	131
軸	12	36.5	32.5	44.3
	26	15.2	11.9	22.4
С	19	32.2	27.7	46.5
軸	21	20.7	16.6	32.2
	3	180	143	208
	8	114	92.6	144
d 軸	13	43.8	38.7	58.1
平田	27	20.8	18.3	26.7
	33	13.5	10.7	19.1
	18	72.4	72.0	58.6
	22	42.6	46.3	40.4
е	31	24.6	19.8	28.7
軸	35	14.1	11.8	20.0
	37	10.8	8.13	15.6
	39	8.03	5.27	11.9
	4	188	145	250
f	9	122	101	167
軸	14	47.7	42.5	59.7
	28	21.4	19.0	28.7
	17	96.8	50.5	58.3
g 軸	23	55.8	34.1	44.4
	30	25.0	21.2	30.2
	5	175	151	257
L	10	121	104	173
h 軸	15	44.9	37.8	58.7
	29	15.0	12.2	22.3
	34	12.2	9.17	18.4
i	16	19.5	15.1	32.4
軸	24	17.0	13.8	24.8

②建屋剛性・地盤剛性(+ σ)考慮モデル

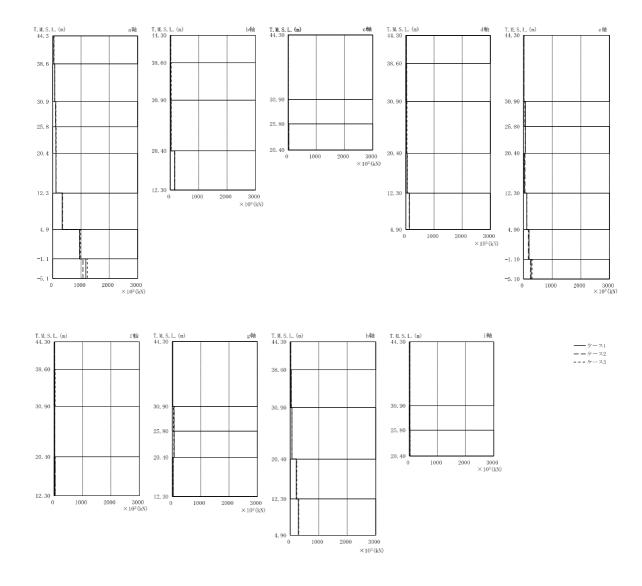


図 4-15 最大応答せん断力 (Ss-1, EW 方向)

表 4-9 最大応答せん断力 (Ss-1, EW 方向)

付き 番 (日本) (日本) (日本) (日本) <th>部</th> <th>部材</th> <th>最大応</th> <th>答せん断力 (×10³kN)</th> <th>一覧表</th>	部	部材	最大応	答せん断力 (×10³kN)	一覧表
 中間のでは、できるできるできるできるできるできるできるできるできるできるできるできるできるで	位		(1)		(3)
 機動				_	
American Memory 114 110 107 114 American Memory 113 113 134 340		2	74.2	74.2	74.3
##		3	105	101	108
 特別のでは、できる。 特別のでは、できる。 中間では、できる。 中間で	а	4	110	107	114
Heat of the color of the c		5	108	108	113
Method 1170 1070 1220 Heat 11 14.5 17.4 32.2 Heat 12 21.4 27.8 33.5 Tol 13 156 158 152 Heat 15 5.56 4.87 7.17 Tol 16.6 21.3 24.9 18 24.1 27.0 32.5 19 22.6 27.1 40.3 20 49.4 48.9 51.7 21 134 126 132 22 10.9 16.0 15.2 23 65.3 51.9 44.6 24 63.8 61.9 56.9 24 63.8 61.9 56.9 25 32.8 50.7 32.5 4 26 109 113 110 27 188 170 198 28 261 244 298 4 25.7 27.0 24.0 4 59.8 63.3 41.3		6	335	344	340
Hermitian 10 9.14 15.0 25.2 Hermitian 11 14.5 17.4 32.2 Hermitian 12 21.4 27.8 33.5 13 156 158 152 Hermitian 15 5.56 4.87 7.17 16 20.2 19.4 18.4 18 24.1 27.0 32.5 19 22.6 27.1 40.3 20 49.4 48.9 51.7 21 134 126 132 22 10.9 16.0 15.2 23 65.3 51.9 44.6 24 63.8 61.9 56.9 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 298 29 20.5 19.7 22.6 30 28.4 <t< td=""><td></td><td>7</td><td>946</td><td>951</td><td>983</td></t<>		7	946	951	983
He 11 14.5 17.4 32.2 He 12 21.4 27.8 33.5 He 13 156 158 152 He 15 5.56 4.87 7.17 16 20.2 19.4 18.4 18 24.1 27.0 32.5 19 22.6 27.1 40.3 20 49.4 48.9 51.7 21 134 126 132 22 10.9 16.0 15.2 24 63.8 61.9 56.9 24 63.8 61.9 56.9 44.6 23 32.8 50.7 32.5 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 298 30 28.4 28.0 34.4 48 35.9 34.5		8	1170	1070	1220
№ 12 21.4 27.8 33.5 Image 13 156 158 152 Image 14 4.56 4.05 6.17 Image 15 5.56 4.87 7.17 Image 16 20.2 19.4 18.4 Image 17 16.6 21.3 24.9 Image 18 24.1 27.0 32.5 Image 22.6 27.1 40.3 20 49.4 48.9 51.7 21 134 126 132 22 10.9 16.0 15.2 23 65.3 51.9 44.6 24 63.8 61.9 56.9 24 63.8 61.9 56.9 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 28.0 <tr< td=""><td></td><td>10</td><td>9.14</td><td>15.0</td><td>25.2</td></tr<>		10	9.14	15.0	25.2
He 12 21.4 21.8 33.3 I 13 156 158 152 I 14 4.56 4.05 6.17 I 15 5.56 4.87 7.17 I 16 20.2 19.4 18.4 I 16.6 21.3 24.9 I 18 24.1 27.0 32.5 I 19 22.6 27.1 40.3 20 49.4 48.9 51.7 21 134 126 132 22 10.9 16.0 15.2 23 65.3 51.9 44.6 24 63.8 61.9 56.9 24 63.8 61.9 56.9 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 298 30	b	11	14.5	17.4	32.2
Method 14 4.56 4.05 6.17 Method 15 5.56 4.87 7.17 16 20.2 19.4 18.4 Method 21.3 24.9 18 24.1 27.0 32.5 19 22.6 27.1 40.3 20 49.4 48.9 51.7 21 134 126 132 22 10.9 16.0 15.2 24 63.8 51.9 44.6 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 298 4 29 20.5 19.7 22.6 4 29 20.5 19.7 22.6 4 20 28.0 34.4 34.3 4 25.7 27.0 24.0 2 33 19.6 <t< td=""><td>軸</td><td>12</td><td>21.4</td><td>27.8</td><td>33.5</td></t<>	軸	12	21.4	27.8	33.5
लेक 15 5.56 4.87 7.17 क 16 20.2 19.4 18.4 4 17 16.6 21.3 24.9 4 18 24.1 27.0 32.5 19 22.6 27.1 40.3 20 49.4 48.9 51.7 21 134 126 132 22 10.9 16.0 15.2 24 63.8 61.9 56.9 24 63.8 61.9 56.9 24 63.8 61.9 56.9 26 109 113 110 27 188 170 198 28 261 244 298 30 28.4 28.0 34.4 4 25.7 27.0 24.0 32 33.8 35.9 34.5 34 59.8 63.3 41.3 4 59.8 63.3 41.3<		13	156	158	152
 軸 15 5.56 4.87 7.17 16 20.2 19.4 18.4 17 16.6 21.3 24.9 18 24.1 27.0 32.5 19 22.6 27.1 40.3 20 49.4 48.9 51.7 21 134 126 132 23 65.3 51.9 44.6 24 63.8 61.9 56.9 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 27 188 170 22.6 30 28.4 28.0 34.4 25 32.8 35.9 34.5 31 25.7 27.0 24.0 32 33.8 35.9 34.5 32 33.8 35.9 34.5 34 59.8 63.3 41.3 56 2.8 63.0 56.2 36 30.8 30.3 30.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 37 18.4 18.1 18.8 39 60.7 61.2 63.6 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1 		14	4.56	4.05	6.17
Method 16 20.2 19.4 18.4 Method 21.3 24.9 18 24.1 27.0 32.5 19 22.6 27.1 40.3 20 49.4 48.9 51.7 21 134 126 132 23 65.3 51.9 44.6 24 63.8 61.9 56.9 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 298 30 28.4 28.0 34.4 31 25.7 27.0 24.0 32 33.8 35.9 34.5 32 33.8 35.9 34.5 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 38 31.3 34.7 34.5 40 212 217 231 40 212 217 231 41 285 292 295 41 42 12.0 10.6 15.4 <td></td> <td>15</td> <td>5.56</td> <td>4.87</td> <td>7.17</td>		15	5.56	4.87	7.17
Heat of the late of		16	20.2	19.4	18.4
the bilance 19 22.6 27.1 40.3 20 49.4 48.9 51.7 21 134 126 132 24 16.0 15.2 23 65.3 51.9 44.6 24 63.8 61.9 56.9 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 298 30 28.4 28.0 34.4 30 28.4 28.0 34.4 31 25.7 27.0 24.0 32 33.8 35.9 34.5 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 38 31.3 34.7 34.5 40 212 217 231 40 212		17	16.6	21.3	24.9
 軸 19 22.6 27.1 40.3 軸 20 49.4 48.9 51.7 21 134 126 132 23 65.3 51.9 44.6 24 63.8 61.9 56.9 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 298 30 28.4 28.0 34.4 31 25.7 27.0 24.0 32 33.8 35.9 34.5 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 37 18.4 18.1 18.8 39 60.7 61.2 63.6 40 212 217 231 41 285 292 295 43 14.4 13.1 17.1 		18	24.1	27.0	32.5
eh 20 49.4 48.9 51.7 21 134 126 132 24 16.0 15.2 23 65.3 51.9 44.6 24 63.8 61.9 56.9 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 298 30 28.4 28.0 34.4 31 25.7 27.0 24.0 32 33.8 35.9 34.5 32 33.8 35.9 34.5 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 38 31.3 34.7 34.5 40 212 217 231 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1		19	22.6	27.1	40.3
Email 22 10.9 16.0 15.2 24 63.8 51.9 44.6 24 63.8 61.9 56.9 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 298 30 28.4 28.0 34.4 31 25.7 27.0 24.0 32 33.8 35.9 34.5 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 38 31.3 34.7 34.5 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1	14日	20	49.4	48.9	51.7
em 23 65.3 51.9 44.6 24 63.8 61.9 56.9 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 298 30 28.4 28.0 34.4 31 25.7 27.0 24.0 32 33.8 35.9 34.5 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 38 31.3 34.7 34.5 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1		21	134	126	132
em 24 63.8 61.9 56.9 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 298 30 28.4 28.0 34.4 31 25.7 27.0 24.0 32 33.8 35.9 34.5 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 38 31.3 34.7 34.5 39 60.7 61.2 63.6 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1		22	10.9	16.0	15.2
中軸 25 32.8 50.7 32.5 26 109 113 110 27 188 170 198 28 261 244 298 29 20.5 19.7 22.6 30 28.4 28.0 34.4 31 25.7 27.0 24.0 32 33.8 35.9 34.5 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 38 31.3 34.7 34.5 40 212 217 231 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1		23	65.3	51.9	44.6
## 25 32.8 50.7 32.5		24	63.8	61.9	56.9
Hermitian 26 109 113 110 27 188 170 198 28 261 244 298 29 20.5 19.7 22.6 30 28.4 28.0 34.4 31 25.7 27.0 24.0 32 33.8 35.9 34.5 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 38 31.3 34.7 34.5 39 60.7 61.2 63.6 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1		25	32.8	50.7	32.5
Best Process 28 261 244 298 4 29 20.5 19.7 22.6 30 28.4 28.0 34.4 31 25.7 27.0 24.0 32 33.8 35.9 34.5 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 38 31.3 34.7 34.5 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1		26	109	113	110
Heat 29 20.5 19.7 22.6 1 30 28.4 28.0 34.4 31 25.7 27.0 24.0 32 33.8 35.9 34.5 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 38 31.3 34.7 34.5 39 60.7 61.2 63.6 40 212 217 231 41 285 292 295 1 41 12.0 10.6 15.4 43 14.4 13.1 17.1		27	188	170	198
動性 30 28.4 28.0 34.4 31 25.7 27.0 24.0 32 33.8 35.9 34.5 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 37 18.4 18.1 18.8 38 31.3 34.7 34.5 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1		28	261	244	298
The parameter The parameter		29	20.5	19.7	22.6
31 23.7 21.0 24.0 32 33.8 35.9 34.5 33 19.6 10.4 16.3 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 37 18.4 18.1 18.8 38 31.3 34.7 34.5 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1		30	28.4	28.0	34.4
## 33 19.6 10.4 16.3 41.3 41.3 459.8 63.3 41.3 55 62.8 63.0 56.2 36 30.8 30.3 30.3 30.3 38 31.3 34.7 34.5 39 60.7 61.2 63.6 40 212 217 231 41 285 292 295 11.4 12.0 10.6 15.4 43 14.4 13.1 17.1	軸	31	25.7	27.0	24.0
g 34 59.8 63.3 41.3 35 62.8 63.0 56.2 36 30.8 30.3 30.3 38 31.3 34.7 34.5 39 60.7 61.2 63.6 40 212 217 231 41 285 292 295 i 42 12.0 10.6 15.4 43 14.4 13.1 17.1		32	33.8	35.9	34.5
## 35 62.8 63.0 56.2 36 30.8 30.3 30.3 30.3 30.3 30.3 30.3 30.3		33	19.6	10.4	16.3
30 30.8 30.3 30	g	34	59.8	63.3	41.3
heth 37 18.4 18.1 18.8 38 31.3 34.7 34.5 39 60.7 61.2 63.6 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1	軸	35	62.8	63.0	56.2
h 38 31.3 34.7 34.5 39 60.7 61.2 63.6 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1		36	30.8	30.3	30.3
h 39 60.7 61.2 63.6 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1		37	18.4	18.1	18.8
軸 39 60.7 61.2 63.6 40 212 217 231 41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1		38	31.3	34.7	34.5
41 285 292 295 42 12.0 10.6 15.4 43 14.4 13.1 17.1		39	60.7	61.2	63.6
i 由 42 12.0 10.6 15.4 43 14.4 13.1 17.1		40	212	217	231
i 43 14.4 13.1 17.1		41	285	292	295
軸 43 14.4 13.1 17.1		42	12.0	10.6	15.4
44 22.0 21.4 23.8		43	14.4	13.1	17.1
注: ①工認モデル				21.4	23.8

注: ①工認モデル ②建屋剛性・地盤剛性 $(+\sigma)$ 考慮モデル ③建屋剛性・地盤剛性 $(-\sigma)$ 考慮モデル

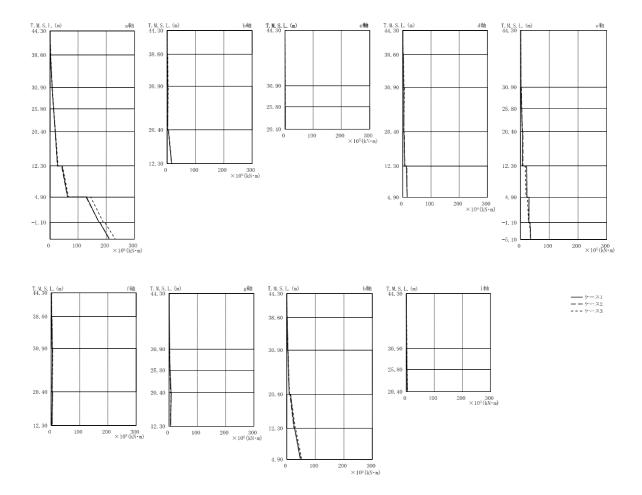


図 4-16 最大応答曲げモーメント (Ss-1, EW 方向)

表 4-10 最大応答曲げモーメント (Ss-1, EW 方向)

部	部材	最大応答曲げモーメント―覧表 (×10 ⁵ kN·m)		
位	番		(2)	
	号	0.323	0.308	③ 0.391
a 軸	1	2.00	1.90	2.42
	2	2.01 7.71	1.92 7.60	2.56 8.07
	3	7.71	7.63	8.06
		13.0 13.0	12.7 12.7	13.6 13.6
	4	18.9	18.4	19.7
	5	18.9	18.4 26.7	19.7
	c	27.3 43.0	41.2	28.9 43.9
	6	62.7	62.2	66.4 145
	7	130 174	128 174	145 190
	8	177 211	177 212	195 232
	10	0.555 0.611	0.474 0.883	0.639 1.59
	11	1.28	1.51	2.27
b 軸		1.68 2.61	2.24 3.06	3.34
	12	2.16	2.25	2.31
	13	4.87 16.0	4.90 16.2	4.71 16.5
	14	0.190 0.640	0.203 0.572	0.228 0.876
С	15	0.640	0.572	0.876
軸		0.847 1.12	0.751 1.06	1.14 1.75
	16	1.36	1.36	1.48
	17	0.606 1.17	0.591 1.38	0.621 1.54
	18	1.89	1.95	2.39
d	10	3.08 3.84	3.42 4.09	4.34 5.69
軸	19	3.94	4.03	3.91
	20	4.65 6.95	5.19 6.99	4.52 7.06
	21	13.1	14.3	12.9
		15.5 0.461	15.6 0.435	15.5 0.465
	22	1.36	1.78	1.93
	23	1.79 3.55	$\frac{2.72}{4.54}$	2.47 3.98
	24	3.61	4.62	4.11
e		6.27 7.57	6.79 8.34	5.96 7.81
軸	25	6.99	8.37	7.26
	26	21.4 22.4	21.3 22.4	16.9 19.4
	27	29.8	29.6	24.0
		29.2 33.2	29.3 33.6	27.8 31.6
	28	35.6	35.8	35.7
	29	0.583 1.27	$0.575 \\ 1.34$	0.811 1.56
	30	2.05	2.18	2.36
f 軸		3.62 4.38	3.67 4.86	4.28 5.28
-1214	31	3.35	3.34	3.73
	32	4.81 2.53	4.41 3.11	4.94 3.16
	33	0.591	0.490	0.422
		2.21 1.95	1.45 1.74	2.07 2.24
g	34	4.28	2.86	3.45
軸	35	4.36 7.35	2.96 5.69	3.57 5.20
	36	8.38 6.08	7.73 5.38	6.91 5.35
	37	0.316	0.307	0.357
	38	1.14 1.42	1.08 1.28	1.10
h		3.56 3.97	3.57 3.81	3.52 4.13
軸	39	8.16 12.9	8.35 11.1	9.07 12.9
	40	25.7	24.8	29.3
	41	27.0 47.4	27.3 48.8	30.7 52.2
	42	0.0819 1.62	0.0666 1.46	0.314 1.89
i 車由	43	1.65 2.26	1.48 2.10	2.01 2.68
	44	2.32	2.08	2.86
注:		<u>3.45</u> 認モデル	3.14	4.08
	~			

注: ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

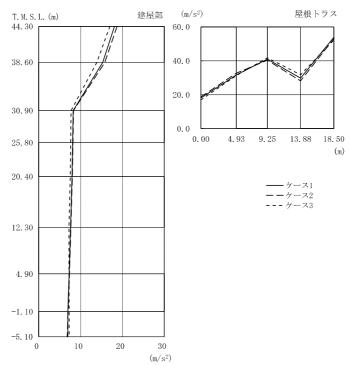


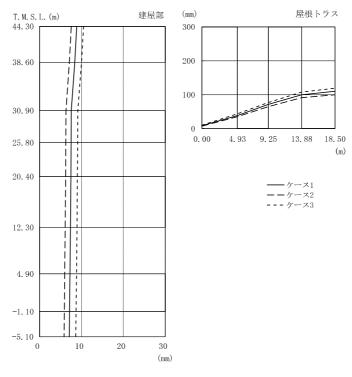
図 4-17 最大応答加速度 (Ss-1, 鉛直方向)

表 4-11 最大応答加速度 (Ss-1, 鉛直方向)

部 位	質点番号	最大応答加速度一覧表 (m/s²)			
		1	2	3	
建屋部	1	18.1	18.7	17.0	
	2	15.3	15.8	13.9	
	3	8.21	8.30	7.74	
	4	8.11	8.19	7.65	
	5	7.97	8.05	7.51	
	6	7.63	7.70	7.22	
	7	7.25	7.32	7.21	
	8	6.94	7.00	7.25	
	9	6.93	6.80	7.26	
屋根トラス	1	18.1	18.7	17.0	
	11	31.7	32.7	31.3	
	12	41.0	40.4	41.8	
	13	29.8	28.2	31.8	
	14	53.8	53.0	52.2	

②建屋剛性・地盤剛性(+ σ)考慮モデル

別紙 3-40



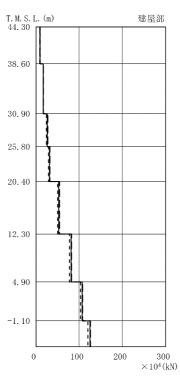

図 4-18 最大応答変位 (Ss-1, 鉛直方向)

表 4-12 最大応答変位 (Ss-1, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
137.	号	1	2	3
	1	8.86	7.56	10.5
	2	8.40	7.12	10.0
	3	7.56	6.31	9.12
建	4	7.52	6.27	9.08
屋	5	7.48	6.23	9.03
部	6	7.36	6.12	8.93
	7	7.25	6.02	8.82
	8	7.15	5.92	8.72
	9	7.09	5.85	8.65
	1	8.86	7.56	10.5
屋根	11	38.7	35.0	43.7
	12	71.8	65.2	77.4
トラス	13	100	91.4	108
	14	110	100	119

- ②建屋剛性・地盤剛性(+ σ)考慮モデル
- ③建屋剛性・地盤剛性(- σ)考慮モデル

別紙 3-41

___ ケース1__ ケース2__ ケース3

図 4-19 最大応答軸力 (Ss-1, 鉛直方向)

表 4-13 最大応答軸力 (Ss-1, 鉛直方向)

部 部 材 位 番		最大応答軸力一覧表 (×10 ⁴ kN)			
1	号	1	2	3	
	1	9.33	9.18	9.45	
	2	16.8	17.0	16.6	
	3	26.3	27.5	24.3	
建屋	4	31.2	32.6	28.8	
部	5	52.9	54.6	50.4	
	6	81.1	82.3	77.8	
	7	107	108	103	
	8	125	126	120	

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

③建屋剛性・地盤剛性(- σ)考慮モデル

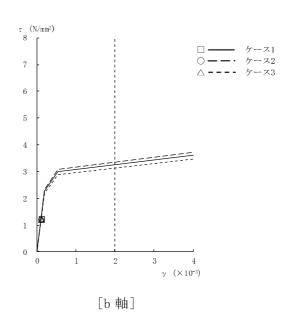


図 4-20 $\tau-\gamma$ 関係と最大応答値(Ss-1, NS 方向, 1F)(1/4)

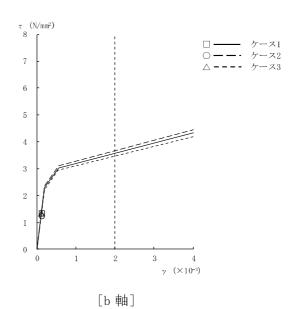


図 4-20 $\tau-\gamma$ 関係と最大応答値(Ss-1, NS 方向, B1F)(2/4)

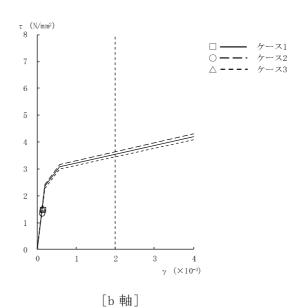
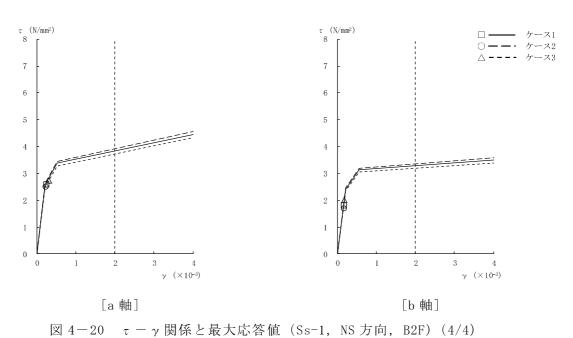



図 4-20 $\tau-\gamma$ 関係と最大応答値(Ss-1, NS 方向, MB2F)(3/4)

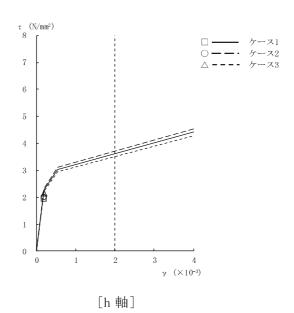
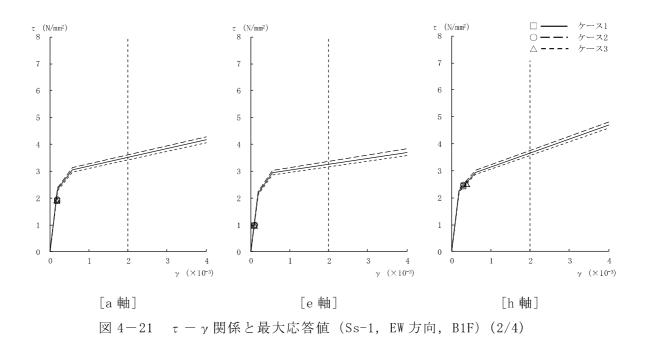



図 4-21 $\tau-\gamma$ 関係と最大応答値(Ss-1, EW 方向, 1F)(1/4)

別紙 3-45

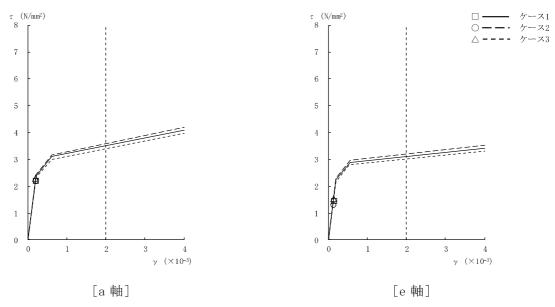


図 4-21 $\tau-\gamma$ 関係と最大応答値(Ss-1, EW 方向, MB2F)(3/4)

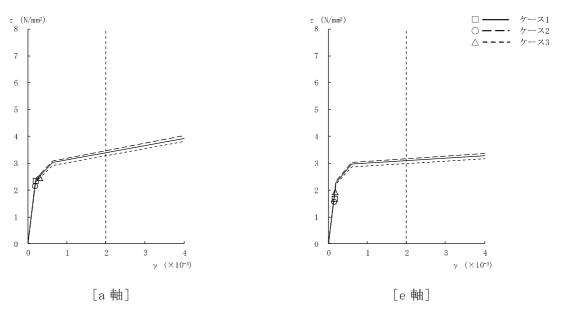


図 4-21 $\tau-\gamma$ 関係と最大応答値(Ss-1, EW 方向, B2F)(4/4)

表 4-14 地震応答解析結果に基づく接地率 (ケース 1)

(a) NS 方向

基準地震動S s	最大接地圧	最大転倒モーメント	最小接地率
	(kN/m²)	(×10 ⁶ kN·m)	(%)
Ss-1	738	38. 2	100.0

(b) EW 方向

基準地震動 S s	最大接地圧	最大転倒モーメント	最小接地率
	(kN/m²)	(×10 ⁶ kN·m)	(%)
Ss-1	718	31. 5	100.0

表 4-15 地震応答解析結果に基づく接地率 (ケース 2)

(a) NS 方向

基準地震動S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Ss-1	700	33.6	100.0

(b) EW 方向

基準地震動 S s	最大接地圧	最大転倒モーメント	最小接地率	
	(kN/m²)	(×10 ⁶ kN·m)	(%)	
Ss-1	721	32. 0	100.0	

表 4-16 地震応答解析結果に基づく接地率 (ケース 3)

(a) NS 方向

基準地震動 S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Ss-1	739	37. 7	100.0

(b) EW 方向

基準地震動 S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Ss-1	744	34. 5	100.0

4.2.2 建屋剛性の変動による影響

(1) 影響検討方針

建屋剛性を変動させた地震応答解析モデルにより固有値解析及び地震応答解析を実施し、基本ケースの結果と比較する。入力地震動は Ss-1 とする。建屋剛性は、基本ケース(実強度 $43.1 N/mm^2$)に対してコア強度平均($55.7 N/mm^2$)及び実強度 -2σ ($37.2 N/mm^2$)の変動を考慮する。なお、地盤剛性は基本ケースと同ーとする。

(2) 固有值解析結果

建屋剛性を変動させた地震応答解析モデルにより固有値解析を実施した。固有値解析結果を表 4-3,刺激関数図を図 $4-22\sim$ 図 4-27 に示す。表,図中においては基本ケースをケース 1,コンクリート強度をコア強度平均としたモデルをケース 4,実強度 -2σ としたモデルをケース 5 として示す。

基本ケースに対する建屋剛性を変動させたモデルの固有振動数の変動幅は, $\frac{-2\%}{0}$ $\frac{-2\%}{0}$ $\frac{-2\%}{0}$ 程度である。

表 4-17 固有値解析結果 (ケース 1, ケース 4, ケース 5)

(単位:Hz)

		NS方向			EW方向			鉛直方向	<u> </u>
次数	ケース1	ケース4	ケース5	ケース1	ケース4	ケース5	ケース1	ケース4	ケース5
1	2. 74	2. 81	2.71	2. 56	2.60	2. 53	2. 56	2. 57	2. 56
1	2.74	(1.03)	(0.99)	2. 50	(1.02)	(0.99)	2. 50	(1,00)	(1,00)
2	3. 40	3, 56	3, 35	3. 22	3, 35	3. 16	4. 32	4. 33	4. 32
2	5.40	(1.05)	(0.98)	0. 44	(1.04)	(0.98)	4. 32	(1.00)	(1.00)
3	4. 65	4. 69	4.64	3. 95	4.08	3. 90	11. 56	11. 57	11.56
J	4.00	(1.01)	(1.00)	ა. შე	(1.03)	(0.99)	11. 50	(1.00)	(1.00)
4	5, 52	5. 59	5. 45	4, 44	4. 54	4. 41	14. 22	14. 31	14. 18
-1	5.54	(1.01)	(0.99)	4. 44	(1.02)	(0.99)	14, 22	(1.01)	(1.00)
5	5. 63	5. 83	5. 59	5. 85	5. 95	5. 79	17, 75	18. 86	17. 33
3	0.00	(1.04)	(0.99)	0.00	(1.02)	(0.99)	17.70	(1.06)	(0.98)
6	7. 49	7. 57	7.46	6. 01	6. 25	5. 92	20. 62	20. 62	20.61
0	1.40	(1.01)	(1.00)	0, 01	(1.04)	(0.98)	20, 02	(1.00)	(1.00)
7	9. 18	9.64	8. 99	6. 56	6.71	6. 49	24. 70	24. 70	24.69
	J. 10	(1.05)	(0.98)	0.50	(1.02)	(0.99)	24.70	(1.00)	(1.00)
8	10. 89	10.96	10.86	6. 72	6.85	6. 68	28. 40	30. 07	27. 78
	10.00	(1.01)	(1.00)	0.12	(1.02)	(0.99)	20.40	(1.06)	(0.98)

注:()内は、ケース1に対する比率を示す。

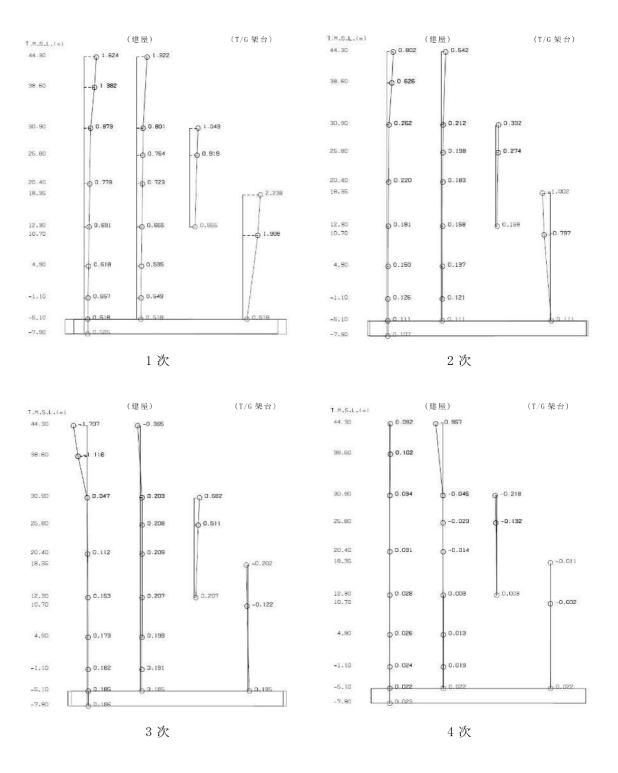


図 4-22 刺激関数図 (ケース 4) (NS 方向, Ss-1) (1/2)

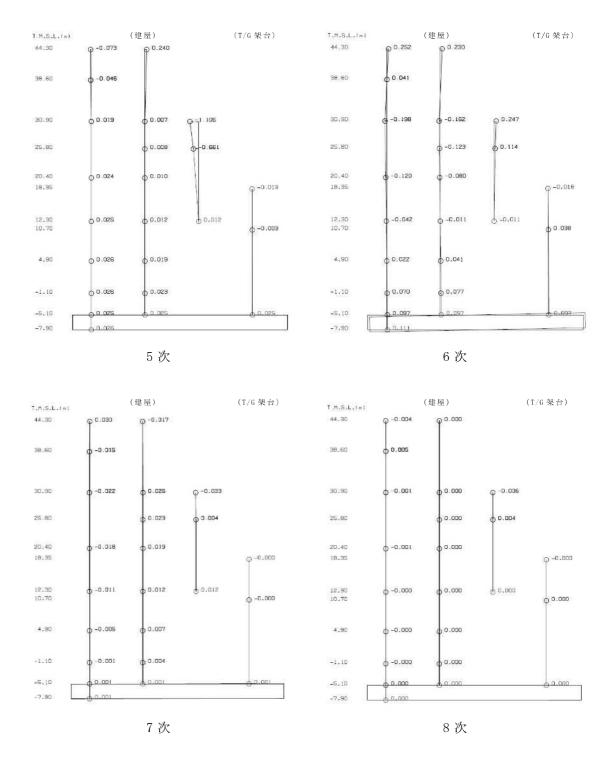
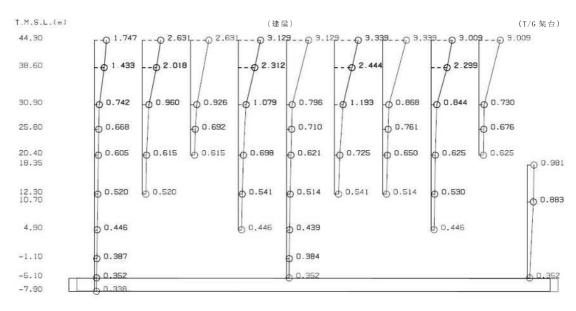



図 4-22 刺激関数図 (ケース 4) (NS 方向, Ss-1) (2/2)

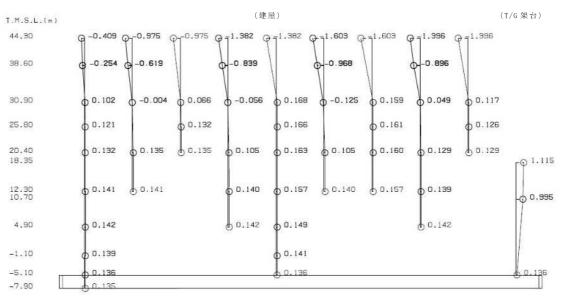
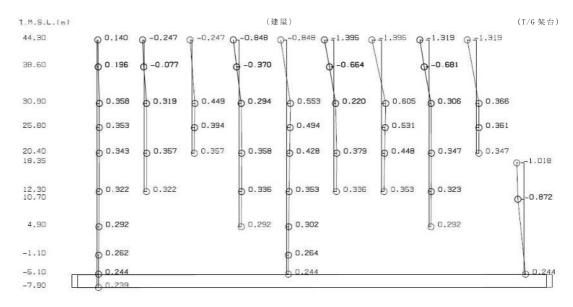



図 4-23 刺激関数図 (ケース 4) (EW 方向, Ss-1) (1/4)

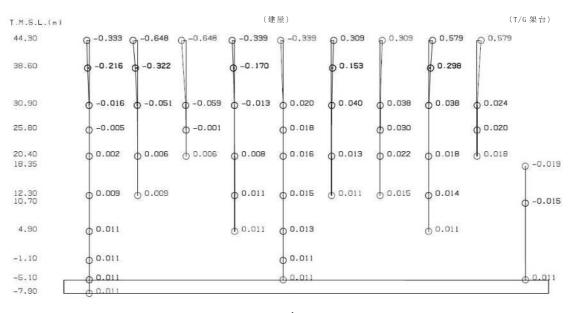
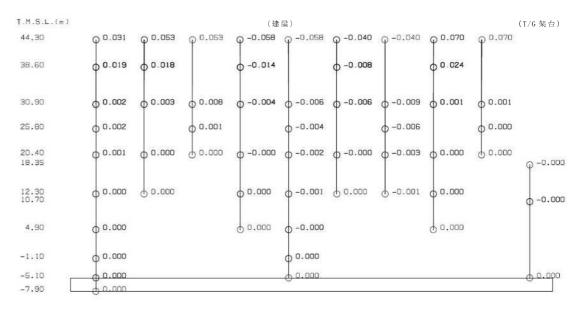



図 4-23 刺激関数図 (ケース 4) (EW 方向, Ss-1) (2/4)

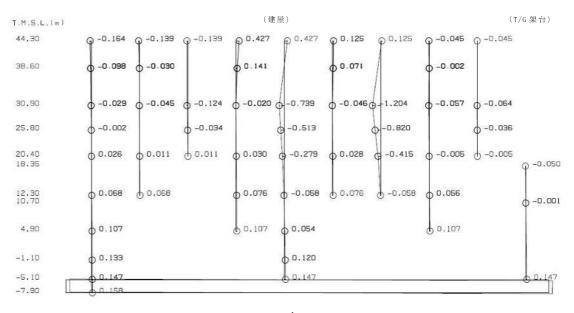
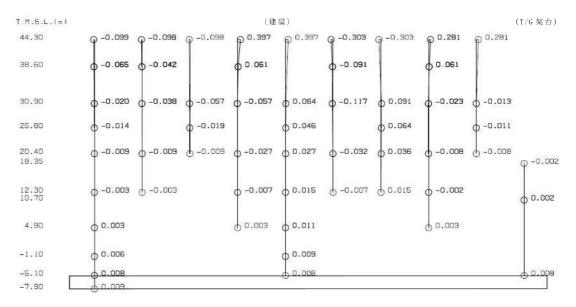



図 4-23 刺激関数図 (ケース 4) (EW 方向, Ss-1) (3/4)

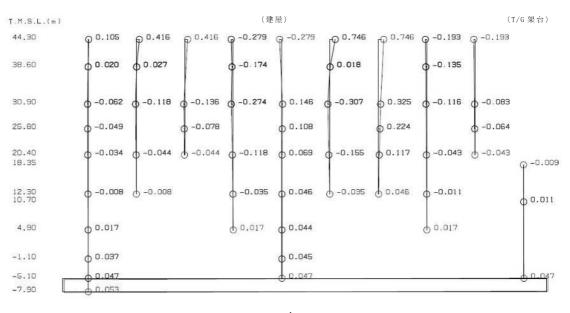


図 4-23 刺激関数図 (ケース 4) (EW 方向, Ss-1) (4/4)

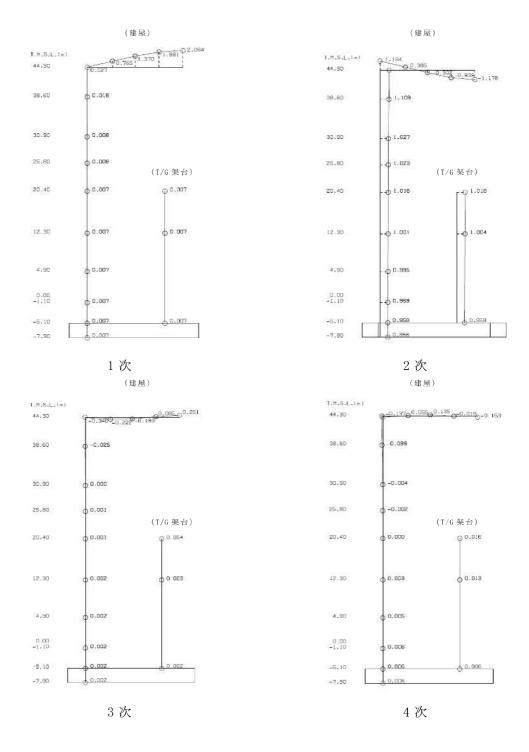


図 4-24 刺激関数図 (ケース 4) (鉛直方向, Ss-1) (1/2)

(建屋) (建屋) T.M.S.L.(m) T.M.5.L.(m) Q=0.007G^{0.004}G^{0.005}G^{0.003}G-0.008 g-0.0010^{0.017}0-0.0040-0.0200^{0.031} 44.30 44.30 ф-0.003 38.60 38.60 0-0,001 30.90 Φ 0.004 30.90 0-0.000 25.80 0.004 25.80 0-0.000 (T/G 架台) (T/G 架台) φ-0.027 20.40 0.004 20.40 0.000 φ-0.000 12.30 0.003 0.020 12.30 0.000 0.000 0.002 0.000 0.00 0.00 0.000 -5.10 -5.10 0.000 0.001 -7.90 -7.90 5 次 6 次 (建屋) (建屋) T.M.S.L.(m) T.M.S.L.(n) Q-0.00000.0170-0.01800.0110-0.008 44,30 0.001 39.60 0.013 38.60 0.000 90.90 30.90 -0.042 0-0.000 -0.037 25.80 (T/G 架台) (T/G 架台) φ-0.000 φ-0.000 20.40 20.40 0-0.029 12.30 0.000 -0.000 0-0.005 12.30 0-0.009 0.000 4.90 0.007 4.90 0.00 0.00 0.000 0.017 0.000 -5.10 -5.10 -7.90 -7.90 0.021 7次 8 次

図 4-24 刺激関数図 (ケース 4) (鉛直方向, Ss-1) (2/2)

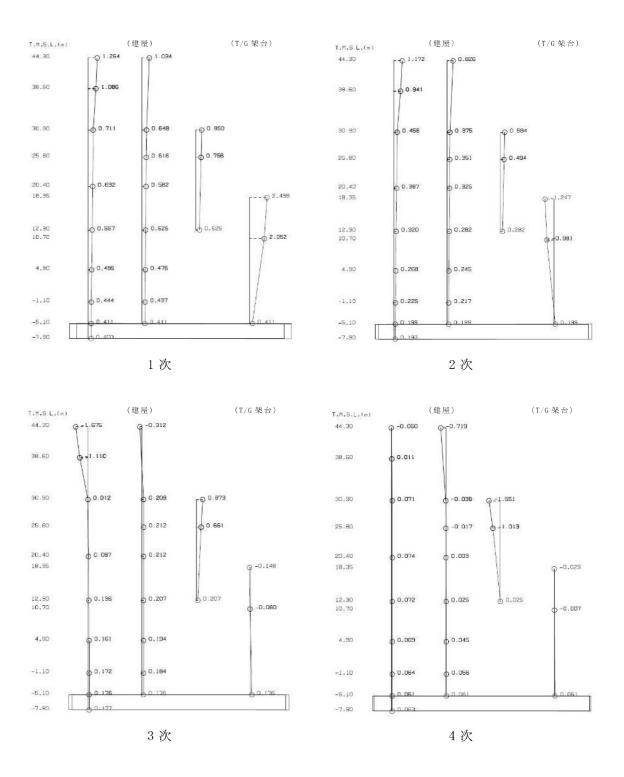


図 4-25 刺激関数図 (ケース 5) (NS 方向, Ss-1) (1/2)

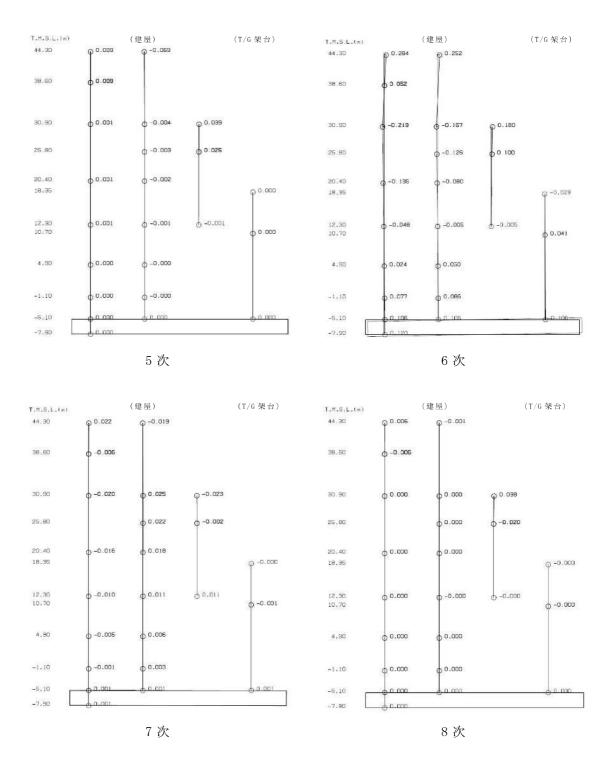
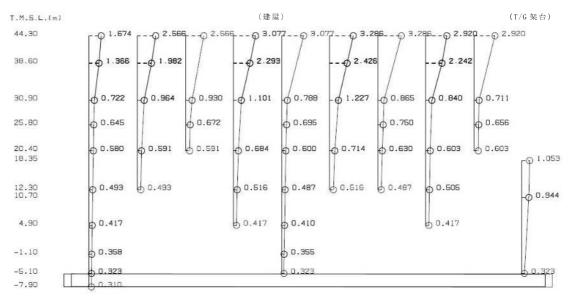



図 4-25 刺激関数図 (ケース 5) (NS 方向, Ss-1) (2/2)

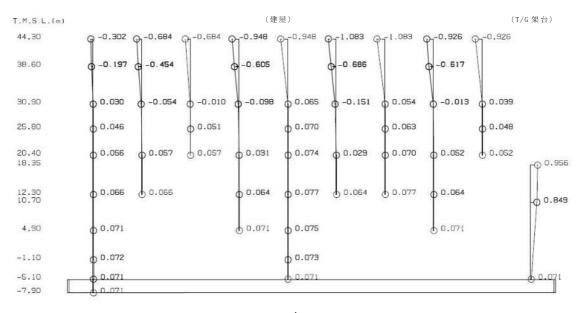
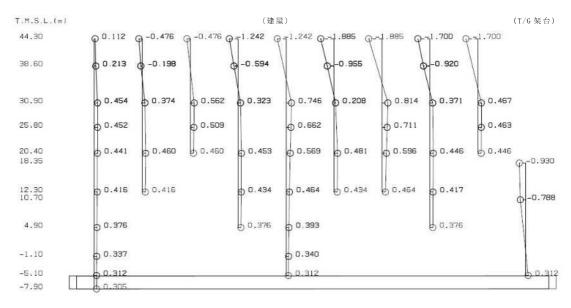



図 4-26 刺激関数図 (ケース 5) (EW 方向, Ss-1) (1/4)

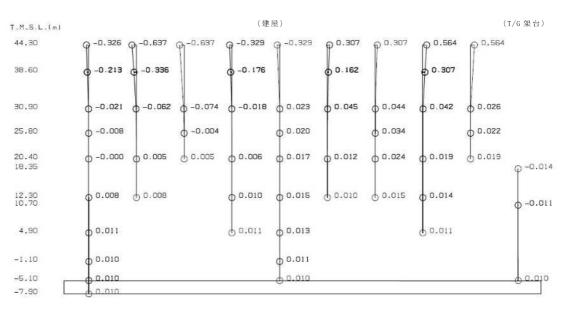


図 4-26 刺激関数図 (ケース 5) (EW 方向, Ss-1) (2/4)

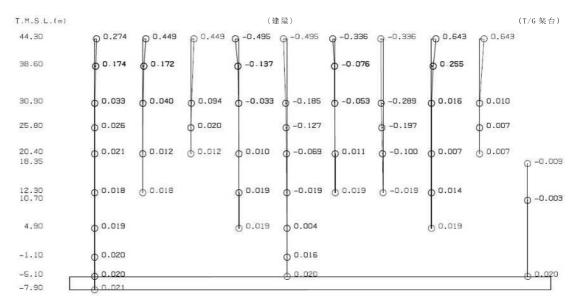
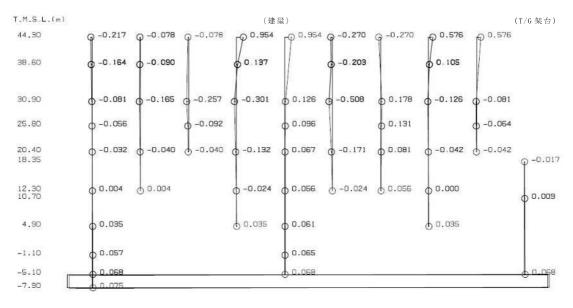



図 4-26 刺激関数図 (ケース 5) (EW 方向, Ss-1) (3/4)

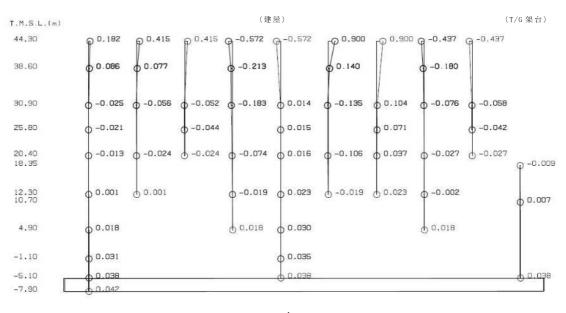


図 4-26 刺激関数図 (ケース 5) (EW 方向, Ss-1) (4/4)

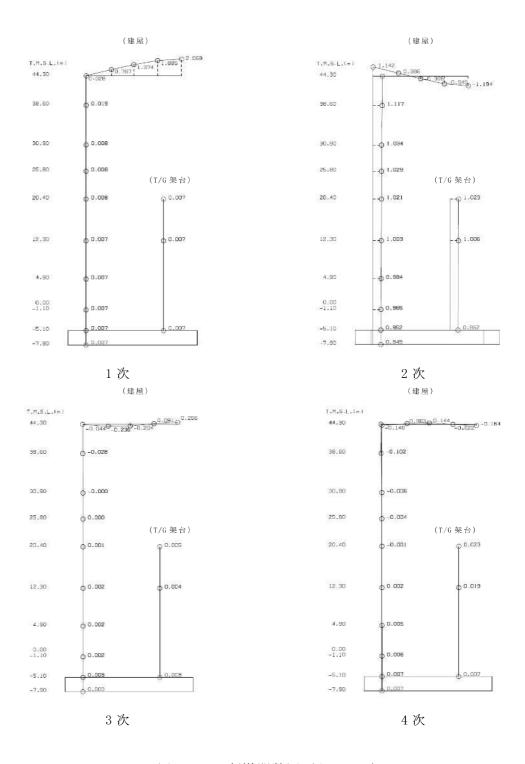


図 4-27 刺激関数図 (ケース 5) (鉛直方向, Ss-1) (1/2)

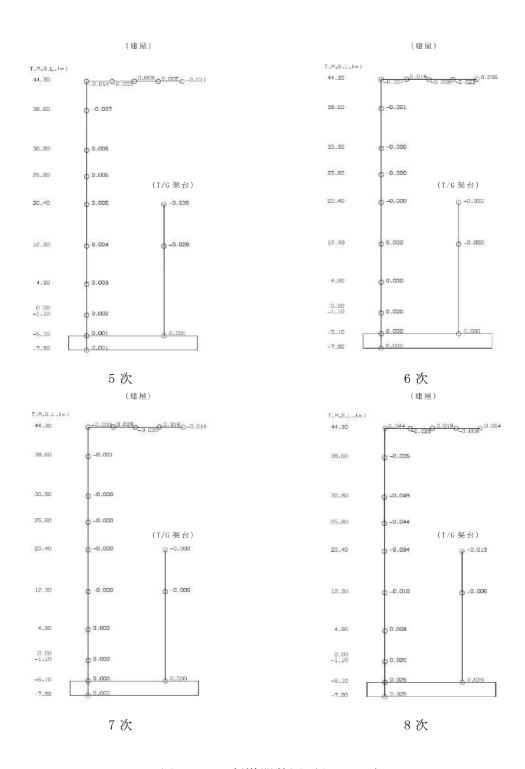


図 4-27 刺激関数図 (ケース 5) (鉛直方向, Ss-1) (2/2)

(3) 地震応答解析結果

建屋剛性を変動させた地震応答解析モデルによる地震応答解析結果を基本ケースの結果と比較した。入力地震動は Ss-1 とする。最大応答値の比較を図 4 -28 \sim 図 4-40 及び表 4-18 \sim 表 4-28 に示す。また,接地率を表 4-29 \sim 表 4-31 に示す。

水平方向について、ケース 1、4、5 の最大応答加速度、最大応答せん断力、 最大応答曲げモーメント、最大せん断ひずみは概ね同等である。最大応答変位 については、ケース 4 で小さくなり、ケース 5 で大きくなる傾向であることを 確認した。

鉛直方向についても、水平方向と同様にケース 1, 4, 5 の最大応答加速度、最大応答軸力は概ね同等であり、最大応答変位については、ケース 4 で小さくなり、ケース 5 で大きくなる傾向であることを確認した。

これらは、建屋剛性が大きくなる側に変動する場合は、剛性の増加に伴い変位は小さくなり、小さくなる側に変動する場合は、剛性の減少に伴い変位は大きくなったと考えられる。

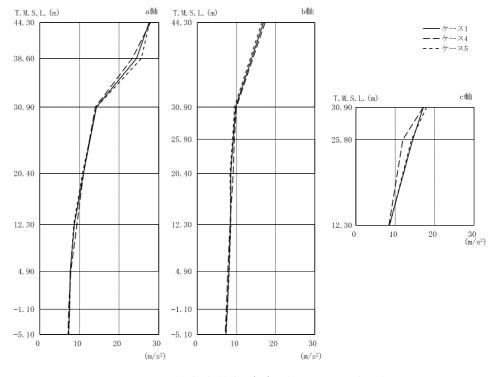


図 4-28 最大応答加速度 (Ss-1, NS 方向)

表 4-18 最大応答加速度 (Ss-1, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)			
127.	号	1	4	5	
	1	27.6	27.9	27.7	
	3	24.4	23.3	25.6	
	4	14.3	14.0	14.3	
a 軸	9	11.0	11.0	10.8	
Т	11	8.73	9.36	8.57	
	13	7.69	7.85	7.75	
	15	7.51	7.29	7.56	
	2	16.9	17.3	16.5	
	5	9.77	9.96	9.50	
	7	9.18	9.43	8.98	
b	10	8.55	9.18	8.34	
軸	12	8.48	8.37	8.56	
	14	8.07	7.77	8.14	
	16	7.66	7.41	7.69	
	17	7.29	7.13	7.32	
С	6	17.1	17.1	17.9	
軸	8	14.4	11.9	14.1	

④建屋剛性(コア強度平均)考慮モデル

別紙 3-67

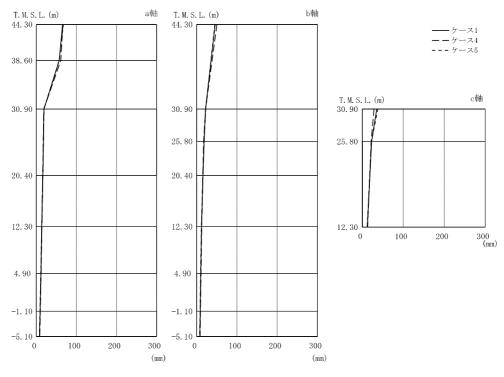


図 4-29 最大応答変位 (Ss-1, NS 方向)

表 4-19 最大応答変位 (Ss-1, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
135	号	1	4	5
	1	65.5	66.4	67.5
	3	56.8	60.9	56.8
	4	19.1	18.5	19.2
a 軸	9	16.3	16.1	16.3
	11	13.5	13.7	13.4
	13	11.3	11.7	11.1
	15	9.29	9.88	8.97
	2	46.2	50.5	45.5
	5	22.2	22.2	22.6
	7	18.8	17.4	18.9
b	10	15.9	15.4	15.6
軸	12	12.2	12.9	11.9
	14	10.4	11.1	10.0
	16	8.96	9.68	8.55
	17	7.93	8.66	7.53
С	6	35.4	28.7	37.8
軸	8	22.8	21.5	22.4

④建屋剛性(コア強度平均)考慮モデル

別紙 3-68

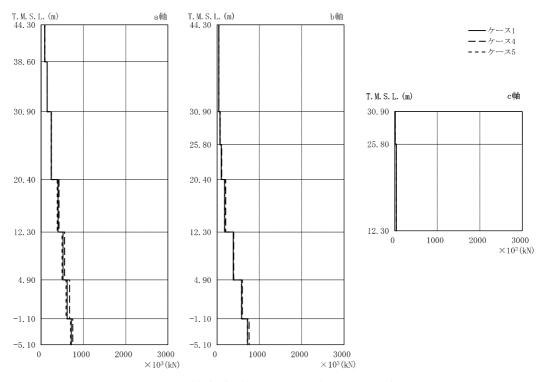


図 4-30 最大応答せん断力 (Ss-1, NS 方向)

表 4-20 最大応答せん断力 (Ss-1, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)			
111.	号	1	4	5	
	1	86.3	85.9	86.4	
	2	145	145	145	
	3	241	239	240	
a 軸	4	401	425	383	
	5	519	554	498	
	6	617	674	589	
	7	716	751	697	
	9	41.2	41.2	41.2	
	10	70.4	74.4	71.9	
	11	99.4	110	102	
b 軸	12	180	205	179	
	13	384	396	382	
	14	581	601	581	
	15	718	758	718	
С	16	10.8	10.8	10.8	
軸	17	38.0	35.9	37.3	

注: ①工認モデル

④建屋剛性(コア強度平均)考慮モデル

⑤建屋剛性(-2σ)考慮モデル

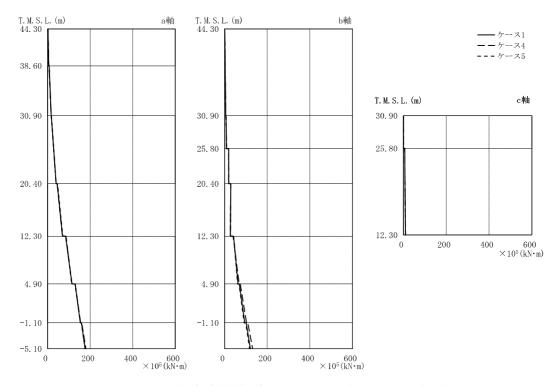


図 4-31 最大応答曲げモーメント (Ss-1, NS 方向)

表 4-21 最大応答曲げモーメント (Ss-1, NS 方向)

部位	部材番号	最大応答曲げモーメント一覧表 $(\times 10^5 \mathrm{kN}\cdot \mathrm{m})$		
		1	4	5
	1	1.27 5.18	1.19 5.12	1.29 5.16
	2	7.18 16.4	6.60 16.4	6.71 16.4
	3	16.7 39.8	16.7 39.8	16.7 39.6
a 軸	4	44.8 69.7	44.4 69.0	46.3 71.2
	5	84.3 114	85.3 114	86.7 113
	6	129 153	129 155	128 154
	7	159 176	160 180	159 175
	9	0.673 5.54	0.619 5.53	0.681 5.55
	10	6.44 9.14	6.32 9.17	6.26 9.16
	11	19.5 19.3	18.2 18.7	19.5 19.7
b 軸	12	29.3 26.8	29.5 27.0	29.3 26.7
	13	41.9 63.4	40.2 68.7	42.7 61.0
	14	68.9 94.7	73.5 103	67.6 91.6
	15	101 121	109 131	99.1 117
c 軸	16	0.272 0.638	0.317 0.646	0.294 0.630
	17	6.30 9.76	5.70 9.78	6.32 9.77

④建屋剛性(コア強度平均)考慮モデル

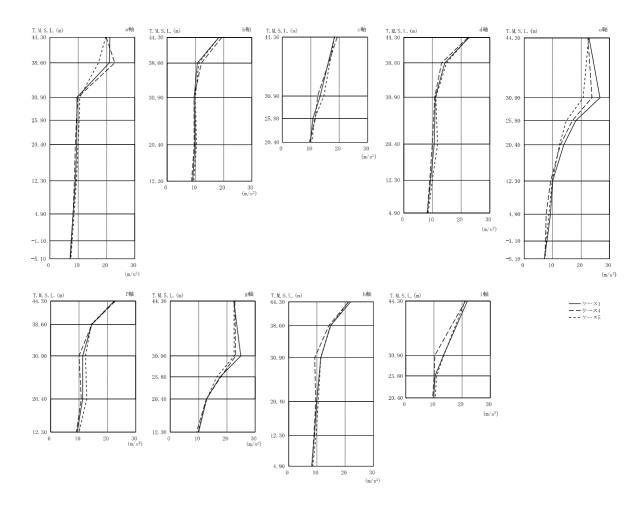


図 4-32 最大応答加速度 (Ss-1, EW 方向)

表 4-22 最大応答加速度 (Ss-1, EW 方向)

部	質占	最大応答加速度一覧表		
位	点番		(m/s^2)	
	号	1	4	5
	1	21.2	19.9	19.7
	6	21.0	22.9	17.1
	11	9.53	9.88	10.5
	20	9.55	9.37	10.3
a 軸	25	9.42	8.95	9.93
	32	9.02	8.64	9.39
	36	8.19	8.20	8.52
	38	7.50	7.62	7.81
	40	7.10	7.23	7.40
	2	18.3	19.3	18.3
b	7	10.7	12.1	11.2
軸	12	9.57	9.52	9.96
	26	9.85	9.55	10.4
С	19	13.3	12.4	14.6
軸	21	10.7	11.6	11.3
	3	22.8	22.4	22.6
	8	14.3	13.2	14.9
d 軸	13	11.0	10.8	11.2
,,,,	27	10.6	9.98	11.8
	33	9.34	9.08	9.98
	18	26.6	23.8	20.7
	22	18.1	16.9	14.8
е	31	13.9	12.7	12.4
軸	35	9.98	9.29	9.84
	37	9.22	7.74	8.65
	39	7.98	7.48	7.76
	4	22.4	22.8	22.5
f	9	14.5	14.5	14.3
軸	14	11.3	10.0	12.3
	28	11.3	10.8	12.7
	17	24.9	23.1	22.6
g 軸	23	17.6	17.8	16.4
) ja	30	12.8	12.7	12.9
	5	21.9	21.2	21.1
	10	14.8	14.2	14.9
h 軸	15	11.4	9.22	11.3
	29	9.90	9.55	10.5
	34	9.12	8.94	9.68
i	16	13.4	10.3	13.5
i	10			l

④建屋剛性(コア強度平均)考慮モデル

図 4-33 最大応答変位 (Ss-1, EW 方向)

表 4-23 最大応答変位 (Ss-1, EW 方向)

部	質点	最大応答変位一覧表 (mm)		
位	番号	(Ī)	(<u>4</u>)	(5)
	1	83.1	88.8	79.3
	6	69.2	75.2	65.0
	11	22.3	19.7	23.0
	20	16.3	14.6	17.4
a 軸	25	14.4	13.1	15.3
中田	32	12.0	11.1	12.8
	36	9.72	9.14	10.0
	38	7.84	7.53	7.96
	40	6.65	6.47	6.58
	2	131	135	128
b	7	93.0	94.2	92.2
軸	12	36.5	33.1	39.1
	26	15.2	14.3	16.6
с	19	32.2	29.6	33.1
軸	21	20.7	20.0	22.0
	3	180	160	167
,	8	114	106	110
d 軸	13	43.8	40.7	46.3
	27	20.8	19.1	23.6
	33	13.5	12.5	15.1
	18	72.4	50.6	69.4
	22	42.6	36.6	43.5
е	31	24.6	23.2	22.4
軸	35	14.1	12.9	15.2
	37	10.8	9.87	11.3
	39	8.03	7.67	8.09
	4	188	163	172
f	9	122	114	119
軸	14	47.7	44.7	50.5
	28	21.4	19.4	24.5
œ	17	96.8	55.0	58.8
g 軸	23	55.8	39.2	38.5
	30	25.0	23.5	23.6
	5	175	170	175
h 軸	10	121	116	122
	15	44.9	41.4	47.3
	29	15.0	13.9	16.3
	34	12.2	11.3	13.0
i 軸 注·	16	19.5	17.1	21.2
	24	17.0 認モデル	15.3	18.5

④建屋剛性(コア強度平均)考慮モデル

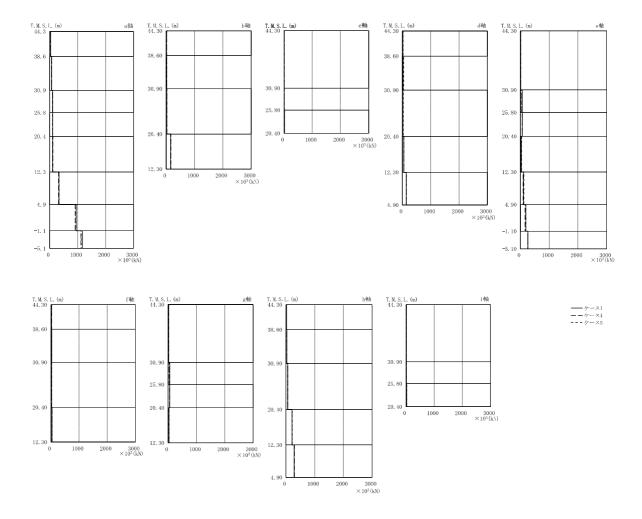


図 4-34 最大応答せん断力 (Ss-1, EW 方向)

表 4-24 最大応答せん断力 (Ss-1, EW 方向)

部位	部材	最大応答せん断力一覧表 (×10 ³ kN)		
	番号	(1)	4)	(5)
	1	35.1	35.7	34.3
	2	74.2	74.3	74.2
	3	105	107	104
a	4	110	112	108
軸	5	108	117	109
	6	335	319	335
	7	946	917	947
	8	1170	1120	1130
	10	9.14	16.6	13.0
b	11	14.5	17.1	22.7
軸	12	21.4	25.0	28.7
	13	156	171	154
	14	4.56	4.90	4.36
c 軸	15	5.56	5.87	5.48
714	16	20.2	20.4	19.6
	17	16.6	17.2	25.2
	18	24.1	19.4	40.6
d 軸	19	22.6	21.6	29.4
114	20	49.4	48.8	47.8
	21	134	135	137
	22	10.9	11.5	12.6
	23	65.3	43.3	46.5
	24	63.8	57.9	57.9
e 軸	25	32.8	34.2	43.6
	26	109	93.3	124
	27	188	164	188
	28	261	253	258
	29	20.5	21.4	20.5
f	30	28.4	30.6	27.6
軸	31	25.7	26.7	28.5
	32	33.8	37.3	34.0
	33	19.6	11.9	12.1
g	34	59.8	36.5	47.1
軸	35	62.8	56.2	58.1
	36	30.8	21.7	29.2
	37	18.4	17.6	17.4
上譯	38	31.3	31.2	32.4
	39	60.7	62.7	59.8
	40	212	210	214
	41	285	293	284
	42	12.0	11.8	11.5
i 軸	43	14.4	13.3	13.7
	44	22.0	20.0	22.0
注:	(I) II.	認モデル	_	

注: ①工認モデル ④建屋剛性(コア強度平均)考慮モデル ⑤建屋剛性(ー2σ)考慮モデル



図 4-35 最大応答曲げモーメント (Ss-1, EW 方向)

表 4-25 最大応答曲げモーメント (Ss-1, EW 方向)

涪	部材		曲げモーメ ×10 ⁵ kN・n	
位	番号	①	(4)	5
	1	0.323	0.329	0.315
		2.00	2.03	1.95 1.97
	2	7.71	7.75	7.67
	3	7.71 13.0	7.76 13.2	7.68 12.9
	4	13.0	13.2	12.9
a 軸	-	18.9 18.9	19.1 19.1	18.7 18.7
	5	27.3 43.0	27.9 43.4	27.4 41.6
	6	62.7	65.1	63.2
	7	130 174	130 169	138 177
	8	177 211	178 212	183 212
	10	0.555 0.611	0.519 0.966	0.448 0.678
b	11	1.28	1.67	1.34
軸	12	2.61	2.36 3.17	3.11
	13	2.16 4.87	2.24 4.62	2.17 4.85
	14	16.0 0.190	16.1 0.214	16.0 0.211
с		0.640 0.640	0.726 0.726	0.607 0.607
軸	15	0.847	0.937	0.815
	16	1.12 1.36	$\frac{1.28}{1.41}$	1.19 1.36
	17	0.606 1.17	0.521 1.13	0.710 1.78
	18	1.89	1.89	2.39
d	19	3.08 3.84	2.87 4.08	4.67 5.30
軸		3.94 4.65	3.95 4.42	4.20 4.96
	20	6.95	7.15 12.2	6.80
	21	13.1 15.5	15.7	13.1 15.5
	22	0.461 1.36	0.389 1.49	0.498 1.75
	23	1.79	1.69	2.37
	24	3.55 3.61	3.20 3.27	3.87 3.97
е		6.27 7.57	5.69 7.23	6.08 8.16
軸	25	6.99	7.07 20.8	7.50
	26	21.4 22.4	22.1	17.8 20.8
	27	29.8 29.2	29.0 30.4	25.6 29.3
	28	33.2	33.7	31.9
	29	35.6 0.583	35,5 0.526	35.4 0.677
		1.27 2.05	1.36 1.92	1.39 2.38
f 軸	30	3.62	3.94	3.57 5.07
押間	31	4.38 3.35	4.58 3.39	3.40
	32	4.81 2.53	4.75 2.59	4.92 2.69
	33	0.591	0.415 1.48	0.417
	34	2.21 1.95	1.74	1.66
g 軸	35	4.28 4.36	2.94 3.03	2.97 3.06
		7.35 8.38	5.03 7.06	5.43 7.36
	36	6.08 0.316	5.37 0.303	5.35 0.282
	37	1.14 1.42	1.13 1.36	1.13
l-	38	3.56	3.63	3.49
h 軸	39	3.97 8.16	4.04 8.10	3.98 8.21
	40	12.9 25.7	12.7 26.2	12.6 26.3
	41	27.0 47.4	28.9 46.4	28.6 46.8
	42	0.0819 1.62	0.0600 1.63	0.0767 1.59
i 軸	43	1.65 2.26	1.65 2.28	1.62 2.22
押田	44	2.32	2.25	2.27
注:		3.45 認モデル	3.17	3.34

