本資料のうち、枠囲みの内容	杧
は、機密事項に属しますので	
公開できません。	

柏崎刈羽原子力発電所第7号機 工事計画審査資料					
資料番号	KK7補足-028-03 改7				
提出年月日	2020年 9月 7日				

耐震評価における等価繰返し回数について

2020年9月 東京電力ホールディングス株式会社

柏崎刈羽7号機 耐震評価における等価繰返し回数について

(Vhr)
	1X	J

1.	はじめに	1
2.	柏崎刈羽7号機の耐震評価における疲労評価と等価繰返し回数	2
3.	一律に設定する地震等価繰返し回数の設定について	
(1)	算出方法	
(2)	一律に設定する等価繰返し回数の算出パラメータの設定の考え方	11
(3)	算出結果	
(4)	弾性設計用地震動Sdの等価繰返し回数について	
(5)	結果まとめ	19
4.	個別に設定する等価繰返し回数の設定について	
(1)	対象設備	
(2)	個別に設定する等価繰返し回数設定方針	
(3)	算出結果	
5.	まとめ	
DUM		
別紙		
別紙 I.	等価繰返し回数の算出結果(基本ケース)	
別紙 Ⅰ. Ⅱ.	等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件	27 79
50紙 Ⅰ. Ⅱ. Ⅲ.	等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮)	
別紙 Ⅰ. Ⅱ. Ⅲ. Ⅳ.	等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置	
別紙 Ⅰ. Ⅱ. Ⅲ. Ⅳ. (補足	等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置	
別紙 Ⅰ. Ⅱ. Ⅲ. Ⅳ. (補足1	等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 2) ピーク応力法における各ピークのサイクル数の求め方	
別紙 Ⅰ. Ⅱ. Ⅳ. (補足1 4足2	 等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 ピーク応力法における各ピークのサイクル数の求め方 等価繰返し回数算出プログラムについて 	
別紙 Ⅰ. Ⅱ. Ⅳ. 補 足 2 3	 等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 ピーク応力法における各ピークのサイクル数の求め方 等価繰返し回数算出プログラムについて 疲労評価の対象設備及び部位毎のピーク応力 	27
別 I. Ⅱ. Ⅲ. Ⅲ. 桶 程 足 足 足 足 2 3 4	 等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 ピーク応力法における各ピークのサイクル数の求め方 第価繰返し回数算出プログラムについて 疲労評価の対象設備及び部位毎のピーク応力 ピーク応力の算出方法について 	
別 Ⅰ. Ⅲ. Ⅲ. (補補補補補 Ⅲ. Ⅲ. 補足足足足足 足2345	 等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 ピーク応力法における各ピークのサイクル数の求め方 ピーク応力法における各ピークのサイクル数の求め方 第価繰返し回数算出プログラムについて 疲労評価の対象設備及び部位毎のピーク応力 ジーク応力の算出方法について 多方向入力を対象とした等価繰返し回数算定方法について 	27
別Ⅰ.Ⅱ.Ⅳ.(補補補補補補補	 等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 ピーク応力法における各ピークのサイクル数の求め方 ピーク応力法における各ピークのサイクル数の求め方 第価繰返し回数算出プログラムについて 疲労評価の対象設備及び部位毎のピーク応力 ェーク応力の算出方法について 多方向入力を対象とした等価繰返し回数算定方法について 柏崎刈羽7号機等価繰返し回数の保守性について 	27 79 86 93 108 108 109 128 130 133 147
別ⅠⅡⅢⅣ(補補補補補補補補補.1.11111111111111111111111111	 等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 ピーク応力法における各ピークのサイクル数の求め方 ピーク応力法における各ピークのサイクル数の求め方 第価繰返し回数算出プログラムについて 疲労評価の対象設備及び部位毎のピーク応力 ょ労評価の対象設備及び部位毎のピーク応力 多方向入力を対象とした等価繰返し回数算定方法について 柏崎刈羽7号機 等価繰返し回数の関係について 	27 79 86 93 108 109 128 130 133 147 165

1. はじめに

柏崎刈羽7号機の今回工認における耐震評価の疲労評価は、JEAG460 1-1987(以下「JEAG4601」という。)の記載手順*に従い、等価繰返 し回数を用いた評価を行っている。疲労評価は、応力振幅と繰返し回数の情報 が必要となるため、本来は設備の応力時刻歴が必要となるが、最大応力値のみ を用いて保守側に疲れ累積係数UFを評価できるよう設定した等価繰返し回 数を設定することで、評価の簡便化を図っている。V-2-1-9「機能維持の基本 方針」で記載しているとおり、柏崎刈羽7号機の疲労評価に用いる等価繰返し 回数は、個別に設定する値又は一律に設定する値(Ss:200回,Sd:200 回)を用いている。

なお,建設時は,S1,S2地震動による検討を行い,等価繰返し回数(S1:60回,S2:60回)を設定している。

本図書では疲労評価に用いる等価繰返し回数の設定について説明する。

※ JEAG4601 p574 より抜粋

疲れ解析は、1次+2次+ピーク応力より疲れ累積係数を求めて評価す るが、この手法には、地震動の等価繰返し回数を用いる方法あるいは機器の 時刻歴応答から応力振幅の大きさの頻度分布を直接求める方法がある。

なお,地震動の等価繰返し数を求める場合にはピーク応力法あるいはエネ ルギー換算法が用いられている。

ここで「疲れ累積係数」とは、各応力サイクルにおける実際の繰返し回数 と繰返しピーク応力強さに対応する許容繰返し回数との比をすべての応力 サイクルについて加えたものをいう。 2. 柏崎刈羽7号機の耐震評価における疲労評価と等価繰返し回数

柏崎刈羽7号機の耐震評価における疲労評価は,JEAG4601記載の手順のうち,等価繰返し回数を用いた評価を採用している。等価繰返し回数は建設時と同じピーク応力法による算出結果に基づき,一律に設定する値又は個別に設定する値を用いている。

ー律に設定する値と、個別に設定する値の使い分けフローを図2-1 に示 す。ここで、フロー中の疲労評価対象設備は、工認耐震計算書対象とする設備・ 部位のうち、疲労評価を実施するものとしている。

一律に設定する値又は個別に設定する値の使い分けは以下3点がある。

- ・一律に設定する等価繰返し回数を用いるのは原子炉建屋,タービン建屋, コントロール建屋及び廃棄物処理建屋内の疲労評価対象設備とする。これらの建屋以外に設置される疲労評価対象設備は、個別に設定する等価繰返し回数を用いる(図2-1の(A))。
- ・一律に設定する等価繰返し回数は、疲労評価対象設備に発生するピーク 応力が 1471MPa 以下となる疲労評価対象設備に用いる。1471MPa を 超える疲労評価対象設備は個別に設定する値を用いる(図2-1の (B))。
- ・一律に設定する等価繰返し回数を用いた疲労評価が許容値(疲れ累積係数が1以下)を満足しない疲労評価対象設備については,個別に設定する等価繰返し回数を用いる(図2-1の(C))。

※1 疲労評価対象設備のピーク応力は、補足3参照。

※2 該当する疲労評価対象設備は4.参照。

図2-1 適用する等価繰返し回数の使い分け

- 3. 一律に設定する地震等価繰返し回数の設定について
- (1) 算出方法

柏崎刈羽7号機のピーク応力法による等価繰返し回数算出方法の手順を,JE AG4601に記載されたピーク応力法による算出フロー(図3.(1)-1,以 下「フロー」という。)との対比で説明する。また,柏崎刈羽7号機の建設時と 今回工認の算出条件の比較を表3.(1)-1に示す。

次頁以降に具体的な手順を示す。①~⑤の手順はフロー中の番号に対応している。

図3.(1)-1 ピーク応力法による算出フロー

① 地震動の設定

柏崎刈羽7号機の一律に設定する等価繰返し回数の設定に用いる地震動として,基準地震動Ssに以下の考慮を行う(3.(2)参照)。

- ○柏崎刈羽原子力発電所は2007年に発生した新潟県中越沖地震(以下「N CO」という。)を被災していることから、本地震動を考慮する。
- ○米国の知見(SRP3.7.3Rev.4)を参考に、弾性設計用地震動Sdの1/3倍の地震動5回分を考慮する。
- 時刻歴波形の設定

等価繰返し回数の算出に用いる時刻歴波形は,地震荷重を時刻歴より求める 機器系の場合(左側のフロー(以下「時刻歴フロー」という。))と,地震荷重 を応答スペクトルより求める機器系の場合(右側のフロー(以下「応答スペク トルフロー」という。))の2種類の方法で設定する。

時刻歴フローでは、大型機器系及び炉内構造物系の地震応答解析(フローで は「時刻歴地震応答解析」と記載)から求めた時刻歴モーメント応答波形,時 刻歴せん断力応答波形及び時刻歴軸力応答波形を用いる。

応答スペクトルフローでは、各建屋の地震応答解析、大型機器系及び炉内構造物系の地震応答解析から求めた時刻歴加速度応答波形を入力とした固有振動数fの1質点系モデルの時刻歴変位応答波形を用いる。この時刻歴変位応答 波形は、固有振動数全て(1~20Hz)に対して算出する。

③ 時刻歴ピーク応力値の設定

疲労評価対象設備に発生するピーク応力の最大値をフロー②で求めた時刻 歴波形の最大値とすることで、応力の時刻歴波形を作成する。フロー③の「時 刻歴応答波形の最大値に対するピーク応力を仮定」とは、疲労評価対象設備の ピーク応力ではなく、疲労評価対象設備全てのピーク応力の最大値を時刻歴波 形の最大値とすることに対応している。また、実際の多質点系モデルの場合、 ピーク応力は各モードの重ね合わせの結果として算出されるものであり、必ず しも波形の最大値がピーク応力になるとは限らないが、フロー③では多質点系 モデルの場合においても波形の最大値がピーク応力であることを指している。

ここで,柏崎刈羽7号機における等価繰返し回数の設定に用いるピーク応力 は,1471MPa^{**}を用いており,疲労評価対象設備のピーク応力が1471MPa を 超える場合は個別に設定を行う。

※:「昭和 55 年度 耐震設計の標準化に関する調査報告書」にて十分と されている値(150kg/mm²)を単位換算した値。 ④ 疲れ累積係数UF (Usage Factor)の算出

図3.(1)-2に示すJSME設計・建設規格に記載される設計疲労線図を 用い,応力時刻歴波形に対して各時刻歴振幅に対する許容繰返し回数を算出す る。なお,時刻歴振幅とそれが何回繰返されるか(ピークのサイクル数)の算 出方法はレインフロー法を用いる(補足1参照)。

(JSME設計・建設規格より抜粋)

図3.(1)-2 炭素鋼,低合金鋼及び高張力鋼の設計疲労線図

各応力時刻歴波の振幅に対する許容繰返し回数と、ピークのサイクル数から UFを算出する(図3.(1)-3参照)。

UF= $\frac{n_0}{N_0} + \frac{n_1}{N_1} + \frac{n_2}{N_2} \cdots$ n_i:各ピークのサイクル数 N_i:各ピークに対する許容繰返し回数

図3.(1)-3 UF算出方法

注記:上式では、片振りのピーク点を 0.5 サイクル、両振りのピーク点を 1 サ イクルとしてUFを算出可能な式であることに対して、図 3.(1) - 1 フロー におけるUFの積算式 (2 $F = \sum_{i=1}^{l} \frac{1}{N_i}$) は各ピーク点を 0.5 サイクルとしてサ イクル数をカウントすることを前提とした式であるため、係数に相違がある (図 3.(1) - 4参照)。

(※) : ⑤⇒④' でのσiおよびNiは ④⇒⑤でのσiおよびNiと等しい。
 (※※) : ⑦⇒⑥' でのσiおよびNiは ⑥⇒⑦でのσiおよびNiと等しい。

図3.(1)-4 疲れ累積係数UFの積算方法の違いの概念図

⑤ 等価繰返し回数N。の算出

フロー④で算出したUFとフロー③より求められる最大ピーク応力に対す る許容繰返し回数N₀から,下式により,等価繰返し回数N₀を求める。

 $N_e = UF \times N_0$

以上を踏まえ、柏崎刈羽7号機の等価繰返し回数の算出方法を図3.(1)-5に示す。

図3.(1)-5 等価繰返し回数の算出方法

表3.((1)	-1	柏崎刈羽7	号機における-	一律に設定す	る等価繰返し[回数の建設時と	今回工認の算	出条件の比較
------	-----	----	-------	---------	--------	---------	---------	--------	--------

		建	設時	今回工認			
		耐震評価に地震応答解析から 算出されるモーメントを用い る設備	耐震評価に床応答を入力とした1 質点系モデルによる応答を用い る設備	耐震評価に地震応答解析から算出 されるせん断力,モーメント,軸力 を用いる設備	耐震評価に床応答を入力とした1 質点系モデルによる応答を用い る設備		
算出方法 (JEAG4601のフローの 左右どちらか)		時刻歴解析より算出される時 刻歴モーメントを用いた算出 方法(時刻歴フロー)	建屋床応答を入力とした 1 質点 系モデルによる応答時刻歴を用 いた算出方法 (応答スペクトルフ ロー)	建設時と同様	建設時と同様		
	波形	時刻歴モーメント波形	変位応答時刻歷波形	時刻歴波形 (せん断力波形, モーメ ント波形, 軸力波形)	建設時と同様		
回数算出に 用いる応答 時刻歴波 (設備の最大 ピーク応力)		150kg/mm ² 「昭和 55 年度 耐震設計の標 準化に関する調査報告書」の検 討にて十分とされている値	同左	1471MPa (150kg/mm²)	同左		
対象建屋・房	R	代表設備の質点	代表設備の設置床面(質点)	全ての質点	全ての床面(質点)		
固有周期		時刻歴解析結果より直接算出	設備の固有周期ではなく, 全固有 周期帯	建設時と同様	建設時と同様		
減衰定数		時刻歴解析結果より直接算出	0.5%, 1.0%	建設時と同様	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
設計用疲労線図		炭素鋼	同左	建設時と同様	同左		
各方向の算出結果の組合せ		なし (NS・EW の 2 方向のうち最大と なる値)	同左	なし (NS・EW・UD の 3 方向のうち最大 となる値)	同左		
材料物性のオ	「確かさ等の考慮	なし	同左	あり ^{**1} (コンクリート剛性,回転ばね定 数,地盤剛性他)	あり (コンクリート剛性, 回転ばね定 数, 地盤剛性他)		

※1 今回工認における等価繰返し回数の算出結果は,時刻歴フローの算出結果に対し,応答スペクトルフローの回数が大きい。 このため,材料物性の不確かさ等の考慮のための影響検討は応答スペクトルフローにて検討している。

10

(2) 一律に設定する等価繰返し回数の算出パラメータの設定の考え方 等価繰返し回数の設定におけるパラメータとしては以下の項目があり、各項目 の妥当性を検討し、一律に設定する等価繰返し回数が適切であることを確認する。

①ピーク応力
 ②固有周期
 ③対象床面(質点)
 ④地震動
 ⑤減衰定数
 ⑥設計疲労線図
 ⑦材料物性の不確かさ等の考慮

ピーク応力

「昭和 55 年度 耐震設計の標準化に関する調査報告書」にてピーク応力の 設定値が高くなるほど等価繰返し回数が大きくなる傾向となることが確認さ れている(補足 7 でその傾向の計算例を示す。)。当該報告書の中でピーク応力 の設定値として十分とされている値(150kg/mm²)*を参考に,当該の値を単 位換算した 1471MPa を柏崎刈羽 7 号機の等価繰返し回数の算出に用いる。

また,ピーク応力の設定の適切性の確認は,各疲労評価対象設備のピーク応 力が1471MPaに包絡されることを確認する必要がある。この場合の各疲労評 価対象設備のピーク応力は,水平2方向と鉛直方向の地震力の組合せを考慮し たものとする。

なお,疲労評価対象設備のピーク応力が1471MPaを超える場合は個別に等 価繰返し回数の設定を行う。

※「昭和 55 年度耐震設計の標準化に関する報告書」での整理。

現在用いられている材料においてRPV本体材料であるSQV2A及 びSFVV3の一次+二次応力に対する許容値が最も高く、その値は3 Sm=56.4kg/mm²となる。

応力係数の極大値 5 とすればピーク応力の値としては片振幅に対して, 56.4×5÷2=141kg/mm² となることから,最大ピーク応力としては, 150kg/mm²まで考慮すれば十分としている。 ② 固有周期

今回工認では、全周期帯(0.05s~1.00s)で算出した最大の等価繰返し回数を 包絡できるように設定する。実際の設備は、特定の固有周期を有していること から、当該疲労評価対象設備の等価繰返し回数は確実にそれ以下の回数となり、 保守側の設定となる。

固有周期[s]

③ 対象床面 (質点)

等価繰返し回数を設定する床面(質点)はV-2-1-7「設計用床応答曲線の作 成方針」で設備設計に用いる床応答曲線を算出する全ての床面と、V-2-2-4「原 子炉本体の基礎の地震応答計算書」及びV-2-3-1「炉心,原子炉圧力容器及び 圧力容器内部構造物の地震応答計算書」で設備設計に用いる荷重を算出する全 ての質点(柏崎刈羽7号機において実際に疲労評価を実施する設備が有る床面 以外も含む。)とする。 4 地震動

柏崎刈羽原子力発電所における基準地震動は、Ss-1~8の8波がある。 今回の等価繰返し回数の算出には全ての基準地震動を用いる。

また,基準地震動に加えて以下の2点を考慮する。

- ・柏崎刈羽7号機設備はNCOを被災していることから,NCOの地震動の影響を考慮する。
- ・米国 SRP3.7.3Rev.4 の考え方を参考に、弾性設計用地震動Sdの1/3倍の地震動5回分を考慮する(補足8参照)。

上記より今回の算出に用いる地震動は、基準地震動Ss、弾性設計用地震動 Sdの1/3倍の地震動5回分及びNCOを組み合わせることとし、表3.(2) -1に示す8波とする。また、図3.(2)-1に算出に用いた地震動の一例を 示す。

表3.(2)-1 柏崎刈羽7号機 今回工認の等価繰返し回数算出用の地震動

今回工認の算出用地震動											
S s - 1 ×1 回	+	$1/3$ Sd -1 $ imes$ 5 \square	+	NCO							
S s - 2×1回	+	$1/3$ Sd -2×5 🗉	+	NCO							
S s - 3×1回	+	$1/3$ Sd -3×5 🗉	+	NCO							
S s - 4×1回	+	$1/3$ Sd -4×5 🗉	+	NCO							
S s - 5×1回	+	$1/3$ Sd -5×5 🗉	+	NCO							
S s - 6 ×1 回	+	$1/3$ Sd -6×5 🗉	+	NCO							
S s - 7 ×1 回	+	$1/3$ Sd -7×5 🗉	+	NCO							
S s - 8×1回	+	$1/3$ Sd -8×5 🗉	+	NCO							

