2.5 取水護岸の耐震計算書に関する補足説明

1.	栶	騕		1
2.	基	本方	-金十	2
2.	1	位置	<u>.</u>	2
2.	2	構造	- 概要	3
2.	3	評価	ī方針 ·····	5
2.	4	適用]基準	7
3.	而	「震評	华価	8
3.	1	評価	i対象断面 ·····	8
3.	2	解析	方法	10
	3.	2.1	地震応答解析手法	11
	3.	2.2	構造部材	12
	3.	2.3	耐震評価における解析ケース ・・・・・	12
3.	3	荷重	こ及び荷重の組合せ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
	3.	3.1	耐震評価上考慮する状態・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
	3.	3.2	荷重	16
	3.	3.3	荷重の組合せ	17
3.	4	入力	1地震動	18
3.	5	解析	モデル及び諸元	35
	3.	5.1	解析モデルの設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
	3.	5.2	使用材料及び材料の物性値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
	3.	5.3	地盤及び地盤改良体の解析用物性値	49
	3.	5.4	地下水位	51
3.	6	評価	i対象部位 ······	52
	3.	6.1	構造部材の健全性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
	3.	6.2	構造物の変形性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
3.	7	許容	【限界 ·····	53
	3.	7.1	構造部材の健全性に対する許容限界	53
	3.	7.2	構造物の変形性に対する許容限界	54
3.	8	評価	ī方法 ·····	55
	3.	8.1	構造部材の健全性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	55
	3.	8.2	構造物の変形性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	55
4.	對	阿価結	課	56
4.	1	地震	院答解析結果	56
4.	2	耐震	評価結果	61
	4.	2.1	構造部材の健全性に対する評価結果	61
	4.	2.2	構造物の変形性に対する評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	63
4.	3	まと	Ø	64

参考資料

(参考資料1) 積雪荷重の影響評価		(参考)1-1
-------------------	--	---------

1. 概要

本資料は、V-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方 針に基づき、取水護岸が基準地震動Ssに対して十分な構造強度及び止水性を有していることを 確認するものである。

取水護岸に要求される機能の維持を確認するにあたっては,地震応答解析に基づく構造部材の 健全性評価及び構造物の変形評価により行う。

2. 基本方針

2.1 位置

取水護岸の位置図を図 2.5-2-1 に示す。

図 2.5-2-1(1) 取水護岸の位置図(全体平面図)

図 2.5-2-1(2) 取水護岸の位置図(拡大図)

2.2 構造概要

取水護岸は、海水貯留堰の構成部材である取水護岸接続部のうち、止水ゴム取付部鋼材と接 続する前面鋼矢板で構成される。前面鋼矢板には、海水による腐食防止のため、電気防食が施 されている。

取水護岸の平面図を図 2.5-2-2,標準断面図を図 2.5-2-3 に示す。

図 2.5-2-3 取水護岸の標準断面図(A-A断面)

2.3 評価方針

取水護岸は,設計基準対象施設においては,Sクラス施設である浸水防護施設及び非常用取 水設備である屋外重要土木構造物の間接支持構造物に,重大事故等対処施設においては,常設 重大事故防止設備及び常設重大事故緩和設備の間接支持構造物に分類される。

取水護岸の耐震評価は、地震応答解析の結果に基づき,表2.5-2-1の取水護岸の評価項目 に示すとおり、構造部材の健全性評価及び構造物の変形性評価を行う。

取水護岸の地震応答解析においては、地震時の地盤の有効応力の変化に応じた影響を考慮で きる有効応力解析を実施する。

有効応力解析に用いる地盤剛性及び液状化強度特性は,地盤の代表性及び網羅性を踏まえた 上で,ばらつき等を考慮して設定する。

構造部材の健全性評価及び構造物の変形性評価を実施することで,構造強度を有すること及 び止水性を損なわないことを確認する。

構造部材の健全性評価については,前面鋼矢板に発生する曲げモーメントが許容限界以下で あることを確認する。許容限界については,取水護岸がSクラス施設の間接支持構造物に分類 されることから,全塑性モーメントによる確認が基本であるが,設計上の配慮として,降伏モ ーメントとする。

構造物の変形性評価については、前面鋼矢板及び海水貯留堰の変形量を算定し、海水貯留堰 との離隔が確保されることを確認した許容限界以下であることを確認する。なお、海水貯留堰 の変形量を考慮した止水ゴムの変形量についての照査は、V-2-10-3-1-2-1「海水貯留堰の耐 震性についての計算書」及びV-3-別添 3-1-2「海水貯留堰の強度計算書」において実施する。

取水護岸の耐震評価フローを図 2.5-2-4 に示す。

なお、取水護岸は、断面変化が無く直線状に設置される矢板構造物であることから、強軸断 面方向の曲げの影響はほとんど受けない。したがって、KK7 補足-024-4「水平 2 方向及び鉛 直方向地震力の組合せに関する検討について」に示すように、従来設計手法における評価対象 断面以外の 3 次元的な応答特性が想定される箇所が無いことを確認した。

評価方針 評価項目		部位	評価方法	許容限界
構造強度を有 すること	構造部材の 健全性	前面鋼矢板	発生応力が許容 限界を <mark>以下であ</mark> <mark>る</mark> ことを確認	降伏モーメント
止水性を損な わないこと	構造物の 変形性	前面鋼矢板	発生変形量が許 容限界以下であ ることを確認	海水貯留堰との離隔が確保 されることを確認した変形 量

表 2.5-2-1 取水護岸の評価項目

図 2.5-2-4 取水護岸の耐震評価フロー

2.4 適用基準

適用する規格,基準類を以下に示す。また,表2.5-2-2に各項目で適用する規格,基準類 を示す。

- ・コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)
- ・道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987(日本電気協会)
- ・港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007版)
- ・港湾構造物設計事例集(沿岸技術研究センター,平成19年3月)
- ・鋼矢板Q&A(鋼管杭・鋼矢板技術協会 平成29年3月)
- ・鋼矢板 設計から施工まで(鋼管杭協会,平成12年3月)

項目	適用する規格、基準類	備考				
使用材料及び材料定数	 ・コンクリート標準示方書 [構造性能 照査編] (2002 年) 	_				
荷重及び荷重の組合せ	・コンクリート標準示方書 [構造性能 照査編] (2002 年)	 ・永久荷重+偶発荷重+従た る変動荷重の適切な組合せ を検討 				
許容限界	 ・鋼矢板Q&A(平成29年3月) ・鋼矢板 設計から施工まで(平成12年3月) 	・発生応力が,降伏モーメン ト以下であることを確認				
評価方法	 ・港湾の施設の技術上の基準・同解 説(2007版) ・鋼矢板 設計から施工まで(平成 12年3月) 	・腐食代の設定				
地震応答解析	・原子力発電所耐震設計技術指針 JEAG4601-1987	 ・有限要素法による2次元モデ ルを用いた時刻歴非線形解 析 				

表 2.5-2-2 各項目で適用する規格,基準類

3. 耐震評価

3.1 評価対象断面

評価対象断面は、取水護岸が海水貯留堰の間接支持構造物であることから、V-2-10-3-1-2-1「海水貯留堰の耐震性についての計算書」と同様とし、海水貯留堰との接続部を通る断面で あるA-A断面を選定し、基準地震動Ssによる耐震評価を実施する。

評価対象断面選定の詳細については補足「2.1 海水貯留堰の耐震計算書に関する補足説明」 に示す。

取水護岸の評価対象断面位置図を図 2.5-3-1 に示す。構造物の耐震設計における評価対象 断面は図 2.5-3-1のA-A断面とする。評価対象断面図を図 2.5-3-2 に示す。

図 2.5-3-1 取水護岸の評価対象断面位置図

図 2.5-3-2 取水護岸の評価対象断面図 (A-A断面)

3.2 解析方法

取水護岸の地震応答解析は、V-2-1-6「地震応答解析の基本方針 2.3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答解析では,地盤の有効応力の変化に応じた地震時挙動を考慮できる有効応力解析手 法を用いる。

有効応力解析には,解析コード「FLIP Ver.7.4.1」を使用する。なお,解析コードの検 証及び妥当性確認等の概要については,別紙「計算機プログラム(解析コード)の概要」に示 す。

3.2.1 地震応答解析手法

取水護岸の地震応答解析は、地盤と構造物の相互作用を考慮できる2次元有効応力解析 を用いて、基準地震動に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時 間積分の時刻歴応答解析にて行う。構造部材については、線形はり要素を用いることとす る。地盤については、有効応力の変化に応じた地震時挙動を適切に考慮できるモデル化と する。地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線の構成則を有効応力解析~ 適用する際は、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に関するせん断ひ ずみ及び有効応力の変化に応じた特徴を適切に表現できるモデルを用いる必要がある。

一般に,地盤は荷重を与えることによりせん断ひずみを増加させていくと,地盤のせん 断応力は上限値に達し,それ以上はせん断応力が増加しなくなる特徴がある。また,地盤 のせん断応力の上限値は有効応力に応じて変化する特徴がある。

よって、耐震評価における有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ 関係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線 に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線 モデル(H-Dモデル)を選定する。

地震応答解析手法の選定フローを図2.5-3-3に示す。

図 2.5-3-3 地震応答解析手法の選定フロー

3.2.2 構造部材

構造部材は、線形はり要素によりモデル化する。

3.2.3 耐震評価における解析ケース

取水護岸の耐震評価における解析ケースを表2.5-3-1に示す。

地盤剛性のばらつきの影響を考慮するため,地表付近で地下水面をまたぐ地層(埋戻土 及び新期砂層)のばらつきは,初期せん断弾性係数と有効拘束圧の関係から初期せん断弾 性係数の標準偏差σを用いてせん断波速度のばらつきとして設定する。地下水位以深の飽 和土層(沖積層及び古安田層)のばらつきは,各地層のPS検層の結果から得られるせん断 波速度の標準偏差σを求め,せん断波速度のばらつきとして設定する(解析ケース②,③, ⑤)。

地盤の液状化強度特性は、代表性及び網羅性を踏まえた上で保守性を考慮し、液状化強 度試験データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不偏分散 に基づく標準偏差σを用いて、液状化強度特性を(-1σ)にて設定する(解析ケース①, ②,③)。

また、構造物への応答加速度に対する保守的な配慮として、地盤の非液状化の条件を仮 定した解析ケースを設定する(解析ケース④、⑤)。

耐震評価においては、全ての基準地震動Ssに対し、①の解析ケース(基本ケース)を 実施する。

また,全ての基準地震動Ssに対し基本として実施した①の解析ケースにおいて,各照 査値が最も厳しい地震動を用い,②~⑤の解析ケースを実施する。

最も厳しい地震動の選定は,照査値1.0に対して2倍の余裕となる照査値0.5以上を相対 的に厳しい地震動の選定の目安として実施する。

追加解析を実施する地震動の選定フローを図2.5-3-4に示す。

			1	2	3	4	5
	解析ケー	- ス	基本ケース	地盤物性のば らつき(+1 σ)を考慮し た解析ケース	地盤物性のば らつき (-1 σ)を考慮し た解析ケース	非液状化の条 件を仮定した 解析ケース	地盤物性のば らつき(+1 σ)を考慮し て非液状化の 条件を仮定し た解析ケース
地盤剛性の設定			地盤剛性 (平均値)	地盤剛性 (+1σ)	地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)
液状化強度特性の設定			液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化パラメ ータを非適用	液状化パラメ ータを非適用
		++	実施				
	0 1	-+	実施				
	Ss-1	+-	実施				
			実施				
	Ss-2		実施				
		++	実施				
地震	S 2	-+	実施	全ての基	準地震動Ssに	対して実施する	5①の解析ケ
動	38-3	+-	実施		-ス(基本ケース)において、せん断力照査、曲げ軸		
位相			実施	力昭香及び	支持力昭香につ	いて各昭杏値	「「「「」」「」」
千)	Ss-4		実施				
	S	s-5	実施				
	S	s-6	実施			(本里 た 欧 ま う	くたけ昭本
	Ss-7		実施		れて可能性がも	加不で泊よん,	
	Ss-8	++	実施		はつり肥性がめ	る場合は,迫力	HPHT で 夫 旭
		-+	実施		Γ	Γ	Γ

表 2.5-3-1 取水護岸の耐震評価における解析ケース

<mark>注:</mark>表中の符号+,-は地震動の位相(水平,鉛直)を示す。

図 2.5-3-4 追加解析を実施する地震動の選定フロー

3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは、 V-2-1-9「機能維持の基本方針」に基づき設定する。

- 3.3.1 耐震評価上考慮する状態 取水護岸の地震応答解析において,地震以外に考慮する状態を以下に示す。
 - (1) 運転時の状態

発電用原子炉施設が運転状態にあり,通常の条件下におかれている状態。ただし,運転 時の異常な過渡変化時の影響を受けないことから考慮しない。

- (2) 設計基準事故時の状態設計基準事故時の影響を受けないことから考慮しない。
- (3) 設計用自然条件 積雪及び風による影響は考慮しない。
- (4) 重大事故等時の状態重大事故等時の状態の影響を受けないことから考慮しない。

- 3.3.2 荷重取水護岸の地震応答解析において、考慮する荷重を以下に示す。
 - (1) 固定荷重(G)固定荷重として, 躯体自重を考慮する。
 - (2) 地震荷重(Ss)基準地震動Ssによる荷重を考慮する。

3.3.3 荷重の組合せ

取水護岸の耐震評価に用いる荷重の組合せを表2.5-3-2及び表2.5-3-3に示す。

なお、(参考資料1)に示すとおり、取水護岸の背面は地盤改良されており、前面鋼矢 板の変形抑制対策が講じられていること等を踏まえ、取水護岸部における地震時の荷重の 組合せとして積雪荷重を考慮しないこととしている。

表 2.5-3-2 荷重の組合せ

外力の状態	荷重の組合せ
地震時(Ss)	$G + S_{S}$

G :固定荷重

S_s : 地震荷重

種別		荷重		算定方法
		如杜白毛	0	・設計図書に基づいて、対象構造物の体積に材料の密度を乗
		前州日里		じて設定する
	固定	機器・配管自重 –		 ・機器・配管設備はないことから、考慮しない
	荷重	土被り荷重 –		・土被りはないため、考慮しない
		上載荷重	_	・地盤表面に恒常的に置かれる設備等はないことから、考慮
永久				しない
荷重	静止土圧		\bigcirc	・常時応力解析により <mark>算定</mark> する
				・地下水位(T.M.S.L.3.0m)及び海水面(T.M.S.L.1.0m*)
		外水圧	\bigcirc	に応じた静水圧として設定する。
				・地下水及び海水の密度を考慮する
		内水圧	—	・内水圧を考慮する構造形式ではないことから、考慮しない
	積	雪及び風荷重	—	・考慮しない
		水平地震力	0	・基準地震動Ssによる水平及び鉛直同時加振を考慮する
偶発	荷重	鉛直地震力 〇		・躯体の慣性力,動土圧を考慮する
		動水圧	0	・水位条件,密度は,永久荷重と同様とする

表 2.5-3-3 荷重の組合せ(前面鋼矢板 地震時)

注記*:外水圧の水位は, 朔望平均満潮位 T.M.S.L. 0.49m に対し, 保守性を考慮し T.M.S.L. 1.0m とする。

3.4 入力地震動

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを1次元波 動論により地震応答解析モデルの底面位置で評価したものを用いる。入力地震動の設定におい ては,V-2-1-3「地盤の支持性能に係る基本方針」に示す地下構造モデル(入力地震動作成モ デル)とし,原子炉建屋と同様のものを用いる。

入力地震動算定の概念図を図 2.5-3-5 に,入力地震動の加速度時刻歴波形及び加速度応答 スペクトルを図 2.5-3-6 に示す。入力地震動の算定には解析コード「SLOK Ver.2.0」を 使用する。

なお,基準地震動Ssのうち特定の方向性を有しない地震動については,位相を反転させた 場合の影響も確認する。

図 2.5-3-5 入力地震動算定の概念図

MAX 11.9 m/s^2 (18.51s)

(a) 加速度時刻歷波形

図 2.5-3-6(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-1)

MAX 7. $49m/s^2$ (5. 88s)

(a) 加速度時刻歷波形

図 2.5-3-6(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-1)

MAX 13. $2m/s^2$ (20. 51s)

(a) 加速度時刻歷波形

図 2.5-3-6(3) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-2EW)

MAX 5.02 m/s^2 (20.46s)

(a) 加速度時刻歷波形

図 2.5-3-6(4) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-2EW)

MAX 7.18 m/s^2 (35.43s)

(a) 加速度時刻歷波形

図 2.5-3-6(5) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-3)

図 2.5-3-6(6) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-3)

図 2.5-3-6(7) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-4EW)

図 2.5-3-6(8) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-4EW)

MAX 7.51m/s² (46.29s)

(a) 加速度時刻歷波形

図 2.5-3-6(9) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-5EW)

図 2.5-3-6(10) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-5EW)

MAX 9.84 m/s^2 (51.71s)

(a) 加速度時刻歷波形

図 2.5-3-6(11) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-6EW)

図 2.5-3-6(12) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-6EW)

図 2.5-3-6(13) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-7EW)

図 2.5-3-6(14) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-7EW)

MAX 7.65 m/s^2 (7.74s)

(a) 加速度時刻歷波形

図 2.5-3-6(15) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-8)
MAX 3.35 m/s^2 (7.64s)

(a) 加速度時刻歷波形

(b) 加速度応答スペクトル

図 2.5-3-6(16) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-8)

- 3.5 解析モデル及び諸元
 - 3.5.1 解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、「原子力発電所耐震設計技術指針JEAG4 601-1987(日本電気協会)」を参考に、図2.5-3-7のモデル範囲の考え方に示すとお り、モデル幅を構造物基礎幅の5倍以上、モデル高さを構造物幅の2倍以上とする。

なお、解析モデルの境界条件は、側面及び底面ともに粘性境界とする。

地盤の要素分割については、地盤の波動をなめらかに表現するために、最大周波数20Hz 及びせん断波速度Vsで算定される波長の5<mark>又は</mark>4分割、すなわちVs/100又はVs/80を考慮し、 要素高さを<mark>0.5~</mark>1m程度まで細分割して設定する。

構造物の要素分割については、構造物に接する地盤の要素分割に合わせて設定する。

図 2.5-3-7 モデル範囲の考え方

2次元有効応力解析モデルは、検討対象構造物とその周辺地盤をモデル化した不整形地 盤に加え、この不整形地盤の左右に広がる地盤をモデル化した自由地盤で構成される。こ の自由地盤は、不整形地盤の左右端と同じ地層構成を有する1次元地盤モデルである。2次 元有効応力解析における自由地盤の初期応力解析から不整形地盤(2次元FEM)の地震 応答解析までのフローを図2.5-3-8に示す。

図 2.5-3-8 自由地盤の初期応力解析から不整形地盤(2次元FEM)の 地震応答解析までのフロー

- (2) 境界条件
 - a. 初期応力解析時

初期応力解析は、地盤や構造物の自重等の静的な荷重を載荷することによる常時の初 期応力を算定するために行う。初期応力解析時の境界条件は底面固定とし、側方は自重 等による地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。初期応力解析に おける境界条件の概念図を図 2.5-3-9 に示す。

図 2.5-3-9 初期応力解析における境界条件の概念図

b. 地震応答解析時

地震応答解析時の境界条件については,有限要素解析における半無限地盤を模擬する ため,粘性境界を設ける。底面の粘性境界については,地震動の下降波がモデル底面境 界から半無限地盤へ通過していく状態を模擬するため,ダッシュポットを設定する。側 方の粘性境界については,自由地盤の地盤振動と不整形地盤側方の地盤振動の差分が側 方を通過していく状態を模擬するため,自由地盤の側方にダッシュポットを設定する。 取水護岸の地震応答解析モデルを図2.5-3-10に示す。

図 2.5-3-10 取水護岸の地震応答解析モデル (A-A断面)

(3) 構造物のモデル化

構造部材は、線形はり要素によりモデル化する。

なお、A-A断面では2つの海水貯留堰をモデル化している。海水貯留堰(沖合側)は、 奥行き方向に連続する構造物としてモデル化している。一方、海水貯留堰(護岸近傍)は、 奥行き方向に1本の構造物としてモデル化している。図2.5-3-11に地震応答解析モデル を、図2.5-3-12に海水貯留堰のモデル化の概要を示す。

底面粘性境界

図 2.5-3-11 海水貯留堰の地震応答解析モデル(A-A断面)

図 2.5-3-12 海水貯留堰のモデル化の概要

(4) 地盤のモデル化

地盤は、マルチスプリング要素及び間隙水要素によりモデル化し、地震時の有効応力の 変化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

(5) 地盤改良体のモデル化 構造物周辺の地盤改良体は、マルチスプリング要素及び間隙水要素によりモデル化する。 (6) ジョイント要素の設定

「地盤と構造物」及び「地盤と地盤改良体」との接合面にジョイント要素を設けること により、地震時の接合面における剥離及びすべりを考慮する。なお、既設地盤改良体と新 設地盤改良体との接合面については、既設地盤改良体に対し新設地盤改良体をラップさせ て設置し、接合させることから、ジョイント要素は設定しない。

ジョイント要素は、隣接する要素との接合面で法線方向及びせん断方向に対して設定す る。法線方向については、常時の圧縮荷重以上の引張荷重が生じた場合、剛性及び応力を 零とし、剥離を考慮する。せん断方向については、各要素間の接合面におけるせん断抵抗 力以上のせん断荷重が生じた場合、せん断剛性を零とし、すべりを考慮する。

なお, せん断強度 τ_fは, 次式により規定される。

$$\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$$

ここで,

σ':要素間の直応力

- св :付着力
- φ_B :摩擦角

地盤と構造物間の接合面におけるジョイント要素の付着力 c B と摩擦角 ϕ B は,表2.5-3-4に示すとおりに設定する。付着力 c B は,「道路橋示方書(I 共通編・IV下部構造 編)・同解説(日本道路協会,平成14年3月)」に基づき,表2.5-3-4に示す「地盤と構 造物」の条件から考慮しないものとする。摩擦角 ϕ B は,「港湾の施設の技術上の基準・ 同解説(日本港湾協会,平成19年7月)」において,構造物と地盤間の壁面摩擦角を15° ~20°とする旨が記載されており,「港湾構造物設計事例集(上巻)(沿岸技術研究セン ター,平成19年3月)」において,鋼材と地盤間の摩擦角を15°と設定した事例があるこ とから,本解析における摩擦角 ϕ B にも15°を適用する。

地盤と地盤改良体間の付着力 c B及び摩擦角 φ Bは,表2.5-3-5の道路橋示方書における摩擦角 φ Bと付着力 c Bに示す「道路橋示方書(I 共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)」の設定を参考に,周辺地盤の粘着力 c,内部摩擦角 φ より設定する。

周辺地盤の粘着力 c と内部摩擦角 φ は, V-2-1-3「地盤の支持性能に係る基本方針」に 基づき, 表2.5-3-6のとおりに設定する。

条件	付着力 c B (kN/m²)	摩擦角φ _B (°)
地盤と構造物*1	0.0	15.0
地盤と地盤改良体*2	С	ϕ

表 2.5-3-4 ジョイント要素の付着力 c Bと摩擦角 φ B

注記*1:構造物は、鋼材とする。

*2 : 地盤と地盤改良体の付着力と摩擦角は、地盤のc, φを適用する。

表2.5-3-5 道路橋示方書における摩擦角 Φ B と付着力 с B

条件	摩擦角 ϕ_B (摩擦係数 $\tan \phi_B$)	付着力 c _B
土とコンクリート	$\phi_B = \frac{2}{3} \phi$	$c_B = 0$
土とコンクリートの間に栗石を敷く場合	$ tan \phi_B = 0.6 \phi_B = \phi $	$c_{B} = 0$
岩とコンクリート	$\tan \phi_B = 0.6$	$c_{B} = 0$
土と土又は岩と岩	$\phi_B = \phi$	$c_B = c$

ただし、 ø: 支持地盤のせん断抵抗角(°) c: 支持地盤の粘着力 (kN/m²)

(引用:道路橋示方書・同解説IV(下部構造編),社団法人日本道路協会,平成14年3月)

地質区分	粘着力c(kN/m²)	内部摩擦角 φ (°)		
埋戻土	0.0	35.9		
新期砂層	0.0	34.6		
A3a1 層	29.2	34.2		
A2c 層	113.0	27.9		

表2.5-3-6 周辺地盤の粘着力cと内部摩擦角 φ

ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分大きい 値として、「港湾構造物設計事例集(上巻)(沿岸技術研究センター、平成19年3月)」 に従い、表2.5-3-7の通り設定する。ジョイント要素の力学特性を図2.5-3-13に、ジ ョイント要素の配置を図2.5-3-14に示す。なお、海水貯留堰(沖合側)は奥行き方向に 連続する構造物としてモデル化するため、地盤と構造物の間にジョイント要素を設ける。 また、海水貯留堰(護岸近傍)は奥行き方向に1本の構造物であるため、地盤と構造物の 間には杭一地盤相互作用ばねを設ける。

表 2.5-3-7 ジョイント要素のばね定数

条件	対象	せん断剛性 k _s (kN/m ³)	圧縮剛性 kn(kN/m ³)
	海水貯留堰	$1.0 imes 10^{6}$	1.0×10^{6}
地盛と博道物	護岸前面鋼矢板	$1.0 imes 10^5$	1.0×10^{6}
地盤と地盤改良体	側方及び底面	1.0×10^{6}	1.0×10^{6}

図 2.5-3-14 ジョイント要素の配置 (A-A断面)

(7) 杭-地盤相互作用ばねの設定

地盤と杭の接合面に杭-地盤相互作用ばねを設けることにより,地盤と杭の接合面にお ける,強震時の相互作用の3次元効果を2次元モデルで適切に考慮する。

杭-地盤相互作用ばねの杭軸方向については,地盤と杭の接合面におけるせん断抵抗力 以上のせん断荷重が発生した場合,せん断剛性を零とし,すべりを考慮する。

図2.5-3-15に杭-地盤相互作用ばねの考え方を示す。

なお, せん断強度 τ_fは, 次式により規定される。

 $\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$

ここで,

τ_f: せん断強度

с в:付着力

付着力 c B及び摩擦角 ø Bは,表2.5-3-4の地盤と構造物の条件から設定する。

杭ー地盤相互作用ばねの杭軸方向のばね定数は,数値解析上不安定な挙動を起こさない 程度に十分大きい値として,「港湾構造物設計事例集(上巻)(沿岸技術研究センター, 平成19年3月)」に従い,表2.5-3-8のとおり設定する。

また,杭-地盤相互作用ばねの杭軸直角方向のばね定数については,杭径及び杭間隔より設定する*。

注記*: FLIP 研究会 14 年間の検討結果のまとめ「理論編」(FLIP コンソーシアム)

(b) 杭-地盤相互作用ばね配置図(A-A断面)

図 2.5-3-15 杭-地盤相互作用ばねの考え方

表 2.5-3-8	杭ー地盤相互作用ばねの杭軸方向のばね定数
-----------	----------------------

	せん断剛性 k _s (kN/m³)
杭軸方向	$1.0 imes 10^{6}$

(8) 杭先端ばねの設定

杭軸方向の荷重変位関係は、杭の鉛直載荷試験の結果等から図2.5-3-16に示すとおり、 双曲線型の関係を示すことが知られている。本解析においても実現象を精緻にモデル化す る観点から、杭先端と地盤間にHirayama (1990) *による杭先端抵抗と杭先端変位の双曲 線型の関係を杭軸方向のばねの抵抗力と変位差関係に置き換えたばねを設けることにより、 杭先端における地盤と杭の相互作用を適切に考慮する。このばねは、圧縮側の関係を取り 扱うため、杭先端と地盤間の変位差が引張り状態となった場合、剛性及び応力をゼロとし、 剥離を考慮する。

杭先端ばねの杭軸方向のばねの抵抗力と変位差関係は、次式及び図2.5-3-17に示す双曲線型の式で設定される。

Hirayama (1990)では、N値が30または50程度の硬質な砂層地盤における橋梁建設時の杭 の鉛直載荷試験結果に対して、当杭先端ばねを用いた荷重変位関係の再現解析を実施し、 適用性を検証している。また、当杭先端ばねは「一般社団法人FLIPコンソーシアム平 成25年度研究成果報告書(FLIPコンソーシアム、2013年)」にて、解析コード「FL IP」に対して適用性を確認している。報告書では、砂層に対する杭の押込み実験結果の 杭先端抵抗-杭先端変位関係を、当杭先端ばねが概ね再現可能であることを確認している。 また、パラメータスタディとして支持層の相対密度を変化させた解析を実施し、当杭先端 ばねの適用性を検証している。検証の結果、支持層に液状化等による剛性低下が生じず、 所定の支持力を発揮できる場合、当杭先端ばねは解析コード「FLIP」に対し適用性を 有することが確認されている。

海水貯留堰については,杭の支持層はA2 c 層及びA2a1層であり,地震時においても液状 化が生じず,所定の杭先端支持力が期待できることから,当杭先端ばねを適用できると判 断した。

注記*:Load-settlement analysis for bored piles using hyperbolic transfer functions (Soils

and Foundations, Vol. 30, No. 1, pp55-64, H. Hirayama, 1990)

 $q = z_e \swarrow (a_e + b_e \cdot z_e)$

- q : 杭先端抵抗
- z。 : 杭先端変位
- a。 : 基準変位を杭先端における極限支持力で除した値(=0.25De/qult)
- **b**_e : 杭先端における極限支持力の逆数(=1/q_{ult})
- D.e : 杭径
- q_{ult}: 抗先端における極限支持力

図 2.5-3-16 杭の鉛直載荷試験における一般的な荷重-変位関係 (道路橋示方書より引用)

Pile tip displacement : z_e

図 2.5-3-17 杭先端ばねの杭軸方向のばねの抵抗力と変位差関係(Hirayama (1990))

(9) 減衰定数

減衰定数は、柏崎刈羽原子力発電所における新潟県中越沖地震の地震記録を入力波とし た再現解析等を踏まえ、Rayleigh減衰として、 $\alpha = 0$ 、 $\beta = 0.005$ を設定する。 3.5.2 使用材料及び材料の物性値

使用材料を表2.5-3-9に、材料の物性値を表2.5-3-10に示す。

材料	諸元	腐食代		
		海側(海底面以浅)	2. 0mm^{*1}	
前面鋼矢板	S P-IV型(SY295), t=15.5mm	海側(海底面以深)	0. $2mm^{*1}$	
		陸側	0. $2mm^{*1}$	
鋼管矢板	$\phi1100\text{mm}$ (SKY490) , t=14mm	1.0mm^{*2}		

表 2.5-3-9 使用材料

注記*1:腐食代の算出過程は下記のとおりとする。

海側(海底面以浅)	: 0.2 (mm/年) ×86 年× (1.0−0.9) =1.72mm≒2.0mm
海側 (海底面以深)	: 0.02 (mm/年) ×86 年× (1.0-0.9) =0.172mm \Rightarrow 0.2mm
陸側	: 0.02 (mm/年) ×86 年× (1.0-0.9) =0.172mm \Rightarrow 0.2mm
ここで、	

運用期間:86年(取水護岸の竣工(1984年)からの経過年数と海水貯留堰の運用期間50年の合計) 腐食速度:0.2mm/年(海側(海底面以浅))

0.02mm/年(海側(海底面以深),陸側)

(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」)

防食率:90%(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」,電気 防食実施のため)

*2:腐食代の算出過程は下記のとおりとする。なお、海底面以深の鋼管矢板の腐食代は、保守的に海底面 以浅と同値とした。

0.2 (mm/年) ×50 年× (1.0-0.9) =1.0mm

ここで,

運用期間:50年(海水貯留堰の運用期間50年)

腐食速度:0.2mm/年(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」)

防食率:90%(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」,電気 防食実施のため)

表 2.5-3-10 材料の物性値

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
前面鋼矢板	77.0	2. 0×10^{5}	0.3
鋼管矢板	77.0	2. 0×10^{5}	0.3

3.5.3 地盤及び地盤改良体の解析用物性値

地盤及び地盤改良体の諸定数は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定 している物性値を用いる。地盤の解析用物性値一覧を表2.5-3-11に示す。

なお、海水貯留堰の地盤改良体については、KK7補足-024-1「地盤の支持性能について 4.2 設置変更許可申請書に記載されていない解析用物性値」に示す。

また,表2.5-3-11(4)に地盤改良体の配置に応じて設定した地盤改良体の物性値を示 す。

地質区分物性値			新期砂層・沖積層			古安田層					
			埋戻土	新期砂層	沖積層上部 (砂質)	沖積層下部	A2s層	A3s層	A2g層 (砂質)	A1g層	
物 理	密度	ρ	(g/cm^3)	1.94 (1.79)*	2.05 (2.00)*	1.90	2.02	1.91	1.91	1.91	1.91
特性	間隙率	n		0.45	0.44	0.48	0.42	0.45	0.45	0.45	0.45
	動せん断弾性係数	G_{ma}	(kN/m^2)	1.04×10^{5}	1.26×10^{5}	1.25×10^{5}	1.92×10^{5}	2.14×10^{5}	2. 14×10^5	2.14×10^{5}	2. 14×10^5
変 形	基準平均有効拘束圧	σ_{ma} '	(kN/m^2)	98.0	98.0	110.0	150.0	200.0	200.0	200.0	200.0
特性	ポアソン比	ν		0.33 (0.42)*	0.33 (0.44)*	0.33	0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値	h _{ma x}		0.225	0.234	0.247	0.211	0.157	0.157	0.157	0.157
強度	粘着力	с'	(kN/m^2)	0.0 (9.6)*	0.0 (94.4)*	0.0	0.0	0.0	0.0	0.0	0.0
特性	内部摩擦角	φ'	(°)	35.9 (34.8)*	34.6 (27.6)*	36.7	35.6	36.6	36.6	36.6	36.6
	変相角	$\phi_{\rm p}$	(°)	32.0	31.0	33.0	32.0	32.0	32.0	32.0	32.0
			S 1	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
液状化			w1	5.50	7.90	11.00	8.00	25.00	25.00	25.00	25.00
化特州	液状化パラメー	タ	\mathbf{p}_1	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
			p_2	1.00	0.70	0.70	0.65	0.80	0.80	0.80	0.80
			c_1	1.69	2.13	2.41	2.00	8.75	8.75	8.75	8.75

表 2.5-3-11(1) 地盤の解析用物性値一覧(液状化検討対象層)

注記*:括弧内の数字は、地下水位以浅の数値を表す。

	地質区分			新期砂層・沖積層		古安田層					
	物性値			埋戻土Ⅱ	沖積層上部 (シルト質)	A3c層	A3a1層	A2c層	A2a1層	A2g層 (シルト質)	A1c層
物理	密度	ρ	(g/cm^3)	1.71	1.66	1.70	1.81	1.80	1.88	1.80	1.80
特性	間隙率	n		0.58	0.61	0.57	0.52	0.52	0.48	0.52	0.52
	動せん断弾性係数	G_{ma}	(kN/m^2)	7.33×10^{4}	5.50 $\times 10^{4}$	1.09×10^{5}	$9.57 imes 10^4$	$1.39\!\times\!10^5$	1.61×10^{5}	$1.39\!\times\!10^5$	1.39×10^{5}
変形	基準平均有効拘束圧	σ _{ma} ,	(kN/m^2)	41.0	170.0	60.0	94.0	140.0	170.0	140.0	140.0
特性	ポアソン比	ν		0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値	h _{max}		0.152	0.136	0.114	0.162	0.110	0.147	0.110	0.110
強度	粘着力	с'	(kN/m^2)	7.4	82.5	99.6	29.2	113.0	82. 8	113.0	113.0
特性	内部摩擦角	φ'	(°)	31.7	19.6	26.8	34.2	27.9	28.7	27.9	27.9

表 2.5-3-11(2) 地盤の解析用物性値一覧(非液状化層)

表 2.5-3-11(3) 地盤の解析用物性値一覧(西山層)

	パライータ			西山層			
	~/>->			T.M.S.L33.Om 以浅	T. M. S. L. −33. Om∼−90. Om		
物理	密度	ρ	(g/cm^3)	1.73	1.69		
特性	間隙率	n		0.56	0.56		
	動せん断弾性係数	G_{ma}	(kN/m^2)	4. 16×10^5	4. 75×10^5		
変形	基準平均有効拘束圧	σ ma	(kN/m^2)	98.0	98.0		
特性	ポアソン比	ν		0.33	0. 33		
	減衰定数の上限値	h_{max}		0.257	0.257		
強度	粘着力	с	(kN/m^2)	1370-5.04Z*	1370-5. 04 Z *		
特性	内部摩擦角	ϕ	(°)	0.0	0. 0		

注記*:Zは,標高(m)を示す。

	既設/新設	L.		既設 地盤改良体	新設地盤改良体	
	種別 (地盤種別))		高圧噴射 (砂質土)	高圧噴射 (砂質土)	高圧噴射 (粘性土)
物理	密度	ρ	(g/cm^3)	1.77	1.94~1.96*	1.81
特性	間隙率	n		0.49	0.49	0.64
	動せん断弾性係数	$G_{\mathtt{ma}}$	(kN/m^2)	1.78×10^{6}	5.54 $\times 10^{5}$	5. 18×10^{5}
変形	基準平均有効拘束圧	σ "	(kN/m^2)	98.0	98.0	98.0
特性	ポアソン比	ν		0.33	0.33	0.33
	減衰定数の上限値	h_{max}		0.05	0.05	0.05
強度特性	粘着力	с	(kN/m²)	815	397	397

表 2.5-3-11(4) 地盤の解析用物性値一覧(地盤改良体の配置を考慮した物性値)

<mark>注記*:地盤改良体の配置に応じて設定</mark>。

3.5.4 地下水位

地下水位は、 V-2-1-3「地盤の支持性能に係る基本方針」に基づき、地表面 (T.M.S.L.3.0m) として設定する。 3.6 評価対象部位

評価対象部位は、取水護岸の構造上の特徴を踏まえ設定する。

- 3.6.1 構造部材の健全性評価 構造部材の健全性評価に係る評価対象部位は,前面鋼矢板とする。
- 3.6.2 構造物の変形性評価 構造物の変形性評価に係る評価対象部位は,前面鋼矢板とする。

3.7 許容限界

許容限界は、V-2-1-9「機能維持の基本方針」に基づき設定する。

3.7.1 構造部材の健全性に対する許容限界

前面鋼矢板の許容限界は、「鋼矢板Q&A (鋼管杭・鋼矢板技術協会 平成29年3月)」 及び「鋼矢板 設計から施工まで (鋼管杭協会 平成12年3月)」に基づき設定する。前 面鋼矢板の許容限界を表2.5-3-12に示す。

項目	対象	許容限界(kN・m)	
欧仕エーマントM	海底面以浅	555	
	海底面以深	649	

表 2.5-3-12 前面鋼矢板の許容限界

3.7.2 構造物の変形性に対する許容限界

変形量の許容限界は、取水護岸と海水貯留堰との離隔が確保されることを確認した変形 量とする。取水護岸と海水貯留堰の離隔は、止水ゴム取付部鋼材の離隔とした。海水貯留 堰接続部の構造概念図を図2.5-3-18に、止水ゴムの構造図を図2.5-3-19に示す。前面 鋼矢板の変形量の許容限界を表2.5-3-13に示す。

図 2.5-3-18 海水貯留堰接続部の構造概念図

図 2.5-3-19 止水ゴムの構造図

表 2.5-3-13 前面鋼矢板の変形量の許容限界

項目	許容限界 (cm)
変形量(海水貯留堰との離隔を確保できる相対変位量)	24.0

3.8 評価方法

取水護岸の耐震評価は、地震応答解析により算定した全時刻歴の照査用応答値が、「3.7 許容限界」において設定した許容限界以下であることを確認する。

3.8.1 構造部材の健全性評価

前面鋼矢板の曲げモーメントに対する照査については,地震応答解析により算定した曲 げモーメントが許容限界以下であることを確認する。

- 3.8.2 構造物の変形性評価
 - (1) 相対変位の考え方構造物の変形性評価に用いる相対変位は、地震時における相対変位の最大値とする。
 - (2) 評価方法

変位方向の定義を示した図2.5-3-20のうち、取水護岸と海水貯留堰の水平方向の相対 変位 δ_x (+)が許容限界以下であることを確認する。

図 2.5-3-20 変位方向の定義

4. 評価結果

4.1 地震応答解析結果

地震応答解析結果として「断面力分布」,「最大せん断ひずみ分布」及び「最大過剰間隙水 圧比分布」を示す。

(1) 断面力分布

耐震評価においては、全ての基準地震動Ssに対し、①の解析ケース(基本ケース)を 実施する。

また,全ての基準地震動Ssに対し基本として実施した①の解析ケースにおいて,各照 査値が最も厳しい地震動を用い,②~⑤の解析ケースを実施する。

表2.5-4-1に前面鋼矢板の曲げモーメントに対する解析ケースと照査値を示す。

A-A断面における基準地震動Ssによる前面鋼矢板に発生する断面力(曲げモーメント)照査において,解析ケースのうち前面鋼矢板の曲げモーメント照査において最も厳しい照査値の地震時断面力分布を図2.5-4-1に示す。本図は前面鋼矢板の曲げモーメントに対する照査において照査値が最も厳しくなる時刻における断面力分布を示したものである。

解析ケース		曲げモーメント照査					
地震動		1	2	3	4	5	
	++	0.10					
Se-1	-+	0.09					
55 1	+-	0.09	0.08	0.12	0.08	0.08	
		0.09					
Ss-2		0.08					
	++	0.08					
5 ~ 2	-+	0.08					
58-9	+-	0.07					
		0.08					
S	s-4	0.08					
Ss-5		0.05					
Ss-6		0.09					
Ss-7		0.07					
C - 0	++	0.08					
Ss-8	-+	0.08					

表 2.5-4-1(1) 前面鋼矢板の曲げモーメントに対する解析ケースと照査値

(A-A断面 海底面以浅)

表 2.5-4-1(2) 前面鋼矢板の曲げモーメントに対する解析ケースと照査値 (A-A断面 海底面以深)

	解析ケース	曲げモーメント照査				
地震動		1	2	3	4	5
	++	0.17				
Se-1	-+	0.15				
58-1	+ -	0.19	0.15	0.24	0.17	0.14
		0.16				
Ss-2		0.14				
	++	0.12				
5	-+	0.15				
58-9	+-	0.13				
	_	0.13				
S	s-4	0.14				
Ss-5		0.13				
Ss-6		0.16				
Ss-7		0.16				
Ss-8	++	0.12				
	-+	0.17				

t=5.38s

 図 2.5-4-1 前面鋼矢板の曲げモーメント照査において最も厳しい照査値の地震時断面力分布 (A-A断面 Ss-1+-)
 (解析ケース③:地盤物性のばらつき(-1σ)を考慮した解析ケース)

(2) 最大せん断ひずみ分布

各要素に発生した最大せん断ひずみを確認するため、断面力の照査において、解析ケースのうち最も厳しい照査値となったケースの地震応答解析の全時刻における最大せん断ひずみ分布を図2.5-4-2に示す。

図 2.5-4-2 最大せん断ひずみ分布 (A-A断面,解析ケース③,地震動 Ss-1+-) (3) 最大過剰間隙水圧比分布

各要素に発生した過剰間隙水圧比を確認するため、断面力の照査において、解析ケースのうち最も厳しい照査値となったケースの地震応答解析の全時刻における最大過剰間隙水 圧比分布を図2.5-4-3に示す。

図 2.5-4-3 最大過剰間隙水圧比分布 (A-A断面,解析ケース③,地震動 Ss-1+-)

4.2 耐震評価結果

4.2.1 構造部材の健全性に対する評価結果

前面鋼矢板の曲げモーメントに対する照査結果を表2.5-4-2及び表2.5-4-3に示す。 前面鋼矢板に発生する曲げモーメントは許容限界以下であり,照査値に大きく余裕がある ことを確認した。なお,曲げモーメントは各地震動において最大となる値を示している。

解析ケース*	地震動		曲げ モーメント (kN・m)	許容限界 (kN・m)	照查値
		++	50.0	555	0.10
	S a 1	-+	44.5	555	0.09
	55-1	+-	49.1	555	0.09
			45.6	555	0.09
	Ss-2		42.8	555	0.08
		++	39.2	555	0.08
	5 - 2	-+	42.0	555	0.08
1	55-5	+-	38.7	555	0.07
			43.2	555	0.08
	Ss-4		43.0	555	0.08
	Ss-5		27.3	555	0.05
	Ss-	-6	44.6	555	0.09
	Ss-7		38.0	555	0.07
	5 . 9	++	39.8	555	0.08
	35-0	-+	41.4	555	0.08
2		+-	41.4	555	0.08
3		+-	61.5	555	0.12
4	55-1	+-	44.2	555	0.08
5		+-	41.4	555	0.08

表 2.5-4-2 曲げモーメントに対する照査結果(前面鋼矢板 海底面以浅)

注記*:解析ケースの番号は下記に対応する

: 基本ケース

②:地盤物性のばらつき(+1g)を考慮した解析ケース

③:地盤物性のばらつき(-1g)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケ

解析ケース*	地震動		曲げ モーメント (kN・m)	許容限界 (kN・m)	照查値
		++	104	649	0.17
	Sc-1	-+	95.9	649	0.15
	55-1	+-	118	649	0.19
			102	649	0.16
	Ss-2		88.5	649	0.14
		++	77.1	649	0.12
	5 - 2	-+	94.1	649	0.15
1	38-3	+-	78.2	649	0.13
			84.0	649	0.13
	Ss-4		86.0	649	0.14
	Ss-5		81.1	649	0.13
	Ss-	-6	103	649	0.16
	Ss-7		103	649	0.16
	0 0	++	73.1	649	0.12
	35-0	-+	107	649	0.17
2		+-	93.2	649	0.15
3	Sc=1	+-	152	649	0.24
4	55-1	+-	105	649	0.17
5		+-	87.7	649	0.14

表 2.5-4-3 曲げモーメントに対する照査結果(前面鋼矢板 海底面以深)

注記*:解析ケースの番号は下記に対応する

①:基本ケース

②:地盤物性のばらつき(+1σ)を考慮した解析ケース
 ③:地盤物性のばらつき(-1σ)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケ

4.2.2 構造物の変形性に対する評価結果

構造物の変形性評価に用いる地震時における構造物間の最大相対変位を表2.5-4-4に 示す。また、取水護岸と海水貯留堰との離隔に対する照査結果を表2.5-4-5に示す。

取水護岸と海水貯留堰との最大水平相対変位は許容限界以下であり,止水ゴム取付部鋼 材間の離隔が確保されることを確認した。

解析ケース*	ース* 地震動		最大相対変位 (cm)
		++	2.0
	Sc-1	-+	2.2
	38-1	+-	2.1
			2.1
	Ss-	2	1.7
	Ss-3	++	2.5
		-+	2.5
1		+-	3. 0
			2.3
	Ss-	4	1.9
	Ss-	5	2.2
	Ss-	6	2.6
	Ss-	7	3. 6
		++	2.3
	55-0	-+	1.7
2		+-	1.8
3	S_{c-1}	+-	2.6
4	55-1	+-	2.0
5		+-	1.8

表 2.5-4-4 地震時における構造物間の最大相対変位量

注記*:解析ケースの番号は下記に対応する

①:基本ケース

②:地盤物性のばらつき(+1g)を考慮した解析ケース

③:地盤物性のばらつき(-1g)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケ

表 2.5-4-5 取水護岸と海水貯留堰との離隔に対する照査結果

御折を一フ	业雪哥	最大水平相対変位	許容限界値	
脾ケクース	地展到	(cm)	(cm)	
1	Ss-7	3.6	24.0	

4.3 まとめ

取水護岸について,基準地震動Ssによる地震力に対し,構造部材に発生する曲げモーメント及び変形量が許容限界以下であることを確認した。

以上のことから、取水護岸は、基準地震動Ssによる地震力に対して、要求機能を維持できる。

取水護岸の耐震計算書に関する参考資料

(参考資料1) <mark>取水護岸の耐震評価における</mark>積雪荷重の影響<mark>検討</mark>

(参考資料1) 取水護岸の耐震評価における積雪荷重の影響検討

1. 概要

取水護岸の耐震評価では,護岸を構成する前面鋼矢板と海水貯留堰との最大水平相対変位を算 出し,要求機能が確保されることを確認している。

取水護岸の背面は地盤改良されており,前面鋼矢板の変位抑制対策が講じられていること等を 踏まえ,取水護岸部における地震時の荷重の組合せとして積雪荷重を考慮しないこととしている。 そこで本資料では,取水護岸の耐震評価における荷重の組合せの妥当性を確認するため,取水 護岸の背面全域に積雪荷重を作用させた場合の影響について検討する。

2. 検討方針

本資料では,積雪荷重を考慮しない解析(以下「基本ケース」という。)の耐震評価結果と,積 雪荷重を考慮する解析(以下「積雪ケース」という。)の耐震評価結果を比較し,積雪荷重による 影響を確認する。

対象とするケースは,KK7 補足-028-08「浸水防護施設の耐震性に関する説明書の補足説明資料 2.5 取水護岸の耐震計算書に関する補足説明」に示す,構造物の変形性評価において照査値が最も厳しいA-A断面の「解析ケース①,基準地震動 Ss-7EW」とする。

3. 積雪荷重の設定

積雪荷重の概念図を図1に示す。積雪荷重は, V-1-1-3-1-1「発電用原子炉施設に対する自然 現象等による損傷防止に関する基本方針」に従い,積雪厚さ115.4cm,積雪厚さ1cm あたりの荷 重を29.4N/cm/m²とし,積雪荷重3.39kN/m²を地表面に分布荷重として設定する。

注記*:水平方向にも同位置に載荷する

4. 耐震評価結果の比較

積雪荷重を考慮しない基本ケースと積雪荷重を考慮した積雪ケースについて,前面鋼矢板と海 水貯留堰間の最大相対変位を表1に示す。

地震時の荷重の組合せとして積雪荷重を考慮した積雪ケースの前面鋼矢板と海水貯留堰間の最 大水平相対変位は,積雪荷重を考慮していない基本ケースの最大水平相対変位と同程度であり, 許容限界に対しても十分余裕のある値となっている。これは,取水護岸の背面に施工されている 地盤改良の効果によって変位抑制効果が発揮されたものと推察される。

検討ケース	検討ケース 積雪荷重		許容限界 (cm)
基本ケース	考慮しない	3.6	04.0
積雪ケース	考慮する	3. 5	24.0

表1 構造物の変形性評価結果

5. まとめ

本資料では、取水護岸の耐震評価における積雪荷重の影響について検討した。検討の結果,積 雪荷重を考慮した積雪ケースの前面鋼矢板と海水貯留堰間の最大水平相対変位は,積雪荷重を考 慮していない基本ケースの最大水平相対変位と同程度であり,積雪荷重を考慮していない取水護 岸の耐震評価における地震時の荷重の組合せの妥当性を確認した。 2.6 取水護岸(6号機設備)の耐震計算書に関する補足説明
1. 概要 ······	
2. 基本方針	
2.1 位置	2 2
2.2 構造概要	
2.3 評価方針	5
2.4 適用基準 ······	
3. 耐震評価	
3.1 評価対象断面	
3.2 解析方法	
3.2.1 地震応答解析手法	
3.2.2 構造部材 ······	12
3.2.3 耐震評価における解析ケース ・・・・・・・・・・・・・・・・・・・・・・・・	12
3.3 荷重及び荷重の組合せ	
3.3.1 耐震評価上考慮する状態	
3.3.2 荷重 ······	
3.3.3 荷重の組合せ	
3.4 入力地震動	
3.5 解析モデル及び諸元	
3.5.1 解析モデルの設定	
3.5.2 使用材料及び材料の物性値	48
3.5.3 地盤及び地盤改良体の解析用物性値	49
3.5.4 地下水位 ······	51
3.6 評価対象部位	52
3.6.1 構造部材の健全性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
3.6.2 構造物の変形性評価	52
3.7 許容限界	53
3.7.1 構造部材の健全性に対する許容限界	53
3.7.2 構造物の変形性に対する許容限界	54
3.8 評価方法	55
3.8.1 構造部材の健全性評価	
3.8.2 構造物の変形性評価	
4. 評価結果	56
4.1 地震応答解析結果	56
4.2 耐震評価結果	61
4.2.1 構造部材の健全性に対する評価結果	61
4.2.2 構造物の変形性に対する評価結果	63
4.3 まとめ	
目一1	

参考資料

(参考資料1) 積雪荷重の影響評価	 (参考) 1-1
	(- • /

1. 概要

本資料は、V-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方 針に基づき、取水護岸(6号機設備)が基準地震動Ssに対して十分な構造強度及び止水性を有 していることを確認するものである。

取水護岸(6 号機設備) に要求される機能の維持を確認するにあたっては、地震応答解析に基づく構造部材の健全性評価及び構造物の変形評価により行う。

2. 基本方針

2.1 位置

取水護岸(6号機設備)の位置図を図2.6-2-1に示す。

図 2.6-2-1(1) 取水護岸(6号機設備)の位置図(全体平面図)

2.2 構造概要

取水護岸(6号機設備)は、海水貯留堰(6号機設備)の構成部材である取水護岸(6号 機設備)接続部のうち、止水ゴム取付部鋼材と接続する前面鋼矢板で構成される。前面鋼矢 板には、海水による腐食防止のため、電気防食が施されている。

取水護岸(6号機設備)の平面図を図2.6-2-2,標準断面図を図2.6-2-3に示す。

図 2.6-2-2(1) 取水護岸(6号機設備)の平面図

図 2.6-2-2(2) 取水護岸(6号機設備)の平面図(A部拡大)

2.3 評価方針

取水護岸(6 号機設備)は,常設重大事故防止設備及び常設重大事故緩和設備の間接支持 構造物に分類される。

取水護岸(6号機設備)の耐震評価は、地震応答解析の結果に基づき,表2.6-2-1の取 水護岸(6号機設備)の評価項目に示すとおり、構造部材の健全性評価及び構造物の変形性 評価を行う。

取水護岸(6 号機設備)の地震応答解析においては、地震時の地盤の有効応力の変化に応じた影響を考慮できる有効応力解析を実施する。

有効応力解析に用いる地盤剛性及び液状化強度特性は,地盤の代表性及び網羅性を踏まえ た上で,ばらつき等を考慮して設定する。

構造部材の健全性評価及び構造物の変形性評価を実施することで,構造強度を有すること 及び止水性を損なわないことを確認する。

構造部材の健全性評価については,前面鋼矢板に発生する曲げモーメントが許容限界以下 であることを確認する。許容限界については,取水護岸(6 号機設備)が常設重大事故防止 設備及び常設重大事故緩和設備の間接支持構造物に分類されることから,全塑性モーメント による確認が基本であるが,設計上の配慮として,降伏モーメントとする。

構造物の変形性評価については、前面鋼矢板及び海水貯留堰(6 号機設備)の変形量を算 定し、海水貯留堰(6 号機設備)との離隔が確保されることを確認した許容限界以下である ことを確認する。なお、海水貯留堰(6 号機設備)の変形量を考慮した止水ゴムの変形量に ついての照査は、V-2-10-3-1-3-1「海水貯留堰(6 号機設備)の耐震性についての計算書」 及びV-3-別添 3-1-3「海水貯留堰(6 号機設備)の強度計算書」において実施する。取水護 岸(6 号機設備)の耐震評価フローを図 2.6-2-4 に示す。

なお,取水護岸(6号機設備)は,断面変化が無く直線状に設置される矢板構造物である ことから,強軸断面方向の曲げの影響はほとんど受けない。したがって,KK7 補足-024-4 「水平2方向及び鉛直方向地震力の組合せに関する検討について」に示すように,従来設計 手法における評価対象断面以外の3次元的な応答特性が想定される箇所が無いことを確認し た。

評価方針	評価項目	部位	評価方法	許容限界
構造強度を有 すること	構造部材の 健全性	前面鋼矢板	発生応力が許容 限界 <mark>以下である</mark> ことを確認	降伏モーメント
止水性を損な わないこと	構造物の 変形性	前面鋼矢板	発生変形量が許 容限界以下であ ることを確認	海水貯留堰(6号機設備) との離隔が確保されること を確認した変形量

表 2.6-2-1 取水護岸(6号機設備)の評価項目

図 2.6-2-4 取水護岸(6号機設備)の耐震評価フロー

2.4 適用基準

適用する規格,基準類を以下に示す。また,表2.6-2-2に各項目で適用する規格,基準 類を示す。

- ・コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)
- ・道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987(日本電気協会)
- ・港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007版)
- ・港湾構造物設計事例集(沿岸技術研究センター,平成19年3月)
- ・鋼矢板Q&A(鋼管杭・鋼矢板技術協会 平成29年3月)
- ・鋼矢板 設計から施工まで(鋼管杭協会,平成12年3月)

項目	適用する規格、基準類	備考
使用材料及び材料定数	 ・コンクリート標準示方書 [構造性能 照査編] (2002 年) 	_
荷重及び荷重の組合せ	・コンクリート標準示方書 [構造性能 照査編] (2002 年)	 ・永久荷重+偶発荷重+従た る変動荷重の適切な組合せ を検討
許容限界	 ・鋼矢板Q&A(平成29年3月) ・鋼矢板 設計から施工まで(平成12年3月) 	・発生応力が,降伏モーメン ト以下であることを確認
評価方法	 ・港湾の施設の技術上の基準・同解 説(2007版) ・鋼矢板 設計から施工まで(平成 12年3月) 	・腐食代の設定
地震応答解析	・原子力発電所耐震設計技術指針 JEAG4601-1987	 ・有限要素法による2次元モデ ルを用いた時刻歴非線形解 析

表 2.6-2-2 各項目で適用する規格,基準類

- 3. 耐震評価
 - 3.1 評価対象断面

評価対象断面は、取水護岸(6 号機設備)が海水貯留堰(6 号機設備)の間接支持構造物 であることから、V-2-10-3-1-3-1「海水貯留堰(6 号機設備)の耐震性についての計算書」 と同様とし、海水貯留堰(6 号機設備)との接続部を通る断面であるA-A断面を選定し、 基準地震動Ssによる耐震評価を実施する。

評価対象断面選定の詳細については補足「2.2 海水貯留堰(6 号機設備)の耐震計算書 に関する補足説明」に示す。

取水護岸(6号機設備)の評価対象断面位置図を図 2.6-3-1 に示す。構造物の耐震設計 における評価対象断面は図 2.6-3-1のA-A断面とする。評価対象断面図を図 2.6-3-2 に示す。

図 2.6-3-1 取水護岸(6号機設備)の評価対象断面位置図

図 2.6-3-2 取水護岸(6号機設備)の評価対象断面図(A-A断面)

3.2 解析方法

取水護岸(6号機設備)の地震応答解析は、V-2-1-6「地震応答解析の基本方針 2.3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答解析では,地盤の有効応力の変化に応じた地震時挙動を考慮できる有効応力解析 手法を用いる。

有効応力解析には,解析コード「FLIP Ver.7.4.1」を使用する。なお,解析コードの 検証及び妥当性確認等の概要については,別紙「計算機プログラム(解析コード)の概要」 に示す。

3.2.1 地震応答解析手法

取水護岸(6号機設備)の地震応答解析は,地盤と構造物の相互作用を考慮できる2次元 有効応力解析を用いて,基準地震動に基づき設定した水平地震動と鉛直地震動の同時加振 による逐次時間積分の時刻歴応答解析にて行う。構造部材については,線形はり要素を用 いることとする。地盤については,有効応力の変化に応じた地震時挙動を適切に考慮でき るモデル化とする。

地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線の構成則を有効応力解析へ適用 する際は、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に関するせん断ひずみ 及び有効応力の変化に応じた特徴を適切に表現できるモデルを用いる必要がある。

一般に、地盤は荷重を与えることによりせん断ひずみを増加させていくと、地盤のせん 断応力は上限値に達し、それ以上はせん断応力が増加しなくなる特徴がある。また、地盤 のせん断応力の上限値は有効応力に応じて変化する特徴がある。

よって、耐震評価における有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ 関係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線 に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線 モデル(H-Dモデル)を選定する。

地震応答解析手法の選定フローを図2.6-3-3に示す。

図 2.6-3-3 地震応答解析手法の選定フロー

3.2.2 構造部材

構造部材は、線形はり要素によりモデル化する。

3.2.3 耐震評価における解析ケース

取水護岸(6号機設備)の耐震評価における解析ケースを表2.6-3-1に示す。

地盤剛性のばらつきの影響を考慮するため,地表付近で地下水面をまたぐ地層(埋戻土 及び新期砂層)のばらつきは,初期せん断弾性係数と有効拘束圧の関係から初期せん断弾 性係数の標準偏差σを用いてせん断波速度のばらつきとして設定する。地下水位以深の飽 和土層(沖積層及び古安田層)のばらつきは,各地層のPS検層の結果から得られるせん断 波速度の標準偏差σを求め,せん断波速度のばらつきとして設定する(解析ケース②,③, ⑤)。

地盤の液状化強度特性は、代表性及び網羅性を踏まえた上で保守性を考慮し、液状化強 度試験データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不偏分散 に基づく標準偏差σを用いて、液状化強度特性を(-1σ)にて設定する(解析ケース①, ②,③)。

また,構造物への応答加速度に対する保守的な配慮として,地盤の非液状化の条件を仮 定した解析ケースを設定する(解析ケース④,⑤)。

耐震評価においては、全ての基準地震動Ssに対し、①の解析ケース(基本ケース)を 実施する。

また,全ての基準地震動Ssに対し基本として実施した①の解析ケースにおいて,各照 査値が最も厳しい地震動を用い,②~⑤の解析ケースを実施する。

最も厳しい地震動の選定は,照査値1.0に対して2倍の余裕となる照査値0.5以上を相対的 に厳しい地震動の選定の目安として実施する。

追加解析を実施する地震動の選定フローを図2.6-3-4に示す。

解析ケース		1)	2	3	4	5		
		基本ケース	地盤物性のば らつき(+1 σ)を考慮し た解析ケース	地盤物性のば らつき (-1 σ)を考慮し た解析ケース	非液状化の条 件を仮定した 解析ケース	地盤物性のば らつき(+1 σ)を考慮し て非液状化の 条件を仮定し た解析ケース		
地盤剛性の設定		地盤剛性 (平均値)	地盤剛性 (+1σ)	地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)		
液状化強度特性の設定		液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化パラメ ータを非適用	液状化パラメ ータを非適用		
-		++	実施					
	6 1	-+	実施					
	Ss-1	+-	実施					
			実施					
	Ss-2		実施					
		++	実施					
地震	C D	-+	実施	全ての基準				
動	35 3	+-	実施					
位相			実施			こ, ビル阿万県		
(Ē	Ss-4		実施	 力照査及び支持力照査について、各照査値が最も厳し い(許容限界に対する余裕が最も小さい)地震動を用 w, ②~⑤より追加解析ケースを実施する。 the formation of the formation				
	Ss-5		実施					
	Ss-6		実施					
-	Ss-7		実施					
	S - 0	++	実施	値が大きくフ _{トマ}	こる可能性があ	る場合は,追加	解朳を実施	
	5s-8	-+	実施		Γ	L		

表 2.6-3-1 取水護岸(6号機設備)の耐震評価における解析ケース

<mark>注:</mark>表中の符号+,-は地震動の位相(水平,鉛直)を示す。

図 2.6-3-4 追加解析を実施する地震動の選定フロー

- 3.3 荷重及び荷重の組合せ 荷重及び荷重の組合せは、V-2-1-9「機能維持の基本方針」に基づき設定する。
- 3.3.1 耐震評価上考慮する状態 取水護岸(6号機設備)の地震応答解析において、地震以外に考慮する状態を以下に示す。
 - (1) 運転時の状態

発電用原子炉施設が運転状態にあり,通常の条件下におかれている状態。ただし,運転 時の異常な過渡変化時の影響を受けないことから考慮しない。

- (2) 設計基準事故時の状態設計基準事故時の影響を受けないことから考慮しない。
- (3) 設計用自然条件 積雪及び風による影響は考慮しない。
- (4) 重大事故等時の状態重大事故等時の状態の影響を受けないことから考慮しない。

- 3.3.2 荷重 取水護岸(6号機設備)の地震応答解析において、考慮する荷重を以下に示す。
 - (1) 固定荷重(G)固定荷重として, 躯体自重を考慮する。
 - (2) 地震荷重(Ss)基準地震動Ssによる荷重を考慮する。

3.3.3 荷重の組合せ

取水護岸(6号機設備)の耐震評価に用いる荷重の組合せを表2.6-3-2及び表2.6-3-3 に示す。

なお, (参考資料1)に示すとおり, 取水護岸(6号機設備)の背面は地盤改良されており, 前面鋼矢板の変形抑制対策が講じられていること等を踏まえ, 取水護岸部における地 震時の荷重の組合せとして積雪荷重を考慮しないこととしている。

表 2.6-3-2 荷重の組合せ

外力の状態	荷重の組合せ
地震時 (S s)	$G + S_{S}$

G : 固定荷重

S_s:地震荷重

種別		荷重		算定方法	
		部材自重	0	・設計図書に基づいて、対象構造物の体積に材料の密度を乗	
				じて設定する	
	固定	機器・配管自重	—	・機器・配管設備はないことから、考慮しない	
荷重土被	荷重	土被り荷重 -		・土被りはないため、考慮しない	
	「事業生		・地盤表面に恒常的に置かれる設備等はないことから、考慮		
永久		上載何里	_	しない	
荷重		静止土圧		・常時応力解析により <mark>算定</mark> する	
外水圧				・地下水位(T.M.S.L.3.0m)及び海水面(T.M.S.L.1.0m*)	
		外水圧	\bigcirc	に応じた静水圧として設定する。	
				・地下水及び海水の密度を考慮する	
	内水圧		_	・内水圧を考慮する構造形式ではないことから、考慮しない	
	積雪及び風荷重		_	・考慮しない	
		水平地震力	0	・基準地震動Ssによる水平及び鉛直同時加振を考慮する	
偶発荷重		鉛直地震力	\bigcirc	・躯体の慣性力,動土圧を考慮する	
		動水圧	0	・水位条件、密度は、永久荷重と同様とする	

表 2.6-3-3 荷重の組合せ(前面鋼矢板 地震時)