注: ①工認モデル ④建屋剛性(コア強度平均)考慮モデル ⑤建屋剛性(-2 σ)考慮モデル

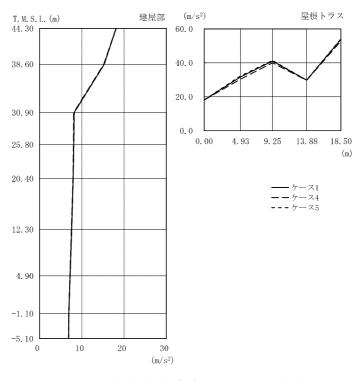


図 4-36 最大応答加速度 (Ss-1, 鉛直方向)

表 4-26 最大応答加速度 (Ss-1, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
137.	号	1	4	5
	1	18.1	18.1	18.1
	2	15.3	15.2	15.3
	3	8.21	8.10	8.22
建	4	8.11	8.03	8.12
屋	5	7.97	7.92	7.97
部	6	7.63	7.55	7.63
	7	7.25	7.22	7.25
	8	6.94	6.95	6.94
	9	6.93	6.89	6.95
	1	18.1	18.1	18.1
屋根	11	31.7	30.4	32.3
	12	41.0	40.0	41.4
トラス	13	29.8	29.7	29.8
	14	53.8	52.8	54.1

④建屋剛性(コア強度平均)考慮モデル

⑤建屋剛性(-2σ)考慮モデル

別紙 3-79

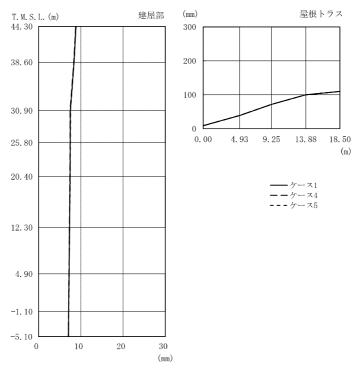
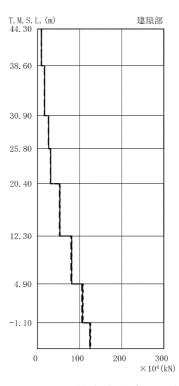


図 4-37 最大応答変位 (Ss-1, 鉛直方向)


表 4-27 最大応答変位 (Ss-1, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
127.	号	1	4	5
	1	8.86	8.81	8.88
	2	8.40	8.34	8.43
	3	7.56	7.49	7.59
建	4	7.52	7.46	7.55
屋	5	7.48	7.42	7.50
部	6	7.36	7.32	7.38
	7	7.25	7.22	7.26
	8	7.15	7.14	7.16
	9	7.09	7.08	7.10
1	1	8.86	8.81	8.88
屋根	11	38.7	38.9	39.0
	12	71.8	71.8	71.8
トラス	13	100	100	100
	14	110	110	110

④建屋剛性(コア強度平均)考慮モデル

⑤建屋剛性(-2σ)考慮モデル

別紙 3-80

−− ケース1− − ケース4− − ケース5

図 4-38 最大応答軸力 (Ss-1, 鉛直方向)

表 4-28 最大応答軸力 (Ss-1, 鉛直方向)

部位	部材番	最大応答軸力一覧表 (×10 ⁴ kN)		
1.27.4	号	1	4	5
	1	9.33	9.10	9.39
	2	16.8	16.2	17.0
		26.3	25.9	26.5
建屋		31.2	30.6	31.4
部	5	52.9	51.8	53.2
	6	81.1	79.4	81.6
	7	107	105	108
	8	125	124	126

注: ①工認モデル

④建屋剛性(コア強度平均)考慮モデル

⑤建屋剛性(-2σ)考慮モデル

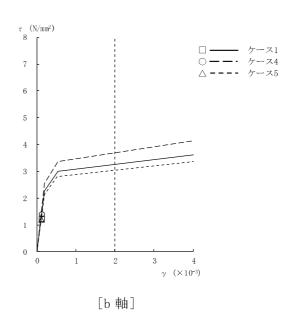


図 4-39 $\tau-\gamma$ 関係と最大応答値(Ss-1, NS 方向, 1F)(1/4)

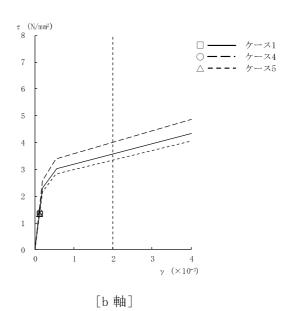


図 4-39 $\tau-\gamma$ 関係と最大応答値(Ss-1, NS 方向, B1F)(2/4)

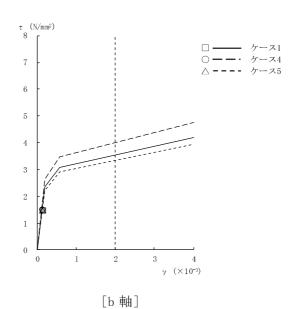


図 4-39 $\tau-\gamma$ 関係と最大応答値(Ss-1, NS 方向, MB2F)(3/4)

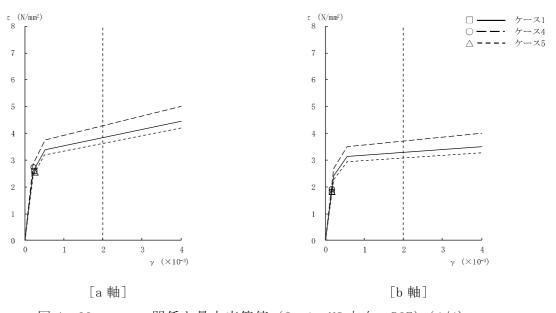


図 4-39 $\tau-\gamma$ 関係と最大応答値(Ss-1, NS 方向, B2F)(4/4)

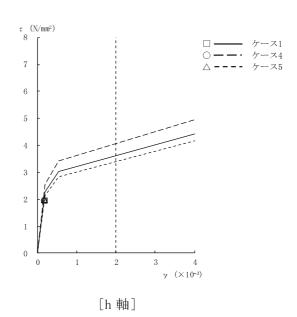
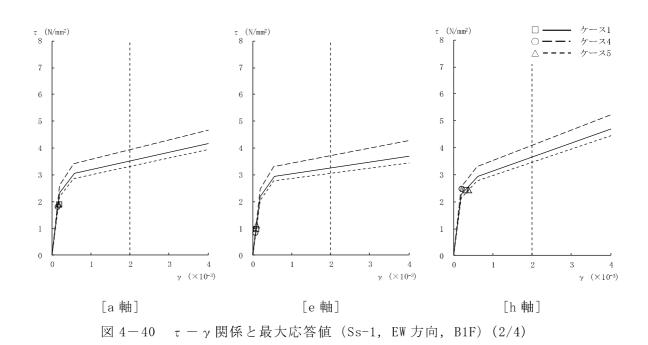



図 4-40 $\tau-\gamma$ 関係と最大応答値(Ss-1, EW 方向, 1F)(1/4)

別紙 3-84

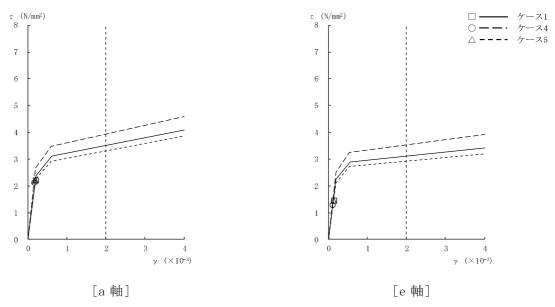


図 4-40 $\tau-\gamma$ 関係と最大応答値(Ss-1, EW 方向, MB2F)(3/4)



図 4-40 $\tau-\gamma$ 関係と最大応答値(Ss-1, EW 方向, B2F)(4/4)

表 4-29 地震応答解析結果に基づく接地率 (ケース 1)

(a) NS 方向

基準地震動 S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Ss-1	738	38. 2	100.0

(b) EW 方向

基準地震動 S s	最大接地圧	最大転倒モーメント	最小接地率	
	(kN/m²)	(×10 ⁶ kN·m)	(%)	
Ss-1	718	31. 5	100.0	

表 4-30 地震応答解析結果に基づく接地率 (ケース 4)

(a) NS 方向

基準地震動S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)	
Ss-1	729	37. 0	100.0	

(b) EW 方向

基準地震動 S s	最大接地圧	最大転倒モーメント	最小接地率
	(kN/m²)	(×10 ⁶ kN·m)	(%)
Ss-1	748	33. 7	100.0

表 4-31 地震応答解析結果に基づく接地率 (ケース 5)

(a) NS 方向

基準地震動 S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Ss-1	736	38. 2	100.0

(b) EW 方向

基準地震動 S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Ss-1	716	31. 5	100.0

4.3 まとめ

建屋剛性及び地盤剛性の不確かさを考慮した地震応答解析結果より,以下の傾向 を確認した。

- 建屋剛性及び地盤剛性の不確かさ
 - ・発生応力は基本ケースと概ね同等である。
 - ・建屋剛性及び地盤剛性を大きくなる側(実強度 $+\sigma$, 地盤剛性 $+\sigma$)に変動させたケースの変位は基本ケースより小さく、小さくなる側(実強度 $-\sigma$, 地盤剛性 $-\sigma$)に変動させたケースの変位は基本ケースより大きい。

■ 建屋剛性の不確かさ

- ・発生応力は基本ケースと概ね同等である。
- ・建屋剛性を大きくなる側(コア強度平均)に変動させたケースの変位は基本ケースより小さく、小さくなる側(実強度 -2σ)に変動させたケースの変位は基本ケースより大きい。

地震応答解析結果の傾向については、以下の理由により発生したと考えられる。

建屋剛性及び地盤剛性の不確かさを考慮したケースについては、発生応力は変動があるものの概ね同等であり、建屋一地盤連成モデルの剛性が変化するため、変位は変動する。建屋剛性及び地盤剛性が大きくなる側に変動する場合は、モデル剛性の増加に伴い変位は小さくなり、小さくなる側に変動する場合は、モデル剛性の減少に伴い変位は大きくなったと考えられる。

以上より、「2. 材料物性の不確かさの分析」にて考察した傾向を地震応答解析結果により確認した。

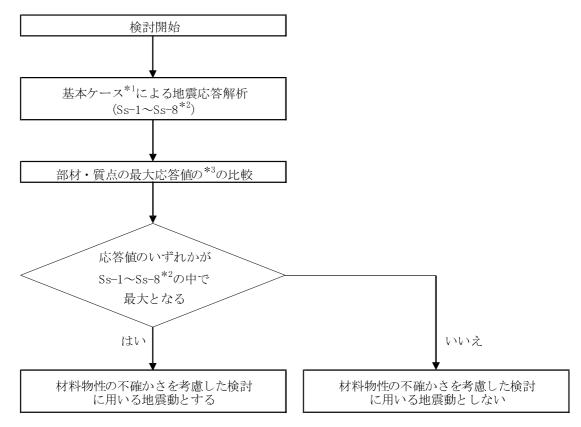
5. 機器・配管系評価への影響

材料物性の不確かさは、設計用床応答曲線等において、表 4-1 に示す全ての検討ケースの地震応答解析の結果を包絡させることにより考慮している。

別紙3-1 材料物性の不確かさを考慮した検討に用いる地震動の 選定について

目 次

1.	概要	別紙 3-1-1
2.	選定方法 ·····	別紙 3-1-1
3.	地震動の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 3-1-3
4.	材料物性の不確かさを考慮した検討に用いる地震動	別紙 3-1-12


1. 概要

材料物性の不確かさの考慮にあたっては、建屋及び地震動(基準地震動Ssまたは弾性設計用地震動Sd)ごとの基本ケースにおける建屋応答を確認したうえで、建屋応答への影響の大きい波に対して検討を実施する。本資料では、材料物性の不確かさを考慮した検討に用いる地震動の選定方法および地震動の選定結果について説明する。

2. 選定方法

材料物性の不確かさを考慮した検討に用いる地震動の選定方法を以下に示す。また、 選定方法のフローを図 2-1 に示す。

- ①基本ケース (コンクリート強度:実強度 (43.1N/mm²), 地盤のせん断波速度:標準地盤)による地震応答解析を行う。
- ②地震応答解析結果より、部材及び質点の最大応答値の比較を行う。ここで用いる 応答値は、基準地震動 S s については、加速度、変位、せん断力、曲げモーメン ト、軸力及びせん断ひずみとし、弾性設計用地震動 S d については、加速度、変 位、せん断力、曲げモーメント及び軸力とする。
- ③応答値のいずれかが基準地震動 S s あるいは弾性設計用地震動 S d の中で最大となる波を、材料物性の不確かさを考慮した検討に用いる地震動とする。

注記*1: コンクリート 強度: 実強度, 地盤のせん断波速度: 標準地盤, RC造部の減衰定数: 5%

*2: 弾性設計用地震動 S d による不確かさ検討に用いる地震動の選定の際は,「Ss-1~Ss-8」を「Sd-1~Sd-8」に読み替える。

*3: 応答値は, 基準地震動 S s については, 加速度, 変位, せん断力, 曲げモーメント, 軸力及びせん断ひずみとし, 弾性設計用地震動 S d については, 加速度, 変位, せん断力, 曲げモーメント 及び軸力とする。

図 2-1 材料物性の不確かさを考慮した検討に用いる地震動の選定法のフロー

3. 地震動の選定

タービン建屋は、基準地震動Ssに対する不確かさを考慮した解析を全波において実施しているため、ここでは弾性設計用地震動Sdに対する地震動の選定結果を記載する。タービン建屋の弾性設計用地震動Sdに対する応答を表 3-1~表 3-11に示す。なお,表 3-1~表 3-11は「タービン建屋の地震応答解析」に記載の表であり,最大値を網掛けとしている。

「2. 選定方法」に基づき確認した結果、Sd-1、Sd-2、Sd-3、Sd-6 及び Sd-7 については、応答値のいずれかが $Sd-1\sim Sd-8$ の中で最大となることから、不確かさ検討に用いる地震動とする。

表 3-1 最大応答加速度一覧表 (弾性設計用地震動 S d, NS 方向)

部	質点	点 ↓							
位	番号	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Sd-7	Sd-8
	1	18.9	23.7	11.2	8.78	6.98	8.89	7.08	11.5
	3	14.2	14.8	8.58	6.38	4.89	6.54	4.91	8.59
	4	7.47	4.80	4.04	2.30	2.64	2.28	2.70	4.30
a 軸	9	6.51	3.93	3.98	2.02	2.37	2.03	2.42	3.79
1 144	11	5.23	3.16	3.74	1.79	1.97	1.80	2.00	3.38
	13	4.29	2.63	3.53	1.63	1.67	1.65	1.65	3.08
	15	3.56	2.50	3.33	1.50	1.51	1.53	1.43	2.84
	2	11.8	13.5	7.38	6.03	5.85	6.70	5.78	6.53
	5	5.15	4.03	3.57	2.06	2.31	2.15	2.14	3.66
	7	4.87	3.80	3.52	1.92	2.19	2.05	2.04	3.48
b	10	4.88	3.53	3.51	1.79	2.05	1.90	1.92	3.33
軸	12	4.29	3.11	3.48	1.60	1.79	1.67	1.70	3.14
	14	3.70	2.80	3.38	1.52	1.60	1.55	1.54	2.96
	16	3.46	2.59	3.28	1.47	1.48	1.50	1.43	2.80
	17	3.35	2.42	3.20	1.42	1.40	1.46	1.37	2.68
С	6	11.1	16.6	10.7	7.16	8.85	7.36	9.19	6.65
軸	8	7.32	13.1	7.21	4.25	5.97	4.71	5.93	4.73

表 3-2 最大応答変位一覧表 (弹性設計用地震動 S d, NS 方向)

部	質点			最	大応答変色	立一覧表(m	m)		
位	番号	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Sd-7	Sd-8
	1	35.0	31.3	20.5	14.7	12.4	15.7	11.2	22.8
	3	27.8	21.8	15.6	11.2	9.45	11.9	8.38	17.8
	4	11.8	6.71	6.26	4.16	3.77	4.36	3.59	7.83
a 軸	9	9.49	5.71	5.26	3.28	3.10	3.42	2.97	6.43
ТН	11	7.27	4.76	4.29	2.48	2.45	2.59	2.37	5.14
	13	5.57	3.99	3.48	1.87	1.95	1.95	1.91	4.11
	15	4.16	3.35	2.77	1.37	1.52	1.43	1.51	3.21
	2	22.3	18.2	12.4	10.3	8.19	11.2	7.81	14.7
	5	8.80	5.74	5.34	3.27	3.12	3.47	2.98	6.34
	7	8.03	5.35	4.96	2.95	2.87	3.13	2.76	5.86
b	10	7.22	4.94	4.54	2.62	2.60	2.77	2.51	5.33
軸	12	5.77	4.26	3.81	2.08	2.14	2.20	2.09	4.43
	14	4.69	3.72	3.17	1.62	1.75	1.71	1.73	3.67
	16	3.86	3.30	2.67	1.28	1.45	1.34	1.45	3.07
	17	3.30	2.99	2.30	1.05	1.25	1.09	1.26	2.63
С	6	13.7	22.8	10.9	7.53	9.16	8.44	9.26	9.65
軸	8	10.9	13.2	8.18	5.75	6.54	6.40	6.46	7.78

表 3-3 最大応答せん断力一覧表 (弾性設計用地震動 S d, NS 方向)

部	部 材			最大応	答せん断力]一覧表(×	10^3 kN)		
位	番 号	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Sd-7	Sd-8
	1	60.9	72.6	36.0	27.5	21.9	28.2	22.1	35.7
	2	132	145	82.0	59.5	47.2	62.3	48.0	80.0
	3	205	156	110	78.9	62.4	83.6	57.5	118
a 軸	4	312	213	143	107	85.9	111	78.6	170
ТМ	5	387	253	176	130	110	134	105	217
	6	463	287	227	158	138	161	135	278
	7	507	303	271	180	158	183	154	328
	9	29.9	29.2	17.8	14.8	12.9	16.2	12.6	17.3
	10	49.2	42.2	27.3	23.0	18.3	25.2	17.4	31.5
	11	69.7	55.9	40.4	30.9	24.9	33.6	23.0	45.3
b 軸	12	131	84.7	72.9	51.5	47.2	54.9	43.3	83.1
1124	13	234	176	159	96.7	90.2	104	85.0	155
	14	339	230	236	135	132	143	126	236
	15	405	269	289	164	160	173	156	303
С	16	7.99	10.8	7.73	5.18	6.45	5.33	6.65	4.66
軸	17	23.1	39.5	23.1	14.0	19.1	14.8	19.5	15.1

表 3-4 最大応答曲げモーメント一覧表 (弾性設計用地震動 S d, NS 方向)

部	部 材		-	最大応答曲	げモーメン	小一覧表(×10 ⁵ kN•m)	
位	番号	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Sd-7	Sd-8
	1	0.792	0.737	0.362	0.272	0.220	0.283	0.230	0.352
		3.47	4.26	2.13	1.62	1.26	1.66	1.30	2.11
	2	3.56	4.31	2.16	1.65	1.27	1.69	1.32	2.15
		13.7	15.5	8.47	6.16	4.90	6.47	5.00	8.31
	3	13.8	15.7	8.56	6.26	4.93	6.55	5.05	8.40
		34.3	31.9	20.0	14.4	11.5	15.2	11.1	20.8
a	4	39.7	33.3	20.9	15.4	11.7	16.0	11.6	21.7
軸		60.7	45.5	32.3	23.6	18.4	25.0	16.7	35.3
	5	65.1	47.5	33.5	24.7	18.7	26.2	17.4	36.6
		93.2	66.2	45.7	34.1	26.3	35.8	24.1	52.0
	6	97.2	67.9	46.6	35.0	27.3	36.8	25.0	53.0
	0	125	85.1	57.8	44.1	34.9	46.0	32.0	69.0
	7	127	85.9	58.3	44.5	35.5	46.5	32.5	69.5
	'	146	98.0	66.5	51.4	41.1	53.4	37.8	82.2
	9	0.372	0.348	0.217	0.176	0.155	0.193	0.151	0.206
		4.04	3.94	2.40	1.99	1.74	2.19	1.70	2.33
	10	4.66	4.29	2.55	2.13	1.84	2.32	1.80	2.53
	10	6.28	6.34	3.75	3.28	2.75	3.59	2.66	4.09
	11	10.8	8.29	6.02	4.14	3.48	4.47	3.24	5.21
	11	12.3	11.0	7.94	5.67	4.75	6.16	4.38	7.54
b	12	16.9	12.6	9.97	6.43	5.41	6.95	4.97	8.44
軸	12	19.9	18.8	15.1	10.3	8.88	11.2	7.96	14.8
	13	28.0	26.0	20.2	13.5	11.8	14.5	10.8	17.7
	13	42.3	38.1	28.5	20.4	17.6	22.0	16.2	28.6
	14	46.5	39.9	30.8	21.4	18.7	22.9	17.1	29.7
	14	65.0	52.5	39.9	29.2	25.9	31.2	24.1	43.1
	1.	68.5	54.4	42.1	30.3	27.1	32.3	25.1	44.5
	15	84.4	63.6	51.1	36.5	32.9	38.9	30.8	56.1
	1.6	0.0340	0.198	0.0297	0.0192	0.0239	0.0198	0.0247	0.0173
С	16	0.407	0.559	0.394	0.265	0.329	0.272	0.340	0.239
軸	17	2.59	1.54	1.33	0.682	0.666	0.727	0.607	0.638
1	17	5.45	6.69	3.70	2.35	3.17	2.57	3.18	2.48

表 3-5 最大応答加速度一覧表 (弹性設計用地震動 S d, EW 方向)

部							n/s ²)		
位	番号	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Sd-7	Sd-8
	1	6.75	8.76	6.99	6.59	4.83	7.19	6.51	6.60
	6	5.95	7.53	5.97	5.18	3.81	5.55	5.19	5.46
	11	4.60	5.18	3.61	4.00	3.71	4.18	4.55	3.98
	20	4.41	4.82	3.58	3.75	3.64	3.88	4.37	3.72
a 軸	25	4.25	4.50	3.52	3.49	3.55	3.59	4.17	3.49
平田	32	4.14	4.16	3.40	3.10	3.39	3.16	3.87	3.23
	36	3.93	3.89	3.23	2.76	3.19	2.96	3.53	2.91
	38	3.68	3.54	3.12	2.62	3.01	2.80	3.21	2.76
	40	3.51	3.35	3.06	2.50	2.89	2.67	3.05	2.65
	2	11.5	13.1	9.72	8.87	7.63	9.54	10.0	8.77
b	7	7.93	9.11	7.14	5.68	4.72	6.18	7.34	6.58
軸	12	5.43	5.80	4.26	4.91	4.11	5.42	5.53	4.70
	26	4.63	4.66	3.69	3.65	3.67	3.78	4.39	3.72
С	19	11.3	14.0	8.09	8.12	7.97	8.32	7.12	5.99
軸	21	5.52	5.86	4.28	4.25	3.90	4.44	4.83	4.10
	3	15.8	15.4	10.8	11.6	11.5	11.7	10.8	9.23
	8	9.18	10.3	7.92	7.04	5.00	7.51	6.82	6.77
d 軸	13	6.75	6.35	5.10	5.24	4.17	5.43	5.02	5.10
1 1 1	27	5.01	4.83	3.97	3.54	3.71	3.58	4.42	4.15
	33	4.58	4.68	3.58	3.09	3.42	3.16	4.20	3.47
	18	8.08	7.45	5.74	6.94	7.51	7.79	9.23	4.87
	22	6.80	5.49	4.81	5.42	5.66	6.18	6.80	4.25
е	31	5.51	4.60	4.44	4.56	4.79	5.08	5.51	3.80
軸	35	4.36	3.72	3.63	3.46	3.72	3.70	4.28	3.41
	37	3.93	3.44	3.16	2.77	3.36	2.92	3.88	3.03
	39	3.67	3.43	3.05	2.62	3.07	2.79	3.13	2.75
	4	16.7	16.1	14.3	10.7	13.1	11.4	12.7	12.3
f	9	10.2	10.9	8.24	6.52	5.65	6.86	7.13	7.06
軸	14	6.48	7.63	5.32	5.06	5.07	5.31	5.18	5.21
	28	5.64	5.70	4.28	4.13	3.85	3.96	4.91	3.71
	17	11.3	10.3	8.20	9.01	9.96	9.98	11.8	5.11
g 軸	23	8.40	7.02	6.68	7.17	6.94	7.51	8.50	4.24
	30	5.96	4.93	5.48	4.96	5.28	5.20	6.72	3.89
	5	13.7	14.1	10.6	7.99	7.74	9.14	10.9	10.5
L L	10	8.90	10.4	7.62	6.05	5.64	6.58	6.18	7.63
h 軸	15	8.39	5.44	4.14	4.71	4.11	5.00	4.70	3.85
	29	4.51	4.66	3.66	3.57	3.71	3.74	4.54	3.82
	34	4.16	4.47	3.38	3.13	3.44	3.21	4.02	3.32
i	16	6.32	5.48	3.98	4.12	4.11	4.39	5.32	4.87
軸	24	5.18	5.17	3.85	3.86	3.90	4.09	4.95	4.32

表 3-6 最大応答変位一覧表 (弾性設計用地震動 S d, EW 方向)

部 質 最大応答変位一覧表(mm)									
位	番号	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Sd-7	Sd-8
	1	27.0	33.5	22.6	16.5	15.3	19.3	25.5	22.0
	6	20.2	26.2	17.5	13.1	12.6	15.1	18.2	17.5
	11	8.14	11.4	7.16	6.70	6.82	7.14	8.11	8.11
	20	7.35	9.85	6.05	5.89	5.98	6.23	7.23	7.05
a 軸	25	6.69	8.56	5.17	5.17	5.24	5.43	6.42	6.16
740	32	5.70	6.90	4.05	4.14	4.27	4.32	5.22	4.97
	36	4.66	5.48	3.10	3.15	3.30	3.27	4.01	3.89
	38	3.73	4.30	2.48	2.32	2.45	2.40	2.97	2.97
	40	3.14	3.55	2.14	1.82	1.94	1.87	2.34	2.40
	2	52.9	57.1	40.5	25.7	23.0	32.1	58.0	37.0
b	7	36.5	41.6	29.2	19.6	17.9	23.3	31.5	27.5
軸	12	14.9	19.8	13.6	9.81	9.62	11.4	15.6	13.4
	26	7.00	8.58	5.19	5.40	5.46	5.66	6.76	6.29
С	19	13.2	14.5	10.5	9.82	10.2	10.7	11.7	11.2
軸	21	8.24	10.1	6.29	6.58	6.62	6.92	8.07	7.49
	3	66.3	66.7	49.2	31.0	27.1	37.7	47.4	44.4
	8	44.1	47.8	34.4	22.2	20.3	26.7	31.7	32.0
d 軸	13	17.7	22.7	15.9	11.0	11.0	12.5	12.2	14.9
	27	7.86	10.7	6.15	6.23	6.41	6.53	7.98	7.44
	33	6.13	7.49	4.32	4.44	4.61	4.62	5.72	5.34
	18	15.5	13.0	10.2	11.7	10.9	13.8	14.3	9.39
	22	12.5	10.7	7.86	8.93	8.84	10.4	11.2	8.07
е	31	9.32	8.57	5.87	6.52	6.74	7.04	8.45	6.70
軸	35	6.36	6.53	4.11	4.36	4.51	4.58	5.72	5.03
	37	4.88	5.24	3.09	3.18	3.33	3.32	4.17	3.87
	39	3.73	4.20	2.50	2.30	2.44	2.38	2.98	2.95
	4	67.5	68.3	50.2	30.8	28.0	36.0	44.2	46.5
f	9	45.9	49.3	35.6	22.9	21.0	26.5	30.3	33.4
軸	14	18.8	23.3	16.8	12.1	11.8	13.4	13.2	15.5
	28	8.67	11.6	7.07	6.91	7.04	7.30	8.62	8.08
~	17	20.1	16.2	14.4	16.1	14.5	18.0	18.6	11.6
g 軸	23	15.5	12.3	10.7	11.8	11.2	13.1	14.2	9.40
	30	10.6	9.18	6.78	7.36	7.70	8.04	9.64	7.30
	5	60.1	63.4	45.3	29.0	25.0	32.7	38.4	43.5
h	10	43.0	46.9	33.4	21.8	19.6	24.9	27.3	32.1
軸	15	13.6	18.1	11.9	8.61	8.50	9.52	9.71	11.8
	29	7.16	8.74	5.39	5.56	5.64	5.84	6.97	6.46
	34	5.90	7.07	4.18	4.32	4.43	4.51	5.46	5.14
i	16	8.31	10.7	6.76	6.85	6.96	7.24	8.50	7.94
軸	24	7.80	9.68	6.05	6.22	6.32	6.55	7.77	7.21

表 3-7 最大応答せん断力一覧表 (弾性設計用地震動 S d, EW 方向)

部	部材			最大応	答せん断力	」一覧表(×	10 ³ kN)		
位	番号	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Sd-7	Sd-8
	1	16.9	17.0	12.5	8.16	6.62	9.50	19.9	10.3
	2	41.0	40.9	30.4	19.1	15.2	22.3	39.3	25.4
	3	56.8	58.3	42.8	28.5	22.6	32.7	36.7	37.4
a	無対した。	31.6	26.0	36.0	38.4	39.6			
軸	5	54.1	68.2	47.7	36.3	33.5	40.7	43.7	42.4
	6	143	186	126	130	122	138	151	129
	7	464	537	368	393	395	411	478	406
	8	564	646	431	438	469	456	543	484
	10	7.68	7.05	5.32	7.19	5.92	7.67	16.5	5.91
b	11	13.5	11.9	8.53	9.97	8.59	9.68	30.2	9.14
軸	12	13.3	14.2	10.5	12.6	12.8	12.3	17.7	13.5
	13	58.3	69.4	47.3	54.4	52.0	57.7	65.0	51.4
	14	2.30	1.96	1.65	1.03	0.997	1.18	2.75	1.32
c 軸	15	3.49	3.33	2.59	2.36	1.97	2.61	2.75	1.95
	16	11.2	11.4	8.30	9.08	8.39	9.70	9.96	8.50
	17	12.2	12.0	9.66	10.5	11.6	10.9	13.5	8.70
	18	13.9	16.4	12.9	12.6	13.5	12.9	18.5	13.0
d 軸	19	20.2	24.1	20.6	18.2	19.3	19.3	27.9	21.9
	20	35.4	36.7	32.9	31.6	31.6	33.1	35.8	33.5
	21	76.9	72.7	62.7	57.4	59.5	59.6	72.6	56.0
	22	4.51	3.90	3.26	2.43	2.23	2.64	3.62	2.59
	23	21.4	19.2	19.0	21.1	19.6	23.0	23.7	13.0
	24	27.2	22.6	23.2	25.4	25.1	27.9	29.9	17.6
e 軸	25	28.5	27.8	26.8	27.1	27.6	28.1	30.2	22.5
	26	70.2	70.7	65.3	65.4	66.2	69.2	77.4	62.4
	27	117	108	89.3	91.7	97.3	95.8	107	95.3
	28	164	149	107	111	128	117	135	127
	29	14.0	14.2	13.0	10.2	12.1	11.1	13.1	11.8
f	30	16.5	18.8	15.7	13.3	13.6	14.2	18.0	14.5
軸	31	8.98	6.22	5.62	5.56	3.89	6.66	7.65	4.33
	32	23.9	21.3	16.3	13.8	14.9	15.7	18.4	9.43
	33	4.73	4.04	3.13	2.88	2.98	3.16	3.54	2.42
g	34	11.9	10.3	9.83	11.2	11.3	12.5	14.0	7.03
軸	35	21.3	16.9	16.8	18.9	19.0	20.6	22.0	11.6
	36	13.4	13.7	12.7	10.0	11.5	11.0	13.6	13.0
	37	12.5	13.8	9.94	8.09	8.62	9.27	10.3	9.47
	38	24.7	26.0	20.4	16.8	15.5	17.6	20.0	18.6
h 軸	39	50.0	51.2	47.0	35.1	32.1	38.3	38.6	43.5
714	40	98.1	114	90.0	89.3	88.3	96.9	106	88.1
	41	129	152	114	118	117	127	145	118
	42	4.28	4.25	3.02	1.83	1.57	2.06	2.80	2.68
i 軸	43	4.88	5.48	4.08	3.21	3.09	3.55	3.40	4.20
7411	44	11.4	11.9	8.80	8.81	8.75	9.56	10.7	9.55

表 3-8 最大応答曲げモーメント一覧表 (弾性設計用地震動 S d, EW 方向)

部	部材		最大応答曲げモーメント一覧表(×10 ⁵ kN·m)						
位	番 号	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Sd-7	Sd-8
	1	$0.156 \\ 0.964$	0.157 0.969	$0.115 \\ 0.711$	$0.0751 \\ 0.465$	0.0609 0.377	0.0875 0.542	0.183 1.13	0.0950 0.588
	2	0.967 4.11	0.970 4.12	0.712 3.05	$0.466 \\ 1.93$	0.378 1.54	0.544 2.26	1.13 4.16	0.589 2.54
	3	4.11 7.01	4.13 7.10	3.05 5.21	1.93 3.37	1.54 2.67	2.26 3.86	4.16 6.02	2.54 4.43
	4	7.01	7.10	5.21	3.37	2.67	3.86	6.02	4.43
a 軸	5	10.1	10.3 10.3	7.57 7.57	5.06 5.06	4.03 4.04	5.76 5.76	7.88 7.88	6.55 6.55
	6	14.4 21.3	15.7 25.8	11.2 19.3	7.98 15.3	6.69 14.6	9.03 16.8	10.3 16.0	9.90 16.9
		29.3 68.6	39.0 84.2	28.1 67.0	24.2 61.9	23.6 59.8	26.3 66.3	26.8 67.6	26.0 62.7
	7	90.0 91.7	114 115	87.4 89.0	84.1 85.9	81.8 83.3	89.7 91.7	95.7 97.5	86.1 87.5
	8	113	139 0.315	105 0.271	102 0.168	99.7 0.163	109	119 0.389	107 0.265
	10	0.500	0.439	0.420	0.460	0.411	0.481	1.13	0.337
ь	11	0.945 1.59	0.827 1.27	0.859 1.18	$0.704 \\ 1.24$	0.626 1.13	0.720 1.28	1.47 3.19	0.752 1.01
軸	12	$\frac{1.77}{2.16}$	1.62 2.08	1.69 2.03	1.51 1.93	1.38 1.81	1.57 2.01	3.67 2.22	1.46 1.99
	13	3.21 7.74	3.41 8.77	3.29 7.05	3.05 6.83	2.77 6.98	3.21 7.13	2.88 8.05	2.89 7.03
	14	0.103 0.306	0.112 0.317	0.0646 0.236	0.0601 0.148	0.0466 0.125	0.0586 0.162	0.0499 0.355	0.0276 0.172
C	15	0.306	0.317	0.236	0.148	0.125	0.162	0.355	0.172
軸	16	0.450	0.487	0.345 0.479	0.262 0.454	0.197 0.277	0.290	0.454	0.252
	17	0.981 0.344	0.972 0.372	0.883 0.278	0.814 0.170	0.720 0.183	0.887 0.193	0.930 0.279	0.694 0.252
		0.814 1.28	0.773 1.32	0.632 1.06	0.601 0.699	0.628 0.814	0.636 0.798	1.05 1.50	0.524 0.907
d	18	1.94 2.67	1.90 2.56	1.65 2.24	1.56 1.62	1.63 1.91	1.65 1.78	2.87 3.59	1.39 1.92
軸	19	3.69	3.66 4.05	3.61	3.27	2.91	3.39	3.31 3.59	3.18
	20	4.14 6.12	6.34	6.21	3.41 5.63	3.16 5.37	5.81	5.70	5.88
	21	9.57 11.5	10.4 12.5	10.5 11.7	8.57 11.4	8.05 11.5	9.35 11.6	8.74 11.8	8.79 11.6
	22	0.109 0.617	0.0806 0.555	0.0631 0.462	0.0886 0.310	0.0813 0.272	0.101 0.333	0.139 0.447	0.0390 0.348
	23	0.654 1.51	0.745 1.70	0.556 1.31	0.446 1.44	0.367 1.26	0.521 1.61	0.586 1.72	0.370 0.979
	24	1.52 2.74	1.72 2.93	1.32 2.57	1.47 2.83	1.28 2.56	1.63 3.12	1.76 3.23	0.982 1.79
e	25	2.95	3.18	2.77	3.02	2.84	3.42	3.90	1.86
軸	26	9.93	9.40	4.60 8.41	4.86 9.23	4.57 8.87	5.23 10.0	5.42 10.2	3.68 6.28
	27	13.6 14.8	13.1 14.2	13.0 14.0	13.2 14.5	13.3 14.3	14.1 15.7	14.2 15.6	10.5 11.0
	28	19.7 20.3	18.9 19.7	18.9 19.4	19.1 19.6	19.6 19.8	20.0	20.5 21.5	16.7 16.9
		24.7 0.360	24.0 0.388	23.2 0.257	23.9 0.186	24.0 0.152	24.1 0.192	25.2 0.208	22.0 0.200
	29	0.949 1.28	0.849 1.27	0.747 0.992	0.583 0.740	0.655 0.718	0.617 0.766	0.778 0.970	0.641 0.754
f 軸	30	2.37	2.26	2.02	1.53	1.65	1.63	2.20	1.71
甲田	31	2.89	2.61	2.39 2.29	1.77 1.78	1.82 1.57	1.89 1.88	2.26	2.09
<u> </u>	32	3.82 2.24	3.10 2.01	2.97 2.04	2.48 1.82	2.06 1.54	2.62 1.94	3.08 1.81	2.29 1.87
	33	0.183 0.612	0.168 0.552	$0.132 \\ 0.465$	$0.159 \\ 0.277$	0.171 0.280	0.181 0.295	0.195 0.450	0.0671 0.363
g	34	0.783 1.12	0.822 1.30	$0.592 \\ 0.944$	$0.522 \\ 1.01$	$0.429 \\ 0.824$	0.572 1.15	0.616 1.15	0.518 0.838
軸	35	1.15 2.07	1.34 2.08	0.978 1.86	1.05 1.99	0.875 1.87	1.20 2.27	1.20 2.36	0.862 1.39
	36	3.08 3.13	2.89 2.98	2.33 2.92	2.71 3.13	2.66 2.82	3.17 3.38	3.28 3.38	1.70 2.19
	37	0.296	0.195	0.154	0.135	0.0929	0.130	0.168	0.145
	38	0.805 1.09	0.809 1.02	0.662 0.831	0.478	0.498 0.556	0.531	0.703	0.580
h	39	2.53 3.33	2.74 3.00	2.32 2.68	1.65 1.91	1.70 1.72	1.89 1.96	2.42 2.87	2.07 2.31
軸		7.37 8.92	7.31 9.09	7.20 8.36	5.55 6.34	4.59 5.59	5.91 6.95	6.21 6.92	6.63 7.70
	40	16.8 17.4	18.3 18.9	15.4 16.1	13.1	12.7 13.3	14.2 15.2	14.3 15.0	14.3 14.5
	41	25.6	29.9 0.0153	24.0 0.0136	22.4 0.0102	21.8 0.0140	24.3 0.0109	25.7 0.0133	22.6 0.0110
	42	0.571	0.573	0.410	0.246	0.209	0.279	0.374	0.363
i 軸	43	0.573 0.814	0.575 0.811	0.413 0.602	0.247 0.391	0.209 0.326	0.280 0.442	0.375 0.456	0.369 0.582
	44	0.811 1.21	0.826 1.36	0.620 1.02	$0.405 \\ 0.812$	$0.339 \\ 0.810$	0.455 0.908	0.480 0.903	0.597 1.04

表 3-9 最大応答加速度一覧表 (弾性設計用地震動 S d,鉛直方向)

部	質点			最大	応答加速	变一覧表(m	$1/s^2$)		
位	番 号	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Sd-7	Sd-8
	1	9.57	4.85	5.73	5.21	5.06	5.91	5.55	4.39
	2	7.96	4.14	4.78	4.12	3.98	4.68	4.27	3.33
	3	4.19	2.91	2.78	2.10	2.10	2.44	2.10	1.83
建	4	4.14	2.85	2.74	2.04	2.06	2.36	2.08	1.76
屋	5	4.06	2.77	2.73	1.97	2.04	2.24	2.05	1.69
部	6	3.85	2.59	2.67	1.87	1.97	2.01	1.96	1.57
	7	3.66	2.48	2.62	1.80	1.91	1.91	1.86	1.42
	8	3.49	2.38	2.59	1.79	1.86	1.85	1.79	1.27
	9	3.43	2.32	2.56	1.76	1.85	1.81	1.73	1.21
l	1	9.57	4.85	5.73	5.21	5.06	5.91	5.55	4.39
屋根	11	15.6	8.78	8.63	9.08	8.56	7.87	8.72	5.12
1	12	20.0	8.32	10.5	9.92	8.17	9.01	9.99	6.35
ラス	13	14.8	7.99	11.5	8.09	7.64	8.30	8.20	6.71
	14	25.9	11.2	15.2	13.1	12.2	13.5	12.6	8.99

表 3-10 最大応答変位一覧表 (弾性設計用地震動 S d, 鉛直方向)

-				-				,	
部	質点			最	大応答変色	立一覧表(m	m)		
位	番号	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Sd-7	Sd-8
	1	4.22	2.34	4.36	2.49	2.77	2.95	2.69	1.38
	2	3.99	2.23	4.13	2.30	2.63	2.72	2.53	1.23
	3	3.56	2.02	3.72	1.90	2.39	2.31	2.25	0.960
建	4	3.54	2.01	3.70	1.88	2.37	2.30	2.24	0.950
屋	5	3.52	1.99	3.67	1.87	2.36	2.29	2.23	0.950
部	6	3.47	1.96	3.62	1.84	2.33	2.27	2.20	0.930
	7	3.42	1.92	3.58	1.81	2.31	2.24	2.19	0.920
	8	3.37	1.89	3.54	1.79	2.28	2.22	2.17	0.900
	9	3.33	1.86	3.50	1.78	2.26	2.21	2.16	0.890
	1	4.22	2.34	4.36	2.49	2.77	2.95	2.69	1.38
屋根	11	18.7	12.4	18.0	11.1	12.0	12.4	12.3	11.1
1	12	34.8	21.9	30.8	18.9	21.1	21.2	21.4	19.4
ラス	13	48.5	29.8	42.0	25.3	29.2	28.4	28.8	26.4
	14	53.4	32.6	46.2	27.7	32.3	31.0	31.5	28.9

表 3-11 最大応答軸力一覧表 (弹性設計用地震動 S d, 鉛直方向)

部	部材			最大	応答軸力-	·覧表(×10) ⁴ kN)		
位	番号	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Sd-7	Sd-8
	1	4.59	2.20	3.70	2.40	2.81	2.72	3.00	1.63
	2	8.14	4.02	6.24	4.57	4.86	5.18	5.29	3.43
	3	13.6	8.55	10.2	7.55	7.65	8.29	7.72	5.73
建屋	4	16.0	10.4	11.8	8.73	8.76	9.52	8.68	6.88
部	5	26.3	18.5	18.6	13.8	13.7	15.9	13.4	11.8
	6	40.8	28.5	27.3	20.7	20.9	23.7	20.5	17.7
	7	54.6	37.7	36.9	27.0	27.4	30.6	27.0	23.1
	8	64.0	43.8	43.8	31.1	31.7	35.1	31.2	26.5

4. 材料物性の不確かさを考慮した検討に用いる地震動

建屋及び地震動ごとの材料物性の不確かさを考慮した検討に用いる地震動の選定結果を表 4-1 に示す。地震動の選定にあたり、基本ケースにおける建屋応答の確認は、以下の資料に基づき実施した。

・タービン建屋の地震応答解析

表 4-1 材料物性の不確かさを考慮した検討に用いる地震動

建屋名	材料物性の不確かさを考慮	意した検討に用いる地震動	
建 建	基準地震動 S s	弾性設計用地震動 S d	
タービン建屋	Ss-1, Ss-2, Ss-3, Ss-4, Ss-5, Ss-6, Ss-7, Ss-8	Sd-1, Sd-2, Sd-3, Sd-6, Sd-7	

別紙3-2 材料物性の不確かさを考慮した地震応答解析

目 次

1.	概要	別紙 3-2-1
2.	地震応答解析結果	別紙 3-2-1
2	.1 建屋剛性及び地盤剛性の不確かさ	別紙 3-2-1
2	.2 建屋剛性の不確かさ	別紙 3-2-255
3.	まとめ	別紙 3-2-509

1. 概要

本資料はタービン建屋の地震応答解析において,材料物性の不確かさを考慮した地震 応答解析結果を示すものである。

2. 地震応答解析結果

2.1 建屋剛性及び地盤剛性の不確かさ

建屋剛性及び地盤剛性の不確かさを考慮した基準地震動Ssに対する地震応答解析結果を図2-1~図2-104及び表2-1~表2-88に,接地率を表2-89~表2-91に示す。また,弾性設計用地震動Sdに対する地震応答解析結果を図2-105~図2-169及び表2-92~表2-146に,接地率を表2-147~表2-149に示す。

以後,基本ケースをケース1,建屋剛性 $+\sigma$ 地盤剛性 $+\sigma$ としたケースをケース2,建屋剛性 $-\sigma$ 地盤剛性 $-\sigma$ としたケースをケース3として示す。

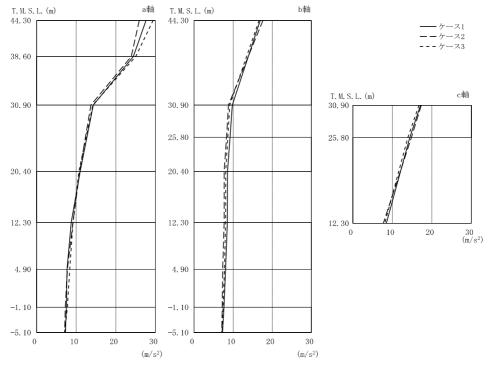


図 2-1 最大応答加速度 (Ss-1, NS 方向)

表 2-1 最大応答加速度 (Ss-1, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
11/	号	1	2	3
	1	27.6	25.9	29.4
	3	24.4	23.9	25.0
	4	14.3	13.7	14.2
a 軸	9	11.0	10.9	10.7
1,14	11	8.73	9.18	9.20
	13	7.69	7.76	8.38
	15	7.51	7.23	7.79
	2	16.9	17.6	16.6
	5	9.77	8.79	9.10
	7	9.18	8.28	8.62
b	10	8.55	7.67	8.10
軸	12	8.48	7.70	8.07
	14	8.07	7.32	7.76
	16	7.66	7.18	7.39
	17	7.29	7.08	7.13
С	6	17.1	17.3	16.7
軸	8	14.4	14.8	13.9

②建屋剛性・地盤剛性(+ σ)考慮モデル

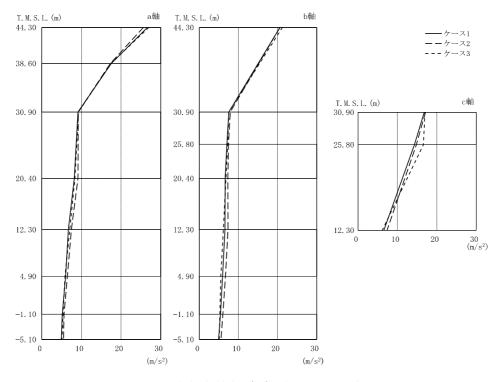


図 2-2 最大応答加速度 (Ss-2, NS 方向)

表 2-2 最大応答加速度 (Ss-2, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
124	号	1	2	3
	1	26.6	25.6	27.0
	3	17.5	17.3	17.4
	4	9.11	9.20	9.25
a 軸	9	8.22	9.11	8.36
ТРИ	11	6.70	7.47	7.08
	13	6.00	6.43	5.85
	15	5.16	5.60	5.37
	2	20.6	20.6	21.2
	5	7.53	7.89	7.55
	5 7	7.53 7.04	7.89 7.46	7.55 7.22
b				
b 軸	7	7.04	7.46	7.22
	7	7.04 6.58	7.46 7.28	7.22 6.77
	7 10 12	7.04 6.58 6.54	7.46 7.28 7.34	7.22 6.77 6.14
	7 10 12 14	7.04 6.58 6.54 5.93	7.46 7.28 7.34 6.66	7.22 6.77 6.14 5.46
	7 10 12 14 16	7.04 6.58 6.54 5.93 5.41	7.46 7.28 7.34 6.66 5.99	7.22 6.77 6.14 5.46 5.23

②建屋剛性・地盤剛性(+ σ)考慮モデル

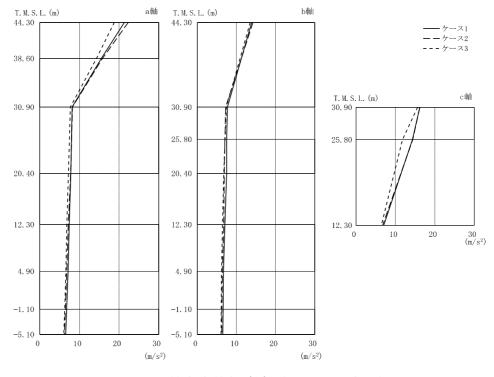


図 2-3 最大応答加速度 (Ss-3, NS 方向)

表 2-3 最大応答加速度 (Ss-3, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
124	号	1	2	3
	1	21.3	22.3	18.8
	3	15.5	15.8	14.3
	4	8.18	8.24	7.70
a 軸	9	7.85	7.81	7.22
1 1	11	7.42	7.16	6.83
	13	7.14	6.82	6.59
	15	6.79	6.45	6.29
	2	13.9	14.2	13.5
	5	7.70	7.23	7.41
	_			
	7	7.51	7.03	7.10
b	7 10	7.51 7.51	7.03 6.89	7.10 6.75
b 軸	<u> </u>			
	10	7.51	6.89	6.75
	10	7.51 7.05	6.89 6.75	6.75 6.41
	10 12 14	7.51 7.05 6.68	6.89 6.75 6.38	6.75 6.41 6.18
	10 12 14 16	7.51 7.05 6.68 6.60	6.89 6.75 6.38 6.26	6.75 6.41 6.18 6.12

②建屋剛性・地盤剛性(+ σ)考慮モデル

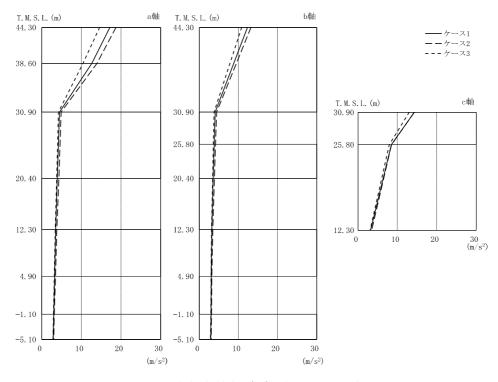


図 2-4 最大応答加速度 (Ss-4, NS 方向)

表 2-4 最大応答加速度 (Ss-4, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
124	号	1	2	3
	1	17.2	18.7	14.6
	3	12.6	13.9	10.4
	4	4.49	4.91	4.22
a 軸	9	3.95	4.31	3.77
ти	11	3.52	3.80	3.41
	13	3.25	3.46	3.17
	15	3.02	3.18	2.97
	2	12.3	13.2	10.8
	5	4.04	4.44	3.77
	U	2.02	7.77	9.11
	7	3.79	4.14	3.57
b				
b 軸	7	3.79	4.14	3.57
	7	3.79 3.54	4.14 3.85	3.57 3.37
	7 10 12	3.79 3.54 3.19	4.14 3.85 3.46	3.57 3.37 3.10
	7 10 12 14	3.79 3.54 3.19 3.05	4.14 3.85 3.46 3.20	3.57 3.37 3.10 2.99
	7 10 12 14 16	3.79 3.54 3.19 3.05 2.96	4.14 3.85 3.46 3.20 3.10	3.57 3.37 3.10 2.99 2.92

②建屋剛性・地盤剛性(+ σ)考慮モデル

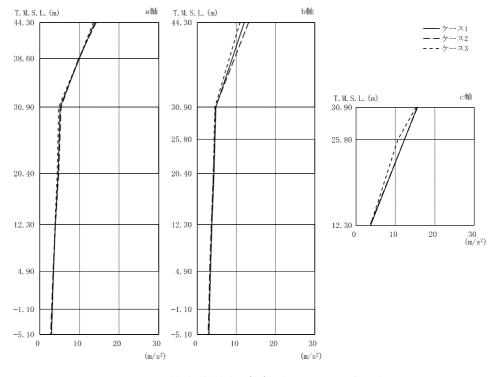


図 2-5 最大応答加速度 (Ss-5, NS 方向)

表 2-5 最大応答加速度 (Ss-5, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
11/	号	1	2	3
	1	13.9	14.2	13.5
	3	9.96	9.76	9.94
	4	5.12	5.37	4.75
a 軸	9	4.65	4.78	4.41
714	11	3.93	3.94	3.84
	13	3.48	3.33	3.45
	15	3.14	3.00	3.16
	2	12.0	13.1	10.9
	5	4.75	4.63	4.51
	7	4.51	4.38	4.32
b	10	4.23	4.09	4.09
軸	12	3.72	3.56	3.66
	14	3.34	3.17	3.34
	16	3.09	2.93	3.12
	17	2.92	2.76	2.97
С	6	15.5	15.6	15.2
軸	8	12.3	12.3	10.6

②建屋剛性・地盤剛性(+ σ)考慮モデル

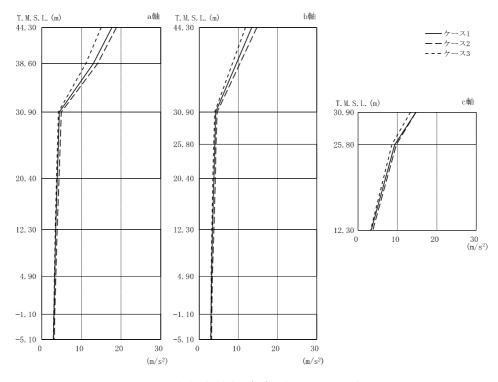


図 2-6 最大応答加速度 (Ss-6, NS 方向)

表 2-6 最大応答加速度 (Ss-6, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
11/4	号	1	2	3
	1	17.7	18.8	15.0
	3	13.0	14.1	11.1
	4	4.45	4.94	4.19
a 軸	9	3.92	4.38	3.72
ти	11	3.51	3.88	3.39
	13	3.25	3.54	3.18
	15	3.06	3.28	3.01
	2	13.4	14.7	11.8
	5	4.18	4.54	3.93
	7	3.99	4.23	3.69
b	10	3.71	4.10	3.46
軸	12	3.34	3.73	3.20
	14	3.10	3.32	3.04
	16	3.00	3.21	2.97
	17	2.93	3.13	2.88
С	6	14.7	14.7	13.3
軸	8	9.31	9.71	8.56

②建屋剛性・地盤剛性(+ σ)考慮モデル

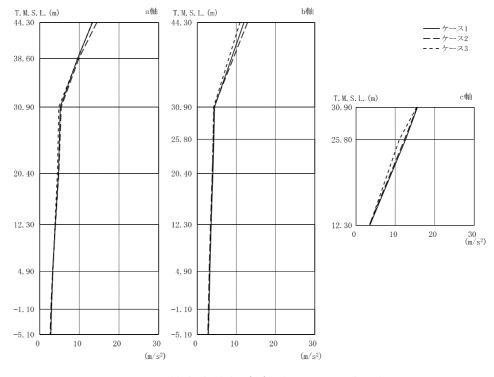


図 2-7 最大応答加速度 (Ss-7, NS 方向)

表 2-7 最大応答加速度 (Ss-7, NS 方向)

部位		最大応答加速度一覧表 (m/s²)		
124		1	2	3
	1	13.3	14.4	13.2
	3	9.54	9.84	9.61
	4	5.21	5.41	4.83
a 軸	9	4.73	4.83	4.47
	11	3.95	3.96	3.84
	13	3.30	3.25	3.31
	15	2.96	2.82	2.97
	2	11.9	12.8	10.9
		4.40	4.05	4.18
	5	4.40	4.25	4.18
	5 7	4.21	4.25	4.18
b				
b 軸	7	4.21	4.05	4.03
	7	4.21	4.05	4.03
	7 10 12	4.21 3.97 3.53	4.05 3.81 3.35	4.03 3.84 3.47
	7 10 12 14	4.21 3.97 3.53 3.19	4.05 3.81 3.35 3.02	4.03 3.84 3.47 3.17
	7 10 12 14 16	4.21 3.97 3.53 3.19 2.96	4.05 3.81 3.35 3.02 2.82	4.03 3.84 3.47 3.17 2.96

②建屋剛性・地盤剛性(+ σ)考慮モデル

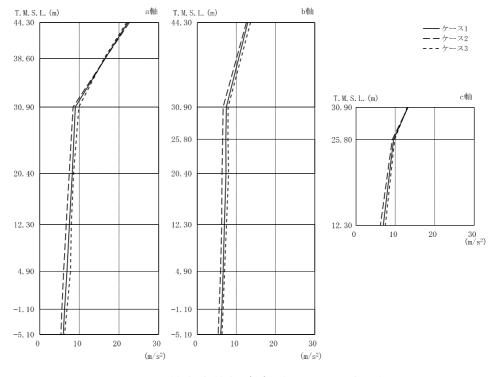


図 2-8 最大応答加速度 (Ss-8, NS 方向)

表 2-8 最大応答加速度 (Ss-8, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
11/.	号	1	2	3
	1	22.2	22.6	21.9
	3	16.5	16.5	16.2
	4	8.99	8.41	9.86
a 軸	9	8.23	7.45	8.51
Т	11	7.47	6.69	7.96
	13	6.88	6.03	7.77
	15	6.28	5.61	6.88
	2	12.9	12.5	13.6
	5	7.41	6.61	7.87
	7	7.28	6.44	7.82
b	10	7.31	6.32	7.99
軸	12	6.94	6.21	7.45
	14	6.58	5.91	6.96
	16	6.26	5.55	6.60
	17	5.96	5.33	6.29
С	6	13.2	13.2	13.0
軸	8	9.51	9.23	9.82

②建屋剛性・地盤剛性(+ σ)考慮モデル

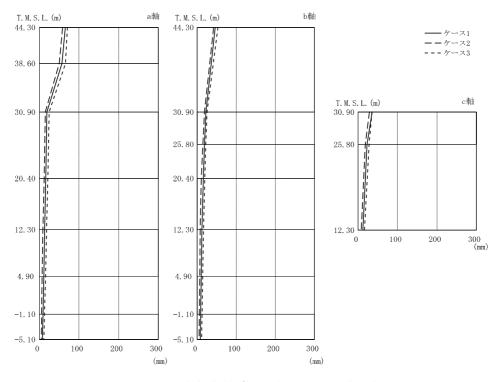


図 2-9 最大応答変位 (Ss-1, NS 方向)

表 2-9 最大応答変位 (Ss-1, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
137.	号	1	2	3
	1	65.5	58.6	70.9
	3	56.8	50.0	65.9
	4	19.1	14.9	24.6
a 軸	9	16.3	11.9	21.2
7,14	11	13.5	9.10	18.2
	13	11.3	7.14	15.7
	15	9.29	5.70	13.1
	2	46.2	41.9	53.0
	5	22.2	18.8	25.1
	7	18.8	14.6	21.9
b	10	15.9	10.4	19.4
軸	12	12.2	7.89	16.1
	14	10.4	6.53	14.1
	16	8.96	5.49	12.5
	17	7.93	4.75	11.3
С	6	35.4	28.9	35.0
軸	8	22.8	18.2	27.9

②建屋剛性・地盤剛性(+ σ)考慮モデル

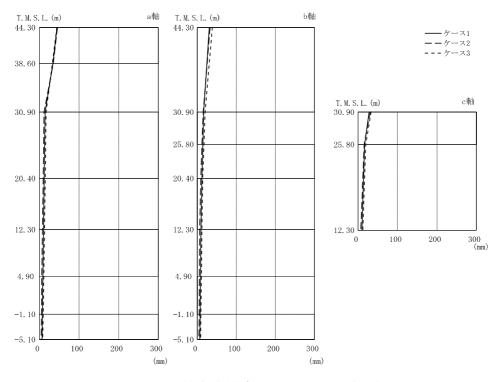


図 2-10 最大応答変位 (Ss-2, NS 方向)

表 2-10 最大応答変位 (Ss-2, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
122	号	1	2	3
	1	44.4	45.4	44.0
	3	34.1	35.1	32.7
	4	14.4	11.5	16.6
a 軸	9	12.1	9.47	14.6
I pa	11	10.2	7.55	12.7
	13	8.70	5.92	11.0
	15	7.46	4.90	9.52
	2	30.8	33.0	38.8
	5	16.4	15.1	20.2
	7	14.3	12.1	17.2
b	10	11.9	9.01	13.9
軸	12	9.42	6.49	11.9
	14	8.24	5.52	10.5
	16	7.31	4.77	9.33
	17	6.65	4.23	8.51
С	6	27.9	30.7	32.7
軸	8	16.6	15.3	19.4

②建屋剛性・地盤剛性(+ σ)考慮モデル

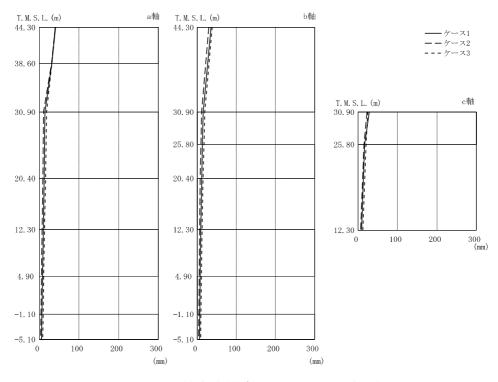


図 2-11 最大応答変位 (Ss-3, NS 方向)

表 2-11 最大応答変位 (Ss-3, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
124	号	1	2	3
	1	40.8	40.2	39.9
	3	31.6	30.9	31.7
	4	14.3	10.7	18.3
a 軸	9	12.1	8.79	15.6
ти	11	9.98	6.97	13.1
	13	8.26	5.50	11.2
	15	6.74	4.21	9.73
	2	35.2	29.6	38.0
	5	15.1	11.1	19.2
	7	13.1	9.34	17.0
b	10	11.3	7.68	14.7
軸	12	8.95	6.10	12.1
	14	7.60	4.94	10.7
	16	6.52	4.03	9.53
	17	5.73	3.36	8.71
С	6	28.4	22.6	24.6
軸	8	16.8	14.9	20.1

②建屋剛性・地盤剛性(+ σ)考慮モデル

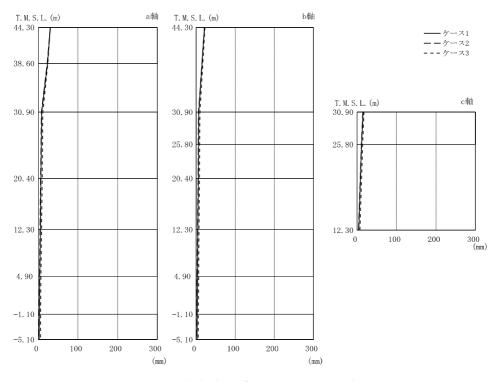


図 2-12 最大応答変位 (Ss-4, NS 方向)

表 2-12 最大応答変位 (Ss-4, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
124	号	1	2	3
	1	30.3	30.0	30.1
	3	23.0	22.5	23.8
	4	8.45	7.67	11.4
a 軸	9	6.67	5.91	9.61
	11	5.08	4.30	8.03
	13	3.89	3.07	6.81
	15	2.93	2.07	5.77
	2	20.9	20.9	22.3
	5	6.63	5.89	9.72
	7	6.01	5.25	9.07
b	10	5.35	4.59	8.39
軸				
軸	12	4.29	3.48	7.28
軸	12 14	4.29 3.41	3.48 2.57	7.28 6.34
軸				
軸	14	3.41	2.57	6.34
軸 c	14 16	3.41 2.77	2.57	6.34 5.61

②建屋剛性・地盤剛性(+ σ)考慮モデル

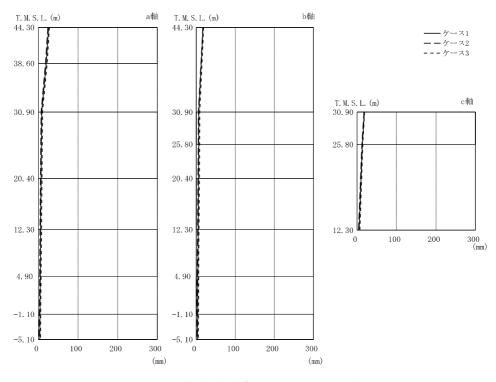


図 2-13 最大応答変位 (Ss-5, NS 方向)

表 2-13 最大応答変位 (Ss-5, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
124	号	1	2	3
	1	25.7	23.6	27.9
	3	19.8	17.6	21.9
	4	8.26	6.50	10.4
a 軸	9	6.81	5.23	9.08
ТРИ	11	5.45	4.01	7.81
	13	4.61	3.05	6.78
	15	3.88	2.26	5.87
	2	17.5	16.8	18.9
	5	6.86	5.23	9.18
	7	6.33	4.77	8.68
b	10	5.75	4.27	8.13
軸	12	4.92	3.40	7.20
	14	4.29	2.67	6.39
	16	3.78	2.13	5.74
	17	3.39	1.76	5.26
С	6	18.6	17.5	19.0
軸	8	13.4	12.3	14.3

②建屋剛性・地盤剛性(+ σ)考慮モデル

図 2-14 最大応答変位 (Ss-6, NS 方向)

表 2-14 最大応答変位 (Ss-6, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
135	号	1	2	3
	1	32.1	32.0	32.2
	3	24.2	23.9	25.4
	4	8.74	8.07	12.1
a 軸	9	6.87	6.20	10.2
	11	5.21	4.51	8.57
	13	3.98	3.23	7.29
	15	3.00	2.18	6.21
	2	22.5	22.8	24.3
	5	6.95	6.32	10.5
	7	6.27	5.62	9.78
b	10	5.58	4.89	9.03
軸	12	4.44	3.68	7.84
	14	3.52	2.72	6.84
	16	2.85	2.01	6.06
		0.40	1.53	5.50
	17	2.48	1.00	0.00
c 軸	17 6	16.8	16.3	19.6

②建屋剛性・地盤剛性(+ σ)考慮モデル

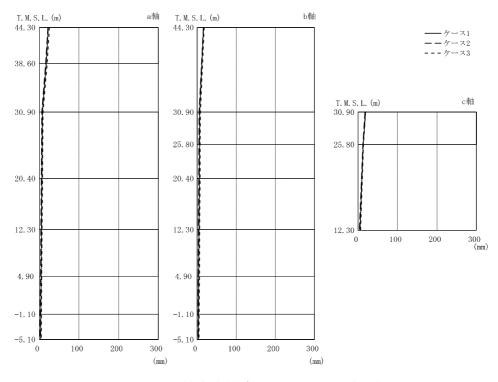


図 2-15 最大応答変位 (Ss-7, NS 方向)

表 2-15 最大応答変位 (Ss-7, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
122	号	1	2	3
	1	22.6	21.5	25.5
	3	17.5	15.8	20.0
	4	7.73	6.10	9.38
a 軸	9	6.38	4.93	8.19
ти	11	5.10	3.81	7.04
	13	4.37	2.93	6.10
	15	3.72	2.21	5.27
	2	16.2	15.9	18.1
	5	6.39	4.92	8.36
	7	5.89	4.51	7.89
b	10	5.35	4.05	7.37
軸	12	4.63	3.27	6.51
	14	4.07	2.60	5.76
	16	3.62	2.10	5.16
	17	3.27	1.75	4.72
С	6	18.8	17.5	18.9
軸	8	13.0	12.0	13.8

②建屋剛性・地盤剛性(+ σ)考慮モデル

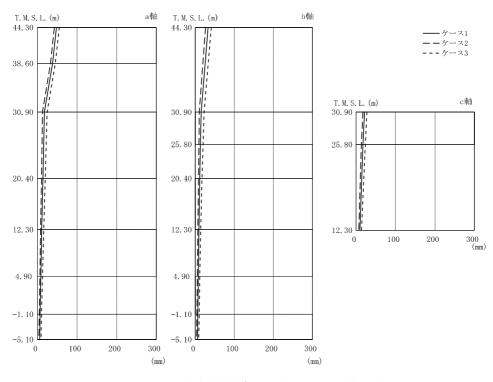


図 2-16 最大応答変位 (Ss-8, NS 方向)

表 2-16 最大応答変位 (Ss-8, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
127.	号	1	2	3
	1	48.1	42.7	55.1
	3	38.2	33.0	45.2
	4	17.6	13.0	24.5
a 軸	9	13.9	10.3	19.6
I pa	11	10.9	7.96	15.8
	13	8.72	6.11	12.9
	15	6.90	4.52	10.5
	2	32.9	26.6	41.1
	5	15.3	10.3	22.8
	7	13.4	9.34	20.0
b	10	11.8	8.31	17.2
軸	12	9.49	6.60	13.8
	14	7.89	5.28	11.8
	16	6.66	4.24	10.1
	17	5.82	3.49	9.05
С	6	21.3	17.3	27.5
軸	8	17.5	13.3	23.3

②建屋剛性・地盤剛性(+ σ)考慮モデル

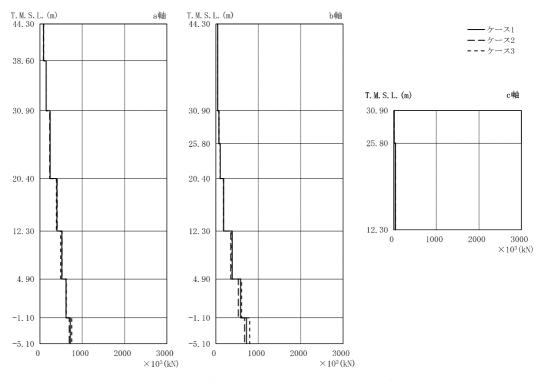


図 2-17 最大応答せん断力 (Ss-1, NS 方向)

表 2-17 最大応答せん断力 (Ss-1, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
11/	号	1	2	3
	1	86.3	80.8	90.3
	2	145	145	145
	3	241	232	241
a 軸	4	401	406	388
	5	519	521	490
	6	617	618	624
	7	716	692	753
	9	41.2	41.2	41.2
	10	70.4	70.0	69.7
	11	99.4	98.6	97.9
b 軸	12	180	178	178
	13	384	350	377
	14	581	527	605
	15	718	676	794
С	16	10.8	10.8	10.8
軸	17	38.0	38.6	38.2

②建屋剛性・地盤剛性(+ σ)考慮モデル

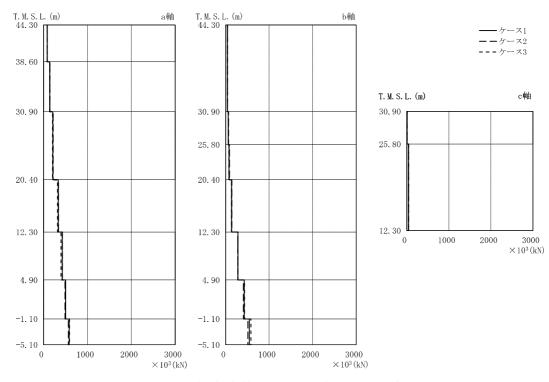


図 2-18 最大応答せん断力 (Ss-2, NS 方向)