⑤ 減衰定数

応答スペクトルフローでの算出に用いる1 質点系の時刻歴応答解析の減衰 定数は、網羅性を確保する観点から機器・配管系の評価用の減衰定数としてよ く用いられる8ケース^(※)とする。

 (\bigstar) : 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 4.0%, 5.0%

⑥ 設計疲労線図

今回の算出に用いる設計疲労線図は J SME設計・建設規格に記載される「炭素 鋼,低合金鋼及び高張力鋼」の設計用疲労線図とする。「炭素鋼,低合金鋼および 高張力鋼」の設計用疲労線図を用いるほうが同じピーク応力とした場合に J SM E設計・建設規格に記載される「オーステナイト系ステンレス鋼および高ニッケル 合金」よりも許容繰返し回数が小さくなり,等価繰返し回数が大きく算出されるた め,今回の算出においては「炭素鋼,低合金鋼及び高張力鋼」を用いる。 ⑦ 材料物性の不確かさ等の考慮

V-2-1-1「耐震設計の基本方針」にて材料物性のばらつき等を適切に考慮する方 針としていることから、今回工認の等価繰返し回数についても、算出に用いる地震 応答解析モデルの材料物性の不確かさ等による影響を考慮する。

考慮にあたっては、基本ケースの地震応答解析による結果から等価繰返し回数 の算出に支配的となる地震動・減衰定数を特定し、特定した地震動・減衰定数を用 いて材料物性の不確かさ等を考慮した検討ケースでの等価繰返し回数を算出した 後、算出結果を踏まえて安全側に設定を行う。具体的なフローを図3.(2)-2 に示す。

図3.(2)-2 一律に設定する等価繰返し回数 設定フロー

(3) 算出結果

基本ケースの地震応答解析モデルにて算出した等価繰返し回数を表3.(3) -1に,詳細内訳を別紙に示す。また基本ケースの結果で最大となる減衰定数, 地震動にて算出した材料物性の不確かさ等を考慮した結果を表3.(3)-2に 示す。また,この算出条件及び詳細内訳は別紙に示す。

表3.(3)-1 地震応答解析モデル毎の最大等価繰返し回数(基本ケース)

	回数が最	大となる条件			里 十
地震応答解析モデル	減衰定数	世堂町	T.M.S.L.(m)	方向	取八回粉
	(%)	地展到			回奴
両フに冲見の			10 700	NS	
原于炉建全の 地震亡ダ報振エデル	0.5	S s−3系 [*]	49.700	UD	
地展応合胜例てアル			-8.200	UD	
大型機器系の	2.0	○ _ 2 조※	21 200	UD	
地震応答解析モデル	2.0	38-3米	21.200	UD	
炉内構造物系の	25	S。— 3 조※	14 499	UD	
地震応答解析モデル	2.0	55 0 M	14.400	UD	
タービン建屋の	0.5	S。— 3 조※	30 900	FW	
地震応答解析モデル	0.5	03 038	30.300	EW	
コントロール建屋の	0.5	S。— 3 丞※	24 100	UD	
地震応答解析モデル	0.5	55 0 M	24.100	OD	
廃棄物処理建屋の	2.0	S。— 3 조※	44 200	UD	
地震応答解析モデル	2.0	55 5 7	44.500	υD	

 $\label{eq:second} \And \ \mathrm{S} \ \mathrm{s} - 3 \times 1 \ \square \ + \ 1/3 \ \mathrm{S} \ \mathrm{d} - 3 \times 5 \ \square \ + \ \mathrm{NCO}$

	星	氧出条件			最	大回数	比率
地震応答 解析モデル	減衰 定数 (%)	地震動	T.M.S.L. (m)	方 向	基本 ケース	不確かさ等 考慮	(不確かさ 等考慮/基 本ケース)
百二后建長の	0.5	S s − 3 系 ^{*1}	49.700	NS			
ホテが定定り	0.5	S s - 3 系 ^{*1}	49.700	UD			
地辰心合胜切てノル	0.5	S s − 3 系 ^{*1}	-8.200	UD			
大型機器系の 地震応答解析モデル	2.0	S s - 3 系 ^{*1}	21.200	UD			
炉内構造物系の 地震応答解析モデル	2.5	S s - 3 系 ^{*1}	14.433	UD			
タービン建屋の 地震応答解析モデル	0.5	S s - 3 系 ^{*1}	30.900	EW			
コントロール建屋の 地震応答解析モデル	0.5	S s − 1 系 ^{*2}	$\begin{array}{c} 24.100 \\ 17.300 \\ 12.300 \\ 6.500 \\ 1.000 \end{array}$	UD			
	0.5	S s -3 系 ^{*1}	24.100	UD			
廃棄物処理建屋の 地震応答解析モデル	2.0	S s − 3 系 ^{**1}	44.300	UD			

表3.(3)-2 地震応答解析モデル毎の最大等価繰返し回数 (材料物性の不確かさ等を考慮)

 $\%1 \quad S \ s - 3 \times 1 \ \square + 1/3 \ S \ d - 3 \times 5 \ \square + N \ C \ O$

 $2 S s - 1 \times 1 \square + 1/3 S d - 1 \times 5 \square + N C O$

※3 Ss-1系における不確かさ等考慮ケースの最大回数とSs-1系における基本ケースの最大回数の比率を算出し、その比率をSs-3系における基本ケースの最大回数に掛け合わせてSs-3系における不確かさ等考慮ケースの最大回数を算出した。

17

(4) 弾性設計用地震動Sdの等価繰返し回数について

柏崎刈羽原子力発電所の弾性設計用地震動Sdは基準地震動Ssに係数0.5 を乗じて設定しており、建屋の各床面(質点)における弾性設計用地震動S dによる応答波形は、基準地震動Ssによる応答波形にほぼ等しくなる。また、弾性設計用地震動Sdにより発生するピーク応力は、基準地震動Ssに より発生するピーク応力よりも小さくなる。

ピーク応力法においては,波形が等しい2つの地震動で等価繰返し回数を 算出する場合,ピーク応力が高くなるほど等価繰返し回数の算出が保守的と なる(「3.(2)①ピーク応力」参照)。

したがって,基準地震動Ssの地震動及びピーク応力に基づき算出した等 価繰返し回数を弾性設計用地震動Sdの等価繰返し回数に用いることは保守 側の設定となる。

以上の理由から、今回工認における弾性設計用地震動Sdの等価繰返し回数は、弾性設計用地震動Sdを用いた等価繰返し回数の算出は行わず、基準 地震動Ssの等価繰返し回数と同じ回数とする。

- (5) 結果まとめ
 - ・基本ケースでの算出結果は廃棄物処理建屋の地震応答解析モデルでの 回が最大であった。
 - ・材料物性の不確かさ等を考慮した算出結果は廃棄物処理建屋の地震応答解 析モデルでの 回が最大であった。

上記は,等価繰返し回数が保守的になるよう算出パラメータを設定して等価繰返し回数を算出した結果である(3.(2)参照)。また,今回工認の疲労評価手法は,柏崎刈羽7号機の地震動の特徴により保守側の結果を与える(補足6.4参照)。

以上より, 柏崎刈羽7号機の一律に設定する等価繰返し回数は200回とする。

- 個別に設定する等価繰返し回数の設定について 柏崎刈羽7号機の今回工認において一律に設定する等価繰返し回数を適用せず, 個別に設定する等価繰返し回数を適用する場合について説明する。
- (1) 対象設備

個別に設定する等価繰返し回数を設定する必要がある疲労評価対象設備は図 2-1のフローに従って抽出される以下の疲労評価対象設備となる。

- (A) 原子炉建屋,タービン建屋,コントロール建屋及び廃棄物処理建屋以 外に設置される疲労評価対象設備
- (B) 発生するピーク応力が 1471MPa を超える疲労評価対象設備
- (C) 一律に設定する等価繰返し回数を用いた疲労評価が許容値を満足しな い疲労評価対象設備
- (2) 個別に設定する等価繰返し回数設定方針

個別に設定する場合の算出条件を一律に設定する等価繰返し回数と併せ表4. (2) -1に示す。

算出条件の一部(設置場所,固有周期,減衰定数,ピーク応力,設計用疲労線 図)に疲労評価対象設備固有の条件を用いた上で算出することで,各疲労評価対 象設備に対して個別に設定する等価繰返し回数とする。

また,一律に設定する等価繰返し回数と同様に,材料物性の不確かさ等の影響 を考慮する。

表4.(2)-1 一律に設定する等価繰返し回数と個別に設定する等価繰返し回数の条件

条件の項目	ー律に設定する 等価繰返し回数	個別に設定する 等価繰返し回数	備考
対象建屋・床	全床面(質点)	疲労評価対象設備 の設置位置	
ピーク応力	1471MPa	$1471 \mathrm{MPa}^{st_1}$	※1 必要に応じて疲労評価対象 設備のピーク応力を用いる。
固有周期	全固有周期	全固有周期*2	※2 必要に応じて疲労評価対象 設備の固有周期を用いる。
減衰定数	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	設備の減衰定数	
設計用疲労線図	炭素鋼	炭素鋼 ^{※3}	※3 必要に応じて疲労評価対象 設備の使用材料の設計用疲 労線図を用いる。

(3) 算出結果

(2)項の方針に基づき算出した個別に設定する等価繰返し回数を以下に示す。

- (A) 原子炉建屋、タービン建屋、コントロール建屋及び廃棄物処理建屋以 外に設置される疲労評価対象設備
 原子炉建屋、タービン建屋、コントロール建屋及び廃棄物処理建屋以
 外に設置される設備で疲労評価対象設備は無し。
- (B) 発生するピーク応力が1471MPaを超える疲労評価対象設備 該当する設備として原子炉補機冷却水系配管(RCW-T-3, RCW-T-4)が ある。算出条件,算出結果及び個別に設定する等価繰返し回数を表4.
 (3) -1及び2に示す。
- (C) 一律に設定する等価繰返し回数を用いた疲労評価が許容値を満足しな い疲労評価対象設備

該当する設備として消火系配管(FP-025R2),非放射性ドレン移送系配 管(MSC-002R2),雑用水系配管(DW-006R2)及びタービン補機冷却 水系配管(TCW-001R2)がある。算出条件,算出結果及び個別に設定する 等価繰返し回数を表4.(3)-3及び4に示す。

		算出約	吉果			個別に設定する					
冲尼, 港筑版	T.M.S.L.	減衰定数	ピーク応力	1 質点系の	設計用	等価繰	返し回	数 ^{※3}		最大	他別に取足りる
建産・博衆初	(m)	(%)	(MPa)	固有周期(s)	疲労線図	検討ケース	NS	EW	UD	回数	寺画線返し回数
百乙后冲导	1 700		1001			基本ケース*1					
原于炉建座	-1.700	2.0	1631	人田士田畑	巴主纲	ケース 2~6*1					70
カービン建民	1 100	2.0	1005	王间有同别	灰茶婀	基本ケース*2					70
クーレン建全	-1.100		1625			ケース 2~5 ^{※2}					

表4.(3)-1 原子炉補機冷却水系配管(RCW-T-3) 個別に設定する等価繰返し回数

※1:別紙 表Ⅱ.2参照

※2:別紙 表Ⅱ.8参照

※3:下線部:算出結果が最大の等価繰返し回数

22

表4.(3)-2 原子炉補機冷却水系配管(RCW-T-4) 個別に設定する等価繰返し回数

		算出結果					個山に記会ナフ				
建民,携筑物	T.M.S.L.	減衰定数	ピーク応力	1 質点系の	設計用	等価繰	返し回	数 ^{※3}		最大	個別に設止9つ
建産・博衆初	(m)	(%)	(MPa)	固有周期(s)	疲労線図	検討ケース	NS	EW	UD	回数	寺恤磔返し回剱
百乙后冲导	1 700		1500			基本ケース*1					
原于炉建屋	-1.700		1536	人口大用地	巴主匈	ケース 2~6*1					F 0
カードン母目	1 100	2.0	1001	王间有同别	灰茶婀	基本ケース ^{*2}					70
クーレン建産	-1.100		1631			ケース 2~5*2					

※1:別紙 表Ⅱ. 2参照

※2:別紙 表Ⅱ. 8参照

※3:下線部:算出結果が最大の等価繰返し回数

	算出条件							算出結果				
冲导,推筑版	T.M.S.L.	減衰定数	ピーク応力	1 質点系の	設計用	等価約	繰返し回数 ^{※3}			最大	る等価繰返し	
建産・ 博築物	(m)	(%)	(MPa)	固有周期(s)	疲労線図	検討ケース	NS	EW	UD	回数	回数	
	24,100					基本ケース ^{*1}						
コントロール	24.100	24.100				ケース 2~6*1						
	17.300				基本ケース*1							
建屋						ケース 2~6*1						
	12 200 2 0	1471	今田右周 邯	出表 綱	基本ケース*1					80		
	12.300	2.0	1471	至回有向别	灰糸剄	ケース 2~6 ^{※1}					80	
	20.400					基本ケース*2						
廃棄物処理 建屋	20.400					ケース 2~5 ^{**2}						
	12 300					基本ケース*2						
	12.000					ケース 2~5 ^{※2}						

表4.(3)-3 消火系配管(FP-025R2) 等価繰返し回数算出結果

※1:別紙 表Ⅱ.10参照

※2:別紙 表Ⅱ.12参照

※3:下線部:算出結果が最大の等価繰返し回数

※4:一律に設定する等価繰返し回数の算出結果より,材料物性の不確かさ等による影響を考慮した個別に設定する等価繰返し回数を算出する。例えばコントロール建屋 NS 方向(T.M.S.L.24.100(m))では別紙 表I(5)-1より,Ss-1系の地震動による減衰定数0.5%で回回,Ss-3系の減衰定数2.0%で回回とその比率回が得られる。この比率を別紙 表Ⅲ(5)の不確かさ等考慮ケースで最大となるケース2又は3の回回に掛け合わせ回回となる。更に比率を用いた算出に保守性を考慮するため,回を加算し,不確かさ等考慮した等価繰返し回数として回を設定している。

 23

表4.(3)-4 非放射性ドレン移送系配管(MSC-002R2), 雑用水系配管(配管モデル:DW-006R2),

タービン補機冷却水系配管(TCW-001R2) 等価繰返し回数算出結果

	算出条件							算出結果				
冲导, 建筑协	T.M.S.L.	減衰定数	ピーク応力	1 質点系の	設計用	等価	繰返し回	操返し回数*3 最大			る等価繰返し	
建産・博築物	(m)	(%)	(MPa)	固有周期(s)	疲労線図	検討ケース	NS	EW	UD	回数	回数	
コントロール 建屋	17.000					基本ケース*1						
	17.300					ケース 2~6*1						
	12.300					基本ケース*1						
		2.0	1471	全固有周期	炭素鋼	ケース 2~6 ^{**1}					80	
	20,400	2.0				基本ケース ^{※2}					80	
廃棄物処理	20.400					ケース 2~5 ^{※2}						
建屋	12 300					基本ケース ^{**2}						
	12.000					ケース 2~5 ^{※2}						

※1:別紙 表Ⅱ.10参照

※2:別紙 表Ⅱ.12参照

※3:下線部:算出結果が最大の等価繰返し回数

※4:一律に設定する等価繰返し回数の算出結果より,材料物性の不確かさ等による影響を考慮した個別に設定する等価繰返し回数を算出する。例えばコントロール建屋 NS 方向(T.M.S.L.17.300(m))では別紙 表I(5)-1より,Ss-1系の地震動による減衰定数 0.5%で回回,Ss-3系の減衰定数 2.0%で回回とその比率回が得られる。この比率を別紙 表Ⅲ(5)の不確かさ等考慮ケースで最大となるケース3の回回に掛け合わせ回となる。更に比率を用いた算出に保守性を考慮するため,回を加算し,不確かさ等考慮した等価繰返し回数として回を設定している。

 $\mathbf{24}$

5. まとめ

今回の柏崎刈羽7号機における等価繰返し回数は,等価繰返し回数算出に影響するパラメータ(ピーク応力,固有周期,対象床面(質点),地震動,減衰定数,設計 疲労線図及び材料物性の不確かさ等)を保守的に設定した算出を行い,算出結果を 包絡することで一律に設定する値(Ss:200回,Sd:200回)を設定している。

個別に設定する等価繰返し回数についてもパラメータ(ピーク応力,固有周期, 対象床面(質点),減衰定数及び設計疲労線図)を疲労評価対象設備固有の条件を 用いた上で算出し,設定している。 別紙

- I. 基本ケースでの等価繰返し回数の算出結果
 - (1) 原子炉建屋の地震応答解析モデル
 - (2) 大型機器系の地震応答解析モデル
 - (3) 炉内構造物系の地震応答解析モデル
 - (4) タービン建屋の地震応答解析モデル
 - (5) コントロール建屋の地震応答解析モデル
 - (6) 廃棄物処理建屋の地震応答解析モデル
- Ⅱ. 材料物性の不確かさ等を考慮する場合の条件
- Ⅲ. 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮)
 - (1) 原子炉建屋の地震応答解析モデル
 - (2) 大型機器系の地震応答解析モデル
 - (3) 炉内構造物系の地震応答解析モデル
 - (4) タービン建屋の地震応答解析モデル
 - (5) コントロール建屋の地震応答解析モデル
 - (6) 廃棄物処理建屋の地震応答解析モデル

IV. 等価繰返し回数の算出位置

I. 等価繰返し回数の算出結果(基本ケース)

(1) 原子炉建屋の地震応答解析モデル

表 I (1) - 1 原子炉建屋の地震応答解析モデル(応答スペクトルフロー) NS 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}5\times1\\+\\1/3\text{Sd-}5\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
原建屋	49.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	38.200	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	31.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	23.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	18.100	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $								

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
原 建 続き)	12.300	$\begin{array}{c} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
	4.800	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-1.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-8.200	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								

表 I (1) - 1 原子炉建屋の地震応答解析モデル(応答スペクトルフロー) NS 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
原建屋	49.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	38.200	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	31.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	23.500	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	18.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(1)-2 原子炉建屋の地震応答解析モデル(応答スペクトルフロー)EW方向