注記*:外水圧の水位は, 朔望平均満潮位 T. M. S. L. 0. 49m に対し, 保守性を考慮し T. M. S. L. 1. 0m とする。

3.4 入力地震動

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを1次元 波動論により地震応答解析モデルの底面位置で評価したものを用いる。入力地震動の設定に おいては,V-2-1-3「地盤の支持性能に係る基本方針」に示す地下構造モデル(入力地震動 作成モデル)とし,原子炉建屋と同様のものを用いる。

入力地震動算定の概念図を図 2.6-3-5 に,入力地震動の加速度時刻歴波形及び加速度応 答スペクトルを図 2.6-3-6 に示す。入力地震動の算定には,解析コード「SLOK Ver.2.0」を使用する。

なお,基準地震動Ssのうち特定の方向性を有しない地震動については,位相を反転させた。 た場合の影響も確認する。

図 2.6-3-5 入力地震動算定の概念図

MAX 11.9 m/s^2 (18.51s)

(a) 加速度時刻歷波形

図 2.6-3-6(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-1)

MAX 7. $49m/s^2$ (5. 88s)

(a) 加速度時刻歷波形

図 2.6-3-6(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-1)

MAX 13. $2m/s^2$ (20. 51s)

(a) 加速度時刻歷波形

図 2.6-3-6(3) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-2EW)

MAX 5.02 m/s^2 (20.46s)

(a) 加速度時刻歷波形

図 2.6-3-6(4) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-2EW)

MAX 7.18 m/s^2 (35.43s)

(a) 加速度時刻歷波形

図 2.6-3-6(5) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-3)

図 2.6-3-6(6) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-3)

図 2.6-3-6(7) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-4EW)

図 2.6-3-6(8) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-4EW)

MAX 7.51m/s² (46.29s)

(a) 加速度時刻歷波形

図 2.6-3-6(9) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-5EW)

図 2.6-3-6(10) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-5EW)

MAX 9.84 m/s^2 (51.71s)

(a) 加速度時刻歷波形

図 2.6-3-6(11) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-6EW)

図 2.6-3-6(12) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-6EW)

図 2.6-3-6(13) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-7EW)

図 2.6-3-6(14) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-7EW)

MAX 7.65 m/s^2 (7.74s)

(a) 加速度時刻歷波形

図 2.6-3-6(15) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-8)

MAX 3.35 m/s^2 (7.64s)

(a) 加速度時刻歷波形

図 2.6-3-6(16) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-8)
- 3.5 解析モデル及び諸元
- 3.5.1 解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、「原子力発電所耐震設計技術指針JEAG4 601-1987(日本電気協会)」を参考に、図2.6-3-7のモデル範囲の考え方に示すとお り、モデル幅を構造物基礎幅の5倍以上、モデル高さを構造物幅の2倍以上とする。

なお、解析モデルの境界条件は、側面及び底面ともに粘性境界とする。

地盤の要素分割については、地盤の波動をなめらかに表現するために、最大周波数20Hz 及びせん断波速度Vsで算定される波長の5<mark>又は</mark>4分割、すなわちVs/100又はVs/80を考慮し、 要素高さを<mark>0.5~</mark>1m程度まで細分割して設定する。

構造物の要素分割については、構造物に接する地盤の要素分割に合わせて設定する。

図 2.6-3-7 モデル範囲の考え方

2次元有効応力解析モデルは、検討対象構造物とその周辺地盤をモデル化した不整形地 盤に加え、この不整形地盤の左右に広がる地盤をモデル化した自由地盤で構成される。こ の自由地盤は、不整形地盤の左右端と同じ地層構成を有する1次元地盤モデルである。2次 元有効応力解析における自由地盤の初期応力解析から不整形地盤(2次元FEM)の地震 応答解析までのフローを図2.6-3-8に示す。

図 2.6-3-8 自由地盤の初期応力解析から不整形地盤(2次元FEM)の 地震応答解析までのフロー

- (2) 境界条件
 - a. 初期応力解析時

初期応力解析は、地盤や構造物の自重等の静的な荷重を載荷することによる常時の初 期応力を算定するために行う。初期応力解析時の境界条件は底面固定とし、側方は自重 等による地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。初期応力解析に おける境界条件の概念図を図 2.6-3-9 に示す。

図 2.6-3-9 初期応力解析における境界条件の概念図

b. 地震応答解析時

地震応答解析時の境界条件については,有限要素解析における半無限地盤を模擬する ため,粘性境界を設ける。底面の粘性境界については,地震動の下降波がモデル底面境 界から半無限地盤へ通過していく状態を模擬するため,ダッシュポットを設定する。側 方の粘性境界については,自由地盤の地盤振動と不整形地盤側方の地盤振動の差分が側 方を通過していく状態を模擬するため,自由地盤の側方にダッシュポットを設定する。 取水護岸(6号機設備)の地震応答解析モデルを図 2.6-3-10 に示す。

図 2.6-3-10 取水護岸(6号機設備)の地震応答解析モデル(A-A断面)

(3) 構造物のモデル化

構造部材は、線形はり要素によりモデル化する。

なお、A-A断面では2つの海水貯留堰(6号機設備)をモデル化している。海水貯留堰 (6号機設備) (沖合側)は、奥行き方向に連続する構造物としてモデル化している。一 方、海水貯留堰(6号機設備) (護岸近傍)は、奥行き方向に1本の構造物としてモデル化 している。図2.6-3-11に地震応答解析モデルを、図2.6-3-12に海水貯留堰(6号機設 備)のモデル化の概要を示す。

図 2.6-3-11 取水護岸(6号機設備)の地震応答解析モデル(A-A断面)

図 2.6-3-12 海水貯留堰(6号機設備)のモデル化の概要

(4) 地盤のモデル化

地盤は、マルチスプリング要素及び間隙水要素によりモデル化し、地震時の有効応力の 変化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

(5) 地盤改良体のモデル化 構造物周辺の地盤改良体は、マルチスプリング要素及び間隙水要素によりモデル化する。 (6) ジョイント要素の設定

「地盤と構造物」及び「地盤と地盤改良体」との接合面にジョイント要素を設けること により、地震時の接合面における剥離及びすべりを考慮する。なお、既設地盤改良体と新 設地盤改良体との接合面については、既設地盤改良体に対し新設地盤改良体をラップさせ て設置し、接合させることから、ジョイント要素は設定しない。

ジョイント要素は、隣接する要素との接合面で法線方向及びせん断方向に対して設定す る。法線方向については、常時の圧縮荷重以上の引張荷重が生じた場合、剛性及び応力を 零とし、剥離を考慮する。せん断方向については、各要素間の接合面におけるせん断抵抗 力以上のせん断荷重が生じた場合、せん断剛性を零とし、すべりを考慮する。

なお, せん断強度 τ_fは, 次式により規定される。

$$\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$$

ここで,

σ':要素間の直応力

- св :付着力
- φ_B :摩擦角

地盤と構造物間の接合面におけるジョイント要素の付着力 c Bと摩擦角 ϕ Bは,表2.6-3-4に示すとおりに設定する。付着力 c Bは「道路橋示方書(I 共通編・IV下部構造 編)・同解説(日本道路協会,平成14年3月)」に基づき,表2.6-3-4に示す「地盤と構 造物」の条件から考慮しないものとする。摩擦角 ϕ Bは,「港湾の施設の技術上の基準・ 同解説(日本港湾協会,平成19年7月)」において,構造物と地盤間の壁面摩擦角を15° ~20°とする旨が記載されており,「港湾構造物設計事例集(上巻)(沿岸技術研究セン ター,平成19年3月)」において,鋼材と地盤間の摩擦角を15°と設定した事例があるこ とから,本解析における摩擦角 ϕ Bにも15°を適用する。

地盤と地盤改良体間の付着力 c B及び摩擦角 φ Bは,表2.6-3-5の道路橋示方書における摩擦角 φ Bと付着力 c Bに示す「道路橋示方書(I 共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)」の設定を参考に,周辺地盤の粘着力 c,内部摩擦角 φ より設定する。

周辺地盤の粘着力 c と内部摩擦角 φ は, V-2-1-3「地盤の支持性能に係る基本方針」に 基づき, 表2.6-3-6のとおりに設定する。

条件	付着力 c B (kN/m²)	摩擦角φ _B (°)
地盤と構造物*1	0.0	15.0
地盤と地盤改良体*2	С	ϕ

表 2.6-3-4 ジョイント要素の付着力 c Bと摩擦角 φ B

注記*1:構造物は、鋼材とする。

*2 : 地盤と地盤改良体の付着力と摩擦角は、地盤のc, φを適用する。

表2.6-3-5 道路橋示方書における摩擦角 Φ B と付着力 с B

条件	摩擦角 ϕ_B (摩擦係数 $\tan \phi_B$)	付着力cB
土とコンクリート	$\phi_{B} = \frac{2}{3} \phi$	$c_B = 0$
土とコンクリートの間に栗石を敷く場合	$ tan \phi_B = 0.6 \phi_B = \phi $	$c_{B} = 0$
岩とコンクリート	$\tan \phi_B = 0.6$	$c_B = 0$
土と土又は岩と岩	$\phi_B = \phi$	$c_B = c$

ただし、 ø: 支持地盤のせん断抵抗角(°) c: 支持地盤の粘着力 (kN/m²)

(引用:道路橋示方書・同解説IV(下部構造編),社団法人日本道路協会,平成14年3月)

地質区分	粘着力 c (kN/m ²)	内部摩擦角 φ (°)
埋戻土	0.0	35.9
新期砂層	0.0	34.6
A3a1 層	29.2	34.2
A2c 層	113.0	27.9

表2.6-3-6 周辺地盤の粘着力cと内部摩擦角 φ

ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分大きい 値として、「港湾構造物設計事例集(上巻)(沿岸技術研究センター、平成19年3月)」 に従い、表2.6-3-7の通り設定する。ジョイント要素の力学特性を図2.6-3-13に、ジ ョイント要素の配置を図2.6-3-14に示す。なお、海水貯留堰(6号機設備)(沖合側) は奥行き方向に連続する構造物としてモデル化するため、地盤と構造物の間にジョイント 要素を設ける。また、海水貯留堰(6号機設備)(護岸近傍)は奥行き方向に1本の構造物 であるため、地盤と構造物の間には杭一地盤相互作用ばねを設ける。

表 2.6-3-7 ジョイント要素のばね定数

条件	対象	せん断剛性 k _s (kN/m ³)	圧縮剛性 k _n (kN/m ³)
地盤と構造物	海水貯留堰 (6号機設備)	1.0×10^{6}	1.0×10^{6}
	護岸前面鋼矢板	1.0×10^{5}	$1.0 imes 10^{6}$
地盤と地盤改良体	側方及び底面	1.0×10^{6}	1.0×10^{6}

図 2.6-3-14 ジョイント要素の配置(A-A断面)

(7) 杭-地盤相互作用ばねの設定

地盤と杭の接合面に杭-地盤相互作用ばねを設けることにより,地盤と杭の接合面にお ける,強震時の相互作用の3次元効果を2次元モデルで適切に考慮する。

杭-地盤相互作用ばねの杭軸方向については,地盤と杭の接合面におけるせん断抵抗力 以上のせん断荷重が発生した場合,せん断剛性を零とし,すべりを考慮する。

図2.6-3-15に杭-地盤相互作用ばねの考え方を示す。

なお, せん断強度 τ_fは, 次式により規定される。

 $\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$

ここで,

 τ_{f} : せん断強度

с в:付着力

付着力 c B及び摩擦角 φ Bは,表2.6-3-4の地盤と構造物の条件から設定する。

杭ー地盤相互作用ばねの杭軸方向のばね定数は,数値解析上不安定な挙動を起こさない 程度に十分大きい値として,「港湾構造物設計事例集(上巻)(沿岸技術研究センター, 平成19年3月)」に従い,表2.6-3-8のとおり設定する。

また,杭-地盤相互作用ばねの杭軸直角方向のばね定数については,杭径及び杭間隔より設定する*。

注記*: FLIP 研究会 14 年間の検討結果のまとめ「理論編」(FLIP コンソーシアム)

(b) 杭-地盤相互作用ばね配置図(A-A断面)

図 2.6-3-15 杭-地盤相互作用ばねの考え方

	表 2.6-3-8	杭ー地盤相互作用ばねの杭軸方向のば	ね定数
--	-----------	-------------------	-----

	せん断剛性 k _s
	(kN/m^3)
杭軸方向	$1.0 imes 10^{6}$

(8) 杭先端ばねの設定

杭軸方向の荷重変位関係は、杭の鉛直載荷試験の結果等から図2.6-3-16に示すとおり、 双曲線型の関係を示すことが知られている。本解析においても実現象を精緻にモデル化す る観点から、杭先端と地盤間にHirayama (1990) *による杭先端抵抗と杭先端変位の双曲 線型の関係を杭軸方向のばねの抵抗力と変位差関係に置き換えたばねを設けることにより、 杭先端における地盤と杭の相互作用を適切に考慮する。このばねは、圧縮側の関係を取り 扱うため、杭先端と地盤間の変位差が引張り状態となった場合、剛性及び応力をゼロとし、 剥離を考慮する。

杭先端ばねの杭軸方向のばねの抵抗力と変位差関係は、次式及び図2.6-3-17に示す双曲線型の式で設定される。

Hirayama (1990)では、N値が30または50程度の硬質な砂層地盤における橋梁建設時の杭 の鉛直載荷試験結果に対して、当杭先端ばねを用いた荷重変位関係の再現解析を実施し、 適用性を検証している。また、当杭先端ばねは「一般社団法人FLIPコンソーシアム平 成25年度研究成果報告書(FLIPコンソーシアム、2013年)」にて、解析コード「FL IP」に対して適用性を確認している。報告書では、砂層に対する杭の押込み実験結果の 杭先端抵抗-杭先端変位関係を、当杭先端ばねが概ね再現可能であることを確認している。 また、パラメータスタディとして支持層の相対密度を変化させた解析を実施し、当杭先端 ばねの適用性を検証している。検証の結果、支持層に液状化等による剛性低下が生じず、 所定の支持力を発揮できる場合、当杭先端ばねは解析コード「FLIP」に対し適用性を 有することが確認されている。

海水貯留堰(6号機設備)については、杭の支持層は西山層、A2c層及びA2al層であり、 地震時においても液状化が生じず、所定の杭先端支持力が期待できることから、当杭先端 ばねを適用できると判断した。

 $q = z_e \swarrow (a_e + b_e \cdot z_e)$

- q : 杭先端抵抗
- z e : 杭先端変位
- a e : 基準変位を杭先端における極限支持力で除した値(=0.25De/qult)
- **b**_e : 杭先端における極限支持力の逆数(=1/q_{ult})
- D_e :杭径
- q_{ult}:杭先端における極限支持力

注記*:Load-settlement analysis for bored piles using hyperbolic transfer functions (Soils and Foundations, Vol. 30, No. 1, pp55-64, H.Hirayama, 1990)

図 2.6-3-16 杭の鉛直載荷試験における一般的な荷重-変位関係 (道路橋示方書より引用)

Pile tip displacement : z_e

図 2.6-3-17 杭先端ばねの杭軸方向のばねの抵抗力と変位差関係(Hirayama (1990))

(9) 減衰定数

減衰定数は、柏崎刈羽原子力発電所における新潟県中越沖地震の地震記録を入力波とし た再現解析等を踏まえ、Rayleigh減衰として、 $\alpha = 0$ 、 $\beta = 0.005$ を設定する。 3.5.2 使用材料及び材料の物性値

使用材料を表2.6-3-9に、材料の物性値を表2.6-3-10に示す。

材料	諸元	腐食代		
		海側(海底面以浅)	2. 0mm^{*1}	
前面鋼矢板	S P-IV型(SY295), t=15.5mm	海側(海底面以深)	0. $2mm^{*1}$	
		陸側	0. $2mm^{*1}$	
鋼管矢板	ϕ 1100mm (SKY490) , t=14mm <mark>, 16mm</mark>	1. 0mm*2		

表 2.6-3-9 使用材料

注記*1:腐食代の算出過程は下記のとおりとする。

海側(海底面以浅)	: 0.2 (mm/年) ×86 年× (1.0-0.9) =1.72mm=2.0mm
海側(海底面以深)	: 0. 02 (mm/年) ×86 年× (1. 0-0. 9) = 0.172mm = 0.2mm
陸側	: 0.02 (mm/年) ×86 年× (1.0-0.9) =0.172mm=0.2mm
ここで,	

運用期間:86 年(取水護岸<mark>(6 号機設備)</mark>の竣工(1984 年)からの経過年数と海水貯留堰<mark>(6 号機設</mark> 備)の運用期間50 年の合計)

腐食速度:0.2mm/年(海側(海底面以浅))

0.02mm/年(海側(海底面以深),陸側)

(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」)

- 防食率:90%(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」,電気 防食実施のため)
- *2:腐食代の算出過程は下記のとおりとする。なお、海底面以深の鋼管矢板の腐食代は、保守的に海底面 以浅と同値とした。

0.2 (mm/年) ×50 年× (1.0-0.9) =1.0mm

ここで,

運用期間:50年(海水貯留堰(6号機設備)の運用期間50年)

腐食速度:0.2mm/年(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」) 防食率:90%(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」,電気 防食実施のため)

表 2.6-3-10 材料の物性値

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
前面鋼矢板	77.0	2. 0×10^{5}	0.3
鋼管矢板	77.0	2. 0×10^{5}	0.3

3.5.3 地盤及び地盤改良体の解析用物性値

地盤及び地盤改良体の諸定数は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定 している物性値を用いる。地盤の解析用物性値一覧を表2.6-3-11に示す。

なお、海水貯留堰(6号機設備)の地盤改良体については、KK7補足-024-1「地盤の支持 性能について 4.2 設置変更許可申請書に記載されていない解析用物性値」に示す。

また,表2.6-3-11(4)に地盤改良体の配置に応じて設定した地盤改良体の物性値を示す。

表 2.6-3-11(1) 地盤の解析用物性値一覧(液状化検討対象層)

	地質区分			新期砂層・沖積層			古安田層				
	物性値	_		埋戻土	新期砂層	沖積層上部 (砂質)	沖積層下部	A2s層	A3s層	A2g層 (砂質)	A1g層
物 理	密度	ρ	(g/cm^3)	1.94 $(1.79)^*$	2.05 (2.00)*	1.90	2.02	1.91	1.91	1.91	1.91
特性	間隙率	n		0.45	0.44	0.48	0.42	0.45	0.45	0.45	0.45
	動せん断弾性係数 G	ma	(kN/m^2)	1.04×10^{5}	1.26×10^{5}	1.25×10^{5}	1.92×10^{5}	2.14×10^{5}	2. 14×10^5	2. 14×10^5	2. 14×10^5
変形	基準平均有効拘束圧 σ	, m a	(kN/m^2)	98.0	98.0	110.0	150.0	200.0	200.0	200.0	200.0
特性	ポアソン比	ν		0.33 (0.42)*	0.33 (0.44)*	0.33	0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値 h,	ma x		0.225	0.234	0.247	0.211	0.157	0.157	0.157	0.157
強度	粘着力 。	c'	(kN/m^2)	0.0 (9.6)*	0.0 (94.4)*	0.0	0.0	0.0	0.0	0.0	0.0
特性	内部摩擦角 。	φ,	(°)	35.9 (34.8)*	34.6 (27.6)*	36.7	35.6	36.6	36.6	36.6	36.6
	変相角 (ф р	(°)	32.0	31.0	33.0	32.0	32.0	32.0	32.0	32.0
			S_1	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
液状化	液状化パラメータ		w1	5.50	7.90	11.00	8.00	25.00	25.00	25.00	25.00
化特性			p_1	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
			p_2	1.00	0.70	0.70	0.65	0.80	0.80	0.80	0.80
			c_1	1.69	2.13	2.41	2.00	8.75	8.75	8.75	8.75

注記*:括弧内の数字は、地下水位以浅の数値を表す。

	地質区分			新期砂層・沖積層		古安田層					
	物性値			埋戻土Ⅱ	沖積層上部 (シルト質)	A3c層	A3a1層	A2c層	A2a1層	A2g層 (シルト質)	A1c層
物理	密度	ρ	(g/cm^3)	1.71	1.66	1.70	1.81	1.80	1.88	1.80	1.80
特性	間隙率	n		0.58	0.61	0.57	0.52	0.52	0.48	0.52	0.52
	動せん断弾性係数	G_{ma}	(kN/m^2)	7.33×10^{4}	5.50 $\times 10^{4}$	1.09×10^{5}	$9.57 imes 10^4$	$1.39\!\times\!10^5$	1.61×10^{5}	1.39×10^{5}	1.39×10^{5}
変形	基準平均有効拘束圧	σ _{ma} ,	(kN/m^2)	41.0	170.0	60.0	94.0	140.0	170.0	140.0	140.0
特性	ポアソン比	ν		0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値	h _{max}		0.152	0.136	0.114	0.162	0.110	0.147	0.110	0.110
強度	粘着力	с'	(kN/m^2)	7.4	82.5	99.6	29.2	113.0	82. 8	113.0	113.0
特性	内部摩擦角	φ'	(°)	31.7	19.6	26.8	34.2	27.9	28.7	27.9	27.9

表 2.6-3-11(2) 地盤の解析用物性値一覧(非液状化層)

表 2.6-3-11(3) 地盤の解析用物性値一覧(西山層)

	パライータ			西山層			
	~//~-/			T.M.S.L33.Om 以浅	T. M. S. L. −33. Om∼−90. Om		
物理	密度	ρ	(g/cm^3)	1.73	1.69		
特性	間隙率	n		0.56	0.56		
	動せん断弾性係数	G_{ma}	(kN/m^2)	4. 16×10^5	4. 75×10^5		
変形	基準平均有効拘束圧	σ ma	(kN/m^2)	98.0	98.0		
特性	ポアソン比	ν		0.33	0. 33		
	減衰定数の上限値	h_{max}		0.257	0.257		
強度	粘着力 c		(kN/m^2)	1370-5.04Z*	1370-5.04Z*		
特性	内部摩擦角	ϕ	(°)	0. 0	0. 0		

注記*:Zは,標高(m)を示す

	既設/新設	既設 地盤改良体	新設地盤改良体			
	種別 (地盤種別)			高圧噴射 (砂質土)	高圧噴射 (砂質土)	高圧噴射 (粘性土)
物 理	密度	ρ	(g/cm^3)	1.77	1.94~1.96*	1.81
特性	間隙率	n		0.49	0. 49	0.64
	動せん断弾性係数	G_{ma}	(kN/m^2)	1.78×10^{6}	5. 54×10^{5}	5.18 \times 10 ⁵
変形	基準平均有効拘束圧	σ "	(kN/m^2)	98.0	98.0	98.0
特性	ポアソン比	ν		0.33	0. 33	0.33
	減衰定数の上限値	$h_{{\rm max}}$		0.05	0.05	0.05
強度特性	粘着力	с	(kN/m²)	815	397	397

表 2.6-3-11(4) 地盤の解析用物性値一覧(地盤改良体の配置を考慮した物性値)

<mark>注記*:地盤改良体の配置に応じて設定。</mark>

3.5.4 地下水位

地下水位は、 V-2-1-3「地盤の支持性能に係る基本方針」に基づき、地表面 (T.M.S.L.3.0m) として設定する。

- 3.6 評価対象部位 評価対象部位は,取水護岸(6号機設備)の構造上の特徴を踏まえ設定する。
- 3.6.1 構造部材の健全性評価 構造部材の健全性評価に係る評価対象部位は,前面鋼矢板とする。
- 3.6.2 構造物の変形性評価 構造物の変形性評価に係る評価対象部位は,前面鋼矢板とする。

3.7 許容限界

許容限界は、V-2-1-9「機能維持の基本方針」に基づき設定する。

3.7.1 構造部材の健全性に対する許容限界

前面鋼矢板の許容限界は、「鋼矢板Q&A (鋼管杭・鋼矢板技術協会 平成29年3月)」 及び「鋼矢板 設計から施工まで (鋼管杭協会 平成12年3月)」に基づき設定する。前面 鋼矢板の許容限界を表2.6-3-12に示す。

項目	対象	許容限界(kN・m)
降伏モーメントMy	海底面以浅	555
	海底面以深	649

表 2.6-3-12 前面鋼矢板の許容限界

3.7.2 構造物の変形性に対する許容限界

変形量の許容限界は,取水護岸(6号機設備)と海水貯留堰(6号機設備)との離隔が確 保されることを確認した変形量とする。取水護岸(6号機設備)と海水貯留堰(6号機設備) の離隔は,止水ゴム取付部鋼材の離隔とした。海水貯留堰(6号機設備)接続部の構造概念 図を図2.6-3-18に,止水ゴムの構造図を図2.6-3-19に示す。前面鋼矢板の変形量の許 容限界を表2.6-3-13に示す。

図 2.6-3-18 海水貯留堰(6号機設備)接続部の構造概念図

図 2.6-3-19 止水ゴムの構造図

表 2.6-3-13	前面鋼矢板の変形量の許容限界
1 4.0 0 10	们回购八级°/交//里°/日石级/

	許容限界(cm)		
変形量(海水貯留堰	(6 号機設備)	との離隔を確保できる相対変位量)	24.0

3.8 評価方法

取水護岸(6号機設備)の耐震評価は、地震応答解析により算定した照査用応答値が、 「3.7 許容限界」において設定した許容限界以下であることを確認する。

3.8.1 構造部材の健全性評価

前面鋼矢板の曲げモーメントに対する照査については,地震応答解析により算定した曲 げモーメントが許容限界以下であることを確認する。

- 3.8.2 構造物の変形性評価
 - (1) 相対変位の考え方構造物の変形性評価に用いる相対変位は、地震時における相対変位の最大値とする。
 - (2) 評価方法

変位方向の定義を示した図2.6-3-20のうち、取水護岸(6号機設備)と海水貯留堰(6 号機設備)の水平方向の相対変位 δ_x (+)が許容限界以下であることを確認する。

4. 評価結果

4.1 地震応答解析結果

地震応答解析結果として「断面力分布」,「最大せん断ひずみ分布」及び「最大過剰間隙 水圧比分布」を示す。

(1) 断面力分布

耐震評価においては、全ての基準地震動Ssに対し、①の解析ケース(基本ケース)を 実施する。

また,全ての基準地震動Ssに対し基本として実施した①の解析ケースにおいて,各照 査値が最も厳しい地震動を用い,②~⑤の解析ケースを実施する。

表2.6-4-1に前面鋼矢板の曲げモーメントに対する解析ケースと照査値を示す。

A-A断面における基準地震動Ssによる前面鋼矢板に発生する断面力(曲げモーメント)照査に対して,解析ケースのうち前面鋼矢板の曲げモーメント照査において最も厳しい照査値の地震時断面力分布を図2.6-4-1に示す。本図は前面鋼矢板の曲げモーメントに対する照査において照査値が最も厳しくなる時刻における断面力分布を示したものである。

(A-A断面,海底面以浅)							
	解析ケース	曲げモーメント照査					
地震動		1	2	3	4	5	
	++	0.11	0.10	0.12	0.10	0.10	
Se-1	-+	0.09					
55 1	+-	0.10					
		0.09					
Ss-2		0.10					
	++	0.09					
5 ~ 2	-+	0.09					
38-9	+-	0.10					
		0.09					
S	s-4	0.08					
Ss-5		0.07					
Ss-6		0.09					
Ss-7		0.08					
S9	++	0.09					
Ss-8	-+	0.09					

表 2.6-4-1(1) 前面鋼矢板の曲げモーメントに対する解析ケースと照査値

表 2.6-4-1(2) 前面鋼矢板の曲げモーメントに対する解析ケースと照査値

(A-A断面,	海底面以深)
---------	--------

	解析ケース		曲~	ブモーメント 照	資査	
地震動		1	2	3	4	5
	++	0.29	0.26	0.30	0.26	0.24
S ₂ -1	-+	0.25				
55 1	+-	0.27				
		0.24				
S	Ss-2 0.					
	++	0.20				
S2	-+	0.21				
28-2	+-	0.19				
	_	0.21				
S	s-4	0.21				
S	s-5	0.27				
S	s-6	0.21				
Ss-7		0.27				
S	++	0.18				
Ss-8	-+	0.27				

図 2.6-4-1 前面鋼矢板の曲げモーメント照査において最も厳しい照査値の地震時断面力 (A-A断面, Ss-1++) (解析ケース③:地盤物性のばらつき(-1σ)を考慮した解析ケース)

(2) 最大せん断ひずみ分布

各要素に発生した最大せん断ひずみを確認するため、断面力の照査に対し、解析ケースのうち最も厳しい照査値となったケースの地震応答解析の全時刻における最大せん断ひずみの分布を図2.6-4-2に示す。

図 2.6-4-2 最大せん断ひずみ分布 (A-A断面,解析ケース③,地震動 Ss-1++) (3) 最大過剰間隙水圧比分布

各要素に発生した過剰間隙水圧比を確認するため、断面力の照査に対し、解析ケースの うち最も厳しい照査値となったケースの地震応答解析の全時刻における最大過剰間隙水圧 比の最大値分布を図2.6-4-3に示す。

図 2.6-4-3 最大過剰間隙水圧比分布 (A-A断面,解析ケース③,地震動 Ss-1++)

4.2 耐震評価結果

4.2.1 構造部材の健全性に対する評価結果

前面鋼矢板の曲げモーメントに対する照査結果を表2.6-4-2及び表2.6-4-3に示す。 前面鋼矢板に発生する曲げモーメントは許容限界以下であり,照査値に大きく余裕がある ことを確認した。なお,曲げモーメントは各地震動において最大となる値を示している。

解析ケース*	地震動		曲げ モーメント (kN・m)	許容限界 (kN・m)	照查値
		++	59.1	555	0.11
	Sc-1	-+	47.5	555	0.09
	35-1	+-	50.8	555	0.10
			45.6	555	0.09
	Ss-2		51.6	555	0.10
	Ss-3	++	48.9	555	0.09
		-+	45.3	555	0.09
1		+-	50.2	555	0.10
			46.3	555	0.09
	Ss-4		41.9	555	0.08
	Ss-5		37.7	555	0.07
	Ss-6		44.9	555	0.09
	Ss-7		44.2	555	0.08
	5 . 9	++	46.6	555	0.09
	38-0	-+	49.8	555	0.09
2		++	55.3	555	0.10
3	G 1	++	65.5	555	0.12
(4)	35-1	++	54.4	555	0.10
5		++	51.5	555	0.10

表 2.6-4-2 曲げモーメントに対する照査結果(前面鋼矢板 海底面以浅)

注記*:解析ケースの番号は下記に対応する

: 基本ケース

②:地盤物性のばらつき(+1g)を考慮した解析ケース

③:地盤物性のばらつき(-1σ)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケ

解析ケース*	地震動		曲げ モーメント (kN・m)	許容限界 (kN・m)	照查値
		++	183	649	0.29
	S a 1	-+	160	649	0.25
	55-1	+-	171	649	0.27
			152	649	0.24
	Ss-	-2	157	649	0.25
	Ss-3	++	125	649	0.20
		-+	130	649	0.21
1		+-	122	649	0.19
			131	649	0.21
	Ss-4		132	649	0.21
	Ss-5		174	649	0.27
	Ss-6		130	649	0.21
	Ss-7		175	649	0.27
	S ~ 9	++	113	649	0.18
	35-0	-+	172	649	0.27
2		++	167	649	0.26
3	S ₀ _1	++	191	649	0.30
4	55-1	++	167	649	0.26
5		++	150	649	0.24

表 2.6-4-3 曲げモーメントに対する照査結果(前面鋼矢板 海底面以深)

注記*:解析ケースの番号は下記に対応する

①:基本ケース

②: 地盤物性のばらつき(+1σ)を考慮した解析ケース
③: 地盤物性のばらつき(-1σ)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1σ)を考慮して非液状化の条件を仮定した解析ケ

4.2.2 構造物の変形性に対する評価結果

構造物の変形性評価に用いる地震時における構造物間の最大相対変位を表2.6-4-4に示 す。また、取水護岸(6号機設備)と海水貯留堰(6号機設備)との離隔に対する照査結果 を表2.6-4-5に示す。

取水護岸(6号機設備)と海水貯留堰(6号機設備)との最大水平相対変位は許容限界以 下であり、止水ゴム取付部鋼材間の離隔が確保されることを確認した。

解析ケース*	地震動		最大相対変位 (cm)			
		++	3.1			
	Ss-1	-+	3.2			
	55 1	地震動 最大相対変位 (cm) +++ 3.1 -+ 3.2 + 3.1 3.2 Ss-2 2.4 ++ 4.1 + 4.8 ++- 4.1 + 4.8 + 4.1 4.8 Ss-4 3.1 Ss-5 4.5 Ss-6 5.0 Ss-7 6.9 -+ 2.5 -+ 2.5				
			3.2			
	Ss-	2	2.4			
		++	4.1			
	5 ~ 2	-+	4.8			
1	22.2	+-	4.1			
			4.8			
	Ss-	4	3.1			
	Ss-	5	4.5			
	Ss-	6	5.0			
	Ss-	7	6.9			
	S9	++	2.5			
	55-0	-+	2.5			
2		++	2.7			
3	S_{c-1}	++	3.5			
4	35-1	++	3. 3			
5		++	2.9			

表 2.6-4-4 地震時における構造物間の最大相対変位量

注記*:解析ケースの番号は下記に対応する

: 基本ケース

②:地盤物性のばらつき(+1g)を考慮した解析ケース

③:地盤物性のばらつき(-1g)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケ

表 2.6-4-5 取水護岸(6号機設備)と海水貯留堰(6号機設備)との離隔に対する照査結果

破垢ケーフ	业雪新	最大水平相対変位	許容限界値	
所作が「クース	地展到	(cm)	(cm)	
1	Ss-7	6.9	2	

4.3 まとめ

取水護岸(6号機設備)について、基準地震動Ssによる地震力に対し、構造部材に発生 する曲げモーメント及び変形量が許容限界以下であることを確認した。

以上のことから、取水護岸(6号機設備)は、基準地震動Ssによる地震力に対して、要 求機能を維持できる。 取水護岸(6号機設備)の耐震計算書に関する参考資料

(参考資料1) 取水護岸(6号機設備)の耐震評価における 積雪荷重の影響 検討 (参考資料1) 取水護岸(6号機設備)の耐震評価における積雪荷重の影響検討

1. 概要

取水護岸(6 号機設備)の耐震評価では,護岸を構成する前面鋼矢板と海水貯留堰との最大水 平相対変位を算出し,要求機能が確保されることを確認している。

取水護岸(6 号機設備)の背面は地盤改良されており,前面鋼矢板の変位抑制対策が講じられ ていること等を踏まえ,取水護岸部における地震時の荷重の組合せとして積雪荷重を考慮しない こととしている。

そこで本資料では、取水護岸(6 号機設備)の耐震評価における荷重の組合せの妥当性を確認 するため、取水護岸(6 号機設備)の背面全域に積雪荷重を作用させた場合の影響について検討 する。

2. 検討方針

本資料では,積雪荷重を考慮しない解析(以下「基本ケース」という。)の耐震評価結果と,積 雪荷重を考慮する解析(以下「積雪ケース」という。)の耐震評価結果を比較し,積雪荷重による 影響を確認する。

対象とするケースは,KK7 補足-028-08「浸水防護施設の耐震性に関する説明書の補足説明資料 2.6 取水護岸(6号機設備)の耐震計算書に関する補足説明」に示す,構造物の変形性評価において照査値が最も厳しいA-A断面の「解析ケース①,基準地震動 Ss-7EW」とする。

積雪荷重の設定

積雪荷重の概念図を図1に示す。積雪荷重は, V-1-1-3-1-1「発電用原子炉施設に対する自然 現象等による損傷防止に関する基本方針」に従い,積雪厚さ115.4cm,積雪厚さ1cm あたりの荷 重を29.4N/cm/m²とし,積雪荷重3.39kN/m²を地表面に分布荷重として設定する。

注記*:水平方向にも同位置に載荷する

4. 耐震評価結果の比較

積雪荷重を考慮しない基本ケースと積雪荷重を考慮した積雪ケースについて,前面鋼矢板と海 水貯留堰間の最大相対変位を表1に示す。

地震時の荷重の組合せとして積雪荷重を考慮した積雪ケースの前面鋼矢板と海水貯留堰間の最 大水平相対変位は、積雪荷重を考慮していない基本ケースの最大水平相対変位と同程度であり、 許容限界に対しても十分余裕のある値となっている。これは、取水護岸(6 号機設備)の背面に 施工されている地盤改良の効果によって変位抑制効果が発揮されたものと推察される。

検討ケース	積雪荷重	前面鋼矢板と 海水貯留堰間の 最大水平相対変位 (cm)	許容限界 (cm)
基本ケース	考慮しない	6.9	04.0
積雪ケース	考慮する	6. 7	24.0

表1 構造物の変形性評価結果

5. まとめ

本資料では、取水護岸取水護岸(6号機設備)の耐震評価における積雪荷重の影響について検 討した。検討の結果、積雪荷重を考慮した積雪ケースの前面鋼矢板と海水貯留堰間の最大水平相 対変位は、積雪荷重を考慮していない基本ケースの最大水平相対変位と同程度であり、積雪荷重 を考慮していない取水護岸取水護岸(6号機設備)の耐震評価における地震時の荷重の組合せの 妥当性を確認した。 2.7 津波荷重(突き上げ)の強度評価における

鉛直方向荷重の考え方について
2.7 津波荷重(突き上げ)の強度評価における鉛直方向荷重の考え方について

(1) 概要

浸水防護施設である取水槽閉止板について,鉛直方向に作用する荷重の考え方について, 以下に示す。

(2) 余震の鉛直方向地震力の考え方について

取水槽閉止板の強度評価においては、その荷重の組み合わせとして、自重、余震荷重およ び突き上げ津波荷重を組み合わせて評価を行っている。ただし、この評価において、鉛直方 向については突き上げ津波荷重のみを考慮し、自重および鉛直方向の地震力については、保 守的な評価とするために、考慮しないこととしている。この鉛直方向についての評価上の扱 いが保守的な評価となる理由について説明する。

取水槽閉止板に作用する鉛直方向の荷重に表 2.7-1のとおりまとめる。また,各荷重に関 する概念図を図 2.7-1に示す。なお,鉛直上向きを正方向として整理する。

	荷重の種類	記号	荷重の向き	備考	
	白香(N)	m • c	(小声下向き)(二)	m _G :閉止板の全体質量(kg)	
Û	日里(11)	m _G •g	町世「円さ(一)	g:重力加速度(m/s ²)	
0	公古ち向の地震力(N)	m • or • G	鉛直下向き又は	α _v : 鉛直方向の震度	
2	如但刀间 ⁰⁰ 地展刀(N)	m _G · α _V · g	上向き(土)		
0	空き Luギ海波 芸香 (M)	D • 1	(公古上向き (工)	P _t :突き上げ津波荷重(N/m ²)	
3	天さエリ伴似何里(1)	Pt • A	町単上内さ (⊤)	A: 取水槽閉止板の面積(m ²)	

表 2.7-1 取水槽閉止板に作用する鉛直方向の荷重の一覧

図 2.7-1 取水槽閉止板に作用する荷重(鉛直方向)の概念図

この場合,取水槽閉止板の鉛直方向の全荷重Ftは,以下の式の通り表される

$F_t = P_t \cdot A - m_G \cdot g \cdot (1 \pm \alpha_V)$

ここで、上式の第2項(自重、地震力のベクトル和)については当該評価箇所での余震に よる鉛直方向の震度 α_v が1(G)未満の場合、 $-m_G \cdot g \cdot (1 \pm \alpha_v) < 0$ が成立する。つまり、こ れらの荷重の合成力は下向きに作用し、突き上げ津波荷重を相殺するため、この項を考慮せ ず、突き上げ津波荷重のみを考慮するのが保守的な評価となる。

今回の浸水防止設備の強度評価のうち、余震に関する設計震度である 1.2ZPA(鉛直方向) は 0.45(G)であり、1(G)未満であることから、自重及び鉛直方向の地震力を考慮しないこと で、強度評価上、保守的な評価を実施している。 2.8 止水堰の設計に関する補足説明資料

1.	耐震計算	算 ••••••	1
1.	1 入力	7値 ••••••••••••••••••••••••••••••••••••	1
	1.1.1	L型鋼製堰 ••••••	1
	1.1.2	鋼製落とし込み型堰 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
	1.1.3	鉄筋コンクリート製堰 ・・・・・	10
	1.1.4	鋼板組合せ堰 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
1.	2 計算	章結果 ••••••••••••••••••••	48
	1.2.1	L型鋼製堰 •••••••	48
	1.2.2	鋼製落とし込み型堰 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	55
	1.2.3	鉄筋コンクリート製堰 ・・・・・	57
	1.2.4	鋼板組合せ堰 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77
2.	強度計	算 •••••	94
2.	1 入力	7値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
	2.1.1	L型鋼製堰 •••••••	94
	2.1.2	鋼製落とし込み型堰 ・・・・・ 1	09
	2.1.3	鉄筋コンクリート製堰 ・・・・・ 1	11
	2.1.4	鋼板組合せ堰 ・・・・・・・ 1	35
2.	2 計算	章結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	78
	2.2.1	L型鋼製堰 ······ 1	78
	2.2.2	鋼製落とし込み型堰 ・・・・・ 1	93
	2.2.3	鉄筋コンクリート製堰 ・・・・・ 1	95
	2.2.4	鋼板組合せ堰 ・・・・・ 2	19

目 次

1. 耐震計算

- 1.1 入力値
 - 1.1.1 L型鋼製堰

(1) 原子炉建屋地上3階(R2R3-RBRC)非常用ガス処理系室 止水堰

堰 No.		RB-3F-1	
記号	単位	定義	数値
W_{PL}	kN/m^2	H型鋼製堰の単位面積重量	3.66
Ζ	mm^3 /m	H型鋼ウェブの断面係数	7041
Н	mm	堰の高さ	314
b	mm	H型鋼フランジ幅	150
Е	mm	アンカーボルトの穴縁端距離	35
N	木	アンカーボルトの本数 () 内け引張有効本数	8
1	×+•		(4)
W 1	kN	堰の重量	1.69
Та	kN	アンカーボルトに生じる引張に対する短期許容応力	7.90
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	13.8

堰 No.		TB-1F-2			
記号	単位	定義	数値		
W_{PL}	kN/m ²	鋼製板の単位面積重量	0.462		
Ζ	$\mathrm{mm}^{3}/\mathrm{m}$	鋼製板の断面係数	6. 000×10^3		
Н	mm	止水堰の高さ	430		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	30		
Ν	本	アンカーボルトの本数	8		
W 1	kN	堰重量	0.755		
Та	kN	アンカーボルトに生じる引張りに対する短期許容応力	5. 74		
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	2. 21		

(2) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室 止水堰1

堰 No.		TB-1F-3		
記号	単位	定義	数値	
W_{PL}	kN/m^2	鋼製板の単位面積重量	0.462	
Ζ	$\mathrm{mm}^{3}/\mathrm{m}$	鋼製板の断面係数	6.000 $\times 10^3$	
Н	mm	止水堰の高さ	430	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	8	
W 1	kN	堰重量	0.765	
Та	kN	アンカーボルトに生じる引張りに対する短期許容応力	5.74	
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	2. 21	

(3) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室 止水堰2

堰 No.		TB-1F-4			
記号	単位	定義	数值		
$W_{\rm PL}$	kN/m^2	鋼製板の単位面積重量	0.462		
Z	mm ³ /m	鋼製板の断面係数	6.000 $\times 10^3$		
Н	mm	止水堰の高さ	430		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	30		
Ν	本	アンカーボルトの本数	8		
W 1	kN	堰重量	0.755		
Та	kN	アンカーボルトに生じる引張りに対する短期許容応力	5. 74		
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	2. 21		

(4) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域冷却加熱コイル室 止水堰

堰 No.		TB-1F-11			
記号	単位	定義	数值		
W _{PL}	kN/m^2	鋼製板の単位面積重量	0.462		
Z	mm^3/m	鋼製板の断面係数	6.000 $\times 10^{3}$		
Н	mm	止水堰の高さ	309		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	40		
Ν	本	アンカーボルトの本数	4		
W 1	kN	堰重量	0.361		
Та	kN	アンカーボルトに生じる引張りに対する短期許容応力	12.6		
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	4.97		

(5) タービン建屋地上1階(T2T3-TCTD)南西階段室 止水堰

堰 No.		TB-2F-1			
記号	単位	定義	数值		
W_{PL}	kN/m^2	鋼製板の単位面積重量	0.462		
Z	mm ³ /m	鋼製板の断面係数	6.000 $\times 10^{3}$		
Н	mm	止水堰の高さ	330		
b	mm	鋼製板の折り曲げ部の幅	105		
е	mm	アンカーボルトの穴縁端距離	52		
Ν	本	アンカーボルトの本数	8		
W 1	kN	堰重量	0.549		
Та	kN	アンカーボルトに生じる引張りに対する短期許容応力	5.74		
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	2.21		

(6) タービン建屋地上2階(T7T8-TDTE)北西階段室 止水堰

堰 No.		TB-2F-2			
記号	単位	定義	数值		
$W_{\rm PL}$	kN/m^2	鋼製板の単位面積重量	0.462		
Ζ	mm^3/m	鋼製板の断面係数	6. 000×10^3		
Н	mm	止水堰の高さ	309		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	40		
Ν	本	アンカーボルトの本数	6		
W 1	kN	堰重量	1.78		
Та	kN	アンカーボルトに生じる引張りに対する短期許容応力	12.6		
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	4.97		

(7) タービン建屋地上2階(T2T3-TCTD)南西階段室 止水堰

1.1.2 鋼製落とし込み型堰

(1) 原子炉建屋地上2階(R2R3-RARB)燃料プール冷却浄化系熱交換器室 止水堰

堰 No.		RB-2F-8			
記号	単位	定義	数値		
Ζ	mm^3 /m	断面係数	6. 116×10^4		
Н	mm	鋼製板の高さ	710		
Ν	本	アンカーボルトの本数 ()内は引張有効本数	2 (1)		
W 1	kN	鋼製板の重量	0.0826		
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	12		

堰 No.		TB-1F-13		
記号	単位	定義	数值	
ρο	t/m^3	水の密度	1.03	
Н	mm	止水堰の高さ	620	
Z	mm ³ /m	断面係数	$1.873 imes 10^5$	
Ν	本	アンカーボルトの本数	4	
W 1	kN	堰重量	1.53	
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	4.97	
Та	kN	アンカーボルトに生じる引っ張りに対する短期許容応力	_	

(2) タービン建屋地上1階(T8T9-TBTC)レイダウンスペース 止水堰

1.1.3 鉄筋コンクリート製堰

(1) 原子炉建屋地下1階(R1R2-RCRD)原子炉系(DIV-IV)計装ラック室 止水堰

堰 No.		RB-B1F-1		
記号	単位	定義	数値	
Ζ	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	680	
Ν	本	アンカーボルト,鉄筋の本数	6	
W_1	kN	堰重量	7.78	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1350	
t	mm	堰厚さ	750	

堰 No.		RB-B1F-2		
記号	単位	定義	数值	
Ζ	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	680	
Ν	本	アンカーボルト,鉄筋の本数	4	
W_1	kN	堰重量	5.04	
Та	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	875	
t	mm	堰厚さ	750	

(2) 原子炉建屋地下1階(R1R2-RDRE)原子炉系(DIV-II)計装ラック室 止水堰

堰 No.		RB-B1F-3		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	1.667×10^{6}	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	50	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	0.444	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1000	
t	mm	堰厚さ	100	

(3) 原子炉建屋地下1階(R6R7-RBRC)残留熱除去系(A)配管室 止水堰

堰 No.		RB-B1F-4		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	680	
Ν	本	アンカーボルト,鉄筋の本数	6	
W_1	kN	堰重量	7.32	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1270	
t	mm	堰厚さ	750	

(4) 原子炉建屋地下1階(R6R7-RCRD)原子炉系(DIV-I)計装ラック室 止水堰

堰 No.		RB-B1F-5		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	680	
Ν	本	アンカーボルト,鉄筋の本数	8	
W_1	kN	堰重量	9. 51	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1650	
t	mm	堰厚さ	750	

(5) 原子炉建屋地下1階(R6R7-RDRE)原子炉系(DIV-Ⅲ)計装ラック室 止水堰

堰 No.		RB-1F-2		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	70	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	5.13	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1000	
t	mm	堰厚さ	750	

(6) 原子炉建屋地上1階(R1R2-RBRC)ほう酸水注入系ペネ, 電気ペネ室 止水堰

堰 No.		RB-1F-3		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	70	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	6.12	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1000	
t	mm	堰厚さ	750	

(7) 原子炉建屋地上1階(R3R4-RFRG)電気ペネ室 止水堰

堰 No.		RB-1F-4		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	6. 017×10^8	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	950	
Ν	本	アンカーボルト,鉄筋の本数	7	
W_1	kN	堰重量	10.26	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1500	
t	mm	堰厚さ	1900	

(8) 原子炉建屋地上1階(R4R5-RFRG)可燃性ガス濃度制御系再結合装置室 止水堰

(9) 原子炉建屋地上1階(R5R6-RBRC)原子炉補機冷却水系・不活性ガス系・電気ペネ室 止水堰

堰 No.		RB-1F-7		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	70	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	5.22	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1000	
t	mm	堰厚さ	750	

堰 No.		RB-2F-3		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	70	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	6.32	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1150	
t	mm	堰厚さ	750	

(10) 原子炉建屋地上2階(R5R6-RARB)主蒸気系トンネル室,配管ペネ室 止水堰

堰 No.		RB-2F-4		
記号	単位	定義	数値	
Z	mm^3 /m	断面係数	3.750 $\times 10^{6}$	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75	
Ν	本	アンカーボルト,鉄筋の本数	11	
W_1	kN	堰重量	1.82	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1650	
t	mm	堰厚さ	150	

(11) 原子炉建屋地上2階(R5R6-RARB)通路 止水堰

堰 No.		RB-2F-5		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	4. 167×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	430	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	3. 48	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1000	
t	mm	堰厚さ	500	

(12) 原子炉建屋地上2階(R5R6-RCRD)電気ペネ室 止水堰

堰 No.		RB-3F-2		
記号	単位	定義	数值	
Ζ	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	680	
Ν	本	アンカーボルト,鉄筋の本数	6	
W_1	kN	堰重量	6.27	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1200	
t	mm	堰厚さ	750	

(13) 原子炉建屋地上3階(R2R3-RCRD)非常用ガス処理系室 止水堰

(14)	原子炉建屋地上3階(R5R6-RBRC)主蒸気隔離弁・逃がし安全弁ラッピング室
	止水堰1

堰 No.		RB-3F-5	
記号	単位	定義	数値
Ζ	mm^3 /m	断面係数	9. 375×10^7
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	70
Ν	本	アンカーボルト,鉄筋の本数	5
W_1	kN	堰重量	6.12
Та	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6
L	mm	堰全長	1000
t	mm	堰厚さ	750

堰 No.		RB-3F-6		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	70	
Ν	本	アンカーボルト,鉄筋の本数	8	
W_1	kN	堰重量	10.71	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1750	
t	mm	堰厚さ	750	

(15) 原子炉建屋地上3階(R5R6-RERF)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰

堰 No.		TB-1F-1		
記号	単位	定義	数値	
Ζ	mm^3 /m	断面係数	3.750 $\times 10^{6}$	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	10.8	
Та	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	23.9	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	17.3	
L	mm	堰全長	6665	
t	mm	堰厚さ	150	

(16) タービン建屋地上1階(T2T3-TATB) レイダウンスペース 止水堰

		-		
堰 No.		TB-1F-5		
記号	単位	定義	数値	
Ζ	mm^3 /m	断面係数	3.750 $\times 10^{6}$	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75	
Ν	本	アンカーボルト、鉄筋の本数	5	
W_1	kN	堰重量	17.4	
Та	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	23.9	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	17.3	
L	mm	堰全長	10720	
t	mm	堰厚さ	150	

(17) タービン建屋地上1階(T3T4-TATB)レイダウンスペース 止水堰

堰 No.		TB-1F-6		
記号	単位	定義	数値	
Z	mm^3 /m	断面係数	5. 227×10^{7}	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	280	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	6.50	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	23.9	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	17.3	
L	mm	堰全長	1430	
t	mm	堰厚さ	560	

(18) タービン建屋地上1階(T3T4-TCTD)南階段室 止水堰

堰 No.		TB-1F-7		
記号	単位	定義	数值	
Ζ	mm^3 /m	断面係数	3.750 $\times 10^{6}$	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	10.8	
Та	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	23.9	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	17.3	
L	mm	堰全長	6670	
t	mm	堰厚さ	150	

(19) タービン建屋地上1階(T7T8-TATB)レイダウンスペース 止水堰

堰 No.		TB-1F-12		
記号	単位	定義	数值	
Ζ	mm^3 /m	断面係数	1.500×10^{7}	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	150	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	2.08	
Та	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	15.5	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	11.7	
L	mm	堰全長	2400	
t	mm	堰厚さ	300	

(20) タービン建屋地上1階(T1T2-TATB)大物搬出入口 止水堰

1.1.4 鋼板組合せ堰

鋼板組合せ堰は,構造又は固定タイプの違いにより使用する計算式が異なることから,対象 となる止水堰について表 1-1 の通り整理する。

なお、本資料記載以外の計算式については、V-2-10-2-3-3「止水堰の耐震性についての計 算書」に記載の計算式により計算を行う。

対象となる計算式は、V-2-10-2-3-3「止水堰の耐震性についての計算書」の下記対象ページ記載の計算式とする。

<対象計算式>

・P51 b.梁材 (a) 地震荷重による分布荷重
①ロ型タイプ
wf' = W₁・a' / H / (2・L + 2・B)・k_H
②L型タイプ
wf' = W₁・a' / H / (L + B)・k_H

表1-1 計算式整理表

堰 No.	名称	計算式
RB-B2F-1	原子炉建屋地下2階(R1R2-RDRE)通路 止水堰	1
RB-B2F-4	原子炉建屋地下 2 階(R4R5-RERF)通路 止水堰	2
RB-B2F-6	原子炉建屋地下 2 階(R6R7-RDRE)通路 止水堰	1
RB-1F-1	原子炉建屋地上1階(R1R2-RARB)通路 止水堰	1
RB-4F-1	原子炉建屋地上4階(R2R3-RARB)オペレーティングフロア 止水堰	2

堰 No.		RB-B2F-1	
記号	単位	定義	数値
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$
g	m/s^2	重力加速度	9.80665
k_{H}	—	水平方向の設計震度	0.856
kv	—	鉛直方向の設計震度	0.830
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1000
L	mm	止水堰の正面全幅	1650
В	mm	止水堰の側面全幅	1300
W_1	Ν	止水堰の重量	3263
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	425
β	—	長方形板の応力係数	0.75
Ľ,	mm	評価する梁材の長さ	1650
Ζ	mm ³	梁材の断面係数	12100
As	mm^2	梁材のせん断断面積	634.5
a'	mm	梁材1本あたりが負担する止水板の幅	462.5
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_
n_{t}	mm	引張を受ける床側アンカーボルトの本数	17
h	mm	止水堰の重心高さ	500
ℓ_1	mm	重心とボルト間の水平距離	690
ℓ_2	mm	重心とボルト間の水平距離	690
N _t	本	せん断を受ける床側アンカーボルト本数	60
Nw	本	せん断を受ける壁側アンカーボルト本数	0

(1) 原子炉建屋地下2階(R1R2-RDRE)通路 止水堰

堌	₹No.	RB-B2F-2	
記号	単位	定義	数値
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$
g	m/s^2	重力加速度	9.80665
k_{H}	_	水平方向の設計震度	0. 823
kv	—	鉛直方向の設計震度	0.834
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1000
L	mm	止水堰の正面全幅	970
В	mm	止水堰の側面全幅	1475
W_1	Ν	止水堰の重量	2180
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	425
β	—	長方形板の応力係数	0.75
Ľ,	mm	評価する梁材の長さ	1475
Z	mm ³	梁材の断面係数	12100
As	mm^2	梁材のせん断断面積	634.5
a'	mm	梁材1本あたりが負担する止水板の幅	462.5
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
Ay	mm^2	柱材のせん断断面積	_
n_{t}	mm	引張を受ける床側アンカーボルトの本数	15
h	mm	止水堰の重心高さ	500
ℓ_1	mm	重心とボルト間の水平距離	525
ℓ_2	mm	重心とボルト間の水平距離	525
N _t	本	せん断を受ける床側アンカーボルト本数	41
Nw	本	せん断を受ける壁側アンカーボルト本数	20

(2) 原子炉建屋地下2階(R2R3-RERF)通路 止水堰
堌	₹No.	RB-B2F-3		
記号	単位	定義	数値	
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	_	水平方向の設計震度	0. 823	
kv	—	鉛直方向の設計震度	0.834	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1000	
L	mm	止水堰の正面全幅	4946	
В	mm	止水堰の側面全幅	0	
W_1	Ν	止水堰の重量	2708	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	450	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	2971	
Z	mm ³	梁材の断面係数	37600	
As	mm^2	梁材のせん断断面積	500	
a'	mm	梁材1本あたりが負担する止水板の幅	475	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積	_	
n_{t}	mm	引張を受ける床側アンカーボルトの本数	18	
h	mm	止水堰の重心高さ	500	
ℓ_1	mm	重心とボルト間の水平距離	51.8	
ℓ_2	mm	重心とボルト間の水平距離	1723. 2	
N _t	本	せん断を受ける床側アンカーボルト本数	48	
Nw	本	せん断を受ける壁側アンカーボルト本数	40	

(3) 原子炉建屋地下2階(R3R4-RERF)通路 止水堰

垣	夏 No.	RB-B2F-4		
記号	単位	定義	数值	
$ ho_{\rm ss}$	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	0. 823	
kv	—	鉛直方向の設計震度	0.834	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1000	
L	mm	止水堰の正面全幅	2930	
В	mm	止水堰の側面全幅	700	
W_1	Ν	止水堰の重量	2822	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	402.5	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	2930	
Ζ	mm ³	梁材の断面係数	67800	
As	mm^2	梁材のせん断断面積	750	
a'	mm	梁材1本あたりが負担する止水板の幅	467.5	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_	
n_{t}	mm	引張を受ける床側アンカーボルトの本数	6	
h	mm	止水堰の重心高さ	500	
ℓ_1	mm	重心とボルト間の水平距離	62.0	
ℓ_2	mm	重心とボルト間の水平距離	438.0	
N _t	本	せん断を受ける床側アンカーボルト本数	35	
Nw	本	せん断を受ける壁側アンカーボルト本数	22	

(4) 原子炉建屋地下2階(R4R5-RERF)通路 止水堰

垣	夏 No.	RB-B2F-5		
記号	単位	定義	数値	
$ ho_{ m ss}$	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	0. 823	
kv	—	鉛直方向の設計震度	0.834	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1000	
L	mm	止水堰の正面全幅	1490	
В	mm	止水堰の側面全幅	1475	
W_1	Ν	止水堰の重量	2680	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	425	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	1490	
Z	mm ³	梁材の断面係数	12100	
As	mm^2	梁材のせん断断面積	634.5	
a'	mm	梁材1本あたりが負担する止水板の幅	462.5	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
A_{Y}	mm^2	柱材のせん断断面積	_	
nt	mm	引張を受ける床側アンカーボルトの本数	17	
h	mm	止水堰の重心高さ	500	
ℓ_1	mm	重心とボルト間の水平距離	582.2	
ℓ_2	mm	重心とボルト間の水平距離	817.8	
N $_{\rm t}$	本	せん断を受ける床側アンカーボルト本数	46	
Nw	本	せん断を受ける壁側アンカーボルト本数	20	

(5) 原子炉建屋地下2階(R5R6-RERF)通路 止水堰

堌	₹No.	RB-B2F-6		
記号	単位	定義	数值	
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	0.856	
kv	—	鉛直方向の設計震度	0.830	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	410	
L	mm	止水堰の正面全幅	898	
В	mm	止水堰の側面全幅	812	
W_1	Ν	止水堰の重量	836	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	510	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	640	
Z	mm ³	梁材の断面係数	6260	
As	mm^2	梁材のせん断断面積	752.7	
a'	mm	梁材1本あたりが負担する止水板の幅	112	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	320	
Zy	mm^3	柱材の断面係数	6260	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	752.7	
n_{t}	mm	引張を受ける床側アンカーボルトの本数	2	
h	mm	止水堰の重心高さ	410	
ℓ_1	mm	重心とボルト間の水平距離	260	
ℓ_2	mm	重心とボルト間の水平距離	300	
N _t	本	せん断を受ける床側アンカーボルト本数	8	
Nw	本	せん断を受ける壁側アンカーボルト本数		

(6) 原子炉建屋地下2階(R6R7-RDRE)通路 止水堰

坦	夏 No.	RB-1F-1		
記号	単位	定義	数值	
$ ho_{\rm ss}$	kg/m^3	止水板の密度	7850	
g	m/s^2	重力加速度	9.80665	
k _H	—	水平方向の設計震度	0.888	
kv	—	鉛直方向の設計震度	0.869	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	400	
L	mm	止水堰の正面全幅	1610	
В	mm	止水堰の側面全幅	1210	
W_1	Ν	止水堰の重量	1682	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	298	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ		
Z	mm ³	梁材の断面係数	_	
As	mm^2	梁材のせん断断面積	_	
a'	mm	梁材1本あたりが負担する止水板の幅	_	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅		
Zy	mm ³	柱材の断面係数		
Ay	mm^2	柱材のせん断断面積	_	
nt	mm	引張を受ける床側アンカーボルトの本数	5	
h	mm	止水堰の重心高さ	225	
ℓ_1	mm	重心とボルト間の水平距離	633	
ℓ_2	mm	重心とボルト間の水平距離	633	
N _t	本	せん断を受ける床側アンカーボルト本数	18	
Nw	本	せん断を受ける壁側アンカーボルト本数	0	

(7) 原子炉建屋地上1階(R1R2-RARB)通路 止水堰

堰 No.		RB-1F-5		
記号	単位	定義	数値	
ho ss	kg/m^3	止水板の密度	7850	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	0.941	
kv	—	鉛直方向の設計震度	0.901	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	400	
L	mm	止水堰の正面全幅	1575	
В	mm	止水堰の側面全幅	1180	
W_1	Ν	止水堰の重量	1174	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	298	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	—	
Z	mm ³	梁材の断面係数	_	
As	mm^2	梁材のせん断断面積	_	
a'	mm	梁材1本あたりが負担する止水板の幅	_	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_	
n_{t}	mm	引張を受ける床側アンカーボルトの本数	4	
h	mm	止水堰の重心高さ	225	
ℓ_1	mm	重心とボルト間の水平距離	399.1	
ℓ_2	mm	重心とボルト間の水平距離	732.9	
N _t	本	せん断を受ける床側アンカーボルト本数	10	
Nw	本	せん断を受ける壁側アンカーボルト本数	4	

(8) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰1

堌	夏 No.	RB-1F-6		
記号	単位	定義	数値	
$ ho_{\rm ss}$	kg/m^3	止水板の密度	7850	
g	m/s^2	重力加速度	9.80665	
k _H	—	水平方向の設計震度	0.941	
kv	—	鉛直方向の設計震度	0.901	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	400	
L	mm	止水堰の正面全幅	1760	
В	mm	止水堰の側面全幅	1205	
W_1	Ν	止水堰の重量	1509	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	248	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	_	
Z	mm ³	梁材の断面係数	_	
As	mm^2	梁材のせん断断面積	_	
a'	mm	梁材1本あたりが負担する止水板の幅	—	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	—	
nt	mm	引張を受ける床側アンカーボルトの本数	4	
h	mm	止水堰の重心高さ	237.5	
ℓ_1	mm	重心とボルト間の水平距離	407.34	
ℓ_2	mm	重心とボルト間の水平距離	757.66	
N _t	本	せん断を受ける床側アンカーボルト本数	10	
Nw	本	せん断を受ける壁側アンカーボルト本数	4	

(9) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰2

堌	₹No.	RB-1F-8		
記号	単位	定義	数値	
ho ss	kg/m^3	止水板の密度	7850	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	0.941	
kv	—	鉛直方向の設計震度	0.901	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	400	
L	mm	止水堰の正面全幅	1380	
В	mm	止水堰の側面全幅	1000	
W_1	Ν	止水堰の重量	1015	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	298	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	_	
Z	mm ³	梁材の断面係数	_	
As	mm^2	梁材のせん断断面積	_	
a'	mm	梁材1本あたりが負担する止水板の幅	_	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm^3	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_	
nt	mm	引張を受ける床側アンカーボルトの本数	3	
h	mm	止水堰の重心高さ	225	
ℓ_1	mm	重心とボルト間の水平距離	340.76	
ℓ_2	mm	重心とボルト間の水平距離	541.24	
N $_{\rm t}$	本	せん断を受ける床側アンカーボルト本数	9	
Nw	本	せん断を受ける壁側アンカーボルト本数	4	

(10) 原子炉建屋地上1階(R5R6-RFRG)通路 止水堰

堌	₹No.	RB-2F-1		
記号	単位	定義	数値	
$ ho_{ m ss}$	kg/m^3	止水板の密度	7850	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	1.01	
kv	—	鉛直方向の設計震度	0.927	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1400	
L	mm	止水堰の正面全幅	2015	
В	mm	止水堰の側面全幅	1230	
W_1	Ν	止水堰の重量	6275	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	220	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	_	
Z	mm ³	梁材の断面係数	_	
As	mm^2	梁材のせん断断面積	_	
a'	mm	梁材1本あたりが負担する止水板の幅	_	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm^3	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_	
nt	mm	引張を受ける床側アンカーボルトの本数	3	
h	mm	止水堰の重心高さ	710.87	
ℓ_1	mm	重心とボルト間の水平距離	833.43	
ℓ_2	mm	重心とボルト間の水平距離	1181.57	
N $_{\rm t}$	本	せん断を受ける床側アンカーボルト本数	14	
Nw	本	せん断を受ける壁側アンカーボルト本数	8	

(11) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰1

垣	₹No.	RB-2F-2		
記号	単位	定義	数値	
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	1.01	
kv	—	鉛直方向の設計震度	0.927	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1500	
L	mm	止水堰の正面全幅	1260	
В	mm	止水堰の側面全幅	980	
W_1	Ν	止水堰の重量	3172	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	280	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	1260	
Z	mm ³	梁材の断面係数	8470	
As	mm^2	梁材のせん断断面積	436.35	
a'	mm	梁材1本あたりが負担する止水板の幅	355	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	-	
n_{t}	mm	引張を受ける床側アンカーボルトの本数	11	
h	mm	止水堰の重心高さ	750	
ℓ_1	mm	重心とボルト間の水平距離	169.6	
ℓ_2	mm	重心とボルト間の水平距離	750.4	
N $_{\rm t}$	本	せん断を受ける床側アンカーボルト本数	35	
Nw	本	せん断を受ける壁側アンカーボルト本数	34	