表 2-18 最大応答せん断力 (Ss-2, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
111.	号	1	2	3
	1	85.4	81.6	85.3
	2	145	145	145
	3	213	220	205
a 軸	4	336	339	317
	5	428	425	399
	6	505	490	501
	7	585	564	590
	9	41.2	41.2	41.2
	10	59.3	67.0	61.1
	11	76.3	90.8	76.8
b 軸	12	139	146	137
	13	285	281	281
	14	428	412	435
	15	547	512	583
с	16	10.8	10.8	10.8
軸	17	42.3	43.2	44.1

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

③建屋剛性・地盤剛性(- σ)考慮モデル

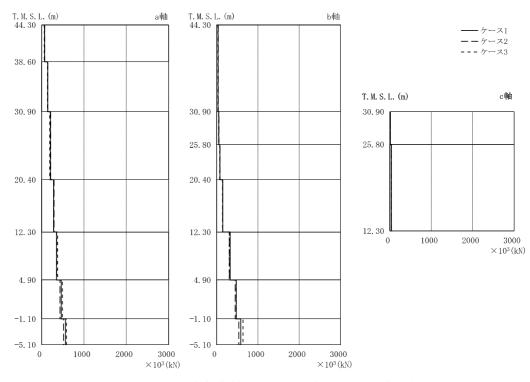


図 2-19 最大応答せん断力 (Ss-3, NS 方向)

表 2-19 最大応答せん断力 (Ss-3, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
11/2	号	1	2	3
	1	68.8	71.4	60.7
	2	145	145	139
	3	207	213	191
a 軸	4	283	292	283
	5	350	354	375
	6	462	434	489
	7	562	514	586
	9	34.1	36.5	29.9
	10	52.4	55.1	50.1
	11	81.3	81.1	75.5
b 軸	12	152	149	144
	13	328	311	306
	14	477	450	479
	15	586	539	640
С	16	10.8	10.8	10.8
軸	17	38.5	38.9	36.8

②建屋剛性・地盤剛性(+ σ)考慮モデル

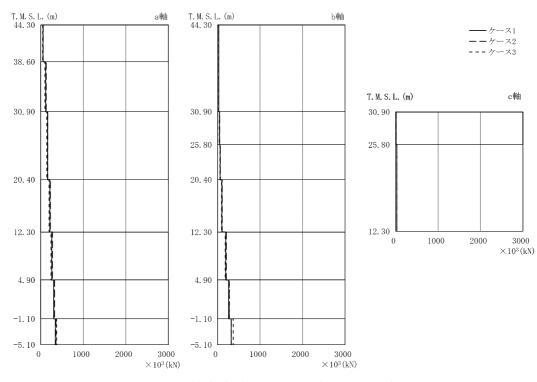


図 2-20 最大応答せん断力 (Ss-4, NS 方向)

表 2-20 最大応答せん断力 (Ss-4, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
1.17.	号	1	2	3
	1	53.7	58.1	45.3
	2	119	129	101
	3	162	167	143
a 軸	4	217	227	197
	5	260	276	241
	6	307	325	309
	7	345	357	374
	9	30.3	31.7	26.5
	10	45.5	48.6	41.5
	11	60.4	64.4	56.5
b 軸	12	102	109	95.7
	13	193	207	182
	14	261	275	277
	15	319	318	368
с	16	10.4	10.3	9.43
軸	17	28.4	27.4	26.4

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

③建屋剛性・地盤剛性(- σ)考慮モデル

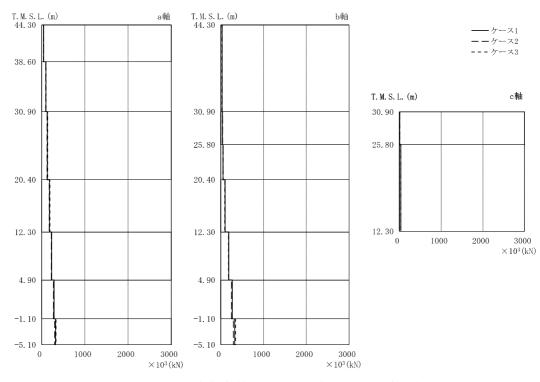


図 2-21 最大応答せん断力 (Ss-5, NS 方向)

表 2-21 最大応答せん断力 (Ss-5, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
111.	号	1	2	3
	1	43.6	45.1	42.7
	2	95.9	94.5	95.3
	3	131	123	136
a 軸	4	178	175	189
	5	229	224	231
	6	284	271	280
	7	320	300	330
	9	26.7	28.2	24.1
	10	37.3	39.1	35.4
	11	51.4	51.3	49.1
b 軸	12	97.5	95.8	92.3
	13	187	182	180
	14	270	252	269
	15	324	296	344
с	16	10.8	10.8	10.8
軸	17	37.7	37.9	33.8

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

③建屋剛性・地盤剛性(- σ)考慮モデル

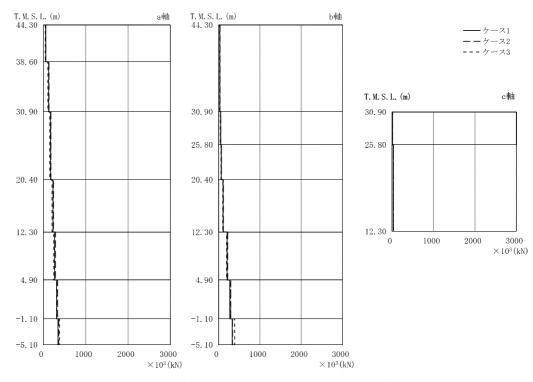


図 2-22 最大応答せん断力 (Ss-6, NS 方向)

表 2-22 最大応答せん断力 (Ss-6, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
111.	号	1	2	3
	1	57.0	58.8	48.5
	2	126	133	108
	3	172	177	152
a 軸	4	226	237	206
	5	267	285	248
	6	311	335	314
	7	344	366	380
	9	32.7	34.8	28.7
	10	49.2	53.0	44.5
	11	64.7	70.3	60.2
b 軸	12	108	116	102
	13	205	221	195
	14	274	294	293
	15	329	338	389
с	16	10.7	10.7	9.66
軸	17	29.3	30.6	27.0

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

③建屋剛性・地盤剛性(- σ)考慮モデル

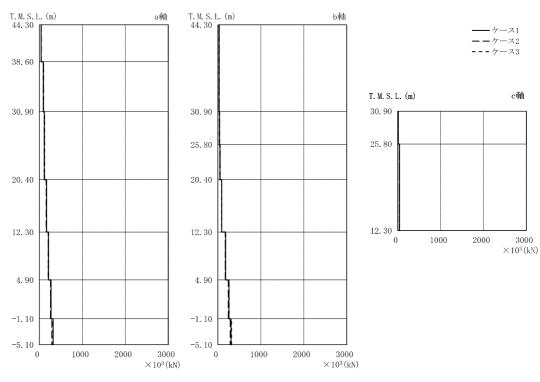


図 2-23 最大応答せん断力 (Ss-7, NS 方向)

表 2-23 最大応答せん断力 (Ss-7, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
111.	号	1	2	3
	1	41.3	45.2	41.2
	2	92.3	97.4	92.0
	3	116	115	121
a 軸	4	166	159	166
	5	212	209	209
	6	269	260	262
	7	319	289	313
	9	26.2	27.2	23.9
	10	35.2	36.3	32.5
	11	48.0	46.8	46.1
b 軸	12	90.2	87.0	86.5
	13	177	169	172
	14	255	239	257
	15	306	285	314
с	16	10.8	10.8	10.8
軸	17	38.6	37.9	34.7

②建屋剛性・地盤剛性(+ σ)考慮モデル

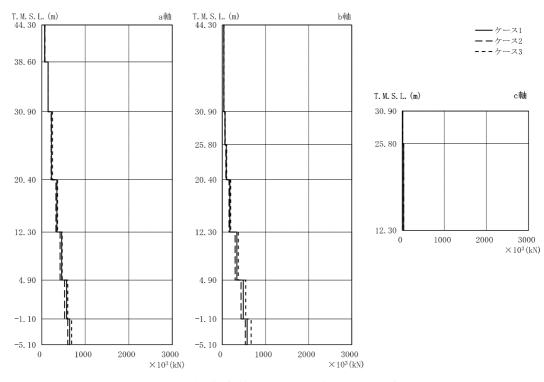


図 2-24 最大応答せん断力 (Ss-8, NS 方向)

表 2-24 最大応答せん断力 (Ss-8, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
1.17.	号	1	2	3
	1	68.7	69.4	68.3
	2	145	145	145
	3	224	216	245
a 軸	4	348	326	360
	5	459	422	470
	6	574	525	599
	7	642	598	687
	9	34.2	32.6	35.7
	10	62.3	57.2	66.7
	11	90.7	82.2	98.2
b 軸	12	175	154	191
	13	336	294	370
	14	484	435	543
	15	575	535	665
с	16	9.20	9.22	8.76
軸	17	30.1	29.3	29.7

②建屋剛性・地盤剛性(+ σ)考慮モデル

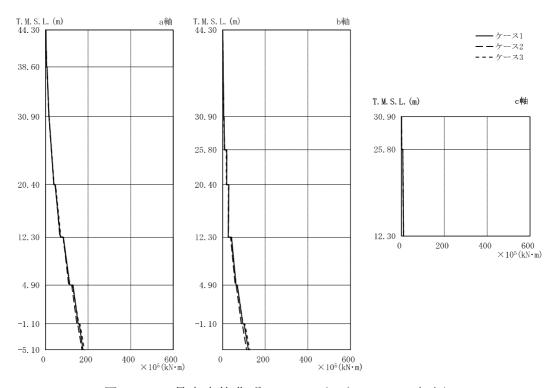


図 2-25 最大応答曲げモーメント (Ss-1, NS 方向)

表 2-25 最大応答曲げモーメント (Ss-1, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 $(\times 10^5 \mathrm{kN \cdot m})$		
122	号	1	2	3
	1	1.27 5.18	1.44 4.83	1.16 5.36
	2	7.18 16.4	6.65 16.1	6.75 16.7
	3	16.7 39.8	16.3 39.3	17.0 40.4
a 軸	4	44.8 69.7	46.6 67.8	47.2 71.9
	5	84.3 114	83.3 109	81.9 114
	6	129 153	123 147	127 156
	7	159 176	151 171	162 183
	9	0.673 5.54	0.778 5.54	0.587 5.54
	10	6.44 9.14	6.89 9.13	5.79 9.13
	11	19.5 19.3	20.1 19.7	17.6 18.3
b 軸	12	29.3 26.8	29.8 26.9	27.8 26.8
	13	41.9 63.4	37.4 59.2	40.2 64.2
	14	68.9 94.7	63.6 87.8	68.2 96.3
	15	101 121	92.1 113	105 127
С	16	0.272 0.638	0.247 0.634	0.246 0.607
軸	17	6.30 9.76	5.60 8.80	6.50 9.63

②建屋剛性・地盤剛性(+ σ)考慮モデル

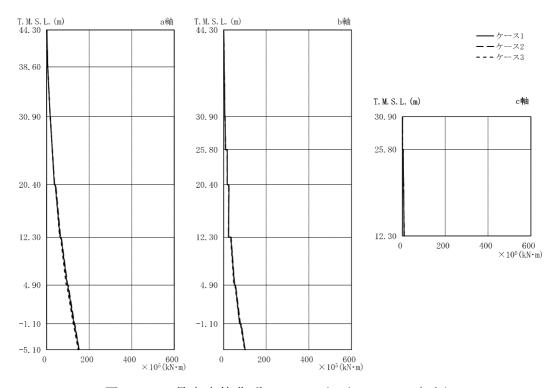


図 2-26 最大応答曲げモーメント (Ss-2, NS 方向)

表 2-26 最大応答曲げモーメント (Ss-2, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
1111	号	1	2	3
	1	1.01 5.16	1.03 4.93	1.01 5.21
	2	5.30 16.5	5.33 16.4	5.42 16.6
	3	17.0 36.2	16.7 37.3	17.2 36.5
a 軸	4	40.8 63.3	42.7 65.6	40.7 60.9
	5	68.1 96.9	69.6 98.8	65.2 92.1
	6	99.6 129	102 131	95.2 125
	7	130 152	133 153	126 148
	9	0.875 5.62	0.970 5.63	0.793 5.56
	10	6.72 8.92	6.71 8.76	6.43 8.69
	11	17.1 17.3	16.5 16.8	16.5 17.0
b 軸	12	25.3 22.8	24.0 23.2	24.8 23.0
	13	33.6 51.0	35.0 51.9	32.7 48.2
	14	55.8 74.8	56.5 78.9	53.0 74.8
	15	80.0 101	83.4 100	78.9 97.9
С	16	0.175 0.570	0.185 0.568	$0.178 \\ 0.575$
軸	17	3.27 7.67	3.66 8.37	3.46 8.59

②建屋剛性・地盤剛性(+ σ)考慮モデル

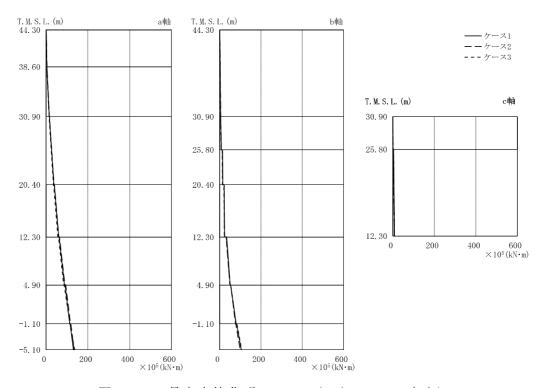


図 2-27 最大応答曲げモーメント (Ss-3, NS 方向)

表 2-27 最大応答曲げモーメント (Ss-3, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
122	号	1	2	3
	1	0.754 4.03	0.830 4.25	0.610 3.58
	2	4.11 15.3	4.37 15.6	3.63 14.4
	3	15.6 36.9	15.9 37.7	14.5 34.6
a 軸	4	39.2 60.3	39.7 61.5	36.0 56.6
	5	62.7 87.8	64.6 89.8	59.6 83.9
	6	90.8 113	93.7 117	86.4 114
	7	115 131	119 134	115 137
	9	0.414 4.59	0.441 4.90	0.377 4.07
	10	4.96 7.43	5.17 7.54	4.74 6.96
	11	13.9 15.3	13.4 14.7	12.5 14.4
b 軸	12	21.5 23.8	21.6 23.5	20.4 23.2
	13	34.5 51.3	31.8 49.6	32.2 50.4
	14	53.7 80.2	53.1 76.8	53.5 80.3
	15	82.0 105	78.3 99.1	83.6 107
c	16	0.202 0.589	0.235 0.618	0.169 0.573
軸	17	3.32 7.41	2.57 6.93	2.78 6.94

②建屋剛性・地盤剛性(+ σ)考慮モデル

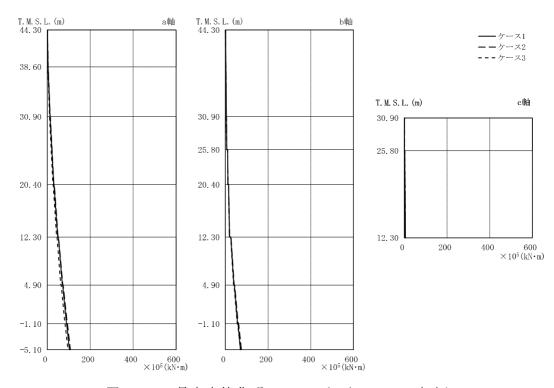


図 2-28 最大応答曲げモーメント (Ss-4, NS 方向)

表 2-28 最大応答曲げモーメント (Ss-4, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 $(\times 10^5 \mathrm{kN \cdot m})$		
11/	号	1	2	3
	1	0.546 3.17	$0.568 \\ 3.43$	$0.472 \\ 2.70$
	2	3.23 12.3	3.48 13.2	2.77 10.5
	3	12.5 29.5	13.4 30.7	10.7 25.7
a 軸	4	31.2 48.5	32.5 49.9	27.4 43.1
	5	51.1 69.7	52.2 72.1	45.6 62.7
	6	71.8 89.0	74.0 92.7	64.8 81.8
	7	90.1 103	93.7 107	82.9 96.2
	9	0.364 4.07	$0.381 \\ 4.25$	0.318 3.56
	10	4.19 6.51	4.34 6.80	3.84 5.76
	11	10.6 12.0	10.3 11.8	10.6 12.0
b 軸	12	14.7 19.0	14.7 19.6	14.7 18.3
	13	25.1 39.4	26.0 41.3	$24.5 \\ 37.7$
	14	41.5 56.8	43.5 60.0	39.9 55.3
	15	59.2 70.8	62.4 74.8	57.8 70.7
С	16	0.0384 0.529	0.0383 0.527	$0.0350 \\ 0.482$
軸	17	2.15 5.06	1.95 5.05	2.49 5.27

②建屋剛性・地盤剛性(+ σ)考慮モデル

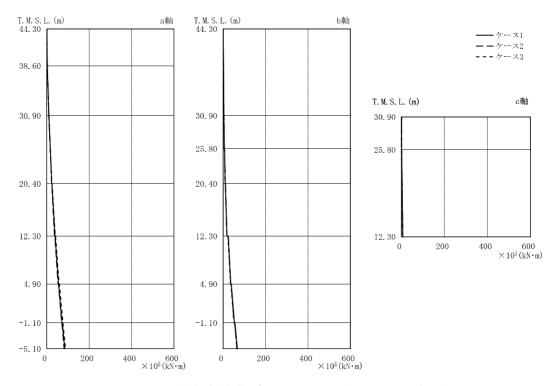


図 2-29 最大応答曲げモーメント (Ss-5, NS 方向)

表 2-29 最大応答曲げモーメント (Ss-5, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 $(\times 10^5 \mathrm{kN \cdot m})$		
111/	号	①	2	3
	1	0.436 2.53	0.445 2.57	0.417 2.50
	2	2.55 9.94	2.58 9.82	2.53 9.86
	3	10.0 23.7	9.86 22.8	9.95 24.2
a 軸	4	24.3 38.6	23.1 36.1	25.0 40.3
	5	39.4 55.3	38.0 53.5	41.5 58.7
	6	56.5 72.2	55.4 70.3	59.7 76.2
	7	73.3 84.7	71.4 82.1	76.7 88.8
	9	0.320 3.60	0.338 3.79	0.288 3.24
	10	3.79 5.66	4.02 5.97	3.41 5.12
	11	7.09 9.69	7.50 10.2	6.54 8.98
b 軸	12	11.1 18.3	11.4 18.2	10.4 17.3
	13	23.9 36.5	24.5 35.7	22.7 34.7
	14	38.9 53.4	37.9 51.6	37.0 51.6
	15	56.0 67.4	54.1 64.5	54.1 65.8
С	16	0.133 0.556	0.135 0.553	0.0591 0.555
軸	17	1.33 6.23	1.33 6.25	1.32 5.74

②建屋剛性・地盤剛性(+ σ)考慮モデル

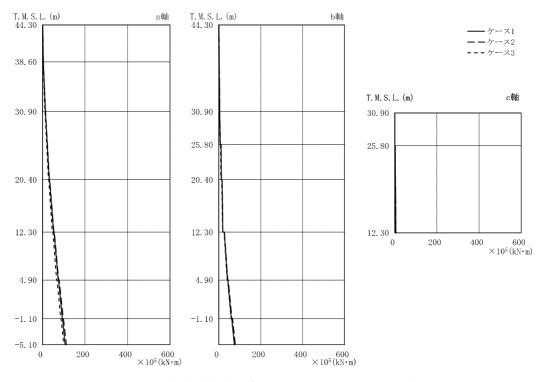


図 2-30 最大応答曲げモーメント (Ss-6, NS 方向)

表 2-30 最大応答曲げモーメント (Ss-6, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 $(\times 10^5 \mathrm{kN}\cdot \mathrm{m})$		
132-	号	1	2	3
	1	0.569 3.40	0.589 3.49	0.502 2.92
	2	3.47 13.1	3.56 13.8	2.99 11.3
	3	13.3 31.3	13.9 32.2	11.5 27.4
a 軸	4	33.3 51.4	34.0 53.1	29.5 45.8
	5	54.2 73.4	55.6 76.2	48.8 66.3
	6	75.6 93.1	78.2 97.5	68.7 85.8
	7	94.2 106	98.5 112	87.1 100
	9	0.392 4.39	0.416 4.66	0.344 3.86
	10	4.45 6.94	4.66 7.31	3.99 6.25
	11	10.8 12.3	10.9 12.4	9.10 10.3
b 軸	12	15.6 19.3	16.2 19.9	14.1 18.5
	13	26.0 41.2	27.0 43.2	25.2 39.6
	14	43.3 59.6	45.5 63.1	41.9 58.9
	15	61.9 74.2	65.5 78.9	61.3 75.5
c	16	0.0396 0.544	0.0397 0.544	0.0358 0.494
軸	17	1.86 5.23	1.84 5.46	1.99 5.07

②建屋剛性・地盤剛性(+ σ)考慮モデル

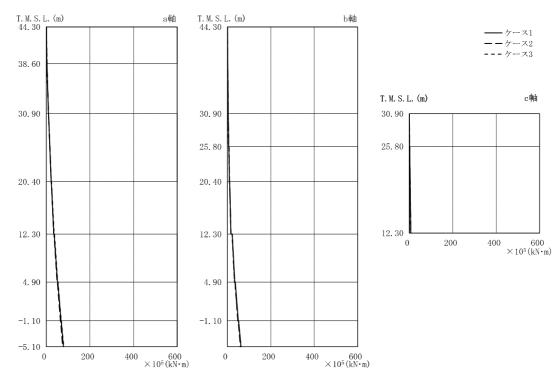


図 2-31 最大応答曲げモーメント (Ss-7, NS 方向)

表 2-31 最大応答曲げモーメント (Ss-7, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 $(\times 10^5 \mathrm{kN \cdot m})$		
122	号	1	2	3
	1	0.426 2.41	0.464 2.66	0.409 2.42
	2	2.45 9.55	2.70 10.2	2.45 9.54
	3	9.65 21.7	10.3 22.1	9.62 22.3
a 軸	4	22.7 34.0	23.1 33.5	23.2 35.5
	5	35.7 50.7	34.9 48.6	36.8 51.6
	6	52.5 67.0	50.3 64.0	53.2 68.0
	7	68.0 78.6	64.9 74.8	69.0 80.0
	9	0.313 3.52	0.325 3.67	0.286 3.22
	10	3.71 5.47	3.88 5.68	3.41 5.04
	11	6.66 9.00	6.93 9.30	6.36 8.57
b 軸	12	9.95 16.6	10.2 16.1	9.75 16.1
	13	22.0 33.8	21.9 32.4	21.3 32.7
	14	35.8 49.8	34.2 47.4	34.6 48.6
	15	51.9 62.9	49.3 59.6	50.8 62.0
С	16	0.115 0.554	0.104 0.555	0.0508 0.553
軸	17	1.21 6.22	1.18 6.08	1.25 5.80

②建屋剛性・地盤剛性(+ σ)考慮モデル



図 2-32 最大応答曲げモーメント (Ss-8, NS 方向)

表 2-32 最大応答曲げモーメント (Ss-8, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
11/	号	1	2	3
	1	0.941 4.13	0.847 4.08	$0.945 \\ 4.08$
	2	4.25 15.4	4.16 15.4	4.18 15.4
	3	15.8 39.2	15.6 38.1	15.7 41.0
a 軸	4	45.5 70.1	42.2 65.1	47.0 75.3
	5	75.8 105	67.8 95.7	80.7 113
	6	108 136	97.4 128	117 148
	7	138 161	130 153	149 172
	9	0.414 4.55	$0.395 \\ 4.35$	0.431 4.75
	10	4.41 7.49	4.32 7.04	4.52 7.79
	11	8.22 11.7	8.79 11.3	8.50 11.6
b 軸	12	13.7 22.1	13.4 21.3	16.2 23.3
	13	28.8 53.2	27.2 48.1	32.8 58.4
	14	56.2 84.6	50.3 75.0	62.2 92.1
	15	87.8 110	77.5 98.0	97.2 120
С	16	0.0341 0.472	0.0342 0.472	0.0354 0.450
軸	17	1.70 4.98	1.47 4.83	2.66 6.27

②建屋剛性・地盤剛性(+ σ)考慮モデル

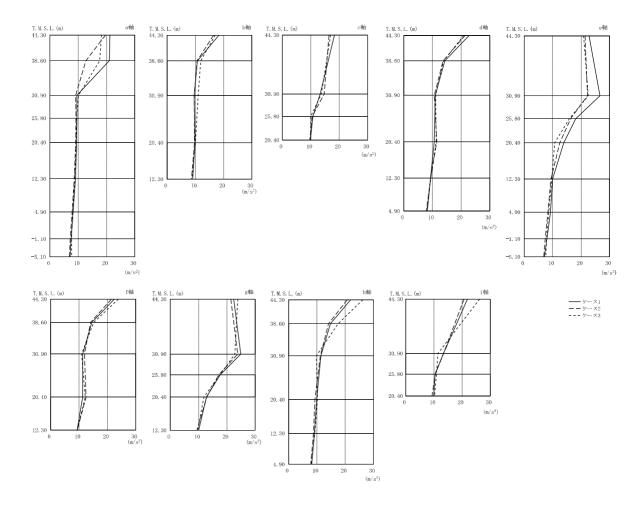


図 2-33 最大応答加速度 (Ss-1, EW 方向)

表 2-33 最大応答加速度 (Ss-1, EW 方向)

部	質点	最大応答加速度一覧表 (m/s ²)		
位	番号	(1)	2	(3)
	1	21.2	19.6	18.2
a	6	21.0	12.7	17.6
	11	9.53	9.07	10.1
	20	9.55	9.23	9.46
	25	9.42	9.07	9.25
軸	32	9.02	8.58	8.75
	36	8.19	7.85	8.02
	38	7.50	7.19	7.62
	40	7.10	6.90	7.64
	2	18.3	16.4	17.0
b	7	10.7	10.6	11.9
軸	12	9.57	9.62	11.0
	26	9.85	9.66	10.0
С	19	13.3	14.7	13.7
軸	21	10.7	10.5	10.0
	3	22.8	21.4	20.9
	8	14.3	13.7	13.9
d 軸	13	11.0	10.7	11.1
平田	27	10.6	11.5	11.3
	33	9.34	9.37	9.41
	18	26.6	22.2	22.5
	22	18.1	16.3	15.9
е	31	13.9	12.5	10.7
軸	35	9.98	9.39	9.68
	37	9.22	8.36	8.59
	39	7.98	7.40	7.84
	4	22.4	21.4	23.8
f	9	14.5	14.1	15.2
軸	14	11.3	11.9	10.9
	28	11.3	12.5	12.2
	17	24.9	23.8	22.8
g 軸	23	17.6	17.1	17.5
	30	12.8	12.9	11.9
	5	21.9	20.7	26.2
$ \cdot $	10	14.8	14.1	17.5
h 軸	15	11.4	11.2	9.81
	29	9.90	9.29	10.2
	34	9.12	8.76	9.25
i	16	13.4	13.4	11.4
軸	24	10.4	10.5	10.9

②建屋剛性・地盤剛性(+ σ)考慮モデル

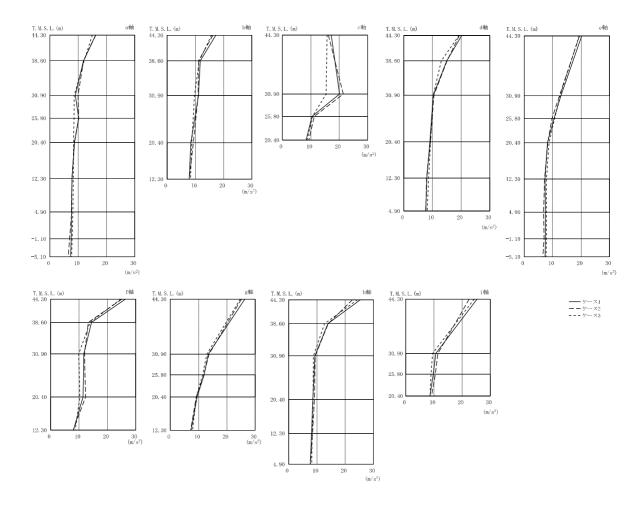


図 2-34 最大応答加速度 (Ss-2, EW 方向)

表 2-34 最大応答加速度 (Ss-2, EW 方向)

部	質点	最大応答加速度一覧表 (m/s ²)		
位	番号	(1)	②	(3)
	1	16.2	16.2	15.0
a	6	11.9	11.9	12.1
	11	8.99	9.96	8.60
	20	10.2	10.2	8.55
	25	8.71	8.63	8.39
軸	32	7.80	7.81	8.26
	36	7.65	7.68	8.15
	38	7.50	6.94	7.87
	40	7.36	6.53	7.67
	2	17.2	16.2	15.7
1.	7	11.7	11.1	11.4
b 軸	12	11.1	11.0	9.66
	26	8.37	9.29	8.70
_	19	20.1	21.4	15.4
c 軸	21	10.4	11.2	10.6
	3	20.2	19.4	19.3
	8	15.0	15.1	13.1
d	13	10.3	10.5	10.3
軸	27	9.11	9.29	9.33
	33	8.02	7.95	8.64
	18	12.9	12.4	12.6
	22	10.5	9.75	10.7
е	31	8.21	8.27	8.71
軸	35	7.35	7.14	7.85
	37	7.43	6.85	7.82
	39	7.43	7.00	7.82
	4	26.3	25.1	24.7
f	9	14.4	13.3	13.9
軸	14	11.7	11.9	9.89
	28	11.4	12.3	10.3
	17	13.4	13.7	12.9
g 軸	23	11.9	11.8	11.4
华田	30	9.42	9.17	9.18
	5	25.3	22.5	24.3
	10	13.9	14.0	12.7
h 軸	15	9.32	9.40	8.79
- 学田	29	8.56	9.12	8.63
	34	8.12	8.44	8.34
i	16	10.7	11.4	9.56
軸	24	9.76	10.5	8.99
注: ① T 恝モデル				

②建屋剛性・地盤剛性(+ σ)考慮モデル

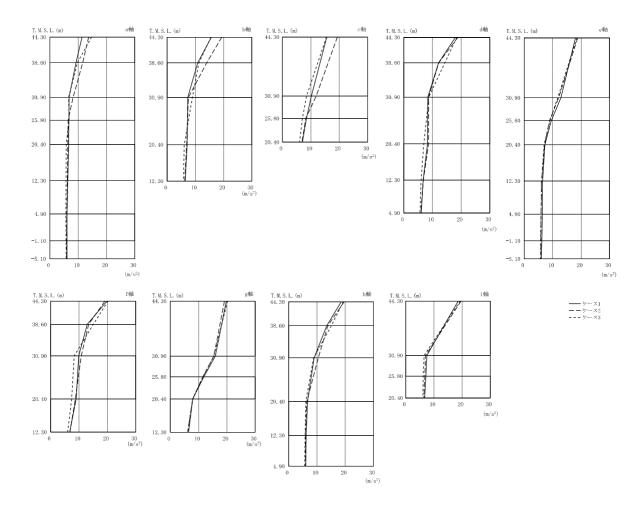


図 2-35 最大応答加速度 (Ss-3, EW 方向)

表 2-35 最大応答加速度 (Ss-3, EW 方向)

部	質点	最大応答加速度一覧表 (m/s²)		
位	番号	(1)	2	(3)
	1	11.4	13.7	14.7
	6	9.20	11.6	9.74
	11	6.79	8.22	6.63
	20	6.76	6.46	6.81
a	25	6.62	6.36	5.78
軸	32	6.36	6.18	5.73
	36	6.07	5.94	5.65
	38	6.04	5.88	5.72
	40	6.02	5.86	5.75
	2	15.6	19.3	15.5
b	7	10.8	14.0	11.2
軸	12	7.32	7.50	8.94
	26	7.04	6.89	6.01
С	19	10.2	11.9	8.53
軸	21	8.47	8.22	7.06
	3	18.0	18.8	18.5
	8	12.1	12.2	14.3
d	13	8.36	8.65	8.69
軸	27	8.29	8.65	6.97
	33	6.76	6.79	6.02
	18	12.9	12.1	11.8
	22	9.50	8.89	9.06
	31	7.30	7.16	7.01
e 軸	35	6.47	6.10	6.14
	37	6.38	5.90	5.93
	39	6.18	5.88	5.79
	4	19.8	19.1	20.2
f	9	12.9	13.4	15.0
軸	14	9.86	10.8	8.30
	28	8.99	8.74	7.42
	17	15.9	15.4	15.4
g	23	11.8	11.5	11.5
軸	30	7.93	7.89	7.91
	5	18.6	19.6	19.3
	10	13.5	13.9	15.1
h natur	15	9.01	10.5	8.85
軸	29	6.68	6.40	6.07
	34	6.18	5.96	5.83
i 軸	16	7.48	7.04	6.53
	24	7.14	6.73	6.17
注・		認モデル		ı

②建屋剛性・地盤剛性(+ σ)考慮モデル

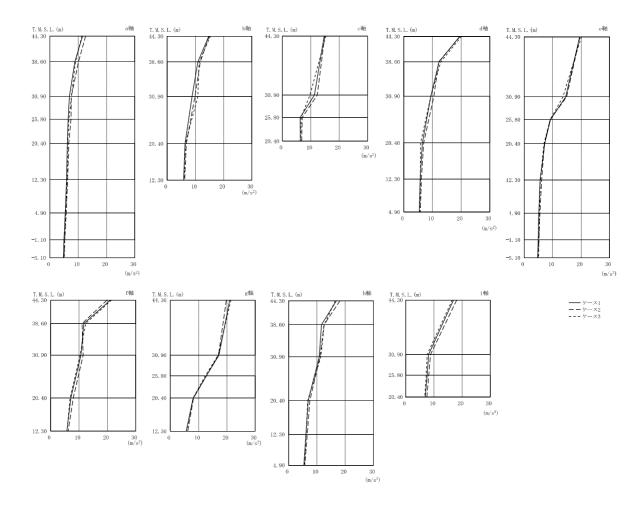


図 2-36 最大応答加速度 (Ss-4, EW 方向)

表 2-36 最大応答加速度 (Ss-4, EW 方向)

部	質点	最大応答加速度一覧表 (m/s ²)		
位	番号	(1)	2	(3)
	1	11.5	12.6	11.3
	6	8.78	10.1	9.04
	11	6.87	7.54	7.61
	20	6.43	7.43	6.72
a	25	6.17	6.67	6.27
軸	32	5.85	6.25	6.01
	36	5.41	5.75	5.60
	38	4.97	5.23	5.25
	40	4.75	4.94	5.06
	2	14.7	14.9	15.3
١,	7	10.9	11.7	11.3
b 軸	12	8.82	9.82	10.9
	26	6.30	6.78	6.42
	19	11.3	12.3	9.69
c 軸	21	6.27	7.01	6.61
	3	19.5	19.6	20.1
	8	12.3	12.2	12.9
d		9.45	10.5	9.45
軸	13			
	27	6.47	6.95 6.17	5.85
	33	5.70		5.79
	18	14.6	14.9	13.6
	22	9.24	9.13	9.10
e 軸	31	7.23	7.09	6.94
714	35	5.60	6.17	5.68
	37	5.13	5.53	5.29
	39	4.93	5.19	5.18
	4	21.0	19.8	21.4
f 軸	9	11.7	11.1	12.3
甲田	14	10.7	11.5	10.4
	28	7.14	7.97	6.87
g	17	17.2	17.0	16.9
軸	23	12.7	12.7	12.3
	30	8.08	8.21	8.07
	5	16.9	18.1	16.5
h	10	11.6	12.5	12.6
軸	15	10.8	11.1	11.4
	29	6.93	7.46	6.76
	34	6.10	6.55	6.16
i 事由	16	8.12	8.78	7.61
軸 /	24	7.58 認モデル	8.19	7.24

②建屋剛性・地盤剛性(+ σ)考慮モデル

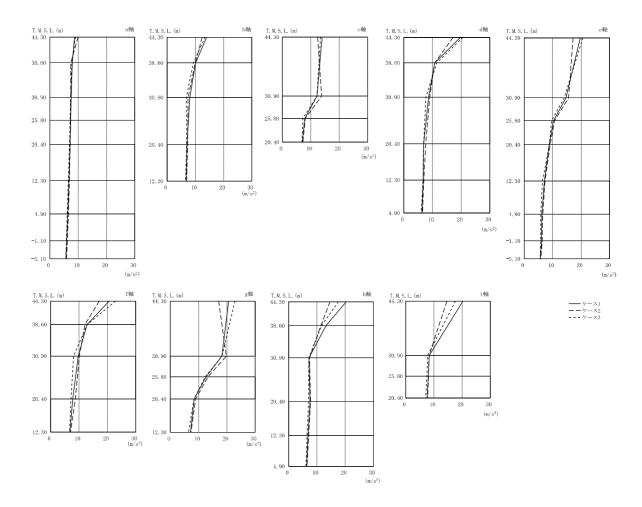


図 2-37 最大応答加速度 (Ss-5, EW 方向)

表 2-37 最大応答加速度 (Ss-5, EW 方向)

部	質点	最大応答加速度一覧表 (m/s ²)		
位	番号	(Ī)	2	(3)
	1	8.69	9.94	9.05
	6	7.88	7.37	7.70
	11	7.52	7.36	7.35
	20	7.33	7.30	7.12
a	25	7.09	7.18	6.86
軸上	32	6.73	6.90	6.47
	36	6.32	6.54	6.10
	38	5.91	6.12	5.82
	40	5.63	5.85	5.62
	2	14.0	12.4	13.4
b	7	10.1	9.96	9.25
軸	12	8.02	7.43	6.78
	26	7.02	7.23	6.90
С	19	12.2	13.8	12.2
軸	21	7.89	8.10	7.25
	3	19.7	17.2	20.6
	8	10.8	10.8	11.5
d #h	13	8.66	9.06	7.73
軸上	27	6.95	7.69	6.91
	33	6.77	7.02	6.71
	18	14.7	15.6	14.1
	22	10.3	10.7	9.64
e	31	8.81	9.12	8.82
軸	35	7.12	7.31	6.44
	37	6.18	6.52	5.81
	39	6.06	6.30	5.78
	4	20.6	17.1	22.8
f	9	12.8	12.1	12.9
軸	14	9.69	10.1	8.07
	28	7.82	8.73	7.17
	17	18.2	19.8	18.3
g 軸	23	12.6	13.3	12.3
CHA	30	8.44	8.93	8.38
	5	20.3	14.6	17.6
١. [10	13.2	11.4	11.6
h 軸	15	7.20	7.39	7.15
,,,,	29	7.56	7.75	7.02
	34	6.87	7.09	6.54
i	16	8.32	8.31	7.77
軸	24	7.98	8.06	7.49

②建屋剛性・地盤剛性(+ σ)考慮モデル

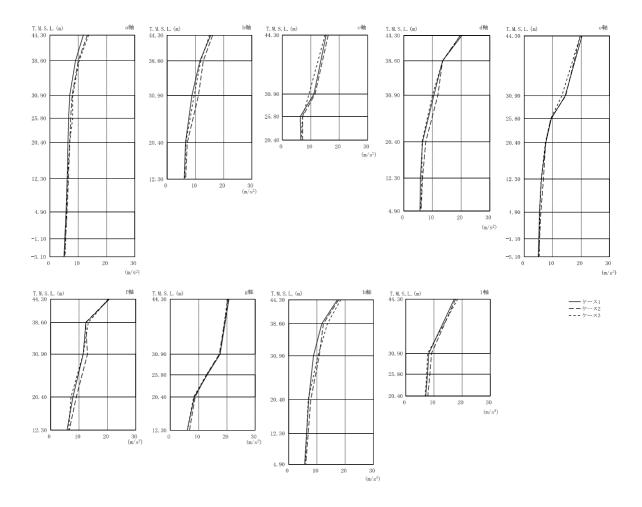


図 2-38 最大応答加速度 (Ss-6, EW 方向)

表 2-38 最大応答加速度 (Ss-6, EW 方向)

部	質点	最大応答加速度一覧表 (m/s²)		
位	番	0		
	号	11.0	2	3
	1 c	11.8	13.2	13.7
	6	9.04	9.99	10.3
	11	7.00	7.82	8.08
a	20	6.62	7.33	8.02
軸	25	6.38	7.00	7.02
	32	6.07	6.56	6.22
	36	5.66	6.04	5.85
	38	5.21	5.49	5.51
	40	4.98	5.16	5.33
	2	15.4	16.1	15.0
b	7	11.6	12.8	11.9
軸	12	8.76	11.1	9.58
	26	6.49	7.11	6.60
С	19	11.1	11.5	9.35
軸	21	6.30	7.12	7.10
	3	20.3	19.7	19.7
,	8	13.5	13.5	13.6
d 軸	13	10.5	11.9	10.0
	27	6.57	7.67	6.39
	33	5.80	6.56	6.33
	18	14.4	14.6	13.2
	22	9.50	9.36	9.38
е	31	7.64	7.56	7.45
軸	35	6.01	6.76	6.00
	37	5.38	5.87	5.46
	39	5.14	5.43	5.40
	4	20.7	20.5	20.2
f	9	12.4	12.3	13.3
軸	14	11.5	13.0	11.5
	28	7.86	9.06	7.17
	17	17.6	17.3	17.6
g 軸	23	13.0	12.8	12.7
714	30	8.45	8.76	8.27
	5	17.2	17.7	18.4
h #h	10	11.7	12.3	13.7
	15	8.78	10.8	10.4
軸	29	7.09	7.84	6.94
	34	6.32	6.91	6.41
i	16	8.18	9.17	7.76
軸	24	7.69	8.57	7.40
注・		認モデル		

②建屋剛性・地盤剛性(+ σ)考慮モデル

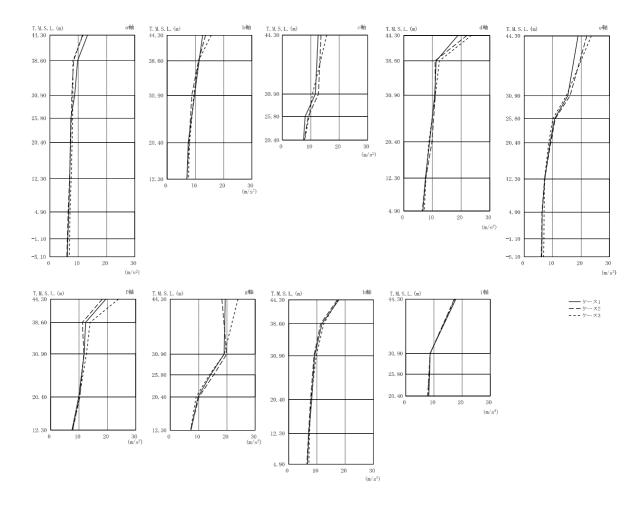


図 2-39 最大応答加速度 (Ss-7, EW 方向)

表 2-39 最大応答加速度 (Ss-7, EW 方向)

最大応答加速度一覧表 (m/s²) (第一分) 会性 (1) (2) (3) 日本 (1)						
特別		点				
格 6 9.78 8.34 8.13 11 8.74 7.72 8.13 20 7.38 7.56 8.00 25 7.23 7.35 7.82 32 7.00 6.96 7.50 36 6.65 6.45 7.14 38 6.30 6.15 6.95 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 6.12 8.71 9.43 41 12 9.67 8.71 9.43 42 9.67 8.71 9.43 43 11.6 12.7 10.6 49 11.6 12.7 10.6 49 11.6 12.7 10.6 49 11.3 10.9 12.4 40 13.9 22.0 23.6 8 11.3 10.9 12.4 40 13.9 9.	737.		1)	2	3	
相 11 8.74 7.72 8.13 20 7.38 7.56 8.00 25 7.23 7.35 7.82 32 7.00 6.96 7.50 36 6.65 6.45 7.14 38 6.30 6.15 6.95 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 6.12 8.71 11.1 11 12 9.67 8.71 9.43 40 7.46 7.76 7.93 40 7.16 7.27 10.6 40 7.16 7.71 10.6 40 7.13 11.0 11.0 41 1.3 10.8 11.0 11.0 40 1.3 10.8 11.0 11.0 40 1.3 10.8 11.0 11.0 4 1.5 1.1 7.74 7.7		1	13.3	11.5	11.7	
 中間に対しては、できます。 中間に対しては、できますます。 中間に対しては、できますます。 中間に対しては、できますます。 中間に対しては、できますます。 中間に対しては、できますます。 中間に対しては、できますますます。 中間に対しては、できますますます。 中間に対しては、できますますますますますますますますますますますますますますますますますますます		6	9.78	8.34	8.13	
軸 25 7.23 7.35 7.82 32 7.00 6.96 7.50 36 6.65 6.45 7.14 38 6.30 6.15 6.95 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 6.12 8.71 9.43 52 7.46 7.76 7.93 40 11.6 12.7 10.6 40 11.6 12.7 10.6 40 21 8.02 9.08 9.39 40 13.3 10.9 12.4 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 4 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9		11	8.74	7.72	8.13	
映画 25 7.23 7.35 7.82 32 7.00 6.96 7.50 36 6.65 6.45 7.14 38 6.30 6.15 6.95 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 7 11.3 11.1 11.1 12 9.67 8.71 9.43 26 7.46 7.76 7.93 2 19 11.6 12.7 10.6 21 8.02 9.08 9.39 3 18.9 22.0 23.6 8 11.3 10.9 12.4 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 4 15.3 16.1 14.8 22 10.7 10.9 10.1		20	7.38	7.56	8.00	
		25	7.23	7.35	7.82	
38 6.30 6.15 6.95 40 6.12 5.99 6.82 40 6.12 5.99 6.82 40 7 11.3 11.1 11.1 12 9.67 8.71 9.43 26 7.46 7.76 7.93 27 19 11.6 12.7 10.6 21 8.02 9.08 9.39 48 11.3 10.9 12.4 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 41 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 11.2 13.9 4 11.8 11.7 12.6 28 9.88 10.3 10.1 5 17.8 17.2 17.4 30 9.81 10.1 9.12 5 17.8 17.2 17.4	TH	32	7.00	6.96	7.50	
40 6.12 5.99 6.82 μ 2 12.6 13.6 15.6 τ 11.3 11.1 11.1 12 9.67 8.71 9.43 26 7.46 7.76 7.93 19 11.6 12.7 10.6 21 8.02 9.08 9.39 8 11.3 10.9 12.4 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 4 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 23.9 <td></td> <td>36</td> <td>6.65</td> <td>6.45</td> <td>7.14</td>		36	6.65	6.45	7.14	
由 2 12.6 13.6 15.6 由 7 11.3 11.1 11.1 12 9.67 8.71 9.43 26 7.46 7.76 7.93 c 19 11.6 12.7 10.6 21 8.02 9.08 9.39 8 11.3 10.9 12.4 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 4 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 13.9 <td></td> <td>38</td> <td>6.30</td> <td>6.15</td> <td>6.95</td>		38	6.30	6.15	6.95	
b 7 11.3 11.1 11.1 は 12 9.67 8.71 9.43 で 19 11.6 12.7 10.6 で 21 8.02 9.08 9.39 3 18.9 22.0 23.6 8 11.3 10.9 12.4 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 4 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 23.9 5 <		40	6.12	5.99	6.82	
軸 12 9.67 8.71 9.43 26 7.46 7.76 7.93 c軸 19 11.6 12.7 10.6 21 8.02 9.08 9.39 4 21 8.02 9.08 9.39 8 11.3 10.9 12.4 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 48 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 11.2 13.9 4 19.4 11.2 13.9		2	12.6	13.6	15.6	
He 12 3.01 3.74 3.43 26 7.46 7.76 7.93 c th 19 11.6 12.7 10.6 g th 21 8.02 9.08 9.39 3 18.9 22.0 23.6 8 11.3 10.9 12.4 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 18 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 14 11.8 11.7 12.6 28 9.88 10.3 10.1	b	7	11.3	11.1	11.1	
映 19 11.6 12.7 10.6 軸 21 8.02 9.08 9.39 番 18.9 22.0 23.6 8 11.3 10.9 12.4 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 4 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 23.9 4 19.4 18.2 13.9 4 19.4 19.2 13.9 4 19.4 19.2 13.9 <	軸	12	9.67	8.71	9.43	
中 21 8.02 9.08 9.39 deh 3 18.9 22.0 23.6 8 11.3 10.9 12.4 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 18 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 4 11.8 11.7 12.6 28 9.88 10.3 10.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 30 9.81 10.1 9.12		26	7.46	7.76	7.93	
em 21 3.02 3.08 3.38 d mi 13 18.9 22.0 23.6 8 11.3 10.9 12.4 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 18 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 4 11.8 11.7 12.6 28 9.88 10.3 10.1 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12	с	19	11.6	12.7	10.6	
Method 8 11.3 10.9 12.4 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 18 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 14 11.8 11.7 12.6 28 9.88 10.3 10.1 9 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4	軸	21	8.02	9.08	9.39	
क्ष्म 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 4 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 14 11.8 11.7 12.6 28 9.88 10.3 10.1 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4		3	18.9	22.0	23.6	
th 13 10.8 11.0 11.0 27 9.03 9.83 8.80 33 7.53 7.74 7.75 18 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 14 11.8 11.7 12.6 28 9.88 10.3 10.1 gth 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4		8	11.3	10.9	12.4	
27 9.03 9.83 8.80 33 7.53 7.74 7.75 4 15.3 16.1 14.8 5 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 14 11.8 11.7 12.6 28 9.88 10.3 10.1 9 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4		13	10.8	11.0	11.0	
H 18 15.3 16.1 14.8 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 14 11.8 11.7 12.6 28 9.88 10.3 10.1 gm 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4	ΨЩ	27	9.03	9.83	8.80	
emath 22 10.7 10.9 10.1 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 14 11.8 11.7 12.6 28 9.88 10.3 10.1 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4		33	7.53	7.74	7.75	
em 31 9.08 9.35 8.63 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 14 11.8 11.7 12.6 28 9.88 10.3 10.1 gm 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4		18	15.3	16.1	14.8	
軸 35 7.27 7.14 7.17 37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 14 11.8 11.7 12.6 28 9.88 10.3 10.1 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4		22	10.7	10.9	10.1	
37 6.30 6.26 7.00 39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 14 11.8 11.7 12.6 28 9.88 10.3 10.1 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4	е	31	9.08	9.35	8.63	
39 6.24 6.14 6.96 4 19.4 18.2 23.9 9 12.3 11.2 13.9 14 11.8 11.7 12.6 28 9.88 10.3 10.1 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4	軸	35	7.27	7.14	7.17	
g 4 19.4 18.2 23.9 9 12.3 11.2 13.9 14 11.8 11.7 12.6 28 9.88 10.3 10.1 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4		37	6.30	6.26	7.00	
f 9 12.3 11.2 13.9 th 14 11.8 11.7 12.6 28 9.88 10.3 10.1 th 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4		39	6.24	6.14	6.96	
m 14 11.8 11.7 12.6 28 9.88 10.3 10.1 4 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4		4	19.4	18.2	23.9	
14 11.8 11.7 12.6	f	9	12.3	11.2	13.9	
g 17 19.0 19.9 19.1 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4	軸	14	11.8	11.7	12.6	
g 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4		28	9.88	10.3	10.1	
軸 23 14.2 15.3 13.8 30 9.81 10.1 9.12 5 17.8 17.2 17.4		17	19.0	19.9	19.1	
30 9.81 10.1 9.12 5 17.8 17.2 17.4		23	14.2	15.3	13.8	
	ΨЩ	30	9.81	10.1	9.12	
10 11.8 11.3 12.4		5	17.8	17.2	17.4	
		10	11.8	11.3	12.4	
h 軸 15 9.20 8.96 9.75		15	9.20	8.96	9.75	
29 8.15 7.76 7.89	, 144	29	8.15	7.76	7.89	
34 7.16 7.05 7.36		34	7.16	7.05	7.36	
i 16 8.63 8.66 8.71	i	16	8.63	8.66	8.71	
軸 24 8.43 8.23 8.31	軸	24	8.43	8.23	8.31	

②建屋剛性・地盤剛性(+ σ)考慮モデル

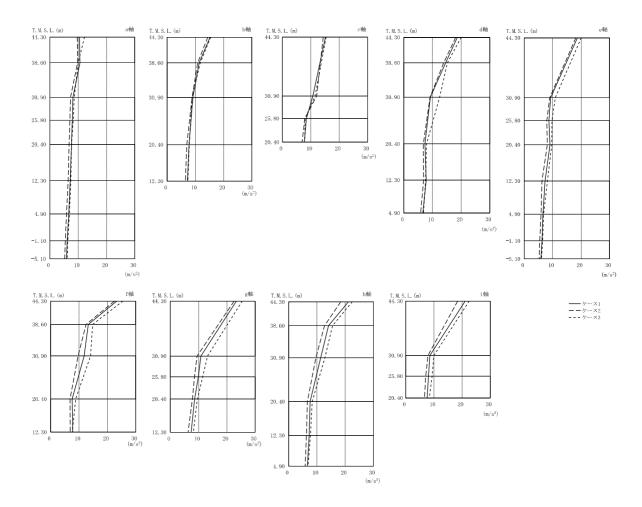


図 2-40 最大応答加速度 (Ss-8, EW 方向)

表 2-40 最大応答加速度 (Ss-8, EW 方向)

				-
部	質点	最大応答加速度一覧表 (m/s²)		
位	番号	(1)	2	(3)
	1	10.4	9.67	12.2
	6	10.6	9.77	10.0
	11	8.11	7.27	8.59
	20	7.89	7.05	8.24
a 軸	25	7.61	6.79	7.63
平川	32	7.17	6.43	7.37
	36	6.63	5.87	6.87
	38	6.09	5.42	6.31
	40	5.86	5.23	6.07
	2	15.2	14.4	15.4
b	7	11.3	10.8	11.7
軸	12	9.13	8.81	8.84
	26	7.74	6.96	7.83
с	19	10.7	12.1	11.5
軸	21	8.47	7.90	8.01
	3	18.7	18.1	20.0
	8	14.6	13.9	15.2
d 軸	13	9.26	9.18	12.5
1 144	27	7.37	6.85	7.91
	33	7.82	6.91	7.64
	18	9.28	8.93	10.9
	22	8.65	7.95	9.73
е	31	9.06	8.09	9.71
軸	35	7.33	6.28	8.14
	37	6.60	5.90	6.85
	39	6.25	5.49	6.47
	4	23.3	22.5	25.4
f	9	13.3	12.5	14.8
軸	14	11.8	9.66	14.1
	28	7.60	6.85	8.80
	17	10.8	9.47	13.1
g 軸	23	9.87	8.55	11.4
	30	8.62	7.81	9.58
	5	21.1	18.4	22.5
,	10	14.1	12.7	15.5
h 軸	15	11.3	9.64	12.8
	29	7.60	6.63	8.34
	34	7.28	6.31	7.72
i	16	8.57	7.86	10.0
軸	24		7.10	9.40

②建屋剛性・地盤剛性(+ σ)考慮モデル

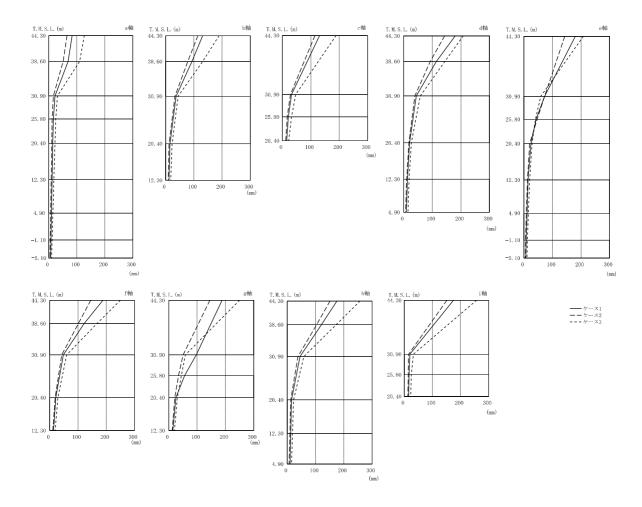


図 2-41 最大応答変位 (Ss-1, EW 方向)

表 2-41 最大応答変位 (Ss-1, EW 方向)

部	質点	最大応答変位一覧表 (mm)		
位	番号	(I)	2	(3)
	1	83.1	65.1	127
	6	69.2	51.4	110
	11	22.3	16.6	30.9
	20	16.3	11.9	24.7
a	25	14.4	10.6	21.9
軸	32	12.0	8.72	18.1
	36	9.72	6.60	14.7
	38	7.84	4.95	12.1
	40	6.65	3.97	10.2
	2	131	114	189
b	7	93.0	78.2	131
軸	12	36.5	32.5	44.3
	26	15.2	11.9	22.4
С	19	32.2	27.7	46.5
軸	21	20.7	16.6	32.2
	3	180	143	208
	8	114	92.6	144
d 軸	13	43.8	38.7	58.1
ΨH	27	20.8	18.3	26.7
	33	13.5	10.7	19.1
	18	72.4	72.0	58.6
	22	42.6	46.3	40.4
е	31	24.6	19.8	28.7
軸	35	14.1	11.8	20.0
	37	10.8	8.13	15.6
	39	8.03	5.27	11.9
	4	188	145	250
f	9	122	101	167
軸	14	47.7	42.5	59.7
	28	21.4	19.0	28.7
	17	96.8	50.5	58.3
g 軸	23	55.8	34.1	44.4
	30	25.0	21.2	30.2
	5	175	151	257
h	10	121	104	173
h 軸	15	44.9	37.8	58.7
	29	15.0	12.2	22.3
	34	12.2	9.17	18.4
i	16	19.5	15.1	32.4
軸	24	17.0	13.8	24.8

②建屋剛性・地盤剛性(+ σ)考慮モデル

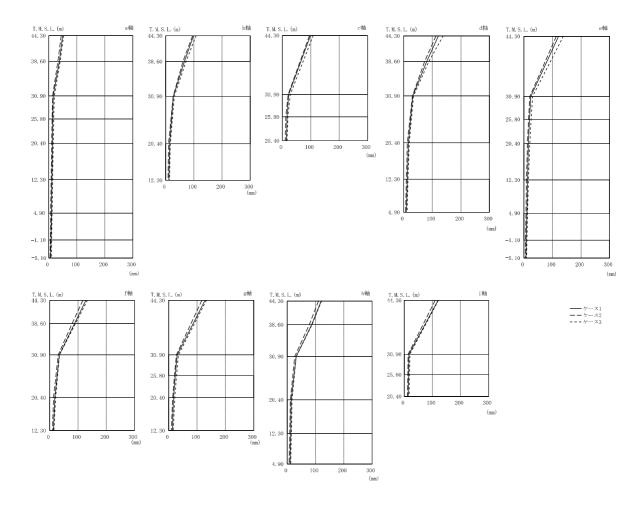


図 2-42 最大応答変位 (Ss-2, EW 方向)

表 2-42 最大応答変位 (Ss-2, EW 方向)

部	質点系	最大応答変位一覧表 (mm)		
位	番号	1)	2	3
	1	49.6	44.7	53.1
	6	37.5	32.7	40.3
	11	16.2	13.8	19.8
	20	14.0	11.8	17.9
a 軸	25	13.1	10.3	16.2
тш	32	11.6	8.29	13.9
	36	9.72	6.83	11.9
	38	7.97	5.50	10.2
	40	6.85	4.62	9.03
	2	98.7	95.3	108
b	7	66.7	61.1	71.9
軸	12	27.1	26.7	30.4
	26	14.0	10.4	16.5
С	19	22.3	20.4	27.7
軸	21	16.2	12.0	19.4
	3	121	113	138
	8	80.2	73.4	87.6
d 軸	13	31.8	30.6	34.8
	27	16.6	12.9	19.6
	33	12.8	9.31	14.9
	18	24.1	20.6	29.9
	22	19.6	16.3	25.1
е	31	15.6	12.3	20.4
軸	35	12.5	8.68	15.6
	37	10.1	7.01	12.6
	39	8.06	5.56	10.3
	4	128	117	133
f	9	87.5	79.3	90.9
軸	14	33.6	30.1	34.6
	28	17.8	13.5	20.7
	17	29.7	27.1	34.5
g 軸	23	22.8	20.4	27.8
	30	16.8	13.6	21.3
	5	120	110	121
h	10	86.2	78.1	87.7
軸	15	31.5	26.4	31.6
	29	14.0	10.9	16.9
	34	11.9	8.67	14.3
i #a	16	16.0	13.5	19.8
軸 注:	24	15.2 認モデル	12.2	18.4

②建屋剛性・地盤剛性(+ σ)考慮モデル

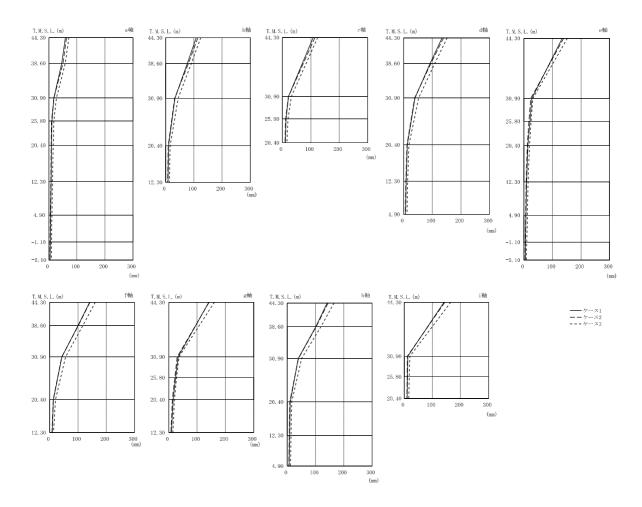


図 2-43 最大応答変位 (Ss-3, EW 方向)

表 2-43 最大応答変位 (Ss-3, EW 方向)

部	質点系	最大応答変位一覧表 (mm)		
位	番号	1)	2	3
	1	58.9	63.3	71.5
	6	46.0	50.7	58.7
	11	18.2	18.3	27.1
	20	11.4	9.16	18.0
a 軸	25	9.69	8.27	15.6
中田	32	8.16	6.86	13.0
	36	6.64	5.39	11.2
	38	5.35	4.16	9.67
	40	4.51	3.40	8.68
	2	108	114	124
b	7	76.4	80.2	90.9
軸	12	32.6	31.8	43.9
	26	10.2	8.75	15.5
С	19	21.6	21.5	31.5
軸	21	12.6	10.9	19.8
	3	134	139	152
	8	92.3	94.8	108
d 軸	13	39.2	38.4	52.2
	27	12.4	11.3	18.3
	33	8.92	7.71	13.5
	18	27.7	24.1	31.2
	22	20.9	17.4	25.3
е	31	14.0	11.6	19.5
軸	35	9.39	7.57	14.3
	37	7.20	5.67	11.8
	39	5.43	4.16	9.77
	4	141	142	161
f	9	100	101	117
軸	14	43.1	42.4	56.1
	28	13.2	12.3	19.9
~	17	32.8	29.9	36.0
g 軸	23	24.1	20.9	27.4
	30	15.3	12.5	19.9
	5	141	144	165
h	10	101	102	119
軸	15	39.0	39.4	50.9
	29	10.2	8.80	15.6
	34	8.34	7.09	13.2
i 曲由	16	12.2	10.3	19.5
軸注:	24	11.2 認モデル	9.69	17.2

②建屋剛性・地盤剛性(+ σ)考慮モデル

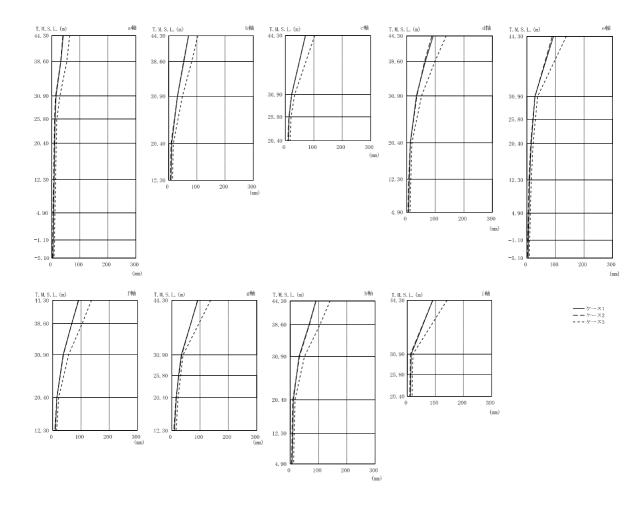


図 2-44 最大応答変位 (Ss-4, EW 方向)

表 2-44 最大応答変位 (Ss-4, EW 方向)