部位	T.M.S.L. (m)	減衰 定数 (%)	${ Ss \cdot 1 imes 1 \ + \ 1/3 Sd \cdot 1 \ imes 5 \ + NCO }$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	${ Ss \cdot 3 imes 1 \ + \ 1/3 Sd \cdot 3 \ imes 5 \ + NCO }$	$Ss-4 \times 1$ + 1/3Sd-4 $\times 5$ + NCO	${ Ss \cdot 5 imes 1 \ + \ 1/3 Sd \cdot 5 \ imes 5 \ + NCO }$	${ Ss-6 imes 1 \ + \ 1/3Sd-6 \ imes 5 \ + NCO }$	${ Ss-7 imes 1 \ + \ 1/3Sd-7 \ imes 5 \ + NCO }$	${ Ss \cdot 8 imes 1 \ + \ 1/3 Sd \cdot 8 \ imes 5 \ + NCO }$
原 建 続き)	12.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	4.800	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-1.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	-8.200	$ \overline{5.0} \\ \overline{4.0} \\ \overline{3.0} \\ \overline{2.5} \\ \overline{2.0} \\ \overline{1.5} \\ \overline{1.0} \\ \overline{0.5} \\ \overline{0.5} \\ \overline{0.5} \\ \overline{0.5} \\ \overline{0.5} \\ \overline{0.5} \\ \overline{0.5} \\ $								

表I(1)-2 原子炉建屋の地震応答解析モデル(応答スペクトルフロー)EW方向

部位	T.M.S.L. (m)	減衰 定数 (%)	${{ m Ss} \cdot 1 imes 1} + {{ m 1/3Sd} \cdot 1} onumber \times 5 onumber + { m NCO}$	$\begin{array}{c} \mathrm{Ss}\text{-}2\times1\\+\\1/3\mathrm{Sd}\text{-}2\\\times5\\+\mathrm{NCO}\end{array}$	${{ m Ss}}{ m -}3 imes 1\ +\ 1/3{ m Sd}{ m -}3\ imes 5\ +{ m NCO}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}} ext{-}5 imes1$ + 1/3Sd-5 imes5 +NCO	${{ m Ss-6} imes1}\ +\ 1/3{ m Sd-6}\ imes5\ +{ m NCO}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss-8 imes 1} \atop { m +} \over { m 1/3Sd-8} \atop { m imes 5} \ { m +NCO}$
原 建屋	49.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	38.200	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	31.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	23.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	18.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								

表I(1)-3 原子炉建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	${ Ss \cdot 1 imes 1 \ + \ 1/3 Sd \cdot 1 \ imes 5 \ + NCO }$	${ Ss \cdot 2 imes 1 \ + \ 1/3Sd \cdot 2 \ imes 5 \ + NCO }$	${ Ss \cdot 3 imes 1 \ + \ 1/3 Sd \cdot 3 \ imes 5 \ + NCO }$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${ Ss \cdot 5 imes 1 \ + \ 1/3 Sd \cdot 5 \ imes 5 \ imes 5 \ + NCO \ }$	${ Ss-6 imes 1 \ + \ 1/3Sd-6 \ imes 5 \ + NCO }$	${ Ss-7 imes 1 \ + \ 1/3Sd-7 \ imes 5 \ + NCO }$	${Ss-8 imes 1} + {1/3Sd-8} imes 5 + NCO$
原 建 屋 (続き)	12.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	4.800	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-1.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-8.200	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $								

表I(1)-3 原子炉建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

(2) 大型機器系の地震応答解析モデル

表I(2)-1.1 大型機器系の地震応答解析モデル(時刻歴フロー) せん断力 NS 方向

		Se-1×1	$S_{c}-9\times 1$	Se-3×1	Se-4×1	Se-5×1	Se-6×1	$S_{e}-7\times 1$	Sc-8×1
	mmat	+	+	+	+	+	+	+	+
機器	T.M.S.L. (m)	1/3Sd-1×5	1/3Sd-2×5	1/3Sd-3×5	1/3Sd-4×5	1/3Sd-5×5	1/3Sd-6×5	1/3Sd-7×5	1/3Sd-8×5
	(111)	+ NCO	+ NCO	+ NCO	+ NCO	+ NCO	+ NCO	+ NCO	+ NCO
	26.013	Neo	Neo	1100	Neo	100	Neo	Neo	Neo
	20.015								
	20.000								
	22.103								
原子炉	18 716								
圧力	16 563								
容器	15.262								
н нн	12.332								
	9.402								
	6.904								
	4.950								
原子炉	9.402								
圧力容									
器スカ	8.200								
ート									
	21.200								
	18.440								
原子炉	17.020								
遮蔽壁	15.600								
	13.950								
	12.300								
	8.200								
	7.000								
医乙烷	4.500								
原于炉 木休	3.500								
其礎	1.700								
	-2.100								
	-4.700								
	-8.200								

					T 11 >2 01				· · · · · · · · · · · · · · · · · · ·
	TRACT	Ss-1×1 +	Ss-2×1 +	Ss-3×1 +	Ss-4×1 +	Ss-5×1 +	Ss-6×1 +	Ss-7×1 +	Ss-8×1 +
部位	T.M.S.L. (m)	1/3Sd-1×5	1/3Sd-2×5	1/3Sd-3×5	1/3Sd-4×5	1/3Sd-5×5	1/3Sd-6×5	1/3Sd-7×5	1/3Sd-8×5
		+ NCO×1	+ NCO×1	+ NCO×1	+ NCO×1	+ NCO×1	+ NCO×1	+ NCO×1	+ NCO×1
	26.013								
	23.553								
	22.163								
	20.494								
原子炉	18.716								
圧力	16.563								
容器	15.262								
	12.332								
	9.402								
	6.904								
	4.950								
原子炉	9.402								
圧力容									
器スカ	8.200								
ート									
	21.200								
	18.440								
原子炉	17.020								
遮敝壁	15.600								
	13.950								
	12.300								
	8.200								
	7.000								
	4.500								
原子炉	3.500								
本体	1.700								
基礎	-2 100								
	-4.700								
	1.,00								
	-8.200								

表I(2)-1.2 大型機器系の地震応答解析モデル(時刻歴フロー) せん断力 EW 方向
表I(2)-1.3	大型機器系の地震応答解析モデル	(時刻歴フロー)
-----------	-----------------	----------

モーメント	NS 方向

		Ss-1×1	Ss-2×1	Ss-3×1	Ss-4×1	$Ss-5\times1$	Ss-6×1	Ss-7×1	Ss-8×1
部位	T.M.S.L.	+ 1/3Sd-1×5	+ 1/3Sd-2×5	+ 1/3Sd-3×5	+ 1/3Sd-4×5	+ 1/3Sd-5×5	+ 1/3Sd-6×5	+ 1/3Sd-7×5	+ 1/3Sd-8×5
	(m)	+	+	+	+	+	+	+	+
	96.019	NCO							
	20.015								
	20.000								
	20.494								
百乙后	18.716								
床 J 炉 下力	16.563								
二 刀	15.262								
行伯	12.332								
	9.402								
	6.904								
	4.950								
原子炉 圧力容	9.402								
器スカ ート	8.200								
	21.200								
	18.440								
原子炉	17.020								
遮蔽壁	15.600								
	13.950								
	12.300								
	8.200								
	7.000								
原子炉	4.500								
本体	3.500								
基礎	1.700								
	-2.100								
	-4.700								
	-8.200								

表 I	(2)	-1.	4	大型機器系の地震応答解析モデル(時刻歴フロー	•)

モーメ	ン	Ь	EW	方向
	~	1.		기민

		Ss-1×1	Ss-2×1	Ss-3×1	Ss-4×1	$Ss-5\times1$	$Ss-6\times 1$	Ss-7×1	Ss-8×1
部位	T.M.S.L.	+ 1/3Sd-1×5	+ 1/3Sd-2×5	+ 1/3Sd-3×5	+ 1/3Sd-4×5	+ 1/3Sd-5×5	+ 1/3Sd-6×5	+ 1/3Sd-7×5	+ 1/3Sd-8×5
	(m)	+	+	+	+	+	+	+	+
	96.019	NCO							
	20.013								
	22.163								
	20.494								
「「」「「」」「」」「」」「」」」	18.716								
原于炉	16.563								
<u> 圧力</u> 家聖	15.262								
谷奋	12.332								
	9.402								
	6.904								
	4.950								
原子炉 圧力容	9.402								
ニノパゴ 器スカ	8.200								
	21.200								
	18.440								
原子炉	17.020								
遮蔽壁	15.600								
	13.950								
	12.300								
	8.200								
	7.000								
原子炉	4.500								
本体	3.500								
基礎	1.700								
	-2.100								
	-4.700								
	-8.200								

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
	26.013								
	23.553								
	22.163								
	20.494								
	18.716								
	17.179								
	16.506								
	15.641								
	15.266								
	14.433								
	13.721								
原子炉	13.009								
品加格	12.297								
	11.585								
	10.873								
	10.161								
	9.645								
	9.402								
	8.395								
	7.388								
	6.795								
	6.253								
	5.783 5.817								
	5.066								
原子炉 正力应	9.402								
圧力容 器スカ ート	8.200								

表I(2)-1.5 大型機器系の地震応答解析モデル(時刻歴フロー) 軸力 UD 方向

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
	21.200								
	18.440								
原子炉	17.020								
遮敝壁	15.600								
	13.950								
	12.300								
	8.200								
	7.000								
	4.500								
原子炉	3.500								
基礎	1.700								
	-2.100								
	-4.700								
	-8.200								

表I(2)-1.5 大型機器系の地震応答解析モデル(時刻歴フロー) 軸力 UD 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \mathrm{Ss}\text{-}3\times1\\+\\1/3\mathrm{Sd}\text{-}3\\\times5\\+\mathrm{NCO}\end{array}$
	21.200	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $		$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ \overline{1.5} \\ 1.0 \\ 0.5 \\ \end{array} $		1.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $				
	18.440	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$			8.200	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$		原 炉 体 礎	-2.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
原子 炉遮 蔽壁	17.020	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$		原炉体 礎	7.000	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $			-4.700	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$	
	15.600	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $			4.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $		原子	26.013	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
	13.950	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 $			3.500	5.0 4.0 $3.0 2.5 2.0 1.5 1.0 0.5 $; 力容 器	20.494	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	

表 I (2) - 2.1 大型機器系の地震応答解析モデル(応答スペクトルフロー) NS 方向

(大型機器系の地震応答解析モデルでの算出結果から、Ss-3系による地震動を代表して記載。)

		派幸	$S_{c} - 2 \times 1$
	T.M.S.L.	侧衣	+
部位	(m)	定数	$\frac{1}{3}$ Sd- 3×5
	(111)	(%)	+NCO
		5.0	
		4.0	
		3.0	
	16 563	2.5	
	10.000	2.0	
		1.5	
		1.0	
		0.5	
原子		5.0	
炉庄	15.262	4.0	
力		3.0	
容器		2.5	
(続		2.0	
き)		1.5	
		1.0	
		0.5	
		5.0	
		4.0	
		3.0	
	4 950	2.5	
	4.000	2.0	
		1.5	
		1.0	
		0.5	

表 I (2) - 2.1 大型機器系の地震応答解析モデル(応答スペクトルフロー) NS 方向

(大型機器系の地震応答解析モデルでの算出結果から, Ss-3系による地震動を代表して記載。)

部位	T.M.S.L. (m)	減衰 定数 (%)	$Ss-3 \times 1 \\ + \\ 1/3Sd-3 \times \\ 5 \\ + NCO$	部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-3} \times 1 \\ + \\ 1/3 \text{Sd-3} \\ \times 5 \\ + \text{NCO} \end{array}$	部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$
	21.200	$ 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 $			12.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $			1.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $	
	18.440	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$			8.200	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $		原子本 基 礎	-2.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
原子 炉 遮 蔽壁	17.020	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $		原 定 本 基 礎	7.000	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $			-4.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
	15.600	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $			4.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $		原点	26.013	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
	13.950	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $			3.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $		力容器	20.494	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	

表 I (2) - 2.2 大型機器系の地震応答解析モデル(応答スペクトルフロー) EW 方向

(大型機器系の地震応答解析モデルでの算出結果から、Ss-3系による地震動を代表して記載。)

表 I	(2)	-2.	2	大型機器系の地震応答解析モデル	(応答スペクトルフロー)

EW 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\times\\5\\+\text{NCO}\end{array}$
	16.563	$ 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 $	
		$\frac{1.0}{0.5}$	
原炉力器続き	15.262	$ 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 $	
	4.950	$\begin{array}{r} 0.5 \\ \hline 5.0 \\ 4.0 \\ \hline 3.0 \\ \hline 2.5 \\ \hline 2.0 \\ \hline 1.5 \\ \hline 1.0 \\ \hline 0.5 \\ \end{array}$	

(大型機器系の地震応答解析モデルでの算出結果から、Ss-3系による地震動を代表して記載。)

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \mathrm{Ss}\text{-}3\times1\\+\\1/3\mathrm{Sd}\text{-}3\\\times5\\+\mathrm{NCO}\end{array}$	部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\times\\5\\+\text{NCO}\end{array}$	部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \mathrm{Ss}\text{-}3\times1\\+\\1/3\mathrm{Sd}\text{-}3\\\times5\\+\mathrm{NCO}\end{array}$
		5.0				5.0				5.0	
		3.0				3.0		1		4.0	
		2.5			15.000	2.5		1		2.5	
	21.200	2.0			12.300	2.0		1	1.700	2.0	
		1.5]			1.5		1		1.5	
		1.0				1.0		1		1.0	
	ļ!	0.5			ļ!	0.5		1		0.5	4
		5.0				5.0		1		5.0	
		4.0				4.0		F= →		4.0	
		$\frac{3.0}{2.5}$				3.0 2.5		原子		$\frac{3.0}{2.5}$	
	18.440	$\frac{2.0}{2.0}$			8.200	$\frac{2.0}{2.0}$		<i>沪平</i> 休其	-2.100	$\frac{2.0}{2.0}$	
		1.5				1.5		礎		1.5	
	!	1.0				1.0		., _		1.0	
	!	0.5				0.5		1		0.5	
		5.0				5.0		1		5.0	
	!	4.0	_			4.0		1		4.0	
原子	!	3.0		原子	7.000	3.0		1		3.0	
「「」」「」「」」「」」「」」」	17020	2.5		炉本		2.5		1	-4.700	2.5	
	11.040	2.0		体基		2.0				2.0	4
敝壁	!	1.5		碇		1.5		1		1.5	
	!	1.0				1.0		1		1.0	
	ļ!	<u> </u>	·		ļļ	0.0 5.0		l		0.0	
	!	1.0				<u> </u>		1		<u> </u>	
	!	3.0				3.0		1		3.0	
	1 - 000	2.5				2.5		1		2.5	
	15.600	2.0			4.500	2.0		1	26.013	2.0	
	!	1.5				1.5		1		1.5	
	!	1.0			ļ	1.0		原子		1.0	
		0.5				0.5		炉圧		0.5	
	!	5.0				5.0		力容		5.0	1
	!	4.0				4.0		器		4.0	1
	!	3.0				3.0		1		3.0	1
	13.950	$\frac{2.5}{2.0}$			3.500	2.5		1	20.494	2.5	
	!	2.0				2.0		1		2.0	
		1.0				1.0		l		1.0	
	!	0.5				0.5		1		0.5	

表I(2)-2.3 大型機器系の地震応答解析モデル(応答スペクトルフロー) UD 方向

(大型機器系の地震応答解析モデルでの算出結果から, Ss-3系による地震動を代表して記載。)

表I(2)-2.3 大型機器系の地震応答解析モデル(応答スペクトルフロー)

UD 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \mathrm{Ss}\text{-}3\times1\\+\\1/3\mathrm{Sd}\text{-}3\\\times5\\+\mathrm{NCO}\end{array}$
	16.506	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
原炉力器続き	15.266	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
	5.066	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	

(大型機器系の地震応答解析モデルでの算出結果から,Ss-3系による地震動を代表して記載。)

(3) 炉内構造物系の地震応答解析モデル

表I(3)-1.1 炉内構造物系の地震応答解析モデル(時刻歴フロー)

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
燃料 集合体	$\begin{array}{r} 14.433 \\ 13.721 \\ 13.009 \\ 12.297 \\ 11.585 \\ 10.873 \\ 10.161 \end{array}$								
制御棒 案内管	$ \begin{array}{r} 10.161 \\ 9.645 \\ 9.402 \\ 8.395 \\ 7.388 \\ 6.795 \\ 6.347 \\ \end{array} $								
制 御 様 ハ ウ グ	6.347 5.817 5.066								
制 御 動 構 ジ ン グ (内 側)	$ \begin{array}{r} 4.213 \\ 3.361 \\ 2.508 \\ 1.655 \\ 0.934 \\ \end{array} $								
制 御 動 構 ジ ン グ (外 側)	$\begin{array}{r} 0.184\\ \hline 5.817\\ \hline 5.066\\ \hline 4.213\\ \hline 3.361\\ \hline 2.508\\ \hline 1.655\\ \hline 0.934\\ \hline 0.184\\ \end{array}$								

せん断力 NS 方向

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
気水分	19.472								
離器, スタンド	18.716								
パイプ	17.179								
	16.506								
	15.641								
	15.266								
	14.433								
	13.721								
-	13.009								
	12.297								
「「」、	11.585								
シュラ	10.873								
ウド	10.161								
	9.645								
	10.161								
	9.645								
	9.402								
	8.395								
	7.388								
	6.795								
百乙后	6.253								
原于)/- 冷却材	5.376								
再循環	4.523								
ポンプ	3.671								

表 I (3) -1.1 炉内構造物系の地震応答解析モデル(時刻歴フロー) せん断力 NS 方向

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
燃料 集合体	$\begin{array}{r} 14.433 \\ 13.721 \\ 13.009 \\ 12.297 \\ 11.585 \\ 10.873 \\ 10.161 \end{array}$								
制御棒 案内管	$ \begin{array}{r} 10.161 \\ 9.645 \\ 9.402 \\ 8.395 \\ 7.388 \\ 6.795 \\ 6.347 \\ \end{array} $								
制御 棒 動 機 、 ウ グ	6.347 5.817								
ン 御 動 構 ジ ン の (内)	5.066 4.213 3.361 2.508 1.655 0.934								
(F1) 制御棒 駆動機 構 ハウジ	$\begin{array}{r} 0.184 \\ \hline 0.184 \\ \hline 5.817 \\ \hline 5.066 \\ \hline 4.213 \\ \hline 3.361 \\ \hline 2.508 \end{array}$								
ング (外側)	$ \begin{array}{r} 1.655 \\ 0.934 \\ 0.184 \end{array} $								

表I(3)-1.2 炉内構造物系の地震応答解析モデル(時刻歴フロー) せん断力 EW 方向

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
気水分	19.472								
離器,	18 716								
スタント・ ハ゜イフ゜	17.179								
	16.506								
	15.641								
	15.266								
	14.433								
	13.721								
	13.009								
	12.297								
	11.585								
が シュラ	10.873								
ウド	10.161								
	9.645								
	10.161								
	9.645								
	9.402								
	8.395								
	7.388								
	6.795								
百子后	6.253								
冷却材	5.376								
再循環	4.523								
	3.671								