(12) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰2

堌	₹No.	RB-2F-9		
記号	単位	定義	数値	
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	1.01	
kv	—	鉛直方向の設計震度	0. 927	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	303	
L	mm	止水堰の正面全幅	1275	
В	mm	止水堰の側面全幅	940	
W_1	Ν	止水堰の重量	655	
t	mm	止水板の板厚	3. 2	
а	mm	止水板の長辺方向の幅	810	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	940	
Ζ	mm ³	梁材の断面係数	6260	
As	mm^2	梁材のせん断断面積	752.7	
a'	mm	梁材1本あたりが負担する止水板の幅	151.5	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	405	
Zy	mm ³	柱材の断面係数	6260	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	752.7	
$n_{\rm t}$	mm	引張を受ける床側アンカーボルトの本数	7	
h	mm	止水堰の重心高さ	151.5	
ℓ_1	mm	重心とボルト間の水平距離	282	
ℓ_2	mm	重心とボルト間の水平距離	598	
N _t	本	せん断を受ける床側アンカーボルト本数	15	
Nw	本	せん断を受ける壁側アンカーボルト本数	4	

(13) 原子炉建屋地上2階(R5R6-RCRD)通路 止水堰

堌	₹No.	RB-3F-3		
記号	単位	定義	数値	
ho ss	kg/m^3	止水板の密度	7.85×10^{3}	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	1.16	
kv	—	鉛直方向の設計震度	0.952	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	400	
L	mm	止水堰の正面全幅	800	
В	mm	止水堰の側面全幅	1240	
W_1	Ν	止水堰の重量	737	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	300	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	1240	
Ζ	mm ³	梁材の断面係数	3550	
As	mm^2	梁材のせん断断面積	282.2	
a'	mm	梁材1本あたりが負担する止水板の幅	200	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_	
$n_{\rm t}$	mm	引張を受ける床側アンカーボルトの本数	13	
h	mm	止水堰の重心高さ	200	
ℓ_1	mm	重心とボルト間の水平距離	430	
ℓ_2	mm	重心とボルト間の水平距離	430	
N $_{\rm t}$	本	せん断を受ける床側アンカーボルト本数	35	
Nw	本	せん断を受ける壁側アンカーボルト本数	7	

(14) 原子炉建屋地上3階(R3R4-RARB)通路 止水堰

堦	夏No.	RB-3F-4	
記号	単位	定義	数值
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$
g	m/s^2	重力加速度	9.80665
k_{H}	—	水平方向の設計震度	1.16
kv	—	鉛直方向の設計震度	0.952
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	400
L	mm	止水堰の正面全幅	800
В	mm	止水堰の側面全幅	1250
W_1	Ν	止水堰の重量	741
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	300
β	—	長方形板の応力係数	0.75
Ľ,	mm	評価する梁材の長さ	1250
Ζ	mm ³	梁材の断面係数	3550
As	mm^2	梁材のせん断断面積	282.2
a'	mm	梁材1本あたりが負担する止水板の幅	200
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_
n_{t}	mm	引張を受ける床側アンカーボルトの本数	13
h	mm	止水堰の重心高さ	200
ℓ_1	mm	重心とボルト間の水平距離	430
ℓ_2	mm	重心とボルト間の水平距離	430
N _t	本	せん断を受ける床側アンカーボルト本数	34
Nw	本	せん断を受ける壁側アンカーボルト本数	8

(15) 原子炉建屋地上3階(R4R5-RARB)通路 止水堰

坦	夏No.	RB-4F-1	. ,
記号	単位	定義	数値
ho ss	kg/m ³	止水板の密度	7.85 $\times 10^{3}$
g	m/s^2	重力加速度	9.80665
k _H	—	水平方向の設計震度	1.36
kv	—	鉛直方向の設計震度	0.984
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1500
L	mm	止水堰の正面全幅	3130
В	mm	止水堰の側面全幅	1865
W_1	Ν	止水堰の重量	8646
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	280
β	—	長方形板の応力係数	0.75
Ľ,	mm	評価する梁材の長さ	1865
Z	mm ³	梁材の断面係数	67800
As	mm^2	梁材のせん断断面積	750
a'	mm	梁材1本あたりが負担する止水板の幅	352.5
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	
Zy	mm ³	柱材の断面係数	
Ay	mm^2	柱材のせん断断面積	
n_{t}	mm	引張を受ける床側アンカーボルトの本数	16
h	mm	止水堰の重心高さ	750
ℓ_1	mm	重心とボルト間の水平距離	61.9
ℓ_2	mm	重心とボルト間の水平距離	1803.1
N _t	本	せん断を受ける床側アンカーボルト本数	41
Nw	本	せん断を受ける壁側アンカーボルト本数	24

(16) 原子炉建屋地上4階(R2R3-RARB)オペレーティングフロア 止水堰

坦	夏No.	RB-4F-3	
記号	単位	定義	数値
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$
g	m/s^2	重力加速度	9.80665
k_{H}	—	水平方向の設計震度	1.36
kv	—	鉛直方向の設計震度	0.984
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1500
L	mm	止水堰の正面全幅	6835
В	mm	止水堰の側面全幅	2405
W_1	Ν	止水堰の重量	17007
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	280
β	—	長方形板の応力係数	0.75
Ľ,	mm	評価する梁材の長さ	2697.5
Z	mm ³	梁材の断面係数	67800
As	mm^2	梁材のせん断断面積	750
a'	mm	梁材1本あたりが負担する止水板の幅	352.5
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	—
Zy	mm ³	柱材の断面係数	—
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_
n_{t}	mm	引張を受ける床側アンカーボルトの本数	20
h	mm	止水堰の重心高さ	750
ℓ_1	mm	重心とボルト間の水平距離	64.1
ℓ_2	mm	重心とボルト間の水平距離	2215.9
N _t	本	せん断を受ける床側アンカーボルト本数	97
Nw	本	せん断を受ける壁側アンカーボルト本数	24

(17) 原子炉建屋地上4階(R2R3-RFRG)オペレーティングフロア 止水堰

1.2 計算結果

1.2.1 L型鋼製堰

堰 No.	評価対象部位		発 (荷重また):	許容	限界	検定値		
	鋼製版	曲げ	27.0	N/mm^2	235	N/mm^2	0.12	<1.0
	アンカー ボルト	引張	0.609	kN	7.90	kN	0.08	<1.0
RB-3F-1		せん断	0.214	kN	13.8	kN	0.02	<1.0
		組合せ	_	_	_	_	0. 01	<1.0

(1) 原子炉建屋地上3階(R2R3-RBRC)非常用ガス処理系室 止水堰

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値	
TB-1F-2	鋼製板	曲げ	8.34	N/mm^2	235	$\rm N/mm^2$	0.04	<1.0
	アンカー ボルト	引張	0.304	kN	5.74	kN	0.06	<1.0
		せん断	9.63 $\times 10^{-2}$	kN	2.21	kN	0.05	<1.0
		組合せ	_		-	-	0.01	<1.0

(2) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室 止水堰1

(3) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルク	タ室
---	----

堰 No.	評価対象部位		発生	許容限界		検定値		
			(荷重又は発生応力度)					
	鋼製板	曲げ	8.34	N/mm^2	235	$\rm N/mm^2$	0.04	<1.0
TD-1E-9	アンカー ボルト	引張	0.304	kN	5.74	kN	0.06	<1.0
1D-1F-3		せん断	9. 76×10^{-2}	kN	2.21	kN	0.05	<1.0
		組合せ	_		-		0.01	<1.0

止水堰2

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値	
TB-1F-4	鋼製板	曲げ	8.34	N/mm^2	235	$\rm N/mm^2$	0.04	<1.0
	アンカー ボルト	引張	0.304	kN	5.74	kN	0.06	<1.0
		せん断	9.63 $\times 10^{-2}$	kN	2.21	kN	0.05	<1.0
		組合せ	_		-	_	0.01	<1.0

(4) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域冷却加熱コイル室 止水堰

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値	
	鋼製板	曲げ	5.00	N/mm^2	235	N/mm^2	0.03	<1.0
$TD_{-1}E_{-11}$	アンカー ボルト	引張	0.250	kN	12.6	kN	0.02	<1.0
18-14-11		せん断	9. 21×10^{-2}	kN	4.97	kN	0.02	<1.0
		組合せ	_		_		0.01	<1.0

(5) タービン建屋地上1階(T2T3-TCTD)南西階段室 止水堰

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値	
	鋼製板	曲げ	6.67	N/mm^2	235	N/mm^2	0.03	<1.0
TP - 9E - 1	N	引張	0.310	kN	5.74	kN	0.06	<1.0
1D-2F-1	アンカー	せん断	9. 75×10^{-2}	kN	2.21	kN	0.05	<1.0
	7.74	組合せ	_		_		0.01	<1.0

(6) タービン建屋地上2階(T7T8-TDTE)北西階段室 止水堰

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値	
TB-2F-2	鋼製板	曲げ	6.67	N/mm^2	235	N/mm^2	0.03	<1.0
	アンカー ボルト	引張	1.12	kN	12.6	kN	0.09	<1.0
		せん断	0. 423	kN	4.97	kN	0.09	<1.0
		組合せ	_		-		0.02	<1.0

(7) タービン建屋地上2階(T2T3-TCTD)南西階段室 止水堰

1.2.2 鋼製落とし込み型堰

(1) 原子炉建屋地上2階(R2R3-RARB)燃料プール冷却浄化系熱交換器室 止水堰

堰 No.	評価対象	要部位	発: (荷重またに	生値 t発生応力度)	許容限界		検定値	
	鋼製板	曲げ	1.31	N/mm^2	110	N/mm^2	0.02	<1.0
DD_9E_9	アンカー ボルト	引張	0.260	kN	7.90	kN	0.04	<1.0
KB-2F-8		せん断	4.50 $\times 10^{-2}$	kN	12.0	kN	0.01	<1.0
		組合せ	_	_	_	_	0.01	<1.0

堰 No.	評価対象部位		発生 (荷重又は多	許容	※限界	検定値		
	鋼製板	曲げ	2.83	N/mm^2	110	N/mm^2	0.03	<1.0
TB-1F-13	アンカー ボルト	せん断	0. 197	kN	4.97	kN	0.04	<1.0

(2) タービン建屋地上1階(T8T9-TBTC)レイダウンスペース 止水堰

1.2.3 鉄筋コンクリート堰

堰 No.	評価対象部	位	発 (荷重またに	発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト	引張	1.34	kN	7.20	kN	0.19	<1.0
	及び	せん断	1.07	kN	14.6	kN	0.08	<1.0
	アンカー筋	組合せ	-	-	-	-	0.05	<1.0
DD - D1 E - 1		引張	1.34	kN	20.9	kN	0.07	<1.0
ND-DIL-I	縦筋	せん断	1.07	kN	20.9	kN	0.06	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	4. 70×10^{-3}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 23×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(1) 原子炉建屋地下1階(R1R2-RCRD)原子炉系(DIV-IV)計装ラック室 止水堰

堰 No.	評価対象部	位	発: (荷重またに	発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	1.30	kN	7.20	kN	0.19	<1.0	
	及び	せん断	1.04	kN	14.6	kN	0.08	<1.0	
	アンカー筋	組合せ	-	-	_	-	0.05	<1.0	
DD_D1E_Q		引張	1.30	kN	20.9	kN	0.07	<1.0	
KD-DIF-2	縦筋	せん断	1.04	kN	20.9	kN	0.05	<1.0	
		組合せ	-	-	-	-	0.01	<1.0	
	堰底部の	せん断	7.24 $\times 10^{-3}$	N/mm^2	1	N/mm^2	0.01	<1.0	
	コンクリート	圧縮	2.23 $\times 10^{-2}$	N/mm^2	14	N/mm^2	0.01	<1.0	

(2) 原子炉建屋地下1階(R1R2-RDRE)原子炉系(DIV-Ⅱ)計装ラック室 止水堰

堰 No.	評価対象部	位	発: (荷重またに	発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト	引張	0.236	kN	7.20	kN	0.04	<1.0
	及び	せん断	7. 40×10^{-2}	kN	14.6	kN	0.01	<1.0
	アンカー筋	組合せ	_	-	_	-	0.01	<1.0
DD_D1E_2		引張	0.236	kN	20.9	kN	0.02	<1.0
KD-DII-3	縦筋	せん断	7. 40×10^{-2}	kN	20.9	kN	0.01	<1.0
		組合せ	_	-	I	-	0.01	<1.0
	堰底部の	せん断	3.70 \times 10 ⁻³	$\mathrm{N/mm^2}$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	3. 23×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(3)	原子炉建屋地下1階(R6R7-RBRC)残留熱除去系(A)配管室	止水堰
-----	----------------------------------	-----

(=) //		(
堰 No.	評価対象部	位	発: (荷重またに	発生値 (荷重または発生応力度)		邓限界	検定値	
	アンカーボルト	引張	1.26	kN	7.20	kN	0.18	<1.0
	及び	せん断	1.01	kN	14.6	kN	0.07	<1.0
	アンカー筋	組合せ	_	-	_	_	0.04	<1.0
DD - D1E - 4		引張	1.26	kN	20.9	kN	0.07	<1.0
ND-DIF-4	縦筋	せん断	1.01	kN	20.9	kN	0.05	<1.0
		組合せ	_	_	I		0.01	<1.0
	堰底部の	せん断	4.99 $\times 10^{-3}$	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 23×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(4) 原子炉建屋地下1階(R6R7-RCRD)原子炉系(DIV-I)計装ラック室 止水堰

堰 No.	評価対象部	位	発生 (荷重またに	発生値 (荷重または発生応力度)		^菜 限界	検定値	
	アンカーボルト	引張	1.23	kN	7.20	kN	0.18	<1.0
	及び	せん断	0.980	kN	14.6	kN	0.07	<1.0
	アンカー筋	組合せ	_	-	-	-	0.04	<1.0
		引張	1.23	kN	20.9	kN	0.06	<1.0
VD-DIL-9	縦筋	せん断	0.980	kN	20.9	kN	0.05	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	3.84 $\times 10^{-3}$	$\mathrm{N/mm^2}$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2.22 \times 10 ⁻²	N/mm^2	14	N/mm^2	0.01	<1.0

(5) 原子炉建屋地下1階(R6R7-RDRE)原子炉系(DIV-Ⅲ)計装ラック室 止水堰

堰 No.	評価対象部	位	発: (荷重またに	発生値 (荷重または発生応力度)		※限界	検定値	
	アンカーボルト	引張	2.75	kN	7.20	kN	0.39	<1.0
	及び	せん断	0.912	kN	14.6	kN	0.07	<1.0
	アンカー筋	組合せ	_	-	_	_	0.16	<1.0
DD = 1E = 9		引張	2.75	kN	20.9	kN	0.14	<1.0
ND-11-2	縦筋	せん断	0.912	kN	20.9	kN	0.05	<1.0
		組合せ	_	-	I		0.03	<1.0
	堰底部の	せん断	6.08 $\times 10^{-3}$	$\mathrm{N/mm^2}$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.98×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(6) 原子炉建屋地上1階(R1R2-RBRC)ほう酸水注入系ペネ,電気ペネ室 止水堰

堰 No.	評価対象部	位	発: (荷重またに	発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	3.73	kN	7.20	kN	0.52	<1.0	
	及び	せん断	1.09	kN	14.6	kN	0.08	<1.0	
	アンカー筋	組合せ	_	-	-	_	0.28	<1.0	
DD_1E_2		引張	3.73	kN	20.9	kN	0.18	<1.0	
ND-1L-2	縦筋	せん断	1.09	kN	20.9	kN	0.06	<1.0	
		組合せ	-	-	-	-	0.04	<1.0	
-	堰底部の	せん断	7.26 $\times 10^{-3}$	$\mathrm{N/mm^2}$	1	N/mm^2	0.01	<1.0	
	コンクリート	圧縮	2.52 \times 10 ⁻²	N/mm^2	14	N/mm^2	0.01	<1.0	

(7) 原子炉建屋地上1階(R3R4-RFRG)電気ペネ室 止水堰

(=) //		(11110 14		医灸前門 川 川			· P	
堰 No.	評価対象部	位	発: (荷重またに	発生値 (荷重または発生応力度)		彩限界	検定値	
	アンカーボルト	引張	1.38	kN	7.20	kN	0.2	<1.0
	及び	せん断	1.31	kN	14.6	kN	0.09	<1.0
	アンカー筋	組合せ	_	-	-	-	0.05	<1.0
DD - 1E - 4		引張	1.38	kN	20.9	kN	0.07	<1.0
ND-11-4	縦筋	せん断	1.31	kN	20.9	kN	0.07	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	2. 14×10^{-3}	$\mathrm{N/mm^2}$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	7.50 $\times 10^{-3}$	N/mm^2	14	N/mm^2	0.01	<1.0

(8) 原子炉建屋地上1階(R4R5-RFRG)可燃性ガス濃度制御系再結合装置室 止水堰

堰 No.	評価対象部位	<u>Г</u>	発 (荷重また)	発生値 (荷重または発生応力度)			検	定値
	アンカーボルト	引張	2.86	kN	7200	kN	0.4	<1.0
	及び	せん断	0.928	kN	14600	kN	0.07	<1.0
	アンカー筋	組合せ	_	-	-	_	0.17	<1.0
DD = 1E = 7		引張	2.86	kN	20940	kN	0.14	<1.0
KD-IF-/	縦筋	せん断	0.928	kN	20940	kN	0.05	<1.0
		組合せ	_	_	_	_	0.03	<1.0
	堰底部の	せん断	6. 19×10^{-3}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2.03 \times 10 ⁻²	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(9) 原子炉建屋地上1階(R5R6-RBRC)原子炉補機冷却水系・不活性ガス系・電気ペネ室止水堰

堰 No.	評価対象部	位	発: (荷重またに	発生値 (荷重または発生応力度)		^菜 限界	検定値	
	アンカーボルト	引張	3.74	kN	7.20	kN	0.52	<1.0
	及び	せん断	1.19	kN	14.6	kN	0.09	<1.0
	アンカー筋	組合せ	_	-	_	_	0.28	<1.0
$DD_{-}0E_{-}2$		引張	3.74	kN	20.9	kN	0.18	<1.0
ND-2F-3	縦筋	せん断	1.19	kN	20.9	kN	0.06	<1.0
		組合せ	_	_		-	0.04	<1.0
	堰底部の	せん断	6.00 \times 10 ⁻³	$\mathrm{N/mm^2}$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 24×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(10) 原子炉建屋地上2階(R5R6-RARB)主蒸気系トンネル室,配管ペネ室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
RB-2F-4	アンカーボルト	引張	0.470	kN	7.20	kN	0.07	<1.0
	及び	せん断	0.156	kN	14.6	kN	0.02	<1.0
	アンカー筋	組合せ	_	-	_	_	0.01	<1.0
		引張	0.470	kN	20.9	kN	0.03	<1.0
	縦筋	せん断	0.156	kN	20.9	kN	0.01	<1.0
		組合せ	_	-			0.01	<1.0
	堰底部の	せん断	4. 21×10^{-3}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	5.67 $\times 10^{-2}$	N/mm^2	14	N/mm^2	0.01	<1.0

(11) 原子炉建屋地上2階(R5R6-RARB)通路 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
RB-2F-5	アンカーボルト	引張	0.852	kN	7.20	kN	0.12	<1.0
	及び	せん断	0.656	kN	14.6	kN	0.05	<1.0
	アンカー筋	組合せ	-	-	_	_	0.02	<1.0
		引張	0.852	kN	20.9	kN	0.05	<1.0
	縦筋	せん断	0.656	kN	20.9	kN	0.04	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	6.56 $\times 10^{-3}$	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 48×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(12) 原子炉建屋地上2階(R5R6-RCRD) 電気ペネ室 止水堰
堰 No.	評価対象部	位	発: (荷重またに	発生値 (荷重または発生応力度)		 限界	検定値	
	アンカーボルト	引張	1.20	kN	7.20	kN	0.17	<1.0
	及び	せん断	1.06	kN	14.6	kN	0.08	<1.0
	アンカー筋	組合せ	_	-	-	_	0.04	<1.0
DD_9E_9		引張	1.20	kN	20.9	kN	0.06	<1.0
ND-91-7	縦筋	せん断	1.06	kN	20.9	kN	0.06	<1.0
		組合せ	_	-	-	-	0.01	<1.0
	堰底部の	せん断	5.87 $\times 10^{-3}$	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 17×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(13) 原子炉建屋地上3階(R2R3-RCRD)非常用ガス処理系室 止水堰

堰 No.	評価対象部	位	発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	4.17	kN	7.20	kN	0.58	<1.0
	及び	せん断	1.24	kN	14.6	kN	0.09	<1.0
	アンカー筋	組合せ	_	-	-	_	0.35	<1.0
DD-9E-5		引張	4.17	kN	20.9	kN	0.20	<1.0
VD-9L-9	縦筋	せん断	1.24	kN	20.9	kN	0.06	<1.0
		組合せ	-	-	-	-	0.05	<1.0
	堰底部の	せん断	8.26 $\times 10^{-3}$	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2.71×10 ⁻²	N/mm^2	14	N/mm^2	0.01	<1.0

(14) 原子炉建屋地上3階(R5R6-RBRC)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰1

			発生値					
堰 No.	評価対象部	位	(荷重または発生 許名		許容	限界	検定値	
		応力度)						
	アンカーボルト	引張	4.56	kN	7.20	kN	0.64	<1.0
	及び	せん断	1.36	kN	14.6	kN	0.1	<1.0
	アンカー筋	組合せ	-	-	-	-	0.42	<1.0
$DD_{2}D_{-}C$		引張	4.56	kN	20.9	kN	0.22	<1.0
KD-9L-0	縦筋	せん断	1.36	kN	20.9	kN	0.07	<1.0
		組合せ	_	_	_	-	0.06	<1.0
·	堰底部の	せん断	4. 72×10^{-3}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 71×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(15) 原子炉建屋地上3階(R5R6-RERF)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰

(10)								
堰 No.	評価対象部	位	発生 (荷重又は多	E値 Ě生応力度)	許容	限界	検	定値
	アンカーボルト	引張	1.27	kN	23.9	kN	0.06	<1.0
	又は	せん断	0.332	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ	-	-	-		0.01	<1.0
		引張	-		_	-	-	<1.0
1D-1F-1	縦筋	せん断	_		-		-	<1.0
		組合せ	-	-	-	-	-	<1.0
-	堰底部	せん断	1.11×10^{-2}	N/mm^2	1.05	N/mm^2	0.02	<1.0
	のコンクリート	圧縮	0.121	N/mm^2	14.0	N/mm^2	0.01	<1.0

(16) タービン建屋地上1階(T2T3-TATB)レイダウンスペース 止水堰

(11)								
堰 No.	評価対象部	位	発生 (荷重又は多	E値 Ě生応力度)	許容限界		検	定値
	アンカーボルト	引張	1.27	kN	23.9	kN	0.06	<1.0
	又は	せん断	0.332	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ	-	-	_	-	0.01	<1.0
		引張	-		_	-	_	<1.0
1D-1L-9	縦筋	せん断	-		-		-	<1.0
		組合せ	-	-	-	-	-	<1.0
	堰底部	せん断	1.11×10^{-2}	N/mm^2	1.05	N/mm^2	0.02	<1.0
	のコンクリート	圧縮	0.121	N/mm^2	14.0	N/mm^2	0.01	<1.0

(17) タービン建屋地上1階(T3T4-TATB)レイダウンスペース 止水堰

(/					-			
堰 No		位	2 2	E1但	許穴	限界	检查	它信
4× 110.	三人間に		(荷重又は発	隆生応力度)		PK 91	1天)	
	アンカーボルト	引張	1.47	kN	23.9	kN	0.07	<1.0
	又は	せん断	0.928	kN	17.3	kN	0.06	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
TP = 1F = 6		引張	1.48	kN	37.4	kN	0.04	<1.0
ID-II'-0	縦筋	せん断	0.928	kN	37.4	kN	0.03	<1.0
		組合せ	-	_	_	-	0.01	<1.0
	堰底部	せん断	1.66×10^{-2}	N/mm^2	1.05	N/mm^2	0.02	<1.0
	のコンクリート	圧縮	0.121	N/mm^2	14.0	N/mm^2	0.01	<1.0

(18) タービン建屋地上1階(T3T4-TCTD)南階段室 止水堰

(10)								
堰 No.	評価対象部	位	発生 (荷重又は多	E値 発生応力度)	許容限界		検定値	
	アンカーボルト	引張	1.27	kN	23.9	kN	0.06	<1.0
	又は	せん断	0.332	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ	-	-	-	-	0.01	<1.0
TD 1E 7		引張		-		-	-	<1.0
ID-IF-(縦筋	せん断	_		-		-	<1.0
_		組合せ	-	-	-	-	-	<1.0
	堰底部	せん断	1.11×10^{-2}	N/mm^2	1.05	N/mm^2	0.02	<1.0
	のコンクリート	圧縮	0.121	N/mm^2	14.0	N/mm^2	0.01	<1.0

(19) タービン建屋地上1階(T7T8-TATB)レイダウンスペース 止水堰

堰 No.	評価対象部	位	発: (荷重又は:	生値 発生応力度)	許容限界		検定値	
	アンカーボルト	引張	0.218	kN	15.5	kN	0.02	<1.0
TD 15 10	又は	又は せん断		kN	11.7	kN	0.02	<1.0
	アンカー筋	組合せ			-	0.01	<1.0	
		引張		_		_	_	<1.0
1D-1F-12	縦筋	せん断	-		-		-	<1.0
		組合せ		-		-	-	<1.0
-	堰底部	せん断	2.95 $\times 10^{-3}$	N/mm^2	1.23	N/mm^2	0.01	<1.0
	のコンクリート	圧縮	9. 20×10^{-3}	N/mm^2	22.0	N/mm^2	0.01	<1.0

(20) タービン建屋地上1階(T1T2-TATB)大物搬出入口 止水堰

1.1.4 鋼板組合せ堰

堰 No.	評価対象	象部位	発生 (荷重又は発	値 生応力度)	許容	限界	検定値
	止水板	曲げ	3	N/mm²	271	N/mm²	0.02<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	N/mm²	235	N/mm²	0.04<1.0
		曲げ	_	N/mm²	_	N/mm²	-<1.0
RB-B2F-1	柱材	せん断	_	N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²		N/mm²	—<1.0
	アンカー	引張り	43.21	Ν	2270	Ν	0.02<1.0
	ボルト	せん断	46.55	Ν	4010	Ν	0.02<1.0
-	(床)	組合せ	_	_			0.01<1.0
	アンカー ボルト (壁)	せん断	_	N	_	Ν	-<1.0

(1) 原子炉建屋地下2階(R1R2-RDRE)通路 止水堰

堰 No.	評価対象	象部位	発生 (荷重又は発	値 生応力度)	許容	限界	検定値
	止水板	曲げ	3	N/mm²	271	N/mm²	0.02<1.0
		曲げ	5	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	6	N/mm²	235	N/mm²	0.03<1.0
		曲げ		N/mm²	_	N/mm²	<1.0
RB-B2F-2	柱材	せん断	—	N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	44.89	Ν	2270	Ν	0.02<1.0
	ボルト	せん断	43.76	Ν	4010	Ν	0.01<1.0
_	(床)	組合せ	_			_	0.01<1.0
	アンカー ボルト (壁)	せん断	29.41	Ν	2900	Ν	0.01<1.0

(2) 原子炉建屋地下2階(R2R3-RERF)通路 止水堰

堰 No.	評価対象	象部位	発生 (荷重又は発	値 生応力度)	許容	限界	検定値
	止水板	曲げ	3	N/mm²	271	N/mm²	0.02<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	N/mm²	235	N/mm²	0.04<1.0
		曲げ	_	N/mm²	_	N/mm²	<1.0
RB-R2F-3	柱材	せん断	_	N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	10.63	Ν	2270	Ν	0.01<1.0
	ボルト	せん断	46.43	Ν	4010	Ν	0.02<1.0
_	(床)	組合せ					0.01<1.0
	アンカー ボルト (壁)	せん断	25.33	N	2900	Ν	0.01<1.0

(3) 原子炉建屋地下2階(R3R4-RERF)通路 止水堰

堰 No.	評価対象	象部位	発生 (荷重又は発	値 生応力度)	許容	限界	検定値
	止水板	曲げ	3	N/mm²	271	N/mm²	0.02<1.0
		曲げ	5	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	6	N/mm²	235	N/mm²	0.03<1.0
		曲げ	_	N/mm²	_	N/mm²	—<1.0
RB-B2F-4	柱材	せん断	_	N/mm²		N/mm²	<1.0
		組合せ	_	N/mm²	_	N/mm²	—<1.0
	アンカー	引張り	318.7	Ν	2270	Ν	0.14<1.0
	ボルト	せん断	66.36	Ν	4010	Ν	0.02<1.0
_	(床)	組合せ	_	_	_		0.02<1.0
	アンカー ボルト (壁)	せん断	40.75	N	2900	N	0.02<1.0

(4) 原子炉建屋地下2階(R4R5-RERF)通路 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	3	N/mm²	271	N/mm²	0.02<1.0
		曲げ	6	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	7	N/mm²	235	N/mm²	0.03<1.0
		曲げ	_	N/mm²	_	N/mm²	—<1.0
RB-R2F-5	柱材	せん断	_	N/mm²		N/mm²	<1.0
ND D21 0		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	31.05	Ν	2270	Ν	0.02<1.0
	ボルト	せん断	47.95	Ν	4010	Ν	0.02<1.0
	(床)	組合せ				_	0.01<1.0
	 アンカー ボルト (壁)	せん断	33. 42	N	2900	Ν	0.02<1.0

(5) 原子炉建屋地下2階(R5R6-RERF)通路 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	4	N/mm²	271	N/mm²	0.02<1.0
		曲げ	1	N/mm²	235	N/mm²	0.01<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	2	N/mm²	235	N/mm²	0.01<1.0
		曲げ	3	N/mm²	235	N/mm²	0.02<1.0
RB-R2F-6	柱材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	4	N/mm²	235	N/mm²	0.02<1.0
	アンカー	引張り	223. 9	Ν	19810	Ν	0.02<1.0
	ボルト	せん断	89.45	Ν	13867	Ν	0.01<1.0
	(床)	組合せ	_	_	_		0.01<1.0
	アンカー ボルト (壁)	せん断	_	Ν		Ν	<1.0

(6) 原子炉建屋地下2階(R6R7-RDRE)通路 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		許容限界	
	止水板	曲げ	1	N/mm²	271	N/mm²	0.01<1.0
		曲げ	9	N/mm²	235	N/mm²	0.04<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	10	N/mm²	235	N/mm²	0.05<1.0
	柱材	曲げ		N/mm²		N/mm²	<1.0
RB-1F-1		せん断	_	N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²	_	N/mm²	-<1.0
	アンカー	引張り	31.06	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	82.98	Ν	13190	Ν	0.01<1.0
	(床)	組合せ	_				0.01<1.0
	アンカー					N.	
	ホルト (壁)	せん断		Ν		N	-<1.0

(7) 原子炉建屋地上1階(R1R2-RARB)通路 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		許容限界	
	止水板	曲げ	1	N/mm²	271	N/mm²	0.01<1.0
		曲げ	10	N/mm²	235	N/mm²	0.05<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	11	N/mm²	235	N/mm²	0.05<1.0
	柱材	曲げ		N/mm²		N/mm²	<1.0
RR-1F-5		せん断	—	N/mm²	—	N/mm²	<1.0
		組合せ	_	N/mm²	_	N/mm²	-<1.0
	アンカー	引張り	36.08	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	110.5	Ν	13190	Ν	0.01<1.0
	(床)	組合せ		_			0.01<1.0
	アンカー ボルト (壁)	せん断	78.91	Ν	13190	Ν	0.01<1.0

(8) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰1

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		許容限界	
	止水板	曲げ	1	N/mm²	271	N/mm²	0.01<1.0
		曲げ	5	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	6	N/mm²	235	N/mm²	0.03<1.0
		曲げ	_	N/mm²	_	N/mm²	—<1.0
RB-1F-6	柱材	せん断	_	N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²	_	N/mm²	-<1.0
	アンカー	引張り	48.08	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	142.0	Ν	13190	Ν	0.01<1.0
	(床)	組合せ	_		_		0.01<1.0
	 アンカー ボルト (壁)	せん断	101. 4	N	13190	N	0.01<1.0

(9) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰2

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	1	N/mm²	271	N/mm²	0.01<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	N/mm²	235	N/mm²	0.04<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	<1.0
RB-1F-8		せん断	_	N/mm²		N/mm²	<1.0
		組合せ		N/mm²		N/mm²	—<1.0
	アンカー	引張り	60.66	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	106. 1	Ν	13190	Ν	0.01<1.0
	(床)	組合せ					0.01<1.0
	アンカーボルト	せん断	73.47	Ν	13190	Ν	0.01<1.0
	(壁)						

(10) 原子炉建屋地上1階(R5R6-RFRG)通路 止水堰

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	1	N/mm²	271	N/mm²	0.01<1.0
		曲げ	3	N/mm²	235	N/mm²	0.02<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	4	N/mm²	235	N/mm²	0.02<1.0
	柱材	曲げ		N/mm²		N/mm²	<1.0
RB-2E-1		せん断	_	N/mm²	_	N/mm²	<1.0
ND 21 1		組合せ	_	N/mm²	_	N/mm²	-<1.0
	アンカー	引張り	655.8	Ν	9312	Ν	0.07<1.0
	ボルト	せん断	452.7	Ν	13190	Ν	0.04<1.0
	(床)	組合せ					0.01<1.0
	アンカーボルト	せん断	288. 1	Ν	13190	Ν	0.03<1.0
	(壁)						

(11) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰1

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	2	N/mm²	271	N/mm²	0.01<1.0
		曲げ	6	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	7	N/mm²	235	N/mm²	0.03<1.0
		曲げ		N/mm²		N/mm²	<1.0
RB-2F-2	柱材	せん断	_	N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²	_	N/mm²	-<1.0
	アンカー	引張り	220. 3	Ν	2270	Ν	0.10<1.0
	ボルト	せん断	91.53	Ν	4010	Ν	0.03<1.0
	(床)	組合せ					0.01<1.0
	アンカー ボルト (壁)	せん断	46.43	N	2900	N	0.02<1.0

(12) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰2

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	12	N/mm²	271	N/mm²	0.05<1.0
		曲げ	2	N/mm²	235	N/mm²	0.01<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	3	N/mm²	235	N/mm²	0.02<1.0
	柱材	曲げ	2	N/mm²	235	N/mm²	0.01<1.0
RB-2F-9		せん断	1	N/mm²	135	N/mm²	0.01<1.0
ND 21 5		組合せ	3	N/mm²	235	N/mm²	0.02<1.0
	アンカー	引張り	11.63	Ν	8302	Ν	0.01<1.0
	ボルト	せん断	44.10	Ν	9541	Ν	0.01<1.0
	(床)	組合せ					0.01<1.0
	アンカー ボルト (壁)	せん断	34. 82	N	9541	Ν	0.01<1.0

(13) 原子炉建屋地上2階(R5R6-RCRD)通路 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	2	N/mm²	271	N/mm²	0.01<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	N/mm²	235	N/mm²	0.04<1.0
	柱材	曲げ		N/mm²	_	N/mm²	<1.0
RB-3F-3		せん断	_	N/mm²	—	N/mm²	<1.0
		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	13.93	Ν	2270	Ν	0.01<1.0
	ボルト	せん断	24.43	Ν	4010	Ν	0.01<1.0
	(床)	組合せ	_	_	_		0.01<1.0
	アンカー						
	ボルト (壁)	せん断	20.36	Ν	2900	Ν	0.01<1.0

(14) 原子炉建屋地上3階(R3R4-RARB) 通路 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	2	N/mm²	271	N/mm²	0.01<1.0
		曲げ	8	N/mm²	235	N/mm²	0.04<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	9	N/mm²	235	N/mm²	0.04<1.0
	柱材	曲げ		N/mm²	_	N/mm²	<1.0
RB-3F-4		せん断	_	N/mm²	—	N/mm²	<1.0
		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	14.01	Ν	2270	Ν	0.01<1.0
	ボルト	せん断	25.28	Ν	4010	Ν	0.01<1.0
	(床)	組合せ				_	0.01<1.0
	 アンカー ボルト (壁)	せん断	20.47	N	2900	Ν	0.01<1.0

(15) 原子炉建屋地上3階(R4R5-RARB)通路 止水堰

(10)			All	発生値		III/1• 2	
堰 No.	評価対象	象部位(荷重又は発生		些 生応力度)	許容限界		検定値
	止水板	曲げ	2	N/mm²	271	N/mm²	0.01<1.0
		曲げ	4	N/mm²	235	N/mm²	0.02<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	5	N/mm²	235	N/mm²	0.03<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	<1.0
RB-4F-1		せん断		N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	287.2	Ν	4650	Ν	0.07<1.0
	ボルト	せん断	286.8	Ν	9240	Ν	0.04<1.0
	(床)	組合せ	—		_	_	0.01<1.0
	アンカー						
	ボルト	せん断	180.9	Ν	7000	Ν	0.03<1.0
	(壁)						

(16) 原子炉建屋地上4階 (R2R3-RARB) オペレーティングフロア 止水堰

			発生値		*****		
堰 No.	評価対象	 家部位	(荷重又は発生応力度)		計谷限务		傾疋個
	止水板	曲げ	2	N/mm²	271	N/mm²	0.01<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	N/mm²	235	N/mm²	0.04<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	—<1.0
RB-4F-3		せん断	—	N/mm²	_	N/mm²	—<1.0
		組合せ		N/mm²		N/mm²	—<1.0
	アンカー	引張り	367.2	Ν	4650	Ν	0.08<1.0
	ボルト	せん断	238.4	Ν	9240	Ν	0.03<1.0
	(床)	組合せ	_		_	_	0.01<1.0
	アンカー						
	ボルト	せん断	191.2	Ν	7000	Ν	0.03<1.0
	(壁)						

(17) 原子炉建屋地上4階(R2R3-RFRG)オペレーティングフロア 止水堰

2. 強度計算

- 2.1 入力値
 - 2.1.1 L型鋼製堰

(1) 原子炉建屋地上3階(R2R3-RBRC)非常用ガス処理系室 止水堰

堰 No.		RB-3F-1		
記号	単位	定義	数値	
ρ_0	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	314	
Z	mm ³ /m	H型鋼ウェブの断面係数	7.041 $\times 10^{3}$	
L	mm	堰全長	1460	
b	mm	H型鋼フランジ幅	150	
е	mm	アンカーボルトの穴縁端距離	35	
N	*	マンカーボルトの木粉())内け引進右効木粉	8	
IN	4	了之为 新加卡的本数 () Phildfligh 为本数	(4)	
Ta	kN	アンカーボルトに生じる引張に対する短期許容応力	7.90	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容応力	13.8	

堰 No.		RB-3F-8		
記号	単位	定義	数値	
ρ_{0}	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	604	
Z	mm ³ /m	H型鋼ウェブの断面係数	1.667×10^{4}	
L	mm	堰全長	2502	
b	mm	H型鋼フランジ幅	200	
е	mm	アンカーボルトの穴縁端距離	55	
N	*	アンカーボルトの木粉()肉は引進友効木粉	4	
IN	4	アンガーがルトの本数 () Phは引張有効本数	(4)	
Ta	kN	アンカーボルトに生じる引張に対する短期許容応力	7.90	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容応力	13.8	

(2) 原子炉建屋地上3階(R6R7-RERF)非常用ディーゼル発電機(C)補機室 止水堰

(3) 原子炉建屋地上4階(R6R7-RFRG)非常用ディーゼル発電機(C)区域排風機室,

堰 No.		RB-4F-4		
記号	単位	定義	数値	
ρ_{0}	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	314	
Z	mm ³ /m	H型鋼ウェブの断面係数	7. 041×10^3	
L	mm	堰全長	1920	
b	mm	H型鋼フランジ幅	150	
е	mm	アンカーボルトの穴縁端距離	35	
N	*	アンカーボルトの木粉())内け引進右効木粉	6	
11	7	了了》 ADD FOD 本数 () P 和4 开放有 为本数	(3)	
Та	kN	アンカーボルトに生じる引張に対する短期許容応力	7.90	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容応力	13.8	

給気ルーバ室 止水堰

(4) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室

止水堰	1
-----	---

堰 No.		TB-1F-2		
記号	単位	定義	数值	
$ ho$ $_{0}$	t/m^3	水の密度	1.03	
Н	mm	止水堰の高さ	430	
Z	mm^3 /m	鋼製板の断面係数	6. 000×10^3	
L	mm	堰全長	1245	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	8	
Ta	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21	

(5) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室

堰 No.		TB-1F-3		
記号	単位	定義	数値	
$ ho$ $_{0}$	t/m^3	水の密度	1.03	
Н	mm	止水堰の高さ	430	
Ζ	mm^3 /m	鋼製板の断面係数	6. 000×10^3	
L	mm	堰全長	1255	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	8	
Ta	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21	

堰 No.		TB-1F-4		
記号	単位	定義	数值	
$ ho_0$	t/m^3	水の密度	1.03	
Н	mm	止水堰の高さ	430	
Z	mm^3 /m	鋼製板の断面係数	6.000 $\times 10^3$	
L	mm	堰全長	1250	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	8	
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21	

(6) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域冷却加熱コイル室 止水堰

. ,				
堰 No.		TB-1F-10		
記号	単位	定義	数值	
ρ_{0}	t/m^3	水の密度	1.03	
Н	mm	止水堰の高さ	409	
Z	mm^3 /m	鋼製板の断面係数	6.000 $\times 10^3$	
L	mm	堰全長	1905	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	40	
Ν	本	アンカーボルトの本数	7	
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	12.6	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	4.97	

(7) タービン建屋地上1階(T1T2-TCTD)南西階段室 止水堰

堰 No.		TB-1F-11		
記号	単位	定義	数值	
ρ_0	t/m^3	水の密度	1.03	
Н	mm	止水堰の高さ	309	
Z	mm^3 /m	鋼製板の断面係数	6.000 $\times 10^3$	
L	mm	堰全長	1000	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	40	
Ν	本	アンカーボルトの本数	4	
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	12.6	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	4.97	

(8) タービン建屋地上1階(T2T3-TCTD)南西階段室 止水堰

. ,				
堰 No.		TB-2F-1		
記号	単位	定義	数值	
ρ_0	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	330	
Z	mm^3 /m	鋼製板の断面係数	6.000 $\times 10^3$	
L	mm	堰全長	1310	
b	mm	鋼製板の折り曲げ部の幅	105	
е	mm	アンカーボルトの穴縁端距離	52	
Ν	本	アンカーボルトの本数	8	
Ta	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21	

(9) タービン建屋地上2階(T7T8-TDTE)北西階段室 止水堰

堰 No.		TB-2F-2				
記号	単位	定義	数值			
$ ho_0$	t/m^3	水の密度	1.00			
Н	mm	止水堰の高さ	309			
Z	mm ³ /m	鋼製板の断面係数	6.000 $\times 10^3$			
L	mm	堰全長	1465			
b	mm	鋼製板の折り曲げ部の幅	100			
е	mm	アンカーボルトの穴縁端距離	40			
Ν	本	アンカーボルトの本数	6			
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	12.6			
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	4.97			

(10) タービン建屋地上2階(T2T3-TCTD)南西階段室 止水堰

堰 No.		CB-B2F-1		
記号	単位	定義	数值	
ρ_0	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	430	
Z	mm^3 /m	鋼製板の断面係数	6. 000×10^3	
L	mm	堰全長	1275	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	8	
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21	

(11) コントロール建屋地下2階(C1C2-CCCD)常用電気品室 止水堰
(,				
堰 No.		CB-B1F-3			
記号	単位	定義	数值		
ρ_0	t/m^3	水の密度	1.00		
Н	mm	止水堰の高さ	230		
Z	mm ³ /m	鋼製板の断面係数	6.000 $\times 10^3$		
L	mm	堰全長	2430		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	30		
Ν	本	アンカーボルトの本数	14		
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21		

(12) コントロール建屋地下1階(C2C3-CCCD)区分I計測制御用電源盤室 止水堰

(= -	/				
堰 No.		CB-B1F-4			
記号	単位	定義	数值		
ρ_0	t/m^3	水の密度	1.00		
Н	mm	止水堰の高さ	230		
Z	mm ³ /m	鋼製板の断面係数	6. 000×10^3		
L	mm	堰全長	2435		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	30		
Ν	本	アンカーボルトの本数	14		
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21		

(13) コントロール建屋地下1階(C2C3-CDCE)区分IV計測制御用電源盤室 止水堰

(
堰 No.		CB-B1F-5		
記号	単位	定義	数值	
$ ho_0$	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	230	
Z	mm^3 /m	鋼製板の断面係数	6. 000×10^3	
L	mm	堰全長	2435	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	15	
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21	

(14) コントロール建屋地下1階(C2C3-CECF)区分Ⅱ計測制御用電源盤室 止水堰

	,				
堰 No.		CB-B1F-6			
記号	単位	定義	数値		
$ ho_0$	t/m^3	水の密度	1.00		
Н	mm	止水堰の高さ	230		
Z	mm ³ /m	鋼製板の断面係数	6. 000×10^3		
L	mm	堰全長	2335		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	30		
Ν	本	アンカーボルトの本数	14		
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21		

(15) コントロール建屋地下1階(C2C3-CFCG)区分Ⅲ計測制御用電源盤室 止水堰

2.1.2 鋼製落とし込み型堰

(1) 原子炉建屋地上2階(R2R3-RARB)燃料プール冷却浄化系熱交換器室 止水堰

堰 No.		RB-2F-8		
記号	単位	定義	数値	
ρο	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	710	
Z	mm ³ /m	断面係数	6. 116×10^4	
N	*	アンカーボルトの木粉())内け引張右効木粉	2	
1	4		(1)	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容応力	12	

堰 No.		TB-1F-13			
記号	単位	定義	数値		
ρο	t/m^3	水の密度	1.03		
Н	Mm	止水堰の高さ	620		
Z	${ m mm}^3$ /m	断面係数	1.873×10^{5}		
Ν	本	アンカーボルトの本数	4		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容応力	1.97		

(2) タービン建屋地上1階(T8T9-TBTC)レイダウンスペース 止水堰

2.1.3 鉄筋コンクリート製堰

(1) 原子炉建屋地下1階(R1R2-RCRD)原子炉系(DIV-IV)計装ラック室 止水堰

堰 No.		RB-B1F-1		
記号	単位	定義		数値
$ ho$ $_{0}$	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		320
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		680
Ν	本	アンカーボルト,鉄筋の本数		6
Ta kN	マンカーギルトの始めたみドス引進に対わて信期が安され	アンカー	7.20	
	KIN	ノンガー ホルド, 欧肋に土しる力液に対する应効計各応力	鉄筋	20.9
0-	1-NI	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力	アンカー	14.6
ųа	KIN		鉄筋	20.9
L	mm	堰全長		1350
t	mm	堰厚さ		750
w1	kN	堰重量		7.78
Z	mm ³ /m	断面係数		9. 375×10^7

r				
堰 No.		RB-B1F-2		
記号	単位	定義		数值
ρ_0	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ		320
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		680
Ν	本	アンカーボルト,鉄筋の本数		4
	1 11	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
Ta	KIN		鉄筋	20.9
0-	1-NI	N アンカーボルト,鉄筋に生じるせん断に対する短期許容応力 鉄筋	アンカー	14.6
Qa	KIN		鉄筋	20.9
L	mm	堰全長		875
t	mm	堰厚さ		750
w1	kN	堰重量		5. 04
Z	mm ³ /m	断面係数		9. 375×10^7

(2) 原子炉建屋地下1階(R1R2-RDRE)原子炉系(DIV-II)計装ラック室 止水堰

堰 No.		RB-B1F-3		
記号	単位	定義		数値
ρ_{0}	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ		185
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		50
Ν	本	アンカーボルト,鉄筋の本数		5
Ta kN	1-NI	kN アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
	KIN		鉄筋	20.9
0	LN	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力・	アンカー	14.6
ųа	KIN		鉄筋	20.9
L	mm	堰全長		1000
t	mm	堰厚さ		100
w1	kN	堰重量		0.444
Z	mm^3 /m	断面係数		1.667×10^{6}

(3) 原子炉建屋地下1階(R6R7-RBRC)残留熱除去系(A)配管室 止水堰

堰 No.		RB-B1F-4	RB-B1F-4		
記号	単位	定義	数値		
ρ_{0}	t/m^3	水の密度	1.00		
Н	mm	止水堰の高さ		320	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		680	
Ν	本	アンカーボルト,鉄筋の本数		6	
Ta kN	1-N	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20	
	KIN		鉄筋	20.9	
0-	1-NI	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力	アンカー	14.6	
ųа	KIN		鉄筋	20.9	
L	mm	堰全長		1270	
t	mm	堰厚さ		750	
w1	kN	堰重量		7.32	
Z	mm^3 /m	断面係数		9.375 $\times 10^{7}$	

(4) 原子炉建屋地下1階(R6R7-RCRD)原子炉系(DIV-I)計装ラック室 止水堰

堰 No.		RB-B1F-5				
記号	単位		数値			
ρ_0	t/m^3	水の密度	1.00			
Н	mm	止水堰の高さ		320		
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		680		
Ν	本	アンカーボルト,鉄筋の本数		8		
Ta kN	1 N	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20		
	KIN		鉄筋	20.9		
0	1 N	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力	アンカー	14.6		
ųа	KIN		鉄筋	20.9		
L	mm	堰全長		1650		
t	mm	堰厚さ		750		
w1	kN	堰重量		9. 51		
Z	mm^3 /m	断面係数		9.375 $\times 10^{7}$		

(5) 原子炉建屋地下1階(R6R7-RDRE)原子炉系(DIV-Ⅲ)計装ラック室 止水堰

堰 No.		RB-MB1F-1		
記号	単位	定義		数值
ρ_0	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ		210
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		50
Ν	本	アンカーボルト,鉄筋の本数		5
	1-NI	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
Ta	KIN		鉄筋	20.9
0	1 N	アンカーアンカー		14.6
Wa	KIN	アンカーホルト、鉄肋に生しるせん断に対する短期計谷応力	鉄筋	20.9
L	mm	堰全長		1000
t	mm	堰厚さ		100
w1	kN	堰重量		0.504
Z	mm^3 /m	断面係数		1.667×10^{6}

(6) 原子炉建屋地下中1階(R5R6-RBRC)残留熱除去系(A)配管室 止水堰

堰	No.	RB-1F-2		
記号	単位	定義		数值
ρ_{0}	t/m^3	水の密度	水の密度	
Н	mm	止水堰の高さ		285
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		70
Ν	本	アンカーボルト,鉄筋の本数		5
T- I-N	マンカーギルトの分がたりて引進に対すて伝知が安定力	アンカー	7.20	
Ta	KIN	アンス ホルド, 政府に主しる引張に対する应溯町谷心力	鉄筋	20.9
0	1.11	マンカーボルトの外放けたいスルノビンサナス伝知が広され	アンカー	14.6
ųа	KIN	/ ノガーホルト, 鉄肋に生しるせん断に対する短期計谷応力	鉄筋	20.9
L	mm	堰全長	·	1000
t	mm	堰厚さ		750
w1	kN	堰重量		5.13
Z	mm ³ /m	断面係数		9. 375×10^{7}

(7) 原子炉建屋地上1階(R1R2-RBRC)ほう酸水注入系ペネ, 電気ペネ室 止水堰

堰	No.	RB-1F-3		
記号	単位	定義		数值
ρ_{0}	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		340
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		70
Ν	本	アンカーボルト,鉄筋の本数		5
	マンカーギルトの教堂に仕じて引進に対すて伝知が広ちも	アンカー	7.20	
Ta	KIN	ノンガーホルド, 鉄肋に生しる引張に対する弦翔計谷心力	鉄筋	20.9
0	1.11		アンカー	14.6
Qa	KN	アンガーホルト、鉄肋に生しるせん断に対する短期計谷応力	鉄筋	20.9
L	mm	堰全長	·	1000
t	mm	堰厚さ		750
w1	kN	堰重量		6.12
Z	mm^3 /m	断面係数		9.375 $\times 10^{7}$

(8) 原子炉建屋地上1階(R3R4-RFRG)電気ペネ室 止水堰

堰	堰 No. RB-1F-4					
記号	単位	定義		数值		
ρ	t/m^3	水の密度		1.00		
Н	mm	止水堰の高さ		150		
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		950		
Ν	本	アンカーボルト,鉄筋の本数		7		
To I-N		アンカー	7.20			
Ta	KIN	ノンガーホルド, 鉄肋に生しる51歳に対する短期計谷心力	鉄筋	20.9		
0	1 N	マンカーボルトのサダントドスルノビンサナス伝知が広され	アンカー	14.6		
Wa	KIN	/ ノガーホルト, 鉄肋に生しるせん) 	鉄筋	20.9		
L	mm	堰全長		1500		
t	mm	堰厚さ		1900		
w1	kN	堰重量		10.26		
Z	mm ³ /m	断面係数		6. 017×10^8		

(9) 原子炉建屋地上1階(R4R5-RFRG)可燃性ガス濃度制御系再結合装置室 止水堰

(10) 原子炉建屋地上1階(R5R6-RBRC)原子炉補機冷却水系・不活性ガス系・電気ペネ室 止水堰

堰	堰 No. RB-1F-7			
記号	単位	定義		数值
ρ_0	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		290
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		70
Ν	本	アンカーボルト,鉄筋の本数		5
Τ-	Ta kN アンカーボルト,鉄筋に生じる引	マンカーギルト 始めにたじて引起に対けて伝知が安古	アンカー	7.20
Ta		ノンガーがルド,	鉄筋	20.9
0.5	1-N	マンカーギルト 鉄筋にたじるより 艇に対する短期数次広力	アンカー	14.6
Wa	KIN	ノンガーがルド,	鉄筋	20.9
L	mm	堰全長		1000
t	mm	堰厚さ		750
w1	kN	堰重量		5.22
Z	mm^3 /m	断面係数		9. 375×10^7

堰	No.	RB-2F-3			
記号	単位	定義		数值	
ρ	t/m^3	水の密度		1.00	
Н	mm	止水堰の高さ		305	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		70	
Ν	本	アンカーボルト、鉄筋の本数		5	
Τ-	1-NI	マンカーギルトの始めに仕じて引張に対けて信期計会庁力	アンカー	7.20	
Ia	KIN	ノンカーホルト,	鉄筋	20.9	
0	1.11	マンムーボットーのないたいてはしばに見たて伝知が広され	アンカー	14.6	
ųа	KIN	ノンガーホルト, 鉄肋に生しるせん断に対する超期計谷応力	鉄筋	20.9	
L	mm	堰全長	·	1150	
t	mm	堰厚さ		750	
w1	kN	堰重量		6.32	
Z	mm^3 /m	断面係数		9.375 $\times 10^{7}$	

(11) 原子炉建屋地上2階(R5R6-RARB)主蒸気系トンネル室,配管ペネ室 止水堰

堰 No. RB-2F-4				
記号	単位	定義		数値
ρ_{0}	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		305
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		75
Ν	本	アンカーボルト,鉄筋の本数		11
Ta kN		アンカー	7.20	
	KIN	「ノンガーホルド,	鉄筋	20.9
0	1 N		アンカー	14.6
ųа	KIN	ノンガーホルト, 鉄肋に生しるせん跡に対する起期計谷応力 	鉄筋	20.9
L	mm	堰全長	·	1650
t	mm	堰厚さ		150
w1	kN	堰重量		1.82
Z	mm ³ /m	断面係数		3.750 $\times 10^{6}$

(12) 原子炉建屋地上2階(R5R6-RARB)通路 止水堰

堰	No.	o. RB-2F-5		
記号	単位	定義		数値
ρ_0	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		290
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		430
Ν	本	アンカーボルト,鉄筋の本数		5
T 1 N		アンカー	7.20	
Ia	KIN	ノンカーホルド,	鉄筋	20.9
0	1.11	マンカーボルトのサダレルドアルノビレオンに明新安され	アンカー	14.6
Wa	KIN	/ ノ カー ホルト, 鉄肋に生しるせん) () の 思 朝 計 谷 心 力	鉄筋	20.9
L	mm	堰全長	·	1000
t	mm	堰厚さ		500
w1	kN	堰重量		3. 48
Z	${ m mm^3}$ /m	断面係数		4. 167×10^7

(13) 原子炉建屋地上2階(R5R6-RCRD)電気ペネ室 止水堰

堰 No. RB-3F-7				
記号	単位	定義		数値
ρ_{0}	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		420
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		2775
Ν	本	アンカーボルト,鉄筋の本数		6
T - I-N	マンカーギルトの始めに生じて引進に対わて后期が安され	アンカー	7.20	
Ta	la kN	アンス かルド, 政府に主じる引張に対する应溯計谷心力	鉄筋	20.9
0-	1-NI		アンカー	14.6
ųа	KIN	ノンガーホルト, 鉄肋に生しるせん跡に対する超期計谷応力	鉄筋	20.9
L	mm	堰全長	·	1200
Т	mm	堰厚さ		5550
w1	kN	堰重量		67.14
Z	mm^3 /m	断面係数		5. 134×10^{9}

(14) 原子炉建屋地上3階(R2R3-RARB)通路 止水堰

堰	No.	RB-3F-2			
記号	単位	定義		数值	
ρ_{0}	t/m^3	水の密度	水の密度		
Н	mm	止水堰の高さ		290	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		680	
Ν	本	アンカーボルト、鉄筋の本数		6	
т	Ta kN アンカーボルト,鉄筋に生じる引張に対する短		アンカー	7.20	
Ia		ノンガーホルト, 鉄肋に生しる51歳に対する起効計谷応力 	鉄筋	20.9	
0	1.11	マンムーボットーのないたいてはしてに出たて伝知が広され	アンカー	14.6	
Qa	KN	アンガーホルト、鉄筋に生しるせん断に対する短期計谷応力	鉄筋	20.9	
L	mm	堰全長	·	1200	
t	mm	堰厚さ		750	
w1	kN	堰重量		6.27	
Z	mm ³ /m	断面係数		9.375 $\times 10^{7}$	

(15) 原子炉建屋地上3階(R2R3-RCRD)非常用ガス処理系室 止水堰

堰	堰 No. RB-3F-5			
記号	単位	定義		数値
ρ_{0}	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		340
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		70
Ν	本	アンカーボルト,鉄筋の本数		5
T- I-N		アンカー	7.20	
Ta	KIN	アンス かルド, 政府に主じる引張に対する应溯計谷心力	鉄筋	20.9
0	1 N	······································	アンカー	14.6
ųа	KIN	ノンガーホルト, 鉄肋に生しるせん跡に対する起期計谷応力	鉄筋	20.9
L	mm	堰全長	·	1000
t	mm	堰厚さ		750
w1	kN	堰重量		6.12
Z	mm^3 /m	断面係数		9. 375×10^7

(16) 原子炉建屋地上3階(R5R6-RBRC)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰1

堰 No. RB-3F-6				
記号	単位	定義		数値
ρ_{0}	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		340
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		70
Ν	本	アンカーボルト,鉄筋の本数		8
T- I-N	マンカーギルトの数に仕じて引起に対すて信期対応され	アンカー	7.20	
Ta	KIN	アンス ホルド, 政府に主しる引張に対する应溯町谷心力	鉄筋	20.9
0-	1-NI		アンカー	14.6
Qа	KIN	ノンガー かだ下, 鉄肋に生しるせん例に対する超期計谷応力	鉄筋	20.9
L	mm	堰全長		1750
t	mm	堰厚さ		750
w1	kN	堰重量		10.71
Z	mm^3 /m	断面係数		9.375 $\times 10^{7}$

(17) 原子炉建屋地上3階(R5R6-RERF)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰

堰 No. TB-1F-5			
記号	単位	定義	数値
ρ_0	t/m^3	水の密度	1.03
Н	mm	止水堰の高さ	450
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75
Ν	本	アンカーボルト,鉄筋の本数	5
Ta	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	23.9
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	17.3
L	mm	堰全長	10720
t	mm	堰厚さ	150
w1	kN	堰重量	17.4
Z	mm ³ /m	断面係数	3.750 $\times 10^{6}$

(18) タービン建屋地上1階(T3T4-TATB)レイダウンスペース 止水堰

堰 No.		TB-1F-6	
記号	単位	定義	数値
ρ_0	t/m^3	水の密度	1.03
Н	mm	止水堰の高さ	450
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75
Ν	本	アンカーボルト,鉄筋の本数	5
Ta	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	23.9
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	17.3
L	mm	堰全長	1010
t	mm	堰厚さ	150
w1	kN	堰重量	1.64
Z	mm ³ /m	断面係数	3. 750×10^{6}

(19) タービン建屋地上1階(T3T4-TCTD)南階段室 止水堰

<u> </u>					
堰 No.		TB-1F-7			
記号	単位	定義	数値		
ρ_0	t/m^3	水の密度	1.03		
Н	mm	止水堰の高さ	450		
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75		
Ν	本	アンカーボルト,鉄筋の本数	5		
Ta	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	23.9		
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	17.3		
L	mm	堰全長	6670		
t	mm	堰厚さ	150		
w1	kN	堰重量	10.8		
Z	mm^3 /m	断面係数	3. 750×10^{6}		

(20) タービン建屋地上1階(T7T8-TATB)レイダウンスペース 止水堰

堰 No.		TB-1F-9	
記号	単位	定義	数値
ρ_{0}	t/m^3	水の密度	1.03
Н	mm	止水堰の高さ	450
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75
Ν	本	アンカーボルト,鉄筋の本数	5
Ta	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	23.9
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	17.3
L	mm	堰全長	1200
t	mm	堰厚さ	150
w1	kN	堰重量	1.94
Z	mm ³ /m	断面係数	3.750 $\times 10^{6}$

(21) タービン建屋地上1階(T8T9-TATB)北階段室 止水堰

堰 No.		TB-1F-12	
記号	単位	定義	数値
ρ_{0}	t/m^3	水の密度	1.03
Н	mm	止水堰の高さ	120
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	150
Ν	本	アンカーボルト,鉄筋の本数	5
Та	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	15.5
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	11.7
L	mm	堰全長	2400
t	mm	堰厚さ	300
w1	kN	堰重量	2.08
Z	mm ³ /m	断面係数	1.500×10^{7}

(22) タービン建屋地上1階(T1T2-TATB)大物搬出入口 止水堰

(23) コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室

堰 No.		CB-1F-2	
記号	単位	定義	数値
ρ_{0}	t/m^3	水の密度	1.00
Н	mm	止水堰の高さ	486
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	125
Ν	本	アンカーボルト,鉄筋の本数	5
Ta	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	23.9
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	17.3
L	mm	堰全長	1300
t	mm	堰厚さ	250
w1	kN	堰重量	1.17
Z	mm^3 /m	断面係数	1.042×10^{7}

堰 No.		RWB-1F-1	
記号	単位	定義	数値
ρ_0	t/m^3	水の密度	1.00
Н	mm	止水堰の高さ	600
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	-
Ν	本	アンカーボルト,鉄筋の本数	-
Ta	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	-
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	-
L	mm	堰全長	4000
t	mm	堰厚さ	380
w1	kN	堰重量	21.9
Z	mm^3 /m	断面係数	2. 407×10^7

(24) 廃棄物処理建屋1階トラック室出入口(6号機設備, 5,6,7号機共用)

2.1.4 鋼板組合せ堰

(1) 原子炉建屋地下 2 階(R1R2-RDRE) 通	路 止7	水堰
------------------------------	------	----

堰 No.		RB-B2F-1	
記号	単位	定義	数値
ρ_0	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1000
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	425
β	—	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	75
h ₂	mm	評価する梁材の最下端の高さ	500
a'	mm	梁材1本あたりが負担する止水板の幅	462.5
Ľ,	mm	評価する梁材の長さ	1650
Z	mm	梁材の断面係数	12100
As	mm	梁材のせん断断面積	634.5
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010
n_1	本	引張りを受ける床側アンカーボルト本数	17
n_2	本	せん断を受ける床側アンカーボルト本数	60
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—
В	mm	止水堰の側面全幅	—
е	mm	床側アンカーボルト位置からの縁端距離	1380
L	mm	止水堰の全幅	1500
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
Ay	mm^2	柱材のせん断断面積	
L_{PS}	mm	ベースプレートのレバー長さ	_
Z _{PS}	mm ³	ベースプレートの断面係数	

堰 No.		RB-B2F-2	
記号	単位	定義	数値
ρ_0	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1000
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	425
β	—	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	75
h_2	mm	評価する梁材の最下端の高さ	500
a'	mm	梁材1本あたりが負担する止水板の幅	462.5
Ľ,	mm	評価する梁材の長さ	1475
Z	mm	梁材の断面係数	12100
As	Mm	梁材のせん断断面積	634.5
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010
Vo	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900
n_1	本	引張りを受ける床側アンカーボルト本数	15
n ₂	本	せん断を受ける床側アンカーボルト本数	41
Ν	本	せん断を受ける片側の壁アンカーボルト本数	10
В	mm	止水堰の側面全幅	1400
е	mm	床側アンカーボルト位置からの縁端距離	1050
L	mm	止水堰の全幅	1400
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
A _Y	mm^2	柱材のせん断断面積	
L _{PS}	mm	ベースプレートのレバー長さ	_
Z_{PS}	mm ³	ベースプレートの断面係数	_

(2) 原子炉建屋地下 2 階(R2R3-RERF) 通路 止水堰

堰 No.		RB-B2F-3	
記号	単位	定義	数値
$ ho_{0}$	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1000
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	450
β	—	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	50
h_2	mm	評価する梁材の最下端の高さ	500
a'	mm	梁材1本あたりが負担する止水板の幅	475
Ľ,	mm	評価する梁材の長さ	2971
Z	mm	梁材の断面係数	37600
As	mm	梁材のせん断断面積	500
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900
n_1	本	引張りを受ける床側アンカーボルト本数	18
n_2	本	せん断を受ける床側アンカーボルト本数	48
Ν	本	せん断を受ける片側の壁アンカーボルト本数	20
В	mm	止水堰の側面全幅	2971
е	mm	床側アンカーボルト位置からの縁端距離	1775
L	mm	止水堰の全幅	2971
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
Ay	mm^2	柱材のせん断断面積	_
L_{PS}	mm	ベースプレートのレバー長さ	_
Z_{PS}	mm ³	ベースプレートの断面係数	_