日本	部位	質点番	最大	· 応答変位- (mm)	芯答変位一覧表 (mm)	
H 6 32.6 31.6 53.3 11 15.2 13.8 28.9 20 12.2 9.75 18.4 25 10.6 8.18 16.2 32 8.58 6.18 13.6 36 6.78 4.45 11.3 38 5.25 3.13 9.35 40 4.28 2.35 8.17 40 4.28 2.35 81.8 12 31.1 30.8 48.6 12 31.1 30.8 48.6 26 10.8 8.39 16.3 26 10.8 8.39 16.3 31 12.1 32.6 19.8 48 65.3 62.9 98.6 13 34.1 35.7 51.9 48 65.3 62.9 98.6 13 34.1 35.7 51.9 49 12.9 12.7 18.5 49	117		1)	2	3	
相 11 15.2 13.8 28.9 20 12.2 9.75 18.4 25 10.6 8.18 16.2 32 8.58 6.18 13.6 36 6.78 4.45 11.3 38 5.25 3.13 9.35 40 4.28 2.35 8.17 40 4.28 2.35 8.18 40 4.28 2.35 8.18 40 4.28 2.35 8.18 40 4.28 2.35 8.18 40 4.28 2.35 8.18 41 2.1 31.1 30.8 48.6 42 31.1 30.8 48.6 43 92.0 22.1 32.6 48 65.3 62.9 98.6 43 34.1 35.7 51.9 49 12.9 12.7 18.5 49 29.9 28.5 37.1 49 21.9 28.5 37.1 49 9.37 <th< td=""><td></td><td>1</td><td>40.9</td><td>39.6</td><td>64.0</td></th<>		1	40.9	39.6	64.0	
Ambiful District 20 12.2 9.75 18.4 4 25 10.6 8.18 16.2 32 8.58 6.18 13.6 36 6.78 4.45 11.3 38 5.25 3.13 9.35 40 4.28 2.35 8.17 40 4.28 2.35 81.8 7 53.5 52.8 81.8 12 31.1 30.8 48.6 26 10.8 8.39 16.3 26 10.8 8.39 16.3 4 22 22.0 22.1 32.6 4 21 13.1 12.3 19.8 8 65.3 62.9 98.6 13 34.1 35.7 51.9 27 12.9 12.7 18.5 33 9.32 7.03 14.3 4 27.9 28.5 37.1 22 21.6 20.8 29.4 4 91.9 90.7 13.7		6	32.6	31.6	53.3	
輪 25 10.6 8.18 16.2 32 8.58 6.18 13.6 36 6.78 4.45 11.3 38 5.25 3.13 9.35 40 4.28 2.35 8.17 40 4.28 2.35 81.8 41 7 53.5 52.8 81.8 12 31.1 30.8 48.6 26 10.8 8.39 16.3 26 10.8 8.39 16.3 27 13.1 12.3 19.8 8 65.3 62.9 98.6 13 34.1 35.7 51.9 27 12.9 12.7 18.5 33 9.32 7.03 14.3 4 27.9 28.5 37.1 22 21.6 20.8 29.4 31 15.0 13.1 21.5 4 91.9 90.7 13.7 4 91.9 90.7 137 4 91.9 90.7 <td></td> <td>11</td> <td>15.2</td> <td>13.8</td> <td>28.9</td>		11	15.2	13.8	28.9	
曲 25 10.6 8.18 16.2 32 8.58 6.18 13.6 36 6.78 4.45 11.3 38 5.25 3.13 9.35 40 4.28 2.35 8.17 40 4.28 2.35 8.17 40 4.28 2.35 8.18 41 2 70.5 103 5 52.8 81.8 12 31.1 30.8 48.6 26 10.8 8.39 16.3 2 13.1 12.3 19.8 8 65.3 62.9 98.6 13 34.1 35.7 51.9 8 65.3 62.9 98.6 13 34.1 35.7 51.9 8 65.3 62.9 98.6 13 34.1 35.7 51.9 8 27.9 28.5 37.1 9 22		20	12.2	9.75	18.4	
32 8.58 6.18 13.6 36 6.78 4.45 11.3 38 5.25 3.13 9.35 40 4.28 2.35 8.17 40 75.5 52.8 81.8 12 31.1 30.8 48.6 12 31.1 30.8 48.6 12 31.1 12.3 19.8 21 13.1 12.3 19.8 21 13.1 12.3 19.8 8 65.3 62.9 98.6 13 34.1 35.7 51.9 27 12.9 12.7 18.5 33 9.32 7.03 14.3 4 27.9 28.5 37.1 22 21.6 20.8 29.4 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 4 36.9 37.6 55.8 4 3 4.4 20.7 4 3 3 3 3 3 5 3 3 3 3 5 3 3 3 4 3 3 3 5 3 3 3 6 5 3 3 6 6 6 7 6 7 8 6 6 7 8 6 6 7 8 6 6 7 8 6 6 7 8 6 7 6 6 7 7 6 7 7 6 7 7 6 7 7 7 7 7 7 7 7 8 7 7 8 7 7 9 6 7 9 6 7 9 6 7 9 7		25	10.6	8.18	16.2	
38 5.25 3.13 9.35 40 4.28 2.35 8.17 40 4.28 2.35 8.17 40 4.28 2.35 103 40 7 53.5 52.8 81.8 12 31.1 30.8 48.6 26 10.8 8.39 16.3 26 19 22.0 22.1 32.6 40 21 13.1 12.3 19.8 8 65.3 62.9 98.6 13 34.1 35.7 51.9 27 12.9 12.7 18.5 33 9.32 7.03 14.3 22 21.6 20.8 29.4 31 15.0 13.1 21.5 4 91.9 90.7 13.7 4 91.9 90.7 137 4 91.9 90.7 137 4 91.9 90.7 137 4 36.9 37.6 55.8 4 14.8	714	32	8.58	6.18	13.6	
40 4.28 2.35 8.17 b 2 70.2 70.5 103 7 53.5 52.8 81.8 12 31.1 30.8 48.6 26 10.8 8.39 16.3 2 19 22.0 22.1 32.6 21 13.1 12.3 19.8 8 65.3 62.9 98.6 13 34.1 35.7 51.9 27 12.9 12.7 18.5 33 9.32 7.03 14.3 22 21.6 20.8 29.4 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 6 9 6.7.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 8 14.8 14.4		36	6.78	4.45	11.3	
beam 2 70.2 70.5 103 beam 7 53.5 52.8 81.8 12 31.1 30.8 48.6 26 10.8 8.39 16.3 ceal 19 22.0 22.1 32.6 21 13.1 12.3 19.8 8 65.3 62.9 98.6 13 34.1 35.7 51.9 27 12.9 12.7 18.5 33 9.32 7.03 14.3 4 27.9 28.5 37.1 22 21.6 20.8 29.4 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 4 91.9 90.7 137 5 28 14.8 14.4		38	5.25	3.13	9.35	
beth 7 53.5 52.8 81.8 the 12 31.1 30.8 48.6 26 10.8 8.39 16.3 ce 19 22.0 22.1 32.6 the 21 13.1 12.3 19.8 3 92.9 88.3 138 8 65.3 62.9 98.6 13 34.1 35.7 51.9 27 12.9 12.7 18.5 33 9.32 7.03 14.3 4 27.9 28.5 37.1 22 21.6 20.8 29.4 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 4 91.9 90.7 137 9 67.6 67.3 104 4 36.9 37.6 55.8 28 14.8 14.4		40	4.28	2.35	8.17	
中 12 31.1 30.8 48.6 26 10.8 8.39 16.3 c 19 22.0 22.1 32.6 e 21 13.1 12.3 19.8 8 65.3 62.9 98.6 13 34.1 35.7 51.9 27 12.9 12.7 18.5 33 9.32 7.03 14.3 4 27.9 28.5 37.1 22 21.6 20.8 29.4 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 9 67.6 67.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 9 14.7 33.5 35.3 <		2	70.2	70.5	103	
Heat of the part of	b	7	53.5	52.8	81.8	
で軸 19 22.0 22.1 32.6 車軸 21 13.1 12.3 19.8 4	軸	12	31.1	30.8	48.6	
中 21 13.1 12.3 19.8 4 ф ф 3 92.9 88.3 138 8 65.3 62.9 98.6 13 34.1 35.7 51.9 27 12.9 12.7 18.5 33 9.32 7.03 14.3 22 21.6 20.8 29.4 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 9 67.6 67.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 30 15.9 14.8 22.2 4 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3		26	10.8	8.39	16.3	
a 92.9 88.3 138 8 65.3 62.9 98.6 13 34.1 35.7 51.9 27 12.9 12.7 18.5 33 9.32 7.03 14.3 18 27.9 28.5 37.1 22 21.6 20.8 29.4 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 9 67.6 67.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 <tr< td=""><td>с</td><td>19</td><td>22.0</td><td>22.1</td><td>32.6</td></tr<>	с	19	22.0	22.1	32.6	
deh 8 65.3 62.9 98.6 deh 13 34.1 35.7 51.9 27 12.9 12.7 18.5 33 9.32 7.03 14.3 4 27.9 28.5 37.1 22 21.6 20.8 29.4 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 9 67.6 67.3 104 41 36.9 37.6 55.8 28 14.8 14.4 20.7 3 23.2 35.3 39.7 23 23.9 25.2 31.1 30 15.9 14.8 22.2 4 90.4 90.6 141 10 66.3 67.6 105	軸	21	13.1	12.3	19.8	
변환		3	92.9	88.3	138	
th 13 34.1 35.7 51.9 27 12.9 12.7 18.5 33 9.32 7.03 14.3 18 27.9 28.5 37.1 22 21.6 20.8 29.4 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 9 67.6 67.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 17 33.5 35.3 39.7 23 23.9 25.2 31.1 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29		8	65.3	62.9	98.6	
27 12.9 12.7 18.5 33 9.32 7.03 14.3 18 27.9 28.5 37.1 22 21.6 20.8 29.4 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 9 67.6 67.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 30 15.9 35.3 39.7 23 23.9 25.2 31.1 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 1 16 13.7 10.9 20.0		13	34.1	35.7	51.9	
H 27.9 28.5 37.1 E 22 21.6 20.8 29.4 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 9 67.6 67.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 30 15.9 35.3 39.7 23 23.9 25.2 31.1 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 1 16 13.7 10.9 20.0	4-ш	27	12.9	12.7	18.5	
em 22 21.6 20.8 29.4 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 9 67.6 67.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 30 23.9 25.2 31.1 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 i 16 13.7 10.9 20.0		33	9.32	7.03	14.3	
e 31 15.0 13.1 21.5 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 9 67.6 67.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 17 33.5 35.3 39.7 23 23.9 25.2 31.1 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 i 16 13.7 10.9 20.0		18	27.9	28.5	37.1	
軸 35 9.37 6.90 14.7 37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 9 67.6 67.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 17 33.5 35.3 39.7 23 23.9 25.2 31.1 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 istal 16 13.7 10.9 20.0		22	21.6	20.8	29.4	
37 7.08 4.79 11.8 39 5.24 3.16 9.38 4 91.9 90.7 137 9 67.6 67.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 17 33.5 35.3 39.7 23 23.9 25.2 31.1 30 15.9 14.8 22.2 4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 1 16 13.7 10.9 20.0 38 38 38 38 38 1 1 1 1 1 1 1 1 1	е	31	15.0	13.1	21.5	
39 5.24 3.16 9.38 4 91.9 90.7 137 9 67.6 67.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 30 35.3 39.7 23 23.9 25.2 31.1 30 15.9 14.8 22.2 4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 1 16 13.7 10.9 20.0	軸	35	9.37	6.90	14.7	
4 91.9 90.7 137 9 67.6 67.3 104 14 36.9 37.6 55.8 28 14.8 14.4 20.7 17 33.5 35.3 39.7 23 23.9 25.2 31.1 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 i 16 13.7 10.9 20.0		37	7.08	4.79	11.8	
f 9 67.6 67.3 104 軸 14 36.9 37.6 55.8 28 14.8 14.4 20.7 g 17 33.5 35.3 39.7 23 23.9 25.2 31.1 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 i 16 13.7 10.9 20.0		39	5.24	3.16	9.38	
軸 14 36.9 37.6 55.8 28 14.8 14.4 20.7 30 17 33.5 35.3 39.7 30 15.9 14.8 22.2 30 15.9 14.8 22.2 4 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 1 16 13.7 10.9 20.0		4	91.9	90.7	137	
g 14 30.9 37.0 39.8 28 14.8 14.4 20.7 17 33.5 35.3 39.7 23 23.9 25.2 31.1 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 i 16 13.7 10.9 20.0	f	9	67.6	67.3	104	
g 17 33.5 35.3 39.7 g 23 23.9 25.2 31.1 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 i 16 13.7 10.9 20.0	軸	14	36.9	37.6	55.8	
g 23 23.9 25.2 31.1 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 i 16 13.7 10.9 20.0		28	14.8	14.4	20.7	
軸 23 23.9 25.2 31.1 30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 i 16 13.7 10.9 20.0		17	33.5	35.3	39.7	
30 15.9 14.8 22.2 5 90.4 90.6 141 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 1 16 13.7 10.9 20.0		23	23.9	25.2	31.1	
h 軸 10 66.3 67.6 105 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 i 16 13.7 10.9 20.0		30	15.9	14.8	22.2	
h 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 i 16 13.7 10.9 20.0		5	90.4	90.6	141	
軸 15 31.0 32.4 50.3 29 11.2 8.60 16.7 34 8.93 6.45 13.9 i 16 13.7 10.9 20.0	,	10	66.3	67.6	105	
29 11.2 8.60 16.7 34 8.93 6.45 13.9 i 16 13.7 10.9 20.0		15	31.0	32.4	50.3	
i 16 13.7 10.9 20.0	, 141	29	11.2	8.60	16.7	
±.b		34	8.93	6.45	13.9	
軸 24 12.4 9.73 18.2	i	16	13.7	10.9	20.0	
I	軸	24	12.4	9.73	18.2	

②建屋剛性・地盤剛性(+ σ)考慮モデル

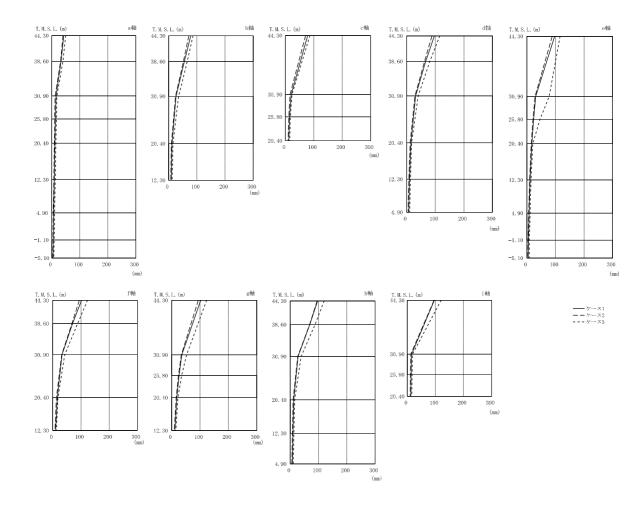


図 2-45 最大応答変位 (Ss-5, EW 方向)

表 2-45 最大応答変位 (Ss-5, EW 方向)

部	質点	最大	最大応答変位一覧表 (mm)		
位	番号	(Ī)	②	3	
	1	42.8	40.0	49.7	
	6	33.3	31.2	40.0	
	11	15.1	11.8	18.2	
	20	13.1	10.3	16.4	
a 軸	25	11.4	8.97	14.8	
7411	32	9.12	7.11	12.5	
	36	6.97	5.23	10.4	
	38	5.20	3.63	8.58	
	40	4.27	2.91	7.38	
	2	78.3	71.4	86.2	
b	7	55.7	52.0	65.8	
軸	12	26.2	24.2	35.3	
	26	11.9	9.55	15.2	
с	19	20.6	16.4	23.3	
軸	21	14.6	11.9	17.5	
	3	96.7	88.1	116	
,	8	66.1	62.5	81.3	
d 軸	13	31.2	29.0	40.1	
	27	15.0	12.2	17.3	
	33	9.94	7.94	13.2	
	18	30.7	28.3	77.8	
	22	23.3	20.9	45.9	
e	31	17.0	14.8	20.4	
軸	35	11.0	9.03	14.6	
	37	7.72	6.01	11.2	
	39	5.26	3.72	8.64	
	4	102	93.8	123	
f	9	70.4	68.1	88.1	
軸	14	32.7	31.4	42.6	
	28	16.1	13.0	18.3	
ď	17	35.3	33.6	52.6	
g 軸	23	25.8	23.7	35.2	
	30	17.9	15.8	21.6	
	5	96.3	94.6	120	
h	10	68.9	68.2	87.6	
軸	15	27.3	26.4	38.1	
	29	12.1	9.77	15.5	
	34	9.48	7.47	12.9	
i 曲由	16	14.9	12.0	18.3	
軸注:	24	13.5 認モデル	10.9	16.9	

②建屋剛性・地盤剛性(+ σ)考慮モデル

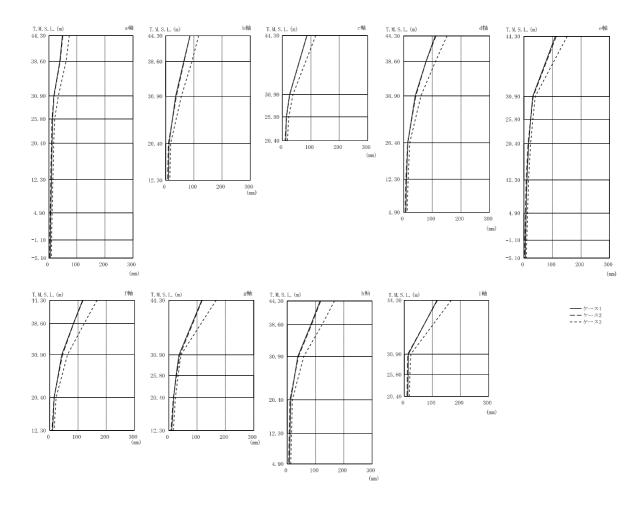


図 2-46 最大応答変位 (Ss-6, EW 方向)

表 2-46 最大応答変位 (Ss-6, EW 方向)

部	質点	最大応答変位一覧表 (mm)		
位	番号	(1)	2	(3)
	1	48.4	49.9	73.1
	6	39.0	40.4	61.2
	11	18.2	18.6	33.9
	20	13.3	11.1	20.9
a	25	11.5	9.20	17.4
軸	32	9.30	6.79	14.4
	36	7.37	4.77	11.9
	38	5.76	3.26	9.83
	40	4.73	2.39	8.57
	2	86.2	86.1	117
b	7	64.2	65.2	92.7
軸	12	34.9	37.8	55.2
	26	11.7	9.29	17.6
С	19	25.0	25.8	36.9
軸	21	14.2	14.1	22.3
	3	110	113	151
	8	78.0	78.1	111
d 軸	13	40.0	42.3	60.2
1 144	27	13.9	13.4	20.7
	33	10.0	7.86	15.3
	18	30.3	32.1	39.3
	22	23.4	23.1	31.2
е	31	16.4	14.3	23.1
軸	35	10.4	7.41	15.9
	37	7.81	5.08	12.6
	39	5.77	3.27	9.88
	4	116	118	167
f	9	83.8	84.4	122
軸	14	42.7	45.2	62.7
	28	15.6	15.3	22.7
·	17	36.0	39.0	42.6
g 軸	23	25.6	27.6	32.9
	30	17.2	15.9	23.6
	5	116	118	167
h	10	83.6	85.8	123
軸	15	36.9	39.3	57.9
	29	12.0	9.41	17.9
	34	9.61	6.99	14.7
i #uh	16	14.7	12.3	23.2
軸 注:	24	13.3 認モデル	10.7	19.8

②建屋剛性・地盤剛性(+ σ)考慮モデル

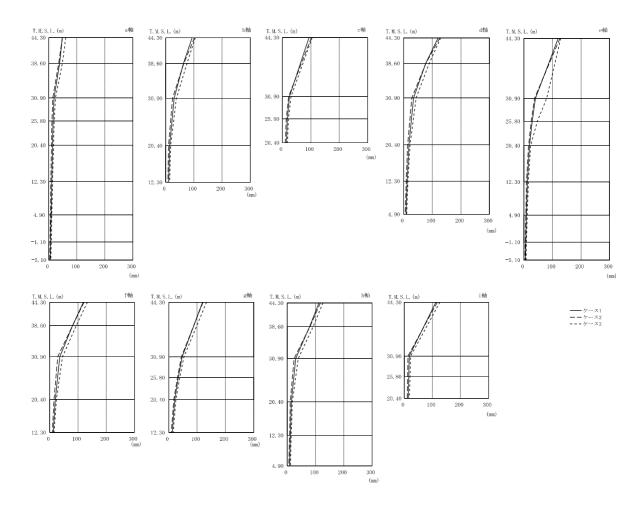


図 2-47 最大応答変位 (Ss-7, EW 方向)

表 2-47 最大応答変位 (Ss-7, EW 方向)

位置	F		大応答変位一覧表 (mm)		
	7	(1)	(2)	(3)	
	1	48.5	48.2	60.6	
I -	6	38.6	35.2	48.2	
]	1	18.8	14.0	23.9	
2	20	15.5	11.5	19.5	
a 軸 2	25	13.5	9.79	17.1	
	32	10.8	7.58	13.8	
3	36	8.35	5.54	10.8	
3	38	6.40	4.28	8.76	
4	10	5.23	3.56	7.51	
	2	93.4	102	105	
b	7	63.0	63.8	75.5	
軸	12	29.7	24.0	37.7	
2	26	14.0	10.2	17.6	
c _]	19	24.8	22.0	30.4	
軸 2	21	17.1	13.3	21.4	
	3	120	126	129	
	8	77.3	77.8	89.2	
d 軸	13	34.6	28.3	43.5	
	27	18.2	13.9	22.2	
3	33	12.1	8.85	15.0	
_ 1	18	39.9	36.7	79.6	
2	22	29.1	25.8	46.8	
е 3	31	19.4	15.8	23.4	
軸	35	12.2	8.86	15.4	
3	37	8.92	6.30	11.6	
3	39	6.43	4.43	8.83	
	4	119	121	133	
f	9	80.8	80.8	94.2	
軸	14	35.4	28.4	45.2	
2	28	19.4	15.2	23.5	
I ⊨	17	47.1	44.2	53.1	
g 軸	23	33.8	30.6	38.7	
	30	21.0	17.5	24.9	
	5	112	117	126	
	10	78.8	80.1	91.6	
h 軸	15	29.6	24.3	38.9	
	29	14.2	10.5	17.9	
3	34	11.1	7.92	14.1	
ı . ⊢	16	17.6	13.1	22.5	
	24	15.8 認モデル	11.8	20.1	

②建屋剛性・地盤剛性(+ σ)考慮モデル

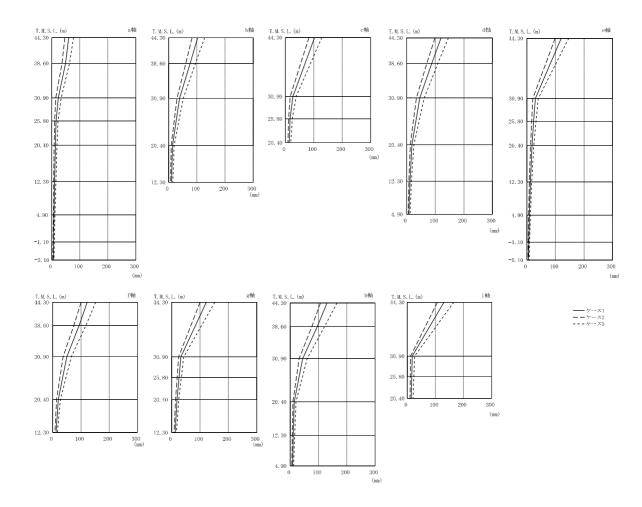


図 2-48 最大応答変位 (Ss-8, EW 方向)

表 2-48 最大応答変位 (Ss-8, EW 方向)

部	質点で	最大応答変位一覧表 (mm)		
位	番号	(Ī)	②	(3)
	1	60.7	46.8	77.7
	6	48.7	36.6	63.6
	11	23.0	14.5	33.8
	20	15.4	10.1	21.8
a 軸	25	13.3	8.75	18.8
平川	32	10.4	6.93	14.9
	36	7.84	5.43	11.3
	38	6.33	4.22	9.24
	40	5.46	3.48	8.17
	2	103	82.9	128
b	7	76.0	60.5	95.1
軸	12	38.7	29.2	51.7
	26	13.5	9.24	19.4
с	19	26.2	17.2	37.9
軸	21	16.7	11.4	24.2
	3	120	98.6	146
	8	87.7	70.4	109
d 軸	13	45.8	34.2	61.3
1 144	27	18.5	12.7	25.1
	33	11.6	7.67	16.4
	18	29.4	20.5	39.5
	22	23.4	16.5	31.6
е	31	17.6	12.5	23.9
軸	35	12.0	8.35	16.6
	37	8.66	5.81	12.3
	39	6.40	4.27	9.37
	4	122	100	152
f	9	93.4	74.7	117
軸	14	49.5	36.8	65.7
	28	19.8	13.5	27.0
	17	32.3	24.0	42.1
g 軸	23	25.6	18.9	33.7
	30	18.6	13.4	24.8
	5	130	107	165
h	10	95.3	76.3	121
h 軸	15	44.1	31.4	59.7
	29	13.7	9.37	20.0
	34	10.6	7.20	15.5
i	16	17.4	11.7	26.0
軸	24	15.5	10.5	22.9

②建屋剛性・地盤剛性(+ σ)考慮モデル

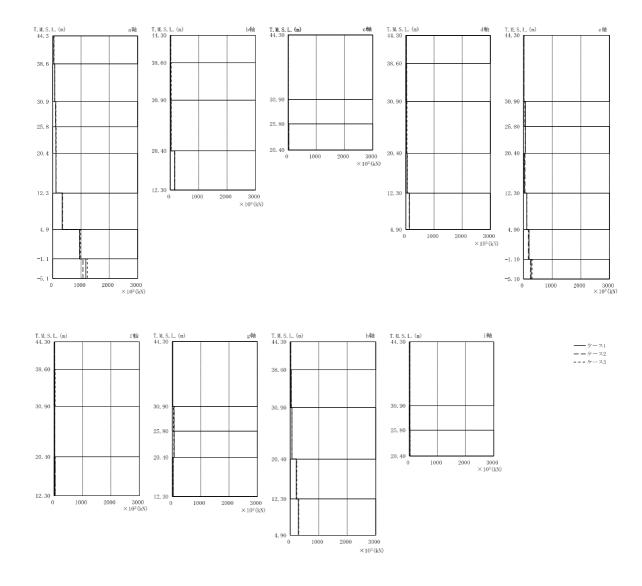


図 2-49 最大応答せん断力 (Ss-1, EW 方向)

表 2-49 最大応答せん断力 (Ss-1, EW 方向)

部	部材	最大応	答せん断力 (×10 ³ kN)	一覧表
位	番号	1)	2	3
	1	35.1	33.4	42.5
	2	74.2	74.2	74.3
	3	105	101	108
a	4	110	107	114
軸	5	108	108	113
	6	335	344	340
	7	946	951	983
	8	1170	1070	1220
	10	9.14	15.0	25.2
b	11	14.5	17.4	32.2
軸	12	21.4	27.8	33.5
	13	156	158	152
	14	4.56	4.05	6.17
c 軸	15	5.56	4.87	7.17
7144	16	20.2	19.4	18.4
	17	16.6	21.3	24.9
	18	24.1	27.0	32.5
d 軸	19	22.6	27.1	40.3
114	20	49.4	48.9	51.7
	21	134	126	132
	22	10.9	16.0	15.2
	23	65.3	51.9	44.6
	24	63.8	61.9	56.9
e 軸	25	32.8	50.7	32.5
794	26	109	113	110
	27	188	170	198
	28	261	244	298
	29	20.5	19.7	22.6
f	30	28.4	28.0	34.4
軸	31	25.7	27.0	24.0
	32	33.8	35.9	34.5
	33	19.6	10.4	16.3
g	34	59.8	63.3	41.3
軸	35	62.8	63.0	56.2
	36	30.8	30.3	30.3
	37	18.4	18.1	18.8
h 軸	38	31.3	34.7	34.5
	39	60.7	61.2	63.6
	40	212	217	231
	41	285	292	295
	42	12.0	10.6	15.4
i 軸	43	14.4	13.1	17.1
-HII	44	22.0	21.4	23.8
注:	①I.	認モデル	i .	

注: ①工認モデル ②建屋剛性・地盤剛性 $(+\sigma)$ 考慮モデル ③建屋剛性・地盤剛性 $(-\sigma)$ 考慮モデル

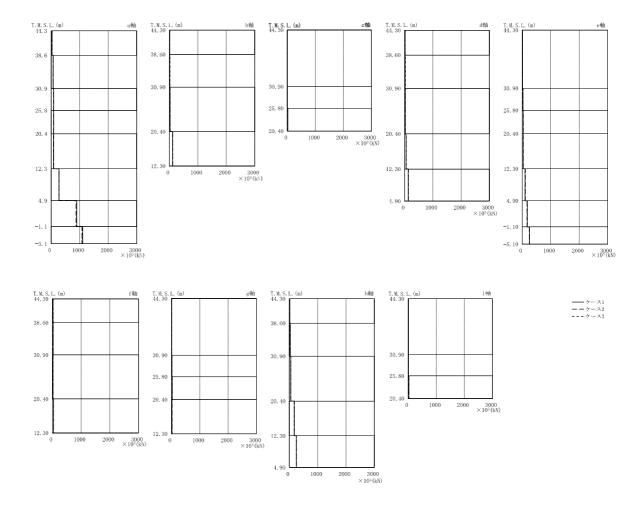


図 2-50 最大応答せん断力 (Ss-2, EW 方向)

表 2-50 最大応答せん断力 (Ss-2, EW 方向)

部	部材	最大応答せん断力一覧表 (×10³kN)		
位	番号	1	2	3
	1	30.8	30.0	32.9
a 軸	2	70.6	68.7	74.2
	3	92.2	85.6	93.5
	4	92.6	85.7	92.9
	5	85.0	87.6	80.1
	6	278	272	272
	7	899	874	893
	8	1110	1080	1090
	10	9.82	12.1	13.8
b	11	11.3	16.2	19.2
軸	12	22.6	21.8	24.0
	13	110	115	112
	14	3.77	3.70	4.27
c 軸	15	5.45	5.84	5.21
1,	16	18.7	20.3	17.9
	17	14.9	15.1	18.8
	18	15.5	15.5	26.2
d 軸	19	23.0	23.7	23.1
	20	50.8	51.0	56.6
	21	126	131	129
	22	8.40	8.19	9.95
	23	28.0	28.1	27.3
	24	34.4	35.7	33.4
e 軸	25	31.7	35.9	29.8
	26	98.1	109	98.8
	27	176	167	178
	28	256	249	260
	29	20.8	21.6	23.2
f	30	24.0	25.7	28.3
軸	31	16.8	17.8	17.2
	32	34.8	33.3	34.1
中四	33	9.26	8.57	9.73
	34	17.4	17.6	17.3
	35	29.3	29.6	28.6
	36	20.9	24.0	17.7
h 輔	37	18.5	17.2	18.8
	38	32.4	32.0	32.3
	39	53.7	54.9	53.9
	40	174	178	172
	41	249	254	248
	42	8.68	8.01	8.81
i 軸	43	8.68	9.08	8.68
	44	22.9	24.1	20.1
注:	①工	認モデル 屋剛性・地	般圖 性(+-	~)老唐エラ

[・]①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

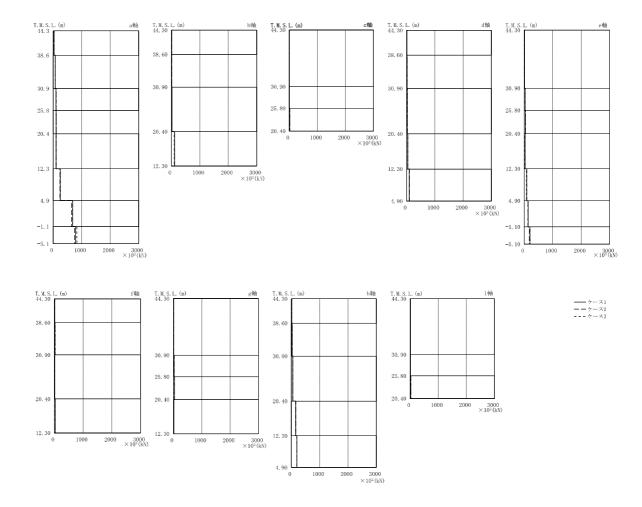


図 2-51 最大応答せん断力 (Ss-3, EW 方向)

表 2-51 最大応答せん断力 (Ss-3, EW 方向)

部位	部材金	最大応答せん断力一覧表 (×10 ³ kN)		
位	番号	1)	2	3
の華	1	30.7	31.8	32.1
	2	73.9	74.2	74.2
	3	101	103	106
	4	105	108	108
	5	102	106	105
	6	248	241	256
	7	688	644	688
	8	786	750	836
	10	8.50	13.7	6.39
b	11	11.0	13.5	9.06
軸	12	19.1	18.0	16.3
	13	112	108	100
	14	3.78	4.17	4.08
c 軸	15	4.85	5.42	4.94
	16	15.8	15.9	13.9
	17	12.2	13.2	12.5
	18	14.9	15.5	15.7
d 軸	19	20.7	23.5	21.4
	20	41.2	39.7	40.5
	21	93.0	98.3	91.4
	22	8.48	8.92	9.28
	23	31.9	32.7	32.5
	24	40.2	40.0	41.4
e 軸	25	29.7	30.9	28.5
	26	85.5	85.7	79.5
	27	142	133	137
	28	201	180	206
	29	15.6	15.4	15.7
f	30	21.4	20.6	23.0
軸	31	13.4	15.7	13.3
	32	28.9	30.2	27.5
	33	8.74	8.74	9.81
g	34	22.9	22.0	21.7
軸	35	35.0	33.9	33.3
	36	16.2	15.6	15.1
	37	13.9	13.6	14.1
h 軸	38	26.1	26.5	28.7
	39	52.2	56.1	55.5
, 144	40	150	155	152
	41	198	197	200
	42	9.59	9.90	10.7
i 軸	43	10.9	11.8	12.0
714	44	17.5	19.5	18.1

注: ①工認モデル ②建屋剛性・地盤剛性 $(+\sigma)$ 考慮モデル ③建屋剛性・地盤剛性 $(-\sigma)$ 考慮モデル

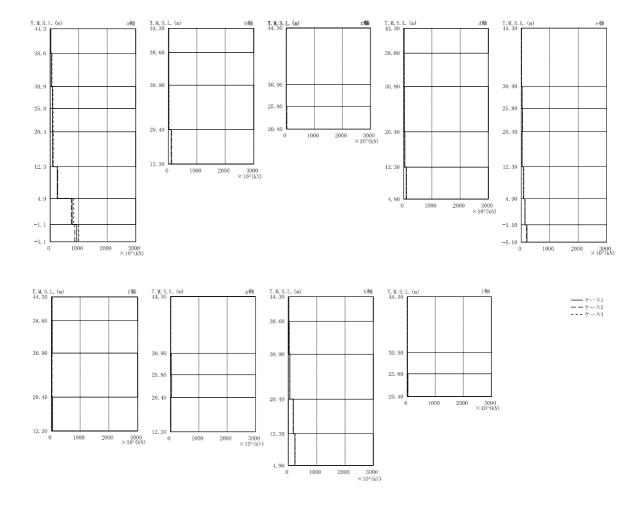


図 2-52 最大応答せん断力 (Ss-4, EW 方向)

表 2-52 最大応答せん断力 (Ss-4, EW 方向)

1 23.0 22.0 26 2 51.7 53.2 65 3 79.9 81.9 103 4 84.8 87.8 103 6 252 265 265 7 771 745 823 8 938 870 998 10 8.52 7.47 8 11 13.4 10.6 13 12 15.3 17.0 22 13 99.0 112 103 14 3.35 3.29 3	5.6 1 7 0 9 7 9 8.51 3.1
2 51.7 53.2 65 3 79.9 81.9 103 a 4 84.8 87.8 103 b 5 89.2 96.2 110 6 252 265 265 7 771 745 823 8 938 870 998 10 8.52 7.47 88 11 13.4 10.6 13 b 12 15.3 17.0 22 13 99.0 112 103 c 15 4 12 4 57 4 4	5.6 1 7 0 9 7 9 8.51 3.1
a 3 79.9 81.9 103 a 4 84.8 87.8 103 5 89.2 96.2 110 6 252 265 266 7 771 745 823 8 938 870 999 10 8.52 7.47 8 11 13.4 10.6 13 12 15.3 17.0 22 13 99.0 112 103 14 3.35 3.29 3 15 4.12 4.57 4.67	1 7 9 7 9 3.51 3.1
a 4 84.8 87.8 103 th 5 89.2 96.2 110 6 252 265 263 7 771 745 823 8 938 870 999 10 8.52 7.47 8 11 13.4 10.6 13 12 15.3 17.0 22 13 99.0 112 10 14 3.35 3.29 3 15 4.12 4.57 4.67	7 9 7 9 3.51 3.1
## 5 89.2 96.2 110 6 252 265 265 7 771 745 827 8 938 870 999 10 8.52 7.47 8 11 13.4 10.6 13 12 15.3 17.0 22 13 99.0 112 103 14 3.35 3.29 3	9 7 9 3.51 3.1
6 252 265 265 7 771 745 827 8 938 870 999 10 8.52 7.47 8 11 13.4 10.6 13 12 15.3 17.0 22 13 99.0 112 103 14 3.35 3.29 3	9 7 9 3.51 5.1
7 771 745 827 8 938 870 999 10 8.52 7.47 8 11 13.4 10.6 13 12 15.3 17.0 22 13 99.0 112 103 14 3.35 3.29 3	7 9 3.51 3.1
8 938 870 999 h 10 8.52 7.47 8 11 13.4 10.6 13 12 15.3 17.0 22 13 99.0 112 103 14 3.35 3.29 3	9 3.51 3.1 3.2
b 10 8.52 7.47 8 11 13.4 10.6 13 12 15.3 17.0 22 13 99.0 112 103 14 3.35 3.29 3	3.51 3.1 3.2
b	1.1
輔 12 15.3 17.0 22 13 99.0 112 103 14 3.35 3.29 3 c 15 4.12 4.57 4.457	1.2
13 99.0 112 103 14 3.35 3.29 3	
14 3.35 3.29 3	3
c 15 4.12 4.57 4	,
	3.20
	1.35
16 13.8 14.4 15	i.4
17 17.1 15.7 16	5.5
18 18.6 16.6 23	1.7
d 軸 19 30.6 27.3 30	0.6
20 39.5 42.8 43	5.0
21 91.4 96.3 103	3
22 6.79 6.95 8	3.42
23 32.4 33.7 33	.2
24 41.6 41.8 41	.9
e 軸 25 32.0 33.1 29	.3
26 81.9 86.6 76	5.0
27 132 132 134	1
28 199 187 201	1
29 19.3 18.8 18	3.4
f 30 20.4 22.5 21	.3
軸 31 13.7 14.8 17	.0
32 31.9 31.1 32	8.8
33 7.88 7.73 9	9.04
g 34 22.4 23.1 24	.0
軸 35 36.1 35.5 36	i.9
36 14.8 16.3 15	.4
37 15.4 15.9 15	i.6
38 27.2 27.4 29	0.0
h 軸 39 56.4 56.6 55	.6
40 174 176 180)
41 232 236 239	9
42 6.32 6.31 8	3.75
i 43 7.93 8.57 11	.1
44 19.0 19.4 19 注: ①工認モデル	.9

注: ①工認モデル ②建屋剛性・地盤剛性 $(+\sigma)$ 考慮モデル ③建屋剛性・地盤剛性 $(-\sigma)$ 考慮モデル

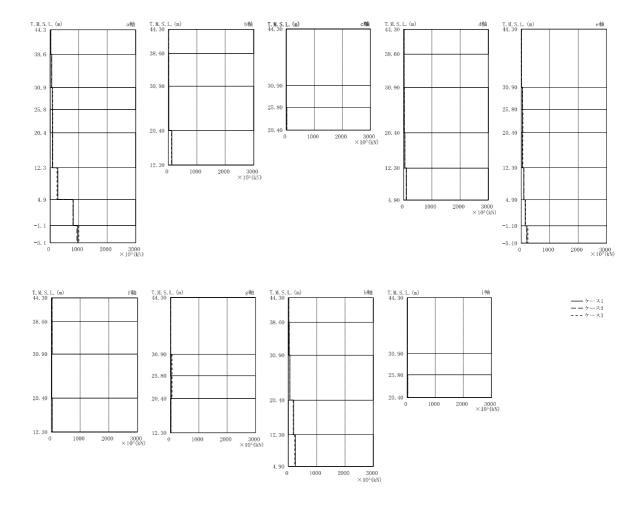


図 2-53 最大応答せん断力 (Ss-5, EW 方向)

表 2-53 最大応答せん断力 (Ss-5, EW 方向)

部	部 材	最大応答せん断力一覧表 (×10 ³ kN)		
位	番号	1	2	3
a Ħ	1	23.3	21.0	23.7
	2	55.9	53.4	57.7
	3	77.7	79.1	88.2
	4	79.4	82.0	91.3
	5	81.6	86.1	93.0
	6	272	267	244
	7	812	806	802
	8	961	941	1010
ь	10	7.11	6.20	5.87
	11	10.1	8.99	11.2
軸	12	17.2	17.7	16.4
	13	123	120	110
	14	2.92	2.59	3.13
c 軸	15	3.61	3.85	3.44
11-	16	16.3	16.0	14.8
	17	17.2	14.9	16.8
	18	17.8	16.7	15.3
d 軸	19	23.5	23.0	21.9
1	20	42.1	41.2	43.3
	21	98.4	98.5	102
	22	5.94	5.48	9.67
	23	35.2	35.2	52.0
	24	45.3	45.3	58.9
e 軸	25	33.8	35.2	54.8
	26	88.7	93.3	86.3
	27	140	138	153
	28	201	192	236
	29	18.5	17.4	20.5
f	30	26.2	19.4	23.3
軸	31	13.8	11.1	9.97
	32	30.3	27.5	28.3
咖輔	33	6.21	5.83	6.84
	34	24.8	24.9	59.7
	35	35.0	36.8	59.1
	36	18.7	21.7	20.6
h 軸	37	15.8	13.6	14.2
	38	28.1	26.5	26.9
	39	57.3	54.6	56.0
	40	184	179	173
	41	248	247	226
	42	6.50	6.53	7.94
i 軸	43	7.31	8.30	9.44
	44	17.7	17.4	16.9
注:	①工	認モデル 屋剛性・地	般圖 性(+-) 表虑工:

[・]①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

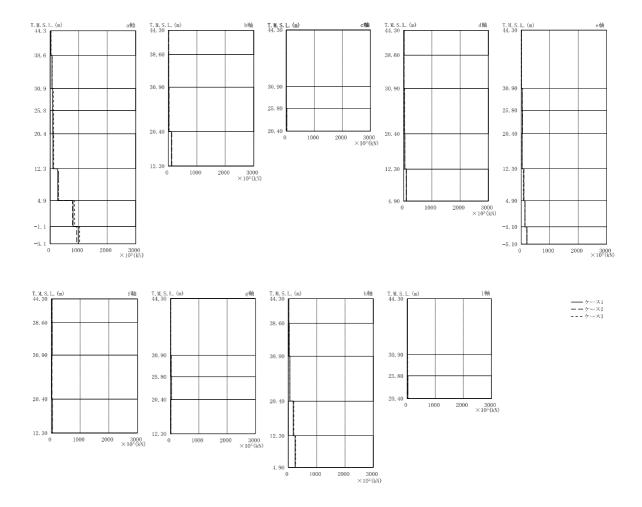


図 2-54 最大応答せん断力 (Ss-6, EW 方向)

表 2-54 最大応答せん断力 (Ss-6, EW 方向)

部	部材	最大応答せん断力一覧表 (×10 ³ kN)		
位	番号	(I)	②	3
	1	25.3	25.5	29.0
	2	61.3	63.4	72.2
a Ħ	3	92.2	95.7	111
	4	93.1	102	117
	5	97.1	109	120
	6	267	290	290
	7	804	786	859
	8	986	928	1030
	10	6.44	7.86	6.73
b	11	11.3	12.5	11.8
軸	12	16.8	20.5	23.7
	13	105	116	114
C	14	3.19	3.37	3.56
c 軸	15	4.19	4.45	4.84
	16	14.2	15.5	16.0
	17	14.9	16.1	14.9
	18	13.4	17.5	15.8
d 軸	19	30.3	33.2	25.6
	20	41.3	42.3	39.5
	21	97.9	99.4	105
	22	7.00	7.40	9.21
	23	34.3	35.5	34.6
	24	43.1	43.6	43.5
e 軸	25	31.2	32.6	29.9
	26	85.4	92.6	79.6
	27	132	134	136
	28	203	194	202
	29	18.7	18.8	18.6
f	30	22.4	22.7	28.1
軸	31	11.7	16.1	14.2
	32	32.2	33.7	32.3
	33	7.95	8.10	10.9
g	34	24.2	25.1	25.6
軸	35	37.8	37.3	38.8
	36	15.6	19.0	16.5
	37	16.0	15.7	15.5
	38	28.2	27.6	27.5
h 軸	39	57.8	58.4	57.8
	40	177	180	190
	41	237	241	253
	42	8.16	8.47	10.1
i 軸	43	9.46	10.5	13.1
注:	44	20.5 認モデル	21.5	20.7

注: ①工認モデル ②建屋剛性・地盤剛性 $(+\sigma)$ 考慮モデル ③建屋剛性・地盤剛性 $(-\sigma)$ 考慮モデル

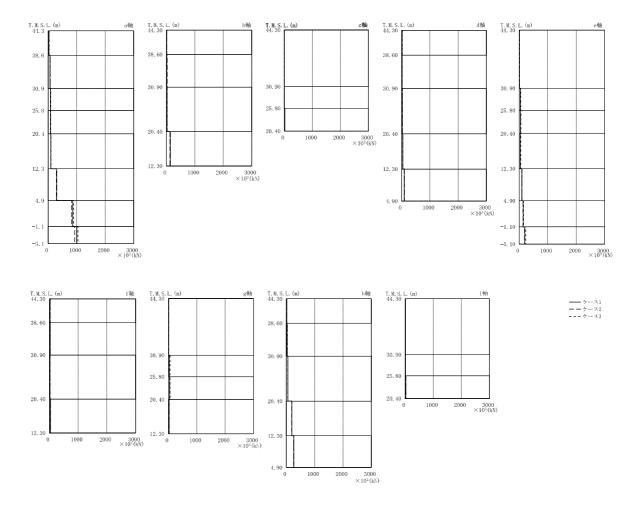


図 2-55 最大応答せん断力 (Ss-7, EW 方向)

表 2-55 最大応答せん断力 (Ss-7, EW 方向)

部	部材	最大応答せん断力一覧表 (×10 ³ kN)		
位	番号	1	2	3
a mi	1	27.1	31.4	29.8
	2	64.2	70.0	69.4
	3	82.3	80.9	93.5
	4	84.1	83.9	94.8
	5	96.5	93.1	99.5
	6	300	291	304
	7	861	822	889
	8	1010	937	1050
	10	8.88	16.6	7.65
b	11	13.6	25.0	12.4
軸	12	20.7	21.5	21.7
	13	137	124	135
	14	3.53	4.07	3.48
c 軸	15	3.76	4.29	4.52
774	16	15.9	17.8	17.8
	17	16.4	18.9	20.3
	18	17.7	15.8	18.8
d 軸	19	22.8	28.8	22.6
714	20	40.4	40.3	41.4
	21	90.9	95.5	93.0
	22	6.63	6.83	9.67
	23	36.9	37.5	54.4
	24	45.5	47.7	61.1
e 軸	25	34.4	36.1	53.9
7#4	26	91.5	95.1	89.6
	27	140	137	151
	28	197	187	227
	29	19.5	20.3	23.8
f	30	24.7	26.4	26.3
軸	31	14.7	18.4	14.1
	32	32.0	31.9	30.9
g	33	7.30	7.18	8.01
	34	27.8	27.8	60.5
軸	35	40.0	42.3	59.2
	36	22.3	25.7	21.2
	37	14.3	13.9	14.8
h 軸	38	29.5	26.9	32.6
	39	60.0	59.4	58.6
	40	199	194	197
	41	264	258	258
	42	7.77	8.44	8.76
i 軸	43	8.41	8.08	9.76
1 441	44	19.3	18.1	19.2
注:	①I	認モデル	般圖(性(十)	_ \#\#\~.:

[・]①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

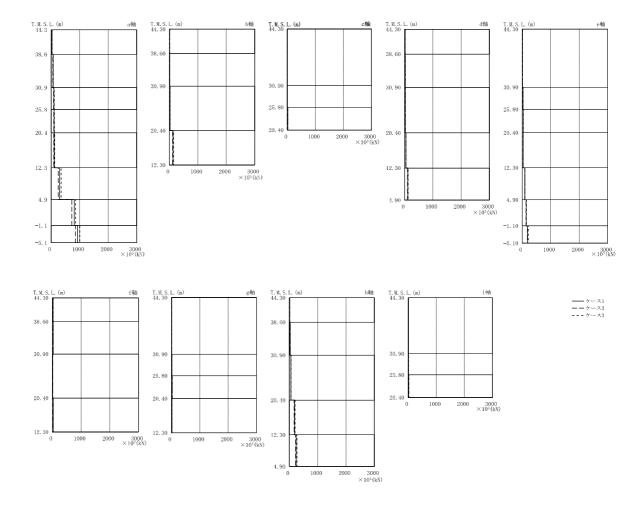


図 2-56 最大応答せん断力 (Ss-8, EW 方向)

表 2-56 最大応答せん断力 (Ss-8, EW 方向)

部	部材	最大応答せん断力一覧表 (×10 ³ kN)			
位	番号	1)	2	3	
	1	28.6	24.1	31.1	
	2	69.1	60.0	74.2	
	3	100	89.0	112	
a	4	104	93.1	117	
軸	5	109	95.8	124	
	6	298	251	350	
	7	811	727	859	
	8	925	853	1010	
	10	7.35	6.91	8.01	
b	11	11.0	10.1	12.6	
軸	12	20.7	18.9	20.1	
	13	128	112	146	
	14	3.46	3.09	3.57	
c 軸	15	4.95	4.63	5.32	
	16	16.7	15.8	17.5	
	17	16.4	16.1	17.4	
	18	20.2	18.6	20.7	
d 軸	19	24.6	23.8	24.3	
	20	46.3	45.0	49.4	
	21	113	104	121	
	22	7.13	6.00	8.54	
	23	26.3	24.0	29.4	
	24	34.5	31.1	38.0	
e 軸	25	33.3	32.6	33.1	
	26	92.9	90.4	90.1	
	27	141	133	147	
	28	190	182	211	
	29	21.7	21.3	22.9	
f	30	26.5	25.9	28.0	
軸	31	8.85	10.3	9.55	
	32	31.2	26.8	31.5	
	33	7.23	5.86	8.93	
g	34	16.7	13.9	19.0	
軸	35	27.6	23.6	31.3	
	36	17.2	17.7	17.0	
	37	13.3	13.2	13.3	
	38	28.2	26.9	28.5	
h 軸	39	60.0	57.9	62.4	
	40	185	169	206	
	41	244	222	271	
	42	8.74	7.41	10.3	
i 軸	43	10.2	9.27	12.4	
	44	17.5	16.9	23.5	
注:	①工 ②建	認モデル	般圖 性(+-	\ 本 传 ~	

[・]①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

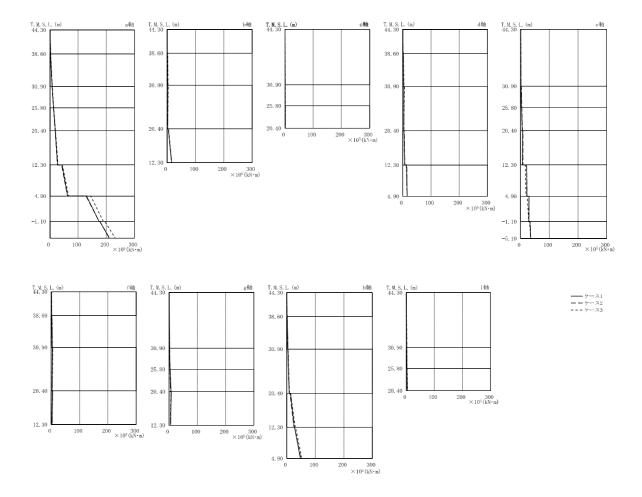


図 2-57 最大応答曲げモーメント (Ss-1, EW 方向)

表 2-57 最大応答曲げモーメント (Ss-1, EW 方向)

	107	E 1 . 1 . 6 . 6 .) W/4			
部	部材		最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)				
位	番号	①	2	3			
	1	0.323	0.308	0.391			
		2.00	1.90 1.92	2.42			
	2	7.71	7.60	8.07			
	3	7.71 13.0	7.63 12.7	8.06 13.6			
a 軸	4	13.0	12.7	13.6			
	5	18.9 18.9	18.4 18.4	19.7 19.7			
		27.3 43.0	26.7 41.2	28.9 43.9			
	6	62.7	62.2	66.4			
	7	130 174	128 174	145 190			
	8	177 211	177 212	195 232			
	10	0.555	0.474	0.639			
		0.611 1.28	0.883 1.51	1.59 2.27			
b #ш	11	1.68 2.61	2.24 3.06	3.34			
軸	12	2.16	2.25	2.31			
	13	4.87 16.0	4.90 16.2	4.71 16.5			
	14	0.190	0.203	0.228			
С	15	0.640	0.572 0.572	0.876 0.876			
軸		0.847 1.12	0.751 1.06	1.14 1.75			
	16	1.36	1.36	1.48			
	17	0.606 1.17	0.591 1.38	0.621 1.54			
d 軸	18	1.89	1.95	2.39			
	19	3.08 3.84	3.42 4.09	4.34 5.69			
		3.94 4.65	4.03 5.19	3.91 4.52			
	20	6.95	6.99	7.06			
	21	13.1 15.5	14.3 15.6	12.9 15.5			
	22	0.461	0.435	0.465			
	23	1.36 1.79	1.78 2.72	1.93 2.47			
		3.55 3.61	4.54 4.62	3.98 4.11			
	24	6.27	6.79	5.96			
e 軸	25	7.57 6.99	8.34 8.37	7.81 7.26			
	26	21.4	21.3	16.9			
	27	22.4 29.8	22.4 29.6	19.4 24.0			
		29.2 33.2	29.3 33.6	27.8 31.6			
	28	35.6	35.8	35.7			
	29	0.583 1.27	0.575 1.34	0.811 1.56			
c	30	2.05	2.18	2.36			
f 軸	31	3.62 4.38	3.67 4.86	4.28 5.28			
		3.35 4.81	3.34 4.41	3.73 4.94			
	32	2.53	3.11	3.16			
	33	0.591 2.21	0.490 1.45	0.422 2.07			
_	34	1.95	1.74	2.24			
g 軸		4.28 4.36	2.86 2.96	3.45 3.57			
	35	7.35 8.38	5.69 7.73	5.20 6.91			
	36	6.08	5.38	5.35			
	37	0.316 1.14	0.307 1.08	0.357 1.10			
	38	1.42	1.28	1.53			
h		3.56 3.97	3.57 3.81	3.52 4.13			
軸	39	8.16	8.35	9.07			
	40	12.9 25.7	11.1 24.8	12.9 29.3			
	41	27.0 47.4	27.3 48.8	30.7 52.2			
	42	0.0819	0.0666	0.314			
i		1.62 1.65	1.46 1.48	1.89 2.01			
軸	43	2.26	2.10	2.68			
	44	2.32 3.45	2.08 3.14	2.86 4.08			
注:	① Ι.	認モデル	árventk4-/ i) # re = =			

注: ① 工認モデル ②建屋剛性: 地盤剛性 $(+\sigma)$ 考慮モデル ③建屋剛性: 地盤剛性 $(-\sigma)$ 考慮モデル

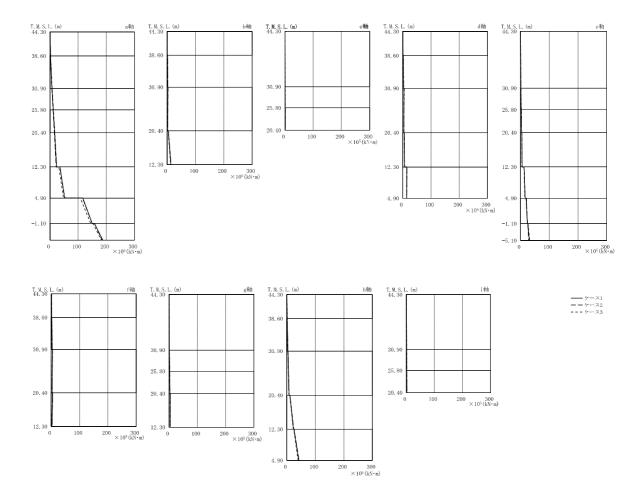


図 2-58 最大応答曲げモーメント (Ss-2, EW 方向)

表 2-58 最大応答曲げモーメント (Ss-2, EW 方向)

	_			
部	部材		曲げモーメ	
位	番		×10 ⁵ kN•m	
	号	①	0.276	3
	1	0.284 1.76	1.71	0.304 1.88
	2	1.76	1.71	1.88
	_	7.19 7.19	7.00 7.00	7.59 7.60
	3	11.8	11.4	12.3
a	4	11.8 16.8	11.4 16.0	12.3 17.3
軸	5	16.8	16.0	17.3
		23.4 35.9	22.1 35.9	23.8 31.8
	6	52.2	52.4	47.8 108
	7	117 150	116 150	145
	8	158 188	158 185	152 183
	10	0.494	0.495	0.544
		0.788 1.56	0.877 1.68	0.767 1.65
b	11	2.09	2.47	2.21
軸	12	3.10 2.17	3.48 2.21	3.17 2.22
	13	4.75	4.97	4.39
		13.2 0.222	0.245	12.5 0.182
	14	0.479	0.461	0.569
c 軸	15	0.479 0.705	0.461 0.654	0.569 0.802
,	16	1.08	1.12	0.959
	17	1.20 0.593	1.22 0.472	1.12 0.609
		1.14 2.08	1.20 1.92	1.40 2.35
	18	2.82	2.95	3.72
d 軸	19	4.26 3.76	4.09 3.79	5.14 3.90
-1-111	20	5.08	5.32	5.48
		6.71 14.6	6.57 15.3	6.31 14.1
	21	13.7 0.173	13.7 0.198	13.3 0.168
	22	1.10	1.04	1.26
	23	1.45 2.61	1.22 2.32	$\frac{1.59}{2.67}$
	24	2.66	2.35	2.71
е		4.08 4.59	3.78 3.95	4.02 4.59
軸	25	5.61	5.79 12.5	5.38
	26	12.7 16.4	16.2	12.5 15.5
	27	19.7	20.8 23.4	19.5 24.1
	28	24.0 26.0	25.2	26.5
		31.0 0.767	28.6 0.667	31.7 0.733
	29	1.29	1.26	1.27
f	30	2.24 3.14	2.06 3.26	2.14 3.42
軸	31	4.44	4.03	4.47
		3.26 5.00	3.26 5.25	3.27 4.84
	32	2.58	2.76	2.47
	33	0.276 1.20	0.272 1.07	0.233 1.20
	34	1.53	1.35	1.44
g 軸		2.31 2.38	1.98 2.03	2.24 2.30
	35	3.47 4.44	3.16 4.10	3.38 4.27
	36	4.09	4.26	3.59
	37	0.341 1.23	0.278 1.14	0.311 1.28
	38	1.54	1.42	1.60
h		3.38 4.04	3.30	3.66 4.31
軸	39	7.81	7.75	7.75
	40	10.7 23.5	10.9 24.2	10.3 22.5
	41	25.1	25.4	24.3
	42	41.7 0.0399	43.0 0.0336	39.8 0.0314
i		1.17 1.17	1.07 1.07	1.18 1.19
軸	43	1.60	1.47	1.60
L	44	1.61 2.19	1.47 2.30	1.61 2.12
注:		認モデル 屋剛性・地		a)老庸干÷

[:] ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

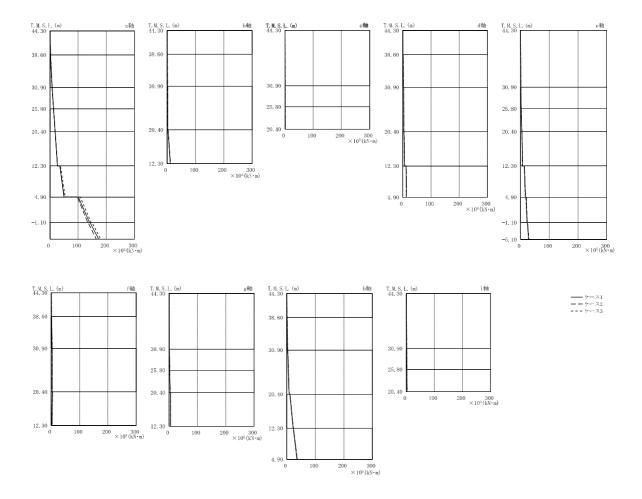


図 2-59 最大応答曲げモーメント (Ss-3, EW 方向)

表 2-59 最大応答曲げモーメント (Ss-3, EW 方向)

	_			
部	部材		曲げモーメ	
位	番		×10 ⁵ kN•n	
	号	1	2	3
	1	0.283 1.75	0.293 1.81	0.297 1.83
	2	1.75	1.83	1.84
		7.44 7.44	7.53 7.55	7.55 7.58
	3	12.6	12.8	12.8
a	4	12.6 18.2	12.8 18.6	12.9 18.7
軸	5	18.2	18.6	18.7
		26.5 35.3	27.2 35.3	27.1 37.2
	6	50.0	51.1	54.5
	7	101 140	97.8 134	108 146
	8	142	135	149
		173 0.374	165 0.455	180 0.438
	10	0.525	0.656	0.381
b	11	0.988 1.39	1.17 1.64	0.911 1.02
軸	12	1.93	2.29	1.55
	10	2.19 3.72	2.20 3.67	2.18 3.79
	13	11.5 0.158	11.9	11.7
	14	0.529	0.167 0.575	0.110 0.575
c 軸	15	0.529 0.754	0.575 0.820	0.575 0.796
中田	16	0.754	1.05	0.932
		1.30 0.387	1.36 0.551	1.32 0.440
	17	0.900	0.983	0.900
	18	1.44 2.08	$\frac{1.62}{2.43}$	1.49 2.03
d	19	2.94	3.19	2.93
軸		3.82 4.27	3.84 4.93	3.80 4.41
	20	6.54	6.59	6.53
	21	11.5 13.5	12.4 13.5	11.5 13.4
	22	0.218	0.228	0.188
	23	1.16 1.23	1.20 1.33	1.26 1.32
	23	2.51 2.55	2.61 2.64	2.59 2.64
	24	4.62	4.61	4.63
e 軸	25	5.21 6.78	5.03 6.81	5.32 6.77
400	26	13.7	14.4	13.4
		17.2 19.6	17.4 20.1	16.6 18.8
	27	23.2	23.6	23.2
	28	24.3 28.0	24.4 28.5	24.7 29.0
	29	0.370	0.381	0.380
		1.05 1.54	1.07 1.44	1.07 1.55
f ##	30	2.76	2.89	2.90
軸	31	3.63 3.31	3.42 3.32	3.72 3.31
	32	4.54	4.38	4.84 2.65
	33	0.288	2.55 0.296	0.260
		1.19 1.30	1.20 1.31	1.32 1.36
g	34	2.28	2.15	2.31
軸	35	2.36 4.15	2.24 3.95	2.39 4.03
	36	5.16	5.04	5.00
-		4.98 0.257	4.91 0.284	4.65 0.297
	37	0.779	0.871	0.845
	38	1.06 2.75	$\frac{1.27}{2.79}$	1.24 2.97
h	39	3.14	3.59	3.62
軸		7.90 10.8	7.83 11.0	8.07 11.1
	40	22.0	22.6	22.5
	41	22.6 35.6	23.1 36.2	23.3 36.9
	42	0.0479	0.0799	0.0497
i	43	1.33 1.35	1.40 1.44	1.47 1.49
軸		1.91 1.92	1.97 1.98	2.10 2.12
	44	2.66	2.83	2.12
注:		認モデル 長剛性・地	般圖帖生(十	。)老庸工·

[:] ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

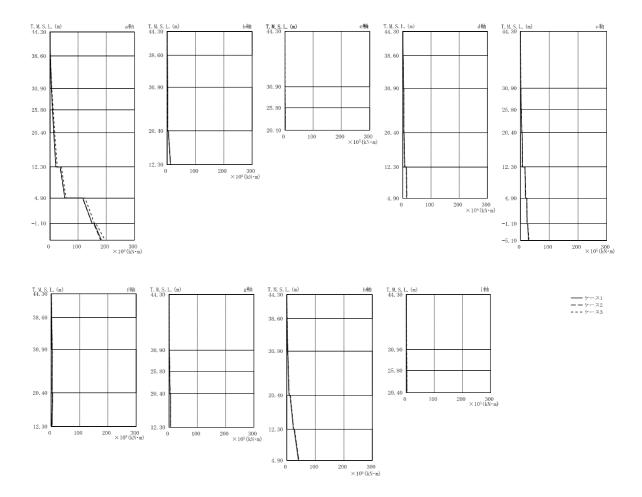


図 2-60 最大応答曲げモーメント (Ss-4, EW 方向)

表 2-60 最大応答曲げモーメント (Ss-4, EW 方向)

部	部材		曲げモーメ	
位	番	(×10 ⁵ kN•n	
	号	1)	2	3
	1	0.212 1.31	0.203 1.26	0.240 1.49
	2	1.31	1.26	1.50
		5.29 5.29	5.35 5.35	6.53 6.53
	3	9.14	9.30	11.5
a	4	9.14 13.5	9.30 13.9	11.5 17.1
軸	5	13.5	13.9	17.1
		20.6 36.9	21.4 35.5	26.0 40.8
	6	52.7	53.5	57.4
	7	117 150	116 149	125 158
	8	157	155	163
	10	183 0.424	0.447	196 0.430
	10	0.656	0.562	0.758 1.31
b	11	1.31 1.80	1.25 1.47	1.95
軸	12	2.53 2.18	2.26 2.18	2.52 2.20
	13	4.83	4.77	4.86
		12.3 0.128	12.8 0.131	12.5 0.129
	14	0.443	0.453	0.517
c 軸	15	0.443 0.603	0.453 0.594	0.517 0.680
,	16	0.980	0.994	1.09
		1.22 0.395	1.29 0.396	1.36 0.462
	17	1.26	1.07	1.13
	18	1.79 3.08	1.65 2.51	1.68 2.96
d 軸	19	3.95 3.73	3.24 3.72	3.72 3.85
中田	20	4.78	4.56	4.56
	20	7.11	7.03 13.6	6.58 12.8
	21	13.9	14.4	13.6
	22	0.248 0.864	0.254 0.842	0.222 1.06
	23	1.27	1.35	1.33
		2.60 2.67	2.71 2.78	2.59 2.66
	24	4.60	4.61	4.57
e 軸	25	5.56 6.80	5.63 6.82	5.52 6.79
	26	15.6	15.9	15.4
	27	17.8 21.6	18.4 21.8	17.4 21.3
	21	23.1 24.5	23.4 24.8	23.2 25.2
	28	28.2	28.4	29.7
	29	0.402 1.16	0.382 1.25	0.432 1.23
	30	1.52	1.61	1.77
f 軸		2.93 3.46	3.24 3.78	3.13 4.01
194	31	3.25	3.25	3.26
	32	5.17 2.59	4.87 2.53	5.14 2.82
	33	0.299	0.312	0.300
		0.857 1.31	0.859 1.37	1.01
g 軸	34	2.18	2.34	2.14
甲曲	35	2.26 3.72	2.44 4.07	2.24 4.03
	36	5.11 5.01	5.43 5.03	5.31 5.11
	37	0.287	0.244	0.284
		0.918 1.16	0.939 1.15	0.916 1.20
	38	3.04	3.10	3.15
h 軸	39	3.30 7.66	3.23 7.79	3.37 7.82
Lini	40	11.2	11.4	12.5
		23.5 25.4	24.1 26.2	24.1 27.3
	41	40.4	42.1	41.2
	42	0.0378 0.870	0.0256 0.870	0.0426 1.20
軸	43	0.882 1.25	0.883 1.25	1.22 1.78
-friti	44	1.26	1.27	1.79
注:		<u>1.94</u> 認モデル	2.10	2.71
	⊙z#	ES MILLSE . Lib	november i) お中で

注: ① I 認モデル ②建屋剛性: 地盤剛性 $(+\sigma)$ 考慮モデル ③建屋剛性: 地盤剛性 $(-\sigma)$ 考慮モデル

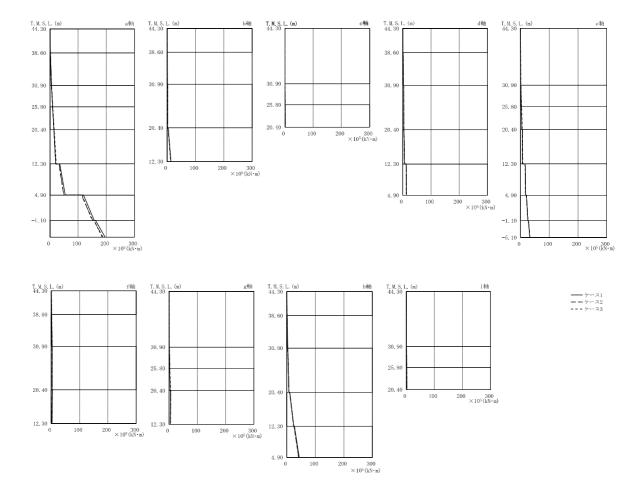


図 2-61 最大応答曲げモーメント (Ss-5, EW 方向)

表 2-61 最大応答曲げモーメント (Ss-5, EW 方向)

		1		
部	部材		曲げモーメ	
位	番	(×10 ⁵ kN•n	1)
	号	1)	2	3
	1	0.215 1.33	0.194 1.20	0.219 1.35
	2	1.33	1.20	1.36
		5.63 5.64	5.31 5.32	5.77 5.77
	3	9.59	9.33	10.2
a	4	9.60 13.8	9.34 13.8	10.2 15.2
軸	5	13.8	13.8	15.2
		20.3 35.0	20.6 31.5	22.5 33.0
	6	54.1	49.2	49.4
	7	119 157	112 152	114 150
	8	162	156	156
	10	196 0.380	0.363	0.460
	10	0.471 1.03	0.555	0.532 1.28
b	11	1.03	1.04 1.42	1.26
軸	12	1.98 2.14	2.00 2.14	2.22 2.17
	13	4.22	3.90	4.06
		14.1 0.140	13.5 0.152	13.0 0.0979
	14	0.420	0.388	0.416
c 軸	15	0.420 0.597	0.388 0.574	0.416 0.569
,	16	0.711	0.756	0.786
	17	1.16 0.510	1.20 0.377	1.25 0.464
	17	1.07	1.03	1.02
	18	1.75 2.45	1.50 2.30	1.56 2.20
d 軸	19	3.44 3.71	3.03 3.70	3.12 3.70
中田	20	4.63	4.42	4.54
	20	6.71 12.4	6.58 12.1	6.70 12.2
	21	13.3	13.6	12.4
	22	0.307 0.786	0.312 0.715	0.326 1.28
	23	1.16	1.08	1.80
		2.75 2.81	2.74 2.80	3.73
	24	4.81	4.92	6.22
e 軸	25	6.20 6.79	6.15 6.82	6.94 8.09
	26	16.2	16.2	15.8
	27	17.9 20.9	18.1 20.8	17.3 20.6
	21	25.9 27.9	25.9 27.4	25.5 27.9
	28	32.7	32.5	32.6
	29	0.482 1.22	0.334 1.03	0.475 1.22
	30	1.69	1.42	1.22
f 軸		3.08	2.67 3.27	3.08
194	31	3.30	3.11	3.24
	32	4.19 2.32	3.91 2.43	4.15 2.40
	33	0.388	0.374	0.363
		0.863 1.35	0.729 1.26	0.906 1.41
g	34	2.43	2.40	2.94
軸	35	2.52 4.13	2.51 4.22	2.96 5.69
	36	5.63 4.97	5.83 5.12	6.37 5.33
	37	0.284	0.247	0.302
		1.09 1.41	0.767 1.12	0.875 1.21
	38	3.22	2.61	2.86
h 軸	39	3.79 7.56	3.19 7.60	3.39 7.69
1141	40	10.6	9.99	10.5
		24.4 26.3	23.7 25.0	23.9 25.8
	41	43.4	42.0	41.5
	42	0.0317 0.879	0.0269 0.881	0.0306 1.07
軸	43	0.885	0.886 1.30	1.07 1.53
中印	44	1.23 1.25	1.31	1.55
注:		1.88 認モデル	2.04	2.46
,	⊙ z±t	FROM Lat. Late	awanik4-7 i	\dz.db = -

注: ① 工認モデル ②建屋剛性: 地盤剛性 $(+\sigma)$ 考慮モデル ③建屋剛性: 地盤剛性 $(-\sigma)$ 考慮モデル

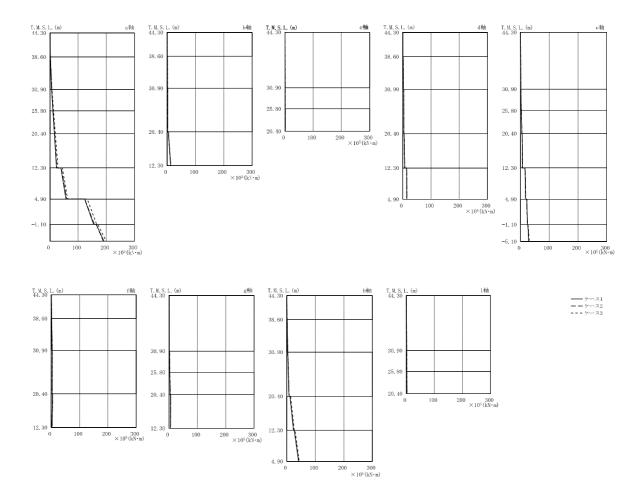


図 2-62 最大応答曲げモーメント (Ss-6, EW 方向)

表 2-62 最大応答曲げモーメント (Ss-6, EW 方向)

_				
部	部材		曲げモーメ ×10 ⁵ kN・n	
位	番	(I)	(2)	3
	号	0.233	0.235	0.267
	1	1.44	1.45	1.65
	2	1.44 6.14	$1.45 \\ 6.32$	1.65 7.18
	3	6.14	6.31	7.20
	4	10.7 10.7	11.1 11.1	12.7 12.7
a ph	4	15.7	16.3	18.9 18.9
平田	5	15.7 22.9	16.3 25.0	28.6
	6	39.0 56.4	40.0 59.3	44.0 62.7
	7	123	124	133
		155 164	158 165	166 170
	8	192	189	200
	10	0.468 0.608	0.477 0.560	0.440 0.701
1.	11	1.23	1.28	1.31
b 軸		1.43 2.24	1.56 2.44	1.78 2.53
	12	2.17	2.19	2.21
	13	4.72 12.9	4.88 13.2	4.77 13.5
	14	0.141 0.519	0.142 0.539	0.127 0.559
С	15	0.519	0.539	0.559
軸		0.675 1.13	0.698 1.13	0.752 1.16
	16	1.36	1.37	1.36
	17	0.418 1.12	0.440 1.14	0.446 1.14
	18	1.61	1.71	1.79
d	19	2.51 3.29	2.60 3.48	2.70 3.66
軸	19	3.70 4.92	3.77 4.95	3.77 4.63
	20	6.97	6.85	6.65
	21	13.7 14.5	13.8 15.0	13.5 13.9
	22	0.251	0.270	0.253
		0.986 1.32	1.03	1.15 1.45
	23	2.64	2.82	2.76
	24	2.71 4.76	2.90 4.94	2.83 5.06
e 軸	25	5.65	5.76	5.91
中田	26	6.80 16.1	6.83 16.3	6.81 15.7
		18.3 22.1	18.9 22.1	17.6 21.2
	27	23.9	24.1	24.0
	28	25.5 28.7	25.6 29.1	26.1 30.7
	29	0.441	0.402	0.463
	30	1.25 1.62	1.27 1.69	1.22 1.75
f 軸		3.23 3.72	3.29 3.83	3.33 4.08
4411	31	3.25	3.26	3.45
	32	5.16 2.55	5.39 2.80	5.17 2.92
	33	0.331	0.347	0.341
		1.04 1.38	1.08 1.46	1.26 1.41
g #th	34	2.24	2.47	2.46
軸	35	2.35 4.06	$\frac{2.56}{4.51}$	2.55 4.33
	36	5.39 5.19	5.69 5.25	5.60 5.28
	37	0.333	0.343	0.335
		0.951 1.30	0.931 1.22	1.01 1.30
Ι,	38	3.17	3.10	3.06
h ph	39	3.55 7.70	3.24 7.80	3.52 8.09
	40	11.5	11.0	13.2
	41	23.5 26.0	24.7 25.7	26.1 28.9
		41.1 0.0350	42.0 0.0281	43.3 0.0724
	42	1.11	1.14	1.39
i 軸	43	1.12 1.54	1.15 1.59	1.42 2.07
710	44	1.55	1.60	2.09
注:		2.34 認モデル	2.59	3.18