表I(3)-1.2 炉内構造物系の地震応答解析モデル(時刻歴フロー) せん断力 EW 方向

	TMSL	Ss-1×1 +	Ss-2×1 +	Ss-3×1 +	Ss-4×1 +	Ss-5×1 +	Ss-6×1 +	Ss-7×1 +	Ss-8×1 +
部位	(m)	1/3Sd-1×5	1/3Sd-2×5	1/3Sd-3×5	1/3Sd-4×5	1/3Sd-5×5	1/3Sd-6×5	1/3Sd-7×5	1/3Sd-8×5
		+ NCO							
	14.433								
	13.721								
除 来]	13.009								
<u>旅</u> 和 崔合休	12.297								
未口件	11.585								
	10.873								
	10.161								
	10.161								
制御棒	9.645								
	9.402								
案内管	8.395								
	7.388								
	6.795								
	6.347								
制御棒	6.347								
駆動機 構	5.817								
ハウジ ング	5.066								
	4.213								
制御棒	3.361								
構	2.508								
ハウジ	1.655								
ンク (内側)	0.934								
	0.184								

表I(3)-1.3 炉内構造物系の地震応答解析モデル(時刻歴フロー) モーメント NS 方向

	T MOI	Ss-1×1 +	Ss-2×1 +	Ss-3×1 +	Ss-4×1 +	Ss-5×1 +	Ss-6×1 +	Ss-7×1 +	Ss-8×1 +
部位	T.M.S.L.	1/3Sd-1×5	1/3Sd-2×5	1/3Sd-3×5	1/3Sd-4×5	1/3Sd-5×5	1/3Sd-6×5	1/3Sd-7×5	1/3Sd-8×5
	(111)	+	+	+	+	+	+	+	+
	× 017	NCO							
	5.817								
制御棒	5.066								
駆動機	4.213								
構 ハウジ	3.361								
ング	2.508								
(外側)	1.655								
	0.934								
	0.184								
気水分	19.472								
離器, スタント゛ パイフ゜	17.170								
	17.179								
	16.506								
	15.641								
	15.266								
	14.433								
	13.721								
	13.009								
	12.297								
	11.585								
炉心シ	10.873								
ュラウ	10.161								
ド	9.645								
	10.161								
	9.645								
	9.402								
	8.395								
	7.388								
	6.795								

表I(3)-1.3 炉内構造物系の地震応答解析モデル(時刻歴フロー) モーメント NS 方向

		Ss-1×1	Ss-2×1	Ss-3×1	Ss-4×1	$Ss-5\times1$	Ss-6×1	Ss-7×1	Ss-8×1
	тист	+	+	+	+	+	+	+	+
部位	(m)	1/3Sd-1×5	1/3Sd-2×5	1/3Sd-3×5	1/3Sd-4×5	1/3Sd-5×5	1/3Sd-6×5	1/3Sd-7×5	1/3Sd-8×5
		+	+	+	+	+	+	+	+
		NCO	NCO	NCO	NCO	NCO	NCO	NCO	NCO
原子炉	6.253								
冷却材	5.376								
再循環ポンプ	4.523								
	3.671								

表 I (3) -1.3 炉内構造物系の地震応答解析モデル(時刻歴フロー) モーメント NS 方向

				モーノノ	ト LW 刀口	нÌ			
部位	T.M.S.L .(m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
	14.433								
	13.721								
	13.009								
燃料	12.297								
集合体	11.585								
	10.873								
	10.161								
	10.161								
	9.645								
	9.402								
制御棒	8.395								
案内官	7.388								
	6.795								
	6.347								
制御棒	6.347								
駆動機	5.817								
部 駆 動 構 ハ ウジ ング	5.066								
d . I d an I I .	4.213								
制御棒 馭動機	3.361								
構	2.508								
ハウジ	1.655								
ング (内和1)	0.934								
(内側)	0.184								

表I(3)-1.4 炉内構造物系の地震応答解析モデル(時刻歴フロー) モーメント EW 方向

						⊨]			
部位	T.M.S.L .(m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
	5.817								
	5.066								
制御棒	4.213								
構	3.361								
ハウジ	2.508								
ンク (外側)	1.655								
01040	0.934								
	0.184								
気水分	19.472								
離器,	18.716								
スタント ハ゜イフ゜	17.179								
	16.506								
	15.641								
	15.266								
	14.433								
	13.721								
	13.009								
	12.297								
	11.585								
炉心シ	10.873								
ュラウ	10.161								
ド	9.645								
	10.161								
	9.645								
	9.402								
	8.395								

表I(3)-1.4 炉内構造物系の地震応答解析モデル(時刻歴フロー) モーメント EW 方向

7.388

6.795

						нĴ			
		Ss-1×1	$Ss-2 \times 1$	Ss-3×1	$Ss-4 \times 1$	$Ss-5 \times 1$	$Ss-6\times 1$	$Ss-7\times1$	Ss-8×1
	TMSL	+	+	+	+	+	+	+	+
部位	(m)	1/3Sd-1×5	1/3Sd-2×5	1/3Sd-3×5	1/3Sd-4×5	1/3Sd-5×5	1/3Sd-6×5	1/3Sd-7×5	1/3Sd-8×5
	.(111)	+	+	+	+	+	+	+	+
		NCO	NCO	NCO	NCO	NCO	NCO	NCO	NCO
	6.253								
原子炉冷 却材	5.376								
再循環ポ	4.523								
	3.671								

表 I (3) -1.4 炉内構造物系の地震応答解析モデル(時刻歴フロー) モーメント EW 方向

				18/0 0	- / • •				
部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
	14 499								
	14.433								
	13.721								
燃料	13.009								
集合体	12.297								
	11.585								
	10.873								
	10.161								
	9.645								
	9.402								
制御棒	8.395								
柔内官	7.388								
	6.795								
	6.347								
制御棒	6.347								
駆動機	5.817								
ー 中 ハウジ ング	5.066								
制御棒	4.213								
駆動機	3.361								
構	2.508								
ハウジ	1.655								
ンク (内側)	0.934								
(1 - 1 12(1))	0.184								
	5.817								
	5.066								
制御棒	4.213								
駆動機 構	3.361								
一件 ハウジ	2.508								
ング	1.655								
(外側)	0.934								
	0.184								

表 I (3) -1.5 炉内構造物系の地震応答解析モデル(時刻歴フロー) 軸力 UD 方向

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
気水分	19.472								
離器,	18.716								
スタント ハ イフ°	17.179								
	16.506								
	15.641								
	15.266								
	14.433								
	13.721								
	13.009								
	12.297								
炉心シ	11.585								
ュラウ	10.873								
ĸ	10.161								
	9.645								
	9.402								
	8.395								
	7.388								
	6.795								
	6.347								
	5.783								
	6.253								
原子炉冷 却材	5.376								
再循環ポ	4.523								
ンブ	3.671								

表I(3)-1.5 炉内構造物系の地震応答解析モデル(時刻歴フロー) 軸力 UD 方向

部位	T.M.S.L. (m)	減衰定数 (%)	NS	Ss-3×1 + 1/3Sd-3×5 + NCO EW	UD
	14.433	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $			
炉心ンユフリト	NS • EW 10.161 UD 9.645	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $			
原子炉圧力容器	5.066	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $			
原子炉冷却材再 循環ポンプ	6.253	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $			

表I(3)-2.1 炉内構造物系の地震応答解析モデル(応答スペクトルフロー)

(炉内構造物系の地震応答解析モデルでの算出結果から, Ss-3系による地震動を 代表して記載。) (4) タービン建屋の地震応答解析モデル

表I(4)-1 タービン建屋の地震応答解析モデル(応答スペクトルフロー)NS方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \mathrm{Ss}\text{-}3\times1\\+\\ \mathrm{1/3Sd}\text{-}3\\\times5\\+\mathrm{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}-8 imes1}\ +\ 1/3{ m Sd}-8\ imes5\ + m NCO$
	44.300	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
	38.600	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
タービ ン建屋	30.900	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								
	25.800	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
	20.400	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss \cdot 3 \times 1$ + $1/3Sd \cdot 3$ $\times 5$ + NCO	$Ss-4 \times 1 \\ + \\ 1/3Sd-4 \\ \times 5 \\ + NCO$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss-8 \times 1$ + 1/3Sd-8 $\times 5$ +NCO
	12.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
タービ	4.900	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
ン理座 (続き)	-1.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	-5.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
蒸気タ ービン の基礎	18.350	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-1 タービン建屋の地震応答解析モデル(応答スペクトルフロー)NS方向

部位	T.M.S.L. (m)	減 衰 (%)	${{ m Ss} \cdot 1 imes 1} + {{ m 1/3Sd} \cdot 1} + {{ m NCO}}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}}\cdot 3 imes 1\ +\ 1/3{ m Sd}\cdot 3\ imes 5\ +{ m NCO}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	${ Ss-7 imes 1 \ + \ 1/3 Sd-7 \ imes 5 \ + NCO }$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
蒸気タ ービン の基礎 (続き)	10.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-1 タービン建屋の地震応答解析モデル(応答スペクトルフロー)NS方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss \cdot 3 \times 1$ + $1/3Sd \cdot 3$ $\times 5$ + NCO	$Ss-4 \times 1$ + 1/3Sd-4 ×5 +NCO	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}-8 imes1}\ +\ 1/3{ m Sd}-8\ imes5\ + m NCO$
	44.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	38.600	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
タービ ン建屋	30.900	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	25.800	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	20.400	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $								

表I(4)-2 タービン建屋の地震応答解析モデル(応答スペクトルフロー) EW 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss \cdot 3 \times 1$ + $1/3Sd \cdot 3$ $\times 5$ +NCO	$Ss-4 \times 1 \\ + \\ 1/3Sd-4 \\ \times 5 \\ + NCO$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss-8 \times 1$ + 1/3Sd-8 $\times 5$ +NCO
	12.300	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
タービ	4.900	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
ン ^建 座 (続き)	-1.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	-5.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
蒸気タ ービン の基礎	18.350	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-2 タービン建屋の地震応答解析モデル(応答スペクトルフロー) EW 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss-3\times1 \\ + \\ 1/3Sd-3 \\ \times5 \\ +NCO$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}5\times1\\+\\1/3\text{Sd-}5\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
蒸気タ ービン の基礎 (続 き)	10.700	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								

表I(4)-2 タービン建屋の地震応答解析モデル(応答スペクトルフロー) EW 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	${{ m Ss} \cdot 1 imes 1} + {{ m 1/3Sd} \cdot 1} onumber \times 5 onumber + { m NCO}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss} \cdot 3 imes 1} + { m 1/3Sd} \cdot 3 \ imes 5 + { m NCO}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}} ext{-}5 imes1$ + 1/3Sd-5 imes5 +NCO	${{ m Ss}-6 imes1}\ +\ 1/3{ m Sd}-6\ imes5\ + m NCO$	${Ss-7 imes 1} + {1/3Sd-7} imes 5 + NCO$	${{ m Ss}-8 imes1}\ +\ 1/3{ m Sd}-8\ imes5\ + m NCO$
	44.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	38.600	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
タービ ン建屋	30.900	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	25.800	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	20.400	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-3 タービン建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	${{ m Ss} \cdot 2 imes 1} + {{ m 1/3Sd} \cdot 2} {{ m \times 5}} + { m NCO}$	${{ m Ss}}$ -3×1 + 1/3Sd-3 ×5 +NCO	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}-6 imes1}\ +\ 1/3{ m Sd}-6\ imes5\ + m NCO$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}-8 imes1}\ +\ 1/3{ m Sd}-8\ imes5\ + m NCO$
	12.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
タービン建長	4.900	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								
ノ建産 (続き)	-1.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	-5.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
蒸気タ ービン の基礎	20.400	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-3 タービン建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss} \cdot 3 imes 1} + { m 1/3Sd} \cdot 3 imes 5 + { m NCO}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${ Ss \cdot 5 imes 1 \ + \ 1/3 Sd \cdot 5 \ imes 5 \ imes 5 \ + NCO }$	${Ss-6 imes 1}\ +\ 1/3Sd-6\ imes 5\ +NCO$	${ Ss-7 imes 1 \ + \ 1/3 Sd-7 \ imes 5 \ + NCO }$	${{ m Ss}-8 imes1}\ +\ 1/3{ m Sd}-8\ imes5\ + m NCO$
蒸気タ ービン の基礎 (続 き)	12.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-3 タービン建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

(5) コントロール建屋の地震応答解析モデル

表 I	(5) - 1	コントロール建屋の地震応答解析モデル	(応答スペクトルフロー)
		NS 方向	

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss \cdot 3 \times 1$ + $1/3Sd \cdot 3$ $\times 5$ + NCO	$Ss^{-}4 \times 1$ + 1/3Sd^{-}4 ×5 + NCO	${{ m Ss}} ext{-}5 imes1$ + 1/3Sd-5 imes5 +NCO	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss-8\times1 \\ + \\ 1/3Sd-8 \\ \times5 \\ + NCO$
コロ 建屋	24.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								
	17.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	12.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	6.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	1.000	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-3} \times 1 \\ + \\ 1/3 \text{Sd-3} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${ Ss \cdot 5 imes 1 \ + \ 1/3 Sd \cdot 5 \ imes 5 \ imes 5 \ + NCO }$	${{ m Ss}-6 imes1}\ +\ 1/3{ m Sd}-6\ imes5\ + m NCO$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}}^{{ m Ss}}^{{ m 8} imes 1}_{+}$ 1/3Sd-8 imes 5 +NCO
コント ロール 建屋 (続き)	-2.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表 I (5) -1 コントロール建屋の地震応答解析モデル(応答スペクトルフロー) NS 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1} \times 1 \\ + \\ 1/3 \text{Sd-1} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-} 3 \times 1 \\ + \\ 1/3 \text{Sd-} 3 \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}5\times1\\+\\1/3\text{Sd-}5\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
コロ 建屋	24.100	$\begin{array}{c} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
	17.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	12.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	6.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	1.000	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								

表I(5)-2 コントロール建屋の地震応答解析モデル(応答スペクトルフロー) EW 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-} 3 \times 1 \\ + \\ 1/3 \text{Sd-} 3 \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
コント ロール 建屋 (続き)	-2.700	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								

表 I (5) - 2 コントロール建屋の地震応答解析モデル(応答スペクトルフロー) EW 方向
部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
	24.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	17.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								
コント ロール 建屋	12.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	6.500	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	1.000	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $								

表 I (5) - 3 コントロール建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${ Ss \cdot 5 imes 1 \ + \ 1/3 Sd \cdot 5 \ imes 5 \ imes 5 \ + NCO }$	${{ m Ss-6} imes 1}\ +\ 1/3{ m Sd-6}\ imes 5\ +{ m NCO}$	${ Ss-7 imes 1 \ + \ 1/3 Sd-7 \ imes 5 \ + NCO }$	${{ m Ss}}^{{ m Ss}}^{{ m 8} imes 1}_{+}$ 1/3Sd-8 imes 5 +NCO
コント ロール 建 屋 (続き)	-2.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表 I (5) - 3 コントロール建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

(6) 廃棄物処理建屋の地震応答解析モデル

表 I (6) -1 廃棄物処理建屋の地震応答解析モデル(応答スペクトルフロー) NS 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-} 3 \times 1 \\ + \\ 1/3 \text{Sd-} 3 \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}5\times1\\+\\1/3\text{Sd-}5\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss-8 \times 1 \\ + \\ 1/3Sd-8 \\ \times 5 \\ + NCO$
	44.300	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
廃 処 屋物 建	36.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	30.900	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								
	30.400	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	20.400	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \mathrm{Ss}\text{-}3\times1\\+\\ \mathrm{1/3Sd}\text{-}3\\\times5\\+\mathrm{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}}$ -5×1 + 1/3Sd-5 ×5 +NCO	${{ m Ss-6} imes 1}\ +\ 1/3{ m Sd-6}\ imes 5\ +{ m NCO}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}-8 imes1}\ +\ 1/3{ m Sd}-8\ imes5\ + m NCO$
廃処屋き)	12.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \hline 7.0 \\ \hline $								
	6.500	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-1.100	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-6.100	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $								

表 I (6) -1 廃棄物処理建屋の地震応答解析モデル(応答スペクトルフロー) NS 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1} \times 1 \\ + \\ 1/3\text{Sd-1} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3\text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
	44.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
廃 処 屋	36.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	30.900	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	30.400	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	20.400	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(6)-2 廃棄物処理建屋の地震応答解析モデル(応答スペクトルフロー) EW方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1} \times 1 \\ + \\ 1/3 \text{Sd-1} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3\text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \operatorname{Ss-3\times1} \\ + \\ 1/3\operatorname{Sd-3} \\ \times 5 \\ +\operatorname{NCO} \end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
廃処屋き)	12.300	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
	6.500	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-1.100	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-6.100 1	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								

表I(6)-2 廃棄物処理建屋の地震応答解析モデル(応答スペクトルフロー) EW方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3\text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
	44.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
廃 処 屋	36.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	30.900	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	30.400	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	20.400	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(6)-3 廃棄物処理建屋の地震応答解析モデル(応答スペクトルフロー) UD方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1} \times 1 \\ + \\ 1/3 \text{Sd-1} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3\text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \operatorname{Ss-3\times1} \\ + \\ 1/3\operatorname{Sd-3} \\ \times 5 \\ +\operatorname{NCO} \end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
廃処屋き)	12.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	6.500	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-1.100	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-6.100	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $								

表I(6)-3 廃棄物処理建屋の地震応答解析モデル(応答スペクトルフロー) UD方向

Ⅱ. 材料物性の不確かさ等を考慮する場合の条件

基本ケースの結果を踏まえ、等価繰返し回数が最大となる地震動、減衰定数に 基づいて材料物性の不確かさ等の考慮を実施する。基本ケースでの結果として支 配的な地震動であった「 $Ss - 3 \times 1$ 回+ $1/3Sd - 3 \times 5$ 回+NCO」とその回 数が最大となった減衰定数を用いて算出条件を設定する。具体的には次頁以降の 表の通りの条件で算出を行う。

なお、コントロール建屋は、材料物性の不確かさ等の検討に用いる地震動として S_s-1 、2、 S_d-1 、2を選定していること、またI.の結果より等価繰返し回数の算出において全ての床面で S_s-1 系での算出結果が S_s-2 系の算出結果を上回っていることから、「 $S_s-1 \times 1$ 回+1/3 $S_d-1 \times 5$ 回+NCO」を用いて基本ケースと材料物性の不確かさ等を考慮した場合の比率を算出し、その比率を S_s-3 系の基本ケースの結果に掛け合わせて検討を行う。

また,算出を行うフローは基本ケースの結果より,応答スペクトルフローの回数が大きくなることから,時刻歴フロー及び応答スペクトルフローの両フローでの算出が可能な炉内構造物系及び大型機器系の地震応答解析モデルは,応答スペクトルフローにて検討を行う。