(3) 原子炉建屋地下2階(R3R4-RERF)通路 止水堰

堰 No.		RB-B2F-4	
記号	単位	定義	数値
$ ho_{0}$	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1000
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	402.5
β	—	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	65
h_2	mm	評価する梁材の最下端の高さ	467.5
a'	mm	梁材1本あたりが負担する止水板の幅	467.5
Ľ,	mm	評価する梁材の長さ	2930
Z	mm	梁材の断面係数	67800
As	mm	梁材のせん断断面積	750
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010
Vo	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900
n_1	本	引張りを受ける床側アンカーボルト本数	30
n ₂	本	せん断を受ける床側アンカーボルト本数	35
Ν	本	せん断を受ける片側の壁アンカーボルト本数	11
В	mm	止水堰の側面全幅	2930
е	mm	床側アンカーボルト位置からの縁端距離	500
L	mm	止水堰の全幅	2930
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—
Zy	mm ³	柱材の断面係数	—
Ay	mm^2	柱材のせん断断面積	
L_{PS}	mm	ベースプレートのレバー長さ	_
Z_{PS}	mm ³	ベースプレートの断面係数	

(4) 原子炉建屋地下2階(R4R5-RERF)通路 止水堰

堰 No.		RB-B2F-5		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1000	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	425	
β	—	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	75	
h_2	mm	評価する梁材の最下端の高さ	500	
a'	mm	梁材1本あたりが負担する止水板の幅	462.5	
Ľ,	mm	評価する梁材の長さ	1490	
Z	mm	梁材の断面係数	12100	
As	mm	梁材のせん断断面積	634.5	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	17	
n_2	本	せん断を受ける床側アンカーボルト本数	46	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	10	
В	mm	止水堰の側面全幅	1400	
е	mm	床側アンカーボルト位置からの縁端距離	1400	
L	mm	止水堰の全幅	1490	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積		
L_{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(5) 原子炉建屋地下2階(R5R6-RERF)通路 止水堰

堰 No.		RB-B2F-6		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	410	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	510	
β	_	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	180	
h_2	mm	評価する梁材の最下端の高さ	180	
a'	mm	梁材1本あたりが負担する止水板の幅	99	
Ľ,	mm	評価する梁材の長さ	640	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	19810	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n ₁	本	引張りを受ける床側アンカーボルト本数	2	
n ₂	本	せん断を受ける床側アンカーボルト本数	8	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	-	
В	mm	止水堰の側面全幅	-	
е	mm	床側アンカーボルト位置からの縁端距離	530	
L	mm	止水堰の全幅	898	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	320	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L_{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数		

(6) 原子炉建屋地下2階(R6R7-RDRE)通路 止水堰
坦	룡 No.	RB-1F-1		
記号	単位	定義	数値	
$ ho_{0}$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	298	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	52	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	149	
Ľ,	mm	評価する梁材の長さ	1610	
Z	mm	梁材の断面係数	3550	
As	mm	梁材のせん断断面積	282.2	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9312	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13190	
n_1	本	引張りを受ける床側アンカーボルト本数	5	
n_2	本	せん断を受ける床側アンカーボルト本数	18	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	-	
В	mm	止水堰の側面全幅	-	
е	mm	床側アンカーボルト位置からの緑端距離	1266	
L	mm	止水堰の全幅	1610	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	-	
Zy	mm ³	柱材の断面係数	-	
Ay	mm^2	柱材のせん断断面積	-	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z _{PS}	mm ³	ベースプレートの断面係数	_	

(7) 原子炉建屋地上1階(R1R2-RARB)通路 止水堰

垣	₹No.	RB-1F-5	
記号	単位	定義	数値
ρ_0	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400
t	mm	止水板の板厚	6
а	mm	止水板の長辺方向の幅	298
β	—	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	52
h_2	mm	評価する梁材の最下端の高さ	0
a'	mm	梁材1本あたりが負担する止水板の幅	149
Ľ,	mm	評価する梁材の長さ	1575
Z	mm	梁材の断面係数	3550
As	mm	梁材のせん断断面積	282.2
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9312
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13190
n_1	本	引張りを受ける床側アンカーボルト本数	4
n_2	本	せん断を受ける床側アンカーボルト本数	10
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2
В	mm	止水堰の側面全幅	1180
е	mm	床側アンカーボルト位置からの縁端距離	1132
L	mm	止水堰の全幅	1575
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_
L_{PS}	mm	ベースプレートのレバー長さ	-
Z_{PS}	mm ³	ベースプレートの断面係数	_

(8) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰1

塸	₹No.	RB-1F-6	
記号	単位	定義	数値
$ ho_0$	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400
t	mm	止水板の板厚	6
а	mm	止水板の長辺方向の幅	248
β	—	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	77
h_2	mm	評価する梁材の最下端の高さ	0
a'	mm	梁材1本あたりが負担する止水板の幅	124
Ľ,	mm	評価する梁材の長さ	1760
Z	mm	梁材の断面係数	8470
As	mm	梁材のせん断断面積	436.35
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9312
V_0	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13190
n_1	本	引張りを受ける床側アンカーボルト本数	4
n_2	本	せん断を受ける床側アンカーボルト本数	10
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2
В	mm	止水堰の側面全幅	1205
е	mm	床側アンカーボルト位置からの縁端距離	1165
L	mm	止水堰の全幅	1760
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	-
Zy	mm ³	柱材の断面係数	-
Ay	mm^2	柱材のせん断断面積	
L_{PS}	mm	ベースプレートのレバー長さ	
Z _{PS}	mm ³	ベースプレートの断面係数	_

(9) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰2

坦	룡 No.	RB-1F-8		
記号	単位	定義	数値	
$ ho_{0}$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	298	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	52	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	149	
Ľ,	mm	評価する梁材の長さ	1380	
Z	mm	梁材の断面係数	3550	
As	mm	梁材のせん断断面積	282.2	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9312	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13190	
n_1	本	引張りを受ける床側アンカーボルト本数	3	
n_2	本	せん断を受ける床側アンカーボルト本数	9	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2	
В	mm	止水堰の側面全幅	1000	
е	mm	床側アンカーボルト位置からの緑端距離	882	
L	mm	止水堰の全幅	1380	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm^3	柱材の断面係数		
Ay	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数	_	

(10) 原子炉建屋地上1階(R5R6-RFRG)通路 止水堰

堰 No.		RB-2F-1		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ,または溢水評価を上回る水位	1400	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	220	
β	_	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	125	
h_2	mm	評価する梁材の最下端の高さ	345	
a'	mm	梁材1本あたりが負担する止水板の幅	287.5	
Ľ,	mm	評価する梁材の長さ	816	
Z	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9312	
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13190	
n_1	本	引張りを受ける床側アンカーボルト本数	7	
n ₂	本	せん断を受ける床側アンカーボルト本数	14	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	4	
В	mm	止水堰の側面全幅	1230	
е	mm	床側アンカーボルト位置からの縁端距離	1050	
L	mm	止水堰の全幅	2015	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
A _Y	mm^2	柱材のせん断断面積	_	
L_{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数	-	

(11) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰1

坦	₹No.	RB-2F-2		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1500	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	280	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	75	
h_2	mm	評価する梁材の最下端の高さ	355	
a'	mm	梁材1本あたりが負担する止水板の幅	355	
Ľ,	mm	評価する梁材の長さ	1260	
Z	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	15	
n ₂	本	せん断を受ける床側アンカーボルト本数	35	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	17	
В	mm	止水堰の側面全幅	905	
е	mm	床側アンカーボルト位置からの縁端距離	920	
L	mm	止水堰の全幅	1260	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積		
L_{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm ³	ベースプレートの断面係数		

(12) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰2

坦	₹No.	RB-2F-6		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1090	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	425	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	75	
h_2	mm	評価する梁材の最下端の高さ	500	
a'	mm	梁材1本あたりが負担する止水板の幅	507.5	
Ľ,	mm	評価する梁材の長さ	1277.5	
Ζ	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	25	
n_2	本	せん断を受ける床側アンカーボルト本数	51	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	11	
В	mm	止水堰の側面全幅	1277.5	
е	mm	床側アンカーボルト位置からの緑端距離	1230	
L	mm	止水堰の全幅	2360	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
Ay	mm^2	柱材のせん断断面積		
L_{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(13) 原子炉建屋地上2階(R6R7-RBRC)通路 止水堰

堰 No.		RB-2F-7		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1000	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	775	
β	—	長方形板の最大応力の係数	0.4	
h1	mm	評価する止水板の最下端の高さ	0	
h ₂	mm	評価する梁材の最下端の高さ	405	
a'	mm	梁材1本あたりが負担する止水板の幅	500	
Ľ,	mm	評価する梁材の長さ	775	
Z	mm	梁材の断面係数	3550	
As	mm	梁材のせん断断面積	282.2	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	10271	
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
Vo	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n_1	本	引張りを受ける床側アンカーボルト本数	17	
n_2	本	せん断を受ける床側アンカーボルト本数	37	
n ₃	本	ベースプレートアンカーボルト本数	2	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの縁端距離	1220	
L	mm	止水堰の全幅	2325	
L_1 _{EW}	mm	柱材1本あたりが負担する柱材及び止水板の幅	205	
L ₁ ' _{NS}	mm	柱材1本あたりが負担する柱材及び止水板の幅	212.50	
Zy	mm ³	柱材の断面係数	9857	
A _Y	mm^2	柱材のせん断断面積	698	
L_{PS}	mm	ベースプレートのレバー長さ	25	
Z_{PS}	mm ³	ベースプレートの断面係数	4800	

(14) 原子炉建屋地上2階(R6R7-RERF)通路 止水堰

坦	₹No.	RB-2F-9		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	303	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	810	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	65	
h_2	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	135	
Ľ,	mm	評価する梁材の長さ	940	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	8302	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9541	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	9541	
n_1	本	引張りを受ける床側アンカーボルト本数	7	
n_2	本	せん断を受ける床側アンカーボルト本数	15	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2	
В	mm	止水堰の側面全幅	775	
е	mm	床側アンカーボルト位置からの縁端距離	524	
L	mm	止水堰の全幅	1275	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	405	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数		

(15) 原子炉建屋地上2階(R5R6-RCRD)通路 止水堰

坦	夏 No.	RB-3F-3		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	300	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	50	
h_2	mm	評価する梁材の最下端の高さ	350	
a'	mm	梁材1本あたりが負担する止水板の幅	200	
Ľ,	mm	評価する梁材の長さ	1240	
Z	mm	梁材の断面係数	3550	
As	mm	梁材のせん断断面積	282.2	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	13	
n ₂	本	せん断を受ける床側アンカーボルト本数	35	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	3	
В	mm	止水堰の側面全幅	1190	
е	mm	床側アンカーボルト位置からの縁端距離	860	
L	mm	止水堰の全幅	1190	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm^3	柱材の断面係数	_	
A _Y	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数		

(16) 原子炉建屋地上3階(R3R4-RARB)通路 止水堰

坦	₹No.	RB-3F-4		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	300	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	50	
h_2	mm	評価する梁材の最下端の高さ	350	
a'	mm	梁材1本あたりが負担する止水板の幅	200	
Ľ,	mm	評価する梁材の長さ	1250	
Z	mm	梁材の断面係数	3550	
As	mm	梁材のせん断断面積	282.2	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	13	
n ₂	本	せん断を受ける床側アンカーボルト本数	34	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	4	
В	mm	止水堰の側面全幅	1200	
е	mm	床側アンカーボルト位置からの縁端距離	860	
L	mm	止水堰の全幅	1200	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
A _Y	mm^2	柱材のせん断断面積	_	
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(17) 原子炉建屋地上3階(R4R5-RARB)通路 止水堰

(18) 原子炉建屋地上中3階(R6R7-RCRD)北側改良型制御棒駆動機構制御盤室

止水堰1

堰 No.		RB-M3F-1		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	605.2	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	605.2	
β	_	長方形板の最大応力の係数	0.4	
h_1	mm	評価する止水板の最下端の高さ	0	
h ₂	mm	評価する梁材の最下端の高さ	—	
a'	mm	梁材1本あたりが負担する止水板の幅	—	
Ľ,	mm	評価する梁材の長さ	—	
Ζ	mm	梁材の断面係数	—	
As	mm	梁材のせん断断面積	-	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	5955	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9063	
n_1	本	引張りを受ける床側アンカーボルト本数	2	
n ₂	本	せん断を受ける床側アンカーボルト本数	2	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの縁端距離	115	
L	mm	止水堰の全幅	235	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積	_	
L_{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm^3	ベースプレートの断面係数	_	

(19) 原子炉建屋地上中3階(R6R7-RCRD)北側改良型制御棒駆動機構制御盤室

止水堰2

垣	₹No.	RB-M3F-2		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ,または溢水評価を上回る水位	605.2	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	605.2	
β	—	長方形板の最大応力の係数	0.4	
h_1	mm	評価する止水板の最下端の高さ	0	
h ₂	mm	評価する梁材の最下端の高さ	—	
a'	mm	梁材1本あたりが負担する止水板の幅	—	
Ľ,	mm	評価する梁材の長さ	—	
Z	mm	梁材の断面係数	—	
As	mm	梁材のせん断断面積	—	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	5955	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9063	
n ₁	本	引張りを受ける床側アンカーボルト本数	2	
n ₂	本	せん断を受ける床側アンカーボルト本数	2	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの縁端距離	115	
L	mm	止水堰の全幅	235	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
Ay	mm^2	柱材のせん断断面積	-	
L _{PS}	mm	ベースプレートのレバー長さ	-	
Z _{PS}	mm ³	ベースプレートの断面係数		

坦	₹No.	RB-4F-1		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1500	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	280	
β	_	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	65	
h_2	mm	評価する梁材の最下端の高さ	345	
a'	mm	梁材1本あたりが負担する止水板の幅	352.5	
Ľ,	mm	評価する梁材の長さ	1865	
Z	mm	梁材の断面係数	67800	
As	mm	梁材のせん断断面積	750	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	4650	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9240	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	7000	
n ₁	本	引張りを受ける床側アンカーボルト本数	26	
n ₂	本	せん断を受ける床側アンカーボルト本数	41	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	12	
В	mm	止水堰の側面全幅	3005	
е	mm	床側アンカーボルト位置からの縁端距離	1865	
L	mm	止水堰の全幅	3005	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
Ay	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数	-	

(20) 原子炉建屋地上4階(R2R3-RARB) オペレーティングフロア 止水堰

坦	₹No.	RB-4F-2	
記号	単位	定義	数値
$ ho_0$	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1500
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	280
β	_	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	65
h_2	mm	評価する梁材の最下端の高さ	345
a'	mm	梁材1本あたりが負担する止水板の幅	352.5
Ľ,	mm	評価する梁材の長さ	2285
Z	mm	梁材の断面係数	67800
As	mm	梁材のせん断断面積	750
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	4650
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9240
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	7000
n_1	本	引張りを受ける床側アンカーボルト本数	6
n_2	本	せん断を受ける床側アンカーボルト本数	42
Ν	本	せん断を受ける片側の壁アンカーボルト本数	12
В	mm	止水堰の側面全幅	965
е	mm	床側アンカーボルト位置からの縁端距離	1200
L	mm	止水堰の全幅	2035
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
Ay	mm^2	柱材のせん断断面積	_
L _{PS}	mm	ベースプレートのレバー長さ	_
Z _{PS}	mm ³	ベースプレートの断面係数	

(21) 原子炉建屋地上4階(R2R3-RDRE) オペレーティングフロア 止水堰

坦	₹No.	RB-4F-3	
記号	単位	定義	数値
$ ho_0$	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1500
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	280
β	_	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	65
h_2	mm	評価する梁材の最下端の高さ	345
a'	mm	梁材1本あたりが負担する止水板の幅	352.5
Ľ,	mm	評価する梁材の長さ	2697.5
Z	mm	梁材の断面係数	67800
As	mm	梁材のせん断断面積	750
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	4650
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9240
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	7000
n_1	本	引張りを受ける床側アンカーボルト本数	59
n ₂	本	せん断を受ける床側アンカーボルト本数	97
Ν	本	せん断を受ける片側の壁アンカーボルト本数	12
В	mm	止水堰の側面全幅	2280
е	mm	床側アンカーボルト位置からの縁端距離	2280
L	mm	止水堰の全幅	6835
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—
Zy	mm ³	柱材の断面係数	—
A _Y	mm^2	柱材のせん断断面積	
L _{PS}	mm	ベースプレートのレバー長さ	
Z_{PS}	mm ³	ベースプレートの断面係数	

(22) 原子炉建屋地上4階(R2R3-RFRG)オペレーティングフロア 止水堰

坦	룡 No.	RB-4F-5		
記号	単位	定義	数値	
$ ho_{0}$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	603	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	570	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	65	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	285	
Ľ,	mm	評価する梁材の長さ	635	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	8302	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9541	
n_1	本	引張りを受ける床側アンカーボルト本数	12	
n_2	本	せん断を受ける床側アンカーボルト本数	36	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの緑端距離	1200	
L	mm	止水堰の全幅	2229	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	285	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(23) 原子炉建屋地上4階(R6R7-RERF)通路 止水堰1

坦	₹No.	RB-4F-6		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ,または溢水評価を上回る水位	703	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	670	
β		長方形板の最大応力の係数	0.4	
h_1	mm	評価する止水板の最下端の高さ	65	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	335	
Ľ,	mm	評価する梁材の長さ	657	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	8302	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9541	
n_1	本	引張りを受ける床側アンカーボルト本数	25	
n_2	本	せん断を受ける床側アンカーボルト本数	44	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	4	
В	mm	止水堰の側面全幅	1395	
е	mm	床側アンカーボルト位置からの縁端距離	1330	
L	mm	止水堰の全幅	5225	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	321	
Zy	mm^3	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z _{PS}	mm ³	ベースプレートの断面係数	_	

(24) 原子炉建屋地上4階(R6R7-RERF)通路 止水堰2

坦	夏 No.	RB-4F-7		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400	
t	mm	止水板の板厚	-	
а	mm	止水板の長辺方向の幅	_	
β	—	長方形板の最大応力の係数	_	
h_1	mm	評価する止水板の最下端の高さ	_	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	200	
Ľ,	mm	評価する梁材の長さ	1380	
Z	mm	梁材の断面係数	29100	
As	mm	梁材のせん断断面積	1173	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	11720	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13860	
n ₁	本	引張りを受ける床側アンカーボルト本数	4	
n_2	本	せん断を受ける床側アンカーボルト本数	13	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	_	
В	mm	止水堰の側面全幅	_	
е	mm	床側アンカーボルト位置からの縁端距離	1230	
L	mm	止水堰の全幅	1380	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積	_	
L_{PS}	mm	ベースプレートのレバー長さ	_	
Z _{PS}	mm ³	ベースプレートの断面係数	_	

(25) 原子炉建屋地上4階(R6R7-RERF)通路 止水堰3

(26) タービン建屋地下1階(T7T8-TCTD)原子炉補機冷却系(A系)熱交換器・ポンプ室 止水堰

堰 No.		TB-B1F-2		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1030	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	910	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	877	
β	—	長方形板の最大応力の係数	0.4	
h1	mm	評価する止水板の最下端の高さ	65	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	438.5	
Ľ,	mm	評価する梁材の長さ	770	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	8302	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9541	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	9541	
n ₁	本	引張りを受ける床側アンカーボルト本数	16	
n ₂	本	せん断を受ける床側アンカーボルト本数	29	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	5	
В	mm	止水堰の側面全幅	1180	
е	mm	床側アンカーボルト位置からの縁端距離	992	
L	mm	止水堰の全幅	2967	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	435	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z _{PS}	mm ³	ベースプレートの断面係数	_	

(27) 7 号機コントロール建屋地下中 2 階 (C1C2-CACB) 常用電気品区域送・排風機室 止水堰 1

堰 No.		CB-MB2F-1		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	900	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	325	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	75	
h_2	mm	評価する梁材の最下端の高さ	400	
a'	mm	梁材1本あたりが負担する止水板の幅	412.5	
Ľ,	mm	評価する梁材の長さ	1590	
Z	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	16	
n_2	本	せん断を受ける床側アンカーボルト本数	29	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	9	
В	mm	止水堰の側面全幅	1515	
е	mm	床側アンカーボルト位置からの縁端距離	1285	
L	mm	止水堰の全幅	1515	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ	-	
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(28) 7号機コントロール建屋地下中2階(C1C2-CBCC)常用電気品区域送・排風機室 止水堰

堰 No.		CB-MB2F-2		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	900	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	300	
β	—	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	100	
h_2	mm	評価する梁材の最下端の高さ	400	
a'	mm	梁材1本あたりが負担する止水板の幅	400	
Ľ,	mm	評価する梁材の長さ	1545	
Z	mm	梁材の断面係数	17700	
As	mm	梁材のせん断断面積	681	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	18	
n_2	本	せん断を受ける床側アンカーボルト本数	40	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	9	
В	mm	止水堰の側面全幅	1045	
е	mm	床側アンカーボルト位置からの縁端距離	1045	
L	mm	止水堰の全幅	1545	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(29) 7号機コントロール建屋地下中2階(C2C3-CACB)計測制御電源盤区域(A)送風機室 止水堰

堰 No.		CB-MB2F-3		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	750	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	225	
β	—	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	100	
h_2	mm	評価する梁材の最下端の高さ	325	
a'	mm	梁材1本あたりが負担する止水板の幅	325	
Ľ,	mm	評価する梁材の長さ	2490	
Z	mm	梁材の断面係数	17700	
As	mm	梁材のせん断断面積	681	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	26	
n_2	本	せん断を受ける床側アンカーボルト本数	31	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	7	
В	mm	止水堰の側面全幅	2490	
е	mm	床側アンカーボルト位置からの縁端距離	500	
L	mm	止水堰の全幅	2490	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(30) 7号機コントロール建屋地下中2階(C2C3-CBCC)計測制御電源盤区域(A)送風機室 止水堰

堰 No.		CB-MB2F-4		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	900	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	325	
β	—	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	75	
h_2	mm	評価する梁材の最下端の高さ	400	
a'	mm	梁材1本あたりが負担する止水板の幅	412.5	
Ľ,	mm	評価する梁材の長さ	1697.5	
Z	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	12	
n_2	本	せん断を受ける床側アンカーボルト本数	39	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	9	
В	mm	止水堰の側面全幅	1622.5	
е	mm	床側アンカーボルト位置からの縁端距離	1255	
L	mm	止水堰の全幅	1622.5	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(31) 7号機コントロール建屋地下1階(C1C2-CACB)計測制御電源盤区域(C)送・排風機室 止水堰2

堰 No.		CB-B1F-1		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	900	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	337.5	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	75	
h_2	mm	評価する梁材の最下端の高さ	412.5	
a'	mm	梁材1本あたりが負担する止水板の幅	412.5	
Ľ,	mm	評価する梁材の長さ	1275	
Z	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	15	
n ₂	本	せん断を受ける床側アンカーボルト本数	39	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	9	
В	mm	止水堰の側面全幅	1200	
е	mm	床側アンカーボルト位置からの縁端距離	1200	
L	mm	止水堰の全幅	1255	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	-	
Zy	mm ³	柱材の断面係数		
A _Y	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ	-	
Z_{PS}	mm ³	ベースプレートの断面係数		

(32) 7号機コントロール建屋地下1階(C2C3-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰3

堰 No.		CB-B1F-10		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	410	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	1000	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	65	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	188.5	
Ľ,	mm	評価する梁材の長さ	1015	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	19810	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n_1	本	引張りを受ける床側アンカーボルト本数	10	
n ₂	本	せん断を受ける床側アンカーボルト本数	32	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの縁端距離	1453	
L	mm	止水堰の全幅	2163	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	500	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数		

(33) 7号機コントロール建屋地下1階(C1C2-CACB)計測制御電源盤区域(C)送・排風機室 止水堰1

堰 No.		CB-B1F-12		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	600	
t	mm	止水板の板厚	-	
а	mm	止水板の長辺方向の幅	-	
β	—	長方形板の最大応力の係数	-	
h_1	mm	評価する止水板の最下端の高さ	-	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	200	
Ľ,	mm	評価する梁材の長さ	870	
Z	mm	梁材の断面係数	29100	
As	mm	梁材のせん断断面積	1173	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	11720	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13860	
n ₁	本	引張りを受ける床側アンカーボルト本数	3	
n ₂	本	せん断を受ける床側アンカーボルト本数	10	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	-	
е	mm	床側アンカーボルト位置からの縁端距離	750	
L	mm	止水堰の全幅	1360	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	-	
Zy	mm ³	柱材の断面係数	-	
Ay	mm^2	柱材のせん断断面積		
L_{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数		

(34) 7号機コントロール建屋地下1階(C1C2-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰2

堰 No.		CB-B1F-13		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	600	
t	mm	止水板の板厚	_	
а	mm	止水板の長辺方向の幅	_	
β	—	長方形板の最大応力の係数	_	
h_1	mm	評価する止水板の最下端の高さ	—	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	200	
Ľ,	mm	評価する梁材の長さ	3000	
Z	mm	梁材の断面係数	29100	
As	mm	梁材のせん断断面積	1173	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	11720	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13860	
n_1	本	引張りを受ける床側アンカーボルト本数	10	
n ₂	本	せん断を受ける床側アンカーボルト本数	22	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの縁端距離	1910	
L	mm	止水堰の全幅	3000	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
Ay	mm^2	柱材のせん断断面積	_	
L _{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数	_	

(35) 7号機コントロール建屋地下1階(C1C2-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰3

堰 No.		CB-B1F-2		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	900	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	300	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	100	
h ₂	mm	評価する梁材の最下端の高さ	400	
a'	mm	梁材1本あたりが負担する止水板の幅	400	
Ľ,	mm	評価する梁材の長さ	2505	
Z	mm	梁材の断面係数	17700	
As	mm	梁材のせん断断面積	681	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	28	
n_2	本	せん断を受ける床側アンカーボルト本数	73	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	9	
В	mm	止水堰の側面全幅	2695	
е	mm	床側アンカーボルト位置からの縁端距離	1070	
L	mm	止水堰の全幅	2695	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積	_	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(36) 7号機コントロール建屋地下1階(C1C2-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰1

堰 No.		CB-B1F-7		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	410	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	585	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	65	
h_2	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	188.5	
Ľ,	mm	評価する梁材の長さ	550	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	19810	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n ₁	本	引張りを受ける床側アンカーボルト本数	6	
n_2	本	せん断を受ける床側アンカーボルト本数	16	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2	
В	mm	止水堰の側面全幅	1245	
е	mm	床側アンカーボルト位置からの縁端距離	1185	
L	mm	止水堰の全幅	1321	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	292.5	
Zy	mm ³	柱材の断面係数	6260	
A _Y	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数		

(37) 7 号機コントロール建屋地下1階(C2C3-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰1

堰 No.		CB-B1F-8		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	410	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	866	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	65	
h_2	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	188.5	
Ľ,	mm	評価する梁材の長さ	816	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	19810	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n_1	本	引張りを受ける床側アンカーボルト本数	4	
n ₂	本	せん断を受ける床側アンカーボルト本数	12	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2	
В	mm	止水堰の側面全幅	955	
е	mm	床側アンカーボルト位置からの縁端距離	935	
L	mm	止水堰の全幅	1077	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	433	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数		

(38) 7号機コントロール建屋地下1階(C2C3-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰2

堰 No.		CB-B1F-9		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	410	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	922	
β	—	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	65	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	188.5	
Ľ,	mm	評価する梁材の長さ	937	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	19810	
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n_1	本	引張りを受ける床側アンカーボルト本数	11	
n_2	本	せん断を受ける床側アンカーボルト本数	26	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2	
В	mm	止水堰の側面全幅	1430	
е	mm	床側アンカーボルト位置からの縁端距離	1283	
L	mm	止水堰の全幅	2438	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	461	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(39) 7号機コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰2

堰 No.		CB-1F-1		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	740	
β	—	長方形板の最大応力の係数	0.4	
h1	mm	評価する止水板の最下端の高さ	0	
h_2	mm	評価する梁材の最下端の高さ	125	
a'	mm	梁材1本あたりが負担する止水板の幅	337.5	
Ľ,	mm	評価する梁材の長さ	740	
Z	mm	梁材の断面係数	6340	
As	Mm	梁材のせん断断面積	212.6	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9144	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n ₁	本	引張りを受ける床側アンカーボルト本数	16	
n_2	本	せん断を受ける床側アンカーボルト本数	38	
n ₃	本	ベースプレートのアンカーボルト本数	2	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	_	
В	mm	止水堰の側面全幅	_	
е	mm	床側アンカーボルト位置からの縁端距離	1785	
L	mm	止水堰の全幅	4178	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	682.5	
Zy	mm ³	柱材の断面係数	5007	
Ay	mm^2	柱材のせん断断面積	172.3	
L _{PS}	mm	ベースプレートのレバー長さ	25	
Z_{PS}	mm ³	ベースプレートの断面係数	2025	

坦	夏 No.	CB-1F-3		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1200	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	300	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	450	
h_2	mm	評価する梁材の最下端の高さ	375	
a'	mm	梁材1本あたりが負担する止水板の幅	350	
Ľ,	mm	評価する梁材の長さ	1256	
Z	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9312	
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13190	
n_1	本	引張りを受ける床側アンカーボルト本数	5	
n ₂	本	せん断を受ける床側アンカーボルト本数	13	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	3	
В	mm	止水堰の側面全幅	1340	
е	mm	床側アンカーボルト位置からの縁端距離	1260	
L	mm	止水堰の全幅	2460	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm^3	柱材の断面係数	_	
A _Y	mm^2	柱材のせん断断面積		
L_{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm^3	ベースプレートの断面係数	-	

(40) 7号機コントロール建屋地上1階脇トレンチ(C1-CACB) 止水堰

(41) 7号機コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰1

堰 No.		CB-1F-4		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	410	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	749	
β	—	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	65	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	188.5	
Ľ,	mm	評価する梁材の長さ	764	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	19810	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n_1	本	引張りを受ける床側アンカーボルト本数	9	
n_2	本	せん断を受ける床側アンカーボルト本数	19	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2	
В	mm	止水堰の側面全幅	960	
е	mm	床側アンカーボルト位置からの縁端距離	729	
L	mm	止水堰の全幅	1950	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	374.5	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(42) 7号機コントロール建屋地上1階(C1C2-CACB)計測制御電源盤区域(B)送・排風機室 止水堰

堰 No.		CB-1F-5		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	700	
t	mm	止水板の板厚	-	
а	mm	止水板の長辺方向の幅	-	
β	—	長方形板の最大応力の係数	-	
h_1	mm	評価する止水板の最下端の高さ	-	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	180	
Ľ,	mm	評価する梁材の長さ	1670	
Z	mm	梁材の断面係数	24300	
As	mm	梁材のせん断断面積	1050	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	11720	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13860	
n ₁	本	引張りを受ける床側アンカーボルト本数	6	
n ₂	本	せん断を受ける床側アンカーボルト本数	16	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	-	
е	mm	床側アンカーボルト位置からの縁端距離	1250	
L	mm	止水堰の全幅	1670	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	-	
Zy	mm ³	柱材の断面係数	-	
Ay	mm^2	柱材のせん断断面積	-	
L _{PS}	mm	ベースプレートのレバー長さ	-	
Z _{PS}	mm ³	ベースプレートの断面係数		
(43) 7号機コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰3

垣	₹No.	CB-1F-6	
記号	単位	定義	数値
ρ_0	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	700
t	mm	止水板の板厚	_
а	mm	止水板の長辺方向の幅	_
β	—	長方形板の最大応力の係数	_
h1	mm	評価する止水板の最下端の高さ	-
h ₂	mm	評価する梁材の最下端の高さ	0
a'	mm	梁材1本あたりが負担する止水板の幅	200
Ľ,	mm	評価する梁材の長さ	1790
Z	mm	梁材の断面係数	29100
As	mm	梁材のせん断断面積	1173
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	11720
V ₀	Ν	床 N に生じるせん断力に対する短期許容荷重	13860
n ₁	本	引張りを受ける床側アンカーボルト本数	5
n ₂	本	せん断を受ける床側アンカーボルト本数	10
Ν	本	せん断を受ける片側の壁アンカーボルト本数	-
В	mm	止水堰の側面全幅	-
е	mm	床側アンカーボルト位置からの縁端距離	1600
L	mm	止水堰の全幅	1790
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	
Ay	mm^2	柱材のせん断断面積	
L _{PS}	mm	ベースプレートのレバー長さ	
Z _{PS}	mm ³	ベースプレートの断面係数	_

2.2 計算結果

2.2.1 L型鋼製堰

堰 No.	評価	対象部位	発 <u>4</u> (応力また	と値 は応力度)	許容	限界	検定値	
	鋼製板	曲げ	8. 53	N/mm^2	235	N/mm^2	0.04	<1.0
		引張	200	Ν	7900	Ν	0.03	<1.0
KB-3F-1	アンカー ボルト	せん断	90	Ν	13800	Ν	0.01	<1.0
		組合せ	-	-	-	-	0.01	<1.0

(1) 原子炉建屋地上3階(R2R3-RBRC)非常用ガス処理系室 止水堰

堰 No.	評価	対象部位	発生値 (応力または応力度)		許容限界		検定値	
堰 No. RB-3F-8	鋼製板	曲げ	22.3	N/mm^2	235	N/mm^2	0.10	<1.0
		引張	1610	Ν	7900	Ν	0.21	<1.0
кр-эг-ө	アンカー	せん断	1130	Ν	13800	Ν	0.09	<1.0
	シントレ	組合せ	_	_	_	_	0.06	<1.0

(2) 原子炉建屋地上3階(R6R7-RERF)非常用ディーゼル発電機(C)補機室 止水堰

(3) 原子炉建屋地上4階(R6R7-RFRG)非常用ディーゼル発電機(C)区域排風機室,給気ルーバ室 止水堰

堰 No.	評価対	讨象部位	発生 (応力また	と値 は応力度)	許容	限界	検	定値
	鋼製板	曲げ	8.53	$\mathrm{N/mm^2}$	235	$\rm N/mm^2$	0.04	<1.0
		引張	350	Ν	7900	Ν	0.05	<1.0
KD-4F-4	アンカー	せん断	160	Ν	13800	Ν	0.02	<1.0
	N.V. 1	組合せ	_	-	I	_	0.01	<1.0

堰 No.	評価を	讨象部位	発生 (応力また	と値 は応力度)	許容	限界	検定 0.10 0.06 0.07 0.01	定値
	鋼製板	曲げ	23.3	N/mm^2	235	N/mm^2	0.10	<1.0
TD_1E_9	アンカー	引張	0.311	kN	5.74	kN	0.06	<1.0
1D-1F-2		せん断	0.146	kN	2.21	kN	0.07	<1.0
		組合せ	_	_	_	-	0.01	< 1.0

(4) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室 止水堰1

堰 No.	評価	对象部位	発生 (応力また	主値 は応力度)	許容	限界	検定 0.10 0.06 0.07 0.01	定値
	鋼製板	曲げ	23.3	N/mm^2	235	N/mm^2	0.10	<1.0
TD_1E_9	アンカー ボルト	引張	0.314	kN	5.74	kN	0.06	<1.0
1D-1L-9		せん断	0.147	kN	2.21	kN	0.07	<1.0
		組合せ	Ι	_	I	_	0.01	< 1.0

(5) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室 止水堰2

堰 No.	評価対	対象部位	発 <u>症</u> (応力また	上値 は応力度)	許容	限界	検	定値
	鋼製板	曲げ	23.3	N/mm^2	235	N/mm^2	0.10	<1.0
TD_1E_4		引張	0.31	kN	5.74	kN	0.06	<1.0
1D-11-4	アンカー	せん断	0.146	kN	2.21	kN	0.07	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(6) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域冷却加熱コイル室 止水堰

堰 No.	評価۶	対象部位	発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	20.0	N/mm^2	235	N/mm^2	0.09	<1.0
TD_1E_10		引張	0. 544	kN	12.6	kN	0.05	<1.0
10-11-10	アンカー	せん断	0.230	kN	4.97	kN	0.05	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(7) タービン建屋地上1階(T1T2-TCTD)南西階段室 止水堰

堰 No.	評価۶	評価対象部位		発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	11.7	N/mm^2	235	N/mm^2	0.05	<1.0	
TD_1E_11		引張	0. 292	kN	12.6	kN	0.03	<1.0	
1D-11-11	アンカー	せん断	0.156	kN	4.97	kN	0.04	<1.0	
		組合せ	_	_	_	_	0.01	<1.0	

(8) タービン建屋地上1階(T2T3-TCTD)南西階段室 止水堰

堰 No.	評価۶	評価対象部位		発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	11.7	N/mm^2	235	N/mm^2	0.05	<1.0	
TD_9E_1		引張	0.218	kN	5.74	kN	0.04	<1.0	
1D-2r-1	アンカー	せん断	0.090	kN	2.21	kN	0.05	<1.0	
		組合せ	_	_	_	_	0.01	<1.0	

(9) タービン建屋地上2階(T7T8-TDTE)北西階段室 止水堰

堰 No.	評価۶	評価対象部位		発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	8.34	N/mm^2	235	N/mm^2	0.04	<1.0	
TD_9E_9		引張	0.204	kN	12.6	kN	0.02	<1.0	
1D-2r-2	アンカー	せん断	0.118	kN	4.97	kN	0.03	<1.0	
		組合せ	_	_	_	_	0.01	<1.0	

(10) タービン建屋地上2階(T2T3-TCTD)南西階段室 止水堰

堰 No.	評価対	評価対象部位		発生値 (応力または応力度)		限界	検定値	
CB-B2F-1	鋼製板	曲げ	23.3	N/mm^2	235	$\rm N/mm^2$	0.10	<1.0
CD_DOE_1		引張	0.319	kN	5.74	kN	0.06	<1.0
CD-D2F-1	アンカー	せん断	0.149	kN	2.21	kN	0.07	<1.0
	ホルト	組合せ	_	_	_	_	0.01	<1.0

(11) コントロール建屋地下2階(C1C2-CCCD)常用電気品室 止水堰

堰 No.	評価対象部位		発生値 (応力または応力度)		許容限界		検定値	
CB-B1F-3	鋼製板	曲げ	5.00	N/mm^2	235	N/mm^2	0.03	<1.0
	アンカー ボルト	引張	0.0744	kN	5.74	kN	0.02	<1.0
		せん断	0.0465	kN	2.21	kN	0.03	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(12) コントロール建屋地下1階(C2C3-CCCD)区分I計測制御用電源盤室 止水堰

堰 No.	評価対象部位		発生値 (応力または応力度)		許容限界		検定値	
CB-B1F-4	鋼製板	曲げ	5.00	N/mm^2	235	N/mm^2	0.03	<1.0
	アンカー ボルト	引張	0.0746	kN	5.74	kN	0.02	<1.0
		せん断	0.0466	kN	2.21	kN	0.03	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(13) コントロール建屋地下1階(C2C3-CDCE)区分IV計測制御用電源盤室 止水堰

堰 No.	評価対象部位		発生値 (応力または応力度)		許容限界		検定値	
CB-B1F-5	鋼製板	曲げ	5.00	N/mm^2	235	N/mm^2	0.03	<1.0
	アンカー ボルト	引張	0.0696	kN	5.74	kN	0.02	<1.0
		せん断	0.0435	kN	2.21	kN	0.02	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(14) コントロール建屋地下1階(C2C3-CECF)区分Ⅱ計測制御用電源盤室 止水堰

堰 No.	評価対象部位		発生値 (応力または応力度)		許容限界		検定値	
CB-B1F-6	鋼製板	曲げ	5.00	N/mm^2	235	N/mm^2	0.03	<1.0
	アンカー ボルト	引張	0.0715	kN	5.74	kN	0.02	<1.0
		せん断	0.0447	kN	2.21	kN	0.03	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(15) コントロール建屋地下1階(C2C3-CFCG)区分Ⅲ計測制御用電源盤室 止水堰

2.2.2 鋼製落とし込み型堰

堰 No.	評価求	甘象部位	発生値 (応力または応力度)		許容限界		検定値	
RB-2F-8	鋼製板	曲げ	9.65	$\mathrm{N/mm^2}$	110	N/mm^2	0.09	<1.0
	アンカー ボルト	引張	1500	Ν	7900	Ν	0.19	<1.0
		せん断	490	Ν	12000	Ν	0.05	<1.0
		組合せ	-	_	_	_	0.04	<1.0

(1) 原子炉建屋地上2階(R2R3-RARB)燃料プール冷却浄化系熱交換器室 止水堰

			JIU IDIO		, , , , , , , , , , , , , , , , , , , 	1• 2		
堰 No.	評価文	讨象部位	発生値 (荷重又は発生応力度)		許容	限界	検定値	
	鋼製板	曲げ	6.02	N/mm^2	110	N/mm^2	0.06	<1.0
TB-1F-13	アンカー ボルト	せん断	1.97	kN	4.97	kN	0. 40	<1.0

(2) タービン建屋地上1階(T8T9-TBTC)レイダウンスペース 止水堰

2.2.3 鉄筋コンクリート堰

堰 No.	評価対象部位		発 (荷重また)	生値 は発生応力度)	許容限界		検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.01	<1.0
	及び	せん断	120.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	-	-	-	-	0.01	<1.0
DD_D1C_1		引張	20	Ν	20940	Ν	0.01	<1.0
ND-DIF-I	縦筋	せん断	120.0	Ν	20940	Ν	0.01	<1.0
		組合せ	_	_	_	_	0.01	<1.0
	堰底部の	せん断	1. 00×10^{-2}	N/mm^2	1	$\rm N/mm^2$	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(1) 原子炉建屋地下1階(R1R2-RCRD)原子炉系(DIV-IV)計装ラック室 止水堰

堰 No.	評価対象部位		発 (荷重またに	生値 は発生応力度)	許容限界		検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.01	<1.0
	及び	せん断	120.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
DD_D1E_9		引張	20	Ν	20940	Ν	0.01	<1.0
ND-DIF-2	縦筋	せん断	120.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	-	Ι	_	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(2) 原子炉建屋地下1階(R1R2-RDRE)原子炉系(DIV-II)計装ラック室 止水堰

堰 No.	評価対象部位		発 (荷重またに	発生値 [または発生応力度]		限界	検定値	
	アンカーボルト	引張	8.00 × 10 ⁻²	kN	7.20	kN	0.02	<1.0
	及び	せん断	3. 40×10^{-2}	kN	14.6	kN	0.01	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
DD_D1E_2		引張	8.00 × 10 ⁻²	kN	20.94	kN	0.01	<1.0
VD-DIL-2	縦筋	せん断	3. 40×10^{-2}	kN	20.94	kN	0.01	<1.0
		組合せ	-	_	Ι	_	0.01	<1.0
	堰底部の	せん断	1. 70×10^{-3}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1. 65×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(3) 原子炉建屋地下1階(R6R7-RBRC)残留熱除去系(A)配管室 止水堰

堰 No.	評価対象部位		発 (荷重またに	発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.01	<1.0
	及び	せん断	110.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
		引張	20	Ν	20940	Ν	0.01	<1.0
KD-DIF-4	縦筋	せん断	110.0	Ν	20940	Ν	0.01	<1.0
-		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(4) 原子炉建屋地下1階(R6R7-RCRD)原子炉系(DIV-I)計装ラック室 止水堰

堰 No.	評価対象部	位	発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.01	<1.0
	及び	せん断	110.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	-	_	-	-	0.01	<1.0
		引張	20	Ν	20940	Ν	0.01	<1.0
KD-DIF-5	縦筋	せん断	110.0	Ν	20940	Ν	0.01	<1.0
_		組合せ	_	Ι	Ι	_	0.01	<1.0
	堰底部の	せん断	1. 00×10^{-2}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1. 00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(5) 原子炉建屋地下1階(R6R7-RDRE)原子炉系(DIV-Ⅲ)計装ラック室 止水堰

堰 No.	評価対象部	位	発生値 (荷重または発生応力度)		許容限界		検定値	
堰 No. 評価対象部位 堰 No. アンカーボルト 引張 及び せん断 アンカー筋 組合せ 解B-MB1F-1 縦筋 せん断 縦筋 せん断 エンクリート 圧縮	引張	8. 00×10^{-2}	kN	7.20	kN	0.02	<1.0	
	及び	せん断	4. 40×10^{-2}	kN	14.6	kN	0.01	<1.0
	アンカー筋	組合せ	-	_	-	-	0.01	<1.0
DD-MD1E-1		引張	8.00 × 10 ⁻²	kN	20.94	kN	0.01	<1.0
KD MDII' I	縦筋	せん断	4. 40×10^{-2}	kN	20.94	kN	0.01	<1.0
-		組合せ	-	_	-	-	0.01	<1.0
	堰底部の	せん断	2. 20×10^{-3}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.71×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(6) 原子炉建屋地下中1階(R5R6-RBRC)残留熱除去系(A)配管室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト 引張		20	Ν	7200	Ν	0.02	<1.0
	及び	せん断	80.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD_1E_9		引張	120	Ν	20940	Ν	0.01	<1.0
ND-11-2	縦筋	せん断	80.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	-	_	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(7) 原子炉建屋地上1階(R1R2-RBRC)ほう酸水注入系ペネ, 電気ペネ室 止水堰

堰 No.	評価対象部位		発 (荷重またに	発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト	引張	200	Ν	7200	Ν	0.03	<1.0
	及び	せん断	120.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
DD_1E_9		引張	200	Ν	20940	Ν	0.01	<1.0
ND II ⁻ 3	縦筋	せん断	120.0	Ν	20940	Ν	0.01	<1.0
		組合せ	Ι	-	Ι	_	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(8) 原子炉建屋地上1階(R3R4-RFRG)電気ペネ室 止水堰

堰 No.	評価対象部位		発 (荷重またに	発生値 重または発生応力度)		限界	検定値	
	アンカーボルト	引張	10	Ν	7200	Ν	0.01	<1.0
	及び	せん断	30.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD_1E_/		引張	10	Ν	20940	Ν	0.01	<1.0
ND II' 4	縦筋	せん断	30.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(9) 原子炉建屋地上1階(R4R5-RFRG)可燃性ガス濃度制御系再結合装置室 止水堰

堰 No.	評価対象部位		発 (荷重またに	発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト	引張	120	Ν	7200	Ν	0.02	<1.0
	及び	せん断	90.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
$DD_{-1}E_{-7}$		引張	120	Ν	20940	Ν	0.01	<1.0
KD-1F-7	縦筋	せん断	90.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	Ι	Ι	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(10) 原子炉建屋地上1階(R5R6-RBRC)原子炉補機冷却水系・不活性ガス系・電気ペネ室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	170	Ν	7200	Ν	0.03	<1.0
	及び	せん断	110.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD-9E-9		引張	170	Ν	20940	Ν	0.01	<1.0
ND 21 3	縦筋	せん断	110.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	-	_	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(11) 原子炉建屋地上2階(R5R6-RARB)主蒸気系トンネル室,配管ペネ室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	100	Ν	7200	Ν	0.02	<1.0
	及び	せん断	70.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD_9E_4		引張	100	Ν	20940	Ν	0.01	<1.0
ND-21-4	縦筋	せん断	70.0	Ν	20940	Ν	0.01	<1.0
		組合せ	_	_		-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	3. 00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(12) 原子炉建屋地上2階(R5R6-RARB)通路 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.01	<1.0
	及び	せん断	90.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
DD_9E_E		引張	20	Ν	20940	Ν	0.01	<1.0
ND 21 J	縦筋	せん断	90.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	_	-	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(13) 原子炉建屋地上2階(R5R6-RCRD)電気ペネ室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
堰 No. RB-3F-7	アンカーボルト	引張	10	Ν	7200	Ν	0.01	<1.0
	及び	せん断	90.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
DD_9E_7		引張	10	Ν	20940	Ν	0.01	<1.0
ND 31 7	縦筋	せん断	90.0	Ν	20940	Ν	0.01	<1.0
		組合せ	_	-	Ι	_	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(14) 原子炉建屋地上3階(R2R3-RARB)通路 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.01	<1.0
	及び	せん断	90.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
DD_2C_9		引張	20	Ν	20940	Ν	0.01	<1.0
ND 51° Z	縦筋	せん断	90.0	Ν	20940	Ν	0.01	< 1.0
		組合せ	-	Ι	Ι	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(15) 原子炉建屋地上3階(R2R3-RCRD)非常用ガス処理系室 止水堰

堰 No.	評価対象部位		発! (荷重またに	生値 t発生応力度)	許容	許容限界 検		三値
	アンカーボルト	引張	200	Ν	7200	Ν	0.03	<1.0
	及び	せん断	120.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	_	0.01	<1.0
DD_9E_E		引張	200	Ν	20940	Ν	0.01	<1.0
VD-9L-9	縦筋	せん断	120.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	$\rm N/mm^2$	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(16) 原子炉建屋地上3階(R5R6-RBRC)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰1

堰 No.	評価対象部位		発! (荷重またに	生値 t発生応力度)	許容	許容限界 枪		三値
	アンカーボルト	引張	220	Ν	7200	Ν	0.04	<1.0
	及び	せん断	130. 0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD_9E_6		引張	220	Ν	20940	Ν	0.02	<1.0
VD-9L-0	縦筋	せん断	130. 0	Ν	20940	Ν	0.01	<1.0
		組合せ	_	Ι	Ι	_	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	$\rm N/mm^2$	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(17) 原子炉建屋地上3階(R5R6-RERF)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	0. 427	kN	23.9	kN	0.02	<1.0
	及び	せん断	0.206	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ	-		-		0.01	<1.0
		引張	-		-	-	-	<1.0
ID II [,] J	縦筋	せん断		_	-		_	<1.0
		組合せ		_	-	-	_	<1.0
	堰底部の	せん断	6.83 $\times 10^{-3}$	N/mm^2	1.05	$\rm N/mm^2$	0.01	<1.0
	コンクリート	圧縮	5. 35×10^{-2}	N/mm^2	14.0	N/mm^2	0.01	<1.0

(18) タービン建屋地上1階(T3T4-TATB)レイダウンスペース 止水堰
堰 No.	評価対象部位		発 (荷重またに	発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト	引張	0. 427	kN	23.9	kN	0.02	<1.0
	及び	せん断	0.206	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
TD_1E_6		引張	2.86 $\times 10^{-2}$	kN	37.5	kN	0.01	<1.0
ID-11-0	縦筋	せん断	5. 20×10^{-2}	kN	37.5	kN	0.01	<1.0
		組合せ		_	Ι	-	0.01	<1.0
	堰底部の	せん断	6.87 $\times 10^{-3}$	N/mm^2	1.05	N/mm^2	0.01	<1.0
	コンクリート	圧縮	5. 35×10^{-2}	N/mm^2	14.0	N/mm^2	0.01	< 1.0

(19) タービン建屋地上1階(T3T4-TCTD)南階段室 止水堰

堰 No.	評価対象部	位	発 (荷重またに	発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト	引張	0. 427	kN	23.9	kN	0.02	<1.0
	及び	せん断	0.206	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ		-	-	0.01	<1.0	
TD - 1E - 7		引張	-		-	-	-	<1.0
ID II [,] (縦筋	せん断	-		-		_	<1.0
		組合せ		_	-	-	_	<1.0
	堰底部の	せん断	6.83 $\times 10^{-3}$	$\rm N/mm^2$	1.05	$\rm N/mm^2$	0.01	<1.0
	コンクリート	圧縮	5. 35×10^{-2}	$\rm N/mm^2$	14.0	N/mm^2	0.01	<1.0

(20) タービン建屋地上1階(T7T8-TATB)レイダウンスペース 止水堰

堰 No.	評価対象部	評価対象部位		発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト		0. 427	kN	23.9	kN	0.02	<1.0
	及び	せん断	0.206	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ		-		0.01	<1.0	
TP_1E_0		引張	4.00 \times 10 ⁻²	kN	37.5	kN	0.01	<1.0
ID II [,] 9	縦筋	せん断	9. 20×10^{-2}	kN	37.5	kN	0.01	<1.0
		組合せ		_	-	-	0.01	<1.0
	堰底部の	せん断	6.83 $\times 10^{-3}$	$\rm N/mm^2$	1.05	N/mm^2	0.01	<1.0
	コンクリート	圧縮	5. 35×10^{-2}	N/mm^2	14.0	N/mm^2	0.01	<1.0

(21) タービン建屋地上1階(T8T9-TATB)北階段室 止水堰

堰 No.	評価対象部	位	発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト 引張		1.34×10^{-2}	kN	15.5	kN	0.01	<1.0
	及び	せん断	0.038	kN	11.7	kN	0.01	<1.0
	アンカー筋	組合せ		-	-	0.01	<1.0	
TD-1E-19		引張	-		-	-	-	<1.0
1D-1F-12	縦筋	せん断		-	-	_	<1.0	
		組合せ		_	-	-	_	<1.0
	堰底部の せん断 6.12×10 ⁻⁴ N/mm ²		$\rm N/mm^2$	1.23	N/mm^2	0.01	<1.0	
	コンクリート	圧縮	3. 56×10^{-3}	$\rm N/mm^2$	22.0	N/mm^2	0.01	<1.0

(22) タービン建屋地上1階(T1T2-TATB)大物搬出入口 止水堰

堰 No.	評価対象部	位	発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	6. 67×10^{-2}	kN	23.9	kN	0.01	<1.0
	及び	せん断	0.108	kN	17.3	kN	0.01	<1.0
	アンカー筋	組合せ		-	-	-	0.01	<1.0
$CP_{1}E_{9}$		引張				-	<1.0	
UD-1F-2	縦筋	せん断	_		-		_	<1.0
		組合せ		-	-	-	-	<1.0
	堰底部の	せん断	2. 19×10^{-3}	$\rm N/mm^2$	1.05	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1. 38×10^{-2}	$\rm N/mm^2$	14.0	N/mm^2	0.01	<1.0

(23) コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰4

堰 No.	評価対象部	位	発 (荷重またに	発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト	カーボルト 引張		_		-	_	<1.0
	及び	せん断		-		-	<1.0	
	アンカー筋	組合せ		_	-	-	_	<1.0
DWD_1E_1	縦筋	引張		-	-	_	<1.0	
KWD-1F-1		せん断	-		-	-	_	<1.0
		組合せ		-	-	-	-	<1.0
	堰底部の	せん断	4. 80×10^{-3}	N/mm^2	1.21	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 98×10^{-2}	N/mm^2	21.5	N/mm^2	0.01	<1.0

(24) 廃棄物処理建屋1階トラック室出入口(6号機設備, 5,6,7号機共用)

2.2.4 鋼板組合せ堰

(1)	原子炉建屋地下2階	(R1R2-RDRE)	通路	止水堰
-----	-----------	-------------	----	-----

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	120	N/mm²	271	N/mm²	0.45<1.0
		曲げ	64	N/mm²	235	N/mm²	0.28<1.0
	梁材	せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	65	_	235	N/mm²	0.28<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	—<1.0
		せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ					—<1.0
RB-2F-1	ベース	手でも		N /2		N/m ²	0
	プレート	田の		11/ 11111		IN/ IIIII	-~1.0
	アンカー	引張り	104.5	Ν	2270	Ν	0.05<1.0
	ボルト	せん断	122.6	Ν	4010	Ν	0.03<1.0
-	(床)	組合せ	_	_	_	_	0.01<1.0
	アンカー						
	ボルト	せん断	_	Ν	—	Ν	—<1.0
	(壁)						

堰 No.	評価対象	象部位	発生	発生値 (荷重又は発生応力度)		限界	検定値
		11 . 33	(何里ズはタ	电土心力度)		()	
	止水板	曲げ	120	N/mm	271	N/mmť	0.45<1.0
		曲げ	51	N/mm²	235	N/mm²	0.22<1.0
	梁材 	せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	52		235	N/mm²	0.23<1.0
	柱材	曲げ	_	N/mm²	—	N/mm²	—<1.0
		せん断	_	N/mm²	—	N/mm²	—<1.0
		組合せ	_	_	—		—<1.0
RB-2F-2	ベース	-H-)-B		NT / 2		N / 2	< 1.0
	プレート	Ш	—	N/ mm	_	N/ mm	-< 1.0
	アンカー	引張り	145.3	N	2270	Ν	0.07<1.0
	ボルト	せん断	167.4	Ν	4010	Ν	0.05<1.0
	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	343.2	Ν	2900	Ν	0.12<1.0
	(壁)						

(2) 原子炉建屋地下 2 階(R2R3-RERF) 通路 止水堰

堰 No.	評価対象	象部位	発生	発生値 (荷重又は発生応力度)		限界	検定値
			(南重入は元工心方反)				
	止水板	曲げ	139	N/mm²	271	N/mm²	0.52<1.0
		曲げ	69	N/mm²	235	N/mm²	0.30<1.0
	梁材	せん断	7	N/mm²	135	N/mm²	0.06<1.0
		組合せ	70		235	N/mm²	0.30<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_	_		_	—<1.0
RB-2F-3	ベース	-H-)-B		NT / 2		N / 2	< 1.0
	プレート	囲け		N/mm		N/ mm	-< 1.0
	アンカー	引張り	152.0	N	2270	Ν	0.07<1.0
	ボルト	せん断	303.5	Ν	4010	Ν	0.08<1.0
-	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	364.2	Ν	2900	Ν	0.13<1.0
	(壁)						

(3) 原子炉建屋地下2階(R3R4-RERF)通路 止水堰

堰 No.	評価対象	象部位	発生	発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	109	N/mm ²	271	N/mm ²	0.41 < 1.0
		шт) 	100	NT / 2	005	N / 2	0.17 < 1.0
		囲け	39	N/mm	235	N/ mm	0.17<1.0
	梁材	せん断	5	N/mm²	135	N/mm²	0.04<1.0
		組合せ	40	_	235	N/mm²	0.17<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_	_	—		—<1.0
RB-2F-4	ベース	-H-)-B		NT / 2		N / 2	< 1.0
	プレート	Ш	—	N/ mm		N/ mm	-<1.0
	アンカー	引張り	319.3	Ν	2270	Ν	0.14<1.0
	ボルト	せん断	410.5	Ν	4010	Ν	0.11<1.0
-	(床)	組合せ	_	_	—	_	0.03<1.0
	アンカー						
	ボルト	せん断	653.0	Ν	2900	Ν	0.23<1.0
	(壁)						

(4) 原子炉建屋地下2階(R4R5-RERF)通路 止水堰

堰 No.	評価対象	象部位	発生	発生値		限界	検定値
-		1	(何重又は死生応力度)				
	止水板	曲げ	120	N/mm ²	271	N/mm²	0.45<1.0
		曲げ	52	N/mm²	235	N/mm²	0.23<1.0
	梁材 	せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	53	_	235	N/mm²	0.23<1.0
	柱材	曲げ	—	N/mm²	—	N/mm²	—<1.0
		せん断	_	N/mm²	—	N/mm²	—<1.0
		組合せ	_	_	—		—<1.0
RB-2F-5	ベース	手をも		N/m^2		N/m^2	< 1.0
	プレート	Ш	—	N/ mm		N/ mm	-<1.0
	アンカー	引張り	102.3	Ν	2270	Ν	0.05<1.0
	ボルト	せん断	158.8	Ν	4010	Ν	0.04<1.0
-	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	343.2	Ν	2900	Ν	0.12<1.0
	(壁)						

(5) 原子炉建屋地下2階(R5R6-RERF)通路 止水堰

堰 No.	評価対象	象部位	発生 (荷重又は3	発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	43	N/mm²	271	N/mm²	0.16<1.0
		曲げ	2	N/mm²	235	N/mm²	0.01<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	3	_	235	N/mm²	0.02<1.0
	柱材	曲げ	6	N/mm²	235	N/mm²	0.03<1.0
		せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	7		235		0.03<1.0
RB-B2F-6	ベース プレート	曲げ	_	N/mm²	_	N/mm²	-<1.0
	アンカー	引張り	95.43	Ν	19810	Ν	0.01<1.0
	ボルト	せん断	92.52	N	13867	Ν	0.01<1.0
	(床)	組合せ	_			_	0.01<1.0
	アンカー ボルト	せん断		N		N	<1.0
	(壁)						

(6) 原子炉建屋地下2階(R6R7-RDRE)通路 止水堰

堰 No.	評価対象	象部位	発生 (荷重又は3	上値 発生応力度)	許容限界		検定値
	止水板	曲げ	7	N/mm²	271	N/mm²	0.03<1.0
		曲げ	54	N/mm²	235	N/mm²	0.23<1.0
	梁材	せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	55		235	N/mm²	0.24<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
DD_1E_1		せん断	_	N/mm²		N/mm²	—<1.0
KD II' I		組合せ	_				—<1.0
	ベース	手でも		N /2		N/mr ²	_<1.0
	プレート	囲り		IN/ IIIII		IN/ IIIII	-<1.0
	アンカー	引張り	26.61	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	70.17	N	13190	Ν	0.01<1.0
	(床)	組合せ				_	0.01<1.0

(7) 原子炉建屋地上1階(R1R2-RARB)通路 止水堰

堰 No.	評価対象	象部位	発生	発生値 (荷重又は発生広力度)		限界	検定値
			(何里入は)	611加刀皮)			
	止水板	曲げ	7	N/mmť	271	N/mm²	0.03<1.0
		曲げ	51	N/mm²	235	N/mm²	0.22<1.0
	梁材	せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	52		235	N/mm²	0.23<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_	_		_	—<1.0
RB-1F-5	ベース	44. 1. 18		NT / 2		N / 2	< 1 0
	プレート	曲け	_	N/ mm̃		N/ mm̃	-<1.0
	アンカー	引張り	36.39	N	9312	Ν	0.01<1.0
	ボルト	せん断	123.6	Ν	13190	Ν	0.01<1.0
	(床)	組合せ	_	_	—	_	0.01<1.0
	アンカー						
	ボルト	せん断	231.4	Ν	13190	Ν	0.02<1.0
	(壁)						

(8) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰1

堰 No.	評価対象	象部位	発生	発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	4	N/mm ²	271	N/mm²	0.02<1.0
		曲げ	23	N/mm²	235	N/mm²	0.10<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	23		235	N/mm²	0.10<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²	—	N/mm²	—<1.0
		組合せ					—<1.0
RB-1F-6	ベース	曲げ	_	N/mm²	_	N/mm²	—<1.0
	プレート						
	アンカー	引張り	39.51	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	138.1	Ν	13190	Ν	0.01<1.0
	(床)	組合せ	—	—	—		0.01<1.0
	アンカー						
	ボルト	せん断	236.3	Ν	13190	Ν	0.02<1.0
	(壁)						

(9) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰2

堰 No.	評価対象	象部位	発生	発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	7	N/mm²	271	N/mm²	0.03<1.0
		曲げ	40	N/mm²	235	N/mm²	0.17<1.0
	梁材	せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	41	_	235	N/mm²	0.18<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²	—	N/mm²	—<1.0
		組合せ					—<1.0
RB-1F-8	ベース プレート	曲げ	_	N/mm²		N/mm²	—<1.0
	アンカー	引張り	54.56	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	120.3	Ν	13190	Ν	0.01<1.0
	(床)	組合せ	_	_			0.01<1.0
	アンカー						
	ボルト	せん断	196.1	Ν	13190	Ν	0.02<1.0
	(壁)						

(10) 原子炉建屋地上1階(R5R6-RFRG)通路 止水堰

堰 No.	評価対象	象部位	発生	発生値		限界	検定値
			(何里又はタ	411年1月月1日日 1月1日日 1月1日 1月1日 1月1日日 1月1日 1月11日 1月111日 1月11日 1月11日 1月11日 1月11日 1月11日 1月11日 1月11日 1月11日 1月11111111			
	止水板	曲げ	13	N/mm ²	271	N/mm²	0.05<1.0
		曲げ	30	N/mm²	235	N/mm²	0.13<1.0
	梁材	せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	31		235	N/mm²	0.14<1.0
	柱材	曲げ	_	N/mm²	—	N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_	_			—<1.0
RB-2F-1	ベース	手をも		N/m^2		N/m^2	< 1.0
	プレート	Ш	—	N/ mm		IN/ MM	-<1.0
	アンカー	引張り	1230	Ν	9312	Ν	0.14<1.0
	ボルト	せん断	1383	Ν	13190	Ν	0.11<1.0
	(床)	組合せ	_	_	—		0.03<1.0
	アンカー						
	ボルト	せん断	1478	Ν	13190	Ν	0.12<1.0
	(壁)						

(11) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰1

堰 No.	評価対象部位		発生	発生値 (荷重又は発生広力度)		限界	検定値
			(11) 里人は9	11111月度)			
	止水板	曲げ	81	N/mm²	271	N/mm²	0.30<1.0
		曲げ	94	N/mm²	235	N/mm²	0.40<1.0
	梁材	せん断	6	N/mm²	135	N/mm²	0.05<1.0
		組合せ	95	_	235	N/mm²	0.41<1.0
	柱材	曲げ	—	N/mm²	—	N/mm²	—<1.0
		せん断	_	N/mm²	—	N/mm²	—<1.0
		組合せ	_	_	—		—<1.0
RB-2F-2	ベース	-H-)-B		NT / 2		N / 2	< 1.0
	プレート	囲け		N/mm		N/ mm	-< 1.0
	アンカー	引張り	503.7	N	2270	Ν	0.23<1.0
	ボルト	せん断	397.2	Ν	4010	Ν	0.10<1.0
	(床)	組合せ	_				0.06<1.0
	アンカー						
	ボルト	せん断	293.7	Ν	2900	Ν	0.11<1.0
	(壁)						

(12) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰2

堰 No.	評価対象部位		発生	発生値		限界	検定値
				全生心力度)			
	止水板	曲げ	132	N/mm²	271	N/mm²	0.49<1.0
		曲げ	71	N/mm²	235	N/mm²	0.31<1.0
	梁材	せん断	5	N/mm²	135	N/mm²	0.04<1.0
		組合せ	72	_	235	N/mm²	0.31<1.0
	柱材	曲げ	_	N/mm²	—	N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_				—<1.0
RB-2F-6	ベース	<u>تلەر بالم</u>		NT / 2		N / 2	< 1.0
	プレート	曲け	_	N/mm		N/ mm̃	-<1.0
	アンカー	引張り	162.4	Ν	2270	Ν	0.08<1.0
	ボルト	せん断	269.6	Ν	4010	Ν	0.07<1.0
	(床)	組合せ	_				0.01<1.0
	アンカー						
	ボルト	せん断	338.3	Ν	2900	Ν	0.12<1.0
	(壁)						