注: ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

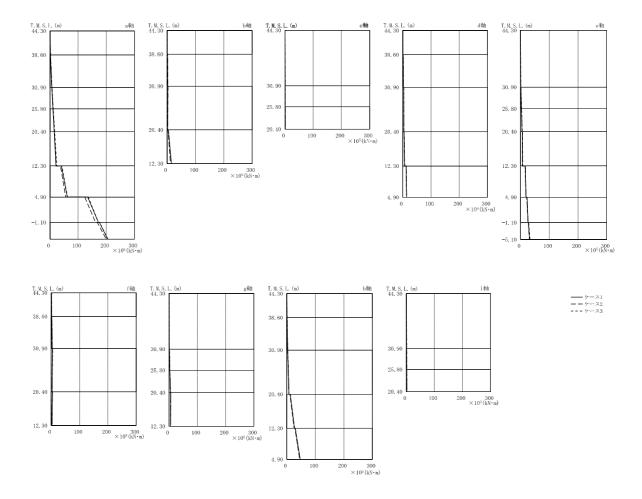


図 2-63 最大応答曲げモーメント (Ss-7, EW 方向)

表 2-63 最大応答曲げモーメント (Ss-7, EW 方向)

	部	最大応答	曲げモーメ	ント一覧表
部位	材	($\times 10^5 \mathrm{kN} \cdot \mathrm{n}$	1)
11/.	一号	1	2	3
		0.250	0.289	0.275
	1	1.55	1.79	1.70
	2	1.55	1.79	1.70
		6.47	7.17 7.17	7.04 7.06
	3	10.7	11.3	11.8
	4	10.7	11.3	11.8
a ph	H	15.0 15.0	15.6 15.6	16.9 16.9
440	5	21.4	22.3	24.4
	6	40.7	37.3	42.2
	-	61.8 134	56.3 124	62.5 136
	7	172	162	172
	8	176	168	176
	-	205 0.440	200 0.470	206 0.453
	10	0.440	1.04	0.433
	11	1.26	1.65	1.35
b 軸		1.67	2.79	1.70 2.56
押出	12	2.34 2.18	3.52 2.26	2.36
	13	4.60	3.42	4.68
	10	15.4	12.2 0.223	15.1 0.132
	14	0.148 0.520	0.223	0.132
С	15	0.520	0.570	0.537
軸	10	0.710	0.770	0.765
	16	1.04 1.32	1.19 1.37	1.02 1.29
	17	0.543	0.494	0.690
	11	1.04	1.17	1.03
	18	1.78 2.52	$\frac{1.71}{2.57}$	1.99 2.31
d	19	3.49	3.39	3.82
軸	19	3.81	3.86	3.76
	20	4.51 6.63	4.68 6.90	4.89 6.51
	21	11.8	12.4	12.2
	21	13.8	13.9	13.3
	22	0.353 0.881	0.371 0.953	0.343 1.28
	99	1.35	1.49	1.83
	23	2.95	3.22	3.78
	24	3.02 5.31	3.28 5.55	3.83 6.14
е	25	6.33	6.46	6.96
軸	20	6.85	6.85	8.16
	26	16.9 19.5	16.8 19.3	15.9 19.1
	97	22.7	22.0	22.1
	27	26.1	26.1	26.6
	28	28.0 31.5	27.6 30.9	28.8 33.3
	29	0.583	0.413	0.603
	29	1.24	1.29	1.50
f	30	1.96 3.31	1.73 3.52	2.15 3.64
軸	0.1	4.35	4.24	4.75
	31	3.23	3.23	3.27
	32	4.22 2.50	4.15 2.55	4.15 2.36
	33	0.395	0.400	0.377
	33	0.854	0.894	0.982
g	34	1.43 2.79	1.50 2.84	1.64 3.10
軸	35	2.91	2.99	3.09
	33	5.01	4.93	5.75
	36	6.27 5.33	6.67 5.32	6.50 5.36
	37	0.247	0.196	0.343
	31	0.804	0.824	0.985
	38	1.10 2.88	1.03 2.80	1.44 3.15
h	39	3.19	3.13	3.80
軸	39	7.63	7.73	7.77
	40	11.9 26.8	11.0 25.5	12.3 27.3
	41	29.2	28.0	29.6
<u> </u>	41	46.9	45.3	46.9
	42	0.0455 1.04	0.0280 1.13	0.0371 1.17
i	40	1.04	1.13	1.17
軸	43	1.42	1.51	1.57
	44	1.43 2.24	1.51 2.02	1.62 2.53
注:	①I.	<u>2.24</u> 認モデル	2.04	2.00
			盤剛性(+	σ)考慮モラ

^{: (}J L 設モテル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

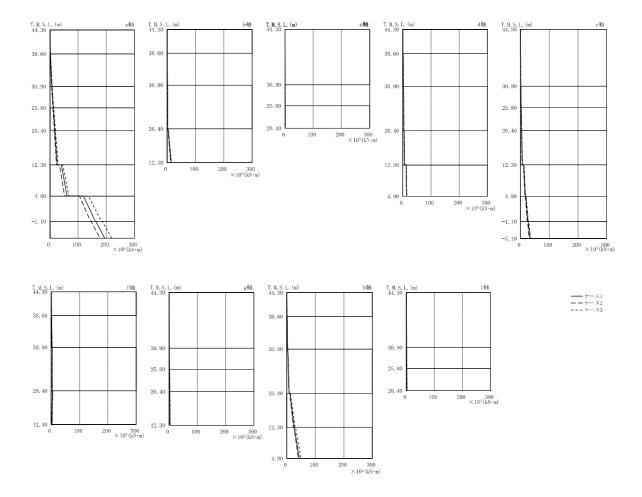


図 2-64 最大応答曲げモーメント (Ss-8, EW 方向)

表 2-64 最大応答曲げモーメント (Ss-8, EW 方向)

		-			
ı	部	部材		曲げモーメ	
1	位	番		×10⁵kN•n	
ļ		号	①	2	3
		1	0.264 1.63	0.222 1.38	0.289 1.77
		2	1.64 6.92	1.38 5.98	1.78 7.50
		3	6.93	5.98	7.53
			12.0 12.0	10.5 10.5	13.2 13.2
	a	4	17.6	15.5	19.5
	軸	5	17.6 26.1	15.5 23.1	19.5 29.3
		6	40.7 60.6	34.1 52.0	45.0 67.3
		7	119	105	137
			161 163	144 146	183 186
ļ		8	194	178	219
		10	0.426 0.483	0.377 0.467	0.363 0.511
	b	11	0.905	0.871	0.999
	軸	12	1.20 1.58	1.19 1.62	1.35 1.96
			2.14 4.30	2.14 3.78	2.15 4.41
		13	14.6	12.9	15.6
		14	0.0675 0.520	0.0914 0.447	0.0786 0.525
	c 軸	15	0.520 0.740	0.447 0.660	0.525 0.745
	440	16	0.900	0.796	0.979
ŀ		-	1.33 0.665	1.22 0.608	1.36 0.577
		17	0.797	0.728	0.913
		18	1.66 1.92	1.54 1.87	1.47 2.00
	d 軸	19	3.07 3.70	2.90 3.70	2.81 3.76
	фш	20	4.68	4.52	4.67
			6.54 12.1	6.36 11.7	6.96
		21	14.0 0.0966	13.3 0.0902	14.6 0.161
		22	0.911	0.780	1.11
		23	$\frac{1.05}{2.22}$	0.953 2.01	1.26 2.44
		24	2.25	2.03	2.47
	е		3.98 4.29	3.45 3.65	4.39 4.71
	軸	25	6.10	5.43 10.3	6.77
		26	16.8	15.5	17.6
- 1		20			20.0
		27	18.5	16.7 23.6	
			18.5 25.8 26.9	23.6 24.4	27.6 28.8
		27 28	18.5 25.8 26.9 33.1 0.528	23.6 24.4 30.5 0.490	27.6
		27 28 29	18.5 25.8 26.9 33.1 0.528 1.06	23.6 24.4 30.5 0.490 1.02	27.6 28.8 35.5 0.472 1.13
	f	27 28	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81	23.6 24.4 30.5 0.490 1.02 1.37 2.73	27.6 28.8 35.5 0.472 1.13 1.51 2.96
	f 軸	27 28 29	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.56
		27 28 29 30	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 4.09	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 5.22
		27 28 29 30 31 32	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 2.58 0.128	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 4.09 2.52 0.135	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 5.22 2.80 0.119
		27 28 29 30 31 32 33	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 2.58 0.128 0.951	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 4.09 2.52 0.135 0.772	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.36 3.32 5.22 2.80 0.119 1.19
	軸	27 28 29 30 31 32	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 4.58 2.58 0.128 0.937 1.70	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 4.09 2.52 0.135 0.772 0.861 1.50	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.36 3.32 5.22 2.80 0.119 1.19 1.19 1.89
	軸	27 28 29 30 31 32 33	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 0.128 0.951 0.937	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 4.09 2.52 0.135 0.772	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.36 3.32 2.80 0.119 1.19 1.19 1.89 1.91
	軸	27 28 29 30 31 32 33 34	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 2.58 0.128 0.937 1.70 1.73 2.86 3.27	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 4.09 2.52 0.135 0.772 0.861 1.50 1.53 2.49 2.92	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 5.22 2.80 0.119 1.19 1.89 1.91 3.22 3.50
	軸	27 28 29 30 31 32 33 34 35	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 0.128 0.937 1.70 1.70 1.73 2.86 3.27 3.33 3.28	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 4.09 2.52 0.135 0.772 0.861 1.50 1.53 2.49 2.92 3.00 0.322	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 2.80 0.119 1.19 1.19 1.89 1.91 3.22 3.50 3.91 0.372
	軸	27 28 29 30 31 32 33 34 35 36	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 0.128 0.951 0.937 1.70 1.73 2.86 3.27 3.33 0.362 0.849	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 2.52 0.135 0.772 0.861 1.50 1.53 2.49 2.92 3.00 0.322 0.325	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 5.22 2.80 0.119 1.19 1.19 1.89 1.91 3.22 3.50 3.91 0.372 0.905
	朝朝	27 28 29 30 31 32 33 34 35	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 0.128 0.937 1.70 1.70 1.73 2.86 3.27 3.32 0.937 1.70 1.70 1.70 1.70 1.70 1.86 3.27 3.28	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 4.09 2.52 0.135 0.772 0.861 1.50 1.53 2.49 2.92 3.00 0.322 0.766 1.11 2.53	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 5.22 2.80 0.119 1.19 1.19 1.19 1.91 3.22 3.50 3.91 0.372 0.905 1.35 2.83
	軸	27 28 29 30 31 32 33 34 35 36	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 0.128 0.937 1.70 1.73 2.86 3.27 3.33 0.362 0.493 0.362 0.494 0.4	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 4.09 2.52 0.135 0.772 0.861 1.50 1.53 2.49 2.92 3.00 0.322 0.766 1.11 2.53 3.33 3.33 3.33 3.35	27.6 28.8 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 5.22 2.80 0.119 1.19 1.19 1.89 1.91 3.22 3.50 3.91 0.379 0.375 2.83 3.78 8.01
-	輔 g 輔	27 28 29 30 31 32 33 34 35 36 37	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 0.128 0.937 1.70 1.70 1.73 2.86 3.27 3.33 0.362 0.849 1.28 0.356 7.80 1.11	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 4.09 2.52 0.135 0.772 0.861 1.50 1.53 2.49 2.92 3.00 3.25 1.37 3.25 1.37 1.50 1.53 2.49 2.92 3.03 3.25 1.50 1.53 3.25 1.50 1.53 3.25 1.50 1.53 3.25 1.50 1.50 1.50 1.53 3.25 1.50 1.	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 5.22 2.80 0.119 1.19 1.19 1.19 1.19 1.91 3.22 3.50 3.91 0.372 0.905 1.35 2.83 3.78 8.01
-	輔 g 輔	27 28 29 30 31 32 33 34 35 36 37 38 39	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 0.128 0.937 1.70 1.73 2.86 3.27 3.33 0.362 0.849 1.28 2.60 3.60 3.71 3.72 3.73 3.73 3.73 3.73 3.75 3	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 4.09 2.52 0.135 0.772 0.861 1.50 1.53 2.49 2.92 3.00 0.322 0.766 1.11 2.53 3.33 7.57 10.6 23.6	27.6 28.8 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 5.22 2.80 0.119 1.19 1.19 1.89 1.91 3.22 3.50 3.91 0.372 0.905 1.35 2.83 3.78 8.01 12.7 28.6 30.4
	輔 g 輔	27 28 29 30 31 32 33 34 35 36 37 38 39 40	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 0.128 0.951 0.937 1.70 1.73 2.86 3.27 3.32 0.362 0.931 0.937 1.70 1.73 2.86 3.72 3.32 0.362 0.931 1.70 1.70 1.73 2.86 3.72 3.32 0.362 0.937 1.70 1.70 1.70 1.73 2.86 3.72 3.32 0.362 0.367 1.70	23.6 24.4 24.4 30.5 0.490 1.02 1.37 2.73 3.49 2.52 0.135 0.772 0.861 1.50 1.53 2.49 3.00 0.32 0.766 1.11 2.53 3.33 7.57 10.6	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 5.22 2.80 0.119 1.19 1.19 1.89 1.91 3.22 3.50 3.91 0.372 0.905 1.35 2.83 3.78 8.01 12.7 28.6
-	軸 g 軸	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 0.128 0.937 1.70 1.73 2.86 3.27 3.33 0.362 0.849 1.28 2.60 3.76 3.77 3.77 3.78 3.78 3.79 3.70 3	23.6 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 4.09 2.52 0.135 0.772 0.861 1.50 1.53 2.49 2.92 3.00 0.322 0.766 1.11 2.53 3.33 7.57 10.6 2.48 4.07 0.0231 1.01	27.6 28.8 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 5.22 2.80 0.119 1.19 1.19 1.89 1.91 3.22 3.50 1.91 0.372 0.905 1.35 2.83 3.78 8.01 12.7 28.6 30.4 49.6 0.0512 1.42
	輔 g 輔	27 28 29 30 31 32 33 34 35 36 37 38 39 40	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 0.128 0.951 0.937 1.70 1.73 2.86 3.27 3.32 0.362 0.849 1.28 2.5.4 2.6.2 4.5 7.80 11.1 2.5.4 2.6.2 4.7 0.0462 1.19 1.10 1.	23.6 24.4 24.4 30.5 0.490 1.02 1.37 2.73 3.49 2.52 0.135 0.772 0.861 1.50 1.53 2.49 3.00 0.322 0.766 1.11 2.53 3.33 7.57 10.6 24.8 40.7 0.0231 1.01 1.02 1.45	27.6 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 5.22 2.80 0.119 1.19 1.19 1.19 1.89 1.91 3.22 3.50 3.91 0.372 2.80 0.905 1.35 2.83 3.78 8.01 12.7 28.6 30.4 49.6 0.0512 1.42 1.44 2.00
	軸 g h 軸	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 0.128 0.937 1.70 1.73 2.86 3.27 3.33 0.362 0.849 1.28 1.29 1.40 1.70 1	23.6 24.4 24.4 30.5 0.490 1.02 1.37 2.73 3.49 2.52 0.135 0.772 0.861 1.50 1.53 2.49 2.92 3.00 0.322 0.766 1.11 2.53 3.33 7.57 10.6 23.6 24.0 10.0 24.0 10.0 25.0 26.0 26.0 26.0 26.0 27.0	27.6 28.8 28.8 35.5 0.472 1.13 1.51 2.96 3.56 3.32 5.22 2.80 0.119 1.19 1.19 1.89 1.91 3.22 3.50 3.91 0.372 0.905 1.35 2.83 3.78 8.01 12.7 28.6 0.0512 1.42 1.44 2.00 2.02
	軸 g h 軸	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	18.5 25.8 26.9 33.1 0.528 1.06 1.54 2.81 3.72 3.28 4.58 0.128 0.951 0.937 1.70 1.73 2.86 3.27 3.32 0.362 0.849 1.28 2.5.4 2.6.2 4.3.7 0.0462 1.19 1.19 1.19 1.10 1.19 1.10	23.6 24.4 24.4 30.5 0.490 1.02 1.37 2.73 3.49 3.25 0.135 0.772 0.861 1.50 1.53 2.49 2.92 3.00 0.322 0.766 1.11 2.53 3.33 7.57 10.6 24.8 40.7 0.0231 1.01 1.02 1.45	27.6 28.8 28.8 35.5 0.472 1.13 2.96 3.56 3.32 5.22 2.80 0.119 1.19 1.19 1.89 1.91 3.22 0.905 1.35 2.83 3.78 8.01 12.7 28.6 30.4 49.6 0.0512 1.42 1.44 2.00 2.02 2.95

[:] ① L 設モアル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

別紙 3-2-97

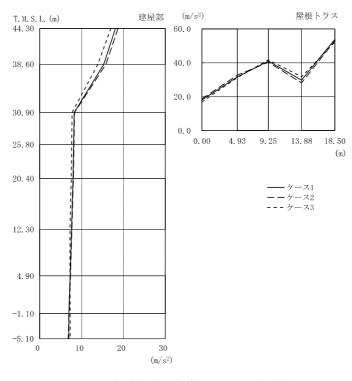


図 2-65 最大応答加速度 (Ss-1, 鉛直方向)

表 2-65 最大応答加速度 (Ss-1, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
1.27.	号	1	2	3
	1	18.1	18.7	17.0
	2	15.3	15.8	13.9
	3	8.21	8.30	7.74
建	4	8.11	8.19	7.65
屋	5	7.97	8.05	7.51
部	6	7.63	7.70	7.22
	7	7.25	7.32	7.21
	8	6.94	7.00	7.25
	9	6.93	6.80	7.26
	1	18.1	18.7	17.0
屋根	11	31.7	32.7	31.3
	12	41.0	40.4	41.8
トラス	13	29.8	28.2	31.8
	14	53.8	53.0	52.2

②建屋剛性・地盤剛性(+ σ)考慮モデル

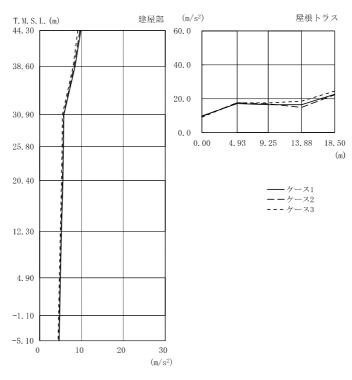


図 2-66 最大応答加速度 (Ss-2, 鉛直方向)

表 2-66 最大応答加速度 (Ss-2, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
1-1	野	1	2	3
	1	9.84	9.60	9.13
	2	8.48	8.26	8.00
	3	5.78	5.70	5.46
建	4	5.68	5.59	5.35
屋	5	5.54	5.46	5.23
部	6	5.20	5.12	4.93
	7	4.96	4.90	4.70
	8	4.78	4.73	4.53
	9	4.66	4.61	4.40
	1	9.84	9.60	9.13
屋根	11	17.1	17.6	17.6
	12	16.5	17.0	17.5
トラス	13	16.5	14.9	18.6
	14	22.6	22.3	24.5

②建屋剛性・地盤剛性(+ σ)考慮モデル

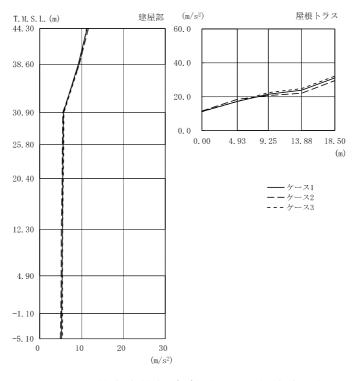


図 2-67 最大応答加速度 (Ss-3, 鉛直方向)

表 2-67 最大応答加速度 (Ss-3, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
1-1	号	1	2	3
	1	11.3	11.6	11.2
	2	9.23	9.44	9.45
	3	5.66	5.50	5.78
建	4	5.59	5.43	5.71
屋	5	5.49	5.33	5.62
部	6	5.41	5.15	5.47
	7	5.36	5.12	5.41
	8	5.25	5.03	5.41
	9	5.20	4.93	5.42
	1	11.3	11.6	11.2
屋根	11	17.2	18.5	17.2
	12	21.5	20.7	22.4
トラス	13	23.8	22.0	24.8
	14	31.1	29.5	32.1

②建屋剛性・地盤剛性(+ σ)考慮モデル

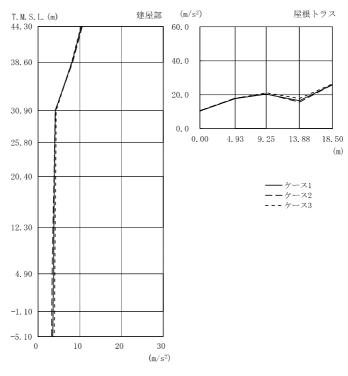


図 2-68 最大応答加速度 (Ss-4, 鉛直方向)

表 2-68 最大応答加速度 (Ss-4, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
1-11-4	号	1	2	3
	1	10.4	10.6	10.3
	2	8.15	8.29	8.06
	3	4.17	4.12	4.34
建	4	4.05	4.00	4.30
屋	5	3.91	3.86	4.24
部	6	3.82	3.57	4.14
	7	3.72	3.40	4.05
	8	3.62	3.31	3.95
	9	3.55	3.26	3.88
_	1	10.4	10.6	10.3
屋根	11	17.7	18.0	17.8
	12	20.3	20.5	21.1
トラス	13	16.4	15.6	17.8
	14	26.0	25.9	26.4

②建屋剛性・地盤剛性(+ σ)考慮モデル

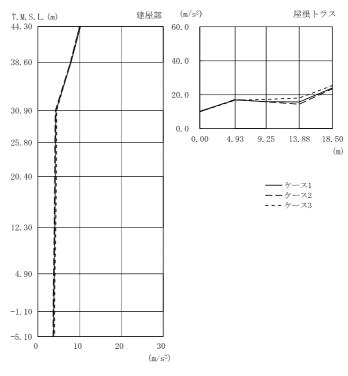


図 2-69 最大応答加速度 (Ss-5, 鉛直方向)

表 2-69 最大応答加速度 (Ss-5, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
1374	号	1	2	3
	1	10.2	10.0	9.95
	2	7.93	7.77	7.83
	3	4.32	4.18	4.49
建	4	4.23	4.08	4.48
屋	5	4.18	4.01	4.44
部	6	4.04	3.88	4.28
	7	3.89	3.74	4.10
	8	3.77	3.64	3.99
	9	3.76	3.63	3.97
	1	10.2	10.0	9.95
屋根	11	16.9	17.2	16.7
	12	15.9	15.8	17.2
トラス	13	15.7	14.4	18.1
	14	24.0	23.5	25.4

②建屋剛性・地盤剛性(+ σ)考慮モデル

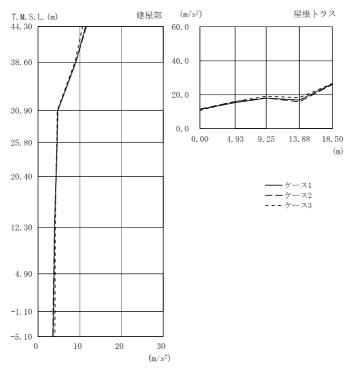


図 2-70 最大応答加速度 (Ss-6, 鉛直方向)

表 2-70 最大応答加速度 (Ss-6, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
1374	号	1	2	3
	1	11.4	11.6	10.7
	2	9.07	9.07	8.85
	3	4.74	4.74	4.64
建	4	4.58	4.58	4.50
屋	5	4.37	4.37	4.33
部	6	3.96	3.96	4.16
	7	3.83	3.76	4.11
	8	3.71	3.63	4.07
	9	3.63	3.54	4.03
	1	11.4	11.6	10.7
屋根	11	15.3	16.0	16.0
	12	18.0	18.1	19.1
トラス	13	16.8	15.8	18.3
	14	26.4	26.1	26.6

②建屋剛性・地盤剛性(+ σ)考慮モデル

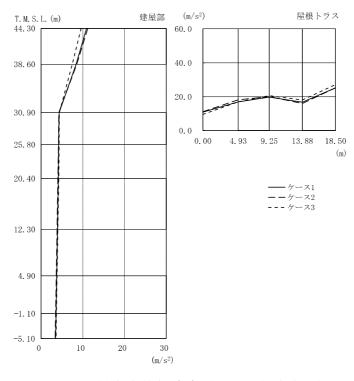


図 2-71 最大応答加速度 (Ss-7, 鉛直方向)

表 2-71 最大応答加速度 (Ss-7, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
1.27.	号	1	2	3
	1	10.9	11.2	9.60
	2	8.42	8.55	7.49
	3	4.36	4.29	4.41
建	4	4.26	4.19	4.35
屋	5	4.17	4.06	4.27
部	6	3.96	3.83	4.05
	7	3.77	3.64	3.85
	8	3.61	3.48	3.69
	9	3.50	3.37	3.60
	1	10.9	11.2	9.60
屋根	11	17.0	18.2	16.9
	12	19.8	20.1	20.6
トラス	13	16.7	16.0	18.1
	14	25.2	25.2	27.1

②建屋剛性・地盤剛性(+ σ)考慮モデル

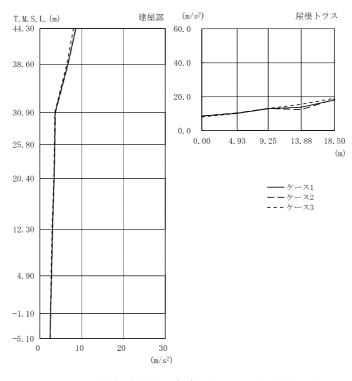


図 2-72 最大応答加速度 (Ss-8, 鉛直方向)

表 2-72 最大応答加速度 (Ss-8, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
1374	号	1	2	3
	1	8.58	8.62	8.04
	2	6.71	6.74	6.43
	3	3.65	3.70	3.56
建	4	3.54	3.58	3.46
屋	5	3.39	3.42	3.32
部	6	3.04	3.04	2.91
	7	2.80	2.80	2.67
	8	2.56	2.58	2.53
	9	2.46	2.41	2.45
	1	8.58	8.62	8.04
屋根	11	10.2	10.4	10.1
	12	12.9	13.1	13.1
トラス	13	13.8	12.4	15.5
	14	18.1	18.6	19.1

②建屋剛性・地盤剛性(+ σ)考慮モデル

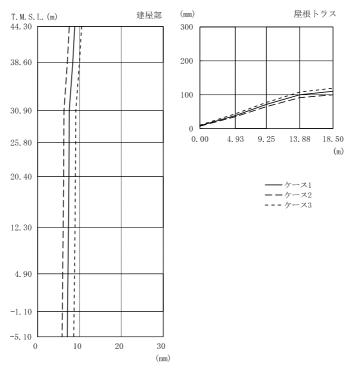


図 2-73 最大応答変位 (Ss-1, 鉛直方向)

表 2-73 最大応答変位 (Ss-1, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
1374	号	1	2	3
	1	8.86	7.56	10.5
	2	8.40	7.12	10.0
	3	7.56	6.31	9.12
建	4	7.52	6.27	9.08
屋	5	7.48	6.23	9.03
部	6	7.36	6.12	8.93
	7	7.25	6.02	8.82
	8	7.15	5.92	8.72
	9	7.09	5.85	8.65
	1	8.86	7.56	10.5
屋根	11	38.7	35.0	43.7
	12	71.8	65.2	77.4
トラス	13	100	91.4	108
	14	110	100	119

- ②建屋剛性・地盤剛性(+ σ)考慮モデル
- ③建屋剛性・地盤剛性(- σ)考慮モデル

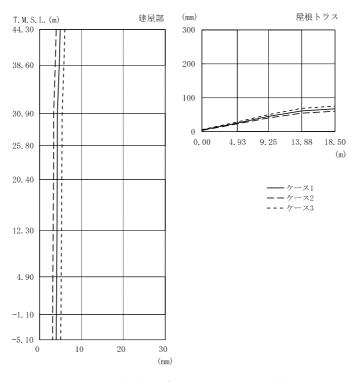


図 2-74 最大応答変位 (Ss-2, 鉛直方向)

表 2-74 最大応答変位 (Ss-2, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
1374	号	1	2	3
	1	4.93	3.96	6.04
	2	4.69	3.75	5.81
	3	4.25	3.36	5.36
建	4	4.23	3.34	5.34
屋	5	4.20	3.31	5.31
部	6	4.14	3.24	5.23
	7	4.08	3.18	5.16
	8	4.02	3.13	5.09
	9	3.98	3.10	5.04
	1	4.93	3.96	6.04
屋根	11	25.5	22.9	28.5
	12	45.0	40.4	50.1
トラス	13	61.1	54.7	68.7
	14	67.3	60.2	75.6

- ②建屋剛性・地盤剛性(+ σ)考慮モデル
- ③建屋剛性・地盤剛性(- σ)考慮モデル

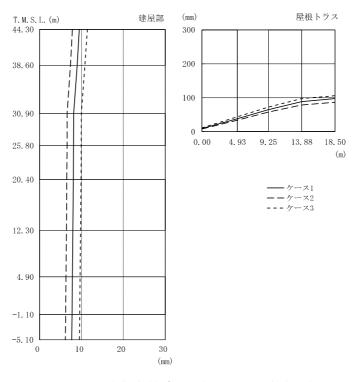


図 2-75 最大応答変位 (Ss-3, 鉛直方向)

表 2-75 最大応答変位 (Ss-3, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
127.	号	1	2	3
	1	9.46	7.83	11.4
	2	8.98	7.38	10.8
	3	8.14	6.59	9.97
建	4	8.10	6.56	9.94
屋	5	8.05	6.51	9.89
部	6	7.94	6.42	9.78
	7	7.84	6.32	9.67
	8	7.74	6.23	9.57
	9	7.67	6.17	9.50
	1	9.46	7.83	11.4
屋 根	11	38.2	33.6	43.8
	12	65.1	57.6	72.7
トラス	13	88.6	78.8	97.5
	14	97.3	86.7	106

- ②建屋剛性・地盤剛性(+ σ)考慮モデル
- ③建屋剛性・地盤剛性(- σ)考慮モデル

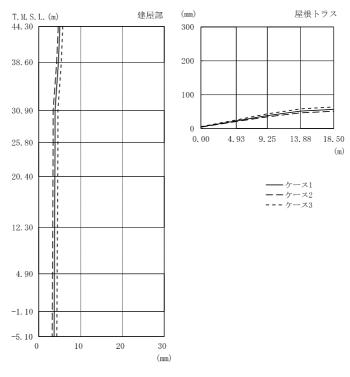


図 2-76 最大応答変位 (Ss-4, 鉛直方向)

表 2-76 最大応答変位 (Ss-4, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
137.	号	1	2	3
	1	5.04	4.66	5.73
	2	4.68	4.27	5.36
	3	3.90	3.45	4.58
建	4	3.87	3.43	4.56
屋	5	3.84	3.40	4.52
部	6	3.78	3.34	4.46
	7	3.73	3.29	4.40
	8	3.69	3.24	4.35
	9	3.66	3.21	4.31
	1	5.04	4.66	5.73
屋根	11	22.7	20.7	25.4
	12	38.6	34.8	43.5
トラス	13	51.7	46.6	58.4
	14	56.7	51.4	63.8

- ②建屋剛性・地盤剛性(+ σ)考慮モデル
- ③建屋剛性・地盤剛性(- σ)考慮モデル

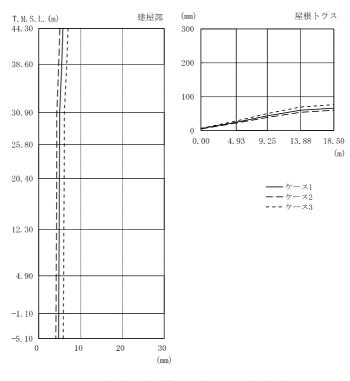


図 2-77 最大応答変位 (Ss-5, 鉛直方向)

表 2-77 最大応答変位 (Ss-5, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
127.	号	1	2	3
	1	5.76	5.04	7.01
	2	5.48	4.78	6.69
	3	4.98	4.31	6.11
建	4	4.96	4.30	6.08
屋	5	4.93	4.27	6.05
部	6	4.88	4.22	5.99
	7	4.82	4.16	5.93
	8	4.77	4.11	5.88
	9	4.73	4.07	5.84
	1	5.76	5.04	7.01
屋根	11	24.8	22.5	28.7
	12	43.5	39.0	50.2
トラス	13	60.1	54.1	69.3
,	14	66.4	59.9	76.4

- ②建屋剛性・地盤剛性(+ σ)考慮モデル
- ③建屋剛性・地盤剛性(- σ)考慮モデル

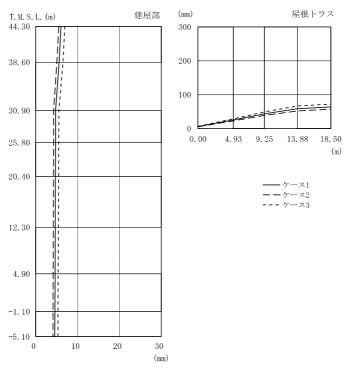


図 2-78 最大応答変位 (Ss-6, 鉛直方向)

表 2-78 最大応答変位 (Ss-6, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
127.	号	1	2	3
	1	6.03	5.49	6.94
	2	5.58	5.04	6.48
	3	4.74	4.28	5.52
建	4	4.72	4.26	5.48
屋	5	4.70	4.24	5.44
部	6	4.65	4.20	5.40
	7	4.61	4.16	5.35
	8	4.58	4.12	5.31
	9	4.55	4.10	5.28
	1	6.03	5.49	6.94
屋根	11	25.5	22.8	29.0
	12	43.5	39.0	49.4
トラス	13	58.5	52.3	66.5
	14	63.8	57.1	72.5

②建屋剛性・地盤剛性(+ σ)考慮モデル

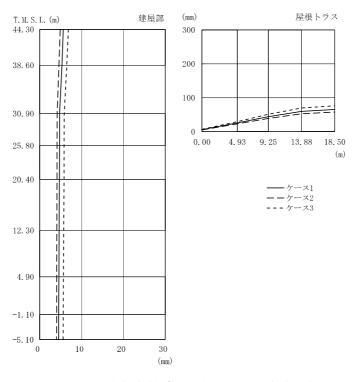


図 2-79 最大応答変位 (Ss-7, 鉛直方向)

表 2-79 最大応答変位 (Ss-7, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
137.	号	1	2	3
	1	5.62	4.88	6.84
	2	5.30	4.58	6.47
	3	4.74	4.14	5.84
建	4	4.72	4.13	5.81
屋	5	4.69	4.12	5.78
部	6	4.62	4.09	5.71
	7	4.56	4.06	5.66
	8	4.51	4.03	5.61
	9	4.48	4.01	5.57
	1	5.62	4.88	6.84
屋根	11	25.5	22.6	29.8
	12	44.3	39.1	51.4
トラス	13	59.8	52.7	69.4
	14	65.5	57.7	76.2

- ②建屋剛性・地盤剛性(+ σ)考慮モデル
- ③建屋剛性・地盤剛性(- σ)考慮モデル

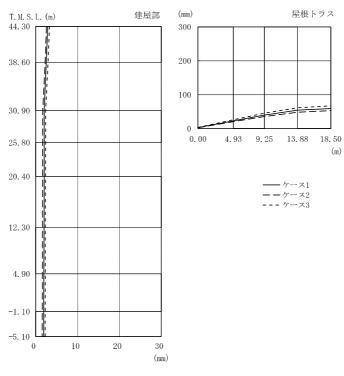
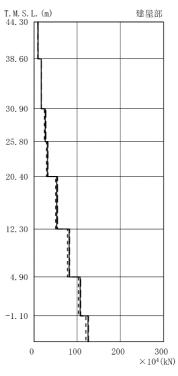



図 2-80 最大応答変位 (Ss-8, 鉛直方向)

表 2-80 最大応答変位 (Ss-8, 鉛直方向)

部位	質点番号	最大応答変位一覧表 (mm)		
14.		1	2	3
建	1	2.85	2.57	3.28
	2	2.53	2.25	2.95
	3	2.01	1.65	2.36
	4	2.00	1.64	2.35
屋	5	1.99	1.63	2.33
部	6	1.95	1.60	2.30
	7	1.92	1.57	2.27
	8	1.89	1.55	2.25
	9	1.88	1.52	2.23
屋根トラス	1	2.85	2.57	3.28
	11	22.9	20.4	26.1
	12	40.0	35.7	45.4
	13	54.3	48.5	61.6
	14	59.4	53.2	67.3

- ②建屋剛性・地盤剛性(+ σ)考慮モデル
- ③建屋剛性・地盤剛性(- σ)考慮モデル

ケース1− ケース2− ケース3

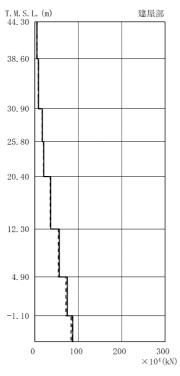

図 2-81 最大応答軸力 (Ss-1, 鉛直方向)

表 2-81 最大応答軸力 (Ss-1, 鉛直方向)

部位	部材番号	最大応答軸力一覧表 (×10 ⁴ kN)		
11/2		1	2	3
建屋部	1	9.33	9.18	9.45
	2	16.8	17.0	16.6
	3	26.3	27.5	24.3
	4	31.2	32.6	28.8
	5	52.9	54.6	50.4
	6	81.1	82.3	77.8
	7	107	108	103
	8	125	126	120

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

- ケース2 - - ケース3

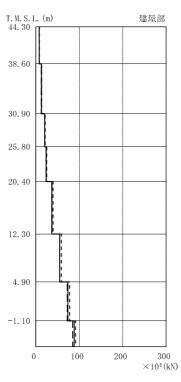

図 2-82 最大応答軸力 (Ss-2, 鉛直方向)

表 2-82 最大応答軸力 (Ss-2, 鉛直方向)

部位	部材番号	最大応答軸力一覧表 (×10 ⁴ kN)		
11/4		1	2	3
建屋部	1	4.47	4.35	4.50
	2	8.18	8.02	7.54
	3	17.0	16.6	16.3
	4	20.6	20.2	19.9
	5	36.3	36.0	35.1
	6	56.3	55.7	53.9
	7	74.7	73.8	71.3
	8	87.1	86.0	83.1

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

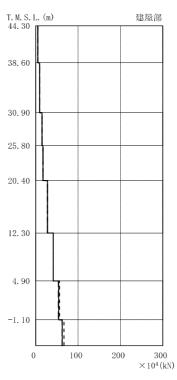

ケース1− ケース2− − ケース3

図 2-83 最大応答軸力 (Ss-3, 鉛直方向)

表 2-83 最大応答軸力 (Ss-3, 鉛直方向)

部位	部材番号	最大応答軸力一覧表 (×10 ⁴ kN)		
11/		1)	2	3
建屋部	1	7.69	7.43	8.00
	2	12.7	12.5	13.1
	3	20.2	20.2	21.4
	4	23.3	23.3	24.8
	5	36.8	36.9	39.5
	6	54.7	54.9	58.6
	7	73.9	72.4	77.8
	8	88.0	84.9	91.3

②建屋剛性・地盤剛性(+ σ)考慮モデル

−− ケース1− − ケース2− − ケース3

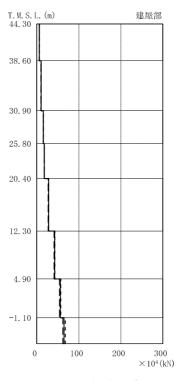

図 2-84 最大応答軸力 (Ss-4, 鉛直方向)

表 2-84 最大応答軸力 (Ss-4, 鉛直方向)

部位	部材番	最大応答軸力一覧表 (×10 ⁴ kN)		
11/4	号	1)	2	3
建屋部	1	4.94	4.97	4.89
	2	9.34	9.43	9.22
	3	14.9	15.1	14.9
	4	17.2	17.4	17.2
	5	27.6	27.6	27.6
	6	41.5	41.3	41.5
	7	54.0	53.7	55.9
	8	62.4	62.0	66.6

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

ケース1− ケース2− − ケース3

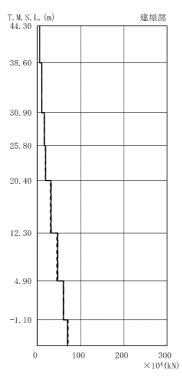

図 2-85 最大応答軸力 (Ss-5, 鉛直方向)

表 2-85 最大応答軸力 (Ss-5, 鉛直方向)

部位	部材番	最大応答軸力一覧表 (×10 ⁴ kN)		
1-1-4	号	1	2	3
	1	5.78	5.61	5.76
	2	10.0	9.79	9.94
	3	15.6	15.1	15.6
建屋	4	17.8	17.2	17.8
屋 部	5	28.0	26.9	28.2
	6	42.6	41.0	42.9
	7	55.8	53.8	57.0
	8	64.5	62.2	67.7

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

−− ケース1− − ケース2− − ケース3

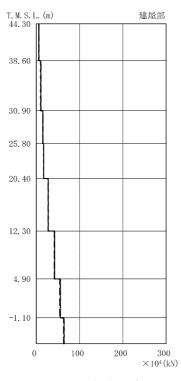

図 2-86 最大応答軸力 (Ss-6, 鉛直方向)

表 2-86 最大応答軸力 (Ss-6, 鉛直方向)

部位	部材番	最大応答軸力一覧表 (×10 ⁴ kN)		
1.7.	号	1	2	3
	1	5.23	5.24	5.27
	2	10.0	9.93	9.76
	3	16.2	16.3	15.6
建屋	4	18.9	19.3	18.4
部	5	31.5	31.9	30.4
	6	46.7	47.1	45.2
	7	60.4	60.8	60.3
	8	69.5	69.9	70.8

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

−− ケース1− − ケース2− − ケース3

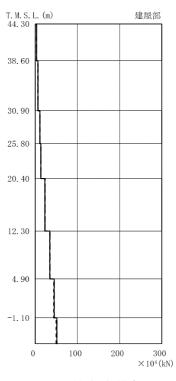

図 2-87 最大応答軸力 (Ss-7, 鉛直方向)

表 2-87 最大応答軸力 (Ss-7, 鉛直方向)

部位	部材番	最大応答軸力一覧表 (×10 ⁴ kN)		
11/4	号	1	2	3
	1	5.86	5.89	5.53
	2	10.3	10.4	9.52
建屋部	3	15.1	15.1	14.5
	4	17.0	17.0	16.5
	5	27.4	26.7	27.5
	6	42.0	41.1	42.2
	7	55.3	54.1	55.5
	8	64.0	62.7	64.5

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

ケース1− ケース2− − ケース3

図 2-88 最大応答軸力 (Ss-8, 鉛直方向)

表 2-88 最大応答軸力 (Ss-8, 鉛直方向)

部位	部材番	最大応答軸力一覧表 (×10 ⁴ kN)		
1.2/.	号	1)	2	3
	1	3.16	3.15	3.22
	2	6.70	6.77	6.19
	3	11.3	11.2	11.2
建屋	4	13.4	13.5	13.5
屋 部	5	23.1	23.4	23.2
	6	34.8	35.1	34.5
	7	45.0	45.2	43.9
	8	51.4	51.4	49.5

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

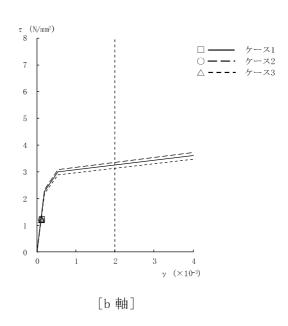


図 2-89 $\tau-\gamma$ 関係と最大応答値(Ss-1, NS 方向, 1F)(1/4)

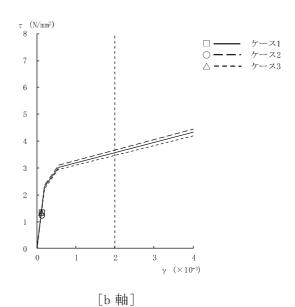


図 2-89 $\tau-\gamma$ 関係と最大応答値(Ss-1, NS 方向, B1F)(2/4)

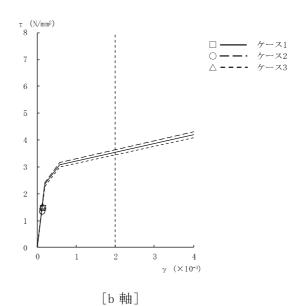


図 2-89 $\tau-\gamma$ 関係と最大応答値(Ss-1, NS 方向, MB2F)(3/4)

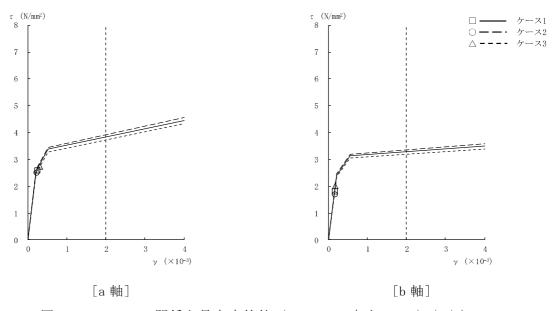


図 2-89 $\tau-\gamma$ 関係と最大応答値(Ss-1, NS 方向, B2F)(4/4)

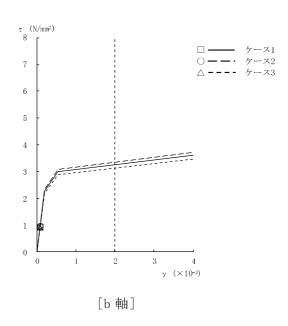


図 2-90 $\tau-\gamma$ 関係と最大応答値(Ss-2, NS 方向, 1F)(1/4)

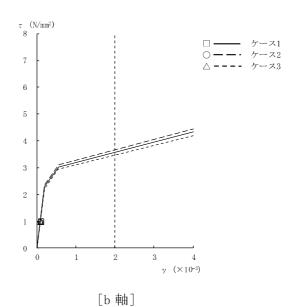


図 2-90 $\tau-\gamma$ 関係と最大応答値(Ss-2, NS 方向, B1F)(2/4)

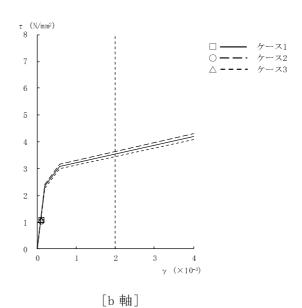
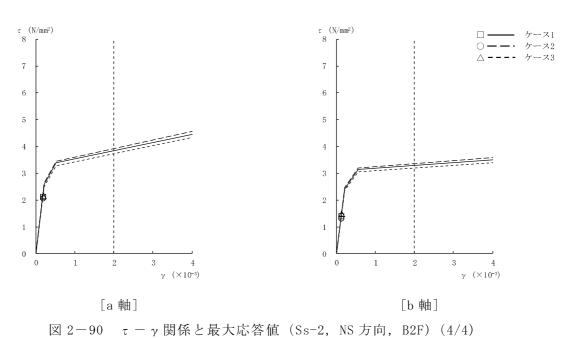



図 2-90 τ-γ関係と最大応答値(Ss-2, NS 方向, MB2F)(3/4)

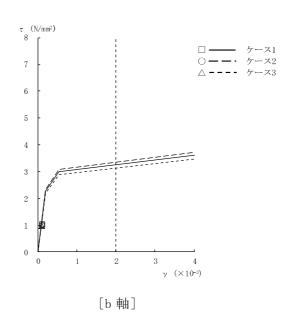


図 2-91 $\tau-\gamma$ 関係と最大応答値(Ss-3, NS 方向, 1F)(1/4)

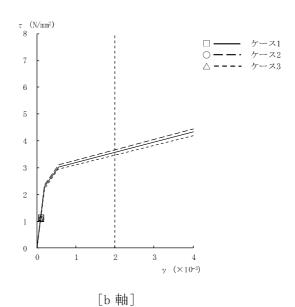


図 2-91 $\tau-\gamma$ 関係と最大応答値(Ss-3, NS 方向, B1F)(2/4)

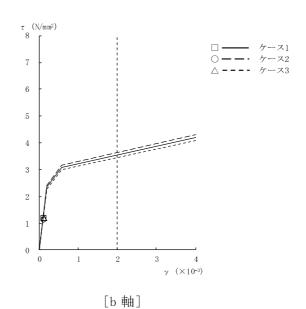


図 2-91 τ-γ関係と最大応答値 (Ss-3, NS 方向, MB2F) (3/4)

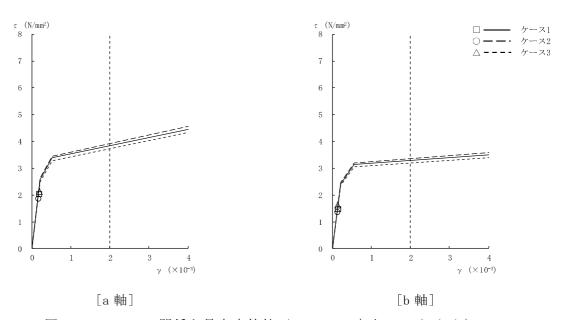


図 2-91 $\tau-\gamma$ 関係と最大応答値(Ss-3, NS 方向, B2F)(4/4)

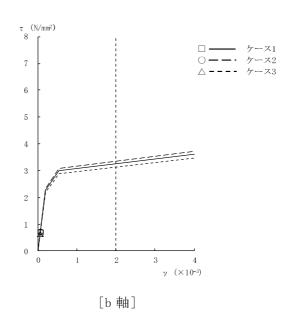


図 2-92 $\tau-\gamma$ 関係と最大応答値(Ss-4, NS 方向, 1F)(1/4)

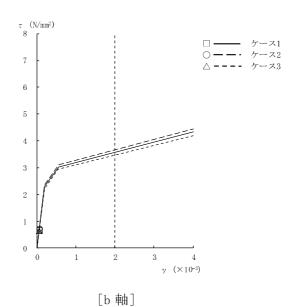


図 2-92 $\tau-\gamma$ 関係と最大応答値(Ss-4, NS 方向, B1F)(2/4)

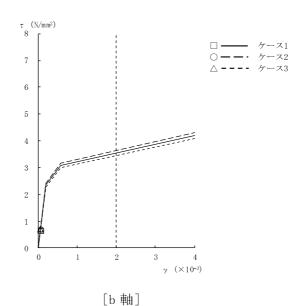


図 2-92 τ-γ関係と最大応答値 (Ss-4, NS 方向, MB2F) (3/4)

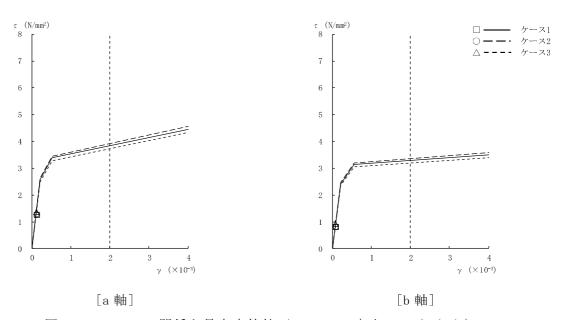


図 2-92 $\tau-\gamma$ 関係と最大応答値(Ss-4, NS 方向, B2F)(4/4)

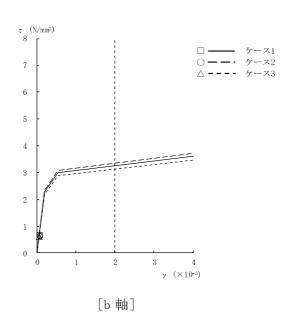


図 2-93 $\tau-\gamma$ 関係と最大応答値(Ss-5, NS 方向, 1F)(1/4)

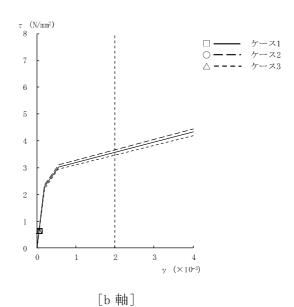


図 2-93 $\tau-\gamma$ 関係と最大応答値(Ss-5, NS 方向, B1F)(2/4)

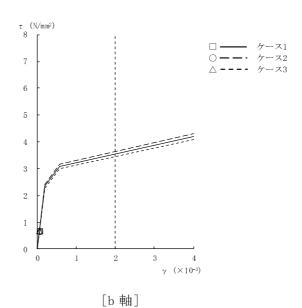


図 2-93 $\tau-\gamma$ 関係と最大応答値(Ss-5, NS 方向, MB2F)(3/4)

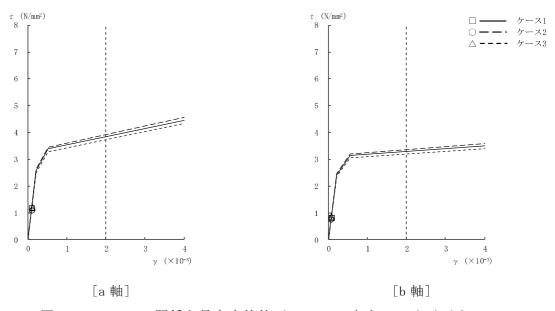


図 2-93 $\tau-\gamma$ 関係と最大応答値(Ss-5, NS 方向, B2F)(4/4)

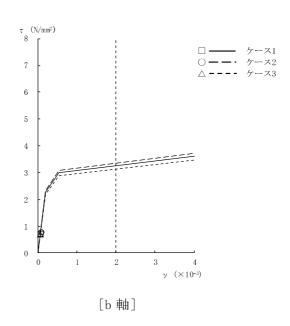


図 2-94 $\tau-\gamma$ 関係と最大応答値(Ss-6, NS 方向, 1F)(1/4)

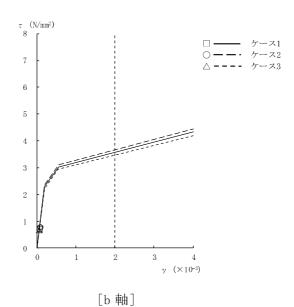


図 2-94 $\tau-\gamma$ 関係と最大応答値(Ss-6, NS 方向, B1F)(2/4)

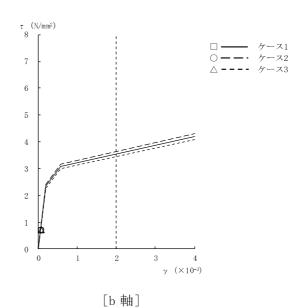


図 2-94 $\tau-\gamma$ 関係と最大応答値(Ss-6, NS 方向, MB2F)(3/4)

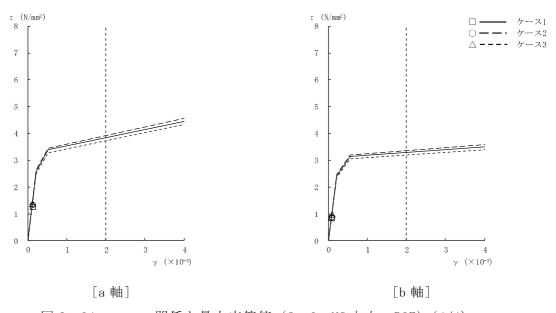


図 2-94 $\tau-\gamma$ 関係と最大応答値(Ss-6, NS 方向, B2F)(4/4)

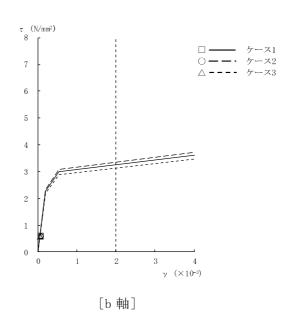


図 2-95 $\tau-\gamma$ 関係と最大応答値(Ss-7, NS 方向, 1F)(1/4)

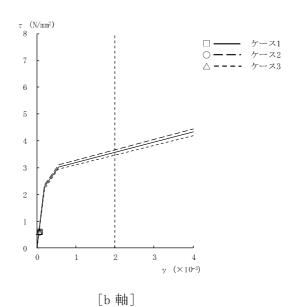


図 2-95 $\tau-\gamma$ 関係と最大応答値(Ss-7, NS 方向, B1F)(2/4)



図 2-95 τ-γ関係と最大応答値 (Ss-7, NS 方向, MB2F) (3/4)

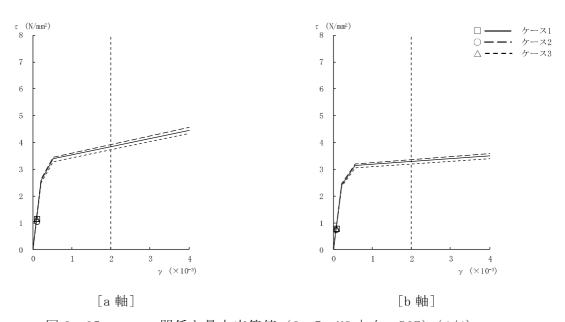


図 2-95 $\tau-\gamma$ 関係と最大応答値(Ss-7, NS 方向, B2F)(4/4)

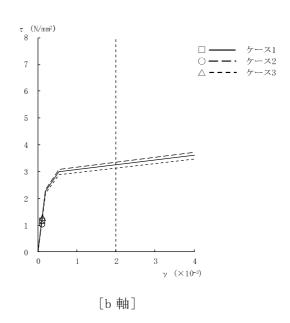


図 2-96 $\tau-\gamma$ 関係と最大応答値(Ss-8, NS 方向, 1F)(1/4)

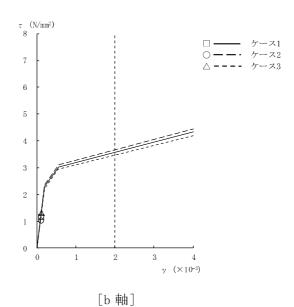


図 2-96 $\tau-\gamma$ 関係と最大応答値(Ss-8, NS 方向, B1F)(2/4)

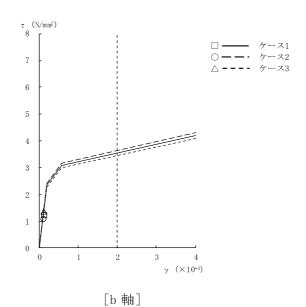


図 2-96 τ-γ関係と最大応答値 (Ss-8, NS 方向, MB2F) (3/4)

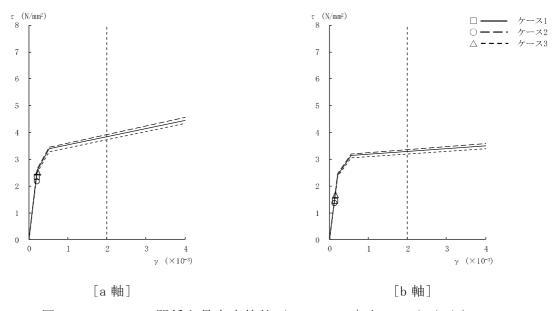


図 2-96 $\tau-\gamma$ 関係と最大応答値(Ss-8, NS 方向, B2F)(4/4)

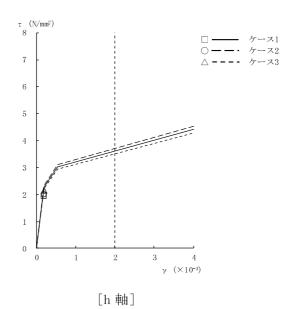
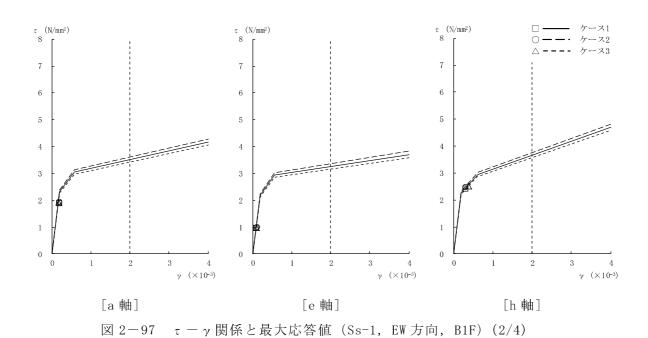



図 2-97 $\tau-\gamma$ 関係と最大応答値(Ss-1, EW 方向, 1F)(1/4)

別紙 3-2-138

図 2-97 $\tau-\gamma$ 関係と最大応答値(Ss-1, EW 方向, MB2F)(3/4)

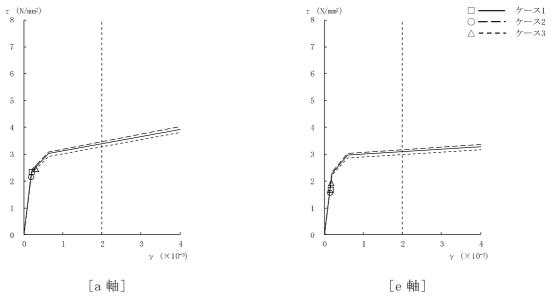


図 2-97 $\tau-\gamma$ 関係と最大応答値(Ss-1, EW 方向, B2F)(4/4)

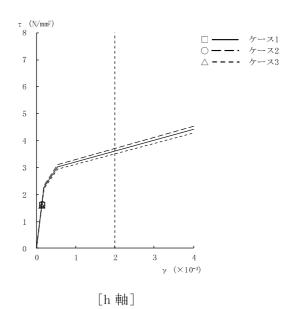
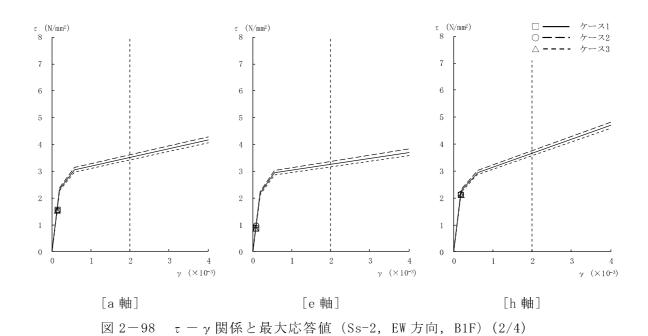
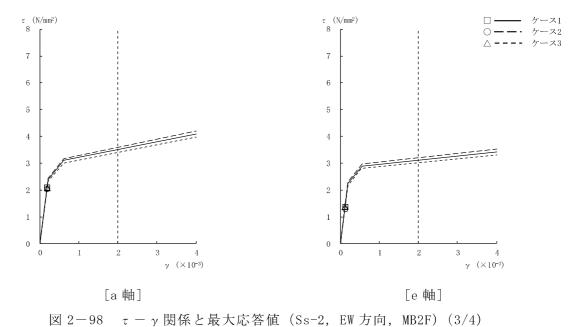




図 2-98 $\tau-\gamma$ 関係と最大応答値(Ss-2, EW 方向, 1F)(1/4)

別紙 3-2-140

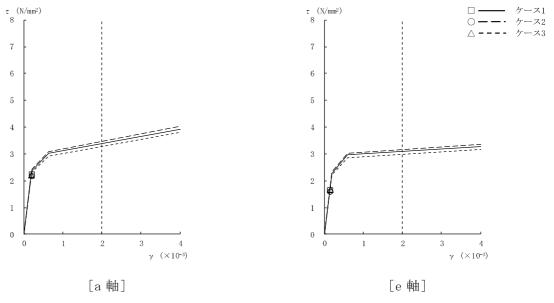


図 2-98 $\tau-\gamma$ 関係と最大応答値(Ss-2, EW 方向, B2F)(4/4)

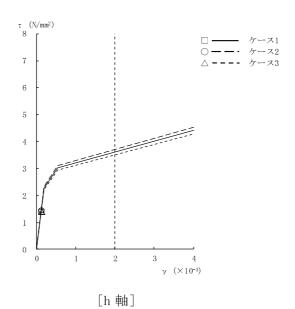
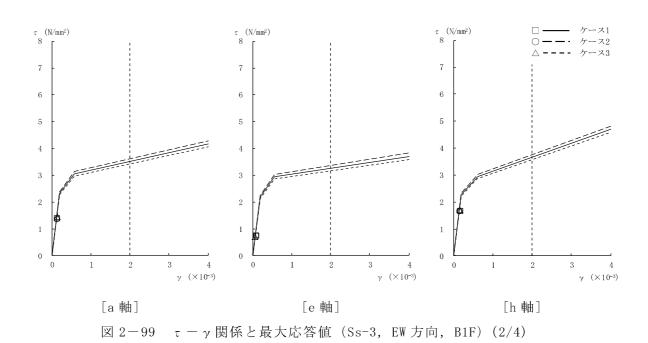



図 2-99 $\tau-\gamma$ 関係と最大応答値(Ss-3, EW 方向, 1F)(1/4)

別紙 3-2-142

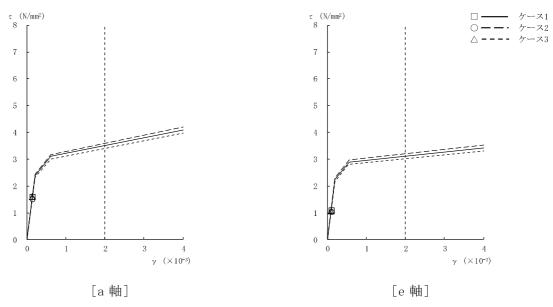


図 2-99 $\tau-\gamma$ 関係と最大応答値(Ss-3, EW 方向, MB2F)(3/4)

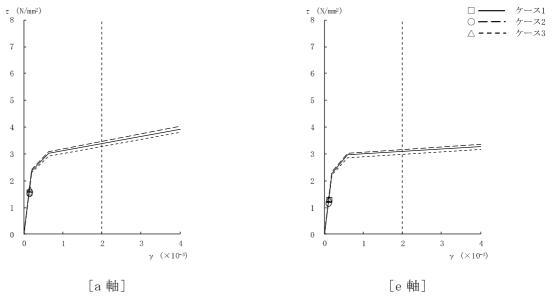


図 2-99 $\tau-\gamma$ 関係と最大応答値(Ss-3, EW 方向, B2F)(4/4)

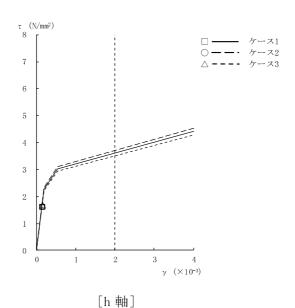
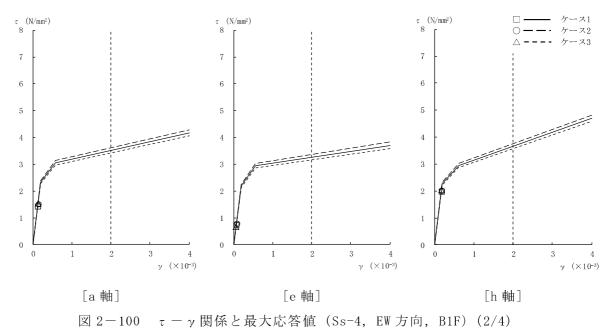



図 2-100 $\tau-\gamma$ 関係と最大応答値(Ss-4, EW 方向, 1F)(1/4)

τ-γ関係と最大応答値 (Ss-4, EW 方向, B1F) (2/4)

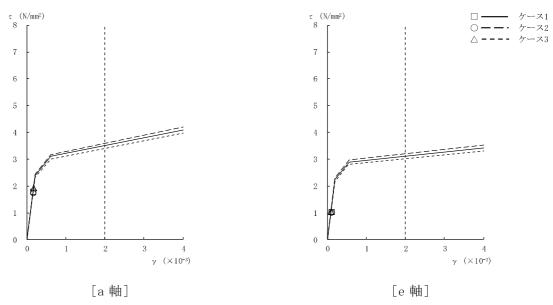


図 2-100 $\tau-\gamma$ 関係と最大応答値(Ss-4, EW 方向, MB2F)(3/4)

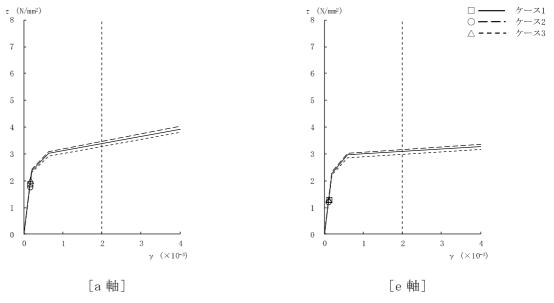


図 2-100 $\tau-\gamma$ 関係と最大応答値(Ss-4, EW 方向, B2F)(4/4)

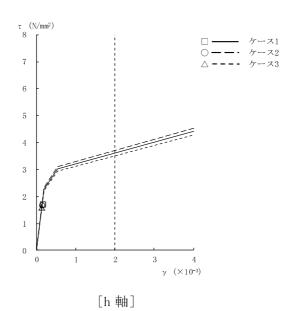
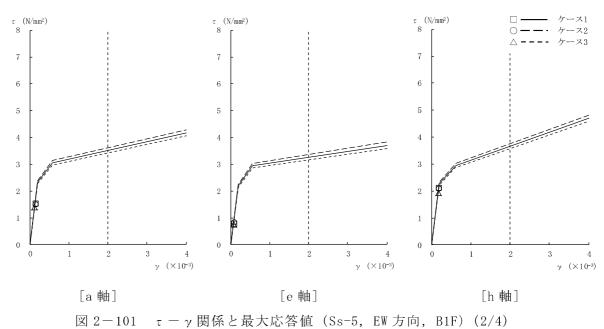



図 2-101 $\tau-\gamma$ 関係と最大応答値(Ss-5, EW 方向, 1F)(1/4)

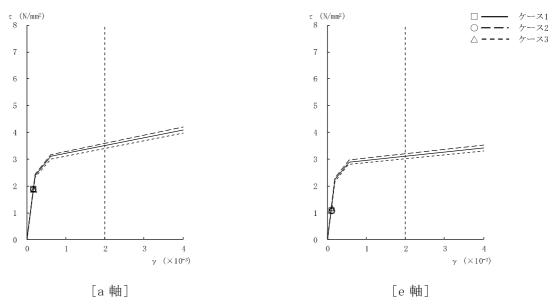


図 2-101 $\tau-\gamma$ 関係と最大応答値(Ss-5, EW 方向, MB2F)(3/4)

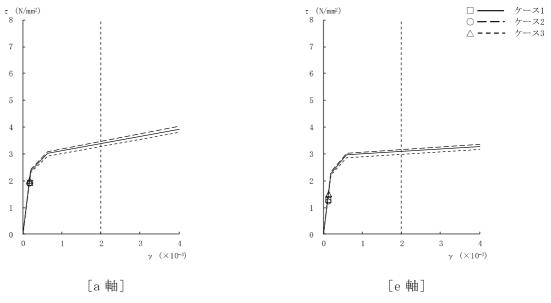


図 2-101 $\tau-\gamma$ 関係と最大応答値(Ss-5, EW 方向, B2F)(4/4)

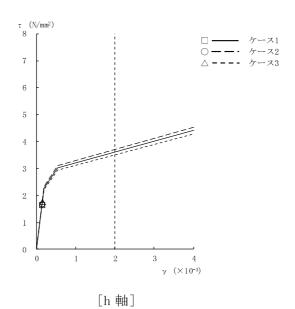
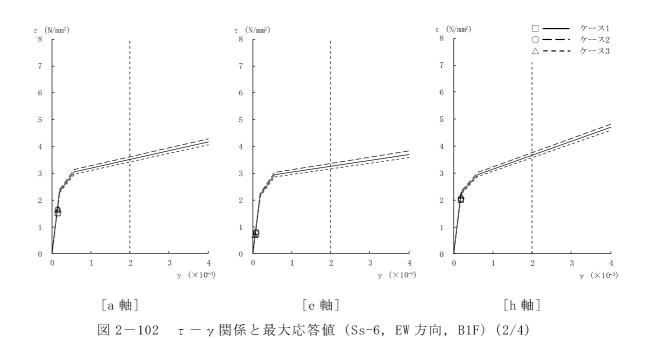