項目	条件	備考
検討ケース	ケース 2~6	表Ⅱ.2 参照
		時刻歴フローより応答スペ
JEAG フロー	応答スペクトルフロー	クトルフローの回数が大き
		いため
ピーク応力	1471MPa	基本ケースと同じ
固有周期	全固有周期帯(0.05s~1.0s)	基本ケースと同じ
対象床面	全床面	基本ケースと同じ
生きま	$\lceil S _{s} - 3 \times 1 \square + 1/3 S d - 3 \times$	基本ケースで最大となる地
地辰期	$5 \Box + N C O \rfloor$	震動
演事字粉(04)	0.5	基本ケースで最大となる減
佩农足致(70)	0.5	衰定数
設計疲労線図	炭素鋼	基本ケースと同じ

表Ⅱ.1 算出条件(原子炉建屋の地震応答解析モデル)

表Ⅱ.2 検討ケース(原子炉建屋の地震応答解析モデル)

検討ケース	コンクリート岡川性	回転ばね 定数	地盤剛性	備考
①ケース1 (工認モデル)	実強度 (43.1N/mm ²)	100%	標準地盤	基本ケース (I.で算出 済)
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	100%	標準地盤+σ (新期砂層+13%, 古安田層+25%, 西山層+10%)	
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度-σ (40.2N/mm ²)	100%	標準地盤-σ (新期砂層-13%, 古安田層-25%, 西山層-10%)	
④ケース4(建屋剛性コア平均)	実強度 (コア平均) (55.7N/mm²)	100%	標準地盤	
⑤ケース5 (建屋剛性-2σ)	実強度-2σ (37.2N/mm ²)	100%	標準地盤	
⑥ケース6 (回転ばね低減)	実強度 (43.1N/mm ²)	50%	標準地盤	

V-2-2-1「原子炉建屋の地震応答計算書」 P99 に加筆

項目	条件	備考
検討ケース	ケース 2~8	表Ⅱ. 4参照
		時刻歴フローより応答ス
JEAG フロー	応答スペクトルフロー	ペクトルフローの回数が
		大きいため
ピーク応力	1471MPa	基本ケースと同じ
固有周期	全固有周期帯(0.05s~1.0s)	基本ケースと同じ
対象床面	全床面(質点)	基本ケースと同じ。
地電動	「Ss-3×1回+1/3Sd-3×5	基本ケースで最大となる
地辰朝	回+NCO」	地震動
演事空粉(%)	2.0	基本ケースで最大となる
侧衣足数(70)	2.0	減衰定数
設計疲労線図	炭素鋼	基本ケースと同じ

表Ⅱ. 3 算出条件(大型機器系の地震応答解析モデル)

表Ⅱ. 4 検討ケース(大型機器系の地震応答解析モデル)

コンクリー	コンクリート剛性	剛性 回転 原子炉本体基礎の					
検討ケース	百乙烷建民	原子炉本体	ダイヤフラム	ばね	地盤剛性	スケルトン曲線の	備考
	原于炉建屋	基礎	フロア	定数		設定方法	
①ケース 1 (工認モデル)	実強度 (43.1N/mm²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似	基本ケース (I. で 算出済)
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤+ σ (新期砂層+13%, 古安田層+25%, 西山層+10%)	折線近似	
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度一σ (40.2N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤- σ (新期砂層-13%, 古安田層-25%, 西山層-10%)	折線近似	
④ケース4(建屋剛性 コア平均)	実強度 (コア平均) (55.7N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似	
⑤ケース5 (建屋剛性-2σ)	実強度-2σ (37.2N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似	
⑥ケース 6 (回転ばね低減)	実強度 (43.1N/mm²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	50%	標準地盤	折線近似	
 ⑦ケース 7 (原子炉本体基礎 ダイヤフラムフロア 実強度) 	実強度 (43.1N/mm ²)	実強度 (39.2N/mm ²)	実強度 (43.1N/mm ²)	100%	標準地盤	折線近似	
 ⑧ケース8 (原子炉本体基礎 スケルトン曲線 曲線包絡) 	実強度 (43.1N/mm²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似 (曲線近似を包絡)	

(V-2-2-4「原子炉本体の基礎の地震応答計算書」P32に加筆)

項目	条件	備考
検討ケース	ケース 2~8	表Ⅱ. 6参照
		時刻歴フローより応答ス
JEAG フロー	応答スペクトルフロー	ペクトルフローの回数が
		大きいため
ピーク応力	1471MPa	基本ケースと同じ
固有周期	全固有周期帯(0.05s~1.0s)	基本ケースと同じ
対象床面	全床面(質点)	基本ケースと同じ
地電動	「Ss-3×1回+1/3Sd-3×5	基本ケースで最大となる
地辰朝	$\square + N C O \rfloor$	地震動
演事空粉(%)	2.5	基本ケースで最大となる
侧衣足数(70)	2.0	減衰定数
設計疲労線図	炭素鋼	基本ケースと同じ

表Ⅱ.5 算出条件(炉内構造物系の地震応答解析モデル)

表Ⅱ. 6 検討ケース(炉内構造物系の地震応答解析モデル)

		コンクリート剛性	*	回転		原子炉本体基礎の			
検討ケース	百乙后建民	原子炉本体	ダイヤフラム	ばね	地盤剛性	スケルトン曲線の	備考		
	原于炉建屋	基礎	フロア	定数		設定方法			
①ケース 1 (工認モデル)	実強度 (43.1N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似	基本ケー ス (I.で 算出済)		
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤+σ (新期砂層+13%, 古安田層+25%, 西山層+10%)	折線近似			
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度一σ (40.2N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤- σ (新期砂層-13%, 古安田層-25%, 西山層-10%)	折線近似			
④ケース4(建屋剛性 コア平均)	実強度 (コア平均) (55.7N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似			
⑤ケース5 (建屋剛性-2σ)	実強度-2σ (37.2N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似			
⑥ケース6 (回転ばね低減)	実強度 (43.1N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	50%	標準地盤	折線近似			
 ⑦ケース 7 (原子炉本体基礎 ダイヤフラムフロア 実強度) 	実強度 (43.1N/mm ²)	実強度 (39.2N/mm ²)	実強度 (43.1N/mm ²)	100%	標準地盤	折線近似			
 ⑧ケース8 (原子炉本体基礎 スケルトン曲線 曲線包絡) 	実強度 (43.1N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似 (曲線近似を包絡)			

(V-2-3-1「炉心, 原子炉圧力容器及び圧力容器内部構造物の

地震応答計算書」P46 に加筆)

項目	条件	備考
検討ケース	ケース 2~5	表Ⅱ. 8参照
JEAG フロー	応答スペクトルフロー	時刻歴フローより応答スペ クトルフローの回数が大き いため
ピーク応力	1471MPa	基本ケースと同じ
固有周期	全固有周期帯(0.05s~1.0s)	基本ケースと同じ
対象床面	全床面	基本ケースと同じ
地震動	「Ss-3×1回+1/3Sd-3× 5回+NCO」	基本ケースで最大となる地 震動
減衰定数(%)	0.5	基本ケースで最大となる減 衰定数
設計疲労線図	炭素鋼	基本ケースと同じ

表Ⅱ.7 算出条件(タービン建屋の地震応答解析モデル)

表Ⅱ. 8 検討ケース(タービン建屋の地震応答解析モデル)

検討ケース	コンクリート剛性	地盤剛性	備考
①ケース1 (工認モデル)	実強度 (43.1N/mm ²)	標準地盤	基本ケース (I. で算出済)
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	標準地盤+σ (新期砂層+13%,古安田層 +25%,西山層+10%)	
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度-σ (40.2N/mm ²)	標準地盤-σ (新期砂層-13%,古安田層- 25%,西山層-10%)	
④ケース4 (建屋剛性コア平均)	実強度 (コア平均) (55.7N/mm ²)	標準地盤	
⑤ケース5 (建屋剛性-2σ)	実強度-2σ (37.2N/mm ²)	標準地盤	

(V-2-2-5「タービン建屋の地震応答計算書」P91に加筆)

項目	条件	備考
検討ケース	ケース 2~6	表Ⅱ. 10参照
JEAG フロー	応答スペクトルフロー	時刻歴フローより応答スペ クトルフローの回数が大き いため
ピーク応力	1471MPa	基本ケースと同じ
固有周期	全固有周期帯(0.05s~1.0s)	基本ケースと同じ
対象床面	全床面	基本ケースと同じ
地震動	「Ss-1×1回+1/3Sd-1× 5回+NCO」	
減衰定数(%)	0.5	基本ケースで最大となる減 衰定数
設計疲労線図	炭素鋼	基本ケースと同じ

表Ⅱ. 9 算出条件(コントロール建屋の地震応答解析モデル)

表Ⅱ.10 検討ケース(コントロール建屋の地震応答解析モデル)

検討ケース	コンクリート岡川生	回転ばね 定数	地盤剛性	備考
①ケース1 (工認モデル)	実強度 (43.1N/mm ²)	100%	標準地盤	基本ケース (I. で算出済)
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	100%	標準地盤+σ (新期砂層+13%, 古安田層+25%, 西山層+10%)	
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度-σ (40.2N/mm ²)	100%	標準地盤一σ (新期砂層-13%, 古安田層-25%, 西山層-10%)	
④ケース4 (建屋剛性コア平均)	実強度 (コア平均) (55.7N/mm ²)	100%	標準地盤	
⑤ケース5 (建屋剛性-2σ)	実強度-2 σ (37.2N/mm ²)	100%	標準地盤	
⑥ケース6 (回転ばね低減)	実強度 (43.1N/mm ²)	50%	標準地盤	

(V-2-2-9「コントロール建屋の地震応答計算書」P95 に加筆)

我里····································							
項目	条件	備考					
検討ケース	ケース 2~5	表Ⅱ. 12参照					
JEAG フロー	応答スペクトルフロー	時刻歴フローより応答スペ クトルフローの回数が大き					
ピーク広力	1471MPa	いため 基本ケースと同じ					
固有周期	全固有周期带(0.05s~1.0s)	基本ケースと同じ					
対象床面	全床面	基本ケースと同じ					
地震動	「Ss-3×1回+1/3Sd-3× 5回+NCO」	基本ケースで最大となる地 震動					
減衰定数(%)	2.0	基本ケースで最大となる減 衰定数					
設計疲労線図	炭素鋼	基本ケースと同じ					

表Ⅱ.11 算出条件(廃棄物処理建屋の地震応答解析モデル)

表Ⅱ.	$1 \ 2$	検討ケース	(廃棄物処理建屋の地震応答解析モデル)

検討ケース	コンクリート剛性	地盤剛性	備考
①ケース1 (工認モデル)	実強度 (43.1N/mm ²)	標準地盤	基本ケース (I. で算出済)
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	標準地盤+ σ (新期砂層+13%, 古安田層+25%, 西山層+10%)	
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度一σ (40.2N/mm ²)	標準地盤-σ (新期砂層-13%, 古安田層-25%, 西山層-10%)	
④ケース4 (建屋剛性コア平均)	実強度 (コア平均) (55.7N/mm ²)	標準地盤	
⑤ケース5 (建屋剛性-2σ)	実強度-2σ (37.2N/mm ²)	標準地盤	

(V-2-2-11「廃棄物処理建屋の地震応答計算書」P63 に加筆)

Ⅲ. 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮)

(1) 原子炉建屋の地震応答解析モデル

表Ⅲ(1) 原子炉建屋の地震応答解析モデル(材料物性の不確かさ等の考慮)

		減幸			$Ss-3 + 1/3Sd-3 \times 5 + NCO$					
, 部位	T.M.S.L. (m)	减表 定数 (%)	方向	ケース 1 基本 ケース	ケース2 建屋剛性 + σ 地盤剛性 + σ	ケース3 建屋剛性 - σ 地盤剛性 - σ	ケース4 建屋剛性 コア平均	ケース5 建屋剛性 -2 σ	ケース6 回転ばね 低減	
	49.700		NS EW UD							
	38.200		NS EW UD							
	31.700		NS EW UD							
原子炉 建屋	23.500	0.5	NS EW UD							
	18.100		NS EW UD							
	12.300		NS EW UD							
	4.800		NS EW UD							
	-1.700		NS EW UD							
	-8.200		NS EW UD							

表Ⅲ(2) 大型機器連成系の地震応答解析モデル(材料物性の不確かさ等考慮)

				$Ss-3 + 1/3Sd-3 \times 5 + NCO$								
部位	T.M.S.L. (m)	减衰 定数 (%)	方向	ケース 1 (基本ケ ース)	ケース 2 (建屋剛 性 $+\sigma$ 地盤剛 性 $+\sigma$)	ケース3 (建屋剛 性-σ 地盤剛 性-σ)	ケース 4 壁コン均 平均	ケース5 (建屋剛 性-2 σ)	ケース 6 (地盤回 転ばね 低減)	ケース 7 (原子炉本体 基礎 ダイヤ フラムフロア 実強度)	ケース8 (原子炉本体 基礎 スケ ルトン曲線 曲線包絡)	
	21.200		NS EW UD									
	18.440		NS EW UD									
原子炉 遮蔽壁	17.020			NS EW UD								
	15.600		NS EW UD									
	13.950		NS EW UD									
	12.300		NS EW UD									
	8.200		NS EW UD									
	7.000	2.0	NS EW UD									
原子炉	4.500		NS EW UD									
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	3.500		NS EW UD									
	1.700	-	NS EW UD									
	-2.100		NS EW UD									
	-4.700		NS EW UD									
原子炉 圧力容 器	26.013		NS EW UD									

						S	s-3 +	1/3Sd-3×5	+ NCO		
部位	T.M.S.L. (m)	减衰 定数 (%)	方向	ケース 1 (基本ケ ース)	ケース 2 (建屋剛 性+ σ 地盤剛 性+ σ)	ケース3 (建屋の 地盤 地盤 性-σ)	ケース 4	ケース5 (建屋剛 性-2 σ)	ケース 6 (地盤回 転ばね 低減)	ケース 7 (原子炉本体 基礎 ダイヤ フラムフロア 実強度)	ケース8 (原子炉本体 基礎 スケ ルトン曲線 曲線包絡)
E Z K	20.494		NS EW UD								
	NS• EW	2.0	NS								
	16.563		EW								
	UD 16.506		UD								
原 」 <i>F</i> 圧力容	NS •		NS								
器 (続き)	EW 15.262		EW								
	UD 15.266		UD								
	NS ·		NS								
	EW		EW								
	4.950										
	UD 5.066		UD								

表Ⅲ(2) 大型機器連成系の地震応答解析モデル(材料物性の不確かさ等考慮)

(3) 炉内愽宣物糸の地震応谷解析モアル	(3)	内構造物系の地震応答解析モデル
----------------------	-----	-----------------

表Ⅲ(3)	炉内構造物系の地震応答解析モデル	(材料物性の不確かさ等考慮)

		241年				Ss ⁻	3 +	$1/3$ Sd- $3\times$	5 + N	ICO	
部位	T.M.S.L. (m)	减衰 定数 (%)	方向	ケース 1 (基本ケ ース)	ケース 2 (建屋剛 性+ 地盤剛 性+ ィ) 性+ $ $	ケース3 (建屋剛 性-σ 地盤剛 性-σ)	ケス建剛コ平	ケース 5 (建屋 剛性- 2 g)	ケス(地回ば低)	ケース 7 (原子炉本体基 礎 ダイヤフ ラムフロア 実強度)	ケース8 (原子炉本体基 礎 スケルト ン曲線 曲線 包絡)
			NS								
	14.433		EW								
炉心シ			UD								
ュラウ	$NS \cdot EW$		NS								
ド	10.161	25	EW								
	UD		UD								
	9.645		UD								
原子炉		2.0	NS								
圧力容	5.066		EW								
器			UD								
原子炉			NS								
冷却材	6 253		EW								
再循環	0.200										
ポンプ			UD								

(4) タービン建屋の地震応答解析モデル

表Ⅲ(4) タービン	・建屋の地震応答解析モデル	(材料物性の不確か	さ等考慮)
------	--------	---------------	-----------	-------

		消草			$S_{s-3} +$	1/3Sd-3×5	+ NCO	
部位	T.M.S.L. (m)	减衰 定数 (%)	方向	ケース1 基本 ケース	ケース2 建屋剛性 + σ 地盤剛性 + σ	ケース3 建屋剛性 ー σ 地盤剛性 ー σ	ケース4 建屋剛性 コア平均	ケース5 建屋剛性 -2 σ
	44.300		NS EW UD					
	38.600		NS EW UD					
	30.900		NS EW UD					
タービ	25.800		NS EW UD					
レ レ レ レ レ レ レ レ レ レ レ レ レ レ レ レ レ レ レ	20.400	0.5	NS EW UD					
	12.300		NS EW UD					
	4.900		NS EW UD					
	-1.100		NS EW UD					
	-5.100		NS EW UD					
	$NS \cdot EW$		NS					
	18.350		EW					
蒸気タ	20.400		UD					
ービン の基礎	NS • EW		NS					
	10.700 UD		EW					
	12.300		UD					

(5) コントロール建屋の地震応答解析モデル

表Ⅲ(5) コントロール建屋の地震応答解析モデル(材料物性の不確かさ等考慮)

		消草			Ss-1	1 + 1/3Sd	-1×5 + N	CO	
部位	T.M.S.L. (m)	减 ^衰 定数 (%)	方向	ケース1 基本 ケース	ケース2 建屋剛性 + σ 地盤剛性 + σ	ケース3 建屋剛性 - σ 地盤剛性 - σ	ケース4 建屋剛性 コア平均	ケース5 建屋剛性 -2 σ	ケース6 回転ばね 低減
コント ロール 建屋	24.100	0.5	NS EW UD						
	17.300		NS EW UD						
	12.300		NS EW UD						
	6.500		NS EW UD						
	1.000		NS EW UD						
	-2.700		NS EW UD						