(13) 原子炉建屋地上2階(R6R7-RBRC)通路 止水堰

堰 No.	評価対象部位		発生	発生値		限界	検定値
			(何里义は多	全生心力度)			
	止水板	曲げ	230	N/mm²	271	N/mm²	0.85<1.0
		曲げ	62	N/mm²	235	N/mm²	0.27<1.0
	梁材	せん断	4	N/mm²	135	N/mm²	0.03<1.0
		組合せ	63	_	235	N/mm²	0.27<1.0
	柱材	曲げ	49	N/mm²	135	N/mm²	0.37<1.0
		せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	50		135		0.37<1.0
RB-2F-7	ベース	-H-)-B	0	NT / 2	071	N / 2	0 01 < 1 0
	プレート	曲げ	2	IN/ IIIII	271	N/ mm	0.01<1.0
	アンカー	引張り	183.2	N	10271	Ν	0.02<1.0
	ボルト	せん断	308.1	Ν	13867	Ν	0.03<1.0
	(床)	組合せ	_				0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν	—	Ν	-<1.0
	(壁)						

(14) 原子炉建屋地上2階(R6R7-RERF)通路 止水堰

堰 No.	評価対象	象部位	発生	発生値		限界	検定値
-			(何里又はタ	411年1月月1日日 (1997)			
	止水板	曲げ	113	N/mm ²	271	N/mm²	0.42<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	_	235	N/mm²	0.04<1.0
	柱材	曲げ	3	N/mm²	235	N/mm²	0.02<1.0
		せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	4	_	235		0.02<1.0
RB-2F-9	ベース	۲۲ (LL)		NT / 2		NI / 2	<1.0
	プレート	曲け		10/ 1010		N/ mm	-< 1.0
	アンカー	引張り	15.8	N	8302	Ν	0.01<1.0
	ボルト	せん断	38.26	N	9541	Ν	0.01<1.0
	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	87.22	Ν	9541	Ν	0.01<1.0
	(壁)						

(15) 原子炉建屋地上2階(R5R6-RCRD)通路 止水堰

堰 No.	評価対象	象部位	発生値		許容限界		検定値
			(何里又は9	11111月度)			
	止水板	曲げ	23	N/mm²	271	N/mm²	0.09<1.0
		曲げ	6	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	7		235	N/mm²	0.03<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	-<1.0
		組合せ	_	_		_	-<1.0
RB-3F-3	ベース	44. 1. 18		NT / 2		N / 2	< 1 0
	プレート	囲け	—	N/ mm̃		N/ mm̃	-<1.0
	アンカー	引張り	11.13	N	2270	Ν	0.01<1.0
	ボルト	せん断	26.67	Ν	4010	Ν	0.01<1.0
	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	155.6	Ν	2900	Ν	0.06<1.0
	(壁)						

(16) 原子炉建屋地上3階(R3R4-RARB)通路 止水堰

堰 No.	評価対象	象部位	発生値		許容限界		検定値
		11 . 33	(何里ズはタ	七土心刀皮)		()	
	止水板	曲げ	23	N/mm/	271	N/mmí	0.09<1.0
		曲げ	6	N/mm ²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	7	_	235	N/mm²	0.03<1.0
	柱材	曲げ	—	N/mm²	_	N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_	_			—<1.0
RB-3F-4	ベース	44. 1. 18		N7 / 2		N / 2	< 1 0
	プレート	曲げ	_	N/mm		N/ mm̃	—<1.0
	アンカー	引張り	11.23	Ν	2270	Ν	0.01<1.0
	ボルト	せん断	27.69	Ν	4010	Ν	0.01<1.0
	(床)	組合せ	_	_			0.01<1.0
	アンカー						
	ボルト	せん断	117.7	Ν	2900	Ν	0.05<1.0
	(壁)						

(17) 原子炉建屋地上3階(R4R5-RARB)通路 止水堰

(18)	原子炉建屋地上中3階	(R6R7-RCRD)	北側改良型領	制御棒駆動機構制得	卸盤室
	止水堰1				
		発生	値		

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	25	N/mm²	271	N/mm²	0.10<1.0
		曲げ	_	N/mm²		N/mm²	—<1.0
	梁材	せん断		N/mm²		N/mm²	—<1.0
		組合せ				N/mm²	—<1.0
	柱材	曲げ		N/mm²		N/mm²	—<1.0
PR-M3F-1		せん断		N/mm²		N/mm²	—<1.0
ICD MOL 1		組合せ	_	_		_	—<1.0
	ベース	曲いず		N/m^2		N/mm ²	-<10
	プレート	田()		11/ 11111		11/ 11111	< 1. 0
	アンカー	引張り	370.2	Ν	5955	Ν	0.07<1.0
	ボルト	せん断	211.0	Ν	9063	Ν	0.03<1.0
	(床)	組合せ					0.01<1.0

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	25	N/mm²	271	N/mm²	0.10<1.0
		曲げ	—	N/mm²		N/mm²	—<1.0
	梁材	せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_			N/mm²	—<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
PB-M3E-9		せん断	—	N/mm²		N/mm²	—<1.0
ND MJI Z		組合せ	—	_			—<1.0
	ベース	曲ば		N/m^2		N/mm^2	-<10
	プレート	四()				117 11111	< 1. 0
	アンカー	引張り	370.2	Ν	5955	Ν	0.07<1.0
	ボルト	せん断	211.0	Ν	9063	Ν	0.03<1.0
	(床)	組合せ	_	_			0.01<1.0

(19) 原子炉建屋地上中3階(R6R7-RCRD)北側改良型制御棒駆動機構制御盤室 止水堰2

堰 No.	評価対象部位		発生	発生値		限界	検定値
			(何里又はタ	(何里又は発生応力度)			
	止水板	曲げ	81	N/mm²	271	N/mm²	0.30<1.0
		曲げ	26	N/mm²	235	N/mm²	0.11<1.0
	梁材	せん断	5	N/mm²	135	N/mm²	0.04<1.0
		組合せ	28		235	N/mm²	0.12<1.0
		曲げ	_	N/mm²	_	N/mm²	—<1.0
	柱材	せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ	_	_	_		—<1.0
RB-4F-1	ベース	手をも		NI /		N/m^2	< 1.0
	プレート	曲け	—	IN/ IIIII		IN/ MM	-<1.0
	アンカー	引張り	341.8	Ν	4650	Ν	0.08<1.0
	ボルト	せん断	808.6	Ν	9240	Ν	0.09<1.0
	(床)	組合せ	_	_	_		0.02<1.0
	アンカー						
	ボルト	せん断	1381	Ν	7000	Ν	0.20<1.0
	(壁)						

(20) 原子炉建屋地上4階(R2R3-RARB) オペレーティングフロア 止水堰

堰 No.	評価対象部位		発生値		許容	限界	検定値
- <u>A</u> 110.			(荷重又は発生応力度)				
	止水板	曲げ	81	N/mm²	271	N/mm²	0.30<1.0
		曲げ	39	N/mm²	235	N/mm²	0.17<1.0
	梁材	せん断	6	N/mm²	135	N/mm²	0.05<1.0
		組合せ	41	_	235	N/mm²	0.18<1.0
		曲げ	—	N/mm²	_	N/mm²	—<1.0
	柱材	せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ	_	_	_		—<1.0
RB-4F-2	ベース	手を		N /2		N/m^2	< 1.0
	プレート	曲け	—	N/ IIIII		N/ mm	-<1.0
	アンカー	引張り	1559	Ν	4650	Ν	0.34<1.0
	ボルト	せん断	534.5	Ν	9240	Ν	0.06<1.0
	(床)	組合せ	_	_			0.12<1.0
	アンカー						
	ボルト	せん断	443.6	Ν	7000	Ν	0.07<1.0
	(壁)						

(21) 原子炉建屋地上4階(R2R3-RDRE) オペレーティングフロア 止水堰

堰 No.	評価対象	象部位	発生値		許容限界		検定値
- <u>A</u> 110.			(荷重又は発生応力度)				
	止水板	曲げ	81	N/mm²	271	N/mm²	0.30<1.0
		曲げ	54	N/mm²	235	N/mm²	0.23<1.0
	梁材	せん断	8	N/mm²	135	N/mm²	0.06<1.0
		組合せ	56	_	235	N/mm²	0.24<1.0
		曲げ	_	N/mm²	—	N/mm²	—<1.0
	柱材	せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_	_		_	—<1.0
RB-4F-3	ベース	手を	_	N/m^2		N/m^2	< 1.0
	プレート	囲げ		IN/ IIIII		N/ mm	-<1.0
	アンカー	引張り	280.3	Ν	4650	Ν	0.06<1.0
	ボルト	せん断	777.4	Ν	9240	Ν	0.09<1.0
	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	1048	Ν	7000	Ν	0.15<1.0
	(壁)						

(22) 原子炉建屋地上4階(R2R3-RFRG)オペレーティングフロア 止水堰

堰 No.	評価対象	象部位	発生値		許容限界		検定値
			(何里又はチ	411年1月月月月月月月月月月月月月月月月月月月月月月月月月日月月1日日日月月1日日日日日日			
	止水板	曲げ	126	N/mm²	271	N/mm²	0.47<1.0
		曲げ	14	N/mm²	235	N/mm²	0.06<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	15		235	N/mm²	0.07<1.0
		曲げ	17	N/mm²	235	N/mm²	0.08<1.0
	柱材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	17	_	235	_	0.08<1.0
RB-4F-5	ベース	手とも		N/m^2		N/m^2	< 1.0
	プレート	曲け	—	IN/ IIIII		IN/ IIIII	-<1.0
	アンカー	引張り	55.47	Ν	8302	Ν	0.01<1.0
	ボルト	せん断	110.4	Ν	9541	Ν	0.02<1.0
	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν		Ν	-<1.0
	(壁)						

(23) 原子炉建屋地上4階(R6R7-RERF)通路 止水堰1

堰 No.	評価対象部位		発生	発生値 (荷重又は発生広力度)		限界	検定値
		11 . 19	(何里久はう			a. ()	
	止水板	曲げ	110	N/mm	271	N/mmť	0.41<1.0
		曲げ	20	N/mm²	235	N/mm²	0.09<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	20		235	N/mm²	0.09<1.0
		曲げ	30	N/mm²	235	N/mm²	0.13<1.0
	柱材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	30	_	235	_	0.13<1.0
RB-4F-6	ベース	-H-)-B		NT / 2		N / 2	< 1.0
	プレート	曲げ	—	N/ IIIII		N/ mm	-< 1.0
	アンカー	引張り	89.23	Ν	8302	Ν	0.01<1.0
	ボルト	せん断	287.8	Ν	9541	Ν	0.03<1.0
	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	422.6	Ν	9541	Ν	0.05<1.0
	(壁)						

(24) 原子炉建屋地上4階(R6R7-RERF)通路 止水堰2

堰 No.	評価対象部位		発生	発生値		限界	検定値
			(荷重又は発生応力度)				
	止水板	曲げ	_	N/mm²		N/mm²	—<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	_	235	N/mm²	0.04<1.0
		曲げ	_	N/mm²	—	N/mm²	—<1.0
	柱材	せん断	_	N/mm²	—	N/mm²	—<1.0
		組合せ	_	_	—		—<1.0
RB-4F-7	ベース	手を	—	N/m^2		N/m^2	< 1.0
	プレート	曲け		N/ IIIII		IN/ IIIII	-<1.0
	アンカー	引張り	29.34	Ν	11720	Ν	0.01<1.0
	ボルト	せん断	83.28	Ν	13860	Ν	0.01<1.0
	(床)	組合せ	_	_	—	_	0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν		Ν	-<1.0
	(壁)						

(25) 原子炉建屋地上4階(R6R7-RERF)通路 止水堰3

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	257	N/mm²	271	N/mm²	0.95<1.0
		曲げ	48	N/mm²	235	N/mm²	0.21<1.0
	梁材	せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	49	_	235	N/mm²	0.21<1.0
		曲げ	89	N/mm²	235	N/mm²	0.38<1.0
	柱材	せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	90		235		0.39<1.0
TB-B1F-2	ベース	主任		N /mm²		N/mm ²	-<10
	プレート	囲け		11/ 1111		N/ IIIII	< 1. 0
	アンカー	引張り	237.1	Ν	8302	Ν	0.03<1.0
	ボルト	せん断	427.9	Ν	9541	Ν	0.05<1.0
	(床)	組合せ	_				0.01<1.0
	アンカー						
	ボルト	せん断	493.5	Ν	9541	Ν	0.06<1.0
	(壁)						

(26) タービン建屋地下1階(T7T8-TCTD)原子炉補機冷却系(A系)熱交換器・ポンプ室 止水堰

(27)	7号機コントロール建屋地下中2階	(C1C2-CACB)	常用電気品区域送	・排風機室
	止水堰1			

堰 No.	評価対象	象部位	発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	63	N/mm²	271	N/mm²	0.24<1.0
		曲げ	76	N/mm²	235	N/mm²	0.33<1.0
	梁材	せん断	4	N/mm²	135	N/mm²	0.03<1.0
		組合せ	77	_	235	N/mm²	0.33<1.0
		曲げ		N/mm²		N/mm²	—<1.0
	柱材	せん断		N/mm²		N/mm²	—<1.0
		組合せ					—<1.0
CB-MB2F-1	ベース	曲いず		N /mm²		N/mm ²	1 0
	プレート	田の				11/ 1111	< 1. 0
	アンカー	引張り	87.80	Ν	2270	Ν	0.04<1.0
	ボルト	せん断	207.5	Ν	4010	Ν	0.06<1.0
	(床)	組合せ	_	_	_	_	0.01<1.0
	アンカー						
	ボルト	せん断	334.3	Ν	2900	Ν	0.12<1.0
	(壁)						

堰 No	評価対象	評価対象部位		発生値		限界	檢定値
-12 110.	고미어다 7% [1/14] 14		(荷重又は発生応力度)				
CB-MB2F-2	止水板	曲げ	52	N/mm²	271	N/mm²	0.20<1.0
	梁材	曲げ	33	N/mm²	235	N/mm²	0.14<1.0
		せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	34		235	N/mm²	0.15<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_				—<1.0
	ベース	手にも		N/mm ²	_	N/mm²	<1.0
	プレート	Ξ					
	アンカー	引張り	97.87	Ν	2270	Ν	0.05<1.0
	ボルト	せん断	153.4	Ν	4010	Ν	0.04<1.0
	(床)	組合せ	_				0.01<1.0
	アンカー						
	ボルト	せん断	230.6	Ν	2900	Ν	0.08<1.0
	(壁)						

(28) 7号機コントロール建屋地下中2階(C1C2-CBCC)常用電気品区域送・排風機室 止水堰

堰 No.	評価対象部位		発生値		許容限界		検定値
	۲ (LL) ۱۹				0.71 N/ 2		0.00<1.0
CB-MB2F-3	止水板	囲り	24	N/ mm	271	N/ mm	0.09<1.0
	梁材	曲げ	60	N/mm²	235	N/mm²	0.26<1.0
		せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	61	_	235	N/mm²	0.26<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_				—<1.0
	ベース	曲げ	_	N/mm²	_	N/mm²	—<1.0
	プレート						
	アンカー	引張り	132.1	Ν	2270	Ν	0.06<1.0
	ボルト	せん断	221.5	Ν	4010	Ν	0.06<1.0
	(床)	組合せ	_	_	_	_	0.01<1.0
	アンカー						
	ボルト	せん断	490.6	Ν	2900	Ν	0.17<1.0
	(壁)						

(29) 7 号機コントロール建屋地下中2階(C2C3-CACB)計測制御電源盤区域(A)送風機室 止水堰

堰 No.	評価対象部位		発生値		許容限界		検定値
			(何里入は完生応力度)				
CB-MB2F-4	止水板	曲げ	63	N/mḿ	271	N/mḿ	0.24<1.0
	梁材	曲げ	86	N/mm²	235	N/mm²	0.37<1.0
		せん断	4	N/mm²	135	N/mm²	0.03<1.0
		組合せ	87		235	N/mm²	0.37<1.0
	柱材	曲げ	_	N/mm²		N/mm²	-<1.0
		せん断	_	N/mm²		N/mm²	-<1.0
		組合せ	_	—			-<1.0
	ベース	曲げ	_	N/mm²		N/mm²	<1.0
	プレート						
	アンカー	引張り	128.4	Ν	2270	Ν	0.06<1.0
	ボルト	せん断	165.2	Ν	4010	Ν	0.05<1.0
	(床)	組合せ	_	—			0.01<1.0
	アンカー						
	ボルト	せん断	358.0	Ν	2900	Ν	0.13<1.0
	(壁)						

(30) 7 号機コントロール建屋地下中2階(C2C3-CBCC)計測制御電源盤区域(A)送風機室 止水堰
(31)	7号機コントロール建屋地下1階	(C1C2-CACB)	計測制御電源盤区域(C)送・	排風機室
	止水堰2			

堰 No.	評価対象	東部位	発生	E値 Ě生応力度)	許容限界		検定値
	止水板	曲げ	68	N/mm²	271	N/mm²	0.25<1.0
		曲げ	48	N/mm²	235	N/mm²	0.21<1.0
	梁材	せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	49	_	235	N/mm²	0.21<1.0
		曲げ	_	N/mm²	_	N/mm²	—<1.0
	柱材	せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ	_		_		—<1.0
CB-B1F-1	ベース	手にも		N/m^2		N/m^2	-<1.0
	プレート	囲げ	_	N/ IIIII		N/ mm	-< 1.0
	アンカー	引張り	83.07	Ν	2270	Ν	0.04<1.0
	ボルト	せん断	127.8	Ν	4010	Ν	0.04<1.0
	(床)	組合せ					0.01<1.0
	アンカー						
	ボルト	せん断	264.8	Ν	2900	Ν	0.10<1.0
	(壁)						

資料 8-2.8-249

(32)	7 号機コントロー	・ル建屋地下1階	(C2C3-CBCC)	計測制御電源盤区均	或(C)送・	排風機室
	止水堰3				-	

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	248	N/mm²	271	N/mm²	0.92<1.0
		曲げ	16	N/mm²	235	N/mm²	0.07<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	16	_	235	N/mm²	0.07<1.0
		曲げ	9	N/mm²	235	N/mm²	0.04<1.0
	柱材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	10		235		0.05<1.0
CB-B1F-10	ベース	手にも		N/m^2		N/m^2	-<1.0
	プレート	囲け	—	N/ IIIII		IN/ IIIII	< 1. 0
	アンカー	引張り	16.77	Ν	19810	Ν	0.01<1.0
	ボルト	せん断	55.71	Ν	13867	Ν	0.01<1.0
	(床)	組合せ	_				0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν	—	Ν	—<1.0
	(壁)						

(33)	7号機コントロール建屋地丁	F1階(C1C2-CACB)	計測制御電源盤区域	载(C)送・排原	虱機室
	止水堰1				

堰 No.	評価対象	象部位	発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ		N/mm²		N/mm²	-<1.0
		曲げ	4	N/mm²	235	N/mm²	0.02<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	5	_	235	N/mm²	0.03<1.0
		曲げ	_	N/mm²	_	N/mm²	—<1.0
	柱材	せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ	_		_		—<1.0
CB-B1F-12	ベース	曲とギ		N /mm²		N/mm ²	-<10
	プレート	囲け	_	N/ mm		117 1111	-< 1.0
	アンカー	引張り	213.4	Ν	11720	Ν	0.02<1.0
	ボルト	せん断	240.1	Ν	13860	Ν	0.02<1.0
	(床)	組合せ		_			0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν	—	Ν	—<1.0
	(壁)						

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ		N/mm²		N/mm²	-<1.0
		曲げ	46	N/mm²	235	N/mm²	0.20<1.0
	梁材	せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	47	_	235	N/mm²	0.20<1.0
		曲げ	—	N/mm²		N/mm²	—<1.0
	柱材	せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ	_		_	_	—<1.0
CB-B1F-13	ベース	手を		N /2		N/m^2	1 0
	プレート	ΞU	_	N/ mm		11/ 1111	-<1.0
	アンカー	引張り	55.45	Ν	11720	Ν	0.01<1.0
	ボルト	せん断	240.7	Ν	13860	Ν	0.02<1.0
	(床)	組合せ	_	_	_		0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν		Ν	—<1.0
	(壁)						

(34) 7号機コントロール建屋地下1階(C1C2-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰2

(35)	7号機コントロール建屋地下1階	(C1C2-CBCC)	計測制御電源盤区域(C)送・	排風機室
	止水堰3			

堰 No.	評価対象	東部位	発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	52	N/mm²	271	N/mm²	0.20<1.0
		曲げ	87	N/mm²	235	N/mm²	0.37<1.0
	梁材	せん断	4	N/mm²	135	N/mm²	0.03<1.0
		組合せ	88	_	235	N/mm²	0.38<1.0
		曲げ	_	N/mm²	_	N/mm²	—<1.0
	柱材	せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ					—<1.0
CB-B1F-2	ベース	曲とギ		N/m^2		N/m^2	-<1.0
	プレート	囲げ	_	N/ IIIII		N/mm	-< 1.0
	アンカー	引張り	107.2	Ν	2270	Ν	0.05<1.0
	ボルト	せん断	146.6	Ν	4010	Ν	0.04<1.0
	(床)	組合せ	_	_			0.01<1.0
	アンカー						
	ボルト	せん断	594.7	Ν	2900	Ν	0.21<1.0
	(壁)						

堰 No.	評価対象部位		発生値		許容限界		検定値	
			(何里义は多	企生心力度)				
	止水板	曲げ	85	N/mm²	271	N/mm²	0.32<1.0	
		曲げ	5	N/mm²	235	N/mm²	0.03<1.0	
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0	
		組合せ	6		235	N/mm²	0.03<1.0	
		曲げ	6	N/mm²	235	N/mm²	0.03<1.0	
	柱材	せん断	1	N/mm²	135	N/mm²	0.01<1.0	
		組合せ	7	_	235		0.03<1.0	
CB-B1F-7	ベース	手にも		NI /		N/m^2	< 1.0	
	プレート	曲げ	—	N/mmĭ		N/mmĭ	-<1.0	
	アンカー	引張り	20.93	Ν	19810	Ν	0.01<1.0	
	ボルト	せん断	68.05	Ν	13867	Ν	0.01<1.0	
	(床)	組合せ	_	_	_		0.01<1.0	
	アンカー							
	ボルト	せん断	256.5	Ν	13867	Ν	0.02<1.0	
	(壁)							

(36) 7号機コントロール建屋地下1階(C1C2-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰1

(37)	7号機コントロール建屋地下1階	(C2C3-CBCC)	計測制御電源盤区域(C)送•	排風機室
	止水堰1			

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	186	N/mm²	271	N/mm²	0.69<1.0
		曲げ	10	N/mm²	235	N/mm²	0.05<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	11	_	235	N/mm²	0.05<1.0
	柱材	曲げ	8	N/mm²	235	N/mm²	0.04<1.0
		せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	9		235		0.04<1.0
CB-B1F-8	ベース	曲とギ		N/m^2		N/m^2	-<1.0
	プレート	囲げ	_	N/ IIIII		IN/ IIIII	< 1. 0
	アンカー	引張り	32.44	Ν	19810	Ν	0.01<1.0
	ボルト	せん断	73.98	Ν	13867	Ν	0.01<1.0
	(床)	組合せ					0.01<1.0
	アンカー						
	ボルト	せん断	196.8	Ν	13867	Ν	0.02<1.0
	(壁)						

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	211	N/mm²	271	N/mm²	0.78<1.0
		曲げ	14	N/mm²	235	N/mm²	0.06<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	15	_	235	N/mm²	0.07<1.0
柱 CB-B1F-9 べ- プレ アン		曲げ	9	N/mm²	235	N/mm²	0.04<1.0
	柱材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	10		235	_	0.05<1.0
	ベース	手を		N /m.2		N/m^2	1_0
	プレート	田()		11/ 11111		11/ 11111	-<1.0
	アンカー	引張り	19.46	Ν	19810	Ν	0.01<1.0
	ボルト	せん断	77.29	Ν	13867	Ν	0.01<1.0
	(床)	組合せ					0.01<1.0
	アンカー						
	ボルト	せん断	294. 7	Ν	13867	Ν	0.03<1.0
	(壁)						

(38) 7号機コントロール建屋地下1階(C2C3-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰2

堰No.	評価対象部位		発生値		許容限界		検定値
			(何重义は多	è生心刀度)			
	止水板	曲げ	84	N/mm²	271	N/mm²	0.31<1.0
		曲げ	10	N/mm²	235	N/mm²	0.05<1.0
	梁材	せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	11	_	235	N/mm²	0.05<1.0
		曲げ	15	N/mm²	135	N/mm²	0.12<1.0
	柱材	せん断	4	N/mm²	135	N/mm²	0.03<1.0
		組合せ	17	_	135		0.13<1.0
CB-1F-1	ベース	まぼ	1	N/m^2	971	N/m^2	0.01<1.0
	プレート	ΞŲ	1	N/ IIIII	271	IN/ IIIII	0.01<1.0
-	アンカー	引張り	15.30	Ν	9144	Ν	0.01<1.0
	ボルト	せん断	86.26	Ν	13867	Ν	0.01<1.0
	(床)	組合せ	_	_	_		0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν	—	Ν	-<1.0
	(壁)						

(39) 7号機コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰2

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	14	N/mm²	271	N/mm²	0.06<1.0
		曲げ	66	N/mm²	235	N/mm²	0.28<1.0
	梁材	せん断	4	N/mm²	135	N/mm²	0.03<1.0
		組合せ	67	_	235	N/mm²	0.29<1.0
CB-1F-3		曲げ	—	N/mm²	_	N/mm²	—<1.0
	柱材	せん断	—	N/mm²	_	N/mm²	—<1.0
		組合せ					—<1.0
	ベース	手でも		N /2		N/m ²	1 0
	プレート	四 ()		11/ 1111		IN/ IIIII	< 1. 0
	アンカー	引張り	1103	Ν	9312	Ν	0.12<1.0
	ボルト	せん断	1336	Ν	13190	Ν	0.11<1.0
	(床)	組合せ	_	_	_	_	0.03<1.0
	アンカー						
	ボルト	せん断	1577	Ν	13190	Ν	0.12<1.0
	(壁)						

(40) 7号機コントロール建屋地上1階脇トレンチ(C1-CACB) 止水堰

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	139	N/mm²	271	N/mm²	0.52<1.0
		曲げ	9	N/mm²	235	N/mm²	0.04<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	10		235	N/mm²	0.05<1.0
CB-1F-4		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	柱材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8		235		0.04<1.0
	ベース	曲げ		N/mm²	_	N/mm²	—<1.0
	プレート						
	アンカー	引張り	33.48	Ν	19810	Ν	0.01<1.0
	ボルト	せん断	84.59	Ν	13867	Ν	0.01<1.0
	(床)	組合せ					0.01<1.0
	アンカー						
	ボルト	せん断	197.8	Ν	13867	Ν	0.02<1.0
	(壁)						

(41) 7号機コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰1

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	_	N/mm²	_	N/mm²	—<1.0
		曲げ	18	N/mm²	235	N/mm²	0.08<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	18	_	235	N/mm²	0.08<1.0
CB-1F-5	柱材	曲げ		N/mm²		N/mm²	—<1.0
		せん断		N/mm²		N/mm²	—<1.0
		組合せ					—<1.0
	ベース	曲げ	_	N/m^2		N/mn^2	-<10
	プレート	囲り				197 11111	< 1. 0
	アンカー	引張り	124.8	Ν	11720	Ν	0.01<1.0
	ボルト	せん断	250.8	Ν	13860	Ν	0.02<1.0
	(床)	組合せ	_	—			0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν	—	Ν	—<1.0
	(壁)						

(42) 7号機コントロール建屋地上1階(C1C2-CACB)計測制御電源盤区域(B)送・排風機室 止水堰

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	—	N/mm²		N/mm²	-<1.0
		曲げ	19	N/mm²	235	N/mm²	0.08<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	19	_	235	N/mm²	0.08<1.0
でB-1F-6 ~ ア オ ア	柱材	曲げ	_	N/mm²	_	N/mm²	—<1.0
		せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ					—<1.0
	ベース	曲げ	_	N/m^2		N/mn^2	-<10
	プレート	囲り				11/ 1111	< 1. 0
	アンカー	引張り	125.4	Ν	11720	Ν	0.01<1.0
	ボルト	せん断	430.1	Ν	13860	Ν	0.04<1.0
	(床)	組合せ					0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν		Ν	—<1.0
	(壁)						

(43) 7号機コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰3 2.9 床ドレンライン浸水防止治具を構成する各部材の評価及び

機能維持の確認方法について

目 次

2.9.1	フロート式治具を構成する各部材の評価及び機能保持の確認方法について	. 1
2.9.2	スプリング式治具を構成する各部材の評価及び機能保持の確認方法について	. 8
2.9.3	閉止キャップを構成する各部材の評価及び機能保持の確認方法について	16
2.9.4	閉止栓を構成する各部材の評価及び機能保持の確認方法について	24
2.9.5	配置概要	31

- 2.9.1 フロート式治具を構成する各部材の評価及び機能保持の確認方法について
 - (1) 概要

床ドレンライン浸水防止治具のうち、フロート式治具については、V-2-10-2-4-1 「床ドレンライン浸水防止治具の耐震性についての計算書」、V-3-別添 3-1-6「床ド レンライン浸水防止治具の強度計算書」及びV-3-別添 3-2-5「床ドレンライン浸水防 止治具の強度計算書(溢水)」において、構成する各部材の弱部に対しての評価を示し ている。本資料では、フランジ取付型を代表とし、フロート式治具を構成する部材全 てを評価し、フロート式治具としての性能目標を満足することを確認する。

(2) 評価方針

フロート式治具の性能目標としては、地震後の浸水の作用を想定し、部材がおおむ ね弾性状態にとどまることとし、止水機能を喪失しない設計としている。

以上に示した性能目標を満足していることを確認する方法として,加振試験,水圧 試験及び漏えい試験を実施し,各部材の構造強度健全性及び弁座部の止水性を確認す ることにより止水機能が保持されていることを確認する方針とする。

具体的には,地震後の浸水の作用を想定した止水機能保持確認として,次に示す試験にて確認する方針とする。

地震を想定した加振試験を実施し,各部材の構造強度健全性を確認する。また,加 振試験後に水圧試験を実施し,各部材の構造強度健全性及び弁座部の止水性を確認す る。

表 2.9.1-1 に止水機能保持確認方針として,フロート式治具の各部材の限界状態と 評価内容を示す。また,図 2.9.1-1 にフロート式治具の構造を示す。

部材	限界状態	評価内容
弁固定ボルト	変形,損傷,緩み	・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。
弁本体	変形,損傷	 ・加振試験を実施し、構造強度健全性を確認することにより、止水機能保持を確認する。 ・加振試験後に水圧試験を実施し、構造強度健全性を確認することにより、止水機能保持を確認する。 ・弱部の評価対象部材
フロート	変形, 損傷 漏えい	 ・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。 ・加振試験後に水圧試験を実施し、構造強度健全 性を確認することにより、止水機能保持を確認 する。
弁座	変形,損傷 漏えい	 ・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。 ・加振試験後に水圧試験を実施し、構造強度健全 性を確認することにより、止水機能保持を確認 する。
弁座押え	変形,損傷	・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。
弁座押え 取付ボルト	変形,損傷,緩み	・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。
	変形,損傷	 ・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。 ・弱部の評価対象部材
フロートガイド	変形,損傷,緩み	 ・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。(本体 への取付ねじ部) ・弱部の評価対象部材
フロート保持板	変形,損傷	・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。
フロート保持板 取付ナット	変形,損傷,緩み	・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。

表 2.9.1-1 フランジ取付型の止水機能保持確認方針

図 2.9.1-1 フランジ取付型の構造図

(3) 評価方法

以下に示す条件にて試験を実施し、各試験毎に示す判定基準により評価する。

a. 基準地震動加振試験

基準地震動Ssによるフロート式治具の設置箇所の設計震度を上回るものとして、「原子力発電所耐震設計技術指針(JEAG 4601-1991 追補版)((社)日本電気協会)」 に示される一般弁の機能確認済加速度と同じ6G(58.8m/s²)で加振する。

なお、加振試験を実施する前に、水平、鉛直方向それぞれについて、振動数 5~50Hz の範囲で掃引試験を行い、振動数 5~50Hz の範囲に固有振動数がなく、フロート式治具 が剛構造として加振試験を実施できることを確認する。

表2.9.1-2に加振試験の条件、方法及び判定基準を示す。

表 2.9.1-3 に加振試験装置の主要仕様,図 2.9.1-2 に加振試験装置の外観を示す。 加振試験時の固定箇所は,図 2.9.1-1 に示す。

試験条件	試験方法	判定基準
 ・振動波形:正弦波 	加振した後に、外観目視に	機能に影響を及ぼす変
・最大加速度:水平 6G,鉛直 6G	より各部材を確認する。	形,損傷,緩みがないこ
・振動数:20Hz*	水平方向と鉛直方向毎に,	と。
・加振時間:5分	それぞれで加振する。	

表 2.9.1-2 加振試験の条件,方法及び判定基準

注記*:掃引試験の結果、5~50Hz に共振する振動数がないことから、剛構造で想定される 最低の振動数 20Hz とした。

項目	諸元
型式	916-AW/SLS
最大加振力	16 kN
最大変位	1000 mm_{p^-p}
最大加速度 (無負荷時)	640 m/s^2
可動部質量	25 kg
振動数範囲	(DC)~2000 Hz
加振台(ヘッド)寸法	φ230 mm
最大搭載質量	200 kg

表 2.9.1-3 加振試験装置主要仕様

図 2.9.1-2 加振試験装置外観図

b. 水圧試験

フロート式治具の設置箇所の津波による溢水又は内部溢水の浸水によって生じる浸水深が大きい方の静水圧を考慮した圧力*を上回る圧力として,0.35Mpa以上の水圧とする。

水圧の保持時間は、「発電用原子力設備規格 設計・建設規格 (2005 年版 (2007 年追 補版含む)) (JSME S NC1-2005/2007) ((社) 日本機械学会)」に示される耐 圧試験に準じて、10 分間以上とする。

また,水圧試験は,加振試験実施後に行うことを条件とする。 表 2.9.1-4 に水圧試験の条件,方法及び判定基準を示す。

表 2.9.1-4 水圧試験の条件,方法及び判定基準

試験条件	試験方法	判定基準
・試験圧力:0.35MPa 以上の水圧	試験条件に示した圧力及	・機能に影響を及ぼす変形,
・水圧保持時間:10分間以上	び保持時間で加圧する。	損傷がないこと。
・加振試験後に実施	加圧後に外観目視により	・有意な漏えいのないこと
	各部材を確認する。	

注記*:フロート式治具の設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値とし 以下のとおり。

静水圧:0.18MPa

c. 水圧+余震荷重での試験

表 2.9.1-5 水圧試験	〒十余震荷重での条件.	方法及び判定基準
----------------	-------------	----------

試験条件	試験方法	判定基準
・試験圧力:0.35MPa	試験条件に示した圧力及	・機能に影響を及ぼす変形,
・水圧保持時間:5分間	び加速度を与える。加圧	損傷がないこと。
 振動波形:正弦波 	及び加振後に外観目視に	・有意な漏えいのないこと
・最大加速度 : 水平 3G, 鉛直 3G	より各部材を確認する。	
(余震は本震6G の半分を想定		
し3Gで加振)		
・振動数:20Hz		

注記*:フロート式治具の設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値とし 以下のとおり。

静水圧: 0.18MPa

(4) 評価結果

以下に、加振試験及び水圧試験の結果と止水機能保持の確認を示す。

a. 加振試験

表 2.9.1-6 にフロート式治具の加振試験結果を示す。

なお,掃引試験により,振動数 5~50Hz にフロート式治具の固有振動数がないことを 確認した。

部位	加振試験結果
弁固定ボルト	変形,損傷及び緩みなし
弁本体	変形及び損傷なし
フロート	変形及び損傷なし
弁座	変形及び損傷なし
弁座押え	変形及び損傷なし
弁座押え取付ボルト	変形,損傷及び緩みなし
フロートガイド	変形,損傷及び緩みなし
フロート保持板	変形及び損傷なし
フロート保持板取付ナット	変形,損傷及び緩みなし

表 2.9.1-6 フランジ取付型の加振試験結果

b. 水圧試験

表 2.9.1-7 にフロート式治具の水圧試験結果及び止水機能保持確認を示す。

表 2.9.1-7 フランジ取付型の水圧試験結果及び止水機能保持確認

部位	水圧試験結果	止水機能保持確認
弁本体	変形及び損傷なし	
フロート	変形及び損傷なし	漏えいなし
弁座	変形及び損傷なし	

c. 水圧+余震荷重での試験

表2.9.1-8にフロート式治具の水圧+余震荷重での試験結果及び止水機能保持確認 を示す

表 2.9.1-8 フランジ取付型の水圧+余震荷重での試験結果及び止水機能保持確認

部位	水圧試験結果	止水機能保持確認
弁本体	変形及び損傷なし	
フロート	変形及び損傷なし	漏えいなし
弁座	変形及び損傷なし	

- 2.9.2 スプリング式治具を構成する各部材の評価及び機能保持の確認方法について
 - (1) 概要

床ドレンライン浸水防止治具のうち、スプリング式治具については、V-2-10-2-4-1 「床ドレンライン浸水防止治具の耐震性についての計算書」、V-3-別添 3-1-6「床ド レンライン浸水防止治具の強度計算書」及びV-3-別添 3-2-5「床ドレンライン浸水防 止治具の強度計算書(溢水)」において、構成する各部材の弱部に対しての評価を示し ている。本資料では、フランジ取付型を代表とし、スプリング式治具を構成する部材 全てを評価し、スプリング式治具としての性能目標を満足することを確認する。

(2) 評価方針

スプリング式治具の性能目標としては、地震後の浸水の作用を想定し、部材がおお むね弾性状態にとどまることとし、止水機能を喪失しない設計としている。

以上に示した性能目標を満足していることを確認する方法として,加振試験,水圧 試験及び漏えい試験を実施し,各部材の構造強度健全性及び弁座部の止水性を確認す ることにより止水機能が保持されていることを確認する方針とする。

具体的には、地震後の浸水の作用を想定した止水機能保持確認として、次に示す試 験にて確認する方針とする。

地震を想定した加振試験を実施し,各部材の構造強度健全性を確認する。また,加 振試験後に水圧試験を実施し,各部材の構造強度健全性及び弁座部の止水性を確認す る。

表 2.9.2-1 に止水機能保持確認方針として,スプリング式治具の各部材の限界状態 と評価内容を示す。また,図 2.9.2-1 にスプリング式治具の構造を示す。

立にたナ	限界份能	亚 (
ניינום	政介认愿	
+		・加振武鞅を夫施し、博道强度健生性を確認すること
、 、 、 、 、 、 損傷 フランジ 、 、 損傷	変形,損傷	により、止水機能保持を確認する。
	・加振試験後に水圧試験を実施し、構造強度健全性を	
		確認することにより、止水機能保持を確認する。
		・加振試験を実施し、構造強度健全性を確認すること
	変形. 損傷	により、止水機能保持を確認する。
弁	漏えい	・加振試験後に水圧試験を実施し、構造強度健全性を
		確認することにより、止水機能保持を確認する。
		・弱部の評価対象部材
		・加振試験を実施し、構造強度健全性を確認すること
スポンジ	変形,損傷	により、止水機能保持を確認する。
パッキン	漏えい	・加振試験後に水圧試験を実施し、構造強度健全性を
		確認することにより、止水機能保持を確認する。
. • •		・加振試験を実施し、構造強度健全性を確認すること
ハイブ	変形,損傷	により、止水機能保持を確認する。
スペーサー		・弱部の評価対象部材
		・加振試験を実施し、構造強度健全性を確認すること
低极−軸受け	<u> </u>	により、止水機能保持を確認する。
六角穴付き		・加振試験を実施し、構造強度健全性を確認すること
ボルト	変形,損傷,緩み	により、止水機能保持を確認する。
		・加振試験を実施し、構造強度健全性を確認すること
弁軸	変形,損傷	により、止水機能保持を確認する。
		・弱部の評価対象部材
		・加振試験を実施し、構造強度健全性を確認すること
スプリング	<u> </u>	により、止水機能保持を確認する。
° *°		・加振試験を実施し、構造強度健全性を確認すること
パイプー 軸受け 変形,損傷	により、止水機能保持を確認する。	
		・弱部の評価対象部材
ばね		・加振試験を実施し、構造強度健全性を確認すること
ストッパー	変形,損傷	により、止水機能保持を確認する。
		・加振試験を実施し、構造強度健全性を確認すること
弁固定ホルト	変形,損傷,緩み	により、止水機能保持を確認する。

表 2.9.2-1 フランジ取付型の止水機能保持確認方針

図 2.9.2-1 フランジ取付型構造図

(3) 評価方法

以下に示す条件にて試験を実施し、各試験毎に示す判定基準により評価する。

a. 基準地震動加振試験

基準地震動Ssによるスプリング式治具の設置箇所の設計震度を上回るものとして, 「原子力発電所耐震設計技術指針(JEAG 4601-1991 追補版)((社)日本電気 協会)」に示される一般弁の機能確認済加速度と同じ6G(58.8m/s²)で加振する。

なお、加振試験を実施する前に、水平、鉛直方向それぞれについて、振動数 5~50Hz の範囲で掃引試験を行い、振動数 5~50Hz の範囲に固有振動数がなく、スプリング式治 具が剛構造として加振試験を実施できることを確認する。

表 2.9.2-2 に加振試験の条件、方法及び判定基準を示す。

表 2.9.2-3 に加振試験装置の主要仕様,図 2.9.2-2 に加振試験装置の外観を示す。 加振試験時の固定箇所は,図 2.9.2-1 に示す。

試験条件	試験方法	判定基準
 振動波形:正弦波 	加振した後に、外観目視	機能に影響を及ぼす変
・最大加速度:水平6G,鉛直6G	により各部材を確認す	形,損傷,緩みがない
・振動数:20Hz*	る。	こと。
・弁本体のフランジ部を剛構造の	水平方向と鉛直方向毎	
治具を介して、加振試験装置に	に, それぞれで加振する。	
固定する。		
 加振時間:5分 		

表 2.9.2-2 加振試験の条件,方法及び判定基準

注記*:掃引試験の結果、5~50Hz に共振する振動数がないことから、剛構造で想定される 最低の振動数 20Hz とした。

項目	諸元
型式	916-AW/SLS
最大加振力	16 kN
最大変位	1000 mm_{p-p}
最大加速度 (無負荷時)	640 m/s^2
可動部質量	25 kg
振動数範囲	(DC)~2000 Hz
加振台(ヘッド)寸法	ϕ 230 mm
最大搭載質量	200 kg

表 2.9.2-3 加振試験装置主要仕様

2060 1075.5 545 0- -0 702-1 00 電磁加振機 000 (887-7871) 920 (加振方向) ih. 49-HIGB217 ((>T=>) 、ッド 600 (RBP-7412) 100 (8676) 31-1-1-1-1-1 70087 2620 テーブル ZTORY 電磁加振機 #500 (1)水平加振時平面図 #230 (加振方向) テーブル Z. 80 00 T20 (1-78884) : : : -İ 2 (3)鉛直加振時側面図 (2)水平加振時側面図

図 2.9.2-2 加振試験装置外観図

b. 水圧試験

スプリング式治具の設置箇所の津波による溢水又は内部溢水の浸水によって生じる 浸水深が大きい方の静水圧を考慮した圧力*を上回る圧力として,0.35MPa以上の水圧と する。

水圧の保持時間は、「発電用原子力設備規格 設計・建設規格 (2005 年版 (2007 年追 補版含む)) (JSME S NC1-2005/2007) ((社) 日本機械学会)」に示される耐 圧試験に準じて、10 分間以上とする。

また,水圧試験は,加振試験実施後に行うことを条件とする。 表 2.9.2-4 に水圧試験の条件,方法及び判定基準を示す。

表 2.9.2-4 水圧試験の条件,方法及び判定基準

試験条件	試験方法	判定基準
・試験圧力:0.35MPa 以上の水圧	試験条件に示した圧	・機能に影響を及ぼす変形,
・水圧保持時間:10分間以上	力及び保持時間で加	損傷がないこと。
・加振試験後に実施	圧する。加圧後に外観	・有意な漏えいのないこと
	目視により各部材を	
	確認する。	

注記*:スプリング式治具の設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値と し以下のとおり。

静水圧: 0.18MPa

c. 水圧+余震荷重での試験

試験条件	試験方法	判定基準
・試験圧力:0.35MPa	試験条件に示した圧	・機能に影響を及ぼす変形,
 水圧保持時間:5分間 	力及び加速度を与え	損傷がないこと。
 ・振動波形:正弦波 	る。加圧及び加振後に	・有意な漏えいのないこと
・最大加速度:水平 36,鉛直 3G	外観目視により各部	
(余震は本震6Gの半分を想定し	材を確認する。	
3 G で加振)		
・振動数:20Hz		

表 2.9.2-5 水圧+余震荷重での試験の条件,方法及び判定基準

(4) 評価結果

以下に、加振試験及び水圧試験の結果と止水機能保持の確認を示す。

a. 加振試験

表 2.9.2-6 にスプリング式治具の加振試験結果を示す。

なお, 掃引試験により, 振動数 5~50Hz にスプリング式治具の固有振動数がないこと を確認した。

部位	加振試験結果
天板-フランジ	変形及び損傷なし
弁	変形及び損傷なし
スポンジパッキン	変形及び損傷なし
パイプスペーサー	変形及び損傷なし
底板-軸受け	変形及び損傷なし
六角穴付きボルト	変形,損傷及び緩みなし
弁軸	変形及び損傷なし
スプリング	変形及び損傷なし
パイプー軸受け	変形及び損傷なし
ばねストッパー	変形及び損傷なし
弁固定ボルト	変形,損傷及び緩みなし

表 2.9.2-6 スプリング式治具の加振試験結果

b. 水圧試験

表 2.9.2-7 にスプリング式治具の水圧試験結果及び止水機能保持確認を示す。

表 2.9.2-7 スプリング式治具の水圧試験結果及び止水機能保持確認

部位	水圧試験結果	止水機能保持確認
天板-フランジ	変形及び損傷なし	
弁	変形及び損傷なし	漏えいなし
スポンジパッキン	変形及び損傷なし	

c. 水圧+余震荷重での試験

表2.9.2-8にスプリング式治具の水圧+余震荷重での試験結果及び止水機能保持 確認を示す。

部位	水圧試験結果	止水機能保持確認
天板-フランジ	変形及び損傷なし	
弁	変形及び損傷なし	漏えいなし
スポンジパッキン	変形及び損傷なし	

表 2.9.2-8 スプリング式治具の水圧+余震荷重での試験結果及び止水機能保持確認

- 2.9.3 閉止キャップを構成する各部材の評価及び機能保持の確認方法について
 - (1) 概要

床ドレンライン浸水防止治具のうち,閉止キャップについては, V-2-10-2-4-1「床 ドレンライン浸水防止治具の耐震性についての計算書」及び添付書類V-3-別添 3-1-6 「床ドレンライン浸水防止治具の強度計算書」において,構成する各部材の弱部に対 しての評価を示している。本資料では,内ねじ型及び外ねじ型の閉止キャップを構成 する部材全てを評価し,閉止キャップとしての性能目標を満足することを確認する。

(2) 評価方針

閉止キャップの性能目標としては、地震後の浸水の作用を想定し、部材がおおむね弾 性状態にとどまることとし、止水機能を喪失しない設計としている。

以上に示した性能目標を満足していることを確認する方法として,加振試験,水圧 試験及び漏えい試験を実施し,各部材の構造強度健全性及びシール部の止水性を確認 することにより止水機能が保持されていることを確認する方針とする。

具体的には,地震後の浸水の作用を想定した止水機能保持確認として,次に示す試験にて確認する方針とする。

地震を想定した加振試験を実施し,各部材の構造強度健全性を確認する。また,加 振試験後に水圧試験を実施し,各部材の構造強度健全性及びシール部の止水性を確認 する。

表 2.9.3-1 及び表 2.9.3-2 に止水機能保持確認方針として, 閉止キャップの各部 材の限界状態と評価内容を示す。また, 図 2.9.3-1 及び図 2.9.3-2 に各閉止キャッ プの構造を示す。

部材	限界状態	評価内容	
本体	変形,損傷	・加振試験を実施し、構造強度健全性を確認す	
		ることにより、止水機能保持を確認する。	
		・加振試験後に水圧試験を実施し、構造強度健	
		全性を確認することにより、止水機能保持を	
		確認する。	
	変形,損傷	・加振試験を実施し、構造強度健全性を確認す	
		ることにより、止水機能保持を確認する。(配	
		管への取付ねじ部)	
0リング	変形,損傷	・加振試験を実施し、構造強度健全性を確認す	
	漏えい	ることにより、止水機能保持を確認する。	

表 2.9.3-1 閉止キャップ(内ねじ型)の止水機能保持確認方針

図 2.9.3-1 閉止キャップ (内ねじ型)

部材	限界状態	評価内容	
本体	変形,損傷	・加振試験を実施し、構造強度健全性を確認する	
		ことにより、止水機能保持を確認する。	
		・加振試験後に水圧試験を実施し、構造強度健全	
		性を確認することにより、止水機能保持を確認	
		する。	
	変形,損傷	・加振試験を実施し、構造強度健全性を確認する	
		ことにより、止水機能保持を確認する。(配管へ	
		の取付ねじ部)	
パッキン	変形,損傷	・加振試験を実施し、構造強度健全性を確認する	
	漏えい	ことにより、止水機能保持を確認する。	

表 2.9.3-2 閉止キャップ(外ねじ型)止水機能保持確認方針

図 2.9.3-2 閉止キャップ(外ねじ型)構造図

(3) 評価方法

以下に示す条件にて試験を実施し、各試験毎に示す判定基準により評価する。

a. 基準地震動加振試験

基準地震動Ssによる閉止キャップの設置箇所の設計震度を上回るものとして、「原子 力発電所耐震設計技術指針(JEAG 4601-1991 追補版)((社)日本電気協会)」 に示される一般弁の機能確認済加速度と同じ6G(58.8m/s²)で加振する。

なお、加振試験を実施する前に、水平、鉛直方向それぞれについて、振動数 5~50Hz の範囲で掃引試験を行い、振動数 5~50Hz の範囲に固有振動数がなく、閉止キャップが 剛構造として加振試験を実施できることを確認する。

表2.9.3-3に加振試験の条件、方法及び判定基準を示す。

表 2.9.3-4 に加振試験装置の主要仕様,図 2.9.3-3 に加振試験装置の外観を示す。

試験条件	試験方法	判定基準
 振動波形:正弦波 	加振した後に,外観目視に	機能に影響を及ぼす変
・最大加速度:水平 6G,鉛直 6G	より各部材を確認する。	形,損傷,緩みがない
・振動数:20Hz*	水平方向と鉛直方向毎に,	こと。
・人力によって可能な締付トル	それぞれで加振する。	
クで加振装置に設置する。		
 加振時間:5分 		

表 2.9.3-3 加振試験の条件, 方法及び判定基準

注記*:掃引試験の結果、5~50Hz に共振する振動数がないことから、剛構造で想定される 最低の振動数 20Hz とした。

項目	諸元
型式	916-AW/SLS
最大加振力	16 kN
最大変位	1000 mm_{p-p}
最大加速度(無負荷時)	640 m/s^2
可動部質量	25 kg
振動数範囲	(DC)~2000 Hz
加振台(ヘッド)寸法	φ230 mm
最大搭載質量	200 kg

図 2.9.3-3 加振試験装置外観図

b. 水圧試験

閉止キャップの設置箇所の津波による溢水又は内部溢水の浸水によって生じる浸水深 が大きい方の静水圧を考慮した圧力*を上回る圧力として、0.35MPa以上の水圧とする。 水圧の保持時間は、「発電用原子力設備規格 設計・建設規格(2005 年版(2007 年追 補版含む))(JSME S NC1-2005/2007)((社)日本機械学会)」に示される耐 圧試験に準じて、10分間以上とする。

また,水圧試験は,加振試験実施後に行うことを条件とする。 表 2.9.3-5 に水圧試験の条件,方法及び判定基準を示す。

表 2.9.3-5 水圧試験の条件, 方法及び判定基準

試験条件	試験方法	判定基準
・試験圧力:0.35MPa以上の水圧	試験条件に示した圧力及び	・機能に影響を及ぼす
・水圧保持時間:10分間以上	保持時間で加圧する。加圧	変形,損傷がないこと。
・加振試験後に実施	後に外観目視により各部材	・有意な漏えいのないこ
	を確認する。	と。

注記*:閉止キャップの設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値とし以下のとおり。

静水庄: 0.18MPa

c. 水圧+余震荷重での試験

表 2.9.3-6 水圧+余震荷重での試験の条件,方法及び判定基準

試験条件	試験方法	判定基準
・試験圧力:0.35MPa	試験条件に示した圧力及び	・機能に影響を及ぼす
・水圧保持時間:5分間	加速度を与える。加圧及び	変形,損傷がないこと。
 振動波形:正弦波 	加振後に外観目視により各	・有意な漏えいのないこ
・最大加速度:水平 3G,鉛直 3G	部材を確認する。	と。
(余震は本震6G の半分を想定		
し3Gで加振)		
・振動数:20Hz		

注記*:閉止キャップの設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値とし以 下のとおり。

静水圧: 0.18MPa
(4) 評価結果

以下に、加圧試験及び水圧試験の結果と止水機能保持の確認を示す。

a. 加振試験

表 2.9.3-7 に閉止キャップ(内ねじ型)の加振試験結果,表 2.9.3-8 に閉止キャップ(外ねじ型)の加振試験結果を示す。

なお, 掃引試験により, 振動数 5~50Hz に閉止キャップの固有振動数がないことを確認した。

部位	加振試験結果	
/	変形,損傷及び	
41件	緩みなし	
0リング	変形及び損傷なし	

表 2.9.3-7 閉止キャップ(内ねじ型)の加振試験結果

表 2.9.3-8 閉止キャップ(外ねじ型)の加振試験結果

部位	加振試験結果	
**	変形,損傷及び	
<u>4</u> ×14×	緩みなし	
0リング	変形及び損傷なし	

b. 水圧試験

表 2.9.3-9 に閉止キャップ(内ねじ型)の水圧試験結果及び止水機能保持確認,表 2.9.3-10に閉止キャップ(外ねじ型)の水圧試験結果及び止水機能保持確認を示す。

表 2.9.3-9 閉止キャップ(内ねじ型)の水圧試験結果及び止水機能保持確認

部位	水圧試験結果	止水機能保持確認	
本体変形及び損傷なし0リング変形及び損傷なし		漏さいたし	
		御えいよし	

表 2.9.3-10 閉止キャップ(外ねじ型)の水圧試験結果及び止水機能保持確認

-14	10.01 0 10		
	部位	水圧試験結果	止水機能保持確認
	本体	変形及び損傷なし	
パ	パッキン 変形及び損傷なし		「痛えいなし」

c. 水圧+余震荷重での試験

表 2.9.3-11 に閉止キャップ(内ねじ型)の水圧+余震荷重での試験結果及び止水機 能保持確認,表 2.9.3-12 に閉止キャップ(外ねじ型)の水圧+余震荷重での試験結果 及び止水機能保持確認を示す。

表 2.9.3-11 閉止キャップ(内ねじ型)の水圧+余震荷重での試験結果及び止水機能保持確認

部位	水圧試験結果	止水機能保持確認
本体	変形及び損傷なし	(足 こ)、(へ)
0リング	変形及び損傷なし	御えいよし

表 2.9.3-12 閉止キャップ(外ねじ型)の水圧+余震荷重での試験結果及び止水機能保持確認

部位 水圧試験結果		止水機能保持確認	
本体変形及び損傷なしパッキン変形及び損傷なし		(月 きょうかい)	
		補えいなし	

- 2.9.4 閉止栓を構成する各部材の評価及び機能保持の確認方法について
 - (1) 概要

床ドレンライン浸水防止治具のうち,閉止栓については,添付資料V-2-10-2-4-1 「床ドレンライン浸水防止治具の耐震性についての計算書」及び添付書類V-3-別添 3-1-6「床ドレンライン浸水防止治具の強度計算書」において,構成する各部材の弱部 に対しての評価を示している。本資料では,閉止栓を構成する部材全てを評価し,浸 水防止治具としての性能目標を満足することを確認する。

(2) 評価方針

閉止栓の性能目標としては,地震後の浸水の作用を想定し,部材がおおむね弾性状 態にとどまることとし,止水機能を喪失しない設計としている。

以上に示した性能目標を満足していることを確認する方法として,加振試験,水圧 試験及び漏えい試験を実施し,各部材の構造強度健全性及びシール部の止水性を確認 することにより止水機能が保持されていることを確認する方針とする。

具体的には,地震後の浸水の作用を想定した止水機能保持確認として,次に示す試験にて確認する方針とする。

地震を想定した加振試験を実施し,各部材の構造強度健全性を確認する。また,加 振試験後に水圧試験を実施し,各部材の構造強度健全性及びシール部の止水性を確認 する。

表 2.9.4-1 に止水機能保持確認方針として,閉止栓の種類毎に,各部材の限界状態 と評価内容を示す。また,図 2.9.4-1 に閉止栓の構造を示す。

部材	限界状態	評価内容	
		・加振試験を実施し、構造強度健全性を確認するこ	
ナット 変形,損傷,緩み		とにより、止水機能保持を確認する。	
		・加振試験を実施し、構造強度健全性を確認するこ	
	本形 担伤	とにより、止水機能保持を確認する。	
	<u> </u>	・加振試験後に水圧試験を実施し、構造強度健全性	
		を確認することにより、止水機能保持を確認する。	
本体シャフト		・加振試験を実施し、構造強度健全性を確認するこ	
		とにより、止水機能保持を確認する。	
	変形,損傷	・加振試験後に水圧試験を実施し、構造強度健全性	
		を確認することにより、止水機能保持を確認する。	
		(ナットの取付ねじ部)	
		・加振試験を実施し、構造強度健全性を確認するこ	
	変形,損傷	とにより、止水機能保持を確認する。	
コムリング	漏えい	・加振試験後に水圧試験を実施し、構造強度健全性	
		を確認することにより、止水機能保持を確認する。	
		・加振試験を実施し、構造強度健全性を確認するこ	
のリンガ	変形,損傷	とにより、止水機能保持を確認する。	
0 9 2 9	漏えい	・加振試験後に水圧試験を実施し、構造強度健全性	
		を確認することにより、止水機能保持を確認する。	
中間リング	亦形 担伤	・加振試験を実施し、構造強度健全性を確認するこ	
中间リンク	変形,損傷	とにより、止水機能保持を確認する。	
迎立口コンノガ	亦	・加振試験を実施し、構造強度健全性を確認するこ	
り而日り ノ ノ ク	炎形, 損傷	とにより、止水機能保持を確認する。	
カラーパイプ	亦	・加振試験を実施し、構造強度健全性を確認するこ	
	<u> </u>	とにより、止水機能保持を確認する。	
	変形,損傷	・加振試験を実施し、構造強度健全性を確認するこ	
人型ワツシャ		とにより、止水機能保持を確認する。	
生いない	亦 形 担 作	・加振試験を実施し、構造強度健全性を確認するこ	
刮りヒン	<u> </u>	とにより、止水機能保持を確認する。	

表 2.9.4-1 閉止栓止水機能保持確認方針

図 2.9.4-1 閉止栓構造図

(3) 評価方法

以下に示す条件にて試験を実施し、各試験毎に示す判定基準により評価する。

a. 基準地震動加振試験

基準地震動Ssによる閉止栓の設置箇所の設計震度を上回るものとして、「原子力発電 所耐震設計技術指針(JEAG 4601-1991 追補版)((社)日本電気協会)」に示さ れる一般弁の機能確認済加速度と同じ6G(58.8m/s²)で加振する。

なお、加振試験を実施する前に、水平、鉛直方向それぞれについて、振動数 5~50Hz の範囲で掃引試験を行い、振動数 5~50Hz の範囲に固有振動数がなく、閉止栓が剛構造 として加振試験を実施できることを確認する。

表2.9.4-2に加振試験の条件、方法及び判定基準を示す。

表 2.9.4-3 に加振試験装置の主要仕様,図 2.9.4-2 に加振試験装置の外観を示す。

試験条件	試験方法	判定基準
 ・振動波形:正弦波 	加振した後に、外観目視に	機能に影響を及ぼす変
・最大加速度 : 水平 6G, 鉛直 6G	より各部材を確認する。	形,損傷,緩みがない
・振動数:20Hz*	水平方向と鉛直方向毎に,	こと。
・締付トルク 50N・m で加振試験	それぞれで加振する。	
装置に固定する。		
 加振時間:5分 		

表 2.9.4-2 加振試験の条件, 方法及び判定基準

注記*:掃引試験の結果、5~50Hz に共振する振動数がないことから、剛構造で想定される 最低の振動数 20Hz とした。

項目	諸元
型式	916-AW/SLS
最大加振力	16 kN
最大変位	1000 mm_{p-p}
最大加速度 (無負荷時)	640 m/s^2
可動部質量	25 kg
振動数範囲	(DC)~2000 Hz
加振台(ヘッド)寸法	φ230 mm
最大搭載質量	200 kg

表 2.9.4-3 加振試験装置主要仕様

図 2.9.4-2 加振試験装置外観図

b. 水圧試験

閉止栓の設置箇所の津波による溢水又は内部溢水の浸水によって生じる浸水深が大き い方の静水圧を考慮した圧力*を上回る圧力として,0.35MPa以上の水圧とする。

水圧の保持時間は、「発電用原子力設備規格 設計・建設規格 (2005 年版 (2007 年追 補版含む)) (JSME S NC1-2005/2007) ((社) 日本機械学会)」に示される耐 圧試験に準じて、10 分間以上とする。

また,水圧試験は,加振試験実施後に行うことを条件とする。 表2.9.4-4に水圧試験の条件,方法及び判定基準を示す。

表 2.9.4-4 水圧試験の条件, 方法及び判定基準

試験条件	試験方法	判定基準
・試験圧力 : 0.35MPa 以上の水圧	試験条件に示した圧力及	・機能に影響を及ぼす変形,
・水圧保持時間:10分間以上	び保持時間で加圧する。	損傷がないこと。
・加振試験後に実施	加圧後に外観目視により	・有意な漏えいのないこと。
	各部材を確認する。	

注記*:閉止栓の設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値とし以下のと おり。

静水圧: 0.18MPa

c. 水圧+余震荷重での試験

	表 2.9.4-5	水圧+余震荷重での試験の条件,	方法及び判定基準
--	-----------	-----------------	----------

試験条件	試験方法	判定基準
・試験圧力:0.35MPa	試験条件に示した圧力及	・機能に影響を及ぼす変形,
・水圧保持時間:5分間	び加速度を与える。加圧	損傷がないこと。
 振動波形:正弦波 	及び加振後に外観目視に	・有意な漏えいのないこと。
・最大加速度 : 水平 3G, 鉛直 3G	より各部材を確認する。	
(余震は本震6G の半分を想定し		
3 G で加振)		
・振動数:20Hz		

注記*:閉止栓の設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値とし以下のと おり。

静水圧: 0.18MPa

(4) 評価結果

以下に,加圧試験及び水圧試験の結果と止水機能保持の確認を示す。

a. 加振試験

表 2.9.4-6 に閉止栓の加振試験結果を示す。

なお,掃引試験により,振動数 5~50Hz に閉止栓の固有振動数がないことを確認した。

部位	加振試験結果
ナット	変形,損傷及び緩みなし
本体シャフト	変形及び損傷なし
ゴムリング	変形及び損傷なし
0リング	変形及び損傷なし
中間リング	変形及び損傷なし
端部リング	変形及び損傷なし
カラーパイプ	変形及び損傷なし
大型ワッシャ	変形及び損傷なし
割りピン	変形及び損傷なし

表 2.9.4-6 閉止栓の加振試験結果

b. 水圧試験

表2.9.4-7に閉止栓の水圧試験結果及び止水機能保持確認を示す。

表 2.9.4-7 閉止栓の水圧試験結果及び止水機能保持確認

部位	水圧試験結果	止水機能保持確認
本体シャフト	変形及び損傷なし	
ゴムリング	変形及び損傷なし	漏えいなし
0リング	変形及び損傷なし	

c. 水圧+余震荷重での試験

表2.9.4-8に閉止栓の水圧+余震荷重での試験結果及び止水機能保持確認を示す。

部位	水圧試験結果	止水機能保持確認
本体シャフト	変形及び損傷なし	
ゴムリング	変形及び損傷なし	漏えいなし
0リング	変形及び損傷なし	

表 2.9.4-8 閉止栓の水圧+余震荷重での試験結果及び止水機能保持確認

2.9.5 配置概要

床ドレンライン浸水防止治具の設置位置を図2.9.5に示す。

図2.9.5 床ドレンライン浸水防止治具の設置位置図(1/15)