図 2-102 $\tau-\gamma$ 関係と最大応答値(Ss-6, EW 方向, 1F)(1/4)

別紙 3-2-148

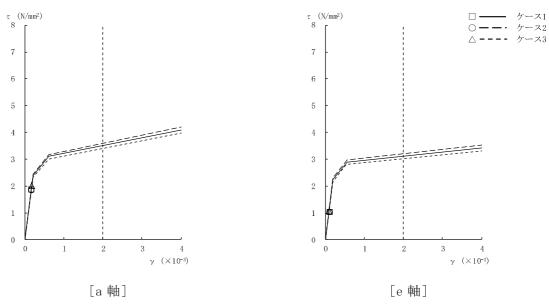


図 2-102 $\tau-\gamma$ 関係と最大応答値(Ss-6, EW 方向, MB2F)(3/4)

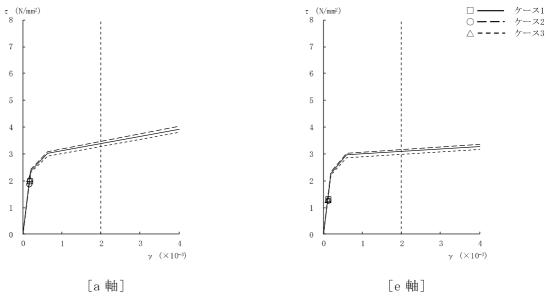


図 2-102 $\tau-\gamma$ 関係と最大応答値(Ss-6, EW 方向, B2F)(4/4)

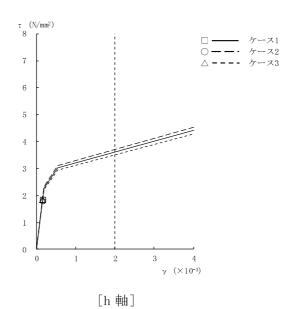
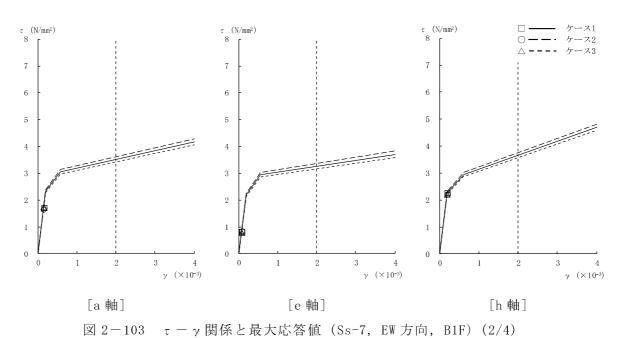



図 2-103 $\tau-\gamma$ 関係と最大応答値(Ss-7, EW 方向, 1F)(1/4)

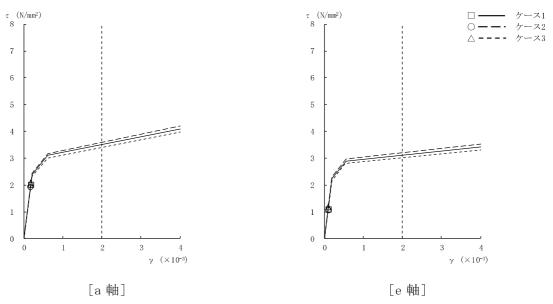


図 2-103 $\tau-\gamma$ 関係と最大応答値(Ss-7, EW 方向, MB2F)(3/4)

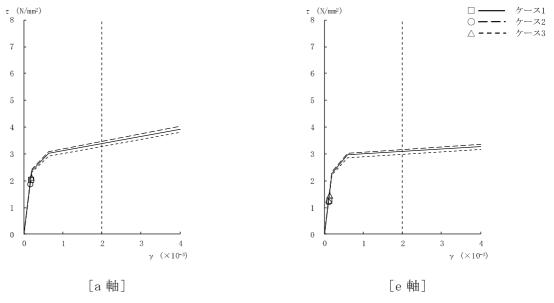


図 2-103 $\tau-\gamma$ 関係と最大応答値(Ss-7, EW 方向, B2F)(4/4)

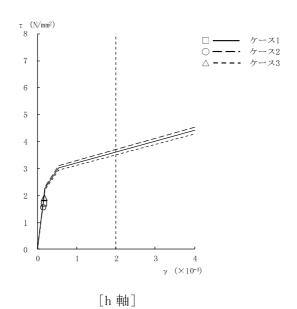


図 2-104 $\tau-\gamma$ 関係と最大応答値(Ss-8, EW 方向, 1F)(1/4)

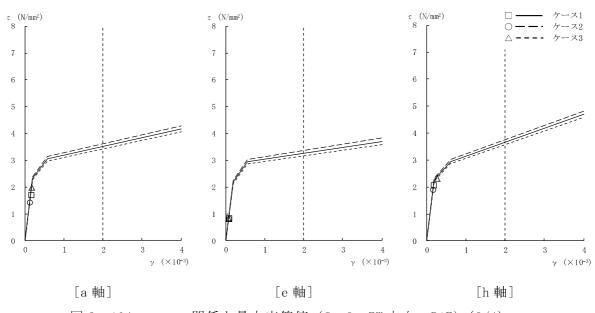


図 2-104 $\tau-\gamma$ 関係と最大応答値(Ss-8, EW 方向, B1F)(2/4)

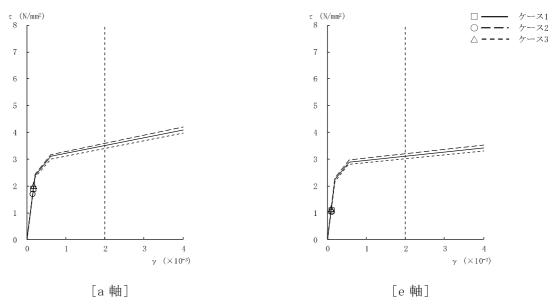


図 2-104 $\tau-\gamma$ 関係と最大応答値(Ss-8, EW 方向, MB2F)(3/4)

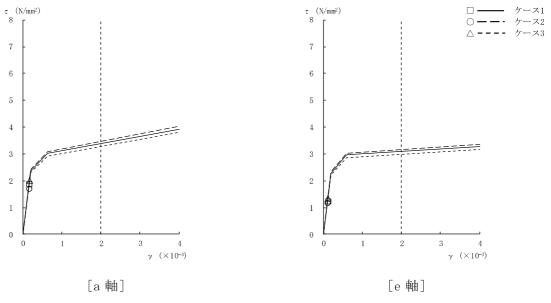


図 2-104 $\tau-\gamma$ 関係と最大応答値(Ss-8, EW 方向, B2F)(4/4)

表 2-89 地震応答解析結果に基づく接地率 (ケース 1)

(a) NS 方向

基準地震動 S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Ss-1	738	38. 2	100.0
Ss-2	636	29. 5	100.0
Ss-3	628	28. 1	100.0
Ss-4	545	20. 2	100.0
Ss-5	524	17. 2	100.0
Ss-6	554	20.9	100.0
Ss-7	511	16.0	100.0
Ss-8	647	34. 6	100.0

(b) EW 方向

基準地震動 S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率
Ss-1	718	31. 5	100.0
Ss-2	669	28. 5	100.0
S _S -3	647	26. 9	100.0
Ss-4	620	25. 4	100.0
Ss-5	651	29. 1	100.0
Ss-6	633	26. 5	100.0
Ss-7	675	31. 3	100.0
Ss-8	659	31. 4	100.0

表 2-90 地震応答解析結果に基づく接地率 (ケース 2)

(a) NS 方向

基準地震動S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Ss-1	700	33. 6	100.0
Ss-2	625	28. 2	100.0
Ss-3	612	26. 5	100.0
Ss-4	552	21.6	100.0
Ss-5	513	16. 4	100.0
Ss-6	564	22. 6	100.0
Ss-7	499	15. 0	100.0
Ss-8	619	31. 5	100.0

(b) EW 方向

基準地震動 S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Ss-1	721	32. 0	100.0
Ss-2	669	28. 5	100.0
Ss-3	630	25. 9	100.0
Ss-4	618	25. 7	100.0
Ss-5	638	28. 3	100.0
Ss-6	634	26. 7	100.0
Ss-7	657	29.8	100.0
Ss-8	633	28.7	100.0

表 2-91 地震応答解析結果に基づく接地率 (ケース 3)

(a) NS 方向

基準地震動S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Ss-1	739	37. 7	100.0
Ss-2	641	30. 2	100.0
Ss-3	652	30. 1	100.0
Ss-4	544	19. 2	100.0
Ss-5	527	18. 3	100.0
Ss-6	554	20. 1	100.0
Ss-7	516	16. 4	100.0
Ss-8	674	38. 3	100.0

(b) EW 方向

基準地震動 S s	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Ss-1	744	34. 5	100.0
Ss-2	669	29. 2	100.0
Ss-3	658	28. 3	100.0
Ss-4	642	27. 1	100.0
Ss-5	651	28. 4	100.0
Ss-6	655	28. 2	100.0
Ss-7	691	32. 2	100.0
Ss-8	683	34. 3	100.0

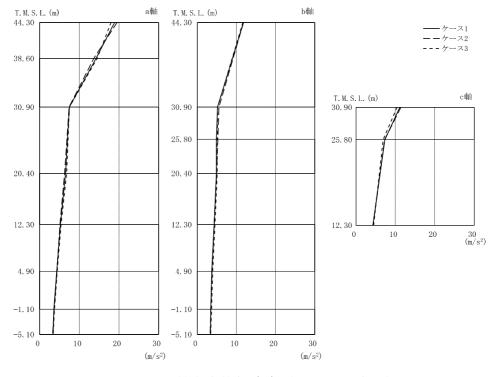


図 2-105 最大応答加速度 (Sd-1, NS 方向)

表 2-92 最大応答加速度 (Sd-1, NS 方向)

部位	質点番	最大応答加速度- (m/s²)		一覧表
11/4	号	1	2	3
	1	18.9	19.5	18.0
	3	14.2	13.6	14.5
	4	7.47	7.42	7.49
a 軸	9	6.51	6.27	6.79
ти	11	5.23	5.12	5.40
	13	4.29	4.35	4.44
	15	3.56	3.66	3.74
	2	11.8	11.8	11.6
	5	5.15	5.50	5.22
	7	4.87	5.24	5.05
b	10	4.88	4.93	5.07
軸	12	4.29	4.32	4.52
	14	3.70	3.77	3.95
	16	3.46	3.45	3.64
	17	3.35	3.26	3.40
С	6	11.1	11.4	10.4
軸	8	7.32	7.26	6.90

②建屋剛性・地盤剛性(+ σ)考慮モデル

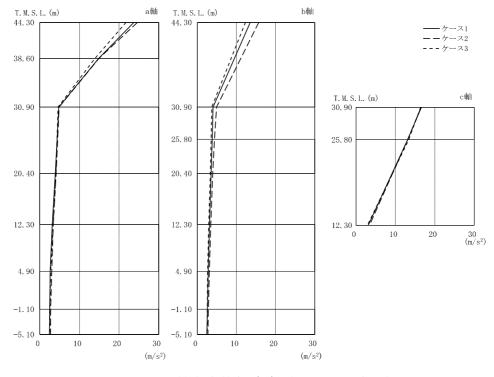


図 2-106 最大応答加速度 (Sd-2, NS 方向)

表 2-93 最大応答加速度 (Sd-2, NS 方向)

部 点 番		最大応答加速度一覧表 (m/s ²)		
11/	号	1	2	3
	1	23.7	24.6	21.7
	3	14.8	14.9	13.9
	4	4.80	4.87	4.61
a 軸	9	3.93	4.12	4.08
714	11	3.16	3.39	3.37
	13	2.63	3.05	2.76
	15	2.50	2.73	2.54
	2	13.5	15.7	12.3
	5	4.03	4.90	3.69
	7	3.80	4.37	3.52
b	10	3.53	3.95	3.29
軸	12	3.11	3.41	2.89
	14	2.80	3.08	2.62
	16	2.59	2.84	2.52
	17	2.42	2.69	2.47
С	6	16.6	16.5	16.4
軸	8	13.1	13.1	13.4

②建屋剛性・地盤剛性(+ σ)考慮モデル

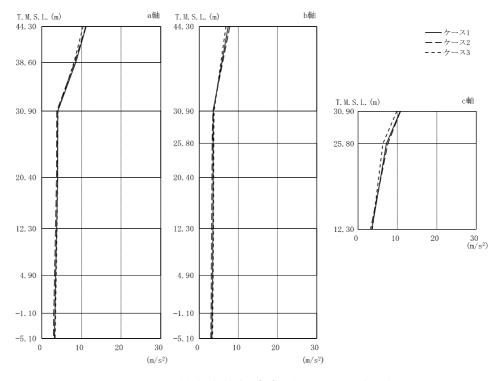


図 2-107 最大応答加速度 (Sd-3, NS 方向)

表 2-94 最大応答加速度 (Sd-3, NS 方向)

部位	質点番	最大応	最大応答加速度一覧表 (m/s²)		
132	号	1	2	3	
	1	11.2	11.1	10.4	
	3	8.58	8.29	8.11	
	4	4.04	3.77	4.06	
a 軸	9	3.98	3.70	4.01	
I pa	11	3.74	3.44	3.81	
	13	3.53	3.21	3.64	
	15	3.33	3.03	3.46	
	2	7.38	7.78	6.78	
	5	3.57	3.49	3.74	
	7	3.52	3.28	3.69	
b	10	3.51	3.22	3.65	
軸	12	3.48	3.17	3.61	
	14	3.38	3.07	3.51	
	16	3.28	2.98	3.41	
	17	3.20	2.92	3.33	
С	6	10.7	10.8	9.85	
軸	8	7.21	7.56	6.31	

②建屋剛性・地盤剛性(+ σ)考慮モデル

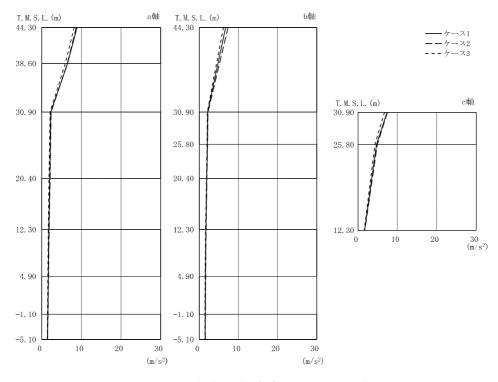


図 2-108 最大応答加速度 (Sd-6, NS 方向)

表 2-95 最大応答加速度 (Sd-6, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		一覧表
137.	号	1)	2	3
	1	8.89	8.70	8.17
	3	6.54	6.49	5.95
	4	2.28	2.37	2.10
a 軸	9	2.03	2.11	1.84
ти	11	1.80	1.87	1.67
	13	1.65	1.71	1.56
	15	1.53	1.57	1.47
	2	6.70	7.32	6.16
	5	2.15	2.21	2.04
	7	2.05	2.06	1.96
b	10	1.90	1.91	1.84
軸	12	1.67	1.72	1.60
	14	1.55	1.60	1.49
	16	1.50	1.54	1.45
	17	1.46	1.49	1.42
С	6	7.36	7.48	6.73
軸	8	4.71	4.92	4.29

②建屋剛性・地盤剛性(+ σ)考慮モデル

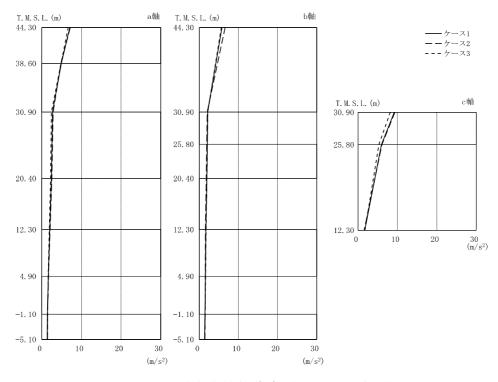


図 2-109 最大応答加速度 (Sd-7, NS 方向)

表 2-96 最大応答加速度 (Sd-7, NS 方向)

質部点位番		最大応答加速度一覧表 (m/s^2)		
11/	号	1	2	3
	1	7.08	7.17	6.67
	3	4.91	4.81	4.84
	4	2.70	2.85	2.41
a 軸	9	2.42	2.54	2.22
1,14	11	2.00	2.07	1.89
	13	1.65	1.69	1.62
	15	1.43	1.44	1.49
	2	5.78	6.61	5.61
	5	2.14	1.99	2.12
	7	2.04	1.89	2.04
b	10	1.92	1.77	1.94
軸	12	1.70	1.56	1.74
	14	1.54	1.51	1.59
	16	1.43	1.47	1.49
	17	1.37	1.45	1.41
С	6	9.19	9.37	8.18
軸	8	5.93	6.07	5.28

②建屋剛性・地盤剛性(+ σ)考慮モデル

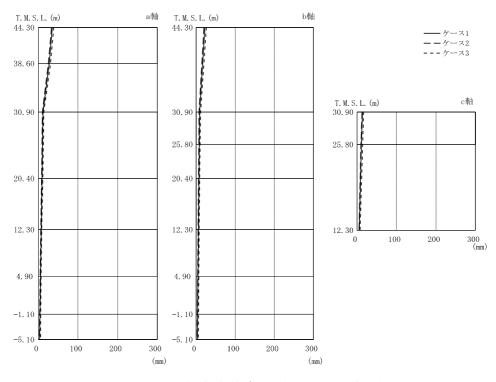


図 2-110 最大応答変位 (Sd-1, NS 方向)

表 2-97 最大応答変位 (Sd-1, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		・覧表
13/4	号	1	2	3
	1	35.0	33.3	38.7
	3	27.8	25.2	30.8
	4	11.8	10.1	14.0
a 軸	9	9.49	8.10	11.2
714	11	7.27	6.12	8.70
	13	5.57	4.60	7.20
	15	4.16	3.34	6.10
	2	22.3	19.8	26.1
	5	8.80	7.23	11.2
	7	8.03	6.60	10.1
b	10	7.22	5.93	8.95
軸	12	5.77	4.72	7.75
	14	4.69	3.78	6.75
	16	3.86	3.06	5.94
	17	3.30	2.54	5.37
С	6	13.7	12.5	16.8
軸	8	10.9	9.65	14.0

②建屋剛性・地盤剛性(+ σ)考慮モデル

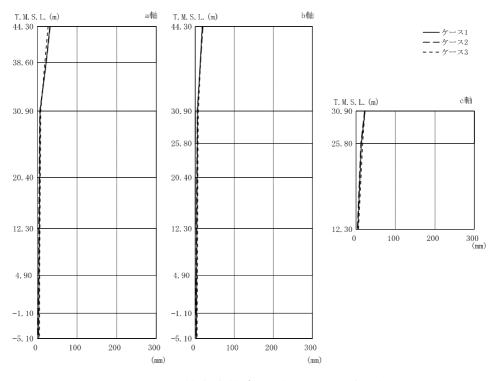


図 2-111 最大応答変位 (Sd-2, NS 方向)

表 2-98 最大応答変位 (Sd-2, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
137.	号	1	2	3
	1	31.3	32.3	27.2
	3	21.8	22.5	18.8
	4	6.71	5.72	8.23
a 軸	9	5.71	4.40	7.27
1,14	11	4.76	3.23	6.38
	13	3.99	2.57	5.63
	15	3.35	2.04	4.97
	2	18.2	19.6	17.8
	5	5.74	4.80	7.72
	7	5.35	4.35	7.25
b	10	4.94	3.88	6.76
軸	12	4.26	3.14	5.97
	14	3.72	2.49	5.37
	16	3.30	2.03	4.88
	17	2.99	1.71	4.52
С	6	22.8	21.4	22.4
軸	8	13.2	12.2	16.4

②建屋剛性・地盤剛性(+ σ)考慮モデル

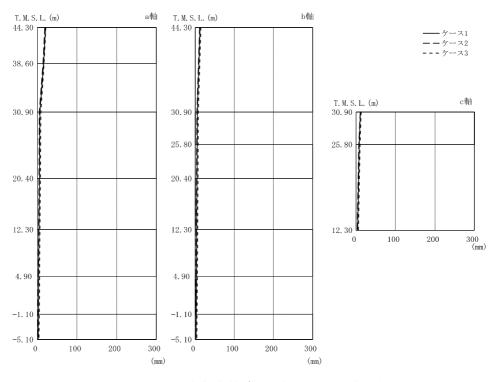


図 2-112 最大応答変位 (Sd-3, NS 方向)

表 2-99 最大応答変位 (Sd-3, NS 方向)

部位	質点番	最大	応答変位- (mm)	·覧表
137.	号	1	2	3
	1	20.5	18.7	21.2
	3	15.6	14.1	16.8
	4	6.26	4.90	8.92
a 軸	9	5.26	4.00	7.71
7,14	11	4.29	3.11	6.56
	13	3.48	2.37	5.60
	15	2.77	1.73	4.80
	2	12.4	11.1	14.3
	5	5.34	4.05	7.92
	7	4.96	3.70	7.45
b	10	4.54	3.32	6.92
軸	12	3.81	2.66	6.04
	14	3.17	2.08	5.27
	16	2.67	1.64	4.70
	17	2.30	1.36	4.27
С	6	10.9	10.2	12.9
軸	8	8.18	7.05	10.0

②建屋剛性・地盤剛性(+ σ)考慮モデル

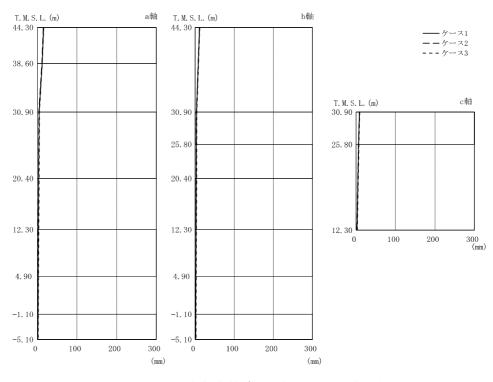


図 2-113 最大応答変位 (Sd-6, NS 方向)

表 2-100 最大応答変位 (Sd-6, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		・覧表
13/4	号	1	2	3
	1	15.7	15.0	16.1
	3	11.9	11.2	12.4
	4	4.36	3.83	5.31
a 軸	9	3.42	2.97	4.39
ти	11	2.59	2.20	3.58
	13	1.95	1.62	2.97
	15	1.43	1.13	2.47
	2	11.2	11.0	11.6
	5	3.47	3.03	4.46
	7	3.13	2.72	4.13
b	10	2.77	2.38	3.78
軸	12	2.20	1.84	3.22
	14	1.71	1.39	2.75
	16	1.34	1.05	2.40
	17	1.09	0.809	2.14
С	6	8.44	8.26	9.06
軸	8	6.40	6.11	7.18

②建屋剛性・地盤剛性(+ σ)考慮モデル

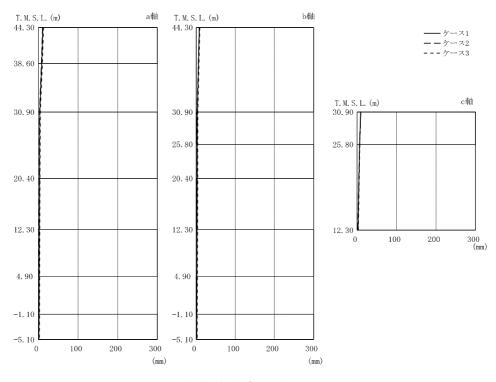


図 2-114 最大応答変位 (Sd-7, NS 方向)

表 2-101 最大応答変位 (Sd-7, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
13/4	号	1	2	3
	1	11.2	10.4	12.9
	3	8.38	7.48	10.2
	4	3.59	2.84	4.81
a 軸	9	2.97	2.30	4.03
714	11	2.37	1.78	3.46
	13	1.91	1.38	3.06
	15	1.51	1.03	2.68
	2	7.81	7.99	9.22
	5	2.98	2.31	4.01
	7	2.76	2.11	3.81
b	10	2.51	1.90	3.59
軸	12	2.09	1.53	3.22
	14	1.73	1.22	2.90
	16	1.45	0.983	2.62
	17	1.26	0.810	2.41
С	6	9.26	9.15	9.34
軸	8	6.46	6.31	6.83

②建屋剛性・地盤剛性(+ σ)考慮モデル

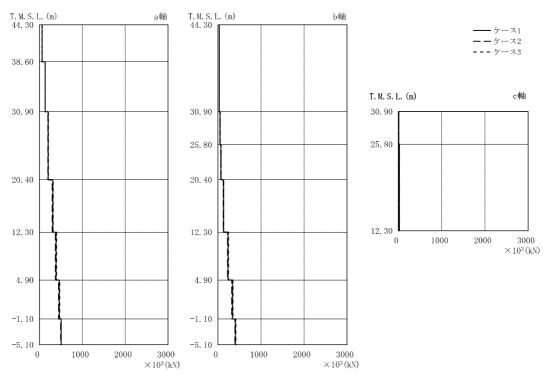


図 2-115 最大応答せん断力 (Sd-1, NS 方向)

表 2-102 最大応答せん断力 (Sd-1, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
11/	号	1	2	3
	1	60.9	63.0	58.3
	2	132	134	132
	3	205	199	207
a 軸	4	312	300	321
	5	387	372	399
	6	463	446	473
	7	507	496	508
	9	29.9	29.4	30.1
	10	49.2	46.8	50.9
	11	69.7	66.1	71.6
b 軸	12	131	125	136
	13	234	223	246
	14	339	321	350
	15	405	395	418
С	16	7.99	8.22	7.52
軸	17	23.1	23.0	22.0

②建屋剛性・地盤剛性(+ σ)考慮モデル

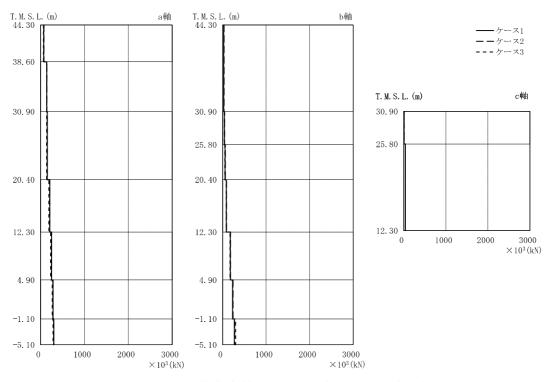


図 2-116 最大応答せん断力 (Sd-2, NS 方向)

表 2-103 最大応答せん断力 (Sd-2, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
132	号	1	2	3
	1	72.6	74.9	66.6
	2	145	145	140
	3	156	154	141
a 軸	4	213	207	190
	5	253	249	230
	6	287	282	269
	7	303	298	285
	9	29.2	33.2	28.0
	10	42.2	46.1	39.6
	11	55.9	61.0	52.9
b 軸	12	84.7	89.0	79.9
	13	176	181	172
	14	230	241	232
	15	269	279	299
с	16	10.8	10.8	10.8
軸	17	39.5	39.5	40.0

②建屋剛性・地盤剛性(+ σ)考慮モデル

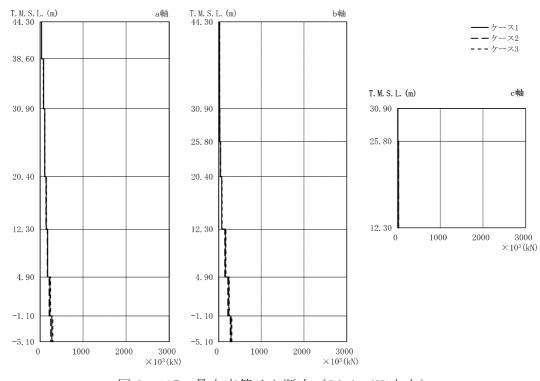


図 2-117 最大応答せん断力 (Sd-3, NS 方向)

表 2-104 最大応答せん断力 (Sd-3, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
124	号	1	2	3
	1	36.0	34.7	33.6
	2	82.0	79.3	76.9
	3	110	106	107
a 軸	4	143	134	146
	5	176	167	178
	6	227	212	242
	7	271	248	295
	9	17.8	18.1	16.8
	10	27.3	25.7	27.1
	11	40.4	38.7	40.8
b 軸	12	72.9	69.7	77.2
	13	159	141	167
	14	236	215	248
	15	289	268	308
С	16	7.73	7.81	7.10
軸	17	23.1	24.1	20.6

②建屋剛性・地盤剛性(+ σ)考慮モデル

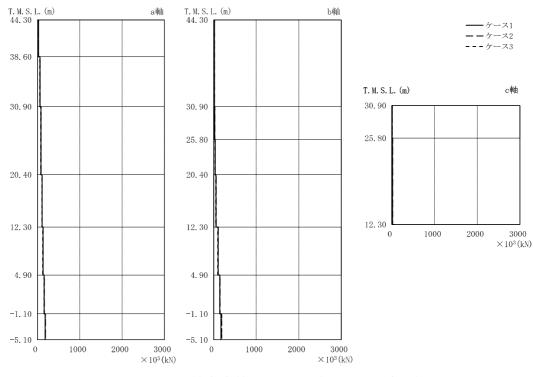


図 2-118 最大応答せん断力 (Sd-6, NS 方向)

表 2-105 最大応答せん断力 (Sd-6, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
137.	号	1	2	3
	1	28.2	27.7	26.1
	2	62.3	60.8	58.0
	3	83.6	82.0	79.9
a 軸	4	111	110	106
	5	134	133	125
	6	161	162	155
	7	183	190	185
	9	16.2	17.0	15.2
	10	25.2	26.2	23.4
	11	33.6	34.8	31.3
b 軸	12	54.9	56.3	51.3
	13	104	107	96.5
	14	143	148	143
	15	173	185	189
с	16	5.33	5.43	4.88
軸	17	14.8	15.6	13.6

②建屋剛性・地盤剛性(+ σ)考慮モデル

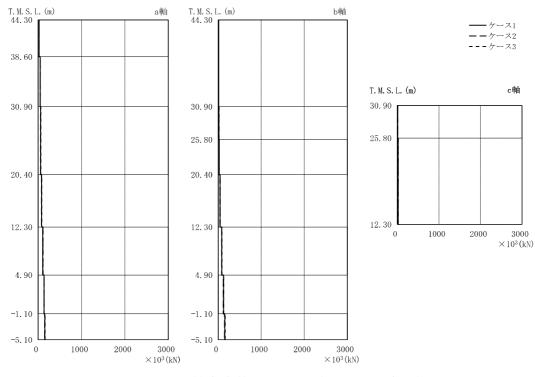


図 2-119 最大応答せん断力 (Sd-7, NS 方向)

表 2-106 最大応答せん断力 (Sd-7, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
11/	号	1	2	3
	1	22.1	22.4	20.8
	2	48.0	48.4	46.3
	3	57.5	54.9	60.0
a 軸	4	78.6	76.8	84.7
	5	105	108	107
	6	135	135	135
	7	154	148	157
	9	12.6	13.8	12.5
	10	17.4	17.6	16.8
	11	23.0	22.3	23.3
b 軸	12	43.3	40.6	44.0
	13	85.0	78.5	86.4
	14	126	116	130
	15	156	146	161
с	16	6.65	6.79	5.90
軸	17	19.5	19.9	17.3

②建屋剛性・地盤剛性(+ σ)考慮モデル

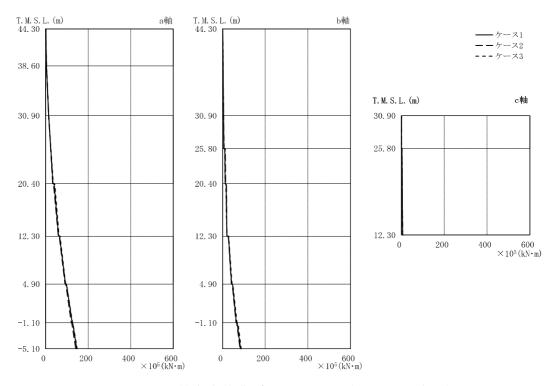


図 2-120 最大応答曲げモーメント (Sd-1, NS 方向)

表 2-107 最大応答曲げモーメント (Sd-1, NS 方向)

部位	部材番	最大応答曲げモーメント―覧表 (×10 ⁵ kN·m)		
14	号	1	2	3
	1	0.792 3.47	0.730 3.56	0.883 3.68
	2	3.56 13.7	3.59 13.9	3.99 13.6
	3	13.8 34.3	14.0 33.2	14.2 35.4
a 軸	4	39.7 60.7	36.5 59.5	42.7 62.4
	5	65.1 93.2	63.8 90.8	67.1 94.0
	6	97.2 125	94.3 120	97.8 126
	7	127 146	122 141	128 148
	9	$0.372 \\ 4.04$	0.390 3.97	$0.381 \\ 4.07$
	10	4.66 6.28	5.06 6.33	$4.70 \\ 6.47$
	11	10.8 12.3	13.0 14.2	10.4 12.1
b 軸	12	16.9 19.9	17.4 20.1	15.4 20.2
	13	28.0 42.3	27.0 41.3	28.4 43.9
	14	46.5 65.0	44.5 62.8	48.2 67.8
	15	68.5 84.4	66.3 81.5	71.9 87.5
С	16	0.0340 0.407	0.0349 0.419	0.0322 0.383
軸	17	2.59 5.45	2.70 5.62	2.62 5.28

②建屋剛性・地盤剛性(+ σ)考慮モデル

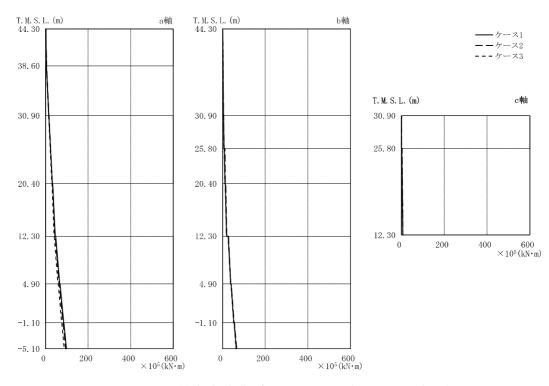


図 2-121 最大応答曲げモーメント (Sd-2, NS 方向)

表 2-108 最大応答曲げモーメント (Sd-2, NS 方向)

部	部材	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
位	番号	①	2	3
	1	0.737 4.26	0.767 4.42	0.649 3.88
	2	4.31 15.5	4.49 15.7	3.92 14.7
	3	15.7 31.9	15.9 31.9	14.8 29.6
a 軸	4	33.3 45.5	33.4 43.9	30.5 40.2
	5	47.5 66.2	45.5 63.5	41.3 58.2
	6	67.9 85.1	64.9 81.8	59.6 75.7
	7	85.9 98.0	82.4 94.3	76.4 87.8
	9	0.348 3.94	0.416 4.44	0.334 3.79
	10	4.29 6.34	5.01 6.89	4.19 6.09
	11	8.29 11.0	11.5 12.9	8.34 10.8
b 軸	12	12.6 18.8	15.3 19.4	12.7 18.3
	13	26.0 38.1	27.8 38.4	26.4 37.8
	14	39.9 52.5	40.5 53.8	39.9 51.9
	15	54.4 63.6	55.7 66.2	54.1 63.2
С	16	0.198 0.559	0.171 0.565	0.218 0.563
軸	17	1.54 6.69	2.98 7.19	1.60 6.78

②建屋剛性・地盤剛性(+ σ)考慮モデル

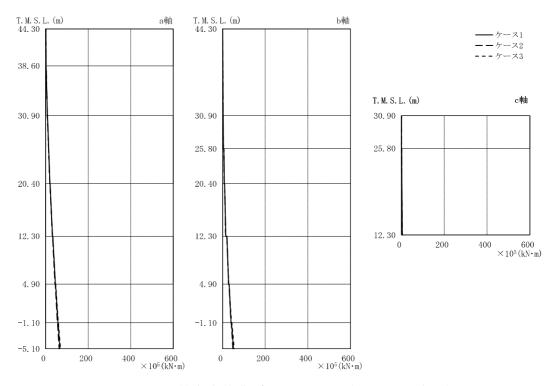


図 2-122 最大応答曲げモーメント (Sd-3, NS 方向)

表 2-109 最大応答曲げモーメント (Sd-3, NS 方向)

部	部材	最大応答曲げモーメント一覧表		
位	番	$(\times 10^5 \text{kN} \cdot \text{m})$		
1	号	1	2	3
	1	0.362 2.13	$0.354 \\ 2.05$	0.332 1.98
	2	2.16 8.47	2.09	2.01 7.93
	3	8.56 20.0	8.17 8.27 19.4	8.00 19.0
a 軸	4	20.9 32.3	20.3 31.1	19.7 31.4
	5	33.5 45.7	32.2 43.6	32.8 45.7
	6	46.6 57.8	44.5 54.9	46.9 59.5
	7	58.3 66.5	55.3 62.8	60.1 69.5
	9	0.217 2.40	0.218 2.44	0.203 2.26
	10	$\frac{2.55}{3.75}$	2.53 3.69	2.38 3.75
	11	6.02 7.94	5.73 7.61	5.85 7.70
b 軸	12	9.97 15.1	9.62 14.6	9.55 14.5
	13	20.2 28.5	19.8 28.0	19.4 28.2
	14	30.8 39.9	30.2 38.9	29.6 42.4
	15	42.1 51.1	41.0 47.8	43.3 54.4
С	16	0.0297 0.394	0.0301 0.399	0.0272 0.362
軸	17	1.33 3.70	1.28 3.94	1.27 3.49

②建屋剛性・地盤剛性(+ σ)考慮モデル

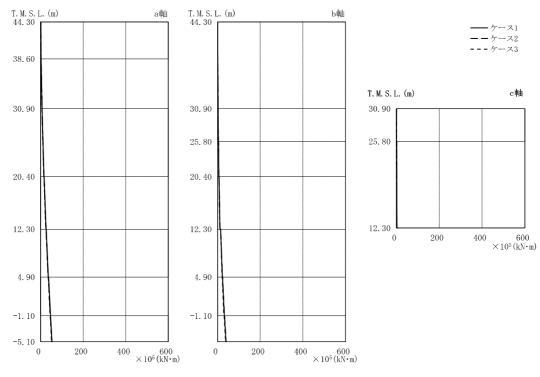


図 2-123 最大応答曲げモーメント (Sd-6, NS 方向)

表 2-110 最大応答曲げモーメント (Sd-6, NS 方向)

部	部材	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
位	番号	①	2	3
	1	0.283 1.66	0.271 1.63	0.266 1.57
	2	1.69 6.47	1.66 6.28	1.60 6.06
	3	6.55 15.2	6.36 15.0	6.16 14.5
a 軸	4	16.0 25.0	15.7 24.5	15.5 23.9
	5	26.2 35.8	25.5 35.1	25.4 34.3
	6	36.8 46.0	35.9 45.1	35.4 43.9
	7	46.5 53.4	45.6 52.7	44.5 50.9
	9	0.193 2.19	$0.203 \\ 2.29$	$0.182 \\ 2.05$
	10	2.32 3.59	$\frac{2.41}{3.74}$	2.23 3.40
	11	4.47 6.16	4.43 6.28	$4.54 \\ 6.05$
b 軸	12	6.95 11.2	6.88 11.4	7.02 10.7
	13	14.5 22.0	14.7 22.5	14.1 20.7
	14	22.9 31.2	23.4 32.1	21.8 29.5
	15	32.3 38.9	33.1 40.2	30.7 37.2
С	16	0.0198 0.272	0.0201 0.277	0.0181 0.249
軸	17	$0.727 \\ 2.57$	$0.750 \\ 2.68$	$0.740 \\ 2.40$

②建屋剛性・地盤剛性(+ σ)考慮モデル

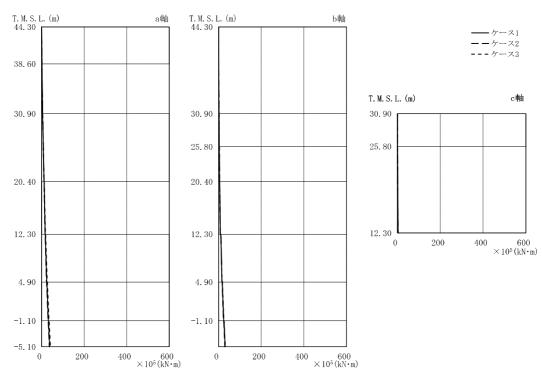


図 2-124 最大応答曲げモーメント (Sd-7, NS 方向)

表 2-111 最大応答曲げモーメント (Sd-7, NS 方向)

部位	部材番号	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
122		1	2	3
	1	0.230 1.30	0.234 1.32	0.207 1.22
	2	1.32 5.00	1.34 5.07	1.23 4.80
	3	5.05 11.1	5.12 10.9	4.84 11.1
a 軸	4	11.6 16.7	11.4 16.0	11.6 17.7
	5	17.4 24.1	16.7 22.9	18.7 26.3
	6	25.0 32.0	23.8 30.3	27.2 34.8
	7	32.5 37.8	30.8 35.9	35.3 41.0
	9	0.151 1.70	0.165 1.86	0.149 1.68
	10	1.80 2.66	1.97 2.84	1.78 2.61
	11	3.24 4.38	3.49 4.60	3.27 4.40
b 軸	12	4.97 7.96	5.18 7.72	4.95 8.17
	13	10.8 16.2	10.9 15.6	10.8 16.4
	14	17.1 24.1	16.6 22.6	17.4 24.5
	15	25.1 30.8	23.5 28.9	25.6 31.3
С	16	0.0247 0.340	0.0252 0.347	0.0219 0.302
軸	17	0.607 3.18	0.623 3.24	0.609 2.91

②建屋剛性・地盤剛性(+ σ)考慮モデル

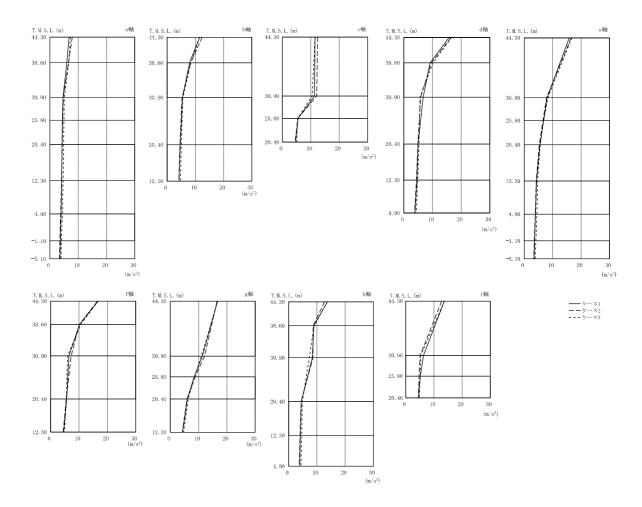


図 2-125 最大応答加速度 (Sd-1, EW 方向)

表 2-112 最大応答加速度 (Sd-1, EW 方向)

部	質点	最大応答加速度一覧表 (m/s²)		
位	番号	(Ī)	2	(3)
	1	6.75	7.88	7.29
	6	5.95	6.53	6.65
	11	4.60	4.76	5.07
	20	4.41	4.52	4.96
a	25	4.25	4.35	4.83
軸				
	32	3.93	4.10 3.74	4.68
	38	3.68	3.49	4.07
	40	3.51	3.34	3.86
	2	7.02	12.4	11.5
b 軸	7	7.93	8.35	8.45
Три	12	5.43	5.24	5.53
	26	4.63	4.49	5.02
c 軸	19	11.3	12.1	10.5
+щ	21	5.52	5.45	5.36
	3	15.8	16.5	16.7
d	8	9.18	9.63	10.2
軸	13	6.75	5.87	5.66
	27	5.01	4.95	5.32
	33	4.58	4.43	4.85
	18	8.08	7.82	8.33
	22	6.80	6.57	6.84
e #uh	31	5.51	5.29	5.64
軸	35	4.36	4.23	4.69
	37	3.93	3.89	4.44
	39	3.67	3.56	4.12
	4	16.7	16.5	16.7
f	9	10.2	10.1	10.6
軸	14	6.48	7.24	5.95
	28	5.64	5.50	5.52
	17	11.3	12.1	11.0
g 軸	23	8.40	8.75	8.49
<u> </u>	30	5.96	5.89	6.34
	5	13.7	12.7	13.7
h	10	8.90	8.70	8.98
h 軸	15	8.39	8.65	7.30
	29	4.51	4.45	4.84
	34	4.16	4.01	4.66
i	16	6.32	5.08	5.34
軸注:	24	5.18 認モデル	4.72	5.10

②建屋剛性・地盤剛性(+ σ)考慮モデル



図 2-126 最大応答加速度 (Sd-2, EW 方向)

表 2-113 最大応答加速度 (Sd-2, EW 方向)

部	質点	最大応	最大応答加速度一覧表 (m/s²)		
位	番号	(1)	2	(3)	
	1	8.76	8.30	9.35	
	6	7.53	6.96	8.65	
l	11	5.18	5.08	5.20	
	20	4.82	4.78	6.10	
a	25	4.50	4.47	5.05	
軸 -	32	4.16	4.07	4.22	
	36	3.89	3.86	3.99	
	38	3.54	3.55	3.74	
-	40	3.35	3.42	3.61	
	2	13.1	12.7	13.7	
b	7	9.11	9.13	11.9	
軸	12	5.80	5.44	7.90	
	26	4.66	4.81	4.63	
С	19	14.0	14.5	12.4	
軸	21	5.86	5.99	5.27	
	3	15.4	15.6	17.1	
	8	10.3	10.2	12.3	
d 軸	13	6.35	6.03	8.29	
平田 -	27	4.83	4.84	4.77	
	33	4.68	4.61	4.82	
	18	7.45	7.70	6.99	
	22	5.49	5.92	5.12	
е	31	4.60	4.97	4.28	
軸	35	3.72	3.94	3.86	
	37	3.44	3.51	3.88	
	39	3.43	3.51	3.76	
	4	16.1	15.0	17.6	
f	9	10.9	10.0	12.2	
軸	14	7.63	7.82	8.06	
	28	5.70	5.80	5.75	
	17	10.3	11.1	9.46	
g 軸	23	7.02	7.40	6.60	
, .~	30	4.93	5.52	4.75	
	5	14.1	14.2	13.9	
	10	10.4	10.7	10.1	
h 軸	15	5.44	5.09	6.87	
	29	4.66	4.51	4.86	
	34	4.47	4.36	4.21	
i	16	5.48	5.49	6.17	
軸	24	5.17	4.99	5.34	

②建屋剛性・地盤剛性(+ σ)考慮モデル

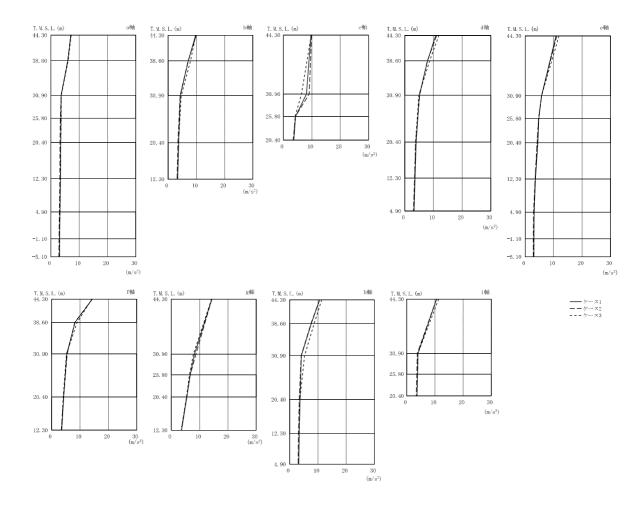


図 2-127 最大応答加速度 (Sd-3, EW 方向)

表 2-114 最大応答加速度 (Sd-3, EW 方向)

部	質点	最大応	最大応答加速度一覧表 (m/s²)		
位	番号	(1)	2	3	
	1	6.99	7.08	7.16	
	6	5.97	5.96	6.13	
	11	3.61	3.60	3.65	
	20	3.58	3.31	3.59	
a	25	3.52	3.24	3.49	
軸	32	3.40	3.13	3.33	
	36	3.23	2.99	3.17	
	38	3.12	2.89	3.09	
	40	3.06	2.84	3.05	
	2	9.72	9.94	9.80	
,	7	7.14	7.05	7.92	
b 軸	12	4.26	4.24	4.60	
	26	3.69	3.43	3.64	
	19	8.09	9.06	6.39	
c 軸	21	4.28	4.25	4.14	
	3	10.8	11.1	11.9	
	8	7.92	7.87	8.64	
d			5.21	4.89	
軸	13	5.10			
	27	3.97	3.81	3.75	
	33	3.58	3.38	3.44	
	18	5.74	5.77	5.76	
	22	4.81	4.73	4.71	
e 軸	31	4.44	4.17	4.26	
TH	35	3.63	3.51	3.52	
	37	3.16	2.96	3.14	
	39	3.05	2.82	3.04	
	4	14.3	14.3	14.2	
f 軸	9	8.24	8.12	9.00	
平山	14	5.32	5.47	5.20	
	28	4.28	4.19	4.08	
g	17	8.20	8.71	7.77	
軸	23	6.68	6.69	6.41	
	30	5.48	5.39	5.35	
	5	10.6	10.6	11.3	
h	10	7.62	7.57	8.69	
軸	15	4.14	4.11	5.28	
	29	3.66	3.40	3.62	
	34	3.38	3.13	3.33	
i dada	16	3.98	3.77	3.98	
軸 注:	24	3.85 認モデル	3.60	3.83	

②建屋剛性・地盤剛性(+ σ)考慮モデル

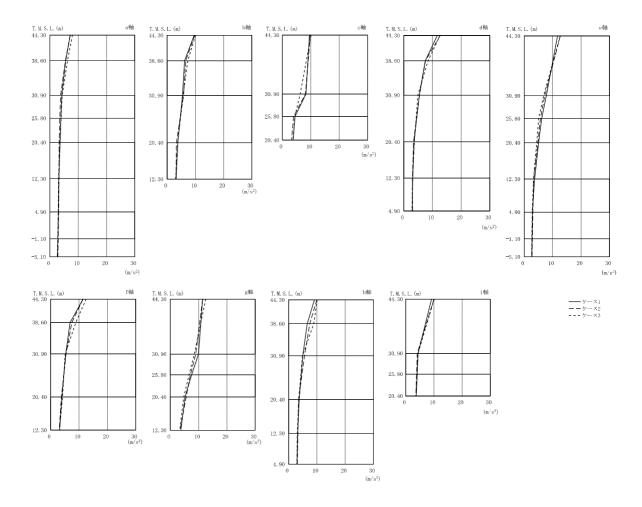


図 2-128 最大応答加速度 (Sd-6, EW 方向)

表 2-115 最大応答加速度 (Sd-6, EW 方向)

部	質点	最大応	·····································	
位	番号	1	2	(3)
	1	7.19	7.16	7.94
	6	5.55	5.43	6.19
	11	4.18	3.77	4.36
	20	3.88	3.48	3.92
a	25	3.59	3.26	3.49
軸	32	3.16	3.17	3.00
	36	2.96	3.07	2.88
	38	2.80	2.90	2.71
	40	2.67		
	2	9.54	2.77 9.80	2.59
	7		6.55	7.31
b 軸	12	6.18 5.42	5.84	5.63
	26	3.78	3.26	3.72
	19	8.32	8.12	6.26
c 軸				
1 141	21	4.44	3.96 12.7	4.38
	3	7.51		12.7
d	8	7.51	7.58	8.44
軸	13	5.43	5.47	4.93
	27	3.58	3.41	3.70
	33	3.16	3.03	3.11
	18	7.79	7.20	6.85
	22	6.18	5.71	5.09
e 軸	31	5.08	4.79	4.42
+ш	35	3.70	3.36	3.31
	37	2.92	3.08	2.82
	39	2.79	2.90	2.70
	4	11.4	11.4	12.5
f 軸	9	6.86	7.47	8.86
平田	14	5.31	5.43	5.10
	28	3.96	3.80	4.18
g	17	9.98	9.00	8.48
軸	23	7.51	7.05	6.59
	30	5.20	5.58	4.75
	5	9.14	10.0	10.1
h	10	6.58	7.49	8.88
軸	15	5.00	5.64	4.87
	29	3.74	3.55	3.59
	34	3.21	3.31	3.10
i	16	4.39	4.05	4.36
軸 注:	24	4.09 認モデル	3.82	3.98

②建屋剛性・地盤剛性(+ σ)考慮モデル

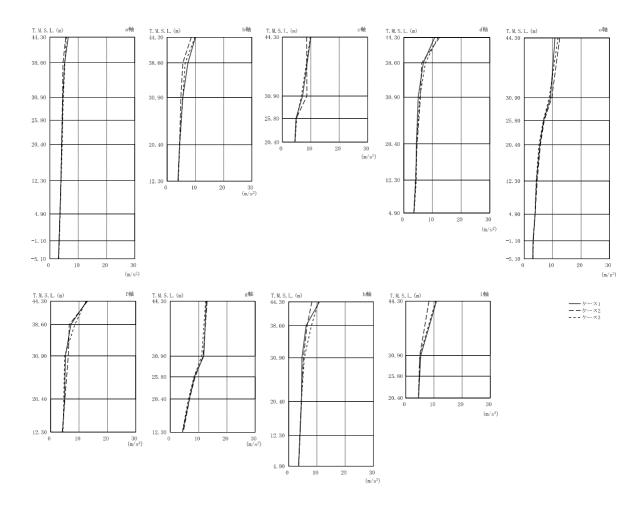


図 2-129 最大応答加速度 (Sd-7, EW 方向)

表 2-116 最大応答加速度 (Sd-7, EW 方向)

部	質点	最大応	最大応答加速度一覧表 (m/s²)		
位	番号	(1)	2	(3)	
	1	6.51	5.55	5.82	
	6	5.19	4.63	5.26	
	11	4.55	4.43	4.74	
	20	4.37	4.28	4.53	
a	25	4.17	4.12	4.31	
軸	32	3.87	3.86	3.95	
	36	3.53	3.53	3.58	
	38	3.21	3.24	3.28	
	40	3.05	3.08	3.10	
	2	10.0	8.54	9.86	
١,	7	7.34	5.54	6.41	
b 軸	12	5.53	4.87	5.55	
	26	4.39	4.40	4.47	
	19	7.12	8.64	6.73	
c 軸	21	4.83	4.84	5.04	
	3	10.8	12.5		
	8	6.82	6.24	7.58	
d	13		5.81		
軸		5.02		5.62	
	27	4.42	4.63	4.46	
	33	4.20	4.06	4.35	
	18	9.23	9.68	8.79	
	22	6.80	7.05	6.70	
e 軸	31	5.51	5.72	5.20	
THI	35	4.28	4.57	4.22	
	37	3.88	3.88	3.84	
	39	3.13	3.19	3.21	
	4	12.7	13.0	12.5	
f 軸	9	7.13	6.59	8.54	
平山	14	5.18	6.20	4.90	
	28	4.91	5.02	4.65	
g	17	11.8	11.6	11.1	
軸	23	8.50	8.75	8.35	
	30	6.72	6.79	6.36	
	5	10.9	8.24	10.6	
h	10	6.18	6.49	8.03	
軸	15	4.70	5.20	5.56	
	29	4.54	4.51	4.48	
	34	4.02	3.98	3.98	
i dada	16	5.32	4.97	5.01	
軸 注:	24	4.95 認モデル	4.76	4.76	

②建屋剛性・地盤剛性(+ σ)考慮モデル

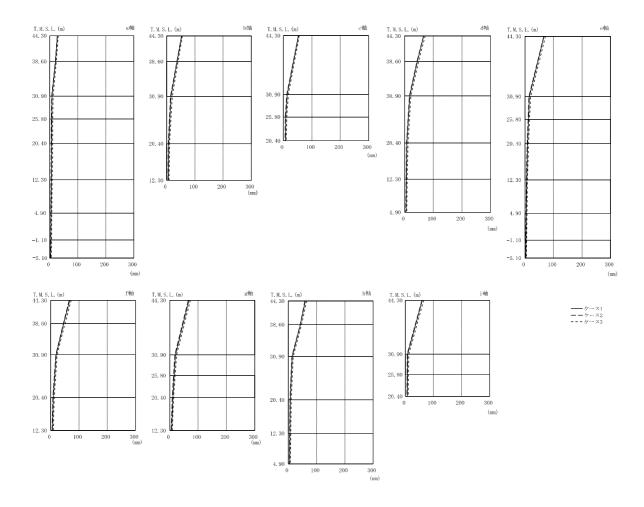


図 2-130 最大応答変位 (Sd-1, EW 方向)

表 2-117 最大応答変位 (Sd-1, EW 方向)

部	質点妥	最大応答変位一覧表 (mm)		
位	番号	①	2	3
	1	27.0	26.8	30.2
	6	20.2	19.8	23.4
	11	8.14	6.54	12.2
	20	7.35	5.78	11.0
a 軸	25	6.69	5.23	9.92
平田	32	5.70	4.40	8.44
	36	4.66	3.48	7.07
	38	3.73	2.66	5.88
	40	3.14	2.23	5.10
	2	52.9	52.8	55.5
b	7	36.5	35.9	40.3
軸	12	14.9	13.6	19.5
	26	7.00	5.57	10.1
С	19	13.2	11.9	17.3
軸	21	8.24	6.79	11.9
	3	66.3	65.6	71.5
	8	44.1	43.1	48.7
d 軸	13	17.7	16.5	21.8
ΨΨ	27	7.86	6.39	11.7
	33	6.13	4.80	8.95
	18	15.5	13.3	19.6
	22	12.5	10.5	16.0
е	31	9.32	7.63	12.3
軸	35	6.36	4.91	8.81
	37	4.88	3.64	7.14
	39	3.73	2.66	5.85
	4	67.5	65.2	72.3
f	9	45.9	44.3	50.3
軸	14	18.8	17.6	22.5
	28	8.67	7.18	12.4
	17	20.1	17.8	24.2
g 軸	23	15.5	13.4	19.0
	30	10.6	8.80	13.4
	5	60.1	58.7	65.0
,	10	43.0	41.9	47.0
h 軸	15	13.6	12.8	17.4
	29	7.16	5.57	10.3
	34	5.90	4.53	8.61
i	16	8.31	6.61	12.0
軸注:	24	7.80	6.11	11.2

②建屋剛性・地盤剛性(+ σ)考慮モデル

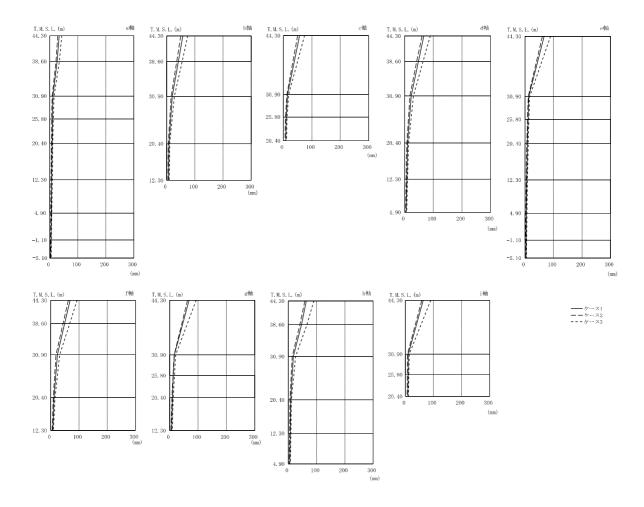


図 2-131 最大応答変位 (Sd-2, EW 方向)

表 2-118 最大応答変位 (Sd-2, EW 方向)

部	質点型	最大応答変位一覧表 (mm)		
位	番号	(Ī)	2	3
	1	33.5	28.7	42.9
	6	26.2	22.1	34.1
	11	11.4	8.40	15.2
	20	9.85	6.99	12.5
a 献出	25	8.56	5.87	11.0
軸	32	6.90	4.44	8.95
	36	5.48	3.21	7.25
	38	4.30	2.20	5.87
	40	3.55	1.58	5.01
	2	57.1	50.0	74.4
b	7	41.6	36.0	54.8
軸	12	19.8	15.8	27.4
	26	8.58	5.88	11.0
С	19	14.5	12.5	18.7
軸	21	10.1	7.20	12.8
	3	66.7	60.6	89.5
	8	47.8	41.5	64.0
d 軸	13	22.7	18.1	30.5
	27	10.7	7.71	13.8
	33	7.49	5.03	9.67
	18	13.0	11.1	16.2
	22	10.7	8.58	13.6
е	31	8.57	6.22	11.1
軸	35	6.53	4.25	8.55
	37	5.24	3.01	6.99
	39	4.20	2.11	5.76
	4	68.3	62.4	93.1
f	9	49.3	43.2	67.4
軸	14	23.3	18.6	31.4
	28	11.6	8.76	15.0
a	17	16.2	15.5	20.9
g 軸	23	12.3	11.5	16.5
	30	9.18	7.52	12.1
	5	63.4	58.3	90.3
h	10	46.9	41.1	65.7
軸	15	18.1	13.9	25.8
	29	8.74	6.07	11.2
	34	7.07	4.60	9.16
i atab	16	10.7	7.71	13.7
軸 注:	24	9.68 認モデル	6.87	12.4

②建屋剛性・地盤剛性(+ σ)考慮モデル

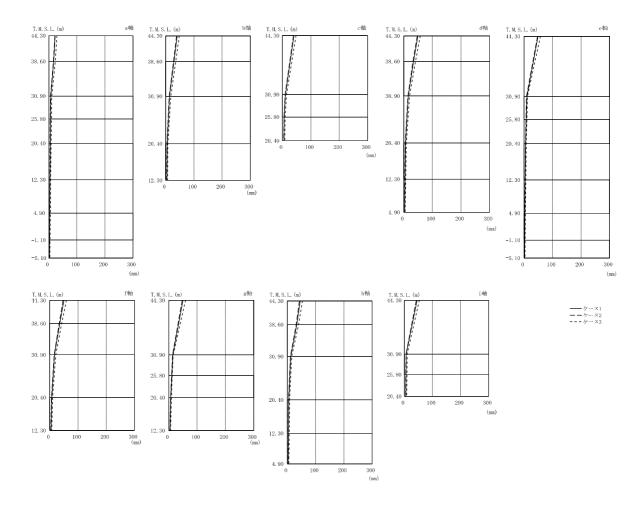


図 2-132 最大応答変位 (Sd-3, EW 方向)

表 2-119 最大応答変位 (Sd-3, EW 方向)

部	質点妥	最大	応答変位一覧表 (mm)	
位	番号	1)	2	3
	1	22.6	21.1	28.8
	6	17.5	16.3	22.8
	11	7.16	6.08	10.5
	20	6.05	5.03	9.14
a 軸	25	5.17	4.19	8.01
軸	32	4.05	3.15	6.57
	36	3.10	2.40	5.38
	38	2.48	1.76	4.37
	40	2.14	1.47	3.74
	2	40.5	38.7	47.9
b	7	29.2	27.3	35.7
軸	12	13.6	12.3	18.1
	26	5.19	4.20	8.01
С	19	10.5	9.40	14.6
軸	21	6.29	5.24	9.41
	3	49.2	47.3	57.5
	8	34.4	32.2	41.1
d 軸	13	15.9	14.6	20.6
	27	6.15	5.18	9.26
	33	4.32	3.45	6.93
	18	10.2	8.88	11.6
	22	7.86	6.89	9.97
е	31	5.87	5.14	8.37
軸	35	4.11	3.56	6.52
	37	3.09	2.52	5.29
	39	2.50	1.78	4.32
	4	50.2	47.0	59.0
f	9	35.6	33.2	42.4
軸	14	16.8	15.6	21.3
	28	7.07	6.12	10.3
	17	14.4	13.2	15.6
g 軸	23	10.7	9.80	11.9
	30	6.78	6.14	8.86
	5	45.3	42.5	53.3
h	10	33.4	31.1	39.9
h 軸	15	11.9	10.7	15.8
	29	5.39	4.40	8.25
	34	4.18	3.28	6.74
i	16	6.76	5.67	10.0
軸注:	24	6.05	5.02	9.10

②建屋剛性・地盤剛性(+ σ)考慮モデル

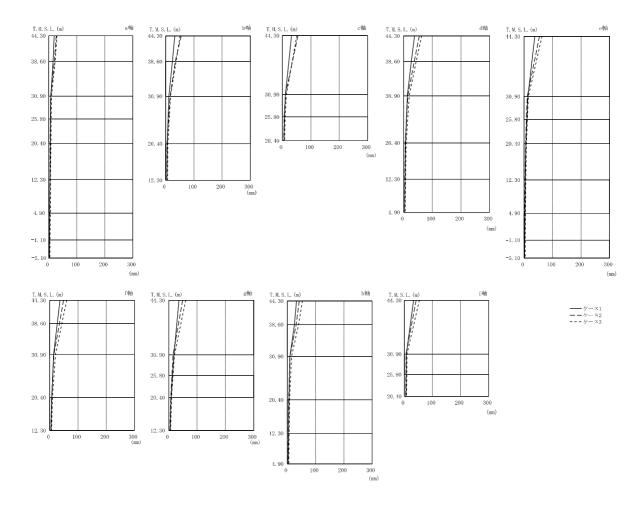


図 2-133 最大応答変位 (Sd-6, EW 方向)

表 2-120 最大応答変位 (Sd-6, EW 方向)

部	質点亞	最大応答変位一覧表 (mm)		
位	番号	①	2	3
	1	19.3	26.6	29.1
	6	15.1	19.5	22.7
	11	7.14	6.65	9.85
	20	6.23	5.55	8.58
a 軸	25	5.43	4.68	7.61
平田	32	4.32	3.59	6.43
	36	3.27	2.69	5.43
	38	2.40	1.93	4.54
	40	1.87	1.55	3.95
	2	32.1	54.7	50.7
b	7	23.3	34.0	36.7
軸	12	11.4	15.9	16.9
	26	5.66	4.59	7.67
С	19	10.7	10.7	13.7
軸	21	6.92	5.81	9.14
	3	37.7	54.3	62.9
	8	26.7	36.8	43.2
d 軸	13	12.5	14.3	19.7
	27	6.53	5.58	8.66
	33	4.62	3.88	6.71
	18	13.8	11.2	15.5
	22	10.4	8.31	12.1
е	31	7.04	5.83	8.94
軸	35	4.58	3.81	6.31
	37	3.32	2.72	5.33
	39	2.38	1.91	4.50
	4	36.0	48.6	59.8
f	9	26.5	34.5	43.0
軸	14	13.4	14.7	20.3
	28	7.30	6.43	9.51
_	17	18.0	14.7	19.7
g 軸	23	13.1	10.6	14.9
	30	8.04	6.64	9.98
	5	32.7	42.1	53.4
h	10	24.9	31.1	39.8
軸	15	9.52	9.39	14.9
	29	5.84	4.98	7.86
	34	4.51	3.80	6.58
i	16	7.24	6.22	9.58
軸 注:	24	6.55 認モデル	5.61	8.71

②建屋剛性・地盤剛性(+ σ)考慮モデル

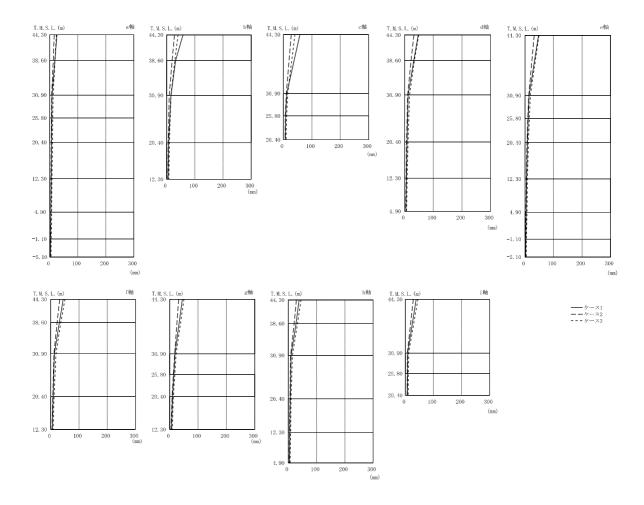


図 2-134 最大応答変位 (Sd-7, EW 方向)

表 2-121 最大応答変位 (Sd-7, EW 方向)

部	質点亞	最大応答変位一覧表 (mm)		
位	番号	(Ī)	②	3
	1	25.5	15.8	23.1
	6	18.2	12.6	18.8
	11	8.11	6.71	11.7
	20	7.23	5.91	10.5
a #irh	25	6.42	5.17	9.47
軸	32	5.22	4.11	7.97
	36	4.01	3.02	6.50
	38	2.97	2.09	5.26
	40	2.34	1.65	4.47
	2	58.0	27.5	40.4
b	7	31.5	19.3	29.1
軸	12	15.6	9.08	15.5
	26	6.76	5.49	9.80
С	19	11.7	9.91	15.3
軸	21	8.07	6.68	11.4
	3	47.4	32.2	48.9
	8	31.7	22.1	34.1
d 軸	13	12.2	10.5	17.3
	27	7.98	6.57	11.4
	33	5.72	4.55	8.52
	18	14.3	12.9	18.4
	22	11.2	9.86	15.2
е	31	8.45	7.09	11.9
軸	35	5.72	4.56	8.62
	37	4.17	3.16	6.73
	39	2.98	2.09	5.26
	4	44.2	31.3	50.0
f	9	30.3	22.2	35.3
軸	14	13.2	11.3	18.2
	28	8.62	7.21	12.0
a.	17	18.6	17.3	22.7
g 軸	23	14.2	12.7	17.9
	30	9.64	8.29	12.9
	5	38.4	28.3	44.8
h	10	27.3	20.4	32.7
軸	15	9.71	7.91	14.5
	29	6.97	5.70	10.0
	34	5.46	4.34	8.21
i abab	16	8.50	7.06	11.9
軸 注:	24	7.77 認モデル	6.41	11.0

②建屋剛性・地盤剛性(+ σ)考慮モデル

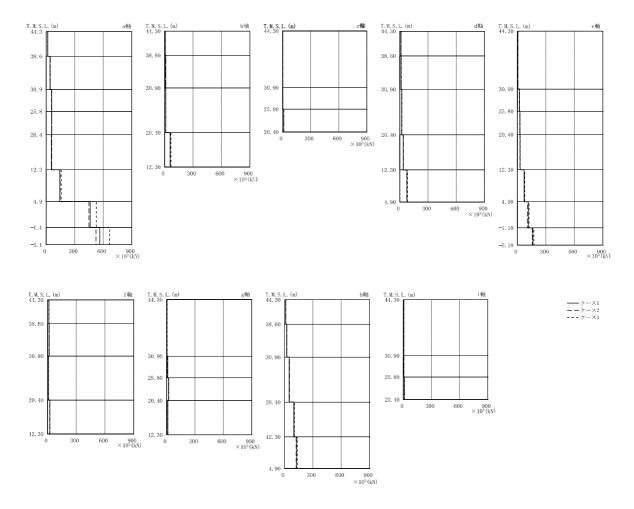


図 2-135 最大応答せん断力 (Sd-1, EW 方向)

表 2-122 最大応答せん断力 (Sd-1, EW 方向)