(6) 廃棄物処理建屋の地震応答解析モデル

表Ⅲ	(6)	廃棄物処理建屋の地震応答解析モデル	(材料物性の不確かさ等考慮)
ДШ	(0)	庑来彻之 过 定注。2. 适度心音开闭 5. / /	

		~~~			Ss-3 +	- $1/3$ Sd- $3 \times 5$ +	NCO	
部位	T.M.S.L. (m)	减衰 定数 (%)	方向	ケース1 基本 ケース	ケース2 建屋剛性 + $\sigma$ 地盤剛性 + $\sigma$	ケース3 建屋剛性 $-\sigma$ 地盤剛性 $-\sigma$	ケース4 建屋剛性 コア平均	ケース5 建屋剛性 -2 σ
廃棄物処理	44.300		NS EW UD					
	36.700		NS EW UD					
	30.900	2.0	NS EW UD					
	30.400		NS EW UD					
	20.400		NS EW UD					
	12.300		NS EW UD					
	6.500		NS EW UD					
	-1.100		NS EW UD					
	-6.100		NS EW UD					



EW方向

注記*:RCCV回転ばね

11

12

13

14

16

15 **Φ** K_{θ1}*

→ :算出床面(応答スペクトルフロー) (V-2-1-7「設計用床応答曲線の作成方針」P13 に加筆)

図IV(1)-1 原子炉建屋地震の応答解析モデルでの算出位置(水平方向)



図IV(1)-2 原子炉建屋の地震応答解析モデルでの算出位置(鉛直方向)



:算出床面(応答スペクトルフロー)
 :算出質点(時刻歴フロー)
 (V-2-1-7「設計用床応答曲線の作成方針」P15に加筆)

図IV(2)-1 大型機器系の地震応答解析モデルでの算出位置(NS 方向)



図IV(2)-2 大型機器系の地震応答解析モデルでの算出位置(EW 方向)



図IV(2)-3 大型機器系の地震応答解析モデルでの算出位置(UD 方向)



→ : 算出床面(応答スペクトルフロー)

: 算出質点(時刻歴フロー)

(V-2-1-7「設計用床応答曲線の作成方針」P18 に加筆)

図Ⅳ(3) -1 炉内構造物系の地震応答解析モデルでの算出位置(NS方向)



図IV(3)-2 炉内構造物系の地震応答解析モデルでの算出位置(EW 方向)











EW 方向

──→ : 算出床面(応答スペクトルフロー)

(V-2-1-7「設計用床応答曲線の作成方針」P20に加筆)

図IV(4)-1 タービン建屋の地震応答解析モデルでの算出位置(水平方向)



→ : 算出床面(応答スペクトルフロー) (V-2-1-7「設計用床応答曲線の作成方針」P21に加筆)

図IV(4)-2 タービン建屋の地震応答解析モデルでの算出位置(鉛直方向)



→ : 算出床面(応答スペクトルフロー)

(V-2-1-7「設計用床応答曲線の作成方針」P22 に加筆)

図IV(5)-1 コントロール建屋の地震応答解析モデルでの算出位置(水平方向)

____



→ :算出床面(応答スペクトルフロー)
 (V-2-1-7「設計用床応答曲線の作成方針」P23 に加筆)

図IV(5)-2 コントロール建屋の地震応答解析モデルでの算出位置(鉛直方向)



図IV(6)-1 廃棄物処理建屋の地震応答解析モデルでの算出位置(水平方向)



(V-2-1-7「設計用床応答曲線の作成方針」P35 に加筆)

図IV(6)-2 廃棄物処理建屋の地震応答解析モデルでの算出位置(鉛直方向)
(補足)

- 補足1 ピーク応力法における各ピークのサイクル数の求め方
- 補足2 等価繰返し回数算出プログラムについて
- 補足3 疲労評価の対象設備及び部位毎のピーク応力
- 補足4 ピーク応力の算出方法について
- 補足5 他方向入力を対象とした等価繰返し回数算定方法について
- 補足6 柏崎刈羽7号機の等価繰返し回数の保守性について
- 補足7 ピーク応力の大きさと等価繰返し回数の関係について
- 補足8 等価繰返し回数の算出に用いる地震動の考え方について

補足1 ピーク応力法における各ピークのサイクル数の求め方

柏崎刈羽7号機のピーク応力法における各ピーク点におけるサイクル数については レインフロー法を用いて求める。図補1.1に示す通り,実際の材料挙動に着目し, 片振りとなるピーク点については0.5,両振りとなるピーク点については1と割り当て ている。なお,このサイクル数のカウント方法は疲労設計において,材料の応力-ひず み挙動との対応が良いことから,一般的に用いられている手法である。



図 補1.1 レインフロー法の概要

また、本カウント法に関する文献は以下がある。

・遠藤達雄ら他、「「Rain Flow Method」の提案とその応用」、九州工業大学研究報告(工学) No.28,1974

1. はじめに

今回工認における等価繰返し回数算出において使用した計算機プログラム(解析 コード)について説明する。

柏崎刈羽 7 号機に等価繰返し回数の算出において地震応答解析モデルごとに 2 つの算出プログラム(表 補2.1)を使用しており,使用状況,解析コードの概要 を以降に記載する。

衣 柵 2: 1 桁両内羽 7 5 機の地長応各府街で 7 ル 加の鼻面 7 ログ 7 ム		
別紙 No.	算出に用いた算出プログラム	地震応答解析モデル
別紙1		原子炉建屋の地震応答解析モデル
	PLTCOM2	大型機器系の地震応答解析モデル
		炉内構造物系の地震応答解析モデル
別紙2	HERO	タービン建屋の地震応答解析モデル
		コントロール建屋の地震応答解析モデル
		廃棄物処理建屋の地震応答解析モデル

表 補2.1 柏崎刈羽7号機の地震応答解析モデル別の算出プログラム

#### 別紙1 PLTCOM2

1. 解析コードの概要

ユード名 項目	等価繰返し回数算出プログラム (PLTCOM2)
使用目的	等価繰返し回数の算出
開発機関	日立GEニュークリア・エナジー株式会社
開発時期	2017 年
使用したバージョン	Ver1.00
コードの概要	等価繰返し回数算出プログラム(PLTCOM2)(以下,「本解析コード」という。)は,耐震設計に使用する条件を作成することを目的に,レインフロー法等を用いた方法で等価繰返し回数を算出する機能を統合したシステムである。
検証 (Verification) 及び 妥当性確認 (Validation)	【検証(Verification)】 本解析コードの検証の内容は以下のとおりである。 ・本解析コードでレインフロー法によって算出した等 価繰返し回数の値と,手計算で計算した値が一致す ることを確認している。 ・本解析コードの運用環境について,動作環境を満足 する計算機にインストールして用いていることを確 認している。 【妥当性確認(Validation)】 本解析コードの妥当性確認内容は以下のとおりであ る。 ・算出方法はJEAG4601記載の設計用繰返し回 数の設定(ピーク応力法)のフローに従っており,妥 当性に問題はない。

- 2. 解析コード(PLTCOM2)における等価繰返し回数算出機能の検証
- 2.1. 概要

本工事計画認可申請書において使用した解析コード(PLTCOM2)(以下, 「本解析コード」という。)を用いて得られた計算結果の妥当性を確認し,本解析 コードの検証を行うものである。本解析コードを用いた,等価繰返し回数算出フ ロー(ピーク応力法)を図補2別1.2.1-1に示す。



図 補2別1.2.1-1 等価繰返し回数算出フロー(ピーク応力法)

- 2.2. 解析コードの検証
  - (1) 検証の概要

本解析コードによる計算結果の妥当性の確認には,手計算により算出した等 価繰返し回数を用いる。

本解析コードと手計算により算出した等価繰返し回数の比較をすることに より,解析コードの検証を行った。

(2) 検証ケース

図 補2別1.2.2-1に示す時刻歴データを入力地震動として、本解析コ ードを用いて計算する。等価繰返し回数算出において、図 補2別1.2.1-1に示す等価繰返し回数算出フロー(ピーク応力法)の①と②で計算を行って いるが、①の時刻歴加速度応答波形による1質点系の時刻歴応答解析は、 「Seismic Analysis System (SAS)」の設計用床応答スペクトル作成機能と

同モジュールを使用している。 時刻歴加速度内気波形による1 度点系の時刻

時刻歴加速度応答波形による1 質点系の時刻歴応答解析後の処理は②と同 じであるため、本検証では、②の計算結果と手計算により算出した等価繰返し 回数の比較をする。



(3) 算出条件

JEAG4601記載の等価繰返し回数算出フロー(ピーク応力法)のうち 時刻歴波形に対する等価繰返し回数を算出する。算出条件を表 補2別1.2. 2-1に,使用する設計疲労線図の材料データを表 補2別1.2.2-2に示 す。

表 補 2 別 1. 2. 2-1 算出条件

設定項目	算出条件
設計疲労線図	炭素鋼,低合金鋼及び高張力鋼 (Su≦ 550MPa)
最大ピーク応力	1471MPa

裸返しビーク応力強さ(MIPa)
3999
2827
1896
1413
1069
724
572
441
331
262
248
214
159
138
114
93
86

表 補2別1.2.2-2 設計疲労線図 材料データ

(4) 計算結果の比較

本解析コード及び手計算で計算した等価繰返し回数 Ne を表2. 2-3 に 示す。そのうち、応力に対する許容繰返し回数 Ni は J SME設計・建設規格に 記載の補間方法を用いて算出した。また、 $N_0$ は Ni における最大ピーク応力で ある。

手計算によるσi に対する許容繰返し回数 Ni の計算結果を表 補2別1.2. 2-4,手計算による疲れ累積係数UFの計算結果を表 補2別1.2.2-5 に示す。

(5) 検証結果

表 補2別1.2.2-3に示す等価繰返し回数の比較結果のとおり,両者は 一致しており,本解析コードを用いて得られた計算結果の妥当性を確認した。

No.	項目	本解析コードによる 計算結果	手計算による計算結果

## 表 補2別1.2.2-3 本解析コード及び手計算による等価繰返し回数の計算結果

E°	ク点 END	ピーク応力 (MPa)	最大ピーク応力に対する 時刻歴応答波形の ピーク応力 σ i(MPa)	σ i に対する 許容繰返し回数 N _i (回)

表補2別1.2.2-4 手計算による σi に対する許容繰返し回数 Ni の計算結果

表 補2別1.2.2-5 手計算による疲れ累積係数UFの計算結果

疲れ累積係数UF		

## 別紙2 HERO

1. 解析コードの概要

コード名 項目	等価繰返し回数の計算プログラム(HERO)
使用目的	等価繰返し回数の算出
開発機関	東芝エネルギーシステムズ 株式会社
開発時期	2017年~2018年
使用したバージョン	Ver.1.00, 2.00 及び 4.00
コードの概要	等価繰返し回数算出プログラム(HERO)(以下,「本解析コ ード」という。)は,耐震設計に使用する条件を作成することを 目的に,レインフロー法等を用いた方法で等価繰返し回数を算出 する機能を有するシステムである。
検証 (Verification) 及び 妥当性確認 (Validation)	<ul> <li>【検証(Verification)】</li> <li>本解析コードの検証内容は、以下のとおりである。</li> <li>本解析コードで算出した1質点系の応答計算の値と手計算の値が一致していることを確認している。</li> <li>本解析コードでレインフロー法によって算出した等価繰返し回数の値と、手計算で計算した値が一致することを確認している。</li> <li>本解析コードの運用環境について、動作環境を満足する計算機にインストールして用いていることを確認している。</li> <li>【妥当性確認(Validation)】</li> <li>本解析コードの妥当性確認内容は、以下のとおりである。</li> <li>1質点系の応答計算機能は、理論モデルをそのままコード化したものであり、妥当性は確認されている。</li> <li>床応答曲線を作成する際、入力とする時刻歴データの時間刻み幅、データの形式は、妥当性を確認している範囲内での使用であることを確認している。</li> <li>時刻歴波の時間刻み、固有周期計算間隔はJEAG4601 に従っており、妥当性は確認されている。</li> <li>算出方法はJEAG4601記載の設計用繰返し回数の設定(ピーク応力法)のフローに従っており、妥当性に問題はない。</li> </ul>

- 2. 解析コード(HERO)における等価繰返し回数算出機能の検証
- 2.1 概要

本工事計画認可申請書において使用した解析コード(HERO)(以下,「本解析 コード」とする。)を用いて得られた計算結果の妥当性を確認し,本解析コード の検証を行うものである。本解析コードを用いた,等価繰返し回数算出フロー(ピ ーク応力法)を図補2別2.2.1-1に示す。



図 補2別2.2.1-1 等価繰返し回数の算出フロー(ピーク応力法)

- 2.2 解析コードの検証
- 2.2.1 直接積分法
  - (1) 検証の概要

本解析コードに実装されている1質点系応答計算のうち,直接積分法(Nigam 法)の関数部の検証を行った。なお、本解析コードによる算出結果の妥当性確認 には、手計算により算出した各固有周期での絶対応答加速度(理論解)を用いて、 本解析コードにより算出した各固有周期での絶対応答加速度を比較し検証を行った。

(2) 検証ケース

検証ケースを表 補2別2.2.2.1-1に示す。

入力波	正弦波
減衰定数	5 [%]
固有周期	0.01 ~ 10 [s] (0.01 [s] 刻み全1000 点)
入力振動数	1, 2, 5, 10, 20 [Hz]
入力時間間隔	0.005 [s]
入力継続時間	10 [s]
入力振幅	0.20394 [G]

表 補2別2.2.2.1-1 直接積分法の検証ケース

(3) 算出条件

1 質点系応答計算における検証ケースのモデルを表 補2別2.2.2.1-2,図 補2別2.2.2.1-1に示す。

m	50000 [kg]
k	0.01 ~ 10.0 [s]の固有周期による変数
α	0.20394 [G]
ω	$2\pi f$ (f = 1.0, 2.0, 5.0, 10.0 and 20.0 [Hz])
h	0.05(減衰定数)
с	0.01 ~ 10.0 [s]の固有周期による変数

表 補2別2.2.2.1-2 各変数の値



図 補2別2.2.2.1-1 1質点系の検証例題

(4) 理論式

図 補2別2.2.2.1-1に対し,正弦波の時刻歴を入力条件とした場 合の絶対応答加速度の理論式は,下式より計算される。

1 質点系の固有振動数は次式となる。

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

図 補2別2.2.2.1-1に示す1質点系の振動方程式は、以下となる。

$$\ddot{x} + 2h\omega_0 \dot{x} + \omega_0^2 x = -\ddot{y} = -\alpha sin\omega t$$
$$2h\omega_0 = \frac{c}{m}, \quad \omega_0 = \sqrt{\frac{k}{m}}, \qquad \ddot{y} = \alpha sin\omega t$$

上式を解くことで相対応答変位は下式より計算される。

$$x = e^{-h\omega_0 t} (A\cos\omega_d t + B\sin\omega_d t) + \frac{2h\omega\omega_0 \alpha}{S^2} \cos\omega t + \frac{(\omega^2 - \omega_0^2)\alpha}{S^2} \sin\omega t$$

ここで、用いる定数は以下の通り。
$$S = \sqrt{(\omega^2 - \omega_0^2)^2 + 4h^2\omega^2\omega_0^2}$$
$$A = x_0 - \frac{2h\omega\omega_0\alpha}{S^2}$$

$$B = \frac{1}{\sqrt{1 - h^2}} \left\{ hx_0 + \frac{v_0}{\omega_0} - \frac{(\omega^2 - \omega_0^2 + 2h^2\omega_0^2)\omega\alpha}{\omega_0 S^2} \right\}$$
$$\omega_d = \sqrt{1 - h^2}\omega_0$$

また、上式より相対応答加速度を求める理論式は下式となる。  

$$\ddot{x} = h^2 \omega_0^2 e^{-h\omega_0 t} (Acos\omega_d t + Bsin\omega_d t) - 2h\omega_0 e^{-h\omega_0 t} (-A\omega_d sin\omega_d t + B\omega_d cos\omega_d t)$$
  
 $+ e^{-h\omega_0 t} (-A\omega_d^2 cos\omega_d t - B\omega_d^2 sin\omega_d t) + D\{2h\omega\omega_0 cos\omega t + (\omega^2 - \omega_0^2)sin\omega t\}$ 

ここで,  $x(0) = x_0 = 0, \quad \dot{x}(0) = v_0 = 0$   $D = -\frac{\omega^2 \alpha}{S^2}$ よって,絶対応答加速度の理論式は下式となる。

$$\ddot{\zeta} = \ddot{x} + \ddot{y}$$

(5) 計算結果

理論解と Nigam 法の計算結果の比較を図 補2別2.2.2.1-2に示す。



図 補2別2.2.2.1-2 理論解と Nigam 法の計算結果の比較

図 補2別2.2.2.1-2より理論解と Nigam 法の計算結果はよく一 致しており, HERO による1質点系応答計算の妥当性を確認した。

- 2.2.2 サイクルカウント法
  - (1) 検証の概要

本解析コードによる計算結果の妥当性の確認には,手計算により算出した 等価繰返し回数を用いる。

本解析コードと手計算により算出した等価繰返し回数を比較することに より,解析コードの検証を行った。

(2) 検証ケース

図 補2別2.2.2.2-1に示す時刻歴データを入力として、本解析 コードを用いて計算する。等価繰返し回数の算出において、図 補2別2. 2.2.2-1に示す等価繰返し回数の算出フロー(地震荷重を時刻歴より 求める機器系の算出フローと地震荷重を応答スペクトルより機器系の算出 フロー)で計算を行っているが、本検証では「地震荷重を時刻歴より求める 機器系の算出フローを用い、本解析コードによる算出結果と手計算による算 出結果を比較し検証する。



(3) 算出条件

JEAG4601記載の等価繰返し回数の算出フロー(ピーク応力法)のう ち,時刻歴波形に対する等価繰返し回数を算出する。算出条件を表 補2別2. 2.2.2-1,算出に使用する設計疲労線図の材料データを表 補2別2. 2.2.-2に示す。

表 補2別2.2.2.2-1 算出条件

設定項目	算出条件
設計疲労線図	炭素鋼,低合金鋼及び高張力鋼 (Su≦550MPa)
最大ピーク応力	1471MPa

表 補2別2.2.2.2-2 設計疲労線図 材料データ

許容繰返し回数(回)	繰返しピーク応力強さ(MPa)
$1.00 \times 10^{1}$	3999
$2.00 \times 10^{1}$	2827
$5.00 \times 10^{1}$	1896
$1.00 \times 10^{2}$	1413
$2.00 \times 10^{2}$	1069
$5.00 \times 10^{2}$	724
$1.00 \times 10^{3}$	572
$2.00 \times 10^{3}$	441