配置図							
建局	設置個所	浸水防止治旦の種類					
	1 炉心流量(DIV-IV)計装5ック、感需器(D)室	スプリング式治县(外ねじ)					
		スプリング式治旦(フランジ)					
	- 0.0年間日 フレエ 3 恒心流量(DIVIV)計装ラック、威震器(D)室	スプリング式治具(外ねじ)					
	4 水圧制御ユニット室	閉止キャップ					
	5 炉心流量(DIV-I)計装ラック、感需器(A)室	スプリング式治县(外ねじ)					
	6 水圧制御ユニット室						
	7 水圧制御ユニット室	(ノフンシー)					
	8 「炉心流量(DIV-I)計装ラック、感震器(A)室						
	9 残留熱除去系(A)ポンプ・熱交換器室						
	10 残留熱除去系(A)ポンプ・熱交換器室	マープリン が <u>や</u> 込目 (月 ねい)					
	11 残留熱除去系(C)ポンプ・熱交換器室	人ノリンク丸宿具(外ねし)					
面乙烷砷异	12 残留熱除去系(C)ポンプ・熱交換器室						
尿丁炉建産 エMICI _ 0000	13 炉心流量(DIV-Ⅲ)計装ラック、感震器(C)室、制御棒駆動機構マスターコントロール室						
1.M.S.L 6200	14 水圧制御ユニット室	フプリンガナ込目(フランパ)					
	15 水圧制御ユニット室	ハノリンク丸信具(ノノンン)					
	16 炉心流量(DIV-Ⅲ)計装ラック、感震器(C)室、制御棒駆動機構マスターコントロール室	マゴルノガオ沿目(かわど)					
	17 炉心流量(DIV-Ⅲ)計装ラック、感震器(C)室、制御棒駆動機構マスターコントロール室	ハノリンク丸伯兵(フトルdし)					
	18 水圧制御ユニット室	閉止キャップ					
	19 炉心流量(DIV-Ⅲ)計装ラック、感震器(C)室、制御棒駆動機構マスターコントロール室						
	20 炉心流量(DIV-Ⅲ)計装ラック、感震器(C)室、制御棒駆動機構マスターコントロール室	スプリング式治見(処わじ)					
	21 「炉心流量(DIV—Ⅱ)計装ラック, 感震器(B)室						
	22 炉心流量(DIV—Ⅱ)計装ラック, 感震器(B)室						
	23 水圧制御ユニット室	スプリング式治具(フランジ)					
	24 残留熱除去系 (B) ポンプ・熱交換器室	スプリング式治县(外ねじ)					
	25 残留熱除去系 (B) ボンブ・熱交換器室						
	建屋 原子炉建屋 T.M.S.L8200	日田間区 日田間区 日間間区 日間間区 日間にの 日間に会 日にの 日間に会 日に会 日に会 日に会 日に会 日に会 日に 日にの 日に会 日に会 日に会 日に会 日に会 日に会 日にの 日に会 日にの 日に会 日間に会 日間に					

図2.9.5 床ドレンライン浸水防止治具の設置位置図(3/15)

図2.9.5 床ドレンライン浸水防止治具の設置位置図(5/15)