	_	1		
部	部材	最大応答せん断力一覧表 (×10 ³ kN)		
位	番号	①	2	3
	1	16.9	17.2	16.6
	2	41.0	41.2	40.8
	3	56.8	57.3	59.0
a	4	57.2	58.2	58.9
軸	5	54.1	56.1	56.4
440	6	143	147	159
	7	464	450	528
	8	564	524	665
	10	7.68	6.46	7.34
b	11	13.5	9.42	10.3
軸	12	13.3	14.2	12.6
	13	58.3	61.0	67.1
	14	2.30	2.27	2.29
c 軸	15	3.49	3.45	2.96
	16	11.2	11.8	11.4
	17	12.2	12.8	12.6
	18	13.9	13.6	14.6
d 軸	19	20.2	19.9	21.4
	20	35.4	37.0	35.4
	21	76.9	74.0	81.8
	22	4.51	4.45	4.92
	23	21.4	21.4	22.6
	24	27.2	27.2	28.8
e 軸	25	28.5	29.1	29.9
	26	70.2	74.3	78.2
	27	117	106	124
	28	164	156	174
	29	14.0	14.4	13.9
f	30	16.5	16.2	17.9
軸	31	8.98	8.43	9.05
	32	23.9	22.3	23.9
	33	4.73	4.33	5.41
g	34	11.9	11.5	12.1
軸	35	21.3	21.2	21.8
	36	13.4	14.0	14.2
	37	12.5	13.4	12.9
	38	24.7	24.0	25.2
h 軸	39	50.0	51.9	50.0
	40	98.1	101	105
	41	129	124	136
	42	4.28	4.22	4.51
i 軸	43	4.88	5.58	5.08
	44	11.4	11.1	10.1
注:	①工	認モデル 長剛歴・地	般圖 性(+	~ \老唐工=

[:] ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

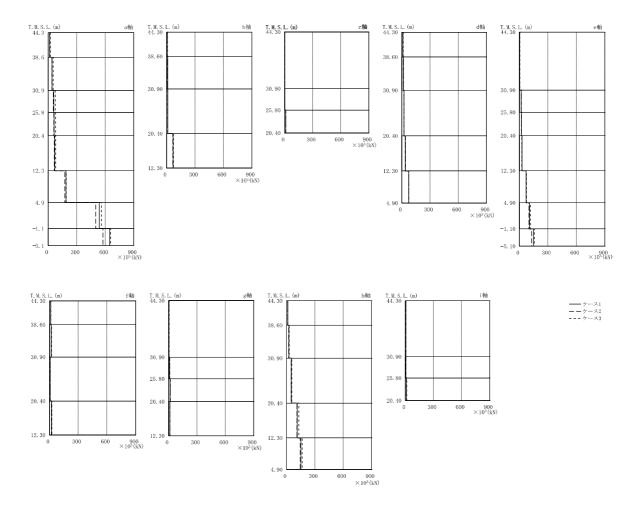


図 2-136 最大応答せん断力 (Sd-2, EW 方向)

表 2-123 最大応答せん断力 (Sd-2, EW 方向)

部	部材	最大応	答せん断力 (×10 ³ kN)	一覧表
位	番号	1)	2	(3)
	1	17.0	15.5	22.1
	2	40.9	38.1	52.5
	3	58.3	54.2	75.1
а	4	62.1	58.0	77.8
a 軸	5	68.2	63.8	78.3
	6	186	176	189
	7	537	500	559
	8	646	576	656
	10	7.05	7.42	9.14
b	11	11.9	10.7	10.3
軸	12	14.2	13.5	12.8
	13	69.4	64.8	72.1
	14	1.96	1.95	2.62
c 軸	15	3.33	3.34	3.61
	16	11.4	12.1	11.3
	17	12.0	11.9	15.7
	18	16.4	16.4	18.8
d 軸	19	24.1	23.8	23.4
4411	20	36.7	38.1	38.7
	21	72.7	72.0	72.7
	22	3.90	3.92	5.15
	23	19.2	20.4	19.8
	24	22.6	23.7	23.6
e 軸	25	27.8	28.4	26.8
	26	70.7	72.8	74.3
	27	108	101	118
	28	149	129	160
	29	14.2	14.1	15.7
f	30	18.8	18.5	21.4
軸	31	6.22	6.89	7.74
	32	21.3	19.8	25.9
	33	4.04	4.07	5.81
g	34	10.3	11.1	10.5
軸	35	16.9	17.5	17.1
	36	13.7	14.3	15.1
	37	13.8	13.1	13.6
1.	38	26.0	24.1	28.3
h 軸	39	51.2	49.3	55.0
	40	114	111	130
	41	152	146	166
	42	4.25	4.11	6.13
i 軸	43	5.48	4.94	6.96
	44	11.9	11.2	14.4

注: ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

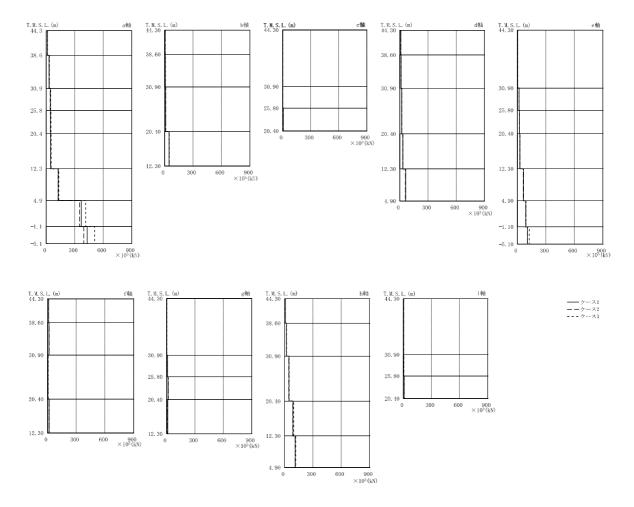


図 2-137 最大応答せん断力 (Sd-3, EW 方向)

表 2-124 最大応答せん断力 (Sd-3, EW 方向)

	寤	最大応答せん断力一覧表		
部分	材	取八心	見収	
位	番号	1)	2	3
	1	12.5	12.4	13.8
	2	30.4	30.1	33.5
	3	42.8	42.1	47.9
a	4	44.4	43.6	49.8
軸	5	47.7	46.7	52.3
4411	6	126	126	133
	7	368	350	416
	8	431	396	508
	10	5.32	5.61	5.60
b	11	8.53	8.82	9.53
軸	12	10.5	10.9	10.8
	13	47.3	47.7	49.5
	14	1.65	1.66	1.80
c 軸	15	2.59	2.63	2.80
	16	8.30	8.33	8.44
	17	9.66	9.90	10.0
	18	12.9	13.2	13.0
d 軸	19	20.6	20.8	20.8
	20	32.9	33.1	33.7
	21	62.7	59.8	61.6
	22	3.26	3.20	3.72
	23	19.0	18.6	18.6
	24	23.2	22.7	22.6
e 軸	25	26.8	26.8	26.0
	26	65.3	62.5	64.7
	27	89.3	87.7	90.1
	28	107	107	125
	29	13.0	13.5	12.8
f	30	15.7	16.7	15.8
軸	31	5.62	5.29	5.96
	32	16.3	15.4	17.0
	33	3.13	3.01	3.60
g	34	9.83	9.57	9.16
軸	35	16.8	17.1	15.7
	36	12.7	12.3	12.2
	37	9.94	10.1	10.8
	38	20.4	20.6	22.4
h 軸	39	47.0	46.5	48.9
	40	90.0	88.8	96.7
	41	114	112	119
	42	3.02	2.95	3.48
i 軸	43	4.08	3.96	4.53
	44	8.80	8.60	9.01
注:		認モデル 長剛性・地	般圖 杜(+ .	。 () 表慮エラ

[:] ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

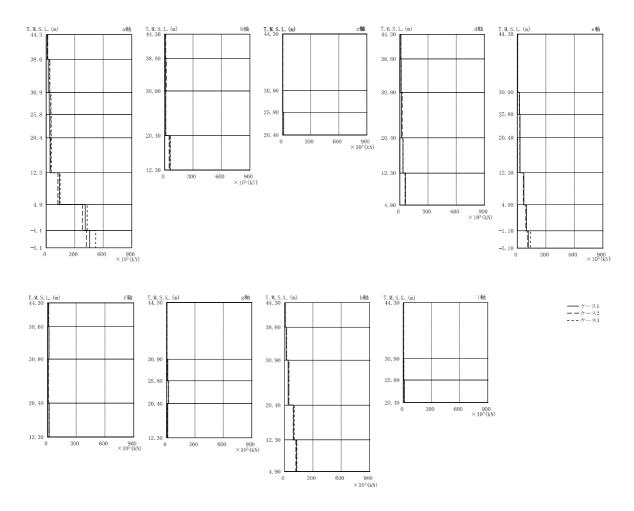


図 2-138 最大応答せん断力 (Sd-6, EW 方向)

表 2-125 最大応答せん断力 (Sd-6, EW 方向)

部	部材系	最大応答せん断力一覧』 (×10 ³ kN)		
位	番号	①	2	3
	1	9.50	17.3	14.8
	2	22.3	38.4	35.5
	3	32.7	47.0	50.1
a	4	36.0	48.2	52.3
軸	5	40.7	47.5	54.0
	6	138	123	146
	7	411	380	431
	8	456	423	520
	10	7.67	11.7	6.12
b	11	9.68	18.9	10.4
軸	12	12.3	14.2	13.5
	13	57.7	49.3	60.2
	14	1.18	2.35	1.88
c 軸	15	2.61	3.44	2.63
1,50	16	9.70	9.72	10.1
	17	10.9	11.1	10.8
	18	12.9	13.0	14.5
d 軸	19	19.3	26.1	20.4
,,,,	20	33.1	33.5	34.9
	21	59.6	55.4	61.3
	22	2.64	3.44	3.43
	23	23.0	21.5	21.5
	24	27.9	25.9	26.1
e 軸	25	28.1	26.8	27.6
	26	69.2	63.4	65.9
	27	95.8	88.7	95.6
	28	117	109	138
	29	11.1	11.2	11.6
f	30	14.2	14.3	14.3
軸	31	6.66	8.79	7.13
	32	15.7	17.3	15.9
	33	3.16	3.25	3.63
g	34	12.5	11.9	11.9
軸	35	20.6	19.2	18.8
	36	11.0	11.1	10.5
	37	9.27	9.28	10.1
	38	17.6	19.8	21.6
h 軸	39	38.3	45.7	48.5
	40	96.9	92.8	104
	41	127	120	131
	42	2.06	2.90	3.32
i 軸	43	3.55	3.57	4.43
	44	9.56	8.88	10.2
注:		認モデル	般圖 杜(+ .	_)老康工二

[:] ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

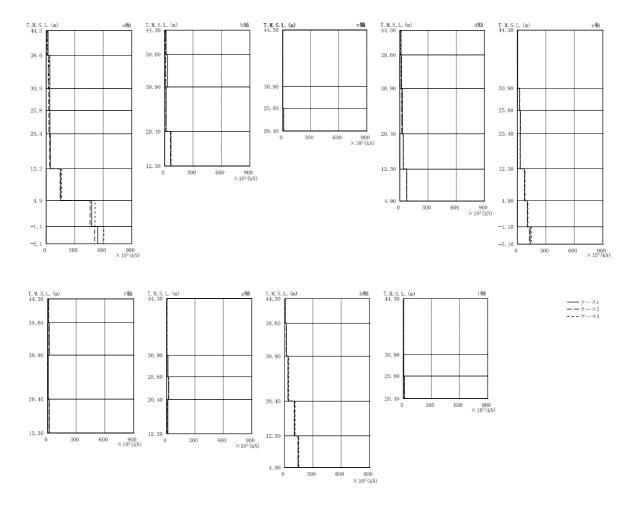


図 2-139 最大応答せん断力 (Sd-7, EW 方向)

表 2-126 最大応答せん断力 (Sd-7, EW 方向)

部	部材	最大応答せん断力一覧表 (×10 ³ kN)		
位	番号	①	2	3
	1	19.9	8.96	12.1
	2	39.3	20.9	28.6
	3	36.7	27.1	38.2
a	4	38.4	28.0	38.4
軸	5	43.7	35.5	42.5
	6	151	147	161
	7	478	461	514
	8	543	509	607
	10	16.5	7.50	6.27
b	11	30.2	11.3	10.1
軸	12	17.7	12.6	13.4
	13	65.0	62.4	69.3
	14	2.75	1.27	1.71
c 軸	15	2.75	1.89	2.21
	16	9.96	9.49	10.4
	17	13.5	12.3	10.2
	18	18.5	14.8	14.0
d 軸	19	27.9	20.3	20.5
	20	35.8	36.0	35.4
	21	72.6	73.6	70.4
	22	3.62	2.46	3.30
	23	23.7	24.7	23.7
	24	29.9	31.8	30.2
e 軸	25	30.2	30.8	29.2
	26	77.4	79.3	74.8
	27	107	106	111
	28	135	127	149
	29	13.1	12.0	11.6
f	30	18.0	13.6	14.6
軸	31	7.65	4.69	6.10
	32	18.4	15.6	18.7
	33	3.54	3.33	4.08
g	34	14.0	14.6	14.3
軸	35	22.0	23.4	22.3
	36	13.6	13.1	13.4
	37	10.3	9.51	10.8
	38	20.0	17.6	21.0
h 軸	39	38.6	35.1	43.4
	40	106	104	112
	41	145	142	151
	42	2.80	2.04	3.03
i 軸	43	3.40	3.10	3.73
	44	10.7	10.1	10.8
注:	① I	認モデル 屋剛性・地	40-岡山村-/二	_ \老康工二

[:] ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

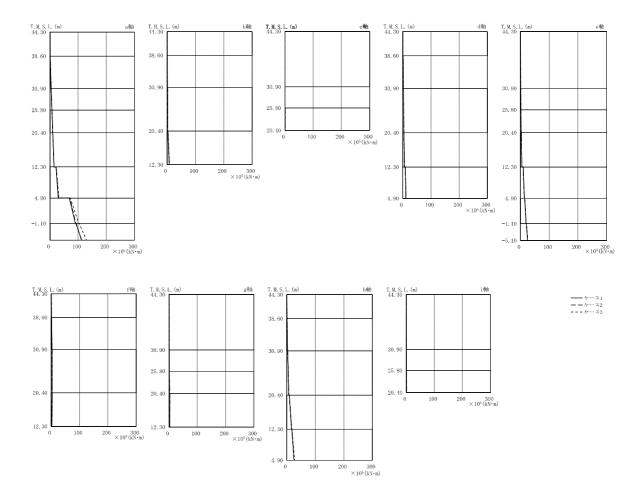


図 2-140 最大応答曲げモーメント (Sd-1, EW 方向)

表 2-127 最大応答曲げモーメント (Sd-1, EW 方向)

部	部 最大応答曲げモーメント一覧表 (×10 ⁵ kN・m)			
位	番号	(I)	(2)	3)
	1	0.156	0.158	0.153
		0.964 0.967	0.979 0.980	0.944 0.945
	2	4.11 4.11	4.15 4.15	4.08 4.09
	3	7.01	7.07	7.07
a	4	7.01 10.1	7.07 10.2	7.07 10.2
軸	5	10.1 14.4	10.2 14.7	10.2 14.6
	6	21.3 29.3	21.7 30.3	22.4
	7	68.6	70.8	31.4 72.7
	8	90.0 91.7	91.6 93.3	102 104
		0.303	112 0.295	130 0.356
	10	0.500 0.945	0.460 0.901	0.556 1.12
Ь	11	1.59	1.26	1.52
軸	12	1.77 2.16	$\frac{1.68}{2.04}$	2.17 2.13
	13	3.21 7.74	3.28 7.92	3.38 8.53
	14	0.103 0.306	0.112	0.0867
С	15	0.306	0.305 0.305	0.308 0.308
軸	16	0.450 0.588	0.473 0.622	0.448 0.560
		0.981	0.987 0.329	0.946 0.331
	17	0.814	0.853	0.856
	18	1.28 1.94	1.30 1.98	1.26 2.16
d 軸	19	2.67 3.69	2.71 3.66	2.61 3.69
	20	4.14 6.12	3.97 6.04	4.09 5.76
	21	9.57	9.16	9.76
	22	11.5 0.109	11.8 0.113	11.8 0.110
		0.617 0.654	0.614 0.683	0.640 0.655
	23	1.51 1.52	1.57	1.57 1.59
	24	2.74	1.58 2.70	2.87
e 軸	25	2.95 4.75	$\frac{2.97}{4.85}$	3.08 4.75
	26	9.93 13.6	9.39 13.6	9.52 13.3
	27	14.8 19.7	14.5 20.0	15.4 19.9
	28	20.3	20.3	21.5
	29	24.7 0.360	24.9 0.315	25.3 0.272
		0.949 1.28	0.916 1.19	0.909 1.16
f 軸	30	2.37 2.96	2.29 2.92	2.45 2.80
中田	31	2.89	2.78	2.94
	32	3.82 2.24	$\frac{3.72}{2.21}$	3.66 2.20
	33	0.183 0.612	0.196 0.591	0.167 0.668
	34	0.783	0.748	0.846
g 軸	35	1.12	1.10	1.17
	36	2.07 3.08	2.19 3.30	1.97 2.90
-		3.13 0.296	3,25 0.217	2.88 0.263
	37	0.805	0.776	0.764 1.03
	38	2.53	2.66	2.54
h 軸	39	3.33 7.37	3.07 7.37	3.19 7.40
	40	8.92 16.8	8.87 16.8	9.04 17.5
	41	17.4 25.6	17.4 25.8	18.4 27.4
	42	0.0481	0.0226	0.0302
i	43	0.571	0.572 0.576	0.601 0.599
軸		0.814 0.811	0.782 0.779	0.843 0.844
注:	44 ①T	1.21 認モデル	1.33	1.26

注: ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

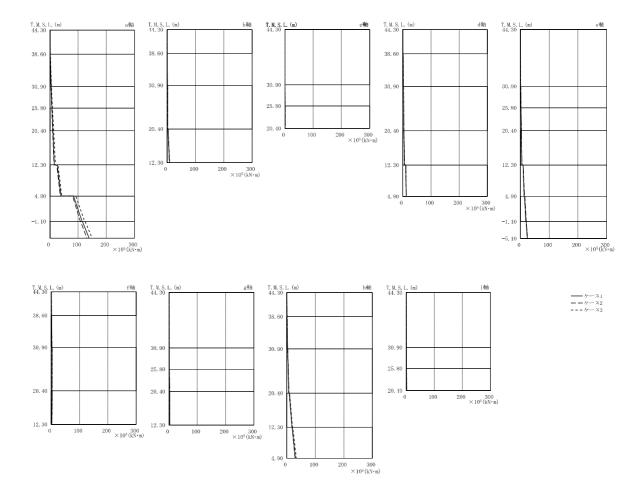


図 2-141 最大応答曲げモーメント (Sd-2, EW 方向)

表 2-128 最大応答曲げモーメント (Sd-2, EW 方向)

- 1		_			
	部	部材		ント一覧表	
	位	番	(×10 ⁵ kN•n	
		号	1	2	3
		1	0.157 0.969	0.143 0.885	0.204 1.26
		2	0.970	0.889	1.26
			4.12 4.13	3.82 3.82	5.28 5.29
		3	7.10	6.57	9.10
	a	4	7.10 10.3	6.58 9.65	9.11 13.2
	軸	5	10.3	9.65	13.2
			15.7 25.8	14.7 23.9	19.4 28.7
		6	39.0	36.5	41.5
		7	84.2 114	80.6 108	91.9 123
		8	115	109	125
		0	139 0.315	131 0.231	150 0.330
		10	0.439		0.557
	l.	11	0.827	0.446	1.02
	b 軸	10	1.27 1.62	1.29 1.69	1.37 1.89
		12	2.08	2.13	2.13
		13	3.41 8.77	3.39 8.15	3.60 9.44
		14	0.112	0.120	0.0833
	С		0.317 0.317	0.285 0.285	0.395 0.395
	軸	15	0.487	0.433	0.567
		16	0.684 0.972	0.682 1.02	0.695 0.991
		17	0.372	0.373	0.570
			0.773 1.32	0.813 1.31	0.833 1.61
	,	18	1.90	1.96	2.12
	d 軸	19	2.56 3.66	2.54 3.68	2.99 3.70
	1144	20	4.05	4.10	4.47
			6.34 10.4	6.33 10.6	6.56 11.8
		21	12.5	12.6	12.5
		22	0.0806 0.555	0.0947 0.539	0.126 0.796
		23	0.745	0.729	1.07
			1.70 1.72	1.74 1.77	1.95 1.99
		24	2.93	3.04	3.01
	e 軸	25	3.18 4.68	3.34 4.87	3.48 4.84
		26	9.40	9.29	9.45
			13.1 14.2	14.1 15.5	12.8 14.5
		27	18.9	20.2	19.2
		28	19.7 24.0	20.6 24.6	20.2 24.1
		29	0.388	0.368	0.438
			0.849 1.27	0.866 1.20	0.934 1.46
	f	30	2.26	2.32	2.46
	軸	31	2.88 2.61	2.81 2.67	3.36 3.21
		32	3.10	3.27	3.79
			2.01 0.168	2.14 0.182	2.27 0.145
		33	0.552	0.540	0.789
	g	34	0.822 1.30	0.823 1.32	1.05 1.49
	軸	35	1.34	1.37	1.53
			2.08 2.89	2.20 3.06	2.21 2.80
		36	2.98	3.10	2.96
		37	0.195 0.809	0.164 0.767	0.302 0.791
		38	1.02	0.930	1.20
	h		2.74 3.00	2.65 2.96	2.70 3.36
	軸	39	7.31	7.39	7.51
		40	9.09 18.3	9.03 18.0	9.76 20.1
		41	18.9	18.6	21.3
			29.9 0.0153	29.0 0.0164	33.6 0.0191
		42	0.573	0.553	0.839
	i 軸	43	$0.575 \\ 0.811$	0.555 0.775	0.849 1.19
	. 144	44	0.826	0.782	1.20
ļ	注:		<u>1.36</u> 認モデル	1.24	1.72
				般圖卧生(十	(1)老庸エニ

[:] ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

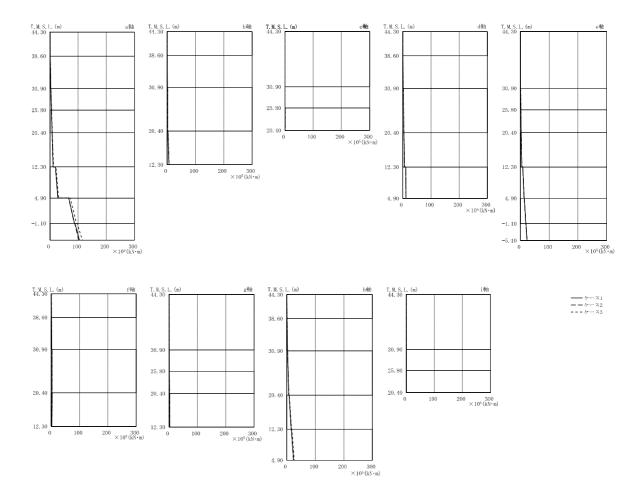


図 2-142 最大応答曲げモーメント (Sd-3, EW 方向)

表 2-129 最大応答曲げモーメント (Sd-3, EW 方向)

- 1		_			
	部	部材	最大応答曲げモーメント一覧		
	位	番	(×10 ⁵ kN•n	1)
		号	1	2	3
		1	0.115	0.114	0.127
		_	0.711 0.712	0.705 0.705	0.789
		2	3.05	3.02	3.37
		3	3.05 5.21	3.02 5.17	3.37 5.80
		_	5.21	5.17	5.80
	a	4	7.57	7.49	8.48
	軸	5	7.57 11.2	7.49 10.9	8.48 12.6
		6	19.3	19.0	21.3
		\vdash	28.1	27.8	30.3
		7	67.0 87.4	66.3 86.1	71.9 94.4
		8	89.0	87.6	96.2
			105 0.271	0.274	115 0.287
		10	0.420	0.424	0.450
	1	11	0.859	0.865	0.920
	b 軸		1.18	1.19 1.70	1.28
	1144	12	2.03	2.04	2.00
		13	3.29	3.29	3.33
		1.1	7.05 0.0646	7.09 0.0759	7.26 0.0471
		14	0.236	0.236	0.260
	c 軸	15	0.236 0.345	0.236 0.348	0.260 0.386
	中田	16	0.479	0.494	0.509
		16	0.883	0.903	0.903
		17	0.278 0.632	0.300 0.617	0.326 0.702
		18	1.06	1.06	1.20
	1	10	1.65	1.59	1.75
	d 軸	19	2.24 3.61	2.23 3.60	2.53 3.63
	1144	20	4.11	4.15	4.20
			6.21 10.5	6.25 10.6	6.30 10.8
		21	11.7	11.9	11.6
		22	0.0631	0.0609	0.0775
			0.462 0.556	0.439 0.575	0.516 0.598
		23	1.31	1.30	1.34
		24	1.32 2.57	1.32 2.52	1.35 2.54
	е	0.5	2.77	2.72	2.71
	軸	25	4.60	4.54	4.53
		26	8.41 13.0	8.44 12.8	8.14 12.5
		27	14.0	13.8	13.4
		21	18.9	18.5	18.4 18.8
		28	19.4 23.2	18.9 22.6	23.0
		29	0.257	0.293	0.287
			0.747	0.737 1.02	0.781 1.05
	f	30	2.02	2.02	2.10
	軸	31	2.39	2.55	2.51
		- 00	2.29 2.97	2.34 2.99	2.40 3.18
		32	2.04	2.01	2.08
		33	0.132 0.465	0.150 0.433	0.122 0.521
		34	0.592	0.604	0.645
	g 軸	34	0.944 0.978	0.920 0.956	0.974
	押加	35	1.86	1.80	1.00 1.77
		36	2.33	2.49	2.18
			2.92 0.154	2.89 0.155	2.76 0.173
		37	0.662	0.656	0.700
		38	0.831	0.820	0.889
	h		2.32 2.68	2.30 2.65	2.48
	軸	39	7.20	6.97 8.22	7.27
		40	8.36	8.22 15.0	8.96
		41	15.4 16.1	15.7	16.8 17.7
		41	24.0	23.6	26.4
		42	0.0136 0.410	0.0137 0.398	0.0148 0.468
	i	43	0.413	0.400	0.471
	軸		0.602	0.582 0.608	0.672
		44	1.02	0.990	1.13
	注:		認モデル	般圖比生(+	

[:] ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

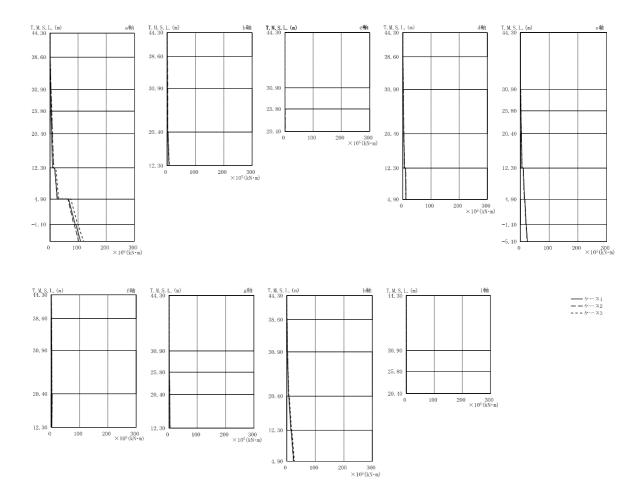


図 2-143 最大応答曲げモーメント (Sd-6, EW 方向)

表 2-130 最大応答曲げモーメント (Sd-6, EW 方向)

1		_			
	部	部材		曲げモーメ	
	位	番	(×10 ⁵ kN•n	
		号	1	2	3
		1	0.0875 0.542	0.159 0.986	$0.136 \\ 0.845$
		2	0.544	0.987	0.847
			2.26 2.26	3.94 3.95	3.58 3.58
		3	3.86	6.34	6.14
	9	4	3.86 5.76	6.34 8.94	6.14 8.96
	軸	5	5.76	8.94	8.96
		_	9.03 16.8	12.7 17.1	13.3 20.9
		6	26.3	25.4	31.0
		7	66.3 89.7	64.2 84.4	74.1 98.0
		8	91.7	86.1	100
			109 0.181	102 0.286	119 0.277
		10		0.758	0.441
	h	11	0.481 0.720 1.28	1.06 2.23	0.841
	軸	10	1.57	2.62	1.17 1.50
	a 軸	12	2.01	2.19	2.10
		13	3.21 7.13	3.36 6.94	3.30 7.97
		14	0.0586	0.0613	0.0515
	С		0.162 0.162	0.309	0.262 0.262
	軸	15	0.290	0.443	0.360
		16	0.470 0.887	0.532 0.966	0.518 0.897
		17	0.193	0.256	0.261
			0.636 0.798	0.725 1.06	0.644 0.957
		18	1.65	1.80	1.80
		19	1.78 3.39	2.35 3.66	2.04 3.66
	Thu	20	3.58	4.20	3.98
			5.81 9.35	6.28 10.9	6.04 10.1
		21	11.6	12.0	11.4
		22	0.101 0.333	0.0978 0.464	0.0951 0.502
		23	0.521	0.655	0.661
			1.61 1.63	1.71 1.73	1.69 1.71
		24	3.12	3.11	3.06
		25	3.42 5.23	3.37 5.07	3.31 5.11
	4411	26	10.0	9.64	9.90
			14.1 15.7	13.8 15.2	13.4 14.8
		27	20.0	19.4	19.2
		28	20.6 24.1	20.0 23.5	19.7 23.6
		29	0.192	0.223	0.208
		23	0.617 0.766	0.686 0.920	0.726 0.930
		30	1.63	1.86	1.95
	軸	31	1.89 1.88	2.26 2.26	2.27 2.38
		32	2.62	3.26	3.03
		34	1.94 0.181	2.11	2.08
		33	0.295	0.168 0.394	0.165 0.448
	(r	34	0.572 1.15	0.664 1.19	0.676 1.24
		35	1.20	1.24	1.28
		30	2.27 3.17	2.14 2.99	2.26 2.87
		36	3.38	3.19	3.29
		37	0.130 0.531	0.138 0.580	0.146
		20	0.632	0.580	0.634 0.781
	L	38	1.89	2.19	2.23
		39	1.96 5.91	2.49 6.82	2.57 7.22
		40	6.95	7.65	8.78
		41	14.2 15.2	14.6 15.4	16.8 17.4
		41	24.3	23.6	26.7
		42	0.0109 0.279	0.0111 0.390	0.0111 0.450
	i #eds	43	0.280	0.391	0.452
	軸		0.442 0.455	0.539 0.543	0.675 0.692
	34-	44 O.T.	0.908	0.903	1.14
	注:		認モデル	般圖計(十	a)老慮エ~

[:] ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

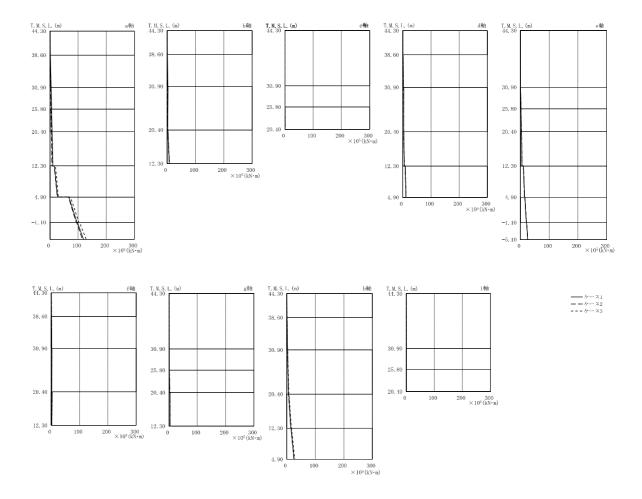


図 2-144 最大応答曲げモーメント (Sd-7, EW 方向)

表 2-131 最大応答曲げモーメント (Sd-7, EW 方向)

1		_			
	溶	部材		曲げモーメ	
	位	番	_	×10 ⁵ kN•m	
		号	0.183	0.0825	③ 0.112
		1	1.13	0.511	0.692
		2	1.13 4.16	0.512 2.12	0.693 2.89
		3	4.16	2.12	2.90
			6.02	3.47 3.47	4.84 4.84
	a	4	7.88	4.91	6.85
	軸	5	7.88 10.3	4.91 7.28	6.85 9.94
		6	16.0 26.8	15.3 25.7	19.5 29.7
		7	67.6	65.7	73.1
			95.7 97.5	93.0 94.7	103 105
		8	119 0.389	115 0.222	129
		10	1.13		0.308 0.521
	L.	11	1.47	0.446	1.03
	b 軸	12	3.19 3.67	1.25 1.57	1.34 1.96
			2.22 2.88	1.92 2.90	1.94 3.32
	a 軸	13	8.05	7.55	8.54
		14	0.0499 0.355	$0.0540 \\ 0.164$	0.0465 0.221
		15	0.355	0.164	0.221
	軸		0.454 0.530	0.229 0.326	0.301 0.410
		16	0.930	0.740	0.848
		17	0.279 1.05	$0.245 \\ 0.718$	0.314 0.855
		18	1.50 2.87	1.05 1.79	1.33 2.12
		19	3.59	2.33	2.88
			3.31 3.59	3.12 3.42	3.38
		20	5.70	5.23	5.63
		21	8.74 11.8	8.56 11.8	9.30 11.9
		22	0.139	0.159	0.130
		23	0.447 0.586	0.302 0.525	0.419 0.542
		20	1.72 1.76	1.68 1.73	1.73 1.76
		24	3.23	3.23	3.31
		25	3.90 5.42	3.98 5.46	3.88 5.36
	1144	26	10.2	10.8	10.3
			14.2 15.6	14.3 15.9	13.8 15.7
		27	20.5 21.5	20.9 21.2	20.4
		28	25.2	25.5	25.3
		29	0.208 0.778	$0.165 \\ 0.684$	0.206 0.741
		30	0.970	0.780	0.954
			2.20 2.54	1.81 1.97	1.96 2.28
		31	2.26	1.99	2.19
		32	3.08 1.81	$\frac{2.63}{1.71}$	3.12 1.95
		33	0.195 0.450	0.191 0.338	0.179 0.455
		34	0.616	0.491	0.674
			1.15 1.20	1.09 1.15	1.21 1.27
	734	35	2.36	2.39	2.46
		36	3.28 3.38	3.33 3.32	3.30 3.48
		37	0.168	0.155	0.152
		38	0.703 0.915	0.601 0.824	0.742
	h		2.42 2.87	1.99 2.46	2.50 2.90
		39	6.21	5.17	6.86
		40	6.92 14.3	5.97 13.9	7.80 15.7
		41	15.0	14.6	16.8
			25.7 0.0133	25.1 0.0215	27.6 0.0108
		42	0.374	0.275	0.407
	軸	43	0.375 0.456	0.276 0.356	0.408 0.524
		44	0.480 0.903	0.374 0.837	0.547 0.992
,	注:		認モデル	般圖(性(+	
		(ソ)6世	PRIMITAL . 141	79.8 田田平年(十	α 1を順手

[:] ①工認モデル ②建屋剛性・地盤剛性(+ σ)考慮モデル ③建屋剛性・地盤剛性(- σ)考慮モデル

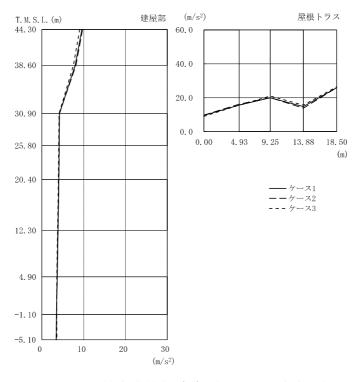


図 2-145 最大応答加速度 (Sd-1, 鉛直方向)

表 2-132 最大応答加速度 (Sd-1, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
1374	明号	1	2	3
	1	9.57	9.73	9.05
	2	7.96	8.15	7.53
	3	4.19	4.16	4.07
建	4	4.14	4.11	4.02
屋	5	4.06	4.04	3.95
部	6	3.85	3.84	3.76
	7	3.66	3.65	3.57
	8	3.49	3.53	3.57
	9	3.43	3.44	3.58
	1	9.57	9.73	9.05
屋根	11	15.6	16.2	15.6
	12	20.0	20.1	21.0
トラス	13	14.8	13.9	15.6
	14	25.9	25.9	26.5

②建屋剛性・地盤剛性(+ σ)考慮モデル

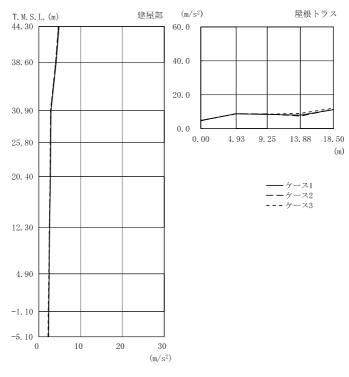


図 2-146 最大応答加速度 (Sd-2, 鉛直方向)

表 2-133 最大応答加速度 (Sd-2, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
1-1	号	1	2	3
	1	4.85	4.72	4.68
	2	4.14	4.04	4.04
	3	2.91	2.85	2.83
建	4	2.85	2.79	2.78
屋	5	2.77	2.72	2.71
部	6	2.59	2.56	2.54
	7	2.48	2.45	2.38
	8	2.38	2.36	2.28
	9	2.32	2.30	2.22
	1	4.85	4.72	4.68
屋根	11	8.78	8.80	8.85
	12	8.32	8.62	8.43
トラス	13	7.99	7.38	9.06
	14	11.2	11.4	12.0

②建屋剛性・地盤剛性(+ σ)考慮モデル

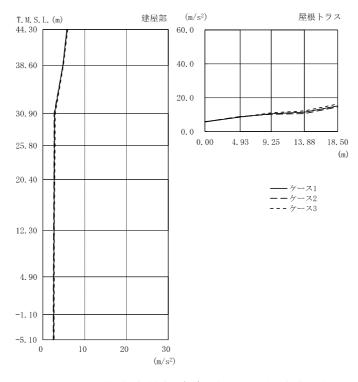


図 2-147 最大応答加速度 (Sd-3, 鉛直方向)

表 2-134 最大応答加速度 (Sd-3, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
1374	号	1	2	3
	1	5.73	5.79	5.93
	2	4.78	4.82	4.91
	3	2.78	2.69	2.94
建	4	2.74	2.66	2.89
屋	5	2.73	2.64	2.84
部	6	2.67	2.57	2.73
	7	2.62	2.51	2.70
	8	2.59	2.49	2.69
	9	2.56	2.47	2.68
	1	5.73	5.79	5.93
屋根	11	8.63	8.96	8.54
	12	10.5	10.2	11.1
トラス	13	11.5	10.6	12.3
	14	15.2	14.6	16.3

②建屋剛性・地盤剛性(+ σ)考慮モデル

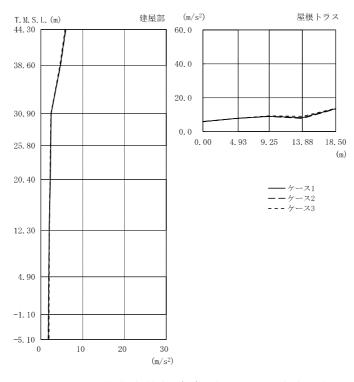


図 2-148 最大応答加速度 (Sd-6, 鉛直方向)

表 2-135 最大応答加速度 (Sd-6, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s ²)		
1374	号	1	2	3
	1	5.91	5.97	5.79
	2	4.68	4.70	4.58
	3	2.44	2.41	2.40
建	4	2.36	2.32	2.31
屋	5	2.24	2.21	2.20
部	6	2.01	1.99	2.04
	7	1.91	1.87	1.99
	8	1.85	1.80	1.96
	9	1.81	1.76	1.94
	1	5.91	5.97	5.79
屋根	11	7.87	7.90	7.93
	12	9.01	8.94	9.28
トラス	13	8.30	7.84	8.98
	14	13.5	13.3	13.8

②建屋剛性・地盤剛性(+ σ)考慮モデル

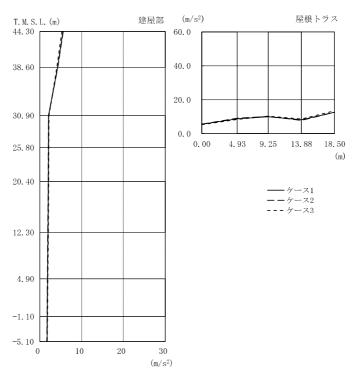


図 2-149 最大応答加速度 (Sd-7, 鉛直方向)

表 2-136 最大応答加速度 (Sd-7, 鉛直方向)

部位	質点番	最大応答加速度一覧表 (m/s ²)		
1374	号	1	2	3
	1	5.55	5.60	5.26
	2	4.27	4.28	4.08
	3	2.10	2.10	2.20
建	4	2.08	2.06	2.18
屋	5	2.05	2.01	2.14
部	6	1.96	1.91	2.04
	7	1.86	1.81	1.94
	8	1.79	1.73	1.86
	9	1.73	1.68	1.80
	1	5.55	5.60	5.26
屋根	11	8.72	9.08	8.32
	12	9.99	10.1	10.3
トラス	13	8.20	7.81	8.64
	14	12.6	12.6	13.4

②建屋剛性・地盤剛性(+ σ)考慮モデル

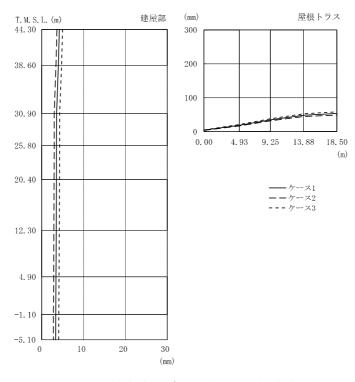


図 2-150 最大応答変位 (Sd-1, 鉛直方向)

表 2-137 最大応答変位 (Sd-1, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
137.	号	1	2	3
	1	4.22	3.63	4.98
	2	3.99	3.41	4.74
	3	3.56	3.00	4.30
建	4	3.54	2.98	4.28
屋	5	3.52	2.96	4.25
部	6	3.47	2.91	4.20
	7	3.42	2.87	4.14
	8	3.37	2.82	4.09
	9	3.33	2.79	4.06
	1	4.22	3.63	4.98
屋根	11	18.7	17.0	20.9
	12	34.8	31.9	37.9
トラス	13	48.5	44.5	52.8
	14	53.4	48.9	58.1

②建屋剛性・地盤剛性(+ σ)考慮モデル

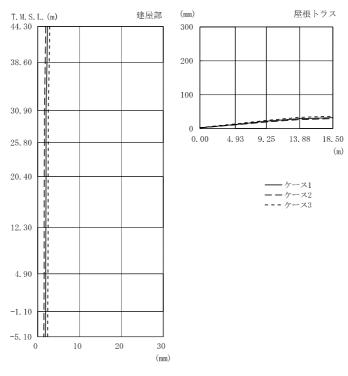


図 2-151 最大応答変位 (Sd-2, 鉛直方向)

表 2-138 最大応答変位 (Sd-2, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
127.	号	1	2	3
	1	2.34	1.91	2.87
	2	2.23	1.80	2.76
	3	2.02	1.62	2.54
建	4	2.01	1.61	2.53
屋	5	1.99	1.59	2.51
部	6	1.96	1.56	2.48
	7	1.92	1.53	2.45
	8	1.89	1.50	2.41
	9	1.86	1.48	2.39
	1	2.34	1.91	2.87
屋根	11	12.4	11.2	13.9
	12	21.9	19.8	24.4
トラス	13	29.8	26.9	33.5
	14	32.6	29.6	36.8

②建屋剛性・地盤剛性(+ σ)考慮モデル

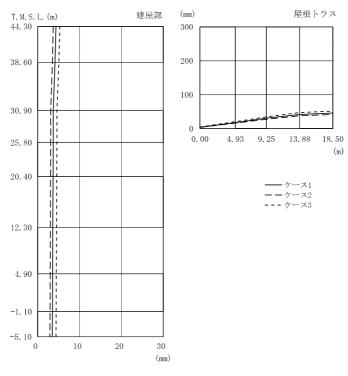


図 2-152 最大応答変位 (Sd-3, 鉛直方向)

表 2-139 最大応答変位 (Sd-3, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
127.	号	1	2	3
	1	4.36	3.73	5.29
	2	4.13	3.51	5.04
	3	3.72	3.11	4.60
建	4	3.70	3.09	4.58
屋	5	3.67	3.07	4.56
部	6	3.62	3.02	4.50
	7	3.58	2.98	4.44
	8	3.54	2.94	4.39
	9	3.50	2.91	4.36
	1	4.36	3.73	5.29
屋根	11	18.0	16.3	20.8
	12	30.8	27.9	34.9
トラス	13	42.0	38.2	47.2
	14	46.2	42.0	51.7

②建屋剛性・地盤剛性(+ σ)考慮モデル

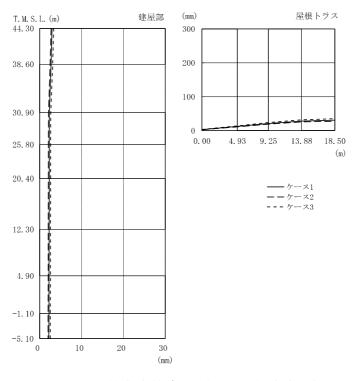


図 2-153 最大応答変位 (Sd-6, 鉛直方向)

表 2-140 最大応答変位 (Sd-6, 鉛直方向)

部 点 位 番		最大応答変位一覧表 (mm)		
1-/-	号	1	2	3
	1	2.95	2.71	3.35
	2	2.72	2.48	3.11
	3	2.31	2.10	2.64
建	4	2.30	2.09	2.63
屋	5	2.29	2.08	2.61
部	6	2.27	2.06	2.59
	7	2.24	2.04	2.56
	8	2.22	2.02	2.54
	9	2.21	2.01	2.52
	1	2.95	2.71	3.35
屋根	11	12.4	11.2	14.0
	12	21.2	19.1	23.8
トラス	13	28.4	25.7	32.1
·	14	31.0	27.9	35.0

②建屋剛性・地盤剛性(+ σ)考慮モデル

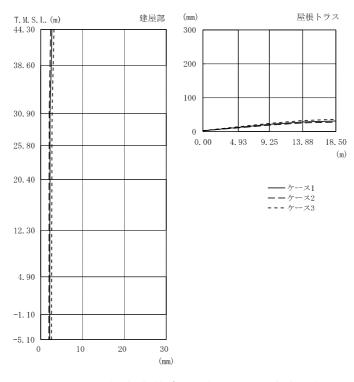
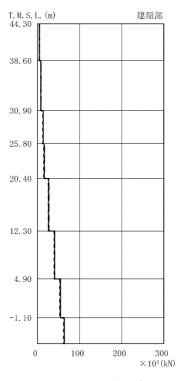



図 2-154 最大応答変位 (Sd-7, 鉛直方向)

表 2-141 最大応答変位 (Sd-7, 鉛直方向)

部位	質点番	最大応答変位一覧表 (mm)		
137.	号	1	2	3
	1	2.69	2.37	3.17
	2	2.53	2.23	3.00
	3	2.25	2.03	2.71
建	4	2.24	2.03	2.70
屋	5	2.23	2.02	2.68
部	6	2.20	2.00	2.65
	7	2.19	1.99	2.62
	8	2.17	1.98	2.59
	9	2.16	1.97	2.57
	1	2.69	2.37	3.17
屋根	11	12.3	11.1	14.1
	12	21.4	19.1	24.4
トラス	13	28.8	25.7	33.0
	14	31.5	28.2	36.2

②建屋剛性・地盤剛性(+ σ)考慮モデル

ケース1− ケース2− − ケース3

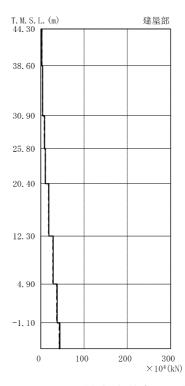

図 2-155 最大応答軸力 (Sd-1, 鉛直方向)

表 2-142 最大応答軸力 (Sd-1, 鉛直方向)

部位	部材番	最大応答軸力一覧表 (×10 ⁴ kN)		
12/4	号	1)	2	3
	1	4.59	4.63	4.78
	2	8.14	8.53	8.30
	3	13.6	13.9	12.8
建屋	4	16.0	16.5	15.1
部	5	26.3	27.3	25.9
	6	40.8	41.1	39.5
	7	54.6	54.0	52.8
	8	64.0	63.4	61.9

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

ケース1− ケース2− − ケース3

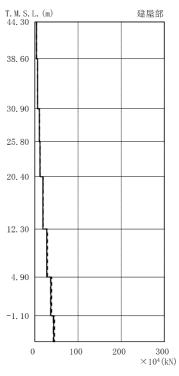

図 2-156 最大応答軸力 (Sd-2, 鉛直方向)

表 2-143 最大応答軸力 (Sd-2, 鉛直方向)

部位	部材番	最大応答軸力一覧表 (×10 ⁴ kN)		
1	号	1	2	3
	1	2.20	2.15	2.24
	2	4.02	3.93	3.85
	3	8.55	8.34	8.15
建屋	4	10.4	10.2	9.89
部	5	18.5	18.1	17.7
	6	28.5	27.9	27.5
	7	37.7	36.9	36.5
	8	43.8	43.0	42.5

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

ケース1− ケース2− ケース3

図 2-157 最大応答軸力 (Sd-3, 鉛直方向)

表 2-144 最大応答軸力 (Sd-3, 鉛直方向)

部 部 材 位 番		最大応答軸力一覧表 (×10 ⁴ kN)		
1.7.	号	1	2	3
	1	3.70	3.64	3.94
	2	6.24	6.09	6.38
	3	10.2	10.1	10.5
建屋	4	11.8	11.8	12.2
部	5	18.6	18.7	19.3
	6	27.3	27.5	29.0
	7	36.9	36.3	38.8
	8	43.8	42.5	45.5

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

ケース1− ケース2− ケース3

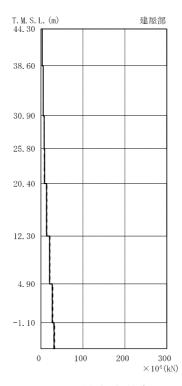

図 2-158 最大応答軸力 (Sd-6, 鉛直方向)

表 2-145 最大応答軸力 (Sd-6, 鉛直方向)

部位	部材番	最大応答軸力一覧表 (×10 ⁴ kN)		
1.7.	号	1	2	3
	1	2.72	2.65	2.65
	2	5.18	5.11	5.05
	3	8.29	8.21	8.13
建屋	4	9.52	9.61	9.39
部	5	15.9	16.0	15.8
	6	23.7	23.6	23.3
	7	30.6	30.5	30.1
	8	35.1	35.0	34.9

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

--- ケース1 --- ケース2 --- ケース3

図 2-159 最大応答軸力 (Sd-7, 鉛直方向)

表 2-146 最大応答軸力 (Sd-7, 鉛直方向)

部位	部材番	最大応答軸力一覧表 (×10 ⁴ kN)		
1.7.	号	1	2	3
	1	3.00	2.96	2.92
	2	5.29	5.25	5.10
	3	7.72	7.58	7.52
建	4	8.68	8.50	8.48
屋部	5	13.4	13.3	14.0
	6	20.5	20.4	21.5
	7	27.0	26.8	28.2
	8	31.2	31.1	32.6

注: ①工認モデル

②建屋剛性・地盤剛性(+ σ)考慮モデル

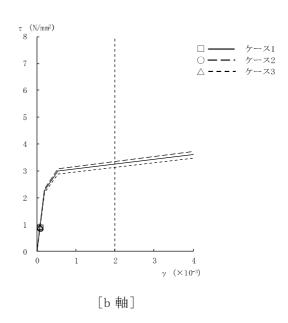


図 2-160 $\tau-\gamma$ 関係と最大応答値(Sd-1, NS 方向, 1F)(1/4)

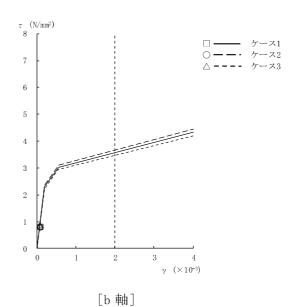


図 2-160 $\tau-\gamma$ 関係と最大応答値(Sd-1, NS 方向, B1F)(2/4)

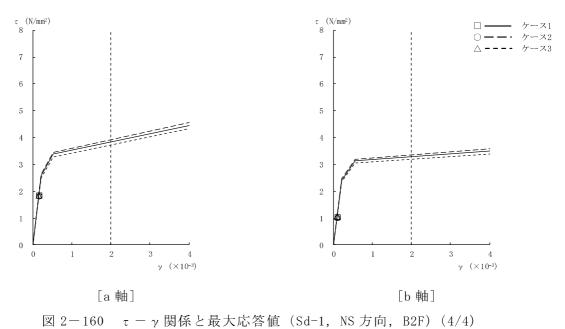



図 2-160 $\tau-\gamma$ 関係と最大応答値(Sd-1, NS 方向, MB2F)(3/4)

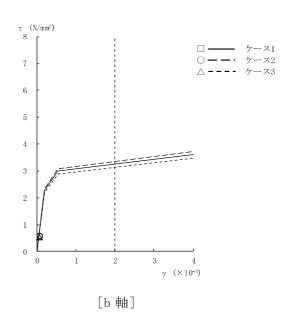


図 2-161 $\tau-\gamma$ 関係と最大応答値(Sd-2, NS 方向, 1F)(1/4)

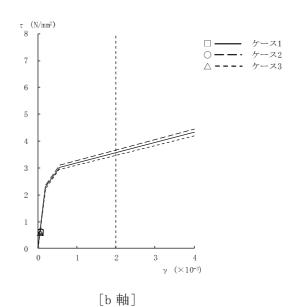


図 2-161 $\tau-\gamma$ 関係と最大応答値(Sd-2, NS 方向, B1F)(2/4)

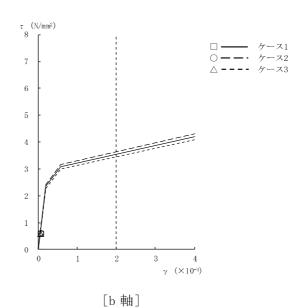


図 2-161 $\tau-\gamma$ 関係と最大応答値(Sd-2, NS 方向, MB2F)(3/4)

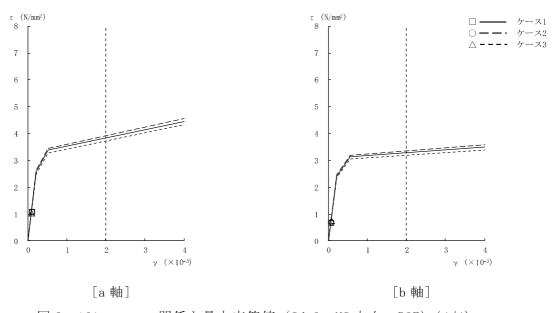


図 2-161 $\tau-\gamma$ 関係と最大応答値(Sd-2, NS 方向, B2F)(4/4)

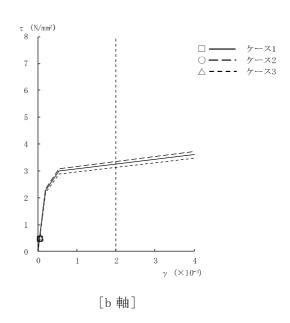


図 2-162 $\tau-\gamma$ 関係と最大応答値(Sd-3, NS 方向, 1F)(1/4)

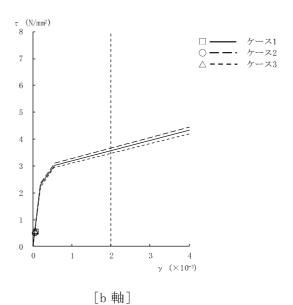


図 2-162 $\tau-\gamma$ 関係と最大応答値(Sd-3, NS 方向, B1F)(2/4)

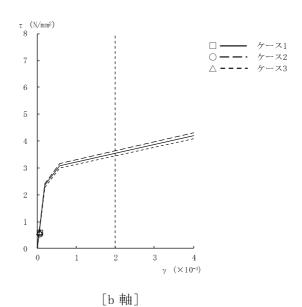


図 2-162 $\tau-\gamma$ 関係と最大応答値(Sd-3, NS 方向, MB2F)(3/4)

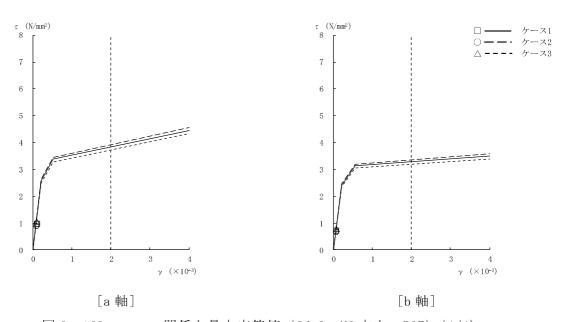


図 2-162 $\tau-\gamma$ 関係と最大応答値(Sd-3, NS 方向, B2F)(4/4)

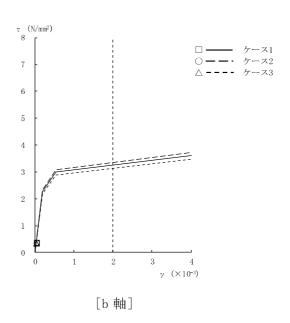


図 2-163 $\tau-\gamma$ 関係と最大応答値(Sd-6, NS 方向, 1F)(1/4)

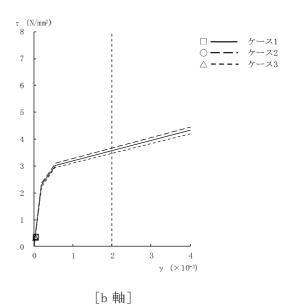


図 2-163 $\tau-\gamma$ 関係と最大応答値(Sd-6, NS 方向, B1F)(2/4)

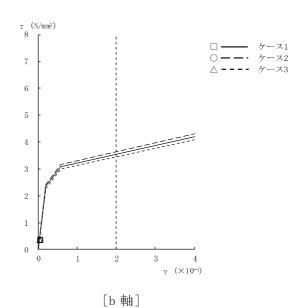


図 2-163 $\tau-\gamma$ 関係と最大応答値(Sd-6, NS 方向, MB2F)(3/4)

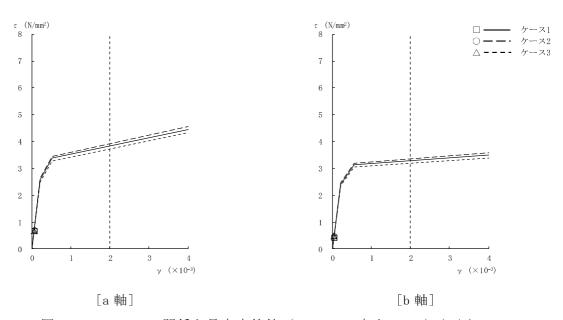


図 2-163 $\tau-\gamma$ 関係と最大応答値(Sd-6, NS 方向, B2F)(4/4)

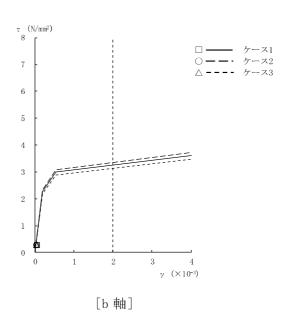


図 2-164 $\tau-\gamma$ 関係と最大応答値(Sd-7, NS 方向, 1F)(1/4)

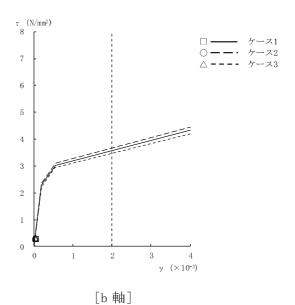


図 2-164 $\tau-\gamma$ 関係と最大応答値(Sd-7, NS 方向, B1F)(2/4)

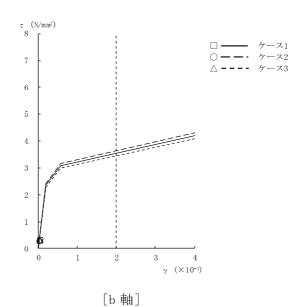


図 2-164 $\tau-\gamma$ 関係と最大応答値(Sd-7, NS 方向, MB2F)(3/4)

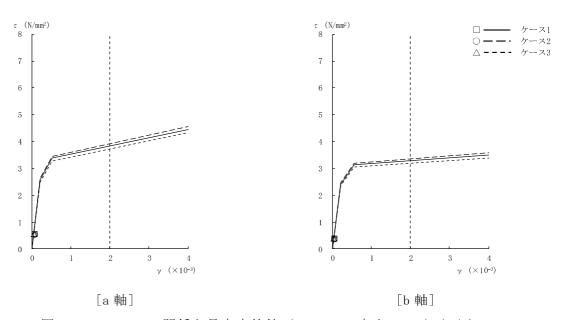


図 2-164 $\tau-\gamma$ 関係と最大応答値(Sd-7, NS 方向, B2F)(4/4)

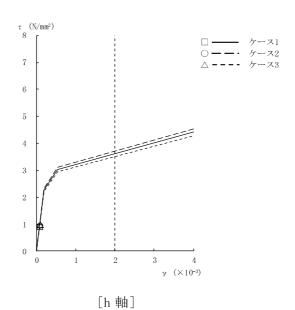
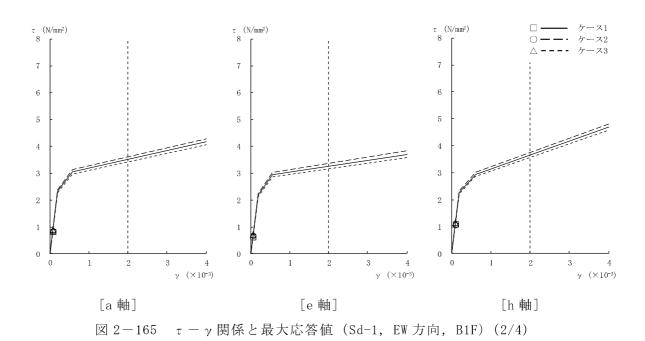



図 2-165 $\tau-\gamma$ 関係と最大応答値(Sd-1, EW 方向, 1F)(1/4)

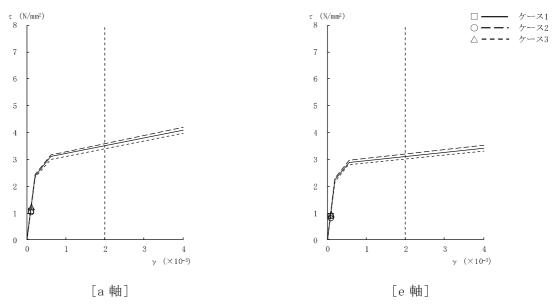


図 2-165 $\tau-\gamma$ 関係と最大応答値(Sd-1, EW 方向, MB2F)(3/4)

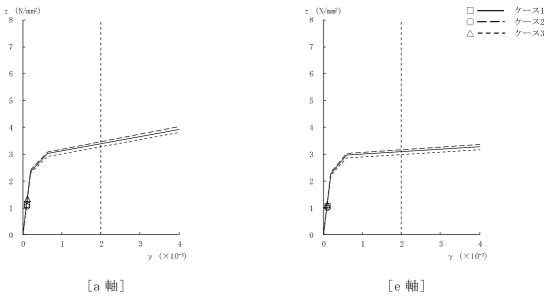


図 2-165 $\tau-\gamma$ 関係と最大応答値(Sd-1, EW 方向, B2F)(4/4)

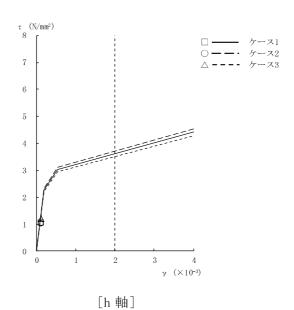
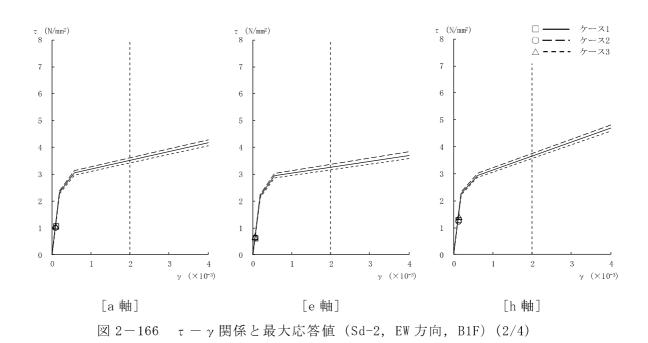



図 2-166 $\tau-\gamma$ 関係と最大応答値(Sd-2, EW 方向, 1F)(1/4)

別紙 3-2-244

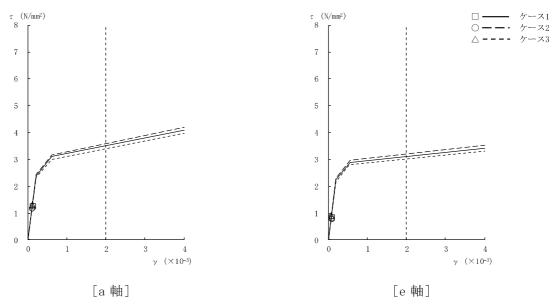


図 2-166 $\tau-\gamma$ 関係と最大応答値(Sd-2, EW 方向, MB2F)(3/4)

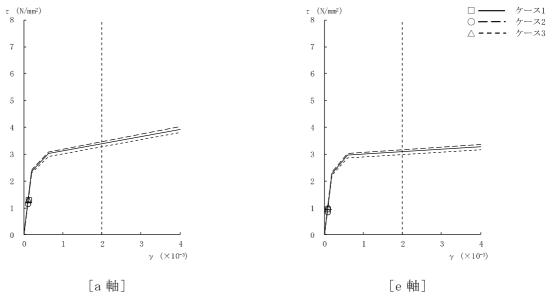


図 2-166 $\tau-\gamma$ 関係と最大応答値(Sd-2, EW 方向, B2F)(4/4)

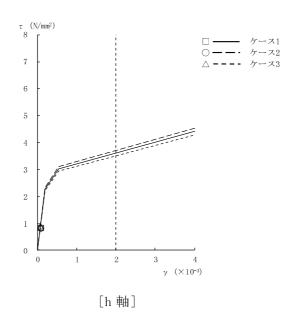


図 2-167 $\tau-\gamma$ 関係と最大応答値(Sd-3, EW 方向, 1F)(1/4)

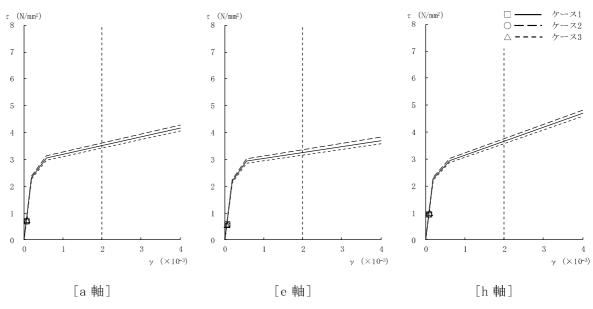


図 2-167 $\tau-\gamma$ 関係と最大応答値(Sd-3, EW 方向, B1F)(2/4)

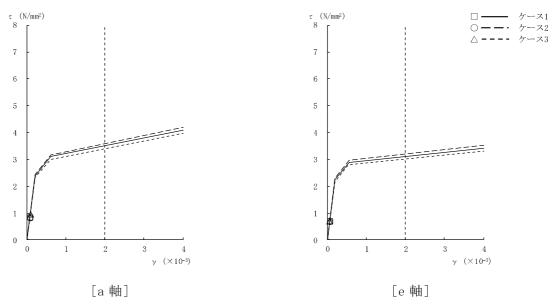


図 2-167 $\tau-\gamma$ 関係と最大応答値(Sd-3, EW 方向, MB2F)(3/4)

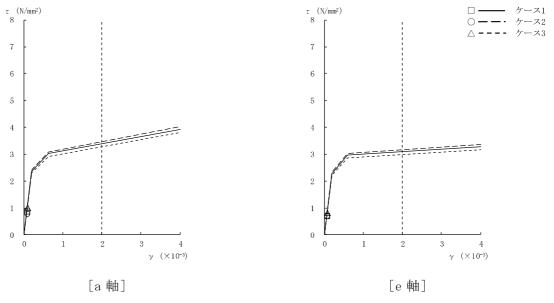


図 2-167 $\tau-\gamma$ 関係と最大応答値(Sd-3, EW 方向, B2F)(4/4)

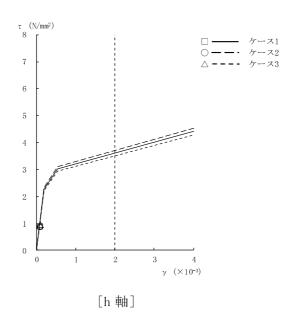
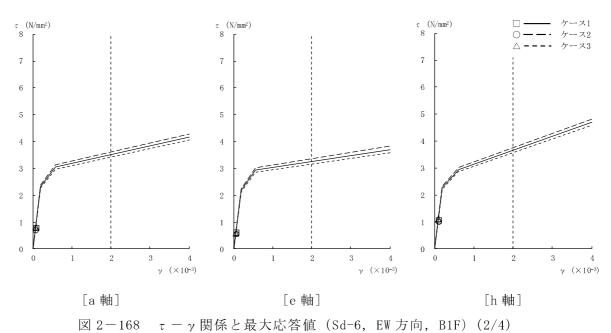



図 2-168 $\tau-\gamma$ 関係と最大応答値(Sd-6, EW 方向, 1F)(1/4)

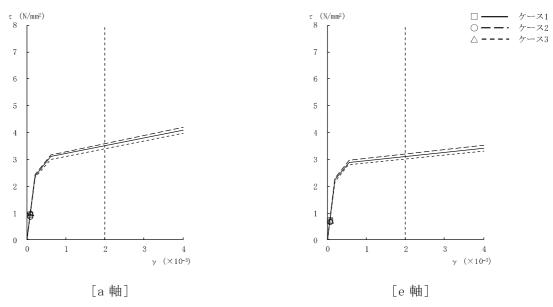


図 2-168 $\tau-\gamma$ 関係と最大応答値(Sd-6, EW 方向, MB2F)(3/4)

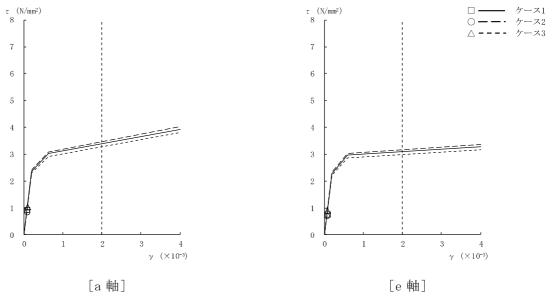


図 2-168 $\tau-\gamma$ 関係と最大応答値(Sd-6, EW 方向, B2F)(4/4)