$5.00 \times 10^{3}$	331
$1.00 \times 10^{4}$	262
$1.20 \times 10^4$	248
$2.00  imes 10^4$	214
$5.00  imes 10^4$	159
$1.00 \times 10^{5}$	138
$2.00 \times 10^{5}$	114
5.00×10 ⁵	93
$1.00 \times 10^{6}$	86

(炭素鋼,低合金鋼および高張力鋼 (Su≦550MPa))

(4) 計算結果の比較

レインフロー法の算出フロー①~⑥を図 補2別2.2.2.2-2示す。
本解析コード及び手計算で計算した等価繰返し回数 N_eを表 補2別2.2.
2.2-3に示す。そのうち、応力に対する許容繰返し回数 N_iはJSME設計・建設規格に記載の補間方法を用いて算出した。また、N₀は N_iにおける最大ピーク応力である。

手計算によるピーク応力強さ {S_p} iに対する許容繰返し回数 N_iの計算結果 を表 補2別2.2.2.2-4,手計算による疲れ累積係数UFの算出結果 を表 補2別2.2.2.2-5に示す。

(5) 検証結果

表 補2別2.2.2.2-3に示す等価繰返し回数の比較結果のとおり, 両者は一致しており,本解析コードを用いて得られた計算結果の妥当性を確認 した。

図 補2別2.2.2-2 レインフロー法の算出フロー

## 表 補2別2.2.2.2-3 本解析及び手計算による等価繰返し回数の計算結果

No.	項目	本解析コードによる 計算結果	手計算による 計算結果

表	補2別2.	2.	2.	2 - 4	手計算による {S _p } iに対する許容繰返し回数 Niの算出線	吉果
---	-------	----	----	-------	----------------------------------------------	----

No.	サイクル数	ピーク応力 {S _p } i (MPa)	{S _p } _i に対す る 繰返し応力強さ (MPa)	{S _p } iに対する 許容繰返し回数 Ni (回)

表 補2別2.2.2-5 手計算による疲れ累積係数UFの算出結果



# 補足3 疲労評価の対象設備及び部位毎のピーク応力

		ピーク応力(MPa)	ピーク応力(MPa)		
設佩名称	言乎1曲音以1 <u>7</u> .	(水平2方向考慮なし)	(水平2方向考慮あり)		
一律に設定する等価繰返し回数を用いる疲労評価対象設備					
	原子炉圧力容器支持 スカート	230	325		
	下部鏡板	77	108		
	<u>給水ノズル(N4)</u>	_	278		
	<u> </u>	130	184		
	<ul> <li>制御棒駆動機構ハウ</li> <li>ジング貫通孔</li> </ul>	298	421		
	原子炉冷却材再循環 ポンプ貫通孔 (N1)	515	894		
	主蒸気ノズル (N3)	—	330		
	低圧注水ノズル (N6)	—	721		
	上蓋スプレイ・ベン トノズル(N7)	_	337		
原子炉圧力容器	原子炉停止時冷却材 出口ノズル(N8)	—	262		
	原子炉停止時冷却材 出口ノズル(N10)	—	339		
	原子炉冷却材再循環 ポンプ差圧検出ノズ ル (N9)	257	373		
	炉心支持板差圧検出 ノズル(N11)	257	373		
	計装ノズル(N12)	—	140		
	計装ノズル(N13)	—	140		
	計装ノズル(N14)	—	327		
	ドレンノスル (N15)	—	326		
	高圧炉心注水ノズル (N16)	—	245		
	原子炉冷却材再循環 ポンプモータケーシ ング	390	592		
制御棒駆動機構	スプールピースの最 小断面	15	_*1		
原子炉冷却材再循環	モータカバー	12	%2		
ポンプ	補助カバー	1	_		
燃料集合体	燃料被覆管	58	$7\overline{4}$		

		ピーク応力(MPa)	ピーク応力(MPa)
設備名称	計》 評1111 部112	(水平2方向考慮なし)	(水平2方向考慮あり)
原子炉補機冷却水系 熱交換器(A), (B), (D), (E)	胴板		*3
下部ドライウェルア クセストンネルスリ	鏡板のスリーブとの 結合部	_	605
ーブ及び鏡板(所員 用エアロック付)	スリーブのフランジ プレートとの結合部	_	630
下部ドライウェル所 員用エアロック	<ul> <li>下部ドライウェル所 員用エアロック</li> <li>円筒胴と鏡板との結 合部</li> </ul>	_	704
配管(最大ピーク応 力発生箇所:純水補 給水系配管(MUWP- C3B-1))	配管本体	_	1039
個別に設定する等価線	返し回数を用いる疲労	評価対象設備	
原子炉補機冷却水系 配管(RCW-T-3)	配管本体	_	1631
原子炉補機冷却水系 配管(RCW-T-4)	配管本体	_	1631
消火系配管(FP- 025R2)	配管本体	_	1443
非放射性ドレン移送 系配管(MSC- 002R2)	配管本体	_	1407
▲用水系配管(DW- 006R2)	配管本体	_	1319
タービン補機冷却水 系配管(TCW- 001R2)	配管本体	_	1245

評価部位は円形の一様断面であることから,水平地震動の方向ごとに最大応力点が異なる。したがって,水平2方向の地震力を組み合わせた場合でも水平2方向入力の影響は軽微である。  $\times 1$ 

入力の影響は軽微である。
※2 鉛直方向荷重の影響が支配的であるため、水平方向地震動は荷重条件として考慮していない。したがって、水平2方向入力の影響はない。
※3 水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、最大応力発生部位は変わらない。したがって水平2方向入力の影響は軽微である。
(詳細はKK7補足-024「工事計画に係る説明資料(耐震性に関する説明書)資料4 水平2方向及び鉛直方向地震力の組合せに関する検討について」参照。)

補足4 ピーク応力の算出方法について

ここでは、代表設備(クラス1配管のうち地震+地震以外の疲れ累積係数UFが最 大となる配管モデル RHR-PD-2)のピーク応力算出方法について説明する。 地震時のピーク応力算出フローを図 補4.1に、算出方法を以下に示す。



① 地震応答解析によるモーメント算出

RHR-PD-2の地震応答解析(3次元はりモデルを用いたスペクトルモーダル解 析)を実施し, RHR-PD-2に生じるモーメントを算出する。この地震応答解析か ら得られたモーメントを表 補4.1に示す。

表 補4.1 地震応答解析から得られたモーメント (N・mm)

	Mx	My	Mz
慣性力			
相対変位			

② 一次+二次応力およびピーク応力の算出

表 補4.1に示すモーメントにより算出した一次+二次応力 S_n及びピーク 応力 S_pは以下による。(JEAG4601-1987 (6.6.2-22), (6.6.2-25))



一次+二次応力及びピーク応力の算出で用いている記号は以下の通り。

$\mathbf{S}_{n}$	:一次+二次応力	(MPa)

S_p : ピーク応力(MPa)

#### K₂, C₂ : 応力係数(JSME設計・建設規格(2005/2007) PPB-3812.3)

- M_{is}
   :表 補4.1より生じるモーメントの全振幅(モーメントの各 方向を SRSS) (N・mm)
- Z : 管の断面係数(mm³)

③ 割増し係数 Ke の算出

②にて求めた一次+二次応力 S_nが3S_m以上となるため、割増し係数 Ke を算出する。当該配管はJSME設計・建設規格(2005/2007)PVB-3315(2) a.(b)の場合に該当するため、割増し係数 Ke は以下の通りとなる(JSME設計・建設規格(2005/2007)PVB-84)。

$$Ke = Ke^{-1} = 1 + (q-1)\left(1 - \frac{3S_m}{S_n}\right)$$
$$=$$

割増し係数 Ke の算出で用いている記号は以下の通り。

$\mathbf{S}_{m}$	: 最高使用温度(302℃)における設計応力強さ(MPa)
q	:JSME設計・建設規格(2005/2007)表 PVB-3315-1 のう
	ち RHR-PD-2 の材料である炭素鋼の値

④ 繰返しピーク応力強さの算出

ピーク応力 S_p及び割増し係数 Ke を用い,繰返しピーク応力強さ Sl は以下の通りになる。(J S M E 設計・建設規格(2005/2007)PVB-82)



繰返しピーク応力強さの算出で用いている記号は以下の通り。

Sl:繰返しピーク応力(温度補正前)(MPa)

Sl':繰返しピーク応力(温度補正後)(MPa)

E:最高使用温度(302℃)における縦弾性係数(MPa)

補足5 多方向入力を対象とした等価繰返し回数算定方法について

1. はじめに

本資料は多方向入力を対象とした等価繰返し回数算定方法についてまとめたものである。

本内容は電共研「新規制基準対応を踏まえた機器・配管系評価方法に関する研究」 (平成29年3月)にて検討されており、2項にて電共研における成果を示し、3 項にて柏崎刈羽7号機において多方向入力時に各方向の等価繰返し回数の最大値 を用いることは妥当であることを示すものである。
3. 柏崎刈羽7号機における多方向入力を対象とした等価繰返し回数算定方法に ついて

2.2.2項において2方向同時入力の結果について纏めているが、下記理 由により3方向同時入力に対しても同様に各方向の等価繰返し回数の最大値を 用いることは妥当であることが言える。

補足6 柏崎刈羽7号機 等価繰返し回数の保守性について

1. はじめに

柏崎刈羽7号機の今回工認では一律に設定する等価繰返し回数(Ss:200回, Sd:200回)の設定を行っている。この設定の保守性について説明する。

2. 検討事項

本資料では以下項目を検討し、柏崎刈羽7号機の一律に設定する等価繰返し回数の設定の保守性を示す。

(1) 等価繰返し回数算出パラメータの比較(3.参照)

(2) 柏崎刈羽7号機の地震動の特性を踏まえた保守性の整理(4.参照)

(3) 柏崎刈羽7号機の疲労評価に含まれる保守性の整理(5.参照)

3. 等価繰返し回数算出パラメータの比較

本文3.(2)にて説明している等価繰返し回数の算出に用いるパラメータについて先行プラントと比較した結果を表 補6.1に示す。

表 補6.1より,先行と同等か,又は保守的に設定していることを確認した。 ④-3は先行プラントと比較し差異があることを確認したが,柏崎刈羽7号機が 有する地震動の特性を踏まえた保守性を4.にて検討する。

パラメータ	柏崎刈羽7号機	先行プラント (東海第二)	差異理由
①ピーク応力	1471MPa	1471MPa	差異なし。
②固有周期	全固有周期	全固有周期	差異なし。
③対象床面 (質点)	全床面 (質点)	【原子炉建屋に設置された機 器・配管系】 全床面(質点) 【原子炉格納容器,原子炉圧力 容器等大型機器】 代表設備の設置床面	先行の代表性を持たせた床面 (質点)を対象とする代わり に,柏崎刈羽 7 号機は工認添付にて耐震条件を作成する 全床面 (質点)を対象としている。
<ul> <li>④-1</li> <li>地震動</li> <li>(基準地震動Ss</li> <li>の種類)</li> </ul>	基準地震動Ss(Ss-1,2, 3,4,5,6,7,8)の全 8波を考慮。	基準地震動Ss(Ss-D, 1 1, 12, 13, 14, 21, 22, 31)の全8波を考慮。	差異なし。
<ul> <li>④-2</li> <li>地震動</li> <li>(基準地震動Ss</li> <li>の等価繰返し回数</li> <li>の算出用)</li> </ul>	基準地震動Ss1回分に加えて NCO及び弾性設計用地震動 Sdの1/3倍した地震動5回分 考慮。	基準地震動S s 1 回分を考慮。	柏崎刈羽7号機は米国の知見を参考に,弾性設計用地震動Sdの1/3倍した地震動5回分を,本来考慮すべき基準地震動Ss1回分に対して追加している。また,過去に経験したNCOも追加する。

表 補6.1 柏崎刈羽7号機 一律に設定する等価繰返し回数算出パラメータの整理

パラメータ	柏崎刈羽7号機	先行 (東海第二)	差異理由
<ul> <li>④-3</li> <li>地震動</li> <li>(弾性設計用地震</li> <li>動Sdの設定)</li> </ul>	基準地震動Ssの等価繰返し 回数と同じ等価繰返し回数を 用いる。	弾性設計用地震動Sdの発生 回数は基準地震動Ssより発 生頻度が高いため弾性設計用 地震動Sd2回分を考慮。	柏崎刈羽7号機では,基準地震動Ssの等価繰返し回数 を用いることで,ピーク応力,算出用地震動(Ss×1回 +(1/3)Sd×5回+NCO)で保守性を持たせている。 なお,基準地震動Ssによる疲れ累積係数UFが大きい 設備に対し,個別に設定する等価繰返し回数を設定する ことで疲れ累積係数UFが0.5程度となることを確認し ている(補足6.5参照)。このため,弾性設計用地震動 Sdによる疲れ累積係数UFは,基準地震動Ssによる 疲れ累積係数UFより小さくなることを考えると,先行 プラントと同様に概ね弾性設計用地震動Sd2回分の耐 震性を有していると考えられる。
⑤減衰定数	0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0(%)	0.5,1.0(%)	等価繰返し回数の算出を網羅的に実施するため,機器・配 管系の設備評価によく用いられる8減衰を用いる。
⑥設計疲労線図	炭素鋼,低合金鋼および高張力 鋼	炭素鋼,低合金鋼および高張力 鋼	差異なし。
⑦材料物性の不確 かさ等の考慮	地震応答解析モデルの材料物 性の不確かさ等による影響を 考慮。	建屋剛性及び地盤物性の影響 検討を実施。	柏崎刈羽 7 号機では不確かさ等のケースを含めて設定している。

表 補6.1 柏崎刈羽7号機 一律に設定する等価繰返し回数算出パラメータの整理(続き)

4. 柏崎刈羽7号機の地震動の特性を踏まえた保守性の整理

等価繰返し回数を用いた疲労評価において,疲れ累積係数UFは以下の式にて算 出される。

$$UF = \frac{N_e}{N_o}$$

N_e: 地震による等価繰返し回数

N₀:疲労評価対象設備に発生するピーク応力での許容繰返し回数

本来であれば、等価繰返し回数 N_eと許容繰返し回数 N₀は同一の地震動を基に算 出した値を用いて疲労評価を行えば良いが、柏崎刈羽 7 号機では基準地震動が複数 (Ss-1~Ss-8)存在するため、基準地震動Ss-1~Ss-8の等価繰返し 回数を包絡した上で、一律に設定する等価繰返し回数を 200 回と定めている。

また,許容繰返し回数を算出するためのピーク応力を求める際にも,基準地震動 Ss-1~Ss-8の耐震条件(床応答スペクトル,最大応答加速度)を包絡させ た上で,応力計算を実施している。

したがって,疲れ累積係数UFは基準地震動ごとの組合せを考慮せず,全ての基 準地震動において最も厳しい(等価繰返し回数は大きい,許容繰返し回数は小さい) 値を用いて求めているため,疲れ累積係数UFは保守的な値となる。

そこで,柏崎刈羽7号機において許容繰返し回数及び等価繰返し回数が厳しくな る地震動を整理し,疲労評価における地震動の特性を踏まえた保守性を整理する。

### (1) 許容繰返し回数が厳しくなる(小さくなる)地震動

許容繰返し回数は各疲労評価対象設備のピーク応力により定まる値であり, ピーク応力が大きくなるほど,許容繰返し回数は小さくなる。設備評価におけ るピーク応力の大小は,その評価条件である地震力と比例することから,加速 度の大きい地震動を確認する。疲労評価対象設備が多く設置されている原子炉 建屋の最大応答加速度及び一部の床応答スペクトルを表 補6.2及び図 補 6.1に示す。その結果,いずれも基準地震動Ss-1及びSs-2が支配的 であることが確認できた。

また、本文3.(3)に記載の通り等価繰返し回数に対して支配的な地震動は Ss-3系であるが、基準地震動Ss-3の最大応答加速度は、基準地震動S s-1及びSs-2より1~4割程度小さくなっている。仮にこの割合をピーク 応力1471MPaに対して適用し、設計疲労線図より許容繰返し回数を求めると、 基準地震動Ss-1及びSs-2に対し基準地震動Ss-3の許容繰返し回 数は1.2~3.4倍になる。

			最大応答加速度(×9.80665m/s ² )×1.0																
構造物名	質点 番号	標高 T. M. S. L.	Ss	-1	Ss	-2	Ss	:3	Ss	-4	Ss	-5	Ss	-6	Ss	-7	Ss	-8	包絡値
		(11)	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	
	1	49.700	1.81	1.69	1.12	1.48	1.11	1.04	0.81	0.93	0.69	1.04	0.83	0.95	0.69	1.20	1.48	1.38	1.81
	2	38.200	1.25	1. 29	0.88	1.18	0.91	0.86	0.63	0.71	0.53	0.87	0.65	0.73	0.51	0.92	1.15	1.10	1.29
	3	31.700	1.12	1.05	0. 79	1.12	0.80	0.77	0.54	0.63	0.49	0. 79	0.56	0.65	0.45	0.82	1.03	0.97	1.12
	4	23. 500	0.95	0. 92	0.69	1.00	0. 70	0. 70	0.44	0.63	0.44	0. 70	0.46	0.67	0.40	0.71	0.94	0.92	1.00
	5	18.100	0.85	0.83	0.61	0.94	0.65	0.63	0.38	0.63	0.40	0.65	0.39	0.67	0.35	0.65	0.84	0.84	0.94
亦1 /P 建崖	6	12.300	0.76	0.79	0.54	0.86	0.61	0.61	0.33	0.62	0.36	0.60	0.33	0.66	0.30	0.61	0.74	0.76	0.86
	7	4.800	0.67	0. 70	0. 51	0.81	0. 58	0. 58	0.28	0.56	0.32	0. 53	0.28	0.60	0.29	0. 58	0.64	0.66	0.81
	8	-1.700	0.71	0.71	0.47	0.85	0.60	0. 58	0.26	0.50	0.30	0.51	0.29	0.54	0.27	0.57	0.57	0.58	0.85
	9	-8.200	0.60	0.60	0.46	0.74	0.64	0.63	0.28	0.45	0.27	0. 51	0.31	0.48	0.26	0. 57	0.51	0.52	0.74
	10	-13.700	0.65	0.63	0.47	0.71	0.68	0.67	0.28	0.44	0.27	0.51	0.32	0.46	0.26	0.59	0.48	0.49	0.71

表 補6.2(1)基準地震動Ssごとの最大応答加速度(原子炉建屋の地震応答解析モデル:水平方向)

_____: 当該質点で最大となる地震動

(V-2-1-7「設計用床応答曲線の作成方針」p3-2に加筆)

			最大応答加速度(×9.80665m/s ² )×1.0										
構造物名	質点 番号	点 標尚 号 T. M. S. L. (m)	標商 T. M. S. L. (m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss=6	Ss-7	Ss-8	包絡値	
			鉛直	鉛直	鉛直	鉛直	鉛直	鉛直	鉛直	鉛直			
	1	49.700	0. 98	0.63	0.67	0. 49	0. 48	0.51	0. 49	0.37	0. 98		
	2	38.200	0.95	0.61	0.63	0.46	0. 47	0. 48	0. 48	0.32	0.95		