	建屋		設置個所	浸水防止治具の種類
	~~~~	1	TCW熱交換器・ポンプ室	閉止栓
		2	TCW熱交換器・ポンプ室	
		3	TCW熱交換器・ポンプ室	
	-	4	TCW熱交換器・ポンプ室	フロート式治具(フランジ)
	-	5	TCW熱父換器・ホンフ室 TCW熱☆換盟・ポンプ室	
	-	7	TCW熱交換器・ホンノ主 TCW熱な摘要・ポンプ室	日正松
	-	8	TCW熱交換器・ポンプ室	フロート式治具(内ねじ)
	-	9	TCW熱交換器・ポンプ室	閉止栓
		10	TCW熱交換器・ポンプ室	
	-	11	TCW熱交換器・ポンプ室	
	-	12	TCW熱交換器・ボンブ室	
	-	13	TCW熱父換器・ホンフ室 TCW熱な摘号・ポンプ室	ノロート式冶具(ノランン)
	-	14	TCW熱交換品・ホンノ主 TCW熱交換界・ポンプ室	関止於
		16	TCW熱交換器・ポンプ室	
		17	TCW熱交換器・ポンプ室	
		18	TCW熱交換器・ポンプ室	
	_	19	TCW熱交換器・ポンプ室	
	-	20	TCW熱交換器・ポンプ室	閉止栓
	-	21	TCW熱父換器・ホンフ室 TCW熱な換盟 ポンプ室	<u>フロート式治具(内ねじ)</u> 開止や
	-	22	ICW熱父換希・ホンノ至 TCW熱な施器・ポンプ室	闭止住
-	-	23	TCW熱交換品・ホンノ主 TCW熱交換器・ポンプ室	フロート式治旦(フランジ)
*	-	25	TCW熱交換器・ポンプ室	
		26	TCW熱交換器・ポンプ室	
,		27	TCW熱交換器・ポンプ室	フロート式治見(内わじ)
	タービン建屋	28	TCW熱交換器・ポンプ室	
	T.M.S.L5100	29	TCW熱交換器・ボンブ室	
/	-	21	TCW熱父換器・ホンフ室 TCW熱な施器・ポンプ室	リロート式治具(リフンン) 問い や
Ļ	-	32	TCW熱交換器・ホンフェ TCW熱交換器・ポンプ室	
		33	TCW熱交換器・ポンプ室	フロート式治具(内ねじ)
ī		34	TCW熱交換器・ポンプ室	閉止栓
		35	TCW熱交換器・ポンプ室	フロート式治具(内ねじ)
Ì	-	36	TCW熱交換器・ポンプ室	閉止栓
	-	37	TCW熱交換器・ホンプ室 IA-SA字空調機字	
	-	38	IA·SA主空调機主 IA·SA室空調機室	
	-	40	IA·SA呈空詞機呈 IA·SA室空調機室	フロート式治具(内ねじ)
	-	41	IA·SA室空調機室	
		42	バルブスペース	閉止栓
		43	バルブスペース	フロート式治具(内ねじ)
		44	バルブスペース	閉止栓
		45	循環水配管,電解鉄イオン供給装置室	
		40	加尿小配官,电胜蚊14/洪柘装直至 循帶水配管 雪解鉄イオン供給状署室	
		48	循環水配管、電解鉄イオン供給装置室	
		49	循環水配管,電解鉄イオン供給装置室	
		50	循環水配管,電解鉄イオン供給装置室	閉止栓
		51	循環水配管,電解鉄イオン供給装置室	
		52	循環水配管, 電解鉄イオン供給装置室	
		53	循環水配管,電解鉄イオン供給装置室	_
		54 55	加東水配官, 電解鉄イオン供給装置室 毎増水配管, 電報鉄イオン供給装置室	
		<u>56</u>	<u>加尿小配温,电胜软14/洪柘装直至</u> 循環水配管 雷解鉄イオン供給装置室	
		57	建屋外周工リア	スプリング式治具(外ねじ)
		2.		



図2.9.5 床ドレンライン浸水防止治具の設置位置図(7/15)



図2.9.5 床ドレンライン浸水防止治具の設置位置図(8/15)

設備名称	配置図				
	建長		設置個斫	温水防止治目の錘粨	
	) (史) (里)	1		1111日来の推規	
		2	「「「」が「「「「「」」」「「」」「「」」」「「」」「」」「」」「」」「」」「」		
		3	「「」》「「Q」「「Q」「Q」「Q」「Q」」、「」》「」》「「Q」「Q」「Q」」、「Q」「Q」「Q」」、「Q」「Q」「Q」」、「Q」「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」」、「Q」、「Q	――フロート式治具(内ねじ)	
		4	原子炬補機冷却系(B系)熱交換器・ポンプ室	閉止栓	
		5	□ 二 「 川 川 川 川 川 川 川 川 川 川 川 川 川 川 川 川 川 川		
	-	6			
		7	「「」「」「「」」「「」」「「」」「「」」「「」」「」」「」」「」」「」		
		8	「「」》「「Q」「「Q」「」「Q」「」「Q」「」」、「」》「「Q」「」(D」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	閉止栓	
		9	□ 二 「 川 川 川 川 川 川 川 川 川 川 川 川 川 川 川 川 川 川	フロート式治見(内わ))	
		10	原子炬補機冷却系(B系)熱交換器・ポンプ室	閉止栓	
		11	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	フロート式治見(内わ))	
		12	原子恒補機冷却系(B系)熱交換器・ポンプ室	閉止栓	
		13	原子炬補機冷却系(B系)熱交換器・ポンプ室	フロート式治具(内わじ)	
		14	□ 子炉補機冷却系(B系)熱交換器・ポンプ室		
		15	原子炬補機冷却系(B系)熱交換器・ポンプ室		
		16	原子恒補機冷却系(B系)熱交換器・ポンプ室	閉止栓	
		17	原子炬補機冷却系(B系)熱交換器・ポンプ室		
		18	原子炉補機冷却系(B系)熱交換器・ポンプ室		
		19	原子炉補機冷却系(B系)熱交換器・ポンプ室	フロート式治具(内ねじ)	
		20	原子炉補機冷却系(B系)熱交換器・ポンプ室		
		21	原子炉補機冷却系(B系)熱交換器・ポンプ室	――フロート式治具(フランシ)	
床		22	原子炉補機冷却系(B系)熱交換器・ポンプ室	閉止栓	
। भ	-	23	原子炉補機冷却系(B系)熱交換器・ポンプ室		
$\overline{\mathcal{V}}$		24	原子炉補機冷却系(B系)熱交換器・ポンプ室	クロート式治具(フランシ)	
ン		25	原子炉補機冷却系(B系)熱交換器・ポンプ室		
ラ		26	タービン補機冷却海水系ポンプ室		
イ		27	タービン補機冷却海水系ポンプ室		
ン	タービン建屋	28	タービン補機冷却海水系ポンプ室		
浸	T.M.S.L. +4900	29	タービン補機冷却海水系ポンプ室		
水		30	タービン補機冷却海水系ポンプ室	フロート式治具(フランジ)	
防		31	タービン補機冷却海水系ポンプ室		
		32	タービン補機冷却海水系ポンプ室		
冶		33	タービン補機冷却海水系ポンプ室		
具		34	原子炉補機冷却系(B系)熱交換器・ポンプ室	閉止栓	
		35	原子炉補機冷却系(B系)熱交換器・ポンプ室	フロート式治具(フランジ)	
		36	タービン補機冷却海水系ポンプ室	閉止栓	
		37	原子炉補機冷却系(B系)熱交換器・ポンプ室	フロート式治具(フランジ)	
		38	原子炉補機冷却系(B系)熱交換器・ポンプ室	フロート式治具(内わじ)	
		39	原子炉補機冷却系(B系)熱交換器・ポンプ室		
		40	原子炉補機冷却系(B系)熱交換器・ボンプ室	フロート式治具 (フランジ)	
	-	41	原子炉補機冷却系(B系)熱交換器・ボンブ室	フロート式治具(内ねじ)	
		42	原子炉補機冷却糸(B糸)熱交換器・ボンブ室	フロート式治具(ファンジ)	
		43	原子炉補機冷却系(B系)熱交換器・ボンブ室	閉止栓	
		44	原子炉補機伶却糸(B糸)熱交換器・ホンプ室	フロート式治具(内ねじ)	
		45	原子炉補機伶却糸(B糸)熱父換器・ホンフ室	閉止栓	
		46	原子炉補機伶却糸(B糸)熱父換器・ホンフ室		
	-	47	原子炉補機伶却糸(B糸)熱交換器・ホンフ室	フロート式治具(内ねじ)	
		48	原ナ炉相機行却糸(B糸)熱父孾器・ホンプ至		
		49	尿丁沢 悑媛 行 叫 糸 (B 糸) 然 父 撰 希 • ホンノ 至   百 て 伝 靖 機 必 却 亥 (D 亥 ) 劫 六 始 明 - ピンプ ウ	ノローP政行具(ノフノン)	
		5U E1	尿丁沢 悑媛 (口 平 永) 米 (B 米) 米 (火 探 都・ ホンノ 至   百 て 伝 靖 歴 仏 却 変 (D 変 ) 数 六 婚 思 ピ い プ ウ	ノローP政信具(内はし) フローL書始目(フランジ)	
		51	尿丁沢 間隙 (Dボ) 次 (Dボ) 次 (次本・小ノノ 至) 「「「「「「「「「「」」」」 (Dズ) かたやり パンプター	/ / - 「丸伯具 (ノジノン)	
		0 <u>/</u>	ホナデ 補暖 (ロボ ) Dボ / 深 (火 探 る・ 小 ノ ) 至   百 工 伝 靖 烨 み 却 ズ (D ズ ) 劫 太 ぬ 史 ・ ピ い プ 安		
		03 E4	小丁が 11 ( ) 小丁 2		
		04 55	「「ア 1m ( 1 中 ボ ( 1 中 ボ ) 水( 2 木) ×( 2 \lambda) ×	<u>/ / / / / / / / / / / / / / / / / / / </u>	
		50	小」 / 「 佃 成 印 斗 ボ ( D ボ )		
		00	示」が1m1波印44ボ(Dボ)款文換品・ハイノ主	闭些性	

図2.9.5 床ドレンライン浸水防止治具の設置位置図 (9/15)

配置図				
建屋		設置個所	浸水防止治具の種類	
	57	原子炉補機冷却系(B系)熱交換器・ポンプ室	フロート式治具(内ねじ)	
	58	原子炉補機冷却海水系(C系)ポンプ室		
	59	原子炉補機冷却海水系(C系)ポンプ室		
	60	原子炉補機冷却海水系(C系)ポンプ室	フロート式治具(内ねじ)	
	61	原子炉補機冷却海水系(C系)ポンプ室		
	62	原子炉補機冷却海水系(C系)ポンプ室		
	63	原子炉補機冷却海水系(C系)ボンブ室	フロート式治具(フランジ)	
	64	原子炉補機冷却海水糸(C糸)ボンブ室		
	65	原子炉補機行却海水糸(C糸)ホンノ至		
	66	原子炉補機行却糸(A糸)熱父換器・ホンノ至	<u>                                      </u>	
	60	原丁炉補機行却糸(A糸)熱父換क・小ノノ至 原乙伝オ燃冷却変(A系)熱な海兜・ポンプ安	ハノリンク式宿具(内ねし) 	
	60	尿丁炉補機行却光(A米) 熱父換益・小ノノ至 「夏乙に捕燃冷却炙(A系) 熱な海聖・ポンプ安	利止性	
	70	原工炉補機作却示(A示)熱欠換品・ホノノ主 「「二」に対応の時代(A示)、熱欠換品・ホノノ主		
	70	示」 炉桶(域中4)示(A示) 怒又換品・ハンノ主 「日子に捕機) 「日子((Δ조)) 執応摘要・ポンプ室		
	72	同子に補機の知知(Δ系)熱交換研究の21	――スプリング式治具(フランジ)	
F	73	原子 炉 補機 冷却系(A系) 熱 交 摘 器・ ポンプ 室		
	74	原子炉補機冷却系(A系)熱交換器・ポンプ室	スプリング式治具(内わじ)	
	75	原子炉補機冷却系(A系)熱交換器・ポンプ室	閉止栓	
	76	原子炉補機冷却系(A系)熱交換器・ポンプ室		
	77	原子炉補機冷却系(A系)熱交換器・ポンプ室	――スプリンク式治具(フランシ)	
	78	原子炉補機冷却系(A系)熱交換器・ポンプ室	スプリング式治具(内ねじ)	
	79	原子炉補機冷却系(A系)熱交換器・ポンプ室	閉止栓	
タービン建屋	80	原子炉補機冷却系(A系)熱交換器・ポンプ室	フプロングナム目 (フランパジ)	
T.M.S.L. +4900	81	原子炉補機冷却系(A系)熱交換器・ポンプ室	スノリンク式信具(ノノンシ)	
	82	原子炉補機冷却系(A系)熱交換器・ポンプ室		
	83	原子炉補機冷却系(A系)熱交換器・ポンプ室	スプリング式治具(内ねじ)	
	84	原子炉補機冷却系(A系)熱交換器・ポンプ室		
	85	原子炉補機冷却系(A系)熱交換器・ポンプ室		
	86	原子炉補機冷却系(A系)熱交換器・ポンプ室	閉止栓	
	87	原子炉補機冷却系(A系)熱交換器・ポンプ室		
	88	原子炉補機冷却系(A系)熱交換器・ボンプ室		
	89	原子炉補機冷却系(A系)熱交換器・ボンプ室	スプリング式治具(内ねじ)	
	90	原子炉補機冷却系(A系)熱交換器・ボンブ室		
	91	原子炉補機冷却系(A系)熱交換器・ボンブ室	スプリング式治具(フランジ)	
	92	原子炉補機冷却糸(A糸)熱父換器・ホンフ室		
	93	原子炉補機行却糸(A糸)熱父換器・ホンノ至	スプリング式治具(内ねじ)	
	94	原丁炉補機作却ポ(Aボ)熱交換器・ホイノ主 「夏乙に捕燃冷却変(A系)熱な施器・ポンプ安	フプルノガギル目(フランバ)	
	95	原子炉補機作却系(A系)熱交換器・ホイノ至 原子に捕機)の相系(A系)熱交換器・ポンプ室	スプリング式信兵(プランジ) スプリング式行兵(プランジ)	
	90	「示」が補機の如示(A示) 怒気換益・ホンノ主 「「子に捕機心却玄(A玄) 熱な施哭・ポンプ玄	ハノリンク式伯英(P14aU)	
	98	同子 「「補機」「4本」(A系)熱交換器・ホンプ室	閉止栓	
	99	原子 炉 補 機 冷 却 系 (A系) 熱 交 換 器・ポンプ 室		
	100	原子炉補機冷却系(A系)熱交換器・ポンプ室		
	101	原子炉補機冷却系(A系)熱交換器・ポンプ室	スプリング式治具(内ねじ)	
	102	原子炉補機冷却系(A系)熱交換器・ポンプ室		
	103	原子炉補機冷却系(A系)熱交換器・ポンプ室		
F	104	原子炉補機冷却系(A系)熱交換器・ポンプ室	閉止栓	
	<u></u> タービン建屋 T.M.S.L. +4900	建屋 57 58 59 60 61 62 63 64 65 66 67 67 68 69 70 71 71 72 73 74 75 76 77 73 74 75 76 77 78 79 80 70 71 71 72 73 74 75 76 88 79 90 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 97 98 89 90 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 90 90 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 000 91 00 00 91 00 91 00 00 91 00 00 91 00 00 00 91 00 00 00 00 00 00 00 00 00 00 00 00 00	建屋         設置個所           57         原子炉補機冷却落(B系)熱交換器・ボンブ室           58         原子炉補機冷却海水系(C系)ボンブ室           60         原子炉補機冷却海水系(C系)ボンブ室           61         原子炉補機冷却海水系(C系)ボンブ室           62         原子炉補機冷却海水系(C系)ボンブ室           63         原子炉補機冷却海水系(C系)ボンブ室           64         原子炉補機冷却海水系(C系)ボンブ室           65         原子炉補機冷却海水系(C系)ボンブ室           66         原子炉補機冷却海水系(C系)ボンブ室           67         原子炉補機冷却海水(A系)熱交換器・ポンブ室           68         原子炉補機冷却系(A系)熱交換器・ポンブ室           69         原子炉補機冷却系(A系)熱交換器・ポンブ室           70         原子炉補機冷却系(A系)熱交換器・ポンブ室           71         原子炉補機冷却系(A系)熱交換器・ポンブ室           73         原子炉補機冷却系(A系)熱交換器・ポンブ室           74         原子炉補機冷却系(A系)熱交換器・ポンブ室           75         原子炉補機冷却系(A系)熱交換器・ポンブ室           76         原子炉補機冷却系(A系)熱交換器・ポンブ室           77         原子炉補機冷却系(A系)熱交換器・ポンブ室           78         原子炉補機冷却系(A系)熱交換器・ポンブ室           79         原子炉補機冷却系(A系)熱交換器・ポンブ室           76         原子炉補機冷却系(A系)熱交換器・ポンブ室           78         原子炉補機冷却系(A系)熱交換器・ポンブ室           79         原子炉補機冷却系(A系)熱交換器・ポンブ室           80         原子炉補機冷却系(A系)熱交換器・ポンブ室           81         原子炉補機冷却系(A系)熱	

図2.9.5 床ドレンライン浸水防止治具の設置位置図(10/15)



設備名称	配置図				
	建居	設置個所	浸水防止沿目の毎粨		
	建座	1 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室	現止キャップ		
		2 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室	スプリング式治具(内ねじ)		
		3 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室	閉止キャップ		
		4 7号機換気空調補機非常用冷却水系ボンブ・冷凍機(B)(D)室	スプリング式治具(内ねじ)		
		<ol> <li>75機換気空調補機非常用冷却水系ホンプ・冷凍機(D)(D)室</li> <li>7号機換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室</li> </ol>	—		
		7 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室			
		8 7号機換気空調補機非常用冷却水系ポンプ・冷凍機 (B)(D)室			
		9 7号機換気空調補機非常用冷却水糸ホンフ・冷凍機(B)(D)室 10 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室	閉止キャップ		
		10 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室			
		12 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室			
	コントロール建屋	13 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室			
	1.M.S.L2700	14 7号機換気空調補機非常用冷却水糸ホンプ・冷凍機(A)(C) 至 15 7号機協気空調補機非常田冷却水系ポンプ・冷凍機(Δ)(C) 室	スプルングギ 没目(内わじ)		
		16 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室			
		17 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室	閉止キャップ		
		18 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室			
		19 7号機換気空調補機非常用冷却水糸ホンフ・冷凍機(A)(C)室 20 7-E	スフリンク式冶具(内ねじ)		
		20 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室			
		22 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室			
		23 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室	閉止キャップ		
		24 7号機換気空調補機非常用冷却水糸ボンブ・冷凍機(A)(C)室 25 7-長機換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室			
		25 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室 26 7号機換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室			
ンライン浸水防止治具					
	<b>図205</b>	床ドレンライン浸水防止治目の設置位置図 (15	(15)		



図2.9.5 床ドレンライン浸水防止治具の設置位置図(13/15)

図2.9.5 床ドレンライン浸水防止治具の設置位置図(14/15)



図2.9.5 床ドレンライン浸水防止治具の設置位置図(15/15)

2.10 津波監視カメラに関する補足説明

- 2.10 津波監視カメラの設計に関する補足説明
  - 2.10.1 概要

本資料は、津波監視設備のうち津波監視カメラの耐震計算の詳細について説明するも のである。津波監視カメラは、地震後の繰返しの襲来を想定した遡上波に対し、余震、漂 流物の衝突、風及び積雪を考慮した場合においても、波力及び漂流物の影響を受けない場 所として、7 号機主排気筒にカメラ本体を設置し、昼夜にわたり監視可能な設計とする。 また、カメラ本体からの映像信号を中央制御室に設置する津波監視カメラ制御架に伝送 し、中央制御室にて監視可能な設計とする。対象となる津波監視カメラの配置を図 2.10 -1「津波監視カメラ配置図」に示す。



#### 2.10.2 基本方針

津波監視カメラの耐震計算は、V-2-1-9「機能維持の基本方針」にて設定している構造 強度及び機能維持の設計方針に基づき、津波監視カメラが設計用地震力に対して十分な構 造強度及び電気的機能を有していることを確認する。

耐震計算に当たっては津波監視カメラの構成機器を踏まえ評価対象機器を以下の通り設 定する。

- (1) 津波監視カメラ
- (2) 津波監視カメラ制御架

(1) 津波監視カメラ

# 1. 評価方法

1.1 一般事項

図 2.10-1-1 に津波監視カメラの概略構造図を示す。



図 2.10-1-1 概略構造図(津波監視カメラ本体)

カメラ取付架台は鉄骨フレーム構造であり, K7 主排気筒鉄塔部の主柱材に支持されている。

# 1.2 固有周期

津波監視カメラの固有周期は、三次元はりモデルによる固有値解析により求める。固有値 解析の結果、固有周期が 0.05 秒以下であり、剛であることを確認している。



津波監視カメラの解析モデルを図 2.10-1-2 に示す。

図2.10-1-2 解析モデル

#### 1.3 構造強度評価

1.3.1 評価条件

評価に用いる設計用地震力を表 2.10-1-1 に示す。

「基準地震動Ss」による地震力は、V-2-7-2-1「主排気筒の耐震性についての計算書」に基づき設定する。

据付場所 弹性設計用地震動 S d 基準地震動S s 及び 又は静的震度 機器名称 床面高さ 水平方向 水平方向 鉛直方向 鉛直方向 (m) 設計震度 設計震度 設計震度 設計震度 主排気筒 津波監視カメラ T. M. S. L. 76. 660 (U51-ITV- $C_{\rm H} = 6.89$   $C_{\rm V} = 1.82$ (T. M. S. L. 80. 000*) No. STACK1) 主排気筒 津波監視カメラ (U51-ITV-T. M. S. L. 76. 660  $C_{\rm H} = 6.89$   $C_{\rm V} = 1.82$ ____ (T. M. S. L. 80. 000*) No. STACK2)

表 2.10-1-1 設計用地震力(設計基準対象施設)

注記*:基準床レベルを示す。

<雰囲気温度>

40℃ (屋外)

1.3.2 応力計算

津波監視カメラは屋外に設置されるため,耐震計算に考慮する荷重の組合せは以下の とおりとする。

- 固定荷重 + 基準地震動 (Ss) + 風荷重 + 積雪荷重
- ・ 固定荷重

津波監視カメラに作用する固定荷重を表 2.10-1-2に示す。

部位	荷重
津波監視カメラ架台(P ₁ )	0.25kN/m
津波監視カメラ(P₂)	0. 5kN

表 2.10-1-2 固定荷重

• 風荷重

津波監視カメラに作用する風荷重WwLは次式にて求める。

 $W_{WL} \!=\! C f \cdot q$ 

ここで

- W_{WL}: 風荷重(N/m²)
- C f^{*}: 風力係数 = 2.1
  - q : 風荷重の速度圧(N/m²)
- 注記*: 風力係数Cfは日本建築学会 建築物荷重指針・同解説(2004)の値 を使用する。

風荷重の速度圧 q は建築基準法施工令第 87条に基づき次式にて求める。

q =  $0.6 \cdot E \cdot V_0^2$ 

- ここで
  - Vo : 設計基準風速(m/s) = 40.1 m/s
  - E: 速度圧の高さ方向の分布を表す係数

風荷重の速度圧の高さ方向の分布を表す係数Eは次式にて求める。

E = E  $r^2 \cdot G r$ G  $r^*$ : ガスト影響係数 = 2.0 E r : 平均風速の高さ方向の分布を表す係数 E  $r = 1.7 \cdot \left(\frac{Z b}{Z G}\right)^{\alpha}$  (HがZ b以下の場合) E  $r = 1.7 \cdot \left(\frac{H}{Z G}\right)^{\alpha}$  (HがZ b以上の場合) ここで H : カメラ設置高さ = 地上 64.660 m (T.M.S.L.76.660)  $\alpha^*$  : 地表面粗度区分による係数 = 0.15 Z b* : 地表面粗度区分による係数 = 5 Z G* : 地表面粗度区分による係数 = 350 注記*: 当該地の地表面粗度区分 II として建設省告示第 1454 号の値を使用する。

以上より,風荷重の速度圧 q は

E r =1.7 
$$\cdot \left(\frac{64.66}{350}\right)^{0.15}$$
  
=1.319574972  
=1.32

 $=7060 \text{N/m}^2$ 

積雪荷重

津波監視カメラに作用する単位面積当たりの積雪荷重Wsnlは次式にて求める。

 $W_{SNL} = d s \cdot \rho s$ 

ここで

d s^{*1}: 積雪の垂直推積量(cm) = 115.4

 $\rho s^{*2}$ : 積雪の単位荷重  $(N/m^2/cm) = 29.4$ 

注記*1: V-1-1-3-1-1「発電用原子炉施設に対する自然現象等による損傷の防止 に関する基本方針」に基づく積雪量。

*2:新潟県建築基準法施行細則に基づく積雪の単位荷重。

以上より,

 $W_{SNL} = 115.4 \cdot 29.4$ = 3392.76 = 3393N/m²

# 1.3.3 取付ボルトの計算方法

取付ボルトの応力は,三次元はりモデルによる個別解析から取付ボルト部の内力を 求めて,その結果を用いて手計算にて計算する。

ここで、N、Qhb及びQvbは基礎部に作用する力であり解析により求まる。作用 角度及び基礎部に作用する力を図 2.10-1-3 に示す。



図 2.10-1-3 計算モデル(取付ボルト)

(1) 引張応力

取付ボルトに作用する引張力 $F_b$ 

$$F = N \cdot \sin \theta + Q h \cdot \sin (90 - \theta)$$
  
= 108.3 \cdot \sin \theta + 3.62 \cdot \sin (90 - 35.2)  
= \frac{65.39kN}{2}

取付ボルトに作用する引張応力σь

$$\sigma b = \frac{F b}{n \cdot A b}$$
$$= \frac{65.39 \cdot 10^3}{4 \cdot 314}$$
$$= 52.06$$
$$= \frac{52N/mm^2}{4}$$

(2) せん断応力取付ボルトに作用するせん断力Q_b

$$Q_{b} = \sqrt{(N \cdot \cos \theta + Q_{h b} \cdot \cos (90 - \theta))^{2} + Q_{v b}^{2}}$$
$$= \sqrt{(108.3 \cdot \cos \theta + 3.62 \cdot \cos (90 - 35.2))^{2} + 2.11^{2}}$$
$$= 90.61 \text{kN}$$

取付ボルト1本あたりに生じるせん断応力τь

$$\tau_{b} = \frac{Qb}{n \cdot Ab}$$
  
=  $\frac{90.61 \cdot 10^{3}}{4 \cdot 314}$   
= 72.14  
=  $\frac{73N/mm^{2}}{2}$   
ここで  
n : 取付ボルトの本数 = 4本  
Ab: 取付ボルトの軸断面積 = 314mm²

1.3.4 応力の評価方法

取付ボルトの許容応力評価条件を表 2.10-1-3 に,許容応力の算出方法を表 2.10-1-4 に示す。

 評価部材
 村料
 許容限界 (N/mm²)

 取付ボルト
 F8T
 375*
 180*

表 2.10-1-3 使用材料の許容応力評価条件(設計基準対象施設)

*:鋼構造設計規準・同解説-許容応力度設計法-に基づく値。

 

 (マンドの「「「「「「」」」」」」」」」」

 許容限界*1,*2 (ボルト等) 

 許容応力状態

 一次応力

 引張り

 せん断

 IIIAS

 1.5・ft

表 2.10-1-4 許容応力 (その他の支持構造物)

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力 で代表可能である場合は評価を省略する。
- (1) 許容引張応力
   許容引張応力 f_{ts}
   f_{ts}=Min(1.4・f_{to}-1.6・τ_b, f_{to})
  - =Min(1.4 375-1.6 72.14,375) =Min(409,375) =<u>375N/mm²</u>
- (2) 許容せん断応力許容せん断応力 fst

$$f_{s t} = f_{s \circ} \cdot (1 - \frac{\sigma b \cdot A b}{T_{\circ}})$$
  
= 180 · (1 -  $\frac{52.06 \cdot 314}{133000}$ )  
= 157.87645  
= 157N/mm²  
注記*:ここで、T_oは高力ボルトの設計ボルト張力であり、鋼構造設計規準・同

解説-許容応力度設計法-に基づき算定する。

資料 8-2.10-12

1.3.5 カメラ架台の計算方法

カメラ架台は、三次元はりモデルによる個別解析から架台の内力を求めて、その結 果を用いて手計算にて計算する。

カメラ架台に作用する力は図2.10-1-4に示す通りである。



図 2.10-1-4 計算モデル (カメラ架台)

カメラ架台に作用する引張応力 $\sigma$ t,曲げ応力 $\sigma$ bv, $\sigma$ bh及びせん断応力 $\tau$ v,  $\tau$ hは次式より求める。

$$\sigma t = \frac{N t \cdot 10^{3}}{A e} = \frac{108.83 \cdot 10^{3}}{1652} = 65.87 = \underline{66}$$

$$\sigma b v = \frac{M v \cdot 10^{6}}{Z v} = \frac{0.83 \cdot 10^{6}}{134890} = 6.15 = \underline{7}$$

$$\sigma b h = \frac{M h \cdot 10^{6}}{Z h} = \frac{3.58 \cdot 10^{6}}{32006} = 111.85 = \underline{112}$$

$$\tau v = \frac{Q v w \cdot 10^{3}}{A v} = \frac{4.17 \cdot 10^{3}}{910} = 4.58 = \underline{5}$$

$$\tau h = \frac{Q h w \cdot 10^{3}}{A h} = \frac{10.09 \cdot 10^{3}}{1800} = 5.60 = \underline{6}$$

ここで、Nt, Mv, Mh, Qvw, Qhwはカメラ架台に作用する力であり解析 により求まる。

(1) 引張り
 カメラ架台の引張応力σtは鋼構造設計規準より基づく下式を満足すること。

$$\frac{\sigma t}{f_t} \leq 1$$

(2) 曲げ

カメラ架台の曲げ応力σ b v, σ b h は鋼構造設計規準より基づく下式を満足すること。

$$\frac{\sigma \mathbf{b} \mathbf{v}}{f \mathbf{b}} \leq 1$$
$$\frac{\sigma \mathbf{b} \mathbf{h}}{f \mathbf{b}} \leq 1$$

(3) せん断

カメラ架台のせん断応力τν, τhは鋼構造設計規準より基づく下式を満足すること。

$$\frac{\tau v}{f_{s}} \leq 1$$
$$\frac{\tau h}{f_{s}} \leq 1$$

(4) 組合わせ

カメラ架台の組合せ応力は鋼構造設計規準より基づく下式を満足すること。

$$\frac{\sigma_{\rm t}}{f_{\rm t}} + \frac{\sigma_{\rm b} + \sigma_{\rm b} v}{f_{\rm b}} \leq 1$$

1.3.6 応力の評価方法

カメラ架台の許容応力評価条件を表 2.10-1-5 に,許容応力の算出方法を表 2.10-1-6 に示す。

表 2.10-1-5 使用材料の許容応力評価条件(設計基準対象施設)

		許容限界 (N/mm ² )					
評価部材	材料	引張り	せん断	圧縮	曲げ		
カメラ架台	SN490B	325*	187*	325*	325*		

*:鋼構造設計規準・同解説-許容応力度設計法-に基づく値。

		許容限界* ^{1,*2} (ボルト等以外)		
許容応力状態	一次応力			
	引張り	せん断	曲げ	
III A S	1.5 • f t	1.5 • f s	1.5 • f b	

表 2.10-1-6 許容応力 (その他の支持構造物)

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力 で代表可能である場合は評価を省略する。

## 1.3.7 計算条件

評価に用いる数値を表 2.10-1-7 に示す。

項目	記号	単位	数值等
カメラ架台固定荷重	P1	kN/m	0.25
カメラ本体固定荷重	P2	kN	0.50
水平方向設計震度	Сн	-	6.89
鉛直方向設計震度	C v	-	1.82
風荷重の速度圧*	q	$N/m^2$	3360
風力係数	C f	-	2.1
積雪の垂直堆積量	d s	cm	115.4
積雪の単位荷重	ρs	N/m²/cm	29.4
取付ボルトの軸断面積	A b	$mm^2$	314
取付ボルトの本数	n	-	4
取付ボルトの短期許容引張応力度	f t o	$N/mm^2$	375
取付ボルトの短期許容せん断応力度	f _{so}	$N/mm^2$	180
取付ボルトの設計ボルト張力	Τo	kN	133
基礎部に作用する引張力	Ν	kN	108.3
基礎部に作用するせん断力 (Y 方向)	Q h b	kN	3.62
基礎部に作用するせん断力(Z方向)	Qvb	kN	2.11
作用力の角度	θ	0	35.2
鋼材の断面積	А	$\mathrm{mm}^2$	2710
鋼材の引張軸力時有効断面積	A e	$\mathrm{mm}^2$	1652
鋼材のせん断有効断面積(Z 方向)	Av	$\mathrm{mm}^2$	910
鋼材のせん断有効断面積(Y方向)	Ah	$\mathrm{mm}^2$	1800
鋼材の断面係数(Y 方向)	Zh	mm ³	32006
鋼材の断面係数(Z 方向)	Z v	mm ³	134890
鋼材に作用する最大引張軸力	N t	kN	108.83
鋼材に作用する最大曲げモーメント(Y 軸周り)	Mh	kN • m	3. 58
鋼材に作用する最大曲げモーメント(Z軸周り)	Mv	kN • m	0.83
鋼材に作用する最大せん断力 (Y 方向)	Q h w	kN	10.09
鋼材に作用する最大せん断力(Z方向)	Q v w	kN	4.17
鋼材の許容引張応力度	f t	$N/mm^2$	325
鋼材の許容曲げ断応力度	f _b	$N/mm^2$	325
鋼材の許容せん断応力度	fs	$N/mm^2$	187

表 2.10-1-7 計算条件

注記*:設計基準風速 40.1m/s から算出した値。

1.3.8 構造強度評価結果

取付ボルトの構造強度評価の結果を表 2.10-1-8 に示す。発生応力が許容応力以下 であることから,取付ボルトが構造健全性を有することを確認した。

部位	評価応力	算出応力 (N/mm ² )	許容応力 (N/mm ² )	検定比
西台书工具	引張り	σ b=52	$f$ t s= $375^*$	0.14
以小小ア	せん断	τь=73	$f_{ m s\ t}$ =157	0.47
		>> == .	(	

表 2.10-1-8 カメラ取付ボルトの応力評価結果

注記* :  $f_{ts} = Min[1.4 \cdot f_{to} - 1.6 \cdot \tau_{b}, f_{to}]$ 

カメラ架台の構造強度評価の結果を表 2.10-1-9 に示す。発生応力が許容応力以下 であることから、カメラ架台が構造健全性を有することを確認した。

				• 11 H-110 1									
評価 部位	応力		応力		応力		応力		応力 発生		発生応力(N/mm ² )	許容応力(N/mm²)	検定比
	引張り		σ t=66	$f_{\rm t} = 325$	0.21								
	曲げ	Y方向	σ b h=112	$f_{\rm b} = 325$	0.35								
カノラ		Z方向	$\sigma$ b v = 7	$f_{\rm b} = 325$	0.02								
カメノ	よく医	Y方向	$\tau$ h=6	$f_{s} = 187$	0.03								
禾口	セん例	Z方向	$\tau v = 5$	$f_{s} = 187$	0.03								
	如厶	14 14	σ t =66	$f_{\rm t} = 325$	0.57*								
	組合せ		組合せ σ b h + σ b v =119 ft		0.97*								

表 2.10-1-9 基準地震動 Ss に対する評価結果

注記*:組合せの検定比= $\frac{\sigma t}{f t} + \frac{\sigma b h + \sigma b v}{f_b}$ 

(2) 津波監視カメラ制御架

## 1. 評価方法

1.1 一般事項



図 2.10-2-1 に津波監視カメラ制御架の概略構造図を示す。

(正面方向)

(側面方向)

図 2.10-2-1 概略構造図(津波監視カメラ制御架)

1.2 固有周期

津波監視カメラ制御架の固有周期は,構造が同等であり,同様な振動特性を持つ盤に対す る振動試験(自由振動試験)の結果確認された固有周期を使用する。

#### 1.3 構造強度評価

1.3.1 評価条件

評価に用いる設計用地震力を表 2.10-2-2 に示す。

津波監視カメラ制御架の構造強度評価は、V-2-1-14「計算書作成の方法 添付資料-9 盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

機器名称	据付場所 及び	弾性設計用 又は静	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
	床面高さ (m)	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	
津波監視カメラ 制御架 (H11-P905)	コントロール建屋 T.M.S.L. 173.00 (T.M.S.L. 24.100*)	_		Сн=2.38	Cv = 1.46	

表 2.10-2-2 設計用地震力

注記*:基準床レベルを示す。

<雰囲気温度>

26℃(中央制御室)

## 1.3.2 応力計算

(1) 引張応力

水平方向の引張力F_{b11} F_{b11}= $\frac{m_1 \cdot (1+Cv) \cdot h_2 \cdot g}{n_{fv1} \cdot \ell_{21}} + \frac{m_1 \cdot CH \cdot h_1 \cdot g}{n_{fH1} \cdot \ell_{11}}$ F_{b11}= $\frac{253 \cdot (1+1.46) \cdot 380 \cdot 9.80665}{2 \cdot 1120} + \frac{253 \cdot 2.38 \cdot 380 \cdot 9.80665}{4 \cdot 540}$ = $\frac{2.074 \times 10^{3}N}{2}$ 

鉛直方向の引張力F b21

$$F_{b 21} = \frac{m_1 \cdot (1 + C_v) \cdot h_1 \cdot g + m_1 \cdot C_H \cdot \ell_{11} \cdot g}{n_{f_v 1} \cdot \ell_{21}}$$

$$F_{b 21} = \frac{253 \cdot (1 + 1.46) \cdot 380 \cdot 9.80665 + 253 \cdot 2.38 \cdot 553 \cdot 9.80665}{2 \cdot 1120}$$

$$= \underline{2.493 \cdot 10^3 N}$$

ボルトに作用する引張応力σ b1

$$\sigma b_{1} = \frac{F b_{1}}{A b_{1}}$$
$$= 2.493 \cdot 10^{3}/201.061$$
$$= 12.40MPa$$

ボルトに作用するせん断力Q b1

$$Q_{b1} = \sqrt{(Q_{b11}^{2} + Q_{b21}^{2})}$$
$$= \sqrt{(5904.976^{2} + 6103.462^{2})}$$
$$= 8492.408N$$

ボルト1本あたりに作用するせん断応力τь

$$\tau_{b1} = \frac{Q b_1}{n_1 \cdot A b_1} = \frac{8492.408}{8 \cdot 201.601} = 5.279 = \frac{6MPa}{8}$$

1.3.3 応力の評価方法

基礎ボルトの許容応力評価条件を表 2.10-2-3 に示す。

表 2.10-2-3 使用材料の許容応力評価条件(設計基準対象施設)

評価部材	材料	温度条件 (℃)		Sy (MPa)	Su (MPa)	Sy(RT) (MPa)
基礎ボルト	SUS304	周囲環境温度	26	205	520	205

(1) F 値

設計温度における使用部材の設計降伏点Syと設計引張強さSuは2005 設計・建設 規格第I編 付録図表 Part5 表 8, 表 9 より 26℃におけるS_y=205MPa 26℃におけるS_u=520MPa F1=Min(S_y, 0.7S_u) =Min(205, 0.7 · 520) =Min(205, 364) =<u>205MPa</u>
(2) 許容引張応力

許容引張応力 
$$f_{t s 1}$$
  
 $f_{t s 1} = Min(1.4 \cdot f_{t o 1} - 1.6 \cdot \tau_{b1}, f_{t o 1}) \cdot 0.8$   
 $f_{t o 1} = \frac{F_1}{2} \cdot 1.5$   
 $= \frac{205}{2} \cdot 1.5$   
 $= \frac{153.75MPa}{2}$   
 $f_{t s 1} = Min(1.4 \cdot 123 - 1.6 \cdot 5.279) \cdot 0.8$ 

$$=$$
Min(206.8, 153.75)  $\cdot$  0.8

注: JEAG4601・補-1984 に基づき,後施工アンカの許容応力は20%低減を考慮する。

(3) 許容せん断応力許容せん断応力 f_{st1}

$$f_{s t 1} = \frac{F_1}{1.5 \cdot \sqrt{3}} \cdot 1.5 \cdot 0.8$$
$$= \frac{205}{1.5 \cdot \sqrt{3}} \cdot 1.5 \cdot 0.8$$
$$= 94.685444$$

=<u>94MPa</u>

注: JEAG4601・補-1984 に基づき,後施工アンカの許容応力は20%低減を考慮する。

### 1.3.4 構造強度評価結果

基礎ボルトの構造強度評価の結果を表 2.10-2-4 に示す。発生応力が許容応力以下 であることから、基礎ボルトが構造健全性を有することを確認した。

立て人士	<b>莎</b> (本) 古	算出応力	許容応力
<u></u> [14	計ゴロルロノノ	(MPa)	(MPa)
基礎ボルト	引張り	σ b 1 =13	$f_{t s 1} = 123^*$
(i = 1)	せん断	τ b 1 =6	<i>f</i> _{st1} =94

表 2.10-2-4 津波監視カメラ制御架の構造強度評価

注記*: $f_{tsi} = Min[1.4 \cdot f_{toi} - 1.6 \cdot \tau_{bi}, f_{toi}]$ 

2.11 加振試験の条件について

- 2.11 加振試験の条件について
  - (1) 概要

本資料は、津波に関連する浸水防止設備の床ドレンライン浸水防止治具及びフラップゲート、津波監視設備の津波監視カメラ及び取水槽水位計について、加振試験により止水性の機 能又は電気的機能の機能維持を確認した内容について説明するものである。

(2) 判定基準の設定

床ドレンライン浸水防止治具及びフラップゲートのように止水性の機能維持が必要とされる設備については、地震時の応答加速度が、漏えい試験によって止水性の機能維持を確認した機能確認済加速度以下であることを確認する。

津波監視設備の津波監視カメラ及び取水槽水位計のように電気的機能維持が要求される 電気計装設備の機能維持については,原則として地震時の応答速度が各々の器具等に対する 加振試験により得られた加速度以下であることを確認する。

(3) 試験結果

判定基準を満足していることを確認した。機能確認済加速度は以下を参照。

- ・床ドレンライン浸水防止治具・・・本補足説明資料 2.9 章「床ドレンライン浸水防止治 具を構成する各部材の評価及び機能維持の確認方針について」
- ・フラップゲート・・・本補足説明資料 2.15章「フラップゲートの加振試験に関する 補足説明」
- ・津波監視カメラ・・・工事計画に係る説明資料(機器・配管系の耐震性についての計算書) 資料7「加振試験について」
- ・取水槽水位計・・・・工事計画に係る説明資料(機器・配管系の耐震性についての計算書) 資料7「加振試験について」

2.12 水密扉の設計に関する補足説明

目 次

1. 耐	震評価 ······ 1
1.1	入力値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1.2	耐震評価結果······ 13
2. 強	度評価 ····· 25
2.1	入力值······25
2.2	強度評価結果······ 28
3. 強	度評価(溢水) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 31
3.1	入力値 · · · · · · · · · · · · · · · · · · ·
3.2	強度評価結果······ 44

## 1. 耐震評価

V-2-10-2-3-1「水密扉の耐震性についての計算書」における検討対象水密扉について, 以下に耐震評価に必要な入力値と耐震評価結果を示す。

# 1.1 入力値

		20.11					水密扉No.		
对家部位		記号	単位	儿 我	1	2	3	4	5
		G	kN	扉重量	6.34	6.28	6.28	6.34	6.34
		k _H	-	水平震度	0.856	0.856	0.856	0.856	0.856
		k _{UD}	-	鉛直震度	0.835	0.835	0.835	0.835	0.835
ŧ	专通	L 1	mm	扉重心とヒンジ芯間距離	573	700	700	573	573
		L ₂	mm	ヒンジ芯間距離	1799	1799	1799	1799	1799
		W $_1$	kN	スラスト荷重	11.7	11.6	11.6	11.7	11.7
		F 1	kN	転倒力	6.45	7.21	7.21	6.45	6.45
		L ₃	mm	ヒンジ板の2軸間距離	220	220	220	220	220
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	68.8	68.3	68.3	68.8	68.8
		τ	$N/mm^2$	せん断応力度	3.90	3.87	3.87	3.90	3.90
H \ / 32		L ₄	mm	ヒンジ板と受板間距離	10	10	10	10	10
<i>ЕУУ</i>	ヒンジピン	σ	$N/mm^2$	曲げ応力度	27.0	31.0	31.0	27.0	27.0
		τ	$N/mm^2$	せん断応力度	12.3	13.8	13.8	12.3	12.3
	ヒンジボルト・	n 1	本	ヒンジボルトの本数	4	4	4	4	4
		τ	$N/mm^2$	せん断応力度	53.0	54.3	54.3	53.0	53.0
	共通	n 2	本	締付装置の本数	2	2	2	2	2
		L 5	mm	締付装置の突出長さ	32	32	32	32	32
	締付装置	σ	$N/mm^2$	曲げ応力度	7.34	7.34	7.34	7.34	7.34
		τ	$N/mm^2$	せん断応力度	1.85	1.83	1.83	1.85	1.85
(本/+)壮果か		L p	mm	締付装置受けピンの軸支持間距離	77	77	77	77	77
柳门浓匣印	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	34.6	34.0	34.0	34.6	34.6
		τ	$N/mm^2$	せん断応力度	3.71	3.68	3.68	3.71	3.71
	締付装置	n b	本	締付装置受けボルトの本数	2	2	2	2	2
	受けボルト	σt	$N/mm^2$	引張応力度	8.07	7.98	7.98	8.07	8.07
		w _a	kN	扉枠の重量	2.65	2.85	2.85	2.65	2.65
		n ₃	本	ヒンジ側アンカーボルトの本数	6	6	6	6	6
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	2.36	2.64	2.64	2.36	2.36
, , , , ,	NU/K I	Q _d	kN	アンカーボルト1本当りのせん断力	2.36	2.64	2.64	2.36	2.36
		Та	kN	アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	31.5
			kN	アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	16.1

+14	7	20.0	224 AL	وتد ولي			水密扉No.		
XT 3	泉部12	記号	単位	定義	6	7	8	9	10
		G	kN	扉重量	6.34	6.34	6.34	6.34	6.34
		k _H	-	水平震度	0.856	0.856	0.856	0.856	0.856
		k _{UD}	-	鉛直震度	0.835	0.835	0.835	0.835	0.835
ŧ	专通	L 1	mm	扉重心とヒンジ芯間距離	573	573	573	573	573
		L ₂	mm	ヒンジ芯間距離	1799	1799	1799	1799	1799
		W 1	kN	スラスト荷重	11.7	11.7	11.7	11.7	11.7
		F 1	kN	転倒力	6.45	6.45	6.45	6.45	6.45
		L ₃	mm	ヒンジ板の2軸間距離	220	220	220	220	220
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	68.8	68.8	68.8	68.8	68.8
		τ	$N/mm^2$	せん断応力度	3.90	3.90	3.90	3.90	3.90
6 1/32		L ₄	mm	ヒンジ板と受板間距離	10	10	10	10	10
L / /	ヒンジピン	σ	$N/mm^2$	曲げ応力度	27.0	27.0	27.0	27.0	27.0
		τ	$N/mm^2$	せん断応力度	12.3	12.3	12.3	12.3	12.3
	ヒンジボルト・	n 1	本	ヒンジボルトの本数	4	4	4	4	4
		τ	$N/mm^2$	せん断応力度	53.0	53.0	53.0	53.0	53.0
	共通	n 2	本	締付装置の本数	2	2	2	2	2
		L ₅	mm	締付装置の突出長さ	32	32	32	32	32
	締付装置	σ	$N/mm^2$	曲げ応力度	7.34	7.34	7.34	7.34	7.34
		τ	$N/mm^2$	せん断応力度	1.85	1.85	1.85	1.85	1.85
<u>统</u> , 井井里 加		L p	mm	締付装置受けピンの軸支持間距離	77	77	77	77	77
和17 表直司	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	-	_	-
	受けピン	σ	$N/mm^2$	曲げ応力度	34.6	34.6	34.6	34.6	34.6
		τ	$N/mm^2$	せん断応力度	3.71	3.71	3.71	3.71	3.71
	締付装置	n _b	本	締付装置受けボルトの本数	2	2	2	2	2
	受けボルト	σt	$N/mm^2$	引張応力度	8.07	8.07	8.07	8.07	8.07
		w a	kN	扉枠の重量	2.65	2.65	2.65	2.65	2.65
		n ₃	本	ヒンジ側アンカーボルトの本数	6	6	6	6	6
7.14	ーザルト	T _d	kN	アンカーボルト1本当りの引張力	2.36	2.36	2.36	2.36	2.36
120	- 407P P	Q _d	kN	アンカーボルト1本当りのせん断力	2.36	2.36	2.36	2.36	2.36
		Та	kN	アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	31.5
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	16.1

対象部位		÷1 D	114 /-t-				水密扉No.		
X] 3	R 前小 <u>厂</u>	記方	単位	LE 戦	11	12	13	14	15
		G	kN	扉重量	75.4	79.5	281	13.8	13.8
		k _H	-	水平震度	0.856	0.856	3.47	0.941	0.941
		k _{UD}	-	鉛直震度	0.834	0.834	0.890	0.901	0.901
ŧ	专通	L 1	mm	扉重心とヒンジ芯間距離	1047	1365	3115	545	545
		L ₂	mm	ヒンジ芯間距離	1813	1920	4824	1606	1606
		W 1	kN	スラスト荷重	139	146	532	26.3	26.3
		F 1	kN	転倒力	113	138	831	15.5	15.5
		L ₃	mm	ヒンジ板の2軸間距離	410	410	577	190	190
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	145	153	65.7	53.0	53.0
		τ	$N/mm^2$	せん断応力度	9.40	9.92	7.59	4.18	4.18
F 1/32		L ₄	mm	ヒンジ板と受板間距離	50	50	107	35	35
L 7 9	ヒンジピン	σ	$N/mm^2$	曲げ応力度	79.0	97.0	156	134	134
		τ	$N/mm^2$	せん断応力度	23.6	28.9	43.6	21.5	21.5
	1. 1. 22-22 1. 1	n 1	本	ヒンジボルトの本数	6	6	8	4	4
	C > > 4/10 F	τ	$N/mm^2$	せん断応力度	113	127	169	64.9	64.9
	共通	n 2	本	締付装置の本数	4	4	12	4	4
		L 5	mm	締付装置の突出長さ	62	62	114	85	85
	締付装置	σ	$N/mm^2$	曲げ応力度	37.5	39.7	186	22.9	22.9
		τ	$N/mm^2$	せん断応力度	6.49	6.84	21.6	2.21	2.21
(会/+)壮果立//		L p	mm	締付装置受けピンの軸支持間距離	73	73	112	60	60
神竹 波直司	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	35	35	54	33	33
	受けピン	σ	$N/mm^2$	曲げ応力度	7.18	7.58	55.3	17.9	17.9
		τ	$N/mm^2$	せん断応力度	5.49	5.79	27.6	6.93	6.93
	締付装置	n _b	本	締付装置受けボルトの本数	2	2	4	2	2
	受けボルト	σt	$N/mm^2$	引張応力度	16.5	34.8	- *1	5.18	5.18
		w _a	kN	扉枠の重量	28.5	21.6	128	10.8	10.8
			本	ヒンジ側アンカーボルトの本数	23	8	90	10	10
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	10.3	35.7	21.0	3.61	3.61
, , , , ,	MOVE 1	$Q_{\rm d}$	kN	アンカーボルト1本当りのせん断力	10.3	35.7	21.0	3.61	3.61
		Та	kN	アンカーボルト1本当りの短期許容引張力	44.6	70.0	50.2	38.8	45.6
			kN	アンカーボルト1本当りの短期許容せん断力	14.2	49.0	26.8	17.5	10.2

注記*1:締付装置受けボルトにが引張力が作用しないことを示す。

	z. +n /1.	20.11	W 44	ويلاد وبلير			水密扉No.		
对3	泉部位.	記号	単位	<b>正</b> 義	16	17	18	19	20
		G	kN	扉重量	122	13.8	151	107	91.0
		k _H	-	水平震度	0.941	0.941	0.941	0.941	0.941
		k _{UD}	-	鉛直震度	0.901	0.901	0.901	0.901	0.901
共通		L 1	mm	扉重心とヒンジ芯間距離	2160	545	2103	2160	2010
	-		mm	ヒンジ芯間距離	3810	1606	3067	4034	2198
		W 1	kN	スラスト荷重	232	26.3	288	204	173
		F 1	kN	転倒力	189	15.5	268	160	202
		L ₃	mm	ヒンジ板の2軸間距離	600	190	600	600	400
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	95.5	53.0	69.8	53.3	54.7
		τ	$N/mm^2$	せん断応力度	6.63	4.18	4.46	3.70	4.56
H \/32		L ₄	mm	ヒンジ板と受板間距離	30	35	59	30	54
	ヒンジピン	σ	$N/mm^2$	曲げ応力度	80.0	134	94.0	67.0	131
ヒンジ		τ	$N/mm^2$	せん断応力度	39.6	21.5	31.6	33.4	37.9
	ヒンジザルト	n 1	本	ヒンジボルトの本数	6	4	4	6	4
	C > > 1/1/1/	τ	$N/mm^2$	せん断応力度	119	64.9	135	103	109
共通		n ₂	本	締付装置の本数	12	4	12	12	8
		L 5	mm	締付装置の突出長さ	115	85	90	97	92
	締付装置	σ	$N/mm^2$	曲げ応力度	52.4	22.9	87.2	38.7	80.7
		τ	$N/mm^2$	せん断応力度	4.52	2.21	8.05	3.97	7.28
接付装置郊		L p	mm	締付装置受けピンの軸支持間距離	98	60	67	98	63
ND 13 38 EL DD	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	96	33	30	-	30
	受けピン	σ	$N/mm^2$	曲げ応力度	38.3	17.9	40.5	198	33.3
		τ	$N/mm^2$	せん断応力度	16.8	6.93	16.2	14.8	14.6
	締付装置	n _b	本	締付装置受けボルトの本数	4	2	4	4	4
	受けボルト	σt	$N/mm^2$	引張応力度	- *1	5.18	- *1	- *1	- *1
		W a	kN	扉枠の重量	124	10.8	148	93.2	78.5
		n 3	本	ヒンジ側アンカーボルトの本数	46	10	29	43	24
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	9.48	3.61	20.9	8.43	18.3
, , , , ,	WITE 1.	$Q_{d}$	kN	アンカーボルト1本当りのせん断力	9.48	3.61	20.9	8.43	18.3
		Та	kN	アンカーボルト1本当りの短期許容引張力	35.7	40.7	34.7	37.9	38.0
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	35.0	16.6	35.0	35.0	19.1

注記*1:締付装置受けボルトにが引張力が作用しないことを示す。

		⇒n ¤	334 J-t-				水密扉No.		
X] 3	K 司미 <u>177</u>	武巧	里1业	LL 非近	21	22	23	24	25
		G	kN	扉重量	141	7.85	6.87	5.89	6.87
		k _H	-	水平震度	0.941	1.01	1.36	0.814	0.814
		k _{UD}	-	鉛直震度	0.901	0.927	0.984	0.740	0.740
ŧ	共通 L ₁		mm	扉重心とヒンジ芯間距離	2115	517	440	558	636
	L ₂		mm	ヒンジ芯間距離	3482	1516	1697	1720	1068
		W 1	kN	スラスト荷重	269	15.2	13.7	10.3	12.0
		F 1	kN	転倒力	230	9.16	8.23	5.73	9.92
		L ₃	mm	ヒンジ板の2軸間距離	500	190	155	235	400
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	58.5	50.6	12.7	34.3	28.8
		τ	$N/mm^2$	せん断応力度	4.88	3.11	1.64	1.83	1.20
トンジ		L ₄	mm	ヒンジ板と受板間距離	59	35	36	20	33
2.7.7	ヒンジピン	σ	$N/mm^2$	曲げ応力度	80.0	79.0	50.0	19.1	38.1
-		τ	$N/mm^2$	せん断応力度	27.1	12.8	8.90	6.09	8.32
	ヒンジボルト	n 1	本	ヒンジボルトの本数	4	4	4	4	4
	2004001	τ	$N/mm^2$	せん断応力度	121	37.8	34.1	25.0	33.1
	共通	n 2	本	締付装置の本数	12	4	2	4	6
		L 5	mm	締付装置の突出長さ	92	93	39	50	73
	締付装置	σ	$N/mm^2$	曲げ応力度	83.2	15.5	15.5	2.83	3.26
		τ	$N/mm^2$	せん断応力度	7.52	1.36	3.18	0.425	0.333
缔付装置部		L p	mm	締付装置受けピンの軸支持間距離	63	78	64	110	72
10113 20 E UP	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	30	33	33	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	34.6	16.6	28.1	1.65	3.19
		τ	$N/mm^2$	せん断応力度	15.1	4.25	9.94	0.480	0.375
	締付装置	n _b	本	締付装置受けボルトの本数	4	2	2	4	2
	受けボルト	σt	$N/mm^2$	引張応力度	- *1	3.17	7.46	1.29	1.92
		w _a	kN	扉枠の重量	118	3. 93	3.54	5.40	14.7
		n 3	本	ヒンジ側アンカーボルトの本数	34	5	5	6	2
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	15.2	4.08	3.81	1.14	6.46
, , , ,	1977 F	Q _d	kN	アンカーボルト1本当りのせん断力	15.2	4.08	3.81	1.14	6.46
		Та	kN	アンカーボルト1本当りの短期許容引張力	37.9	34.9	57.5	34.1	57.5
		Q a	kN	アンカーボルト1本当りの短期許容せん断力	17.6	18.4	24.3	23.9	40.1

注記*1:締付装置受けボルトにが引張力が作用しないことを示す。

	7. +n /L.	20.11	224 AL	وتحد جلح			水密扉No.		
刘鸿	R 部位	記号	単位		26	27	28	29	30
		G	kN	扉重量	6.87	6.88	6.62	6.38	7.51
		k _H	-	水平震度	0.814	0.814	0.814	0.814	0.814
		k _{UD}	-	鉛直震度	0.740	0.740	0.740	0.740	0.740
共通		L 1	mm	扉重心とヒンジ芯間距離	636	580	580	558	457
		L ₂	mm	ヒンジ芯間距離	1273	1760	1760	1720	1674
		W 1	kN	スラスト荷重	12.0	12.0	11.6	11.2	13.1
		F 1	kN	転倒力	8.78	6.75	6.50	6.21	6.63
		L ₃	mm	ヒンジ板の2軸間距離	400	250	250	235	245
	ヒンジ板		$N/mm^2$	曲げ応力度	28.8	80.0	76.8	37.3	45.7
		τ	$N/mm^2$	せん断応力度	1.20	4.00	3.84	1.98	2.33
F 1/32		L ₄	mm	ヒンジ板と受板間距離	33	15	15	20	21
E	ヒンジピン	σ	$N/mm^2$	曲げ応力度	33.6	71.8	65.3	20.7	23.9
		τ	$N/mm^2$	せん断応力度	7.37	18.4	17.7	6.60	7.04
	ヒンジザルト	n 1	本	ヒンジボルトの本数	4	4	4	4	4
	2224701	τ	$N/mm^2$	せん断応力度	31.6	54.5	52.4	27.1	31.2
共通		n 2	本	締付装置の本数	6	2	2	4	4
		L 5	mm	締付装置の突出長さ	73	50	50	50	52
	締付装置	σ	$N/mm^2$	曲げ応力度	3.26	11.5	11.1	3.07	3.79
		τ	$N/mm^2$	せん断応力度	0.333	1.44	1.38	0.460	0.542
(弦/+)壮界立(		L p	mm	締付装置受けピンの軸支持間距離	72	77	77	110	112
柳竹波匡印	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	3.19	39.2	39.2	1.79	2.16
		τ	$N/mm^2$	せん断応力度	0.375	2.87	2.76	0.520	0.610
	締付装置	n _b	本	締付装置受けボルトの本数	2	2	2	4	4
	受けボルト	$\sigma_{\rm t}$	$N/mm^2$	引張応力度	1.92	24.4	23.3	1.42	1.67
		w _a	kN	扉枠の重量	13.7	3.05	3.05	4.42	4.42
		n ₃	本	ヒンジ側アンカーボルトの本数	2	3	3	6	6
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	5.79	2.46	2.38	1.19	1.26
, , , , ,	NU/P I	Q d	kN	アンカーボルト1本当りのせん断力	5.79	2.46	2.38	1.19	1.26
		Та	kN	アンカーボルト1本当りの短期許容引張力	57.5	32.1	32.1	34.1	34.1
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	40.1	11.7	11.7	23.9	23.9

<del>21</del> 6	有如应	히브	用任	定美			水密扉No.		
X] 3	9C DDJ7	16.75	单位	人亡 非论	31	32	33	34	35
		G	kN	扉重量	6.38	6.38	6.81	9.32	6.87
		k _H	-	水平震度	0.814	0.941	0.941	0.941	0.941
		k _{UD}	-	鉛直震度	0.740	0.747	0.747	0.747	0.747
ŧ	共通	L 1	mm	扉重心とヒンジ芯間距離	558	558	558	558	636
		L ₂	mm	ヒンジ芯間距離	1720	1720	1720	1720	1105
		W 1	kN	スラスト荷重	11.2	11.2	11.9	16.3	12.1
		F 1	kN	転倒力	6.21	6.62	7.07	9.67	10.2
		L ₃	mm	ヒンジ板の2軸間距離	235	235	235	235	400
	ヒンジ板		$N/mm^2$	曲げ応力度	37.3	37.5	39.9	54.5	28.9
		τ	$N/mm^2$	せん断応力度	1.98	1.99	2.12	2.90	1.21
トンジ		L 4	mm	ヒンジ板と受板間距離	20	20	20	20	33
ヒンジピン ヒンジピン	ヒンジピン	: ンジピン σ	$N/mm^2$	曲げ応力度	20.7	22.3	23.9	31.9	39.2
		τ	$N/mm^2$	せん断応力度	6.60	7.03	7.51	10.3	8.52
	ヒンジボルト・	n 1	本	ヒンジボルトの本数	4	4	4	4	4
		τ	$N/mm^2$	せん断応力度	27.1	27.7	29.5	40.3	33.5
	共通	n 2	本	締付装置の本数	4	4	4	4	6
		L 5	mm	締付装置の突出長さ	50	50	50	65	73
	締付装置	σ	$N/mm^2$	曲げ応力度	3.07	3.57	3.80	4.25	3.75
		τ	$N/mm^2$	せん断応力度	0.460	0.535	0.570	0.572	0.383
碎什妆墨如		L p	mm	締付装置受けピンの軸支持間距離	110	110	110	110	72
柳竹漆匣印	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	_	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	1.79	2.08	2.21	3.02	3.19
		τ	$N/mm^2$	せん断応力度	0.520	0.610	0.650	0.880	0.430
	締付装置	n _b	本	締付装置受けボルトの本数	4	4	4	4	2
	受けボルト	σt	$N/mm^2$	引張応力度	1.42	1.63	1.76	2.36	2.21
		w _a	kN	扉枠の重量	4.91	4.91	4.42	15.2	16.7
		n ₃	本	ヒンジ側アンカーボルトの本数	5	6	6	14	4
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	1.45	1.30	1.36	0.947	3.52
, , ,	M-24 1.	Q d	kN	アンカーボルト1本当りのせん断力	1.45	1.30	1.36	0.947	3.52
		Та	kN	アンカーボルト1本当りの短期許容引張力	33.5	34.1	34.1	29.7	57.5
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	22.3	23.9	23.9	13.3	40.1

	z. +n /1.	20.0	W 61-	والحد وسلم			水密扉No.		
×T3	泉部位.	記号	単位	正義	36	37	38	39	40
		G	kN	扉重量	6.87	6.38	6.38	6.34	5.40
		k _H	-	水平震度	0.941	1.02	1.02	1.02	1.02
		k _{UD}	-	鉛直震度	0.747	0.786	0.786	0.786	0.786
ŧ	共通         L ₁ mm         屏重心とヒンジ芯		扉重心とヒンジ芯間距離	636	558	558	580	580	
	L 1 L 2		mm	ヒンジ芯間距離	1244	1720	1720	1760	1760
		W 1	kN	スラスト荷重	12.1	11.4	11.4	11.4	9.65
		F 1	kN	転倒力	9.38	6.96	6.96	6.97	5.94
		L ₃	mm	ヒンジ板の2軸間距離	400	235	235	250	250
	ヒンジ板		$N/mm^2$	曲げ応力度	28.9	38.2	38.2	75.8	64.6
		τ	$N/mm^2$	せん断応力度	1.21	2.03	2.03	3.78	3.22
H 1/37		L 4	mm	ヒンジ板と受板間距離	33	20	20	15	15
E 2 2 2 E	ヒンジピン	σ	$N/mm^2$	曲げ応力度	35.8	23.9	23.9	71.8	58.8
		τ	$N/mm^2$	せん断応力度	7.87	7.39	7.39	19.0	16.2
	le Valiette d. L	n 1	本	ヒンジボルトの本数	4	4	4	4	4
	C 2 2 470 F	τ	$N/mm^2$	せん断応力度	32.4	28.4	28.4	52.7	45.0
	共通		本	締付装置の本数	6	4	4	2	2
		L 5	mm	締付装置の突出長さ	73	50	50	50	50
	締付装置	σ	$N/mm^2$	曲げ応力度	3.75	3.85	3.85	13.3	11.3
		τ	$N/mm^2$	せん断応力度	0.383	0.577	0.577	1.66	1.41
碎什妆墨如		L p	mm	締付装置受けピンの軸支持間距離	72	110	110	77	77
에다 그의 20일 (11 대)에	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	_	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	3.19	2.24	2.24	45.7	39.2
		τ	$N/mm^2$	せん断応力度	0.430	0.650	0.650	3.31	2.82
	締付装置	n _b	本	締付装置受けボルトの本数	2	4	4	2	2
	受けボルト	σt	$N/mm^2$	引張応力度	2.21	1.76	1.76	28.0	23.8
		w a	kN	扉枠の重量	16.7	4.42	4.42	3.05	3.05
		n ₃	本	ヒンジ側アンカーボルトの本数	4	5	6	3	3
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	3.33	1.62	1.35	2.59	2.24
, , , ,	MANE 1.	$Q_{d}$	kN	アンカーボルト1本当りのせん断力	3.33	1.62	1.35	2.59	2.24
		Та	kN	アンカーボルト1本当りの短期許容引張力	57.5	33.5	34.1	32.1	32.1
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	40.1	22.3	23.9	11.7	11.7

-	み <i>さの は</i> -	⇒n ¤	334 /	<i></i>			水密扉No.		
X] 3	R 前1 <u>1</u>	武方	甲位	LE 戦	41	42	43	44	45
		G	kN	扉重量	31.9	5.89	13.2	6.38	51.4
		k _H	-	水平震度	1.02	1.42	1.42	1.42	1.79
		k _{UD}	-	鉛直震度	0.786	0.821	0.821	0.821	0.821
ŧ	专通	L1         mm         扉重心とヒンジ芯間距離         1625         475         9		915	558	1530			
		L ₂	mm	ヒンジ芯間距離	2185	1577	2055	1720	2228
		W 1	kN	スラスト荷重	57.0	10.8	24.2	11.7	93.6
		F 1	kN	転倒力	58.7	7.42	20.2	8.30	111
		L ₃	mm	ヒンジ板の2軸間距離	340	235	340	235	315
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	73.8	36.0	31.3	39.0	103
		τ	$N/mm^2$	せん断応力度	5.43	1.91	2.30	2.07	6.50
H \ / 37		L 4	mm	ヒンジ板と受板間距離	30	20	30	20	43
	ヒンジピン	σ	$N/mm^2$	曲げ応力度	83.0	25.5	28.8	28.7	116
		τ	$N/mm^2$	せん断応力度	27.7	7.88	9.50	8.82	33. 3
	le Valid Hand	n 1	本	ヒンジボルトの本数	6	4	6	4	4
	C > S AVER	τ	$N/mm^2$	せん断応力度	60.0	27.8	23.1	30.4	86.0
共通		n ₂	本	締付装置の本数	4	4	2	4	4
		L 5	mm	締付装置の突出長さ	100	50	100	50	43
	締付装置	σ	$N/mm^2$	曲げ応力度	11.4	4.96	13.2	5.36	80.7
		τ	$N/mm^2$	せん断応力度	1.28	0.743	1.48	0.803	15.7
碎什妆墨如		L p	mm	締付装置受けピンの軸支持間距離	- *2	110	- *2	110	58
<b>神</b> 门 表直 司	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	-	_	30
	受けピン	σ	$N/mm^2$	曲げ応力度	- *2	2.89	- *2	3.12	123
		τ	$N/mm^2$	せん断応力度	19.3	0.840	22.4	0.910	48.9
	締付装置	n _b	本	締付装置受けボルトの本数	2	4	2	4	2
	受けボルト	σt	$N/mm^2$	引張応力度	27.1	2.27	31.4	2.44	36.7
		w a	kN	扉枠の重量	8.34	5.40	5.89	5.40	11.8
		n ₃	本	ヒンジ側アンカーボルトの本数	6	8	5	6	26
7.74	ーギルト	T d	kN	アンカーボルト1本当りの引張力	10.2	1.17	4.45	1.71	8.89
120	- 4074 P	Q d	kN	アンカーボルト1本当りのせん断力	10.2	1.17	4.45	1.71	8.89
		Та	kN	アンカーボルト1本当りの短期許容引張力	51.5	34.1	30.0	33.5	16.1
		Q a	kN	アンカーボルト1本当りの短期許容せん断力	10.3	23.9	13.9	22.3	10.1

注記*2:締付装置受けピンが無いことを示す。

	7. to 14		XX (-L-				水密扉No.		
X) 3	R 前112	記方	甲位	上 戦	46	47	48	49	50
		G	kN	扉重量	10.3	10.8	91.0	48.0	5.89
		k _H	-	水平震度	1.79	1.27	1.37	1.37	0.947
		k _{UD}	-	鉛直震度	0.821	0.901	0.927	0.927	0.986
共通		L 1	mm	扉重心とヒンジ芯間距離	527	840	2900	1420	525
		L ₂	mm	ヒンジ芯間距離	1496	1525	2800	2221	1279
		W 1	kN	スラスト荷重	18.8	20.6	176	92.5	11.7
		F 1	kN	転倒力	15.9	18.2	245	92.0	7.60
		L ₃	mm	ヒンジ板の2軸間距離	190	340	600	500	245
	ヒンジ板		$N/mm^2$	曲げ応力度	62.7	26.6	72.2	49.6	40.9
		τ	$N/mm^2$	せん断応力度	3.84	1.96	5.02	3.31	2.08
トンジ		L ₄	mm	ヒンジ板と受板間距離	35	30	32	30	21
	ヒンジピン	σ	$N/mm^2$	曲げ応力度	136	26.0	110	82.0	27.1
		τ	$N/mm^2$	せん断応力度	22.1	8.57	51.2	31.9	8.07
	ヒンジボルト	n 1	本	ヒンジボルトの本数	4	6	6	6	4
	C 9 9 400 P	τ	$N/mm^2$	せん断応力度	52.4	20.2	124	124	29.7
	共通	n 2	本	締付装置の本数	4	2	6	4	4
		L ₅	mm	締付装置の突出長さ	93	100	99	100	52
	締付装置	σ	$N/mm^2$	曲げ応力度	35.9	9.59	36.5	38.8	3.47
		τ	$N/mm^2$	せん断応力度	3.14	1.08	2.76	2.91	0.496
接付店置如		L p	mm	締付装置受けピンの軸支持間距離	58	- *2	98	98	112
에이 13 32 년 이에	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	33	-	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	24.3	_ *2	192	201	1.98
		τ	$N/mm^2$	せん断応力度	9.81	16.3	10.3	10.9	0.560
	締付装置	n _b	本	締付装置受けボルトの本数	2	2	4	4	4
	受けボルト	σt	$N/mm^2$	引張応力度	7.35	22.9	23.2	24.5	1.50
		w a	kN	扉枠の重量	-	5.40	76.5	48.1	4.91
		n ₃	本	ヒンジ側アンカーボルトの本数	-	3	10	7	3
アンカ	ーボルト	T _d	kN	アンカーボルト1本当りの引張力	-	6.63	27.1	15.5	2.93
, , ,	MANE 1.	Q _d	kN	アンカーボルト1本当りのせん断力	-	6.63	27.1	15.5	2.93
		Та	kN	アンカーボルト1本当りの短期許容引張力	-	30.5	27.9	50.2	34.1
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	_	14.9	29.8	35.0	23.9

注記*2:締付装置受けピンが無いことを示す。

		ən 11	¥4 /	<b>亡</b>			水密扉No.		
X] 3	R 前112	記方	甲位	LE 戦	51	52	53	54	55
		G	kN	扉重量	6.33	5.89	12.8	6.81	10.8
		k _H	-	水平震度	0.947	1.03	1.10	1.10	2.48
		k _{UD}	-	鉛直震度	0.986	1.07	1.10	1.10	0.838
共通		L 1	mm	扉重心とヒンジ芯間距離	455	455	915	558	740
		L ₂	mm	ヒンジ芯間距離	1459	1450	1855	1720	1550
		W 1	kN	スラスト荷重	12.6	12.2	26.8	14.4	19.9
		F 1	kN	転倒力	6.93	6.87	20.3	8.39	22.9
		L ₃	mm	ヒンジ板の2軸間距離	245	245	340	235	105
	ヒンジ板		$N/mm^2$	曲げ応力度	44.0	42.6	34.8	48.0	17.3
		τ	$N/mm^2$	せん断応力度	2.24	2.17	2.56	2.55	2.46
H 1/32		L ₄	mm	ヒンジ板と受板間距離	21	21	30	20	5
	ヒンジピン	σ	$N/mm^2$	曲げ応力度	23.9	23.9	28.8	28.7	29.0
		τ	$N/mm^2$	せん断応力度	7.36	7.30	9.55	8.91	31.8
	ヒンジボルト	n 1	本	ヒンジボルトの本数	4	4	6	4	8
	C 9 9 400 P	τ	$N/mm^2$	せん断応力度	30.6	29.9	24.7	35.3	60.2
	共通	n 2	本	締付装置の本数	4	4	2	4	6
		L ₅	mm	締付装置の突出長さ	52	52	100	50	30
	締付装置	σ	$N/mm^2$	曲げ応力度	3.72	3.77	9.81	4.44	33.3
		τ	$N/mm^2$	せん断応力度	0.531	0.538	1.11	0.666	6.20
接付店置郊		L p	mm	締付装置受けピンの軸支持間距離	112	112	- *2	110	-
에다 그리 것이는 다니 아까	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	2.12	2.15	- *2	2.59	-
		τ	$N/mm^2$	せん断応力度	0.600	0.610	16.7	0.750	-
	締付装置	n _b	本	締付装置受けボルトの本数	4	4	2	4	-
	受けボルト	σt	$N/mm^2$	引張応力度	1.63	1.63	23.4	2.01	- *1
		w _a	kN	扉枠の重量	4.91	3.44	5.40	4.91	17.7
		n 3	本	ヒンジ側アンカーボルトの本数	4	3	3	6	31
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	2.03	2.59	7.24	1.63	2.19
, , , ,	MORE L.	Q _d	kN	アンカーボルト1本当りのせん断力	2.03	2.59	7.24	1.63	2.19
		Та	kN	アンカーボルト1本当りの短期許容引張力	34.1	34.1	29.0	34.1	27.6
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	23.9	23.9	11.7	23.9	22.5

注記*1:締付装置受けボルトにが引張力が作用しないことを示す。 注記*2:締付装置受けピンが無いことを示す。

+1.4	2. <i>-&gt;n (</i>	20.11	W (L	يتحد يبلير		水密扉No.	
灯》	R部位	記号	単位	<b>正</b> 義	56	57	58
		G	kN	扉重量	12.74	12.74	12.74
		k _H	-	水平震度	1.300	1.300	1.300
		k _{UD}	-	鉛直震度	1.000	1.000	1.000
共通		L 1	mm	扉重心とヒンジ芯間距離	732	732	732
		L ₂	mm	ヒンジ芯間距離	1382	1382	1382
		W 1	kN	スラスト荷重	12.74	12.74	12.74
		F 1	kN	転倒力	15.03	15.03	15.03
		L ₃	mm	ヒンジ板の2軸間距離	250	250	250
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	33.18	33.18	33.18
		τ	$N/mm^2$	せん断応力度	2.65	2.65	2.65
14.3.4.2.5		L ₄	mm	ヒンジ板と受板間距離	25	25	25
ヒンシ	ヒンジピン	σ	$N/mm^2$	曲げ応力度	44.63	44.63	44.63
		τ	$N/mm^2$	せん断応力度	7.81	7.81	7.81
	14 X 2 ⁵ 4 ² 4 . 1	n 1	本	ヒンジボルトの本数	8	8	8
	C > S AND F	τ	$N/mm^2$	せん断応力度	22.39	22.39	22.39
	共通	n ₂	本	締付装置の本数	2	2	2
		L ₅	mm	締付装置の突出長さ	18	18	18
	締付装置	σ	$N/mm^2$	曲げ応力度	56.25	56.25	56.25
		τ	$N/mm^2$	せん断応力度	11.73	11.73	11.73
绘件壮界如		L p	mm	締付装置受けピンの軸支持間距離	51	51	51
<b>神</b> 门 表直司)	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	116	116	116
		τ	$N/mm^2$	せん断応力度	26.4	26.4	26.4
	締付装置	n b	本	締付装置受けボルトの本数	4	4	4
	受けボルト	σt	$N/mm^2$	引張応力度	54.5	54.5	54.5
		w _a	kN	扉枠の重量	9.70	9.70	9.70
		n ₃	本	ヒンジ側アンカーボルトの本数	3	3	3
マンカ	ーザルト	T d	kN	アンカーボルト1本当りの引張力	7.12	7.12	7.12
120	- 4174 P	Q d	kN	アンカーボルト1本当りのせん断力	10.33	10.33	10.33
		Та	kN	アンカーボルト1本当りの短期許容引張力	49.35	49.35	49.35
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	28.43	28.43	28.43

## 1.2 耐震評価結果

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板*2	69.2	235	0.30
	ヒンジ	ヒンジピン*2	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
1		締付装置 ^{*2}	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15
		ヒンジ板 ^{*2}	68.7	235	0.30
	ヒンジ	ヒンジピン*2	39.2	345	0.12
		ヒンジボルト	54.3	375	0.15
2		締付装置*2	8.00	205	0.04
	締付装置部	締付装置受けピン ^{*2}	34.6	205	0.17
		締付装置受けボルト	7.98	651	0.02
	アン	カーボルト*1	2.64	16.1	0.17
		ヒンジ板 ^{*2}	68.7	235	0.30
	ヒンジ	ヒンジピン*2	39.2	345	0.12
		ヒンジボルト	54.3	375	0.15
3		締付装置*2	8.00	205	0.04
	締付装置部	締付装置受けピン ^{*2}	34.6	205	0.17
		締付装置受けボルト	7.98	651	0.02
	アン	カーボルト*1	2.64	16.1	0.17
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン*2	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
4		締付装置*2	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン*2	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
5		締付装置*2	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15

注記*1:アンカーボルトについては単位をkNとし,引張及びせん断のうち評価結果が厳しい値を記載する。 なお,引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン*2	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
6		締付装置*2	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン*2	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
7		締付装置*2	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン*2	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
8		締付装置 ^{*2}	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン ^{*2}	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
9		締付装置 ^{*2}	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン ^{*2}	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
10		締付装置 ^{*2}	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト ^{*1}	2.36	16.1	0.15

注記*1:アンカーボルトについては単位をkNとし,引張及びせん断のうち評価結果が厳しい値を記載する。 なお,引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	146	215	0.68
	ヒンジ	ヒンジピン*2	89.0	345	0.26
		ヒンジボルト	113	404	0.28
11		締付装置*2	39.2	205	0.20
	締付装置部	締付装置受けピン ^{*2}	12.0	345	0.04
		締付装置受けボルト	16.5	651	0.03
	アン	カーボルト*1	10.3	14.2	0.73
		ヒンジ板 ^{*2}	154	215	0.72
	ヒンジ	ヒンジピン*2	110	345	0.32
		ヒンジボルト	127	404	0.32
12		締付装置*2	41.5	205	0.21
	締付装置部	締付装置受けピン ^{*2}	12.6	345	0.04
		締付装置受けボルト	34.8	700	0.05
	アン	カーボルト*1	35.7	49.0	0.73
		ヒンジ板 ^{*2}	67.1	205	0.33
	ヒンジ	ヒンジピン*2	174	345	0.51
		ヒンジボルト	169	236	0.72
13		締付装置*2	190	345	0.56
	締付装置部	締付装置受けピン ^{*2}	73.1	345	0.22
		締付装置受けボルト	- *3	- * ³	- *3
	アン	カーボルト*1	21.0	26.8	0.79
		ヒンジ板 ^{*2}	53.5	205	0.27
	ヒンジ	ヒンジピン*2	140	345	0.41
		ヒンジボルト	64.9	259	0.26
14		締付装置 ^{*2}	23.3	205	0.12
	締付装置部	締付装置受けピン ^{*2}	21.6	345	0.07
		締付装置受けボルト	5.18	450	0.02
	アン	カーボルト*1	3.61	17.5	0.21
		ヒンジ板 ^{*2}	53.5	205	0.27
	ヒンジ	ヒンジピン*2	140	345	0.41
		ヒンジボルト	64.9	259	0.26
15		締付装置*2	23.3	205	0.12
	締付装置部	締付装置受けピン ^{*2}	21.6	345	0.07
		締付装置受けボルト	5.18	450	0.02
	アン	カーボルト*1	3.61	10.2	0.36

注記*1:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。 なお、引張とせん断が同時に作用しないことから組合せの評価は行わない。

注記*2:組合せ荷重を記載。

注記*3:締付装置受けボルトに引張力が作用しないことを示す。

水密扉 No.	対象評価部材		発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
16	ヒンジ	ヒンジ板 ^{*2}	96.2	205	0.47
		ヒンジピン*2	106	345	0.31
		ヒンジボルト	119	375	0.32
	締付装置部	締付装置*2	53.0	205	0.26
		締付装置受けピン ^{*2}	48.2	205	0.24
		締付装置受けボルト	- * ³	— * ³	— * ³
	アンカーボルト*1		9.48	35.0	0.28
		ヒンジ板 ^{*2}	53.5	205	0.27
	ヒンジ	ヒンジピン*2	140	345	0.41
		ヒンジボルト	64.9	259	0.26
17		締付装置 ^{*2}	23.3	205	0.12
	締付装置部	締付装置受けピン ^{*2}	21.6	345	0.07
		締付装置受けボルト	5.18	450	0.02
	アンカーボルト*1		3.61	16.6	0.22
	ヒンジ	ヒンジ板 ^{*2}	70.3	205	0.35
		ヒンジピン*2	109	686	0.16
		ヒンジボルト	135	404	0.34
18	締付装置部	締付装置 ^{*2}	88.4	205	0.44
		締付装置受けピン ^{*2}	49.3	345	0.15
		締付装置受けボルト	- *3	- * ³	- * ³
	アンカーボルト*1		20.9	34.7	0.61
	ヒンジ	ヒンジ板 ^{*2}	53.7	205	0.27
		ヒンジピン*2	88.6	205	0.44
		ヒンジボルト	103	375	0.28
19	締付装置部	締付装置 ^{*2}	39.4	205	0.20
		締付装置受けピン ^{*2}	199	205	0.97
		締付装置受けボルト	- *3	_ *3	- * ³
	アンカーボルト*1		8.43	35.0	0.25
20		ヒンジ板*2	55.3	205	0.27
	ヒンジ	ヒンジピン*2	147	345	0.43
		ヒンジボルト	109	236	0.46
	締付装置部	締付装置*2	81.7	205	0.40
		締付装置受けピン ^{*2}	41.9	345	0.13
		締付装置受けボルト	- *3	*3	_ *3
	アンカーボルト*1		18.3	19.1	0.96

注記*1:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。 なお、引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

注記*3:締付装置受けボルトに引張力が作用しないことを示す。

水密扉 No.	対象評価部材		発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	59.2	205	0.29
	ヒンジ	ヒンジピン*2	92.8	345	0.27
		ヒンジボルト	121	236	0.52
21	締付装置部	締付装置*2	84.3	205	0.42
		締付装置受けピン ^{*2}	43.4	345	0.13
		締付装置受けボルト	_ * ³	_ * ³	— * ³
	アンカーボルト*1		15.2	17.6	0.87
	ヒンジ	ヒンジ板 ^{*2}	50.9	215	0.24
		ヒンジピン*2	82.1	686	0.12
		ヒンジボルト	37.8	404	0.10
22		締付装置 ^{*2}	15.7	205	0.08
	締付装置部	締付装置受けピン ^{*2}	18.2	345	0.06
		締付装置受けボルト	3.17	651	0.01
	アンカーボルト*1		4.08	18.4	0.23
	ヒンジ	ヒンジ板 ^{*2}	13.1	215	0.07
		ヒンジピン*2	52.4	686	0.08
		ヒンジボルト	34.1	404	0.09
23	締付装置部	締付装置*2	16.5	205	0.09
		締付装置受けピン ^{*2}	33.0	345	0.10
		締付装置受けボルト	7.46	651	0.02
	アンカーボルト*1		3.81	24.3	0.16
	ヒンジ	ヒンジ板 ^{*2}	34.5	215	0.17
		ヒンジピン*2	21.9	205	0.11
		ヒンジボルト	25.0	135	0.19
24	締付装置部	締付装置*2	2.93	390	0.01
		締付装置受けピン ^{*2}	1.65	205	0.01
		締付装置受けボルト	1.29	651	0.01
	アンカーボルト*1		1.14	23.9	0.05
25		ヒンジ板 ^{*2}	28.9	215	0.14
	ヒンジ	ヒンジピン*2	40.7	345	0.12
		ヒンジボルト	33.1	375	0.09
	締付装置部	締付装置*2	3. 32	345	0.01
		締付装置受けピン ^{*2}	0.375	199	0.01
		締付装置受けボルト	1.92	651	0.01
	アンカーボルト*1		6.46	40.1	0.17

注記*1:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。 なお、引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

注記*3:締付装置受けボルトに引張力が作用しないことを示す。

水密扉 No.	対象評価部材		発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
26	ヒンジ	ヒンジ板 ^{*2}	28.9	215	0.14
		ヒンジピン*2	35.9	345	0.11
		ヒンジボルト	31.6	375	0.09
	締付装置部	締付装置*2	3.32	345	0.01
		締付装置受けピン ^{*2}	0.375	199	0.01
		締付装置受けボルト	1.92	651	0.01
	アンカーボルト*1		5.79	40.1	0.15
	ヒンジ	ヒンジ板 ^{*2}	80.3	215	0.38
		ヒンジピン*2	78.5	345	0.23
		ヒンジボルト	54.5	375	0.15
27		締付装置*2	11.8	205	0.06
	締付装置部	締付装置受けピン ^{*2}	39.2	205	0.20
		締付装置受けボルト	24.4	651	0.04
	アンカーボルト*1		2.46	11.7	0.22
	ヒンジ	ヒンジ板 ^{*2}	77.1	215	0.36
		ヒンジピン*2	72.1	345	0.21
		ヒンジボルト	52.4	375	0.14
28	締付装置部	締付装置*2	11.3	205	0.06
		締付装置受けピン ^{*2}	39.2	205	0.20
		締付装置受けボルト	23.3	651	0.04
	アンカーボルト*1		2.38	11.7	0.21
	ヒンジ	ヒンジ板 ^{*2}	37.5	215	0.18
		ヒンジピン*2	23.7	205	0.12
		ヒンジボルト	27.1	135	0.21
29	締付装置部	締付装置*2	3.18	390	0.01
		締付装置受けピン ^{*2}	1.79	205	0.01
		締付装置受けボルト	1.42	651	0.01
	アンカーボルト*1		1.19	23.9	0.05
30		ヒンジ板 ^{*2}	45.9	215	0.22
	ヒンジ	ヒンジピン*2	26.9	205	0.14
		ヒンジボルト	31.2	135	0.24
	締付装置部	締付装置*2	3.91	390	0. 02
		締付装置受けピン ^{*2}	2.16	205	0.02
		締付装置受けボルト	1.67	651	0.01
	アンカーボルト*1		1.26	23.9	0.06

注記*1:アンカーボルトについては単位をkNとし,引張及びせん断のうち評価結果が厳しい値を記載する。 なお,引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

水密扉 No.	対象評価部材		発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	37.5	215	0.18
	ヒンジ	ヒンジピン*2	23.7	205	0.12
		ヒンジボルト	27.1	135	0.21
31	締付装置部	締付装置*2	3.18	390	0.01
		締付装置受けピン ^{*2}	1.79	205	0.01
		締付装置受けボルト	1.42	651	0.01
	アンカーボルト*1		1.45	22.3	0.07
		ヒンジ板 ^{*2}	37.6	215	0.18
	ヒンジ	ヒンジピン*2	25.4	205	0.13
		ヒンジボルト	27.7	135	0.21
32		締付装置*2	3.69	390	0.01
	締付装置部	締付装置受けピン ^{*2}	2.08	205	0.02
		締付装置受けボルト	1.63	651	0.01
	アンカーボルト*1		1.30	23.9	0.06
	ヒンジ	ヒンジ板 ^{*2}	40.0	215	0.19
		ヒンジピン*2	27.2	205	0.14
		ヒンジボルト	29.5	135	0.22
33	締付装置部	締付装置*2	3.93	390	0.02
		締付装置受けピン ^{*2}	2.21	205	0.02
		締付装置受けボルト	1.76	651	0.01
	アンカーボルト*1		1.36	23.9	0.06
	ヒンジ	ヒンジ板 ^{*2}	54.8	215	0.26
		ヒンジピン*2	36.5	205	0.18
		ヒンジボルト	40.3	135	0.30
34	締付装置部	締付装置 ^{*2}	4.37	390	0.02
		締付装置受けピン*2	3.02	205	0.02
		締付装置受けボルト	2.36	651	0.01
	アンカーボルト*1		0.947	13.3	0.08
		ヒンジ板 ^{*2}	29.0	215	0.14
35	ヒンジ	ヒンジピン*2	41.9	345	0.13
		ヒンジボルト	33.5	375	0.09
	締付装置部	締付装置*2	3.81	345	0.02
		締付装置受けピン ^{*2}	0.430	199	0.01
		締付装置受けボルト	2.21	651	0.01
	アンカーボルト*1		3.52	40.1	0.09

注記*1:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。 なお、引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

水密扉 No.	対象評価部材		発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	29.0	215	0.14
	ヒンジ	ヒンジピン*2	38.3	345	0.12
		ヒンジボルト	32.4	375	0.09
36	締付装置部	締付装置*2	3.81	345	0.02
		締付装置受けピン*2	0.430	199	0.01
		締付装置受けボルト	2.21	651	0.01
	アンカーボルト*1		3.33	40.1	0.09
		ヒンジ板 ^{*2}	38.3	215	0.18
	ヒンジ	ヒンジピン*2	27.1	205	0.14
		ヒンジボルト	28.4	135	0.22
37		締付装置 ^{*2}	3.98	390	0.02
	締付装置部	締付装置受けピン*2	2.24	205	0.02
		締付装置受けボルト	1.76	651	0.01
	アンカーボルト*1		1.62	22.3	0.08
	ヒンジ	ヒンジ板 ^{*2}	38.3	215	0.18
		ヒンジピン*2	27.1	205	0.14
		ヒンジボルト	28.4	135	0.22
38	締付装置部	締付装置*2	3.98	390	0.02
		締付装置受けピン*2	2.24	205	0.02
		締付装置受けボルト	1.76	651	0.01
	アンカーボルト*1		1.35	23.9	0.06
	ヒンジ	ヒンジ板 ^{*2}	76.1	215	0.36
		ヒンジピン*2	79.0	345	0.23
		ヒンジボルト	52.7	375	0.15
39	締付装置部	締付装置*2	13.6	205	0.07
		締付装置受けピン ^{*2}	45.7	205	0.23
		締付装置受けボルト	28.0	651	0.05
	アンカーボルト*1		2.59	11.7	0.23
		ヒンジ板 ^{*2}	64.8	215	0.31
40	ヒンジ	ヒンジピン*2	65.1	345	0.19
		ヒンジボルト	45.0	375	0.12
	締付装置部	締付装置 ^{*2}	11.6	205	0.06
		締付装置受けピン ^{*2}	39.2	205	0.20
		締付装置受けボルト	23.8	651	0.04
	アンカーボルト*1		2.24	11.7	0.20

注記*1:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。 なお、引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。
水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	74.4	205	0.37
	ヒンジ	ヒンジピン*2	96. 0	345	0.28
		ヒンジボルト	60.0	375	0.16
41		締付装置 ^{*2}	11.6	215	0.06
	締付装置部	締付装置受けピン ^{*2}	19.3	225	0.09
		締付装置受けボルト	27.1	651	0.05
	アン	カーボルト*1	10.2	10.3	0.99
		ヒンジ板 ^{*2}	36.2	215	0.17
	ヒンジ	ヒンジピン*2	28.9	205	0.15
		ヒンジボルト	27.8	135	0.21
42		締付装置*2	5.13	390	0.02
	締付装置部	締付装置受けピン ^{*2}	2.89	205	0.02
		締付装置受けボルト	2.27	651	0.01
	アン	カーボルト ^{*1}	1.17	23.9	0.05
		ヒンジ板 ^{*2}	31.6	205	0.16
	ヒンジ	ヒンジピン*2	33. 2	345	0.10
		ヒンジボルト	23.1	375	0.07
43		締付装置*2	13.4	215	0.07
	締付装置部	締付装置受けピン ^{*2}	22.4	225	0.10
		締付装置受けボルト	31.4	651	0.05
	アン	カーボルト*1	4.45	13.9	0.33
		ヒンジ板*2	39.2	215	0.19
	ヒンジ	ヒンジピン*2	32.5	205	0.16
		ヒンジボルト	30. 4	135	0.23
44		締付装置 ^{*2}	5.54	390	0.02
	締付装置部	締付装置受けピン ^{*2}	3.12	205	0.02
		締付装置受けボルト	2.44	651	0.01
	アン	カーボルト*1	1.71	22.3	0.08
		ヒンジ板 ^{*2}	104	205	0.51
	ヒンジ	ヒンジピン*2	130	686	0.19
		ヒンジボルト	86.0	404	0.22
45		締付装置*2	85.2	205	0.42
	締付装置部	締付装置受けピン*2	149	686	0.22
		締付装置受けボルト	36.7	651	0.06
	アン	カーボルト ^{*1}	8.89	10.1	0.89

注記*1:アンカーボルトについては単位をkNとし,引張及びせん断のうち評価結果が厳しい値を記載する。 なお,引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板*2	63.1	215	0.30
	ヒンジ	ヒンジピン*2	142	686	0.21
		ヒンジボルト	52.4	404	0.13
46		締付装置 ^{*2}	36.4	205	0.18
	締付装置部	締付装置受けピン ^{*2}	29.7	686	0.05
		締付装置受けボルト	7.35	651	0.02
	アン	カーボルト ^{*1}	—	_	-
		ヒンジ板 ^{*2}	26.9	205	0.14
	ヒンジ	ヒンジピン ^{*2}	29.9	345	0.09
		ヒンジボルト	20. 2	375	0.06
47		締付装置*2	9.78	215	0.05
	締付装置部	締付装置受けピン ^{*2}	16.3	225	0.08
		締付装置受けボルト	22.9	651	0.04
	アン	カーボルト ^{*1}	6.63	14.9	0.45
		ヒンジ板 ^{*2}	72.8	205	0.36
	ヒンジ	ヒンジピン*2	141	345	0.41
		ヒンジボルト	124	375	0.34
48		締付装置*2	36.8	205	0.18
	締付装置部	締付装置受けピン ^{*2}	192	205	0.94
		締付装置受けボルト	23. 2	205	0.12
	アン	カーボルト ^{*1}	27.1	27.9	0.98
		ヒンジ板 ^{*2}	49.9	205	0.25
	ヒンジ	ヒンジピン ^{*2}	98.9	345	0.29
		ヒンジボルト	124	520	0.24
49		締付装置*2	39.1	205	0.20
	締付装置部	締付装置受けピン ^{*2}	201	205	0.99
		締付装置受けボルト	24.5	205	0.12
	アン	カーボルト*1	15.5	35.0	0.45
		ヒンジ板 ^{*2}	41.0	215	0.20
	ヒンジ	ヒンジピン*2	30. 5	205	0.15
		ヒンジボルト	29.7	135	0.22
50		締付装置*2	3.58	390	0.01
50	締付装置部	締付装置受けピン ^{*2}	1.98	205	0.01
		締付装置受けボルト	1.50	651	0.01
	アン	カーボルト ^{*1}	2.93	23.9	0.13

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	44.2	215	0.21
	ヒンジ	ヒンジピン*2	27.1	205	0.14
		ヒンジボルト	30.6	135	0.23
51		締付装置 ^{*2}	3.84	390	0.01
	締付装置部	締付装置受けピン ^{*2}	2.12	205	0.02
		締付装置受けボルト	1.63	651	0.01
	アン	カーボルト*1	2.03	23.9	0.09
		ヒンジ板 ^{*2}	42.7	215	0.20
	ヒンジ	ヒンジピン*2	27.1	205	0.14
52		ヒンジボルト	29.9	135	0.23
		締付装置 ^{*2}	3.89	390	0.01
	締付装置部	締付装置受けピン ^{*2}	2.15	205	0.02
		締付装置受けボルト	1.63	651	0.01
	アン	カーボルト*1	2.59	23.9	0.11
		ヒンジ板 ^{*2}	35.0	205	0.18
	ヒンジ	ヒンジピン*2	33.2	345	0.10
		ヒンジボルト	24.7	375	0.07
53		締付装置 ^{*2}	10.0	215	0.05
	締付装置部	締付装置受けピン ^{*2}	16.7	225	0.08
		締付装置受けボルト	23.4	651	0.04
	アン	カーボルト*1	7.24	11.7	0.62
		ヒンジ板 ^{*2}	48.2	215	0.23
	ヒンジ	ヒンジピン*2	32.6	205	0.16
		ヒンジボルト	35.3	135	0.27
54		締付装置 ^{*2}	4.59	390	0.02
	締付装置部	締付装置受けピン ^{*2}	2.59	205	0.02
		締付装置受けボルト	2.01	651	0.01
	アン	カーボルト*1	1.63	23.9	0.07
		ヒンジ板 ^{*2}	17.9	205	0.09
	ヒンジ	ヒンジピン*2	62.3	205	0.31
		ヒンジボルト	60.2	205	0.30
55		締付装置*2	35.0	205	0.18
	締付装置部	締付装置受けピン ^{*2}	_	_	_
		締付装置受けボルト	_		_
	アン	カーボルト ^{*1}	2.19	22.5	0.10

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	33.5	235	0.14
	ヒンジ	ヒンジピン*2	46.7	235	0.20
		ヒンジボルト	22.4	121	0.19
56		締付装置 ^{*2}	59.9	235	0.25
	締付装置部	締付装置受けピン ^{*2}	124.6	235	0.53
		締付装置受けボルト	54.5	205	0.27
	アン	カーボルト ^{*1}	10.3	28.4	0.36
		ヒンジ板 ^{*2}	33.5	235	0.14
	ヒンジ	ヒンジピン*2	46.7	235	0.20
		ヒンジボルト	22.4	121	0.19
57	締付装置部	締付装置 ^{*2}	59.9	235	0.25
		締付装置受けピン ^{*2}	124.6	235	0.53
		締付装置受けボルト	54.5	205	0.27
	アン	カーボルト*1	10.3	28.4	0.36
		ヒンジ板 ^{*2}	33.5	235	0.14
	ヒンジ	ヒンジピン*2	46.7	235	0.20
		ヒンジボルト	22.4	121	0.19
58		締付装置 ^{*2}	59.9	235	0.25
	締付装置部	締付装置受けピン*2	124.6	235	0.53
		締付装置受けボルト	54.5	205	0.27
	アン	カーボルト ^{*1}	10.3	28.4	0.36

注記*1:アンカーボルトについては単位をkNとし,引張及びせん断のうち評価結果が厳しい値を記載する。 なお,引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

## 2. 強度評価

V-3-別添3-1-5「水密扉の強度計算書」における検討対象水密扉について,以下に強度 評価に必要な入力値と強度評価結果を示す。

# 2.1 入力値

対象部位		÷1 0	)14 (-t-				水密扉No.		
		記号	単位	正我	1	2	3	4	5
共通		h	mm	当該扉の浸水深さ	8600	17100	8600	17100	8600
共	;通	$\rho_{o}$	$t/m^3$	水の密度	1.03	1.03	1.03	1.03	1.03
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
		LPL	mm	扉板の短辺長さ	432	432	416	450	416
		Н	mm	浸水深さ	8600	17100	8600	17100	8600
		β	-	浸水エリアの幅と水深の比による補正係数	1	1	1	1	1
F	( +c:	$\alpha_{\rm H}$	-	余震震度(水平方向)	0.421	0.421	0.421	0.421	0.421
<b>万年 位</b> 文		t	mm	扉板の厚さ	9	9	12	12	12
		ρ _s	$t/m^3$	扉板の密度	7.85	7.85	7.85	7.85	7.85
		$W_{\rm D}$	kN	扉重量	6.88	6.62	6.38	7.51	6.38
		Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$	$2.\ 400 \times 10^4$	$2.400\!\times\!10^4$	$2.\ 400\!\times\!10^4$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	86.9	173	86.9	173	86.9
		b	mm	芯材に作用する荷重の負担幅	432	432	421	438	421
芯	材	L	mm	芯材の支持スパン	1060	1060	995	995	995
		Z 2	$mm^3$	芯材の断面係数	$1.530\!\times\!10^5$	$1.530\!\times\!10^5$	$1.\ 530 \times 10^5$	$1.530\!\times\!10^5$	$1.530\!\times\!10^5$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	$1.260 \times 10^3$	$1.260\!\times\!10^3$	$1.260 \times 10^3$	$1.260\!\times\!10^3$	$1.260\!\times\!10^3$
	共通	n 2	本	締付装置の本数	-	2	4	4	4
		L 5	mm	締付装置の突出長さ	-	50	50	52	50
	締付装置	σ	$\mathrm{N}/\mathrm{mm}^2$	曲げ応力度	-	9.78	136	296	136
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	1.19	20.4	42.3	20.4
(立 (上))十 四( 立)		L _P	mm	締付装置受けピンの軸支持間距離	-	77	110	112	110
柿竹 設直部	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	0	48	48	48
	受けピン	σ	$\mathrm{N}/\mathrm{mm}^2$	曲げ応力度	-	29.3	79.0	169	79.0
		τ	$N/mm^2$	せん断応力度	-	2.38	22.9	47.5	22.9
	締付装置	n b	本	締付装置受けボルトの本数	-	2	4	4	4
	受けボルト	σt	$N/mm^2$	引張応力度	-	20.1	61.5	128	61.5
		L 1	mm	躯体開口部の高さ	2100	2100	2100	2100	2100
		L ₂	mm	躯体開口部の幅	1000	1000	1000	1000	1000
				0°方向 ヒンジ側/上側 アンカーボルト本数	6	6	0	0	0
			-	0°方向 開閉側/下側 アンカーボルト本数	6	6	0	0	0
		n	4	90°方向 ヒンジ側/上側 アンカーボルト本数	6	6	11	12	10
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	6	6	11	12	11
101	NOP 1	0.0	kN/*	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	11.7	-	-	-
		પ્રત	AU/ 44	0° 方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	11.7	-	-	-
		Та	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	-	32.1	-	34.1	33.5
		Та	AU1/ 74	90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	-	32.1	-	34.1	33.5

対位	- 如 (古	*0 P.	展時	<b>空</b> 单			水密扉No.		
刘豸	この立	記方	甲位	上 莪	6	7	8	9	10
		h	mm	当該扉の浸水深さ	8600	17400	17400	4600	4600
対象部位         共通         扉板         扉板         ※初日装置部         締付装置         総付装置         ※行装置         ※行装置         ※行装置         ※行装置         アンカーボルト	$\rho_{o}$	$t/m^3$	水の密度	1.03	1.03	1.03	1.03	1.03	
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
		L _{PL}	mm	扉板の短辺長さ	376	420	475	416	416
		Н	mm	浸水深さ	8600	17400	17400	4600	4600
		β	-	浸水エリアの幅と水深の比による補正係数	1	1	1	1	1
E	f +c:	$\alpha_{\rm H}$	-	余震震度(水平方向)	0.421	0.421	0.421	0.453	0.453
<b>79年 位</b> 文		t	mm	扉板の厚さ	12	19	19	12	12
		ρs	$t/m^3$	扉板の密度	7.85	7.85	7.85	7.85	7.85
		$W_{\rm D}$	kN	扉重量	5.89	6.87	6.87	6.38	6.81
		Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$2.400 \times 10^4$	$6.017\!\times\!10^4$	$6.017\!\times\!10^4$	$2.400\!\times\!10^4$	2.400 $\times$ 10 ⁴
		W 2	$kN/m^2$	扉下端に作用する津波荷重	86.9	176	176	46.5	46.5
		b	mm	芯材に作用する荷重の負担幅	381	500	582	421	421
芯	材	L	mm	芯材の支持スパン	995	850	850	995	995
		Ζ2	mm ³	芯材の断面係数	$1.\ 530 \times 10^5$	$1.950\!\times\!10^5$	$1.950\!\times\!10^5$	$1.530\!\times\!10^5$	$1.530\!\times\!10^5$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	$1.260 \times 10^3$	$1.500\!\times\!10^3$	$1.500 \times 10^3$	$1.260\!\times\!10^3$	$1.260\!\times\!10^3$
	共通	n 2	本	締付装置の本数	4	6	6	4	4
		L ₅	mm	締付装置の突出長さ	50	73	73	50	50
	締付装置	σ	$N/mm^2$	曲げ応力度	136	128	126	69.4	68.9
		τ	$N/mm^2$	せん断応力度	20.4	13.0	12.8	10.4	10.3
447 / L 1+ 100 40		L _P	mm	締付装置受けピンの軸支持間距離	110	72	72	110	110
柿勺装直部	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	48	0	0	48	48
	受けピン	σ	$N/mm^2$	曲げ応力度	78.9	106	104	40.2	39.9
		τ	$N/mm^2$	せん断応力度	22.9	14.7	14.4	11.7	11.6
	締付装置	n b	本	締付装置受けボルトの本数	4	2	2	4	4
	受けボルト	σt	$N/mm^2$	引張応力度	61.4	75.0	73.8	31.3	31.1
		L 1	mm	躯体開口部の高さ	2100	2000	1975	2100	2080
		L ₂	mm	躯体開口部の幅	1000	1000	995	1000	1000
				0° 方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	0
				0°方向 開閉側/下側 アンカーボルト本数	0	0	0	0	0
		n	4	90°方向 ヒンジ側/上側 アンカーボルト本数	11	4	4	11	11
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	9	4	7	11	11
1010	NOP 1	0.0	LN/*	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	-	-	-	-
		∿y a	n10/ 44	0° 方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	-	-	-	-
		Та	kN/木	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	34.1	57.5	57.5	34.1	34.1
		1 4		90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	34.1	57.5	57.5	34.1	34.1

** 4	カル (土	÷⊐ ₽.	展告	<b> </b>			水密扉No.		
刘豸	部业	記方	甲位	上 莪	11	12	13	14	15
		h	mm	当該扉の浸水深さ	4800	13400	13400	8800	8800
対象部位       共通       扉板       「扉板       ※村装置部       縮付装置       ※行装置部       ※行装置       ジロビン       アンカーボルト	$\rho_{o}$	$t/m^3$	水の密度	1.03	1.03	1.03	1.03	1.03	
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
		L _{PL}	mm	扉板の短辺長さ	366	420	475	432	432
		Н	mm	浸水深さ	4800	13400	13400	8800	8800
		β	-	浸水エリアの幅と水深の比による補正係数	1	1	1	1	1
5	(HF	$\alpha_{\rm H}$	-	余震震度(水平方向)	0.453	0.453	0.453	0.551	0.551
扉枚		t	mm	扉板の厚さ	12	19	19	9	9
		ρs	$t/m^3$	扉板の密度	7.85	7.85	7.85	7.85	7.85
		WD	kN	扉重量	9.32	6.87	6.87	6.34	5.40
		Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$2.400 \times 10^4$	$6.017\!\times\!10^4$	$6.017\!\times\!10^4$	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$
		W ₂	$kN/m^2$	扉下端に作用する津波荷重	48.5	136	136	88.9	88.9
		b	mm	芯材に作用する荷重の負担幅	358	500	582	432	432
芯	材	L	mm	芯材の支持スパン	1530	850	850	1060	1060
		Ζ2	$mm^3$	芯材の断面係数	$2.490 \times 10^{5}$	$1.950\!\times\!10^5$	$1.950{\times}10^5$	$1.150{\times}10^5$	$1.150\!\times\!10^5$
		A s	$mm^2$	芯材のせん断断面積	$1.600 \times 10^3$	$1.500 \times 10^3$	$1.500 \times 10^3$	$9.750  imes 10^2$	$9.750 \times 10^2$
	共通	n 2	本	締付装置の本数	4	6	6	2	-
		L ₅	mm	締付装置の突出長さ	65	73	73	50	-
	締付装置	σ	$N/mm^2$	曲げ応力度	121	64.7	64.7	41.6	-
		τ	$N/mm^2$	せん断応力度	16.2	6.59	6.57	5.15	-
detter ( 1, 1)-to 1000 -torn		L _P	mm	締付装置受けピンの軸支持間距離	110	72	72	77	-
柿付装直部	縮付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	48	0	0	0	-
	受けピン	σ	$N/mm^2$	曲げ応力度	85.6	53.4	53.2	127	-
		τ	$N/mm^2$	せん断応力度	24.9	7.41	7.39	10.3	-
	締付装置	n b	本	締付装置受けボルトの本数	4	2	2	2	-
	受けボルト	σt	$N/mm^2$	引張応力度	66.6	38.0	37.9	87.0	-
		L 1	mm	躯体開口部の高さ	2300	1990	1980	2100	2100
		L ₂	mm	躯体開口部の幅	2000	995	995	1000	1000
				0°方向 ヒンジ側/上側 アンカーボルト本数	27	7	8	6	6
				0° 方向 開閉側/下側 アンカーボルト本数	27	3	4	6	6
		n	*	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	6	6
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	0	0	0	6	6
101	アンカーボルト		ĿN/木	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	13.3	40.1	40.1	11.7	-
		γa	111/ 14	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	13.3	40.1	40.1	11.7	-
		Та	ĿN/木	90° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	-	-	-	32.1	-
		Ta kN∕≉	AN/ 44	90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	-	-	-	32.1	-

#### 2.2 強度評価結果

水密扉 No.	対	象評価部材	発生値           象評価部材         (応力度又は荷重)           (N/mm ² )		発生応力度/ 許容限界値
		扉板	138	235	0.59
		芯材	48.5	235	0.21
1		締付装置	*3	_ *3	- * ³
1	締付装置部	締付装置受けピン ^{*1}	_ *3	_ *3	_ *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	アン	カーボルト*4	_ *2	_ *2	_ *2
		扉板	222	235	0.95
		芯材	94.8	235	0.41
0		締付装置	10.0	205	0.05
2	締付装置部	締付装置受けピン ^{*1}	29.3	205	0.15
		締付装置受けボルト	20.1	651	0.04
	アン	カーボルト*4	0.389	11.7	0.04
		扉板	71.7	235	0.31
		芯材	40.8	235	0.18
J	締付装置部	締付装置	141	390	0.37
5		締付装置受けピン ^{*1}	79.0	205	0.39
		締付装置受けボルト	61.5	651	0.10
	アン	カーボルト*4	- *2	— *2	- * ²
		扉板	167	235	0.72
		芯材	84.5	235	0.36
4		締付装置	305	390	0.79
Ŧ	締付装置部	締付装置受けピン*1	169	205	0.83
		締付装置受けボルト	128	651	0.20
	アン	カーボルト*4	19.9	34.1	0.59
		扉板	71.7	235	0.31
		芯材	40.8	235	0.18
5		締付装置	141	390	0.37
5	締付装置部	締付装置受けピン*1	79.0	205	0.39
		締付装置受けボルト	61.5	651	0.10
	アン	カーボルト*4	11.6	33.5	0.35

注記*1:曲げとせん断のうち、厳しい結果を記載。

注記*2:アンカーボルトに引張力が作用しないことを示す。

注記*3:逆圧が作用せず,当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

					-
水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	58.8	235	0.26
		芯材	36.9	235	0.16
C		締付装置	141	390	0.37
0	締付装置部	締付装置受けピン ^{*1}	78.9	205	0.39
		締付装置受けボルト	61.4	651	0.10
	アン	´カーボルト ^{*4}	12.8	34.1	0.38
		扉板	59.1	235	0.26
		芯材	34.2	135	0.26
7		締付装置	130	345	0.38
(	締付装置部	締付装置受けピン ^{*1}	106	345	0.31
		締付装置受けボルト	75.0	651	0.12
	アン	´カーボルト ^{*4}	27.6	57.5	0.48
		扉板	75.5	235	0.33
		芯材	39.9	135	0.30
0	締付装置部	締付装置	128	345	0.38
0		締付装置受けピン ^{*1}	104	345	0.31
		締付装置受けボルト	73.8	651	0.12
	アン	´カーボルト ^{*4}	27.2	57.5	0.48
		扉板	39.6	235	0.17
		芯材	22.4	235	0.10
0		締付装置	71.7	390	0.19
9	締付装置部	締付装置受けピン ^{*1}	40.2	205	0.20
		締付装置受けボルト	31.3	651	0.05
	アン	カーボルト*4	5.32	34.1	0.16
		扉板	39.6	235	0.17
		芯材	22.7	235	0.10
10		締付装置	71.2	390	0.19
10	締付装置部		39.9	205	0.20
		締付装置受けボルト	31.1	651	0.05
	アン	カーボルト*4	5.29	34.1	0.16

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	32.1	235	0.14
		芯材	28.9	235	0.13
11		締付装置	124	390	0.32
11	締付装置部	締付装置受けピン ^{*1}	85.6	205	0.42
		締付装置受けボルト	66.6	651	0.11
	アン	カーボルト*4	4.86	13.3	0.37
		扉板	46.4	235	0.20
		芯材	27.0	135	0.20
1.0		締付装置	65.7	345	0.20
12	締付装置部	締付装置受けピン ^{*1}	53.4	345	0.16
		締付装置受けボルト	38.0	651	0.06
	アン	カーボルト*4	18.7	40.1	0.47
		扉板	59.4	235	0.26
		芯材	31.4	135	0.24
1.0	締付装置部	締付装置	65.7	345	0.20
13		締付装置受けピン ^{*1}	53.2	345	0.16
12     締付書       13     締付書       14     締付書		締付装置受けボルト	37.9	651	0.06
	アン	カーボルト*4	14.0	40.1	0.35
		扉板	153	235	0.66
		芯材	71.0	235	0.31
1.4		締付装置	42.6	205	0.21
14	締付装置部	締付装置受けピン ^{*1}	127	205	0.62
		締付装置受けボルト	87.0	651	0.14
	アン	´カーボルト ^{*4}	1.69	11.7	0.15
		扉板	153	235	0.66
		芯材	70.0	235	0.30
15		締付装置	_ *3	_ *3	_ *3
15	締付装置部	締付装置受けピン*1	_ *3	_ *3	_ *3
		締付装置受けボルト	_ *3	- *3	- *3
	アン	カーボルト*4	_ *2	_ *2	_ *2

注記*2:アンカーボルトに引張力が作用しないことを示す。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

## 3. 強度評価(溢水)

V-3-別添3-2-2「水密扉の強度計算書(溢水)」における検討対象水密扉について、以下に強度評価に必要な入力値と強度評価結果を示す。

# 3.1 入力値

414	- Jon 1.1.		114 Abs	وون مشر			水密扉No.		
对场	2部12	記方	単位	正義	1	2	3	4	5
		h	mm	当該扉の浸水深さ	13000	13000	13000	13000	13000
ŧ	+通	$\rho_{o}$	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
司石		L _{PL}	mm	扉板の短辺長さ	460	460	460	460	460
19	= 1)X	Ζ ₁	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$1.350 \times 10^4$	$1.350  imes 10^4$	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	128	128	128	128	128
		b	mm	芯材に作用する荷重の負担幅	445	445	445	445	445
芯	材	L	mm	芯材の支持スパン	1060	1310	1310	1060	1060
		Ζ ₂	mm ³	芯材の断面係数	$1.150 \times 10^{5}$	$1.150  imes 10^5$	$1.150\!\times\!10^5$	$1.150\!\times\!10^5$	$1.150 \times 10^{5}$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	8. $450 \times 10^{2}$	8.450 × $10^{2}$	8.450×10 ²	8.450 × $10^2$	8.450×10 ²
	共通	n 2	本	締付装置の本数	-	Ι	-	-	-
		L ₅	mm	締付装置の突出長さ	-		-	-	-
	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	-	I	-	-	-
		τ	$\mathrm{N}/\mathrm{mm}^2$	せん断応力度	-	-	-	-	-
統付法署郊		L _P	mm	締付装置受けピンの軸支持間距離	-		-	-	-
柳竹衣巨巾	締付装置 受けピン	b'	mm	締付装置と締付装置受けピンが接する長さ	-	I	I	-	-
		σ	$\mathrm{N/mm^2}$	曲げ応力度	-		-	-	-
		τ	$\mathrm{N/mm}^2$	せん断応力度	-		-	-	-
	締付装置	n _b	本	締付装置受けボルトの本数	-			-	-
	受けボルト	σ _t	$\mathrm{N/mm}^2$	引張応力度	-	I	-	-	-
		L 1	mm	躯体開口部の高さ	2100	2100	2100	2100	2100
		L ₂	mm	躯体開口部の幅	1000	1250	1250	1000	1000
				0°方向 ヒンジ側/上側 アンカーボルト本数	4	4	4	4	4
			*	0°方向 開閉側/下側 アンカーボルト本数	4	4	4	4	4
		11	4	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	0
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	0	0	0	0	0
			kN/本	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	16.1
				0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	16.1
		Та	a kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	31.5
		Ta		90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	31.5

	t	<i>i</i> c	N/ 11-				水密扉No.		
刘家茚位		記号	単位	正義	6	7	8	9	10
		h	mm	当該扉の浸水深さ	13000	13000	13000	13000	13000
ŧ	<b></b> <i> </i>	$\rho_{o}$	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
F	z +6	L _{PL}	mm	扉板の短辺長さ	460	460	460	460	460
ļ	巨权	Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$
		w 2	$kN/m^2$	扉下端に作用する津波荷重	128	128	128	128	128
		b	mm	芯材に作用する荷重の負担幅	445	445	445	445	445
花	芯材	L	mm	芯材の支持スパン	1060	1060	1060	1060	1060
		Ζ2	mm ³	芯材の断面係数	$1.150{\times}10^5$	$1.150 \times 10^{5}$	$1.150\!\times\!10^5$	$1.150 \times 10^{5}$	$1.150  imes 10^5$
		A s	$mm^2$	芯材のせん断断面積	8.450×10 ²	8. $450 \times 10^{2}$	8.450×10 ²	8. $450 \times 10^{2}$	8.450×10 ²
	共通	n 2	本	締付装置の本数	-	-	-	-	-
	締付装置	L ₅	mm	締付装置の突出長さ	-	-	-	-	-
		σ	$\mathrm{N/mm}^2$	曲げ応力度	-	-	-	_	-
		τ	$\mathrm{N}/\mathrm{mm}^2$	せん断応力度	-	-	-	-	-
統付准置郊		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-	-	-
에너 13 35 년 네가	締付装置 受けピン	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	_	-	-
		σ	$\mathrm{N/mm}^2$	曲げ応力度	_	-	_	-	-
		τ	$N/mm^2$	せん断応力度	-	-	-	-	-
	締付装置	n _b	本	締付装置受けボルトの本数	_	-	_	-	-
	受けボルト	σt	$N/mm^2$	引張応力度	-	-	-	-	-
		L 1	mm	躯体開口部の高さ	2100	2100	2100	2100	2100
		L ₂	mm	躯体開口部の幅	1000	1000	1000	1000	1000
				0°方向 ヒンジ側/上側 アンカーボルト本数	4	4	4	4	4
		n	本	0°方向 開閉側/下側 アンカーボルト本数	4	4	4	4	4
				90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	0
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	0	0	0	0	0
		Qa	kN/本	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	16.1
		Qa	Q a kN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	16.1
		Та	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	31.5
		la		90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	31.5

414	a store tala		114 AL-	واون مانر			水密扉No.			
对装	2部12	記方	単位.	正義	11	12	13	14	15	
		h	mm	当該扉の浸水深さ	3800	3300	3300	3800	300	
ŧ	专通	ρ。	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00	
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665	
F	ē 15	L _{PL}	mm	扉板の短辺長さ	460	460	460	460		
ļą	巨竹风	Ζ ₁	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$1.350\!\times\!10^4$	$1.350  imes 10^4$	$1.350\!\times\!10^4$	$1.350 \times 10^4$	Ι	
		W 2	$kN/m^2$	扉下端に作用する津波荷重	37.3	32.4	32.4	37.3	I	
		b	mm	芯材に作用する荷重の負担幅	445	445	445	445	-	
芯材		L	mm	芯材の支持スパン	1060	1060	1060	1060	Ι	
		Ζ2	$\mathrm{mm}^3$	芯材の断面係数	$1.150 \times 10^{5}$	$1.150 \times 10^{5}$	$1.150{\times}10^5$	$1.150 \times 10^{5}$	I	
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	$8.450 \times 10^{2}$	8. $450 \times 10^{2}$	8.450×10 ²	8.450×10 ²	Ι	
共通		n 2	本	締付装置の本数	-	-	-	-	-	
		L ₅	mm	締付装置の突出長さ	_	-	-	-	-	
※本 (上)オ 四 かり	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	-	-	-	-	-	
		τ	$N/mm^2$	せん断応力度	_	-	-	-	Ι	
		L _P	mm	締付装置受けピンの軸支持間距離	_	1	-	-	I	
柳门漆匣印	締付装置 受けピン	b'	mm	締付装置と締付装置受けピンが接する長さ	_	-	-	-	-	
		σ	$N/mm^2$	曲げ応力度	_		-	-	Ι	
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	-	-	-	-	
	締付装置	n _b	本	締付装置受けボルトの本数	-	-	-	-	-	
	受けボルト	σt	$N/mm^2$	引張応力度	-	-	-	-	-	
		L 1	mm	躯体開口部の高さ	2100	2100	2100	2100	1900	
		L ₂	mm	躯体開口部の幅	1000	1000	1000	1000	1450	
				0°方向 ヒンジ側/上側 アンカーボルト本数	4	4	4	4	15	
		2	*	0°方向 開閉側/下側 アンカーボルト本数	4	4	4	4	15	
		11	~~~	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	0	
アンカーボルト				90°方向 開閉側/下側 アンカーボルト本数	0	0	0	0	0	
		0.2	ĿN/木	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	14.2	
		Qa	111/ 244	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	14.2	
		T a	Ta LN	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	44.6
			kN/本	90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	44.6	

							水密扉No.		
対象	8部位	記号	単位	定義	16	17	18	19	20
		h	mm	当該扉の浸水深さ	300	1000	1000	900	900
ŧ	+通	ρ。	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
-	₹+c	L _{PL}	mm	扉板の短辺長さ	-	349	300	349	300
月	<b>卢</b> 权	Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	-	$6.017 \times 10^{4}$	2. $400 \times 10^4$	$6.017 \times 10^{4}$	2.400×10 ⁴
		W 2	kN/m²	扉下端に作用する津波荷重	-	9.81	9.81	8.83	8.83
		b	mm	芯材に作用する荷重の負担幅	-	705	300	705	300
芯材		L	mm	芯材の支持スパン	-	2535	855	2535	855
		Ζ2	mm ³	芯材の断面係数	-	$1.250 \times 10^{6}$	$6.330 \times 10^{4}$	$1.250 \times 10^{6}$	$6.330 \times 10^{4}$
		A s	$mm^2$	芯材のせん断断面積	-	2.808 $\times 10^{3}$	$3.800 \times 10^{3}$	2. $808 \times 10^{3}$	$3.800 \times 10^{3}$
共通		n ₂	本	締付装置の本数	-	-	-	-	-
		L ₅	mm	締付装置の突出長さ	-	-	-	-	-
	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	-	-	-	-	-
		τ	$N/mm^2$	せん断応力度	-	-	-	-	-
統付准置並		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-	-	-
柳门漆匣印	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	_	-	-	-	-
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	-	-	-	-
	締付装置	n _b	本	締付装置受けボルトの本数	-	-	-	-	-
	受けボルト	σt	$N/mm^2$	引張応力度	_	-	-	-	-
		L 1	mm	躯体開口部の高さ	1900	3200	-	3200	-
		L ₂	mm	躯体開口部の幅	2100	2700	-	2700	-
				0°方向 ヒンジ側/上側 アンカーボルト本数	16	8	-	8	-
		n	*	0°方向 開閉側/下側 アンカーボルト本数	0	8	-	8	-
アンカーボルト		11	774	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	-	0	-
				90°方向 開閉側/下側 アンカーボルト本数	8	0	—	0	-
		Q a	kN/木	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	16.6	18.4	-	18.4	-
		Q a	Q a kN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	16.6	18.4	-	18.4	-
		T	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	44.6	41.1	-	41.1	_
		1 4	AU1/ 74	90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	44.6	41.1	-	41.1	_

			114 644	واون مبادر			水密扉No.		
对场	8 部112	記方	単位.	正義	21	22	23	24	25
		h	mm	当該扉の浸水深さ	1000	1000	500	500	2000
¥	;通	$\rho_{o}$	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
-	i +=	L _{PL}	mm	扉板の短辺長さ	240	300	472	300	650
(J)	= 1/X	Ζ ₁	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$2.400\!\times\!10^4$	2. $400 \times 10^4$	$6.017\!\times\!10^4$	2. $400 \times 10^4$	$8.067\!\times\!10^4$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	9.81	9.81	4.91	4.91	19.7
		b	mm	芯材に作用する荷重の負担幅	240	300	876	300	994
芯材		L	mm	芯材の支持スパン	1360	880	2220	855	5230
		Ζ2	mm ³	芯材の断面係数	$6.330 \times 10^{4}$	3. $560 \times 10^4$	$1.250 \times 10^6$	$6.330 \times 10^4$	$1.399\!\times\!10^6$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	$3.800 \times 10^{3}$	2.850×10 ³	$2.808 \times 10^{3}$	3.800 $\times 10^{3}$	2.680 $\times 10^{3}$
	共通	n ₂	本	締付装置の本数	-	-	-	-	12
締付		L 5	mm	締付装置の突出長さ	-	-	-	-	114
	締付装置	σ	$N/mm^2$	曲げ応力度	-	-	-	-	58.5
		τ	$N/mm^2$	せん断応力度	-	-	-	-	5.10
		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-	-	112
柿竹表直部	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	-	-	54
	受けピン	σ	$N/mm^2$	曲げ応力度	-	-	-	-	17.5
		τ	$N/mm^2$	せん断応力度	-	-	-	-	8.70
	締付装置	n _b	本	締付装置受けボルトの本数	-	-	-	-	-
	受けボルト	σ _t	$N/mm^2$	引張応力度	-	-	-	-	-
		L 1	mm	躯体開口部の高さ	3570	2100	2485	-	5745
		L ₂	mm	躯体開口部の幅	1550	1000	3300	-	5450
				0°方向 ヒンジ側/上側 アンカーボルト本数	15	0	9	-	39
			*	0°方向 開閉側/下側 アンカーボルト本数	15	0	9	-	39
		11	4	90°方向 ヒンジ側/上側 アンカーボルト本数	0	3	0	-	0
アンカーボルト				90°方向 開閉側/下側 アンカーボルト本数	0	3	0	-	0
		Qa	0 11//+	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	18.4	18.4	18.4	_	26.8
		Q a	KIN/ AP	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	18.4	18.4	18.4	-	26.8
		Та	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	41.1	48.5	41.1	-	50.2
			a kN/本	90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	41.1	48.5	41.1	-	50.2

対象部位		10 F			水密扉No.					
対象	2部位	記号	単位	定義	26	27	28	29	30	
		h	mm	当該扉の浸水深さ	2000	2000	2000	2000	2000	
ŧ	专通	ρ。	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00	
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665	
-	i +c	L _{PL}	mm	扉板の短辺長さ	955	955	880	955	800	
月	巨权	Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$2.042 \times 10^{5}$	$2.042 \times 10^{5}$	$2.042 \times 10^{5}$	2. $042 \times 10^{5}$	$2.042 \times 10^{5}$	
		W 2	$kN/m^2$	扉下端に作用する津波荷重	19.7	19.7	19.7	19.7	19.7	
		b	mm	芯材に作用する荷重の負担幅	-	-	880	-	800	
芯材		L	mm	芯材の支持スパン	-	-	3580	-	3300	
		Ζ2	$mm^3$	芯材の断面係数	-	-	$1.399 \times 10^{6}$	-	$1.399\!\times\!10^6$	
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	-	-	2. $680 \times 10^{3}$	-	$2.680 \times 10^{3}$	
共通		n ₂	本	締付装置の本数	-	-	-	-	-	
		L ₅	mm	締付装置の突出長さ	-	-	-	-	-	
67 / L 1+ 100 +m	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	-	-	-	-	-	
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	-	-	-	-	
		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-	-	-	
和113% 巨 中	締付装置 受けピン	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	-	-	-	
		σ	$\mathrm{N/mm^2}$	曲げ応力度	-	-	-	-	-	
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	-	-	-	-	
	締付装置	n _b	本	締付装置受けボルトの本数	-	_	-	-	-	
	受けボルト	σt	$\mathrm{N/mm}^2$	引張応力度	-	_	-	-	-	
		L 1	mm	躯体開口部の高さ	2100	2160	4880	2160	4880	
		L ₂	mm	躯体開口部の幅	1000	1000	4500	1000	4500	
				0°方向 ヒンジ側/上側 アンカーボルト本数	6	6	32	6	18	
		n	*	0°方向 開閉側/下側 アンカーボルト本数	5	5	20	5	20	
		11	~~~	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	0	
アンカーボルト				90°方向 開閉側/下側 アンカーボルト本数	0	0	0	0	0	
		0.2	ĿN/木	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	17.5	10.2	35.0	16.6	35.0	
		Q a	KIV/ 44	0° 方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	17.5	10.2	35.0	16.6	35.0	
		Та	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	38.8	45.6	35.7	40.7	34.7	
		ıα	1711/ 244	90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	38.8	45.6	35. 7	40.7	34.7	

	alar I.L.	<i>i</i> c 0					水密扉No.			
对驾	和位	記号	単位	正義	31	32	33	34	35	
		h	mm	当該扉の浸水深さ	2000	2000	2000	700	1500	
#	通	ρο	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00	
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665	
-	i+=	L _{PL}	mm	扉板の短辺長さ	750	406	400	348	730	
月	三九又	Ζ1	mm ³ /m	扉板の断面係数	$6.017 \times 10^{4}$	$2.042 \times 10^{5}$	$2.042 \times 10^{5}$	$1.350 \times 10^4$	$1.\ 307\!\times\!10^5$	
		W 2	$kN/m^2$	扉下端に作用する津波荷重	19.7	19.7	19.7	6.87	14.8	
		b	mm	芯材に作用する荷重の負担幅	900	403	390	347	-	
芯材		L	mm	芯材の支持スパン	3620	3690	3880	900	-	
		Ζ2	mm ³	芯材の断面係数	$1.399 \times 10^{6}$	2. $310 \times 10^5$	$2.310 \times 10^{5}$	9. $100 \times 10^{3}$	-	
		A s	$mm^2$	芯材のせん断断面積	$2.680 \times 10^{3}$	$1.800 \times 10^{3}$	$1.800\!\times\!10^3$	$1.444 \times 10^{3}$	-	
共通		n 2	本	締付装置の本数	-	-	-	-	-	
		L 5	mm	締付装置の突出長さ	-	-	-	-	-	
谷山壮栗亦	締付装置	σ	$N/mm^2$	曲げ応力度	-	-	-	-	-	
		τ	$N/mm^2$	せん断応力度	-	-	-	-	-	
		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-		-	
和日本国の	締付装置 受けピン	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	-	-	-	
		σ	$N/mm^2$	曲げ応力度	-	-	-	-	-	
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	-	-	-	-	
	締付装置	n _b	本	締付装置受けボルトの本数	-	-	-	-	-	
	受けボルト	σt	$\mathrm{N/mm}^2$	引張応力度	-	-	-	-	-	
		L 1	mm	躯体開口部の高さ	5090	3200	4880	2090	1800	
		L ₂	mm	躯体開口部の幅	4000	3500	4800	995	600	
				0°方向 ヒンジ側/上側 アンカーボルト本数	25	14	27	5	0	
		n	*	0°方向 開閉側/下側 アンカーボルト本数	25	8	14	5	0	
アンカーボルト		11	~~~	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	5	
				90°方向 開閉側/下側 アンカーボルト本数	0	0	0	0	6	
		Q a	kN/木	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	35.0	19.1	17.6	18.4	24.3	
		Qa	KIV/ 244	0° 方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	35.0	19.1	17.6	18.4	24.3	
		T a	Tak	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	37.9	38.0	37.9	34.8	57.5
			a kN/本	90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	37.9	38.0	37.9	34.8	57.5	

4 ا ب	te + 17 ( - La		777 (12	وید جنے			水密扉No.		
对意	老部11公	記方	单位.	正 義	36	37	38	39	40
		h	mm	当該扉の浸水深さ	400	800	400	400	800
ŧ	+通	$\rho_{o}$	$t/m^3$	水の密度	1.03	1.03	1.03	1.03	1.03
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
F	7 H5	L _{PL}	mm	扉板の短辺長さ	416	450	416	755	360
ļ	巨机风	Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	2. $400 \times 10^4$	2.400 $\times$ 10 ⁴	2. $400 \times 10^4$	2. $400 \times 10^4$	$2.400 \times 10^{4}$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	4.05	8.09	4.05	4.05	8.09
		b	mm	芯材に作用する荷重の負担幅	421	438	421	755	393
芯材		L	mm	芯材の支持スパン	995	995	995	2520	925
		Ζ2	mm ³	芯材の断面係数	$1.530 \times 10^{5}$	$1.530 \times 10^{5}$	$1.530 \times 10^{5}$	4. $720 \times 10^{5}$	$1.530 \times 10^5$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	$1.260 \times 10^{3}$	$1.260 \times 10^{3}$	$1.260 \times 10^{3}$	$1.600 \times 10^3$	$1.260\!\times\!10^3$
	共通	n 2	本	締付装置の本数	4	-	4	-	4
		L ₅	mm	締付装置の突出長さ	50	-	50	-	52
	締付装置	σ	$N/mm^2$	曲げ応力度	2.83	-	2.83	-	5.19
		τ	$N/mm^2$	せん断応力度	0.379	-	0.379	-	0.740
(今) / 1, 가는 100, -는~~		L _P	mm	締付装置受けピンの軸支持間距離	110	-	110	-	112
<b>种</b> 门 表 匡 印	締付装置 受けピン	b'	mm	締付装置と締付装置受けピンが接する長さ	48	-	48	-	48
		σ	$\mathrm{N/mm}^2$	曲げ応力度	1.47	-	1.47	-	2.95
		τ	$N/mm^2$	せん断応力度	0.430	-	0.430	-	0.840
	締付装置	n b	本	締付装置受けボルトの本数	4	-	4	-	4
	受けボルト	σt	$N/mm^2$	引張応力度	1.15	-	1.15	-	2.24
		L ₁	mm	躯体開口部の高さ	2100	2110	2100	2500	2090
		L ₂	mm	躯体開口部の幅	1000	1000	1000	3300	985
				0°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	12	0
			*	0°方向 開閉側/下側 アンカーボルト本数	0	0	0	4	10
			44	90°方向 ヒンジ側/上側 アンカーボルト本数	10	8	11	0	6
アンカーボルト				90°方向 開閉側/下側 アンカーボルト本数	11	8	11	0	0
		0.2	kN/木	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	_	_	_	10.3	-
		Qa	Q a kN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	-	-	23.9	23.9
		Та	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	33.5	34.1	34.1	-	34.1
				90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	33.5	34.1	34.1	-	-

	t. dare f.l.	ác					水密扉No.		
对制	<b>R</b> 部位	記号	単位	正義	41	42	43	44	45
		h	mm	当該扉の浸水深さ	800	400	300	400	700
ŧ	<b></b> <i> </i>	$\rho_{o}$	$t/m^3$	水の密度	1.03	1.03	1.03	1.03	1.03
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
F	z +6	L _{PL}	mm	扉板の短辺長さ	450	392	533	416	728
ļ	巨权	Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	2. $400 \times 10^4$	2.400 $\times 10^{4}$	2. $400 \times 10^4$	$2.\ 400\!\times\!10^4$	$2.042 \times 10^5$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	8.09	4.05	3.04	4.05	7.08
		b	mm	芯材に作用する荷重の負担幅	438	398	533	421	894
芯材		L	mm	芯材の支持スパン	995	995	2390	995	2630
		Ζ2	$mm^3$	芯材の断面係数	$1.530 \times 10^{5}$	$1.530 imes10^5$	4.720 $\times 10^{5}$	$1.\ 530\!\times\!10^5$	$8.560 \times 10^{5}$
		A s	$mm^2$	芯材のせん断断面積	$1.260\!\times\!10^3$	$1.260\!\times\!10^3$	$1.\ 600\!\times\!10^3$	$1.\ 260 \times 10^3$	$1.998\!\times\!10^3$
共通		n 2	本	締付装置の本数	4	-	-	-	-
		L ₅	mm	締付装置の突出長さ	52	1	-	-	-
	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	2.36	1	-	-	-
		τ	$\mathrm{N}/\mathrm{mm}^2$	せん断応力度	0.283	-	-	-	-
統付准置如		L _P	mm	締付装置受けピンの軸支持間距離	112	-	-	-	-
柳门豕巨印	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	48		-	-	-
	受けピン	σ	$\mathrm{N/mm}^2$	曲げ応力度	1.13	-	-	-	-
		τ	$N/mm^2$	せん断応力度	0.320	-	-	-	-
	締付装置	n _b	本	締付装置受けボルトの本数	4	-	-	-	-
	受けボルト	σt	$\mathrm{N/mm}^2$	引張応力度	0.855	-	-	-	-
		L 1	mm	躯体開口部の高さ	2100	2100	2510	2100	3100
		L ₂	mm	躯体開口部の幅	990	1000	2490	1150	2800
				0°方向 ヒンジ側/上側 アンカーボルト本数	0	15	10	0	15
		n	*	0°方向 開閉側/下側 アンカーボルト本数	0	15	10	0	15
			744	90°方向 ヒンジ側/上側 アンカーボルト本数	11	0	0	11	0
アンカーボルト				90°方向 開閉側/下側 アンカーボルト本数	10	0	0	11	0
		Qa	kN/本	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	23.9	13.9	-	10.1
		Qa		0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	23.9	13.9	-	10.1
		T a	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	34.1	-	_	33.5	16.1
			a kN/本	90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	34.1	-	_	33.5	16.1

	- der Lis	10 F					水密扉No.			
对复	老部位	記号	単位	正義	46	47	48	49	50	
		h	mm	当該扉の浸水深さ	700	1400	400	200	2400	
ŧ	+通	$\rho_{o}$	$t/m^3$	水の密度	1.03	1.00	1.00	1.00	1.00	
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665	
F	ē 15	L _{PL}	mm	扉板の短辺長さ	920	250	275	531	483	
ļ	巨竹风	Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$2.042 \times 10^5$	$6.017\!\times\!10^4$	$6.017 \times 10^4$	2. $400 \times 10^4$	$2.400\!\times\!10^4$	
		W 2	$kN/m^2$	扉下端に作用する津波荷重	7.08	14.2	4.05	2.03	24.3	
		b	mm	芯材に作用する荷重の負担幅	-	352	370	531	483	
龙	标材	L	mm	芯材の支持スパン	-	1808	1310	2565	1860	
		$Z_2$	mm ³	芯材の断面係数	-	$3.340 \times 10^{5}$	$3.340 \times 10^{5}$	4.720 $\times 10^{5}$	$4.\ 720 \times 10^5$	
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	-	$2.250 \times 10^{3}$	2. $250 \times 10^{3}$	$1.600 \times 10^3$	$1.600\!\times\!10^3$	
	共通	n 2	本	締付装置の本数	-	4	4	2	-	
	L ₅	mm	締付装置の突出長さ	-	96	96	65	-		
	締付装置	σ	$N/mm^2$	曲げ応力度	-	10.1	2.24	1.40	-	
		τ	$\mathrm{N}/\mathrm{mm}^2$	せん断応力度	-	1.17	0.252	0.230	-	
統合准要が		L _P	mm	締付装置受けピンの軸支持間距離	-	110	110	_	-	
에디 3호 데그 마이	締付装置 受けピン	b'	mm	締付装置と締付装置受けピンが接する長さ	-	0	0	0	-	
		σ	$\rm N/mm^2$	曲げ応力度	-	16.6	3.59	0	-	
		τ	$N/mm^2$	せん断応力度	-	1.89	0.408	3.47	-	
	締付装置	n _b	本	締付装置受けボルトの本数	-	4	4	2	-	
	受けボルト	σt	$N/mm^2$	引張応力度	-	7.56	1.64	4.86	-	
		L 1	mm	躯体開口部の高さ	-	2100	2100	2600	2100	
		L ₂	mm	躯体開口部の幅	-	1990	1500	2200	2000	
				0°方向 ヒンジ側/上側 アンカーボルト本数	-	0	0	8	6	
		n	*	0°方向 開閉側/下側 アンカーボルト本数	-	0	7	7	12	
			~~~	90°方向 ヒンジ側/上側 アンカーボルト本数	-	7	7	0	0	
アンカーボルト				90°方向 開閉側/下側 アンカーボルト本数	-	8	0	0	0	
		Qa	kN/本	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	-	-	10.3	14.9	
		Qa	Q a kN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	-	23.9	10.3	14.9	
		Τ -	Tak	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	-	34.1	57.5	_	-
				90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	-	34.1	-	-	-	