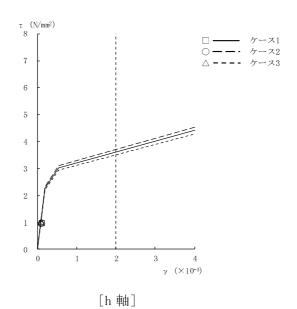
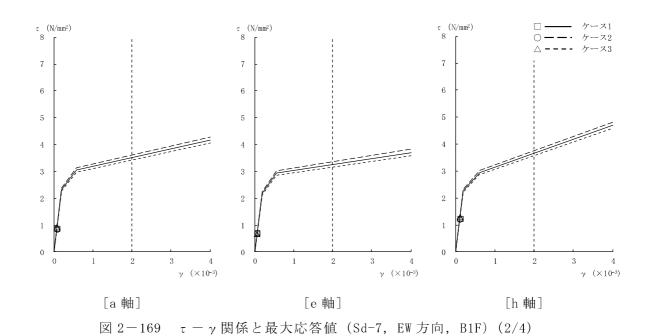



図 2-169 $\tau-\gamma$ 関係と最大応答値(Sd-7, EW 方向, 1F)(1/4)

別紙 3-2-250

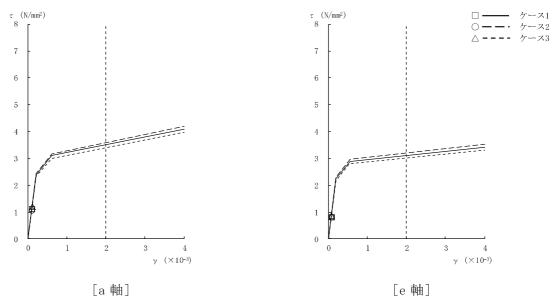


図 2-169 $\tau-\gamma$ 関係と最大応答値(Sd-7, EW 方向, MB2F)(3/4)

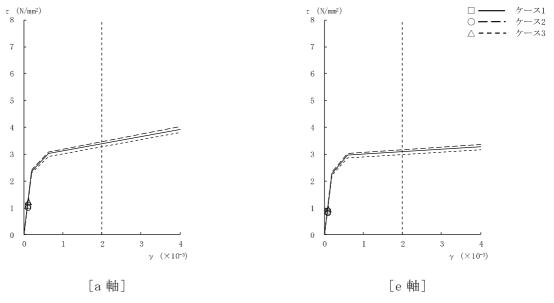


図 2-169 $\tau-\gamma$ 関係と最大応答値(Sd-7, EW 方向, B2F)(4/4)

表 2-147 地震応答解析結果に基づく接地率 (ケース 1)

(a) NS 方向

弾性設計用地震動 S d	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率
Sd-1	591	24. 3	100
Sd-2	486	14. 5	100
Sd-3	473	13. 7	100
Sd-6	441	10. 9	100
Sd-7	414	7. 71	100

(b) EW 方向

弾性設計用地震動 S d	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率
Sd-1	531	16. 3	100
Sd-2	555	21.0	100
Sd-3	503	15. 1	100
Sd-6	502	15. 4	100
Sd-7	526	18.3	100

表 2-148 地震応答解析結果に基づく接地率 (ケース 2)

(a) NS 方向

弹性設計用地震動Sd	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率
Sd-1	580	23. 7	100.0
Sd-2	478	14. 0	100.0
Sd-3	467	13. 4	100.0
Sd-6	441	11. 1	100.0
Sd-7	409	7. 33	100.0

(b) EW 方向

弾性設計用地震動 S d	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Sd-1	532	16. 5	100.0
Sd-2	540	19. 5	100.0
Sd-3	498	14. 9	100.0
Sd-6	492	14. 6	100.0
Sd-7	518	17.8	100.0

表 2-149 地震応答解析結果に基づく接地率 (ケース 3)

(a) NS 方向

弾性設計用地震動 S d	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率
Sd-1	601	24. 9	100.0
Sd-2	477	14. 2	100.0
Sd-3	485	15. 0	100.0
Sd-6	437	10. 1	100.0
Sd-7	420	8. 28	100.0

(b) EW 方向

弾性設計用地震動 S d	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
Sd-1	551	18. 3	100.0
Sd-2	572	22. 3	100.0
Sd-3	520	16. 4	100.0
Sd-6	516	16. 3	100.0
Sd-7	544	19. 9	100.0

2.2 建屋剛性の不確かさ

建屋剛性の不確かさを考慮した基準地震動 S s に対する地震応答解析結果を図 2-170~図 2-273 及び表 2-150~表 2-237 に,接地率を表 2-238~表 2-240 に示す。また,弾性設計用地震動 S d に対する地震応答解析結果を図 2-274~図 2-338 及び表 2-241~表 2-295 に,接地率を表 2-296~表 2-298 に示す。

以後,基本ケースをケース 1, コンクリート実強度をコア強度平均 (55.7N/mm²) と する場合をケース 4, コンクリート実強度を実強度 -2σ (37.2N/mm²) をケース 5 として示す。

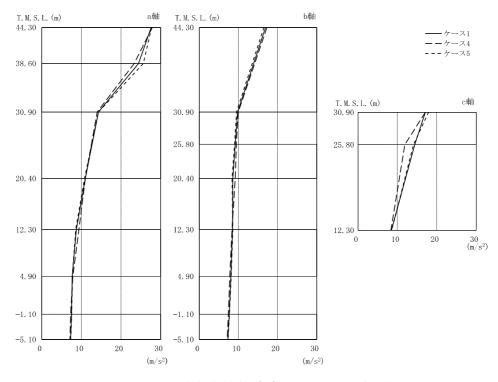


図 2-170 最大応答加速度 (Ss-1, NS 方向)

表 2-150 最大応答加速度 (Ss-1, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
1	号	1	4	5
	1	27.6	27.9	27.7
	3	24.4	23.3	25.6
	4	14.3	14.0	14.3
a 軸	9	11.0	11.0	10.8
T PA	11	8.73	9.36	8.57
	13	7.69	7.85	7.75
	15	7.51	7.29	7.56
	2	16.9	17.3	16.5
	5	9.77	9.96	9.50
	7	9.18	9.43	8.98
b	10	8.55	9.18	8.34
軸	12	8.48	8.37	8.56
	14	8.07	7.77	8.14
	16	7.66	7.41	7.69
	17	7.29	7.13	7.32
С	6	17.1	17.1	17.9
軸	8	14.4	11.9	14.1

④建屋剛性(コア強度平均)考慮モデル

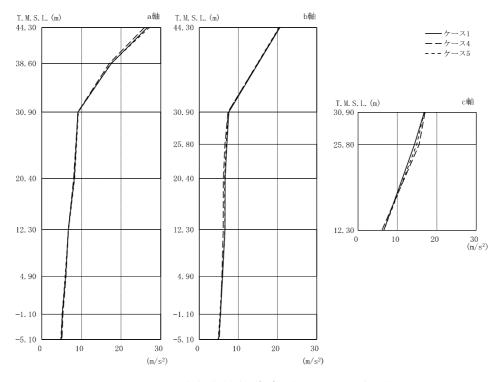


図 2-171 最大応答加速度 (Ss-2, NS 方向)

表 2-151 最大応答加速度 (Ss-2, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
124	号	1	4	(5)
	1	26.6	25.9	27.1
	3	17.5	17.0	17.4
	4	9.11	9.13	9.19
a 軸	9	8.22	8.01	8.27
ти	11	6.70	6.70	6.74
	13	6.00	6.09	5.88
	15	5.16	5.32	5.16
	2	20.6	20.5	20.4
	5	7.53	7.30	7.39
	U			
	7	7.04	6.55	6.88
b		7.04 6.58	6.55 6.15	6.88 6.47
b 軸	7			
	7	6.58	6.15	6.47
	7 10 12	6.58 6.54	6.15 6.09	6.47 6.55
	7 10 12 14	6.58 6.54 5.93	6.15 6.09 5.77	6.47 6.55 5.84
	7 10 12 14 16	6.58 6.54 5.93 5.41	6.15 6.09 5.77 5.42	6.47 6.55 5.84 5.28

④建屋剛性(コア強度平均)考慮モデル

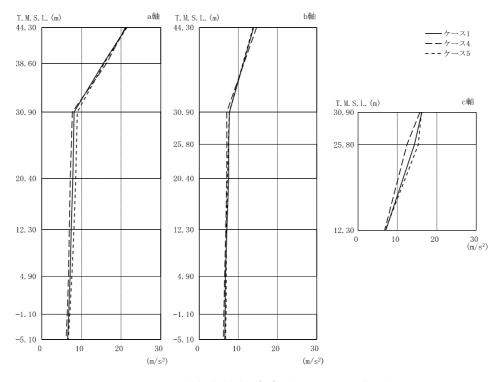


図 2-172 最大応答加速度 (Ss-3, NS 方向)

表 2-152 最大応答加速度 (Ss-3, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s ²)		
1	号	1	4	5
	1	21.3	21.1	21.5
	3	15.5	16.3	15.7
	4	8.18	7.69	8.96
a 軸	9	7.85	7.18	8.53
T PA	11	7.42	6.94	8.09
	13	7.14	6.75	7.59
	15	6.79	6.42	7.06
	2	13.9	14.6	13.7
	5	7.70	7.02	7.64
	7	7.51	7.03	7.42
b	10	7.51	7.00	7.15
軸	12	7.05	6.76	6.93
	14	6.68	6.47	6.90
	16	6.60	6.27	6.81
	17	6.53	6.15	6.69
С	6	16.2	15.7	16.1
華	8	14.3	12.4	15.3

④建屋剛性(コア強度平均)考慮モデル

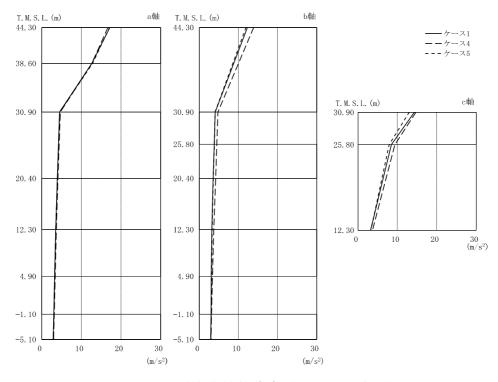


図 2-173 最大応答加速度 (Ss-4, NS 方向)

表 2-153 最大応答加速度 (Ss-4, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
124	号	1	4	(5)
	1	17.2	16.7	17.1
	3	12.6	12.6	12.8
	4	4.49	4.68	4.53
a 軸	9	3.95	4.11	3.98
ти	11	3.52	3.68	3.54
	13	3.25	3.39	3.28
	15	3.02	3.15	3.08
	2	12.3	13.9	11.9
	_	4.04	4.74	4.00
	5	4.04	4.74	4.02
	7	3.79	4.47	3.84
ь				
b 軸	7	3.79	4.47	3.84
	7	3.79 3.54	4.47	3.84
	7 10 12	3.79 3.54 3.19	4.47 4.16 3.69	3.84 3.58 3.27
	7 10 12 14	3.79 3.54 3.19 3.05	4.47 4.16 3.69 3.33	3.84 3.58 3.27 3.16
	7 10 12 14 16	3.79 3.54 3.19 3.05 2.96	4.47 4.16 3.69 3.33 3.11	3.84 3.58 3.27 3.16 3.05

④建屋剛性(コア強度平均)考慮モデル

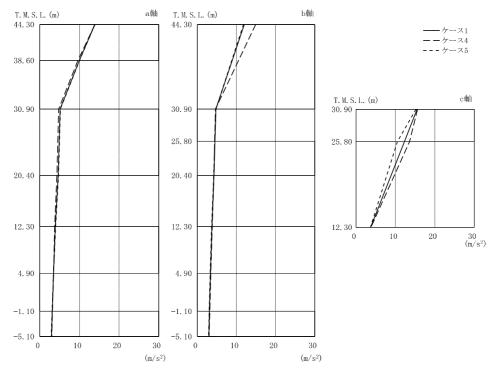


図 2-174 最大応答加速度 (Ss-5, NS 方向)

表 2-154 最大応答加速度 (Ss-5, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
122	号	1	4	(5)
	1	13.9	13.9	13.9
	3	9.96	9.62	10.0
	4	5.12	4.77	5.22
a 軸	9	4.65	4.32	4.74
ТРИ	11	3.93	3.75	4.00
	13	3.48	3.46	3.47
	15	3.14	3.19	3.11
	2	12.0	14.9	11.8
	5	4.75	4.63	4.73
	5 7	4.75 4.51	4.63	4.73 4.48
b				
b 軸	7	4.51	4.44	4.48
	7	4.51	4.44	4.48
	7 10 12	4.51 4.23 3.72	4.44 4.22 3.78	4.48 4.18 3.65
	7 10 12 14	4.51 4.23 3.72 3.34	4.44 4.22 3.78 3.43	4.48 4.18 3.65 3.28
	7 10 12 14 16	4.51 4.23 3.72 3.34 3.09	4.44 4.22 3.78 3.43 3.18	4.48 4.18 3.65 3.28 3.04

④建屋剛性(コア強度平均)考慮モデル

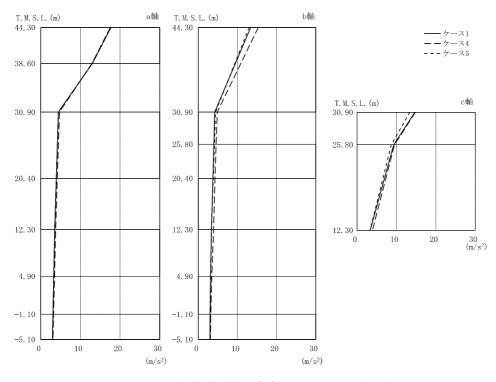


図 2-175 最大応答加速度 (Ss-6, NS 方向)

表 2-155 最大応答加速度 (Ss-6, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
11/.	号	1	4	5
	1	17.7	17.5	17.7
	3	13.0	12.9	13.0
	4	4.45	4.74	4.46
a 軸	9	3.92	4.15	3.91
7,14	11	3.51	3.74	3.52
	13	3.25	3.45	3.28
	15	3.06	3.23	3.10
	2	13.4	15.3	13.0
	5	4.18	4.85	4.37
	7	3.99	4.55	4.14
b	10	3.71	4.25	3.81
軸	12	3.34	3.90	3.31
	14	3.10	3.44	3.18
	16	3.00	3.21	3.07
	17	2.93	3.09	2.99
С	6	14.7	14.8	13.4
軸	8	9.31	9.52	8.70

④建屋剛性(コア強度平均)考慮モデル

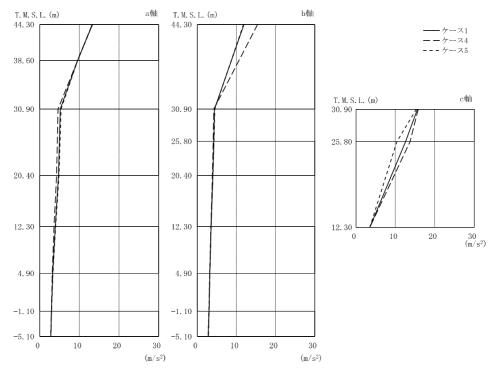


図 2-176 最大応答加速度 (Ss-7, NS 方向)

表 2-156 最大応答加速度 (Ss-7, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
135	号	1	4	5
	1	13.3	13.2	13.3
	3	9.54	9.55	9.54
	4	5.21	4.62	5.39
a 軸	9	4.73	4.24	4.86
	11	3.95	3.63	4.02
	13	3.30	3.17	3.33
	15	2.96	2.96	2.94
	2	11.9	15.4	11.8
	5	4.40	4.20	4.45
	5 7	4.40	4.20 4.05	4.45 4.23
b				
b 軸	7	4.21	4.05	4.23
	7	4.21	4.05	4.23
	7 10 12	4.21 3.97 3.53	4.05 3.86 3.50	4.23 3.97 3.50
	7 10 12 14	4.21 3.97 3.53 3.19	4.05 3.86 3.50 3.21	4.23 3.97 3.50 3.16
	7 10 12 14 16	4.21 3.97 3.53 3.19 2.96	4.05 3.86 3.50 3.21 2.98	4.23 3.97 3.50 3.16 2.92

④建屋剛性(コア強度平均)考慮モデル

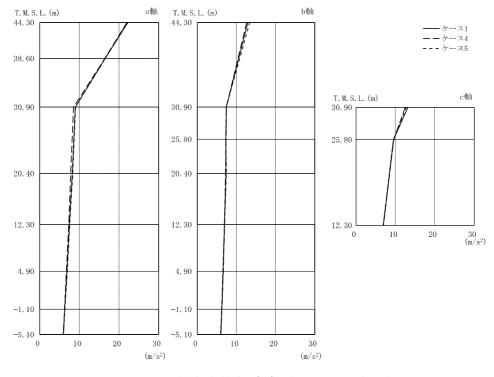


図 2-177 最大応答加速度 (Ss-8, NS 方向)

表 2-157 最大応答加速度 (Ss-8, NS 方向)

部位	質点番	最大応答加速度一覧表 (m/s²)		
124	号	1	4	(5)
	1	22.2	22.0	22.1
	3	16.5	16.4	16.5
	4	8.99	8.53	9.04
a 軸	9	8.23	7.82	8.34
1 1	11	7.47	7.32	7.56
	13	6.88	6.73	6.98
	15	6.28	6.29	6.34
	2	12.9	12.6	13.4
	5	7.41	7.42	7.36
	7	7.28	7.30	7.28
ь		7.28 7.31	7.30 7.21	7.28 7.40
b 軸	7			
	7	7.31	7.21	7.40
	7 10 12	7.31 6.94	7.21 6.98	7.40 6.95
	7 10 12 14	7.31 6.94 6.58	7.21 6.98 6.65	7.40 6.95 6.51
	7 10 12 14 16	7.31 6.94 6.58 6.26	7.21 6.98 6.65 6.26	7.40 6.95 6.51 6.23

④建屋剛性(コア強度平均)考慮モデル

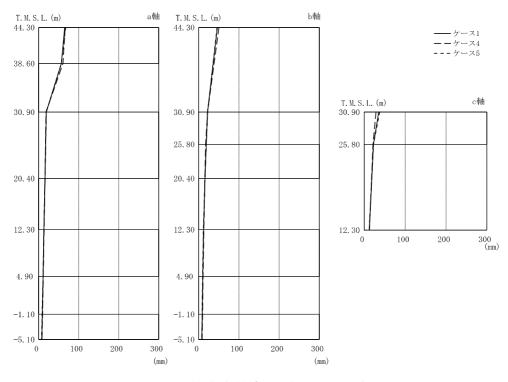


図 2-178 最大応答変位 (Ss-1, NS 方向)

表 2-158 最大応答変位 (Ss-1, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
135	号	1	4	5
	1	65.5	66.4	67.5
	3	56.8	60.9	56.8
	4	19.1	18.5	19.2
a 軸	9	16.3	16.1	16.3
1,14	11	13.5	13.7	13.4
	13	11.3	11.7	11.1
	15	9.29	9.88	8.97
	2	46.2	50.5	45.5
	5	22.2	22.2	22.6
	7	18.8	17.4	18.9
b	10	15.9	15.4	15.6
軸	12	12.2	12.9	11.9
	14	10.4	11.1	10.0
	16	8.96	9.68	8.55
	17	7.93	8.66	7.53
С	6	35.4	28.7	37.8
軸	8	22.8	21.5	22.4

④建屋剛性(コア強度平均)考慮モデル

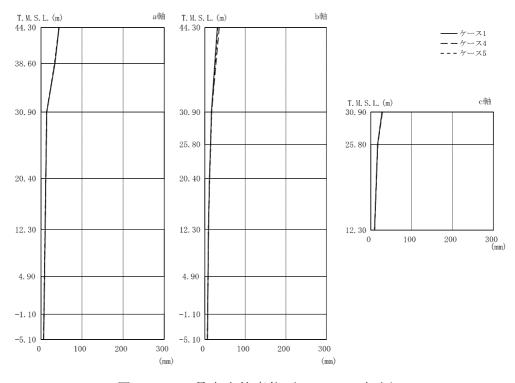


図 2-179 最大応答変位 (Ss-2, NS 方向)

表 2-159 最大応答変位 (Ss-2, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
122	号	1	4	(5)
	1	44.4	43.7	43.9
	3	34.1	33.6	32.8
	4	14.4	13.8	14.3
a 軸	9	12.1	11.9	12.0
I pa	11	10.2	10.1	9.98
	13	8.70	8.60	8.51
	15	7.46	7.39	7.27
	2	30.8	35.8	32.1
	5	16.4	16.9	17.3
	7	14.3	14.4	14.7
b	10	11.9	11.8	12.0
軸	12	9.42	9.38	9.21
	14	8.24	8.19	8.04
	16	7.31	7.26	7.12
	17	6.65	6.63	6.47
С	6	27.9	28.7	27.5
軸	8	16.6	17.0	16.6

④建屋剛性(コア強度平均)考慮モデル

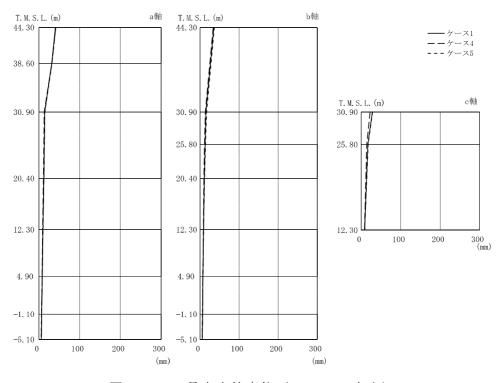


図 2-180 最大応答変位 (Ss-3, NS 方向)

表 2-160 最大応答変位 (Ss-3, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
1	号	1	4	(5)
	1	40.8	41.4	41.5
	3	31.6	32.0	32.0
	4	14.3	13.0	14.7
a 軸	9	12.1	11.2	12.2
1,14	11	9.98	9.37	9.97
	13	8.26	7.93	8.17
	15	6.74	6.70	6.59
	2	35.2	33.6	36.5
	5	15.1	13.7	16.8
	7	13.1	11.6	13.8
b	10	11.3	10.1	11.5
軸	12	8.95	8.53	8.84
	14	7.60	7.46	7.46
	16	6.52	6.55	6.35
	17	5.73	5.85	5.55
С	6	28.4	22.6	28.8
軸	8	16.8	14.3	17.9

④建屋剛性(コア強度平均)考慮モデル

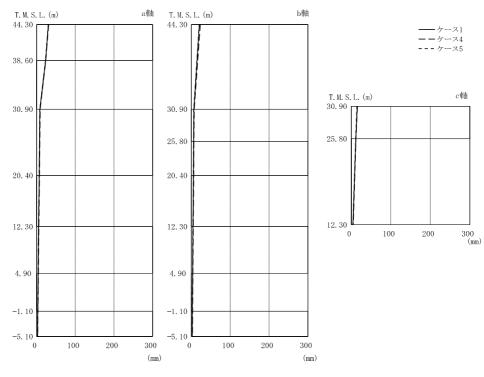


図 2-181 最大応答変位 (Ss-4, NS 方向)

表 2-161 最大応答変位 (Ss-4, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		・覧表
137.	号	1	4	(5)
	1	30.3	31.2	30.2
	3	23.0	23.8	22.9
	4	8.45	9.14	8.47
a 軸	9	6.67	7.37	6.69
7,14	11	5.08	5.78	5.08
	13	3.89	4.55	3.89
	15	2.93	3.55	2.93
	2	20.9	23.1	20.5
	5	6.63	7.55	6.49
	7	6.01	6.90	5.89
b	10	5.35	6.21	5.25
軸	12	4.29	5.08	4.22
	14	3.41	4.13	3.38
	16	2.77	3.41	2.76
	17	2.33	2.92	2.33
С	6	15.1	15.7	14.3
軸	8	11.5	12.0	11.1

④建屋剛性(コア強度平均)考慮モデル

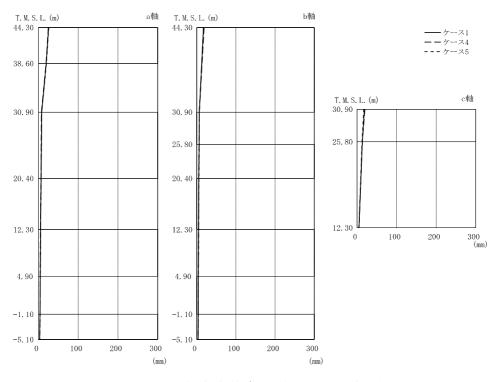


図 2-182 最大応答変位 (Ss-5, NS 方向)

表 2-162 最大応答変位 (Ss-5, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		-覧表
122	号	1	4	(5)
	1	25.7	24.8	26.0
	3	19.8	19.0	20.0
	4	8.26	7.75	8.33
a 軸	9	6.81	6.48	6.83
ТРИ	11	5.45	5.31	5.59
	13	4.61	4.54	4.71
	15	3.88	3.87	3.94
	2	17.5	19.1	17.4
	5	6.86	6.58	6.83
	7	6.33	6.10	6.34
b	10	5.75	5.57	5.84
軸	12	4.92	4.85	5.02
	14	4.29	4.26	4.36
	16	3.78	3.78	3.83
	17	3.39	3.42	3.42
С	6	18.6	19.7	17.1
軸	8	13.4	13.6	12.6

④建屋剛性(コア強度平均)考慮モデル

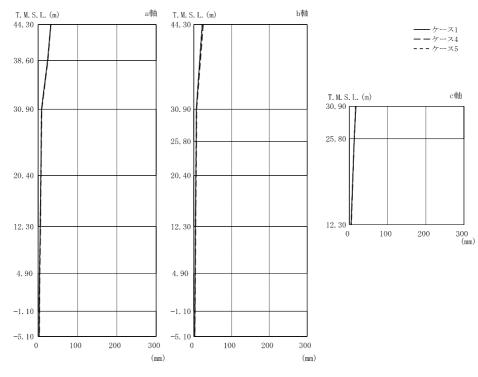


図 2-183 最大応答変位 (Ss-6, NS 方向)

表 2-163 最大応答変位 (Ss-6, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
135	号	1	4	(5)
	1	32.1	32.7	32.0
	3	24.2	24.9	24.2
	4	8.74	9.40	8.69
a 軸	9	6.87	7.57	6.81
1,14	11	5.21	5.94	5.15
	13	3.98	4.68	3.94
	15	3.00	3.67	2.97
	2	22.5	24.8	22.0
	5	6.95	7.86	6.75
	7	6.27	7.17	6.10
b	10	5.58	6.44	5.42
軸	12	4.44	5.25	4.33
	14	3.52	4.27	3.45
	1.0	2.85	3.53	2.82
	16	1		
	17	2.48	3.04	2.50
С				2.50 16.1

④建屋剛性(コア強度平均)考慮モデル

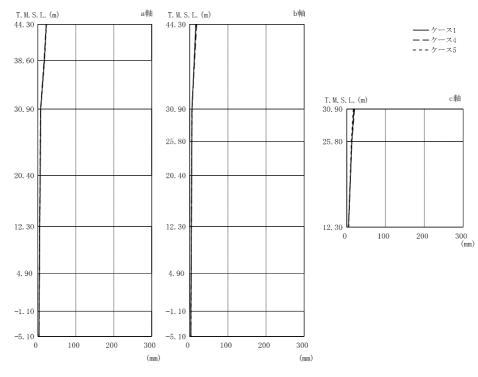


図 2-184 最大応答変位 (Ss-7, NS 方向)

表 2-164 最大応答変位 (Ss-7, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
122	号	1	4	(5)
	1	22.6	22.2	22.9
	3	17.5	16.6	17.9
	4	7.73	7.25	7.85
a 軸	9	6.38	6.05	6.43
714	11	5.10	4.92	5.23
	13	4.37	4.23	4.46
	15	3.72	3.65	3.77
	2	16.2	18.5	16.4
	5	6.39	6.12	6.40
	7	5.89	5.67	5.89
b	10	5.35	5.18	5.42
軸	12	4.63	4.49	4.73
	14	4.07	3.98	4.14
	16	3.62	3.56	3.66
	17	3.27	3.25	3.29
С	6	18.8	20.0	16.9
軸	8	13.0	13.1	12.1

④建屋剛性(コア強度平均)考慮モデル

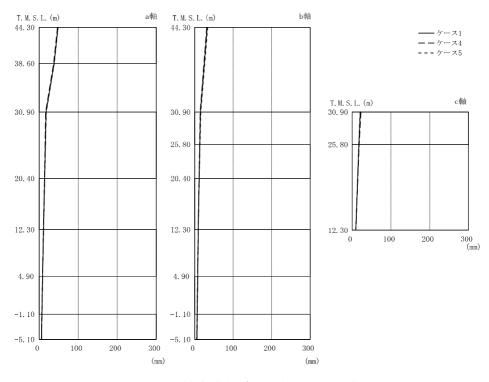


図 2-185 最大応答変位 (Ss-8, NS 方向)

表 2-165 最大応答変位 (Ss-8, NS 方向)

部位	質点番	最大応答変位一覧表 (mm)		
137.	号	1	4	(5)
	1	48.1	46.6	48.6
	3	38.2	37.0	38.6
	4	17.6	16.4	18.2
a 軸	9	13.9	13.4	14.2
7,14	11	10.9	10.8	11.0
	13	8.72	8.82	8.67
	15	6.90	7.12	6.83
	2	32.9	31.5	33.9
	5	15.3	14.4	15.8
	7	13.4	13.0	13.7
b	10	11.8	11.7	11.9
軸	12	9.49	9.60	9.42
	14	7.89	8.07	7.79
	16	6.66	6.88	6.56
	17	5.82	6.07	5.70
С	6	21.3	22.8	20.7
軸	8	17.5	18.2	17.3

④建屋剛性(コア強度平均)考慮モデル

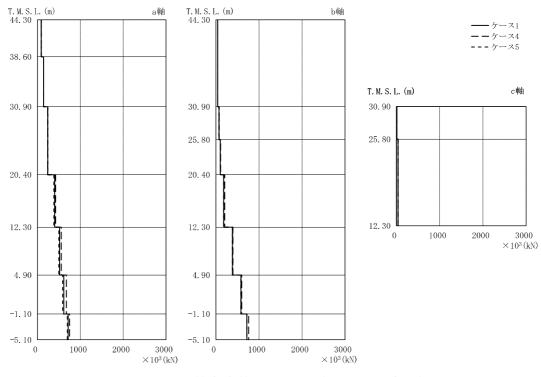


図 2-186 最大応答せん断力 (Ss-1, NS 方向)

表 2-166 最大応答せん断力 (Ss-1, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)			
122.	号	1	4	5	
	1	86.3	85.9	86.4	
	2	145	145	145	
	3	241	239	240	
a 軸	4	401	425	383	
	5	519	554	498	
	6	617	674	589	
	7	716	751	697	
	9	41.2	41.2	41.2	
	10	70.4	74.4	71.9	
	11	99.4	110	102	
b 軸	12	180	205	179	
	13	384	396	382	
	14	581	601	581	
	15	718	758	718	
С	16	10.8	10.8	10.8	
軸	17	38.0	35.9	37.3	

④建屋剛性(コア強度平均)考慮モデル

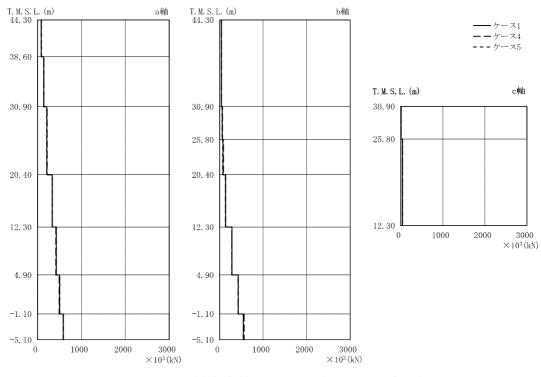


図 2-187 最大応答せん断力 (Ss-2, NS 方向)

表 2-167 最大応答せん断力 (Ss-2, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
111.	号	1	4	5
	1	85.4	84.9	86.8
	2	145	145	145
	3	213	220	208
a 軸	4	336	332	335
	5	428	416	428
	6	505	494	507
	7	585	587	589
	9	41.2	41.2	41.2
	10	59.3	66.4	56.7
	11	76.3	89.9	72.1
b 軸	12	139	136	139
	13	285	282	283
	14	428	426	429
	15	547	562	543
С	16	10.8	10.8	10.8
軸	17	42.3	41.1	42.7

④建屋剛性(コア強度平均)考慮モデル

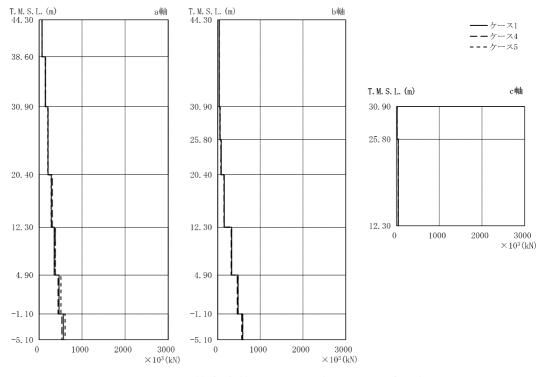


図 2-188 最大応答せん断力 (Ss-3, NS 方向)

表 2-168 最大応答せん断力 (Ss-3, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
12.	号	1	4	5
	1	68.8	68.5	68.9
	2	145	145	145
	3	207	210	203
a 軸	4	283	306	282
	5	350	378	372
	6	462	442	506
	7	562	531	604
	9	34.1	35.1	33.5
	10	52.4	56.0	50.7
	11	81.3	76.7	75.7
b 軸	12	152	144	149
	13	328	316	326
	14	477	458	475
	15	586	562	590
С	16	10.8	10.8	10.8
軸	17	38.5	38.1	40.6

④建屋剛性(コア強度平均)考慮モデル

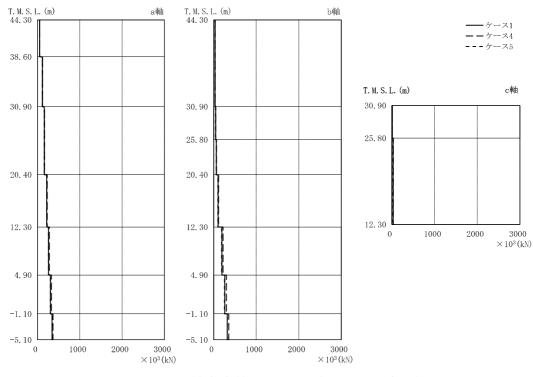


図 2-189 最大応答せん断力 (Ss-4, NS 方向)

表 2-169 最大応答せん断力 (Ss-4, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
122.	号	1	4	5
	1	53.7	53.8	53.2
	2	119	119	120
	3	162	168	163
a 軸	4	217	229	217
	5	260	279	259
	6	307	330	307
	7	345	367	347
	9	30.3	33.1	29.8
	10	45.5	49.9	44.3
	11	60.4	66.8	58.0
b 軸	12	102	114	98.7
	13	193	219	185
	14	261	298	256
	15	319	355	323
С	16	10.4	10.8	9.32
軸	17	28.4	31.0	26.1

④建屋剛性(コア強度平均)考慮モデル

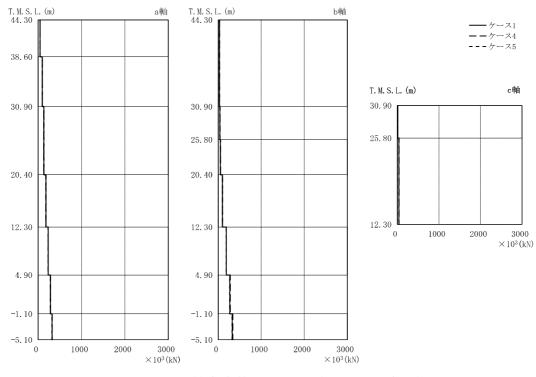


図 2-190 最大応答せん断力 (Ss-5, NS 方向)

表 2-170 最大応答せん断力 (Ss-5, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
122.	号	1	4	5
	1	43.6	44.5	43.7
	2	95.9	93.7	96.4
	3	131	127	132
a 軸	4	178	174	178
	5	229	226	228
	6	284	284	283
	7	320	324	317
	9	26.7	31.2	26.6
	10	37.3	40.8	37.4
	11	51.4	52.8	50.8
b 軸	12	97.5	96.6	96.5
	13	187	189	184
	14	270	278	264
	15	324	338	322
С	16	10.8	10.8	10.8
軸	17	37.7	40.9	33.7

④建屋剛性(コア強度平均)考慮モデル

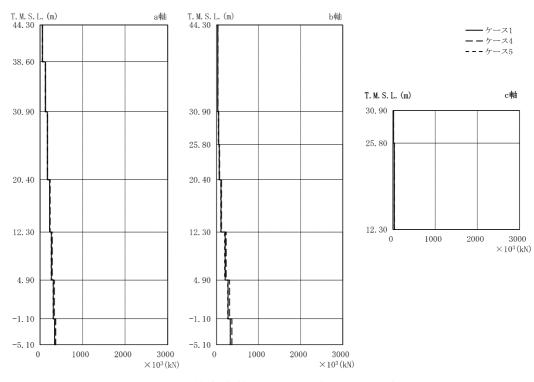


図 2-191 最大応答せん断力 (Ss-6, NS 方向)

表 2-171 最大応答せん断力 (Ss-6, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
122.	号	1	4	5
	1	57.0	57.1	56.9
	2	126	125	126
	3	172	176	172
a 軸	4	226	237	225
	5	267	285	265
	6	311	335	309
	7	344	370	344
	9	32.7	35.8	32.1
	10	49.2	54.2	47.7
	11	64.7	71.4	62.3
b 軸	12	108	119	104
	13	205	228	197
	14	274	310	267
	15	329	367	330
с	16	10.7	10.7	9.63
軸	17	29.3	31.4	27.3

④建屋剛性(コア強度平均)考慮モデル

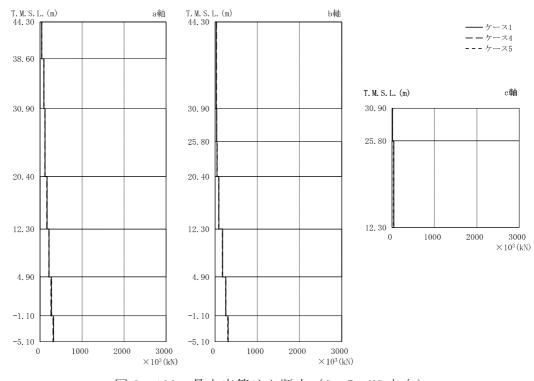


図 2-192 最大応答せん断力 (Ss-7, NS 方向)

表 2-172 最大応答せん断力 (Ss-7, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
12.	号	1	4	5
	1	41.3	41.7	41.1
	2	92.3	92.9	91.8
	3	116	115	116
a 軸	4	166	161	166
	5	212	208	212
	6	269	259	273
	7	319	306	320
	9	26.2	31.4	26.4
	10	35.2	39.9	35.8
	11	48.0	49.3	48.1
b 軸	12	90.2	87.9	90.4
	13	177	176	176
	14	255	257	252
	15	306	312	301
С	16	10.8	10.8	10.8
軸	17	38.6	41.4	33.4

④建屋剛性(コア強度平均)考慮モデル

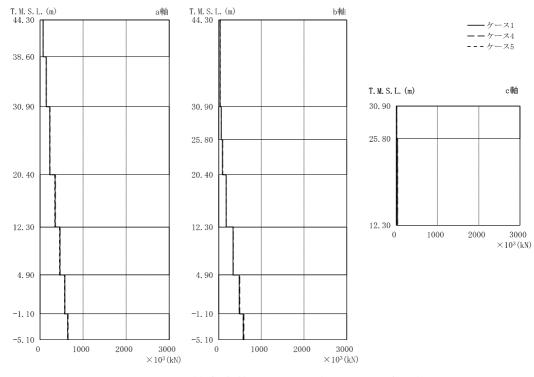


図 2-193 最大応答せん断力 (Ss-8, NS 方向)

表 2-173 最大応答せん断力 (Ss-8, NS 方向)

部位	部材番	最大応答せん断力一覧表 (×10 ³ kN)		
1.22.	号	1	4	5
	1	68.7	68.3	68.5
	2	145	145	145
	3	224	228	224
a 軸	4	348	356	343
	5	459	464	454
	6	574	576	567
	7	642	648	638
	9	34.2	33.1	35.1
	10	62.3	61.9	63.4
	11	90.7	91.5	91.3
b 軸	12	175	174	175
	13	336	340	338
	14	484	493	484
	15	575	591	572
С	16	9.20	9.59	8.59
軸	17	30.1	31.3	28.8

④建屋剛性(コア強度平均)考慮モデル

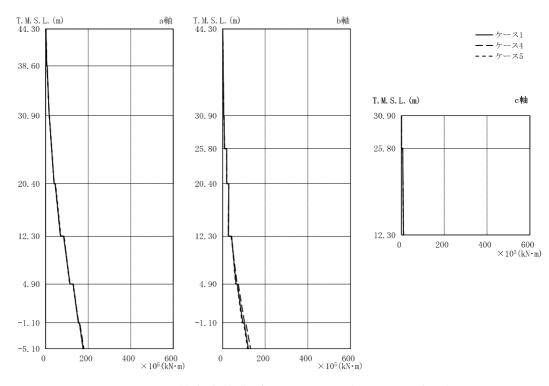


図 2-194 最大応答曲げモーメント (Ss-1, NS 方向)

表 2-174 最大応答曲げモーメント (Ss-1, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
122	号	1	4	5
	1	1.27 5.18	1.19 5.12	1.29 5.16
	2	7.18 16.4	6.60 16.4	6.71 16.4
	3	16.7 39.8	16.7 39.8	16.7 39.6
a 軸	4	44.8 69.7	44.4 69.0	46.3 71.2 86.7
	5	84.3 114	85.3 114	113
	6	129 153	129 155	128 154
	7	159 176	160 180	159 175
	9	0.673 5.54	0.619 5.53	0.681 5.55
	10	6.44 9.14	6.32 9.17	6.26 9.16
	11	19.5 19.3	18.2 18.7	19.5 19.7
b 軸	12	29.3 26.8	29.5 27.0	29.3 26.7
	13	41.9 63.4	40.2 68.7	42.7 61.0
	14	68.9 94.7	73.5 103	67.6 91.6
	15	101 121	109 131	99.1 117
С	16	0.272 0.638	0.317 0.646	0.294 0.630
軸	17	6.30 9.76	5.70 9.78	6.32 9.77

④建屋剛性(コア強度平均)考慮モデル

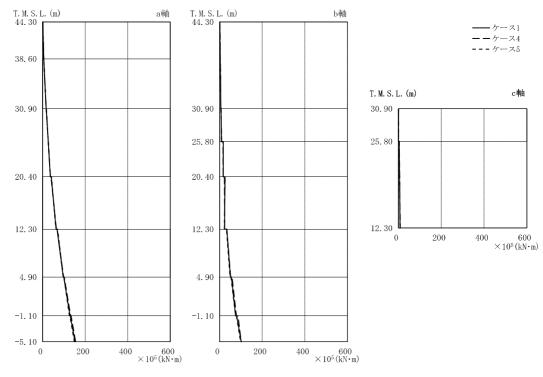


図 2-195 最大応答曲げモーメント (Ss-2, NS 方向)

表 2-175 最大応答曲げモーメント (Ss-2, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 $(\times 10^5 \mathrm{kN \cdot m})$		
122	号	1	4	5
	1	1.01 5.16	0.939 5.10	1.10 5.28
	2	5.30 16.5	5.23 16.4	5.51 16.7
	3	17.0 36.2	16.8 36.5	17.4 36.2
a 軸	4	40.8 63.3	39.2 64.5	41.1 62.7
	5	68.1 96.9	68.2 98.9	70.6 96.1
	6	99.6 129	102 132	100 126
	7	130 152	134 155	128 149
	9	0.875 5.62	0.993 5.62	0.830 5.60
	10	6.72 8.92	6.66 8.72	6.57 8.71
	11	17.1 17.3	16.2 16.9	17.1 16.9
b 軸	12	25.3 22.8	22.7 23.7	25.6 22.2
	13	33.6 51.0	33.9 51.6	32.5 48.6
	14	55.8 74.8	58.2 78.9	53.3 75.3
	15	80.0 101	86.2 101	78.5 98.1
c	16	0.175 0.570	0.179 0.577	0.196 0.583
軸	17	3.27 7.67	3.72 8.68	3.31 7.83

④建屋剛性(コア強度平均)考慮モデル

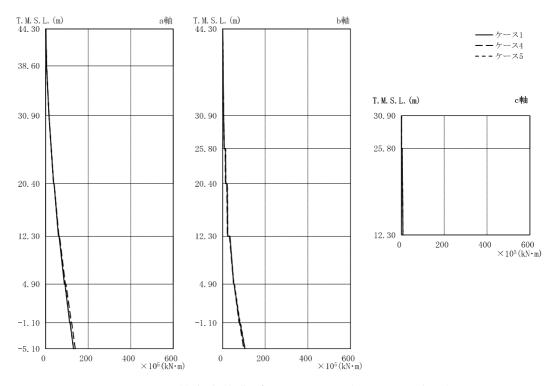


図 2-196 最大応答曲げモーメント (Ss-3, NS 方向)

表 2-176 最大応答曲げモーメント (Ss-3, NS 方向)

部 位	部材	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
	番号	①	(4)	(5)
	1	0.754 4.03	0.731 4.08	0.804 4.08
	2	4.11 15.3	4.26 15.4	4.22 15.3
	3	15.6 36.9	15.6 37.5	15.6 36.4
a 軸	4	39.2 60.3	39.8 62.2	39.7 60.4
	5	62.7 87.8	65.0 92.0	63.2 88.0
	6	90.8 113	95.6 121	90.1 114
	7	115 131	122 139	115 131
	9	0.414 4.59	$0.430 \\ 4.73$	$0.414 \\ 4.50$
	10	4.96 7.43	5.23 7.72	4.95 7.33
	11	13.9 15.3	11.7 13.5	14.2 15.7
b 軸	12	21.5 23.8	19.0 22.5	22.0 23.7
	13	34.5 51.3	32.2 51.6	34.4 52.8
	14	53.7 80.2	54.1 77.4	55.6 81.7
	15	82.0 105	79.2 98.6	84.0 105
С	16	0.202 0.589	0.220 0.609	0.213 0.598
軸	17	3.32 7.41	2.82 7.17	3.27 7.89

④建屋剛性(コア強度平均)考慮モデル

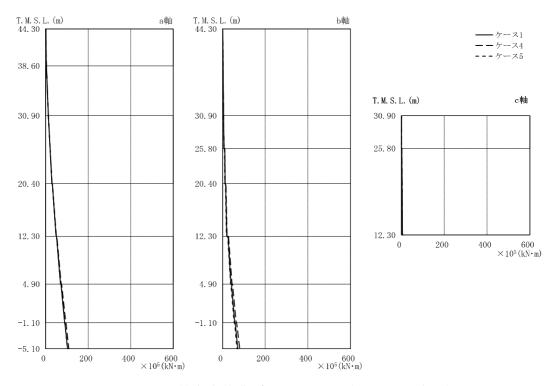


図 2-197 最大応答曲げモーメント (Ss-4, NS 方向)

表 2-177 最大応答曲げモーメント (Ss-4, NS 方向)

部位	部材番	最大応答曲げモーメント―覧表 (×10 ⁵ kN・m)		
1177	号	1	4	⑤
	1	0.546 3.17	$0.557 \\ 3.19$	$0.550 \\ 3.17$
	2	3.23 12.3 12.5	3.25 12.4 12.5	3.24 12.5
	3	29.5	30.1	12.7 29.6
a 軸	4	31.2 48.5	31.8 50.3	31.4 48.7
	5	51.1 69.7	52.8 73.0	51.3 69.7
	6	71.8 89.0	75.2 94.2	71.8 89.0
	7	90.1 103	95.3 109	90.0 102
	9	0.364 4.07	0.399 4.43	0.358 4.00
	10	4.19 6.51	4.59 7.05	4.08 6.33
	11	10.6 12.0	10.2 11.5	9.16 10.3
b 軸	12	14.7 19.0	15.8 21.0	13.7 18.0
	13	25.1 39.4	27.8 44.0	23.5 37.2
	14	41.5 56.8	46.3 64.0	39.1 54.2
	15	59.2 70.8	66.5 80.1	56.3 68.0
С	16	0.0384 0.529	0.0400 0.550	0.0346 0.476
韠	17	2.15 5.06	2.32 5.05	$\frac{1.98}{4.76}$

④建屋剛性(コア強度平均)考慮モデル

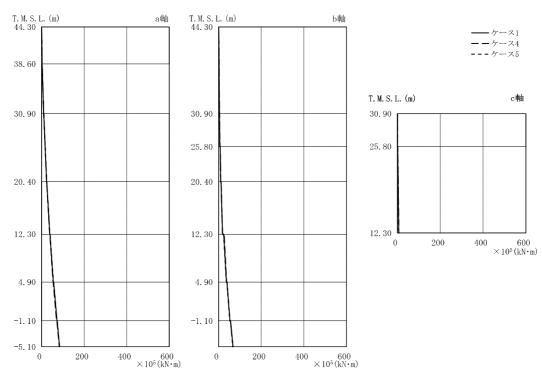


図 2-198 最大応答曲げモーメント (Ss-5, NS 方向)

表 2-178 最大応答曲げモーメント (Ss-5, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
1火	号	1	4	5
	1	0.436 2.53	0.439 2.55	0.437 2.54
	2	2.55 9.94	2.55 9.73	2.57 9.99
	3	10.0 23.7	9.78 23.1	10.1 23.9
a 軸	4	24.3 38.6	23.7 37.6	24.5 38.8
	5	39.4 55.3	38.3 53.9	39.7 55.6
	6	56.5 72.2	54.6 70.2	56.7 72.1
	7	73.3 84.7	71.3 83.0	73.3 84.5
	9	0.320 3.60	0.373 4.19	0.318 3.58
	10	3.79 5.66	4.33 6.38	3.79 5.67
	11	7.09 9.69	7.69 10.5	7.30 9.70
b 軸	12	11.1 18.3	11.7 17.8	11.8 17.7
	13	23.9 36.5	25.9 37.9	23.1 35.9
	14	38.9 53.4	39.5 53.2	38.4 52.7
	15	56.0 67.4	55.6 67.6	55.3 66.4
c	16	0.133 0.556	0.226 0.571	0.0553 0.551
軸	17	1.33 6.23	1.49 6.78	2.06 5.55

④建屋剛性(コア強度平均)考慮モデル

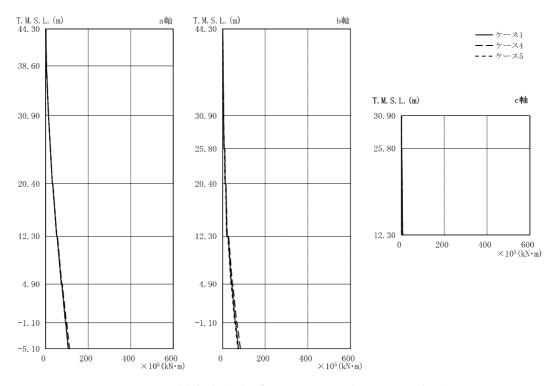


図 2-199 最大応答曲げモーメント (Ss-6, NS 方向)

表 2-179 最大応答曲げモーメント (Ss-6, NS 方向)

部	部材	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
位	番号	①	4	5
	1	0.569 3.40	0.577 3.40	0.574 3.40
	2	3.47 13.1	3.46 13.1	3.47 13.2
	3	13.3 31.3	13.3 31.7	13.4 31.4
a 軸	4	33.3 51.4	33.6 52.7	33.4 51.5
	5	54.2 73.4	55.4 76.1	54.2 73.3
	6	75.6 93.1	78.3 97.5	75.4 92.7
	7	94.2 106	98.7 112	93.7 106
	9	0.392 4.39	0.428 4.80	0.384 4.30
	10	$4.45 \\ 6.94$	$\frac{4.85}{7.56}$	4.31 6.73
	11	10.8 12.3	10.8 12.5	8.86 10.5
b 軸	12	15.6 19.3	16.1 21.2	14.2 18.2
	13	26.0 41.2	$28.4 \\ 45.3$	24.4 38.9
	14	43.3 59.6	47.6 66.2	40.9 56.7
	15	61.9 74.2	68.7 83.0	58.8 71.1
С	16	0.0396 0.544	0.0398 0.545	0.0357 0.491
軸	17	1.86 5.23	1.83 5.40	1.84 4.84

④建屋剛性(コア強度平均)考慮モデル

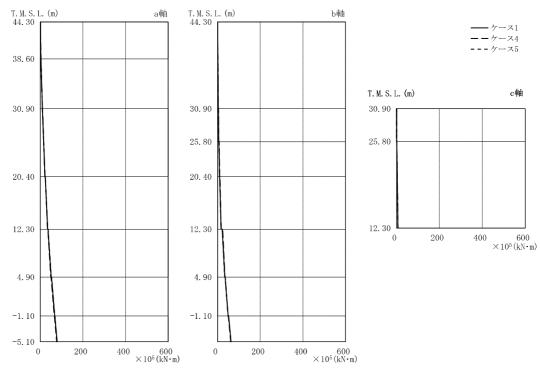


図 2-200 最大応答曲げモーメント (Ss-7, NS 方向)

表 2-180 最大応答曲げモーメント (Ss-7, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
132.	号	1	4	5
	1	0.426 2.41	0.432 2.43	0.425 2.41
	2	2.45 9.55	2.47 9.62	2.43 9.50
	3	9.65 21.7	9.72 21.7	9.60 21.7
a 軸	4	22.7 34.0	22.7 33.7	22.7 34.1
	5	35.7 50.7	34.8 48.6	36.2 51.1
	6	52.5 67.0	50.3 64.8	52.9 67.4
	7	68.0 78.6	65.8 76.5	68.4 78.8
	9	0.313 3.52	0.376 4.23	0.314 3.55
	10	3.71 5.47	4.39 6.41	3.74 5.51
	11	6.66 9.00	7.64 10.2	6.64 9.02
b 軸	12	9.95 16.6	11.3 16.6	9.97 16.7
	13	22.0 33.8	24.2 35.0	21.6 33.7
	14	35.8 49.8	36.4 48.9	35.7 49.6
	15	51.9 62.9	50.9 62.1	51.7 62.6
С	16	0.115 0.554	0.227 0.571	0.0475 0.552
軸	17	1.21 6.22	1.39 6.74	1.17 5.47

④建屋剛性(コア強度平均)考慮モデル

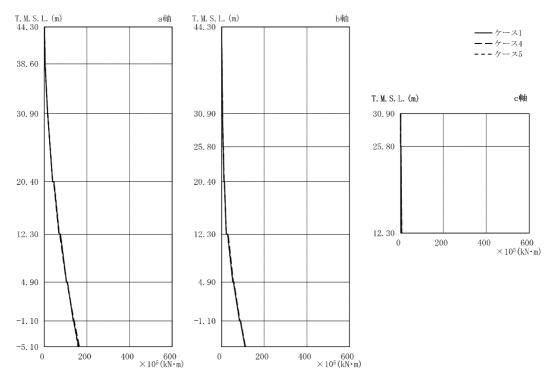


図 2-201 最大応答曲げモーメント (Ss-8, NS 方向)

表 2-181 最大応答曲げモーメント (Ss-8, NS 方向)

部位	部材番	最大応答曲げモーメント一覧表 (×10 ⁵ kN·m)		
1111	号	1	4	5
	1	0.941 4.13	$0.875 \\ 4.00$	$0.962 \\ 4.15$
	2	4.25 15.4	4.07 15.3	4.29 15.5
	3	15.8 39.2	15.5 39.1	15.8 39.3
a 軸	4	45.5 70.1	43.4 68.7	46.2 70.8
	5	75.8 105	72.3 104	75.9 104
	6	108 136	106 140	109 136
	7	138 161	141 165	138 159
	9	0.414 4.55	0.403 4.42	0.425 4.67
	10	4.41 7.49	4.41 7.37	4.54 7.60
	11	8.22 11.7	8.39 12.1	8.27 11.7
b 軸	12	13.7 22.1	13.3 22.7	14.0 22.1
	13	28.8 53.2	30.9 55.6	28.4 53.0
	14	56.2 84.6	58.4 86.5	56.3 85.0
	15	87.8 110	89.5 112	88.7 111
С	16	0.0341 0.472	0.0362 0.495	0.0319 0.441
軸	17	1.70 4.98	1.85 5.93	1.75 4.82

④建屋剛性(コア強度平均)考慮モデル

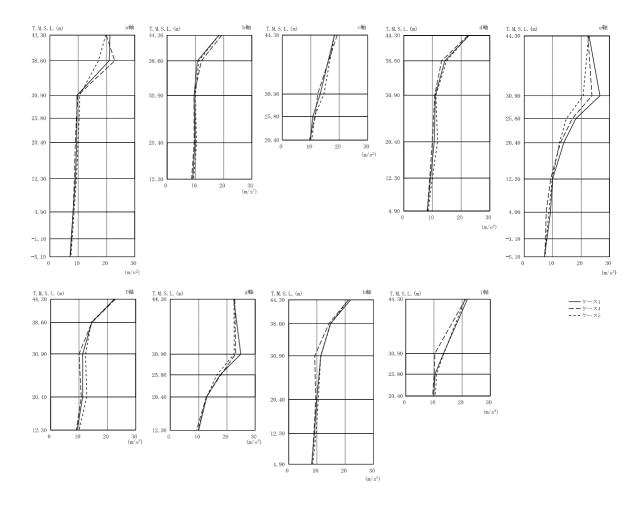


図 2-202 最大応答加速度 (Ss-1, EW 方向)

表 2-182 最大応答加速度 (Ss-1, EW 方向)

部	質点	最大応答加速度一覧表 (m/s ²)		
位	番号	(Ī)		(5)
	1	21.2		19.7
	6	21.0		17.1
	11	9.53		10.5
	20	9.55		10.3
a	25	9.42	8.95	9.93
軸	32	9.02	8.64	9.39
	36	8.19	8.20	8.52
	38	7.50	7.62	7.81
	40	7.10	7.23	7.40
	2	18.3	19.3	18.3
b	7	10.7	12.1	11.2
軸	12	9.57	9.52	9.96
	26	9.85	(4) 19.9 22.9 9.88 9.37 8.95 8.64 8.20 7.62 7.23 19.3 12.1	10.4
С	19	13.3	12.4	14.6
軸	21	10.7	11.6	11.3
	3	22.8	22.4	22.6
	8	14.3	13.2	14.9
d 軸	13	11.0	10.8	11.2
平四	27	10.6	9.98	11.8
	33	9.34	9.08	9.98
	18	26.6	23.8	20.7
	22	18.1	16.9	14.8
e	31	13.9	12.7	12.4
軸	35	9.98	9.29	9.84
	37	9.22	7.74	8.65
	39	7.98	7.48	7.76
	4	22.4	22.8	22.5
f	9	14.5	14.5	14.3
軸	14	11.3	10.0	12.3
	28	11.3	10.8	12.7
	17	24.9	23.1	22.6
g 軸	23	17.6	17.8	16.4
	30	12.8	12.7	12.9
	5	21.9	21.2	21.1
	10	14.8	14.2	14.9
h 軸	15	11.4	9.22	11.3
	29	9.90	9.55	10.5
	34	9.12	8.94	9.68
i	16	13.4	10.3	13.5
軸	24	10.4	10.1	10.9

④建屋剛性(コア強度平均)考慮モデル

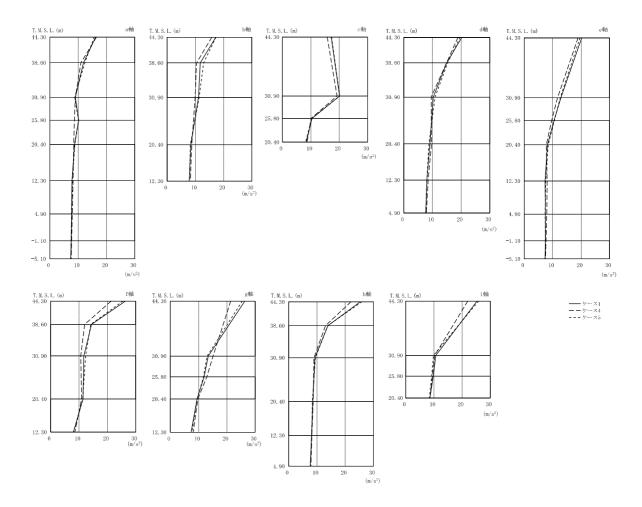


図 2-203 最大応答加速度 (Ss-2, EW 方向)

表 2-183 最大応答加速度 (Ss-2, EW 方向)

部	質点で	最大応答加速度一覧表 (m/s ²)		
位	番号	(Ī)	(4)	(5)
	1	16.2	16.5	15.7
	6	11.9	11.0	12.3
	11	8.99	9.02	8.79
	20	10.2	8.65	10.1
a ##	25	8.71	8.45	8.82
軸	32	7.80	8.18	7.92
	36	7.65	7.89	7.72
	38	7.50	7.66	7.52
	40	7.36	7.49	7.37
	2	17.2	15.8	17.3
b	7	11.7	10.4	12.9
軸	12	11.1	9.88	11.3
	26	8.37	15.8 10.4 9.88 8.69 19.2 10.1 18.9 14.9 9.54 9.64 8.52 11.7 9.62 7.78 8.06 7.93	8.17
С	19	20.1	19.2	20.2
軸	21	10.4	10.1	10.3
	3	20.2	18.9	19.6
	8	15.0	14.9	15.3
d 軸	13	10.3	9.54	10.9
7144	27	9.11	9.64	8.74
	33	8.02	8.52	8.06
	18	12.9	11.7	12.7
	22	10.5	9.62	10.6
е	31	8.21	7.78	8.44
軸	35	7.35	8.06	7.58
	37	7.43	7.93	7.36
	39	7.43	7.67	7.48
	4	26.3	21.3	25.4
f	9	14.4	12.0	14.1
軸	14	11.7	10.6	12.3
	28	11.4	10.9	11.3
	17	13.4	15.1	13.0
g 軸	23	11.9	12.9	11.7
	30	9.42	9.71	9.50
	5	25.3	22.0	25.9
	10	13.9	13.0	13.8
h 軸	15	9.32	8.94	9.46
	29	8.56	8.65	8.38
	34	8.12	8.20	8.16
i	16	10.7	10.3	9.85
軸	24	9.76	9.41	9.19

④建屋剛性(コア強度平均)考慮モデル

図 2-204 最大応答加速度 (Ss-3, EW 方向)

表 2-184 最大応答加速度 (Ss-3, EW 方向)

部	質点で	最大応答加速度一覧表 (m/s ²)		
位	番号	(Ī)		(5)
	1	11.4	13.0	10.2
	6	9.20	12.3	8.47
	11	6.79	7.99	6.70
	20	6.76	7.01	6.53
a 軸	25	6.62	6.89	6.42
中田	32	6.36	6.61	6.26
	36	6.07	6.26	6.11
	38	6.04	6.12	6.14
	40	6.02	6.05	6.13
	2	15.6	18.1	15.2
b	7	10.8	13.3	11.3
軸	12	7.32	7.69	8.06
	26	7.04	4 13.0 12.3 7.99 7.01 6.89 6.61 6.26 6.12 6.05 18.1 13.3 7.38 13.2 8.31 18.3 12.9 9.76 8.17 6.95 6.32 6.07 20.5 13.9 9.43 9.17 16.0 12.1 9.08 18.4 13.0 10.2 7.32 6.64 8.15	6.78
С	19	10.2	13.2	9.84
軸	21	8.47	8.31	8.32
	3	18.0	18.3	17.7
	8	12.1	12.9	12.7
d 軸	13	8.36	8.08	8.73
1	27	8.29	8.54	8.14
	33	6.76	7.05	6.64
	18	12.9	12.9	13.8
	22	9.50	9.76	9.60
е	31	7.30	8.17	7.32
軸	35	6.47	6.95	6.69
	37	6.38	6.32	6.53
	39	6.18	6.07	6.28
	4	19.8	20.5	18.9
f	9	12.9	13.9	13.3
軸	14	9.86	9.43	9.76
	28	8.99	9.17	8.76
	17	15.9	16.0	16.0
g 軸	23	11.8	12.1	11.7
	30	7.93	9.08	8.07
	5	18.6	18.4	18.5
h	10	13.5	13.0	14.0
軸	15	9.01	10.2	8.76
	29	6.68	7.32	6.40
	34	6.18	6.64	6.23
i ata	16	7.48		7.41
軸 注:	24	7.14 認モデル	7.73	6.92

④建屋剛性(コア強度平均)考慮モデル

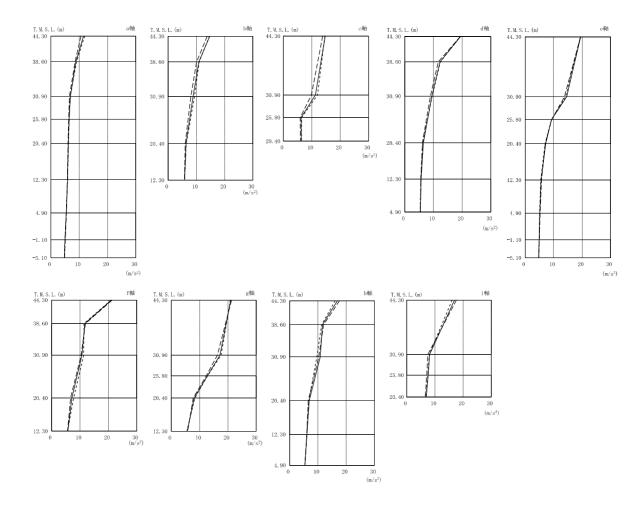


図 2-205 最大応答加速度 (Ss-4, EW 方向)

表 2-185 最大応答加速度 (Ss-4, EW 方向)

部	質点	最大応答加速度一覧表 (m/s²)		
位	番	(Ī)	_	(5)
	号 1	11.5	_	11.9
	6	8.78		9.05
	11	6.87		6.82
a	20	6.43		6.45
軸	25	6.17		6.19
	32	5.85		5.84
	36	5.41		5.38
	38	4.97		4.95
	40	4.75		4.74
	2	14.7	13.8	14.6
р	7	10.9	10.1	11.0
軸	12	8.82	8.02	9.33
	26	6.30	(m/s²) ① ① ① ① ① ① ① ① ① ① ① ① ① ② ① ② ① ② ② ② ② ③ ② ③	6.35
С	19	11.3	9.88	12.0
軸	21	6.27	5.94	6.42
	3	19.5	19.4	19.4
1	8	12.3	11.7	12.4
d 軸	13	9.45	8.97	9.57
	27	6.47	6.17	6.26
	33	5.70	5.60	5.60
	18	14.6	13.8	14.2
	22	9.24	9.31	9.24
е	31	7.23	7.03	6.99
軸	35	5.60	5.74	5.49
	37	5.13	5.26	5.07
	39	4.93	4.98	4.90
	4	21.0	21.3	20.9
f	9	11.7	11.9	11.4
軸	14	10.7	10.4	11.3
	28	7.14	6.69	7.73
	17	17.2	16.3	17.6
g 軸	23	12.7	12.3	12.8
114	30	8.08	7.74	8.33
	5	16.9	17.6	16.1
	10	11.6	12.0	11.3
h 軸	15	10.8	10.3	9.61
714	29	6.93	6.58	6.83
	34	6.10	6.04	6.04
i	16	8.12	7.48	8.01
軸	24	7.58	7.07	7.50
注・	ωT	認モデル		

④建屋剛性(コア強度平均)考慮モデル

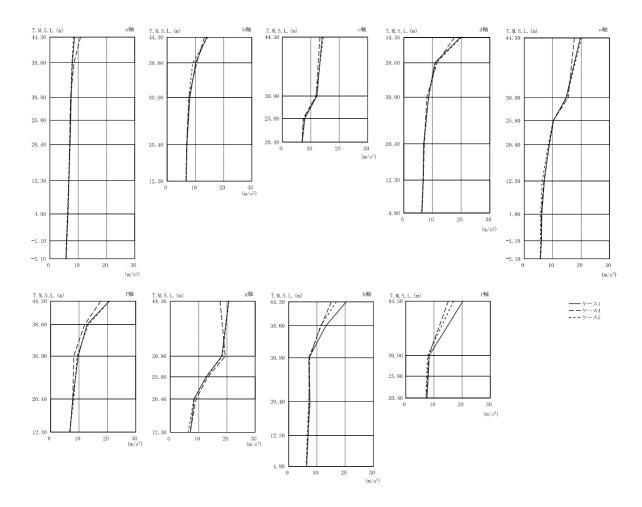


図 2-206 最大応答加速度 (Ss-5, EW 方向)

表 2-186 最大応答加速度 (Ss-5, EW 方向)

部	質点で	最大応答加速度一覧表 (m/s²)		
位	番号	(Ī)		(5)
	1	8.69		8.33
	6	7.88	8.54	7.77
	11	7.52	7.26	7.37
	20	7.33	7.13	7.18
a 軸	25	7.09	6.99	6.95
中田	32	6.73	6.72	6.59
	36	6.32	6.37	6.21
	38	5.91	5.98	5.82
	40	5.63	5.74	5.61
	2	14.0	13.2	14.4
b	7	10.1	10.4	9.03
軸	12	8.02	7.71	7.71
	26	7.02	① 10.8 8.54 7.26 7.13 6.99 6.72 6.37 5.98 5.74 13.2 10.4	6.94
С	19	12.2	11.9	11.8
軸	21	7.89	7.35	7.68
	3	19.7	17.6	20.1
,	8	10.8	11.6	11.2
d 軸	13	8.66	8.05	8.60
	27	6.95	7.18	7.13
	33	6.77	6.84	6.70
	18	14.7	15.4	14.9
	22	10.3	10.2	10.2
е	31	8.81	8.84	8.50
軸	35	7.12	6.95	6.33
	37	6.18	6.00	5.81
	39	6.06	6.02	5.74
	4	20.6	17.6	20.7
f	9	12.8	12.0	13.3
軸	14	9.69	8.17	9.36
	28	7.82	7.80	8.16
ď	17	18.2	19.4	18.4
g 軸	23	12.6	13.3	12.8
	30	8.44	9.08	8.30
	5	20.3	15.1	16.9
h	10	13.2		11.3
軸	15	7.20		7.43
	29	7.56		7.16
	34	6.87		6.60
i 毒山	16	8.32		7.74
軸 注:	24	7.98 認モデル	7.70	7.44

④建屋剛性(コア強度平均)考慮モデル

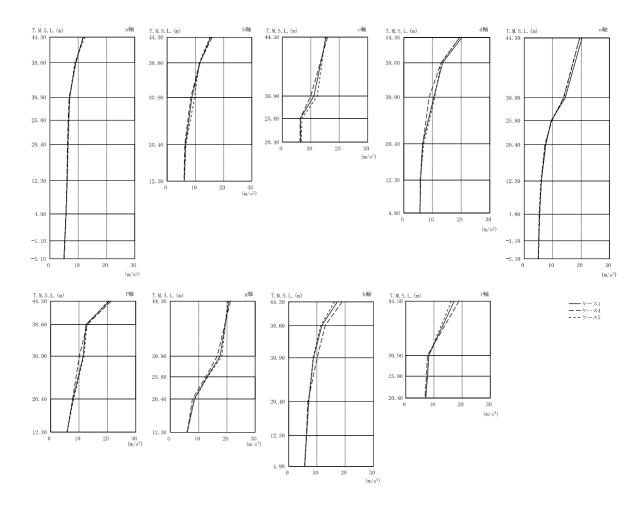


図 2-207 最大応答加速度 (Ss-6, EW 方向)