	i lan di	-		*			水密扉No.		
対象	 守 部 位	記号	単位	定義	51	52	53	54	55
		h	mm	当該扉の浸水深さ	200	2000	2000	300	13000
ŧ	;通	ρ.	t/m^3	水の密度	1.00	1.00	1.00	1.00	1.00
		g	m/s^2	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
-		L _{PL}	mm	扉板の短辺長さ	443	802	720	540	365
周	巨权	Ζ1	mm ³ /m	扉板の断面係数	1.350×10^{4}	6. 017×10^{4}	2.042×10^{5}	2. 400×10^4	2.400×10 ⁴
		W 2	kN/m^2	扉下端に作用する津波荷重	2.03	20.3	20.3	3.04	132
		b	mm	芯材に作用する荷重の負担幅	443	802	720	540	365
芯材		L	mm	芯材の支持スパン	1020	883	2420	2240	760
		Ζ2	mm ³	芯材の断面係数	1.150×10^{5}	4.810×10^{5}	8.600×10^{5}	4.720 $\times 10^{5}$	1.530×10^{5}
		A s	mm^2	芯材のせん断断面積	9.750 \times 10 ²	2. 100×10^{3}	2.250×10^{3}	1.600×10^{3}	1.260×10^{3}
共通		n 2	本	締付装置の本数	-	-	-	-	4
締付装置	L 5	mm	締付装置の突出長さ	-	-	-	-	52	
	締付装置	σ	N/mm^2	曲げ応力度	-	-	-	-	108
		τ	N/mm^2	せん断応力度	-	-	-	-	15.4
(文 / L 나는 FPE 관리		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-	-	112
和竹 表 匡 印	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	-	-	48
	受けピン	σ	N/mm^2	曲げ応力度	-	-	-	-	61.3
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	-	-	-	17.4
	締付装置	n _b	本	締付装置受けボルトの本数	-	-	-	-	4
	受けボルト	σt	N/mm^2	引張応力度	-	_	_	-	46.5
		L ₁	mm	躯体開口部の高さ	2100	3340	2950	2100	1800
		L ₂	mm	躯体開口部の幅	1000	5500	2500	2000	790
				0°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	0
		n	*	0°方向 開閉側/下側 アンカーボルト本数	0	0	0	7	0
				90°方向 ヒンジ側/上側 アンカーボルト本数	6	13	13	7	7
アンカーボルト				90°方向 開閉側/下側 アンカーボルト本数	6	8	8	0	6
		0.2	kN/木	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	-	-	-	-
		Qa	KII J	0° 方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	-	-	23.9	-
		Та	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	30.5	33.3	50.2	34.1	34.1
		1 4	AU1/ 74	90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	30.5	33.3	50.2	-	34.1

	t der t.t.	<i>i</i> c					水密扉No.		
对题	2部位	記号	単位	正義	56	57	58	59	60
		h	mm	当該扉の浸水深さ	13000	10000	400	800	2000
ŧ	+通	ρο	t/m^3	水の密度	1.00	1.00	1.00	1.00	1.00
		g	m/s^2	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
-	₹+c	L _{PL}	mm	扉板の短辺長さ	300	390	533	416	1360
月	卢 权	Ζ1	mm^3/m	扉板の断面係数	2.400×10 ⁴	2. 400×10^4	2. 400×10^4	2. 400×10^4	2.042×10^{5}
		W 2	kN/m^2	扉下端に作用する津波荷重	132	102	4.05	8.09	19.7
		b	mm	芯材に作用する荷重の負担幅	293	343	533	421	-
芯材		L	mm	芯材の支持スパン	900	760	2187	995	-
		Ζ2	mm ³	芯材の断面係数	$1.530\!\times\!10^5$	1.530×10^{5}	4.720×10^{5}	$1.\ 530\!\times\!10^5$	-
		A s	mm^2	芯材のせん断断面積	$1.260\!\times\!10^3$	$1.\ 260 \times 10^3$	$1.600\!\times\!10^3$	$1.\ 260\!\times\!10^3$	-
共通		n ₂	本	締付装置の本数	-	4	-	4	-
		L ₅	mm	締付装置の突出長さ	-	52	-	50	-
· (4) 壮栗 前	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	-	103	-	5.19	-
		τ	N/mm^2	せん断応力度	-	14.7	-	0.740	-
		L _P	mm	締付装置受けピンの軸支持間距離	-	112	-	110	-
柳门漆匣印	締付装置 受けピン	b'	mm	締付装置と締付装置受けピンが接する長さ	-	48	-	48	-
		σ	$\rm N/mm^2$	曲げ応力度	-	58.4	-	2.87	-
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	16.5	-	0.840	-
	締付装置	n _b	本	締付装置受けボルトの本数	-	4	-	4	-
	受けボルト	σt	$\mathrm{N/mm}^2$	引張応力度	-	44.2	-	2.24	-
		L 1	mm	躯体開口部の高さ	1490	1800	2100	2100	2300
		L ₂	mm	躯体開口部の幅	800	1000	2000	980	1500
				0°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	20
		n	*	0°方向 開閉側/下側 アンカーボルト本数	0	0	6	0	20
		11		90°方向 ヒンジ側/上側 アンカーボルト本数	6	6	6	11	0
アンカーボルト				90°方向 開閉側/下側 アンカーボルト本数	6	6	0	11	0
		Q a	kN/木	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	_	_	-	22.5
		Qa	KI17 744	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	-	23.9	-	22.5
		T a	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	34.1	34.1	29.0	34.1	27.6
			a kN/本	90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	34.1	34.1	-	34.1	27.6

	- +17 /++	en H)14 (-4-			水密扉No.	
X] 3	部业	武方	里12	上戦	61	62	63
		h	mm	当該扉の浸水深さ	1700	1700	1700
ŧ	;通	ρ.	t/m^3	水の密度	1.00	1.00	1.00
		g	m/s^2	重力加速度	9.80665	9.80665	9.80665
_	i +=	L _{PL}	mm	扉板の短辺長さ	375	375	375
周	主权	Ζ1	mm^3/m	扉板の断面係数	1.350×10^{4}	1.350×10^{4}	1.350×10^{4}
		w 2	kN/m^2	扉下端に作用する津波荷重	16.67	16.67	16.67
		b	mm	芯材に作用する荷重の負担幅	450	450	450
芯	材	L	mm	芯材の支持スパン	1917	1917	1917
		Ζ2	mm ³	芯材の断面係数	8.120×10^{4}	8.120×10^{4}	8. 120×10^4
		A s	mm^2	芯材のせん断断面積	1.752×10^{3}	1.752×10^{3}	1.752×10^{3}
	共通	n 2	本	締付装置の本数	-	_	—
		L ₅	mm	締付装置の突出長さ	_	-	_
	締付装置	σ	N/mm^2	曲げ応力度	-	-	-
		τ	N/mm^2	せん断応力度	-	-	-
		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-
褅付装置部	締付装置 受けピン	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	_
		受けピン	σ	N/mm^2	曲げ応力度	-	_
		τ	N/mm^2	せん断応力度	-	-	_
	締付装置	n _b	本	締付装置受けボルトの本数	-	_	—
	受けボルト	σt	N/mm^2	引張応力度	-	-	-
		L 1	mm	躯体開口部の高さ	1917	1917	1917
		L ₂	mm	躯体開口部の幅	1056	1056	1056
				0°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0
			*	0°方向 開閉側/下側 アンカーボルト本数	5	5	5
		n	*	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	0	0	0
) >) - ,) > ,		LN / +	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	-	-
		Qa	kN/本	0° 方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	22.4	22.4	22.4
		Τa	1.11/24	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	_	_	_
		1 4	n10/ 44	90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	-	_	_

3.2 強度評価結果

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	167	235	0.72
		芯材*1	69.4	235	0.30
1		締付装置	_ *3	*3	_ * ³
1	締付装置部	締付装置受けピン	_ *3	*3	- * ³
		締付装置受けボルト	<u> </u>	*3	- * ³
	アン	ンカーボルト	_ *2	*2	_ *2
		扉板	167	235	0.72
		芯材*1	106	235	0.46
0		締付装置	_ *3	_ *3	_ * ³
Z	締付装置部	締付装置受けピン	_ *3	*3	- * ³
		締付装置受けボルト	- *3	_ *3	- *3
	アン	レカーボルト	- *2	_ *2	- *2
		扉板	167	235	0.72
		芯材*1	106	235	0.46
0		締付装置	- * ³	_ *3	- * ³
3	締付装置部	締付装置受けピン	- * ³	_ *3	— * ³
		締付装置受けボルト	_ *3	_ *3	- *3
	アン	レカーボルト	_ *2	_ *2	_ *2
		扉板	167	235	0.72
		芯材*1	69.4	235	0.30
4		締付装置	— * ³	— * ³	- * ³
4	締付装置部	締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	- * ³	*3	- *3
	アン	レカーボルト	_ *2	_ *2	_ *2
		扉板	167	235	0.72
		芯材*1	69.4	235	0.30
5			_ *3	*3	_ *3
0	締付装置部	締付装置受けピン	- *3	*3	- *3
		締付装置受けボルト	- *3	_ *3	- *3
	アン	レカーボルト	_ *2	- *2	- * ²

注記*1:曲げとせん断のうち,厳しい結果を記載。

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	167	許容限界値 (N/mm ²) 235 235 	0.72
		芯材*1	69.4	235	0.30
水密扉 No. 6 7 8 8 9 10		縮付装置	_ *3	_ *3	_ *3
	縮付装置部	締付装置受けピン	_ *3	_ *3	_ *3
		縮付装置受けボルト	_ *3	_ *3	_ *3
	アン	レカーボルト	*2	*2	_ *2
		扉板	167	235	0.72
		芯材*1	69.4	235	0.30
7		締付装置	- * ³	- *3	- *3
7	締付装置部	締付装置受けピン	- *3	- * ³	- *3
水密扉 No. 6 7 7 8 8 9 9		締付装置受けボルト	— * ³	_ *3	_ * ³
	アン	ンカーボルト	_ *2	_ *2	_ *2
	扉板		167	235	0.72
8	芯材*1		69.4	235	0.30
	締付装置部	締付装置	- * ³	- *3	- * ³
8		締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	アン	レカーボルト	_ *2	_ *2	_ *2
		扉板	167	235	0.72
		芯材*1	69.4	235	0.30
		締付装置	- * ³	許容限界値 (N/mm^2) 235 235 *3 *3 *3 *3 *3 *3 *3 	- *3
水密扉 No. 対象評価部材 (応力度又は荷重) (N/mm ²) 評谷 (N 6	締付装置部	締付装置受けピン	- * ³	- * ³	- * ³
	- * ³	- *3			
	アン	ンカーボルト	- *2	*2	- *2
	対象評 	扉板	167	235	0.72
8 9 10		芯材*1	69.4	235	0.30
		締付装置	_ *3	_ *3	_ *3
10	締付装置部	締付装置受けピン	— * ³	*3	- *3
		締付装置受けボルト	- * ³	_ *3	_ *3
6 7 8 9 10	アン	ンカーボルト	_ *2	_ *2	_ *2

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	48.9	235	0.21
		芯材*1	20.4	235	0.09
11		締付装置	_ *3	*3	- * ³
	締付装置部	締付装置受けピン	- * ³	*3	- * ³
		締付装置受けボルト	- *3	_ *3	- *3
	アン	レカーボルト	*2	*2	_ *2
		扉板	43.0	235	0.19
		芯材*1	17.7	235	0.08
10		締付装置	- * ³	_ *3	- * ³
水密扉 No. × 11 編付装置部 77 7 12 編付装置部 12 編付装置部 13 編付装置部 14 編付装置部 77 7 14 編付装置部 77 7 15 編付装置部	締付装置部	締付装置受けピン	- * ³	_ *3	- *3
	締付装置受けボルト	- *3	- *3	- *3	
	アン	ンカーボルト	_ *2	*2	- *2
12	扉板		43.0	235	0.19
	芯材*1		17.7	235	0.08
	締付装置部	締付装置	_ *3	_ *3	- * ³
13		締付装置受けピン	- * ³	_ *3	- *3
		締付装置受けボルト	- *3	- * ³	- *3
	アン	ンカーボルト	_*2	*2	- *2
		扉板	48.9	235	0.21
		芯材*1	20.4	235	0.09
1.4		締付装置	_ *3	_ *3	- * ³
14	締付装置部	発生値 (応力度又は荷重) (n/mn^2)許容限界値 (n/mn^2)扉板48.9235芯材*120.4235縮付装置 $-*^3$ $-*^3$ 縮付装置受けピン $-*^3$ $-*^3$ 縮付装置受けポルト $-*^3$ $-*^3$ ンカーボルト $-*^2$ $-*^2$ 扉板43.0235芯材*117.7235縮付装置 $-*^3$ $-*^3$ 縮付装置受けピン $-*^3$ $-*^3$ 縮付装置受けピン $-*^3$ $-*^3$ 溶付装置受けピン $-*^3$ $-*^3$ 縮付装置 $-*^3$ $-*^3$ 縮付装置 $-*^3$ $-*^3$ 縮付装置 $-*^3$ $-*^3$ 縮付装置受けピン $-*^3$ $-*^3$ 縮付装置受けビン $-*^3$ $-*^3$ 縮付装置受けビン $-*^3$ $-*^3$ 第 $-*^3$ $-*^3$ 第 $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^2$ $-*^3$ $-*^3$ $-*^3$	- * ³		
		締付装置受けボルト	- *3	_ *3	- *3
	アン	レカーボルト	- *2	_ *2	- *2
		扉板	—	_	—
11 M 12 M 13 M 14 M 15 M		芯材*1	_	_	_
15			- * ³	_ *3	— * ³
12 13 14 15	締付装置部	締付装置受けピン	_ * ³	_ * ³	— * ³
		締付装置受けボルト	- *3	_ * ³	- *3
	アン	ンカーボルト	*2	*2	_ *2

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	_	_	_
		芯材*1	—	許容限界値 (N/mm ²) -	—
水密扉 No. 16 17 17		新付装置 新付装置	_ *3	*3	_ *3
	締付装置部	締付装置受けピン	_ *3	*3	_ *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	アン	ンカーボルト	_ *2	発生値 許容限界値 力度又は荷重) (N/mm^2) - - - - <td>_ *2</td>	_ *2
		扉板	1.67	235	0.01
		芯材*1	3.14	許容限界値 (N/mn ²) - - - - - - - - - - - - - - - - - - -	0.03
17		<i>締付装置</i>	- * ³	*3	- * ³
17	締付装置部	締付装置受けピン	- *3	*3	- *3
17		締付装置受けボルト	— * ³	*3	- * ³
	アン	· カーボルト*4	2.65	18.4	0.15
	扉板		3.34	235	0.02
17		芯材*1	4.27	235	0.02
	締付装置部	締付装置	- *3	_ *3	- *3
		締付装置受けピン	- * ³	*3	- * ³
		締付装置受けボルト	- *3	*3	- *3
	アン	レカーボルト	- *2	*2	- *2
		扉板	1.50	235	0.01
		芯材*1	2.82	135	0.03
10		締付装置	_ *3	_ *3	- * ³
19	締付装置部	締付装置受けピン	価部材発生値 (応力度又は荷重) (N/mm²)許容限界値 (N/mm²)板 4^{*1} 縮付装置 $-^{*3}$ $-^{*3}$ 「林装置受けビン- *3 $-^{*3}$ -ボルト- *2 $-^{*2}$ -ボルト- *2 $-^{*2}$ $-ボルト$ - *3 $-^{*3}$ -ボルト- *3 $-^{*3}$ -ボルト- *2 $-^{*2}$ 板1.67235 4^{*1} 3.14135ぶ付装置受けビン $-^{*3}$ $-^{*3}$ 「林装置受けビン $-^{*3}$ $-^{*3}$ 「林装置受けビン $-^{*3}$ $-^{*3}$ 「林装置受けビン $-^{*3}$ $-^{*3}$ 「林装置受けビン $-^{*3}$ $-^{*3}$ 「ボルト $-^{*2}$ $-^{*2}$ 板1.50235 4^{*1} 2.82135「新付装置受けビン $-^{*3}$ $-^{*3}$ 「林装置受けビン $-^{*3}$ $-^{*3}$ 「ボルト $-^{*3}$ $-^{*3}$ 「ボント*42.3918.4板2.92235「森付装置受けビン $-^{*3}$ $-^{*3}$ 「ボント*42.92235「森村装置受けビン $-^{*3}$ $-^{*3}$ 「ボ $-^{*3}$ $-^{*3}$ 「ボ $-^{*3}$ $-^{*3}$ 「ボ $-^{*3}$ $-^{*3}$	- * ³	
		締付装置受けボルト	- * ³	許容限界值 (N/mm ²) - - - - - - - - - - - - - - - 235 135 - - 235 - 18.4 235 235 - - 235 - - 235 - - - 235 - - 235 135 - - - - - - - - - - - - - - - -	- * ³
	アン	· カーボルト ^{*4}	2.39	18.4	0.13
		扉板	2.92	許容限界値 (N/mm ²) 	0.02
Image: second seco	235	0.02			
			- * ³	_ *3	_ *3
20	締付装置部	締付装置受けピン	- * ³	*3	- *3
16 17 18 19 20		締付装置受けボルト	- * ³	*3	- *3
1	アン	ンカーボルト	_ *2	*2	*2

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

水密扉 No.	対	·象評価部材	発生値 (応力度又は荷重) (N/mm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	2.09	235	0.01
		芯材*1	8.69	235	0.04
水密扉 No. 21 22 22 締(23 23 編(24 24 25 編(締付装置	_ *3	*3	- * ³
21	締付装置部	締付装置受けピン	_ *3	*3	_ *3
		締付装置受けボルト	_ *3	*3	_ *3
	アン	· カーボルト ^{*4}	0.905	18.4	0.05
		扉板	3.34	235	0.02
		芯材*1	8.15	235	0.04
0.0		締付装置	- * ³	_ * ³	- *3
水密扉 No. 21 22 22 森 23 森 23 森 23 森	締付装置部	締付装置受けピン	_ *3	_ *3	- *3
		締付装置受けボルト	- *3	_ *3	- * ³
	アン	ンカーボルト	- *2	_ *2	- * ²
	扉板		1.67	235	0.01
23		芯材*1	1.71	135	0.02
		締付装置	- * ³	_ *3	— * ³
	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
		締付装置受けボルト	_ *3	_ *3	- *3
	アン	、カーボルト ^{*4}	1.12	18.4	0.07
		扉板	1.67	235	0.01
		芯材 ^{*1}	2.22	235	0.01
94		締付装置	- *3	許容限界値 (N/mm^2) 235 235 - * ³ - * ³ - * ³ 18.4 235 235 235 - * ³ - * ² 205 205 345 345 - * ² 26.8	- * ³
水密扉 No. 対象 21 綿付装置部 21 綿付装置部 アンカ 22 綿付装置部 23 綿付装置部 23 綿付装置部 24 綿付装置部 25 綿付装置部 アンカ	締付装置受けピン	- *3	- *3	- *3	
		締付装置受けボルト	- * ³	_ *3	- * ³
	アン	ンカーボルト	- *2	_ *2	_ *2
		扉板	8.68	許容限界値 (N/mm ²) 235 235 * ³ * ³ * ³ 235 235 * ³ * ² 205 205 205 345 345 345 2 26. 8	0.05
21	47.7	205	0.24		
25		<u> </u>	59.2	345	0.18
24	締付装置部	締付装置受けピン	23.1	345	0.07
		締付装置受けボルト	—		
	アン	·カーボルト*4	3.94	26.8	0.15

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/nm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	7.35	205	0.04
		芯材*1	—	計許容限界値 (N/mm^2) 205<	_
		縮付装置	_ *3	*3	_ *3
26	締付装置部	締付装置受けピン	_ *3	*3	_ *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	アン	ンカーボルト	_ *2	_ *2	_ *2
		扉板	7.35	205	0.04
		芯材*1	-	_	_
		締付装置	_ *3	_ *3	- * ³
27	締付装置部	締付装置受けピン	- *3	_ *3	- *3
26 27 28 29		締付装置受けボルト	- *3	- *3	- *3
	アン	ンカーボルト	- *2	*2	- *2
28	扉板		6.23	205	0.04
	芯材*1		11.6	118	0.10
	締付装置部	締付装置	- * ³	- * ³	- *3
28		締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	- *3	_ *3	- *3
	アン	ンカーボルト	- *2	_ *2	- *2
		扉板	7.35	205	0.04
		芯材*1	-	-	-
		締付装置	_ *3	_ *3	- * ³
29	水密扉 No. 対象評価部材 発生値 (応力度又は荷重) (N/m ²) 許容限界値 (N/m ²) 26 $ $	- * ³			
		- *3			
	アン	ンカーボルト	- *2	*2	- *2
		扉板	5.15	許容限界値 (N/mm^2) 205 	0.03
27		芯材*1	9.67	118	0.09
0.0		締付装置	- *3	_ *3	- *3
30	締付装置部	締付装置受けピン	- *3	_ *3	- *3
26 27 28 29 30		締付装置受けボルト	- * ³	*3	- * ³
	アン	ンカーボルト	*2	*2	_ *2

注記*2:水密扉の開方向に対して,扉板を躯体に押し付ける向きに静水圧荷重が作用するため,

当該部材に荷重が作用しないことから評価対象外とした。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	15.3	205	0.08
		芯材*1	12.0	118	0.11
31			_ *3	*3	_ *3
	締付装置部	締付装置受けピン	_ *3	*3	_ *3
		締付装置受けボルト	_ *3	*3	_ *3
	アン	レカーボルト	_ *2	*2	_ *2
		扉板	1.33	205	0.01
		芯材*1	58.4	205	0.29
			- * ³	*3	- * ³
32	締付装置部	締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	アン	レカーボルト	*2	*2	_ *2
	扉板		1.33	205	0.01
	芯材*1		62.5	205	0.31
	締付装置部	締付装置	- * ³	_ *3	- *3
33		締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	- * ³	*3	- * ³
	アン	ンカーボルト	_ *2	許容限界値 (N/mm ²) 205 118 $-*^3$ $-*^3$ $-*^3$ $-*^2$ 205 205 205 $-*^3$ $-*^3$ $-*^2$ 205 205 205 205 205 205 205 205 205 205	_ *2
		扉板	5.19	235	0.03
		芯材*1	27.5	235	0.12
0.4		締付装置	_ *3	許容限界值 (N/mm ²) 205 118 $-*^3$ $-*^3$ $-*^3$ $-*^2$ 205 205 205 205 205 205 205 205 205 205	- * ³
31 32 33 33 34 35	締付装置部	締付装置受けピン	- *3	_ *3	- *3
		対象評価部材 発生値 (応力度又は荷重) (N/mm ²) 許容限界値 (N/mm ²) 扉板 15.3 205 芯材*1 12.0 118 縮付装置 $-^{*3}$ $-^{*3}$ 第桁装置受けピン $-^{*3}$ $-^{*3}$ 第付装置受けピン $-^{*3}$ $-^{*3}$ アンカーボルト $-^{*2}$ $-^{*2}$ 扉板 1.33 205 芯材*1 58.4 205 芯材*1 58.4 205 本縮付装置受けピン $-^{*3}$ $-^{*3}$ 第行装置受けビン $-^{*3}$ $-^{*3}$ アンカーボルト $-^{*2}$ $-^{*2}$ 扇板 1.33 205 芯材*1 62.5 205 芯材*1 62.5 205 芯材*1 62.5 205 総付装置受けピン $-^{*3}$ $-^{*3}$ 第板支置受けピン $-^{*3}$ $-^{*3}$ 第板支置受けビン $-^{*3}$ $-^{*3}$ 第板支置受けビン $-^{*3}$ $-^{*3}$ 第板支置受けビン $-^{*3}$ $-^{*3}$	- *3		
	アン	、 カーボルト ^{*4}	0.715	許容限界値 (N/mm ²) 205 118 * ³ * ³ * ³ * ² 205 205 * ³ * ²	0.04
		扉板	5.06	235	0.03
		芯材*1			
25		締付装置	- *3	_ * ³	- *3
55	締付装置部	締付装置受けピン	- *3	— * ³	- *3
31 32 33 33 34 35		締付装置受けボルト	- *3	_ *3	- *3
31 32 33 33 34 35	アン	レカーボルト	*2	*2	_ *2

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	2.50	235	0.02
		芯材*1	1.44	235	0.01
水密扉 No. 36 編 37 37 38 系 38 系			2.91	390	0.01
	締付装置部	締付装置受けピン	1.47	205	0.01
		締付装置受けボルト	1.15	651	0.01
	アン	·カーボルト*4	0.213	33.5	0.01
		扉板	5.84	235	0.03
		芯材*1	2.88	235	0.02
97		締付装置	- * ³	- *3	- *3
37	締付装置部	締付装置受けピン	_ *3	_ *3	- * ³
水密扉 No. 36 37 37 38 38 39 40		締付装置受けボルト	- * ³	_ *3	- *3
	アン	ンカーボルト	_ *2	_ *2	_ *2
水密扉 No. 36 37 38 39 40	扉板		2.50	235	0.02
	芯材*1		1.44	235	0.01
	締付装置部	締付装置	2.91	390	0.01
38		締付装置受けピン	1.47	205	0.01
		締付装置受けボルト	1.15	651	0.01
	アン	、カーボルト ^{*4}	0.194	34.1	0.01
		扉板	8.34	235	0.04
		芯材*1	5.15	235	0.03
0.0		締付装置	_ *3	_ *3	- * ³
No. 対象評価部材 ($0 \gtrsim 7 \ge 2 \le 6 $) (N/ma^2) (N/ma^2) (N/ma^2) 36 $\overline{k} d \div \overline{k} = 2.91$ $\overline{k} d \div \overline{k} = 2.88$ $\overline{k} d \div \overline{k} = 2.91$ $\overline{k} d \div \overline{k} = 2.50$ $\overline{k} d \div \overline{k} = 2.50$ $\overline{k} d \div \overline{k} = 2.91$ $\overline{k} = 2.91$	- * ³	_ *3	- *3		
	_ *3	- *3			
	アン	·カーボルト*4	2.09	23.9	0.09
		扉板	3.75	許容限界値 (N/mm^2) 235 235 235 390 205 651 33.5 235 235 235 235 235 235 235 235 235 23	0.02
37 縮付約 38 縮付約 39 縮付約 40 縮付約		芯材*1	2.29	235	0.01
10		締付装置	5.35	390	0.02
40	締付装置部	締付装置受けピン	2.95	205	0.02
		締付装置受けボルト	2.24	651	0.01
36 37 38 39 40	アン	·カーボルト*4	0.695	34.1	0.03

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	5.84	許容限界値 (N/mm ²) 235 235 235 235 651 34.1 235 235 235 - * ³ - *	0.03
		発生値 (応力度又は荷重) (N/mm²)扉板5.84芯材*12.88縮付装置2.41締付装置受けピン1.13締付装置受けビン1.13締付装置受けビン0.855カーボルト*40.421扉板2.50芯材*11.38締付装置受けビン $-*^3$ 締付装置受けビン $-*^3$ 締付装置 けビン $-*^3$ 締付装置受けビン $-*^3$ 海行装置受けビン $-*^3$ 海行装置受けビン $-*^3$ 海行装置受けビン $-*^3$ 海行装置受けビン $-*^3$ 海行装置受けビン $-*^3$ 海付装置受けビン $-*^3$ 海付装置受けビン $-*^3$ 海行装置受けビン $-*^3$ 海行装置受けビン $-*^3$ 海行装置受けビン $-*^3$ 海行装置受けビン $-*^3$ 海行装置 $-*^3$ 海行装置 $-*^3$ 海行装置 $-*^3$ 海行装置 $-*^3$ 海行装置 $-*^3$ 海行装置 $-*^3$ <td>235</td> <td>0.02</td>	235	0.02	
4.1		締付装置	2.41	390	0.01
41	締付装置部	締付装置受けピン	1.13	205	0.01
		締付装置受けボルト	0.855	651	0.01
水密扉 No. 41 42 43 43 44 45	アン	· カーボルト ^{*4}	0.421	34.1	0.02
-		扉板	2.50	235	0.02
		芯材*1	1.38	235	0.01
10			- *3	- * ³	- *3
42	締付装置部	締付装置受けピン	- * ³	- * ³	- * ³
		締付装置受けボルト	- * ³	_ * ³	_ * ³
	アン	ンカーボルト	0.142	23.9	0.01
43	扉板		3.34	235	0.02
	芯材*1		2.48	235	0.02
	締付装置部	締付装置	- * ³	_ * ³	- * ³
43		締付装置受けピン	- * ³	- * ³	- * ³
		締付装置受けボルト	- *3	- * ³	- *3
	アン	、 カーボルト ^{*4}	0.475	許容限界値 (N/mm ²) 235 235 390 205 651 34.1 235 235 235 - * ³ - * ³ 23.9 235 235 235 235 - * ³ - *	0.04
		扉板	2.50	235	0.02
		芯材*1	1.44	235	0.01
4.4		対象評価部材(応力度又は荷重) (N/mm²)評谷限界値 (N/mm²) </td <td>- *³</td>	- * ³		
44	締付装置部	締付装置受けピン	- * ³	- * ³	- * ³
水密扉 No. 対象評価部材 発生値 (応力度又は荷重) (N/nm ²) 許容限男 (N/nm ²) 41	- * ³	- *3			
	アン	ンカーボルト	_ *2	_ *2	_ *2
		扉板	1.57	205	0.01
		芯材*1	4.17	135	0.04
45			_ *3	*3	_ *3
40	締付装置部	締付装置受けピン	- *3	*3	— * ³
41 42 43 44 45		締付装置受けボルト	- *3	- *3	- *3
41 42 43 44 45	アン	·カーボルト*4	1.03	10.1	0.11

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず,当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	2.45	205	0.02
		芯材*1	_	_	-
10		締付装置	ア価部材アモー (応力度又は荷重) (N/nm²)許容限界値 (N/nm²) \overline{x} 板2.45205 \overline{x} 林*1第付装置 $-^{*3}$ $-^{*3}$ 第付装置受けピン $-^{*3}$ $-^{*3}$ \overline{x} 校1.33235 \overline{x} 村*16.11235 \overline{x} 杯付装置受けピン16.6345第付装置受けビン16.6345第付装置受けビン16.6345第付装置受けビン16.6345第付装置受けビン16.6345第付装置受けビン16.6345第付装置受けビン16.6345第付装置受けボルト7.56651 $-\overline{x}$ ルト*42.1234.1夏板0.499235 \overline{x} 村*10.989235 \overline{x} 村装置受けビン3.59345第付装置受けビン3.59345第付装置受けビン3.47225第付装置受けビン3.47225第付装置受けビン3.47225第付装置受けビン3.47225第付装置受けビン-*3 $-\overline{x}$ ルト*40.41510.3 \overline{x} 板20.0235 \overline{x} 村*16.82135第 \overline{x} 村装置 $-\overline{x}$ 3 \overline{x} $-\overline{x}$ 3	- * ³	
46	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
		締付装置受けボルト	— * ³	_ *3	- * ³
	アン	ンカーボルト	- *2	許容限界値 (N/mm ²) 205 — —* ³ —* ³ —* ³ — ² 235 205 345 651 34.1 235 205 345 651 34.1 235 205 345 651 23.9 235 205 345 651 23.9 235 205 345 651 10.3 235 205 235 205 345 651 23.9 235 205 345 651 23.9 235 205 345 651 23.9 235 205 345 651 23.9 235 205 345 651 23.9 235 205 345 651 23.9 235 205 345 651 23.9 235 205 345 651 23.9 235 205 345 651 23.9 235 205 345 651 23.9 235 205 345 651 23.9 235 205 345 651 23.9 235 205 235 205 345 651 23.9 235 205 235 205 345 651 23.9 235 205 235 205 235 235 235 235 205 345 651 23.9 235 235 205 235 205 235 235 235 235 235 235 235 23	- *2
		扉板	1.33	235	0.01
		芯材 ^{*1}	6.11	235	0.03
47		締付装置	10.3	205	0.06
	締付装置部	締付装置受けピン	16.6	345	0.05
	水密扉 No. 対象評価部材 発生値 (応力度又は荷重) (N/nm ²) 許 (応力度又は荷重) 許 46	651	0.02		
	アン	·カーボルト*4	2.12	34.1	0.07
		扉板	0.499	許容限界値 (N/mm^2) 205 — — * ³ — ^{*3} — ^{*3} 235 235 205 345 651 34.1 235 205 345 651 235 205 345 651 235 205 345 651 235 205 345 651 235 205 225 651 10.3 235 205 225 651 10.3 235 205 225 651 10.3 235 205 245 25 245 25 25 25 25 25 205 245 25 245 25 25 245 25 245 25 25 245 25 245 25 25 25 245 25 25 25 25 25 25 25 25 25 25 25 25 25	0.01
		芯材 ^{*1}	0.989		0.01
水密扉 No. 46 47 47 48 48 49 50	水密扉 No. 対象評価部材 $\mathcal{R}^{\pm 2.10}_{(\pi)/ g Z U (苟重)}$ ($(\pi)/ g Z U (苟重)$ ($(\pi)/ g Z U (苟重)$) 許容明 ($(\pi)/ g Z U (f \pi)$) 46	締付装置	2.28	205	0.02
48		345	0.02		
47 48 49		締付装置受けボルト	1.64	651	0.01
	アン	·カーボルト*4	0.456	23.9	0.02
		扉板	2.09	235	0.01
		芯材 ^{*1}	1.89	235	0.01
10		締付装置	1.46	205	0.01
49	締付装置部	締付装置受けピン	3.47	225	0.02
		締付装置受けボルト	4.86	651	0.01
	アン	·カーボルト*4	0.415	10.3	0.05
		扉板	20.0	235	0.09
		芯材*1	6.82	135	0.06
50		締付装置	- *3	_ *3	- *3
50	締付装置部	締付装置受けピン	_ *3	_ *3	_ *3
		締付装置受けボルト	— * ³	_ *3	_ *3
	アン	·カーボルト*4	4.78	14.9	0.33

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	2.97	235	0.02
		芯材*1	1.05	235	0.01
- 1		締付装置	— * ³	_ *3	_ * ³
51	締付装置部	締付装置受けピン	_ *3	_ *3	_ *3
		締付装置受けボルト	- * ³	*3	- * ³
	アン	ンカーボルト	_ *2	*2	_ *2
		扉板	18.2	205	0.09
		芯材*1	3.42	118	0.03
50		締付装置	_ *3	_ *3	_ *3
水密扉 No. 51 52 53 53 54 55	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
		締付装置受けボルト	_ *3	*3	- * ³
	アン	ンカーボルト	— *2	*2	_ *2
53	扉板		4.32	205	0.03
	芯材*1		12.4	205	0.07
	締付装置部	締付装置	_ *3	_ *3	- * ³
53		締付装置受けピン	- * ³	_ *3	- * ³
53		締付装置受けボルト	- *3	_ *3	- * ³
	アン	ンカーボルト	_ *2	_ *2	- *2
		扉板	3.34	235	0.02
		芯材*1	2.21	235	0.01
5.4		締付装置	_ * ³	_ *3	- * ³
水密扉 No. 対象評価部材 発生値 (応力度又) (N/m²	- * ³	_ * ³	- *3		
		締付装置受けボルト	- * ³	_ *3	- * ³
	アン	レカーボルト	_ *2	_ *2	_ *2
		扉板	60.9	235	0.26
54		芯材*1	14.5	135	0.11
55			112	390	0.29
No. 51 52 53 54 55	締付装置部	締付装置受けピン	61.3	205	0.30
		締付装置受けボルト	46.5	651	0.08
	アン	カーボルト*4	14.5	34.1	0.43

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	41.3	235	0.18
		芯材*1	25.5	235	0.11
		締付装置	- * ³	- * ³	- *3
56	締付装置部	締付装置受けピン	- *3	- *3	- *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	· · · </td <td>ンカーボルト</td> <td>*2</td> <td>*2</td> <td>_ *2</td>	ンカーボルト	*2	*2	_ *2
		扉板	53.8	235	0.23
		芯材*1	10.5	135	0.08
57		締付装置	106	390	0.28
	締付装置部	締付装置受けピン	58.4	205	0.29
		対象評価部材第客限界価 (応力度又は荷重) (N/mn ²)許容限界価 (N/mn ²) <t< td=""><td>651</td><td>0.07</td></t<>	651	0.07	
	アン	·カーボルト*4	13.8	34.1	0.41
	扉板		4.17	235	0.02
		芯材*1	2.76	235	0.02
58		締付装置	- * ³	- * ³	- *3
	締付装置部	締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	— *3	_ *3	- *3
	アン	ンカーボルト	_ *2	許容限界値 (N/mm ²) 235 235 - *3 - *3 - *3 - *2 235 135 390 205 651 34.1 235 235 235 - *3 - *3 - *3 - *3 - *3 235 235 235 235 235 235 235 235 235 23	_ *2
		扉板	5.00	235	0.03
		芯材*1	2.82	235	0.02
50		締付装置	5.35	390	0.02
59	締付装置部	締付装置受けピン	発生値 (応力度又は荷重) (N/mm²)許容限界値 (N/mm²)第 (N/mm²)第 (N/mm²)4板41.32354板41.3235第 材*125.5235第 材装置受けピン-*3-*3-ボルト-*3-*3-ボルト-*2-*2-ボルト-*2-*2-ボルト-*2-*2-ボルト-*2-*2-ボルト-*2-*2-ボルト-*2-*2-ボルト-*3-*3-ボルト-*2-*3-ボルト-*3-*3-ボルト*413.834.1-ボルト-*3-*3-ボルト-*3-*3-ボルト-*3-*3-ボルト-*2-*2-ボルト-*3-*3-ボルト-*2-*2-ボルト-*2-*2-ボルト-*3-*3-ボルト-*3-*3-ボルト-*2-*2-ボルト-*3-*3-ボルト-*3-*3-ボルト-*2-*2-ボルト-*3-*3-ボルト-*3-*3-ボルト2.87205(村装置受けビン2.87205(村装置受けビン-*3-*3-ボルト*40.37934.1第付装置受けビン-*3-*3第<	0.02	
		締付装置受けボルト		0.01	
	アン	·カーボルト*4	0.379	34.1	0.02
		扉板	14.9	許容限界値 (N/mm ²) 235 235 - * ³ - * ³ - * ³ - * ² 235 135 390 205 651 34. 1 235 235 - * ³ - * ³ - * ³ - * ³ - * ³ 235 235 235 235 235 235 235 235 235 235	0.08
57 58 59 60		芯材*1	_	_	_
		締付装置	_ *3	*3	- * ³
60	締付装置部	締付装置受けピン	_ *3	*3	- *3
No. 56 57 58 59 60		締付装置受けボルト	_ *3	_ *3	_ *3
	アン	カーボルト ^{*4}	0.847	22.5	0.04

注記*2:水密扉の開方向に対して,扉板を躯体に押し付ける向きに静水圧荷重が作用するため,

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ²)	許容限界値 (N/mm ²)	発生応力度/ 許容限界値
		扉板	14.5	205	0.08
		芯材*1	42.5	205	0.21
61		締付装置	- * ³	_ *3	- * ³
01	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
		締付装置受けボルト	- * ³	_ * ³	- * ³
	アンカ-ボルト*4		3.00	22.4	0.14
水密扉 No. 61 62 63	扉板		14.5	205	0.08
	芯材*1		42.5	205	0.21
		締付装置	- * ³	_ *3	— * ³
	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
	扉対象評価部材発生値 (応力度又は荷重) (N/mm²)許容限界値 (N/mm²) <td>- *³</td>	- * ³			
		3.00	22.4	0.14	
		扉板	14.5	205	0.08
水密扉 No. 61 62 63	芯材*1		42.5	205	0.21
6.9		締付装置	— * ³	_ *3	- * ³
03	締付装置部	締付装置受けピン	- * ³	— * ³	— * ³
		締付装置受けボルト	- *3	_ *3	_ *3
	アン	✓カ−ボルト ^{*4}	3.00	22.4	0.14

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。
2.13 浸水防護施設の耐震計算における「土木構築物,建物・構築

物,機器・配管系」の分類について

1. 浸水防護施設の耐震計算における「土木構築物,建物・構築物,機器・配管系」の分類について

浸水防護施設の耐震計算にて,設置床の最大応答加速度(ZPA)を適用する場合は,土木構築物及び建物・構築物は1.0ZPA,機器・配管系は1.2ZPA とする。

伝売ノへ海	施設分類 施設名称 -		耐震重要	度分類	ZPAを適用	目する場合
旭政万與			S	С	(1.0倍/	1.2倍)
浸水防護施設	海水貯留堰		○*1	—	土木構築物	
	取水槽閉止板		○*1	—		
	水密扉	水密扉		○*2	建物。接给物	1. OZPA
	水密扉付止水堰		—	○*2	建物・博楽物	
	止水堰		—	\bigcirc^{*2}		
	床ドレンライン浸水防止治具		\bigcirc^{*1}	\bigcirc^{*2}		
	貫通部止水処置	モルタル	$\bigcirc * 1$	\bigcirc^{*2}		
		閉止板(鉄板)	\bigcirc^{*1}	\bigcirc^{*2}	松吧,可答歹	1.9704
		閉止板(フラップゲート)	○*1	—	愤奋•匹官术	1. 22PA
	津波監視カメラ		○*1	-		
	取水槽水位計		○*1	—		

注記*1:Sクラス施設のうち、浸水防止設備として基準地震動による地震力に対して、要求される機能を保持されるものを示す。

*2:Cクラス施設のうち、溢水の伝播を防止する設備として基準地震動による地震力に対して、要求される機能を保持されるものを示す。

2.14 地下水排水設備 サブドレンポンプの加振試験に関する補足説明

 1. 試験概要
 1

 2. 振動特性把握試験
 3

 3. 加振試験
 9

目 次

5号機/7号機 地下水排水設備 サブドレンポンプの加振試験について

1. 試験概要

地下水排水設備 サブドレンポンプは、ポンプと電動機が一体構造となった没水式ポンプのた め、JEAG4601における適用形式と異なることから、機能確認済加速度を用いた評価とす ることができない。そのため、機能確認済加速度を設定することを目的とし、株式会社 MTI所有 の加振設備を用いて柏崎刈羽原子力発電所第5号機及び第7号機に設置する同型式のポンプを加 振した。ポンプはポンプ架台により補強しており、加振試験ではポンプとポンプ架台を一体で評 価した。ポンプおよび架台の外形図を図1-1に示す。試験方法としては振動特性把握試験を実施 し、固有振動数を求め、剛構造であることを確認した後、機器の据付位置における評価用加速度 を包絡する加振波で加振試験を実施した。また、加振試験に加え、加振試験後の性能試験及び性 能試験後の分解点検を実施することで健全性を確認している。振動試験装置外観を図1-2、加振 台仕様を表1-1に示す。また、試験体と実機の主な仕様の比較を表1-2に示す。

図 1-1 サブドレンポンプおよび架台外形図

図 1-2 振動試験装置外観

表 1-1 加振台仕様

寸法	2600 [mm]×6200 [mm]
最大積載量	20 [t]
運転周波数帯域	0 - 100 [Hz]
昌十加定座	水平 2 [G]
取入加速度 	鉛直 3 [G]

表 1-2 サブドレンポンプの主な仕様の比較

仕様		試験体	実機
外形寸法		400 [mm] (縦) 425 [mm] (横)	同左
		916 [mm] (高さ)	
質量		167 [kg] 🔆	同左
キンプ	種類	うず巻形	同左
ホンノ 容量		0.75 [m ³ /min]	同左
雪乱继	種類	誘導電動機	同左
电别傚	出力	15 [kW]	同左

注記※: ケーブルを除くポンプ単体概算乾燥質量

2. 振動特性把握試験

2.1 ポンプに加速度計を取り付け,加振波として 5Hz から 100Hz までの範囲でランダム波を使用した各軸単独加振を実施し,応答加速度から周波数応答関数を得て,固有周期について求める。計測センサ取付位置を図 2-1 に示す。また,ポンプに取り付けた加速度計の設置箇所を表 2-1 に示す。

図 2-1(a) 加速度センサ取付位置

図 2-1(b) 加速度センサ取付位置

表 2-1	加速度設置箇所
-------	---------

部位	X 方向	Y 方向	Z 方向	
架台ベース	1X, 2X, 3X, 4X	1Y, 2Y, 3Y, 4Y	1Z, 2Z, 3Z, 4Z	
架台上部	5X, 6X, 7X, 8X	5Y, 6Y, 7Y, 8Y	5Z, 6Z, 7Z, 8Z	
ポンプベース	9Х	9Y	9Z	
ポンプ重心	10X	10Y	10Z	
ポンプ上部(ケーブル側)	11X	11Y	11Z	
ポンプ上部(吐出側) 12X		12Y	12Z	

2.2 試験結果

試験により得られた周波数応答関数を図 2-2 に,各軸方向の最大応答共振点を表 2-2,各軸方向の固有周期を表 2-3 に示す。各軸方向について剛構造と見なせる固有周期 0.05 秒を 十分に下回る結果が得られた。

図 2-2(1) X 方向 周波数応答関数

資料 8-2.14-6

図 2-2(2) Y 方向 周波数応答関数

資料 8-2.14-7

図 2-2(3) Z 方向 周波数応答関数

資料 8-2.14-8

方向	共振点(Hz)	応答倍率
X 方向	27.588	9.213
Y 方向	41.504	21.898
Z方向	41.138	31.608

表 2-2 各軸方向の最大応答共振点

表 2-3 各軸方向での固有周期

方向	固有周期(s)	固有振動数(Hz)
X 方向	0.036	27
Y 方向	0.024	41
Z 方向	0.024	41

- 3. 加振試験
- 3.1 試験方法

「2.2 試験結果」で示しているように、機器の固有周期は0.05秒を下回っており、剛構造 と見なせることから、機器据付位置における評価用加速度を包絡するような加振波を生成し、 加振試験を実施する。加振波は水平(前後)+水平(左右)+鉛直方向を加振方向として、次 のように生成される。

- ・ 機器据付位置における設計用床応答曲線と等価な試験用床応答曲線を設定し、ランダム波を 作成する。
- 作成されたランダム波を入力とした加振台の時刻歴加速度波形から床応答曲線に変換し、試験用床応答曲線と比較する。
- ここで加振台での床応答曲線が設計用床応答曲線を満足する場合、これを最終的な入力加振 波とする。満足していない場合、ランダム波を補正し、再度確認するプロセスを繰返して試 験用床応答曲線を満足する入力加振波を作成する。

加振試験における試験条件を表 3-1 に、加振波を図 3-1 に示す。

項目	試験条件
加振地震波	ランダム波
加振方向	水平2方向と鉛直方向の3軸同時加振
運転状態	停止中加振
取付状態	加振台にボルトにて取り付け

表 3-1 加振試験条件

図 3-1 加振試験に用いた加振波(加振台上での計測データ)の加速度時刻歴波形

3.2 試験結果

以下について機器に異常がないことを確認し、本試験において加振台での最大加速度を小数 点以下第2位で切り捨てた値を機能確認済加速度とした。

図 3-2 に設計用床応答曲線及び加振台床応答曲線を示す。また,加振試験後の性能試験結 果を図 3-3 に示す。

- (1) 加振台への時刻歴入力の最大加速度が機器据付位置における評価用加速度以上であること。 (表 3-2,表 3-3 参照)
- (2) 加振試験後にポンプ架台等のボルトに緩み・脱落が無いこと。
- (3) 加振試験後にポンプ取付ボルトの緩みが無いこと。
- (4) 加振試験後の性能試験において、ポンプの健全性並びに動作性に異常のないこと。 ・性能試験時の吐出流量 0.75 m³/min で、全揚程が 44 m 以上であること。
- (5) 性能試験後の分解点検において、内部構造物に割れ等の異常がないこと。

方向		$[m/s^2]$	[G]
	Х	9.924	1.01
小平	Y	8. 435	0.86
鉛直	Z	9. 795	0.99

表 3-2 機能確認済加速度

表 3-3 機能維持評価用加速度と試験時の機能確認済加速度との比較

 $(\times 9.8 \text{m/s}^2)$

	第5号機	第7号機	_
方向	機能維持評価用加速度	機能維持評価用加速度	機能確認済加速度 ※
水平	0.68	0.85	0.86
鉛直	0.63	0.62	0.99

注記※:機能確認済加速度は設計用床応答曲線を上回る加振波を作成し、それによる試験の 結果、性能が維持されていることを確認できた加速度を示す。(ポンプの限界値を 示したものではない)

図 3-2 設計用床応答曲線と加振台床応答曲線との比較

図 3-3 加振試験後の性能試験結果

2.15 フラップゲートの加振試験に関する補足説明

目 次

1.	試験概要	1
2.	振動特性把握試験	2
3.	加振試験	6

1. 試験概要

1.1 概要

フラップゲートは空調ダクトに設置し、内部の扉体が閉止することで水流を止水する構造となっている。JEAG4601に記載のない機器であることから、機能確認済加速度を設定することを目的とし、加振設備を用いて柏崎刈羽原子力発電所第7号機向けのフラップゲートと開口部寸法は異なるが、同構造のフラップゲートを加振した。フラップゲートの断面図を図1-1に示す。試験方法としては振動特性把握試験を実施し、固有振動数を求め、剛構造であることを確認した後、機器の据付位置における機能維持評価用加速度を包絡する加振波で加振試験を実施した。また、加振試験後に水を流し、フラップゲートの閉動作を確認した。加振試験設備の概略図を図1-2に、流水試験設備の概略図を図1-3に示す。また、加振台仕様を表1-1に、試験体と実機の主な仕様の比較を表1-2に示す。

図 1-1 フラップゲート断面図(開状態)

図 1-2 加振試験設備の概略図

図1-3 流水試験設備の概略図

表 1-1 加振台仕様

項目	諸元			
積載質量	最大60t, 定格20t			
振動数範囲	$(DC) \sim 50 Hz$			
最大加速度	X方向 30m/s ² Y方向 30m/s ² Z方向 30m/s ²			

表 1-2 フラップゲートの主な仕様の比較

古石		質量
刘承	用口即门伍	[kg]
試験体	600mm $ imes 600$ mm	1132
実機	500 mm $ imes 500$ mm	994

2. 振動特性把握試験

2.1 試験方法

フラップゲートに加速度計を取付け,通常状態である内部の扉体が開状態において加振 波として 1Hz から 30Hz までの範囲でランダム波を使用した各軸単独加振を実施し,応答加 速度から周波数応答関数を得て,固有周期について求める。計測センサー取付位置を図 2 -1に示す。

2.2 試験結果

試験により得られた振動伝達特性を図 2−2~図 2−3 に示す。振動台(A1)の入力加 速度に対するケーシング(A4)の振動伝達特性は、X方向、Y方向、Z方向加振において 高振動数域で若干の応答増幅があるものの、応答倍率はほぼ1倍のフラットな特性を示す。 表 2−1 に示すとおり、各軸方向について剛構造と見なせる固有周期 0.05 秒を十分に下 回る結果が得られた。

卓越振動数		
振動数	応答倍率	
_	—	

卓越振動数		
振動数	応答倍率	
—	—	

注記 *: 30Hz での応答倍率の降下は、位相に大きな変化は見られずノイズと判断。

卓越振動数		
振動数	応答倍率	
	—	

図 2---3 振動伝達特性

方向	固有周期(s)	固有振動数(Hz)
Х	0.034 以下	30Hz 以上
Y	0.034 以下	30Hz 以上
Z	0.034以下	30Hz 以上

表 2-1 各軸方向での固有周期

- 3. 加振試験
- 3.1 試験方法

電力会社3社による共同委託で,幅広く BWR プラントに適用できるよう加振波を生成し, 加振試験を実施した。

- ・建屋の地震応答解析に用いる模擬地震波は,原子力発電所耐震設計技術基準 (JEAG4601-2008)を参考に作成
- ・建屋モデルには MARK-1 建屋および MARK-2 建屋を適用 加振試験は浸水前の地震を想定しフラップゲート開の条件で健全性を確認するため実 施した。

加振試験後に水を流しフラップゲートの閉動作を確認するため,流水試験を実施した。 加振試験における試験条件を表 3-1 に,加振波を図 3-1,図 3-2 に示す。

項目	試験条件	
加振地震波	ランダム波	
加振方向	水平1方向及鉛直方向の2軸加振	
試験状態	フラップゲート開,水なし	

表 3—1 加振試験条件

最大加速度: 2.8410(×9.8m/s²)

水平X方向

最大加速度: 2.2097(×9.8m/s²)

鉛直 Z 方向 図 3-2 加振試験に用いた加振波の加速度時刻歴(試験体) (フラップゲート開,水なし)

資料 8-2.15-7

3.2 試験結果

以下のとおり,フラップゲート開,水なしの状態での加振試験後において機器に異常が ないことを確認した。

・加振試験後にフラップゲート設置状態に異常なし

・加振試験後にボルト締付状態に異常なし

その後の流水試験において,フラップゲートの閉動作が良好であることを確認した。な お,加振試験時の加振台での最大加速度を少数点以下第2位で切り捨てた値を機能確認済 加速度とした。

加振台の床応答曲線が、0.05s 以下の領域で柏崎刈羽原子力発電所第7号機フラップゲートの据付位置における設計用床応答曲線以上であることを確認した。また、機能確認済加速度が据付位置における機能維持評価用加速度以上であることを確認した。表 3-2,に 機能維持評価用加速度と試験時の機能確認済加速度との比較を示す。表 3-3 に流水試験結 果を示す。図 3-3 に設計用床応答曲線と加振台床応答曲線との比較を示す。

> 表 3-2 評価用加速度と試験時の機能確認済加速度との比較 (フラップゲート開,水なし)

> > $(\times 9.8 \text{m/s}^2)$

方向	機能維持評価用	機能確認済加速度	加振台加振試験時
	加速度		最大加速度
Х	0.82	2.8	2.8410
Y	0.82	2.9	2.9427
Z	0.74	2.2	2.2097

試験流量	越流量	閉動作
3∼3.5 ℓ/s	0.1 l	良好
16∼20 ℓ/s	16.3 l	良好
32∼39 ℓ/s	26.2 l	良好

表 3-3 流水試験結果

注記 *: V-2-1-7「設計用床応答曲線の作成方針」の設計用床応答曲線 I を元に作成した減 衰定数 1.0%の評価用床応答曲線。

図 3-3 設計用床応答曲線と加振台床応答曲線との比較 (フラップゲート開,水なし)