	3	31.700	0. 91	0.60	0.62	0. 44	0.46	0.46	0.46	0.29	0.91		
	4	23. 500	0.89	0. 59	0.61	0. 43	0. 45	0. 45	0. 45	0.28	0.89		
百子后建邑	5	18.100	0.87	0. 58	0.61	0. 42	0. 44	0. 43	0. 43	0.27	0.87		
亦于 <i>州</i> "建屋	6	12.300	0.85	0. 57	0.60	0. 40	0. 43	0. 43	0. 42	0.25	0.85		
	7	4.800	0.83	0.54	0.60	0.39	0.42	0.42	0.39	0.24	0.83		
-	8	-1.700	0.80	0. 52	0.60	0. 39	0. 41	0. 41	0.37	0.25	0.80		
	9	-8.200	0. 79	0.50	0.60	0. 38	0. 40	0. 39	0.35	0.26	0.79		
	10	-13.700	0. 79	0.50	0.60	0. 38	0.40	0. 39	0.35	0.26	0.79		

表 補6.2(2) 基準地震動Ssごとの最大応答加速度(原子炉建屋の地震応答解析モデル:鉛直方向)

: 当該質点で最大となる地震動

(V-2-1-7「設計用床応答曲線の作成方針」p3-3に加筆)



図 補6.1(1)原子炉建屋の床応答スペクトル

1.0

0.5

4.0

2.0

0.0

0.1

(c)

0.2

^{固有周期[s]} 鉛直方向

(T.M.S.L.49.700m, 減衰 1.0%)



(2) 等価繰返し回数が厳しくなる(大きくなる)地震動

基準地震動Ss-1~3の解放基盤表面における加速度時刻歴波形を図 補 6.2に示す。また,基準地震動Ss-1~Ss-8の継続時間を表 補6.3 に示す。

今回工認の等価繰返し回数の算出に用いるピーク応力法は,時刻歴波形の最 大値に対応するピーク応力を仮定して,等価繰返し回数の算出を行う手法であ る。この手法の特徴から,地震動波形の加速度振幅の最大値は等価繰返し回数 の算出に大きな影響を与えないと考えられる。一方で,最大加速度振幅に近い 加速度振幅が多く,加えて,継続時間が長い地震動が等価繰返し回数を大きく 算出すると考えられる。

図 補6.2より,基準地震動Ss-3の最大加速度振幅は基準地震動Ss -1及びSs-2と比べて小さいものの,最大加速度振幅に近い加速度振幅が 多く続く波形である。更に,地震動のうち等価繰返し回数算出に有意な影響を 与える主要な地震動が続く時間は基準地震動Ss-3が基準地震動Ss-1 及びSs-2と比べて長い波形となっている。

全 8 波の地震動の等価繰返し回数の最大値を地震応答解析モデル毎に整理 した結果を表 補6.4に示す。表よりSs-3系の地震動が最大の回数とな っており、この回数を基に一律に設定する等価繰返し回数を 200 回としてい る。

ここで、(1)の結果から、許容繰返し回数が厳しくなる地震動は基準地震動 Ss-1及びSs-2であるため、それらの地震動の等価繰返し回数を一律に 設定する等価繰返し回数 200 回と比較すると、 $0.2 \sim 0.8$  倍ほどの小さい値とな る。このため、地震動毎に見れば一律に設定する等価繰返し回数は十分に保守 的に設定されている。





(b) Ss-1V

(V-2-1-2「基準地震動Ss及び弾性設計用地震動Sdの策定概要」p157より抜粋)
 図 補6.2(1) 基準地震動Ss-1の加速度時刻歴波形(大湊側)







時間(秒)





時間(秒)

(V-2-1-2「基準地震動Ss及び弾性設計用地震動Sdの策定概要」p159より抜粋)
 図補6.2(2) 基準地震動Ss-2の加速度時刻歴波形(大湊側)





(V-2-1-2「基準地震動Ss及び弾性設計用地震動Sdの策定概要」p160より抜粋)
 図補6.2(3) 基準地震動Ss-3の加速度時刻歴波形
 (荒浜側と大湊側で共通)

	継続時間 (sec)
S s - 1	32
S s - 2	108
S s - 3	74
S s - 4	127
S s - 5	127
S s - 6	149
S s - 7	148
S s - 8	20

表 補6.3 解放基盤表面における基準地震動Ssの継続時間

表 補6.4 地震応答解析モデルの地震動ごとの等価繰返し回数の最大値(基本ケース)

	(地震応答解析モデル毎に減衰定数・方向・	・算出点を包絡した最大の回数)
--	----------------------	-----------------

	Ss-1×1	$Ss-2 \times 1$	Ss-3×1	$Ss-4 \times 1$	$Ss-5 \times 1$	$Ss-6 \times 1$	$Ss-7 \times 1$	$Ss-8 \times 1$	一律に
	+	+	+	+	+	+	+	+	設定する
地震応答解析モデル	$1/3$ Sd- $1 \times 5$	$1/3$ Sd- $2 \times 5$	$1/3$ Sd- $3 \times 5$	$1/3$ Sd- $4 \times 5$	$1/3$ Sd- $5 \times 5$	$1/3$ Sd- $6 \times 5$	$1/3$ Sd- $7 \times 5$	$1/3$ Sd- $8 \times 5$	等価繰返
	+	+	+	+	+	+	+	+	し回数
	NCO								
原子炉建屋の									
地震応答解析モデル									
大型機器系の									
地震応答解析モデル									
炉内構造物系の									
地震応答解析モデル									200
タービン建屋の									200
地震応答解析モデル									
コントロール建屋の									
地震応答解析モデル									
廃棄物処理建屋の									
地震応答解析モデル									

(3) 柏崎刈羽7号機の地震動の特性を踏まえた保守性の整理

(1)(2)より確認した基準地震動Ss-1,Ss-2及びSs-3におけ る等価繰返し回数及び許容繰返し回数の大小関係と、疲れ累積係数UF(= $N_e$  $/N_0$ )の算出における今回工認の疲労評価手法を表 補6.5に示す。

許容繰返し回数を小さくする地震動が $S_s - 1$ 及び $S_s - 2$ であり,等価繰返し回数を大きくする地震動が $S_s - 3$ である。

		· • • • • • • • • • • • • • •	
	今回工認における 疲労評価手法	S s - 1 及び S s - 2 を用いて 疲労評価	S s – 3を用い て疲労評価
等価繰返し	大: S s - 3 が支配的 (一律に設定する等価繰返し回数 200 回)	小	大
凹级(INe)	$1^{st}$	$0.2{\sim}0.8^{*}$	1*
許容繰返し	小: S s - 1 及び S s - 2 が支配的 (設計用地震力 I 又は II に基づき算出)	小	大
凹剱(IN0)	1**	1*	$1.2 \sim 3.4^{*}$
疲れ累積係数	1*	$0.2 \sim 0.8^{*}$	$0.3 \sim 0.9^{*}$
$(UF = N_e / N_0)$	(=1/1)	(= 0.2~0.8 / 1)	(= 1/ 1.2~3.4)

表 補6.5 各基準地震動と今回工認における繰返し回数の整理

※:今回工認における各値を1とした場合の基準地震動Ss-1, Ss-2及びSs-3における割合

基準地震動Ss-3にて疲労評価を実施した場合,(1)より疲れ累積係数 UFの分母である許容繰返し回数が 1.2 倍~3.4 倍ほどになり疲れ累積係数U Fが小さく算出される。

基準地震動Ss-1及びSs-2にて疲労評価を実施した場合,(2)より 疲れ累積係数UFの分子である等価繰返し回数が 0.2~0.8 倍ほどになり疲れ 累積係数UFが小さく算出される。また,この保守性の概要を図 補6.3に 示す。

以上より、今回工認においては、許容繰返し回数が厳しくなる地震動は基準 地震動Ss - 1及びSs - 2であるが、一律に設定する等価繰返し回数は、等 価繰返し回数の観点で支配的となるSs - 3系による回数を基に定めている ことから保守的な設定と言える。



- 一律に設定する等価繰返し回数を用いる疲労評価に含まれる保守性について 一律に設定する等価繰返し回数を用いる疲労評価対象設備のうち疲れ累積係数 UFが大きく疲労評価が厳しい設備について,個別に設定する等価繰返し回数を設 定することにより、十分な裕度を有しているか確認する。
  - 5.1 検討対象設備の抽出

今回工認の疲労評価対象設備のうち,熱+地震及び地震による疲れ累積 係数UFが最も大きくなる疲労評価対象設備を代表として抽出する。表 補6.6のとおり,熱+地震による疲れ累積係数では残留熱除去系配管 (RHR-PD-2),及び地震による疲れ累積係数では所内温水系配管(HWH-R2F-5)が最大となる。

表 補6.6 疲れ累積係数が最大となる疲労評価対象設備

ケース	設備名称	ー律に設定する 等価繰返し回数	疲れ累積係数UF	
<ol> <li>1.熱+地震で</li> <li>最大のケース</li> </ol>	残留熱除去系配管 (RHR-PD-2)	200 回	U+US s 0.6413 (US s 0.6350)	
<ol> <li>2. 地震で</li> <li>最大のケース</li> </ol>	所内温水系配管 (HWH-R2F-5)		USs 0.9091	

5.2 個別に設定する等価繰返し回数の設定による疲れ累積係数UFの再計算 抽出した疲労評価対象設備について,個別に設定する等価繰返し回数を 設定し,疲れ累積係数UFの再計算を行った結果を表 補6.7に示す。

表	補6.	7	疲れ累積係数UFの再計算結果
1	im O.		

ケース	設備名称	個別に設定する 等価繰返し回数	疲れ累積係数UF [※]	
1. 熱+地震で	残留熱除去系配管	160 団	U+US s 0.5143	
最大のケース	(RHR-PD-2)	100 巴	(USs 0.5080)	
2. 地震で	所内温水系配管	<u>00 اتتا</u>		
最大のケース	(HWH-R2F-5)	00 巴	0.38 0.3637	

※ 疲れ累積係数UFの再計算は,再計算前の疲れ累積係数UFと一律 に設定する等価繰返し回数200回と個別に設定する回数の比率を用 いて算出した。 表 補6.7に示す通り、代表として抽出した疲労評価対象設備の工認 耐震計算書に記載される疲れ累積係数UFは許容値1に対して余裕が少 ないが、等価繰返し回数を個別に設定して疲れ累積係数UFを再計算する と許容値1に対して十分な裕度を有していることを確認した。

6. まとめ

柏崎刈羽 7 号機の等価繰返し回数算出パラメータについて先行プラントと比較し,弾性設計用地震動Sdの回数を除きほぼ同等であることを確認した。

また,柏崎刈羽7号機の地震動の特性を踏まえた保守性を整理し,疲労評価の観 点から許容繰返し回数及び等価繰返し回数が保守的な設定となっていることを確 認した。

加えて,今回工認において疲れ累積係数UFが最大となる疲労評価対象設備について十分な裕度を有していることを確認した。

以上より, 柏崎刈羽7号機における等価繰返し回数の設定は, 十分な保守性を有 していると考えられる。 補足7 ピーク応力の大きさと等価繰返し回数の関係について

「昭和 55 年度 耐震設計の標準化に関する調査報告書」にてピーク応力の設定値 が高くなるほど回数が大きくなる傾向となることが確認されている。本資料ではピー ク応力を大きく設定することで、等価繰返し回数が大きく算出され、保守的な設定に なることを簡単な例により説明する。

例として、図 補7.1 に示す応答波形を仮定する。



図 補7.1 1質点系の時刻歴応答

また,大小2つの応答波は同じ波形であるが,応答振幅が2対1の関係であると仮 定し,以下に示す最大ピーク応力を仮定し,それぞれの等価繰返し回数を算出する。 なお,図 補7.1の各ピーク応力は1質点系の応答波形に線形比例で設定した。

・A波 : 地震動に対する最大ピーク応力 1000MPa

・B波 : 地震動に対する最大ピーク応力 500MPa

各ピークにおける許容繰返し回数は,図 補7.2に示す炭素鋼の設計疲労線図に 算出し,その結果を図 補7.1に併せて示す。



(JSME設計・建設規格より抜粋)図 補7.2 設計疲労線図

これにより算出した等価繰返し回数は以下の関係となる。

A波の地震動の等価繰返し回数:  $\left[\frac{1}{230} + \frac{1}{390} + \frac{1}{860}\right] \times 230 = 1.86$ 

B波の地震動の等価繰返し回数:  $\left[\frac{1}{1430} + \frac{1}{2730} + \frac{1}{6990}\right] \times 1430 = 1.74$ 

上記の結果を比較すると、各ピーク応力における許容繰返し回数の差が等価繰返 し回数に影響するため、A波の等価繰返し回数が大きくなることが分かる。その許 容繰返し回数の差は、図 補7.2に示すとおり、ピーク応力が小さくなるにつれ て、設計疲労線図の勾配が緩やかになっているため、ピーク応力が低減するほど許 容繰返し回数の増加の割合が大きくなっていることによるものである。

以上より,ピーク応力を大きく設定することは,等価繰返し回数が大きく算出さ れるため,保守的な設定であると言える。 補足8 等価繰返し回数の算出に用いる地震動の考え方について

1. はじめに

今回工認の等価繰返し回数の算出に用いる地震動は,基準地震動SsとNCOに加え,弾性設計用地震動Sdを1/3倍した地震動5回分を追加している。本資料ではこの考え方を示す。

2. 米国における等価繰返し回数の考え方について

米国における等価繰返し回数設定に係る基準要求を補足8 別紙1に示す。補足 8 別紙1に示すとおり、NUREG-0800に定められた Standard Review Plan 3.7.3 Rev.4 では、プラント供用期間中にSSE^{*1}地震1回+OBE^{*2}地震5 回を想定した疲労評価を行うよう要求がある。地震1回あたりの繰返し回数として は、最低10回を考慮するよう要求がある(OBE地震がSSE地震の1/3以下に 設定される場合は、OBE地震による設計評価は不要となる。この場合、疲労評価 ではSSE地震1回+OBE地震5回の代わりにプラント供用期間中に想定され る地震としてSSE地震2回としてもよい。ここでの疲労評価におけるSSE地震 2回は、SSE地震1回+OBE地震5回と疲れ累積係数が等価であると考えられ る。SSE地震1回で最大振幅が10回繰り返すものとする。)。

- ※1 SSE(Safe-shutdown earthquake ground motion)は、その事象の発生時ならび発生後において、原子力プラントが安全停止状態を達成し、維持することが可能とする地震レベル。安全設計に係るSSC(建屋、システム、機器)はSSEにより機能喪失が生じないよう設計することが求められる。
- ※2 OBE (Operating basis earthquake ground motion) は、プラント運転中に起こりうる地震レベル。OBE地震を超過する地震発生時には、 プラント停止要求がある。
- 3. 今回工認の等価繰返し回数の算出に用いる地震動について

今回工認における等価繰返し回数の保守性の確保にあたり,基準地震動Ssに対して地震動を追加する。ここで追加する地震動として,2.の考え方を参考にOBE地震相当の地震動5回分を考える。

OBE地震に相当する地震動は、JEAG4601・補−1984 にある地震動 S0(地震動が発生した後の運転継続の観点から決められた地震動)が相当すると 考えられる(補足8 別紙2参照)。JEAG4601・補−1984 においては、こ の地震動S0はS1地震動の1/3 倍程度の大きさとされていることから、S1地震 動を弾性設計用地震動Sdに読替え弾性設計用地震動Sdを1/3倍した地震動を用いる。なお、表8.2-1のとおり弾性設計用地震動Sdの1/3倍は、原子炉非常停止信号である地震加速度大の設定値とほぼ同等となっている。

T.M.S.L. (m)	地震加 設定値	速度大 卣(gal)	(1/3)×S d 最大応答加速度 (gal)			
	水平	鉛直	水平	鉛直		
23.500	$185^{*}$		177	151		
-8.200	$120^{*}$	$100^{*}$	112	135		

表 補8.2-1 地震加速度大設定値及び弾性設計用地震動Sdの1/3倍の比較

※:「柏崎刈羽第7号機工事計画認可申請書 4. 計測制御系統施設

6 原子炉非常停止信号,原子炉非常停止に要する信号及び原子炉非常 停止信号を発信させない条件」より引用

以上より、米国SRPの考え方(SSE地震:1回分+OBE地震5回分を考慮 して疲労評価)を参考として、基準地震動Ssを1回分と既に経験したNCO地震 動に対し、弾性設計用地震動Sdの1/3倍の地震動を5回分考慮した地震動を用い て、今回工認の等価繰返し回数を設定する。

## 補足8 別紙1

## 等価繰返し回数に係る米国基準の整理

业民甘淮	地震発生回数及び応力振幅回数に関する考え方				
不回差毕	要求	解釈			
1 0 C F R 5 0	①SSE地震は,その事象の発生時なら	・SSE地震, OBE地震が			
Appendix S	びに発生後において,原子力プラン	定義されているが,その発			
米国連邦法であり、行政	トが安全停止に係るSSCs (建屋,	生回数の規定はない。			
法の一つ。	システム, 機器) はSSEにより機能	・OBE地震では, プラント			
10CFRは,エネルギ	喪失が生じないよう設計すること。	は運転継続する。(②)			
ー行政に係る事項を定め					
ている。	②OBE地震は、プラント運転中に起こ				
	りうる地震レベル。OBE地震を超				
	過する地震事象の発生時には、プラ				
	ント停止要求がある。				
SRP3.7.3	①プラント供用期間中, 少なくとも"S	・地震事象としてSSE地			
NUREG-0800に	SE地震1回+OBE地震5回"の発生	震時1回と、OBE地震5			
よって定められるNRC	を想定する規定がある。地震1回あたり	回を考慮した疲労評価の			
許認可活動における審査	の繰返し回数としては,最低 10 回を考	実施要求がある。(①)			
方針を示したもの。	慮する。				
当該章は,機器設計につ					
いて定める章。					
ASME	①ASMEは Desigin Specification で	• O B E 地震は Service			
	与えられた設計条件に従い, 設計・評	Level Bに区分される(S			
	価を行う手法を定めた民間規定であ	RP3.9.3) ことから, 他			
	ることから, 地震回数, 地震強度に対	の過渡事象と同列に並べ			
	する要求は無い。	て,疲労評価を実施する。			
	②一方, Service Level A,B の過渡事象				
	に対する疲労評価を実施し,疲れ累				
	積係数UFが 1 以下となることを				
	求めている。				

補足8 別紙2

÷

電気技術指針 原 子 **力** 編

# 原子力発電所耐震設計技術指針

重要度分類・許容応力編

JEAG 4601.捕-1984

# Ⅳ 地震動Soに対する耐震評価

### 1. 概 要

発電用原子力設備の耐震A。及びAクラスの機器, 配管の耐震設計においては, 耐震設計審 查指針に規定された基準地震動S₁, S₂に加え, 地震動が発生した後の運転継続の観点から決め られた地震動S₀の導入が原子力安全評価特別委員会許容応力分科会にて提案された。なお,本 件に関しては, 今後とも検討が必要と考えられる。

ここで、地震動Soの大きさとしては、これを上回らない地震動が発生した場合であっても検 査することなく運転継続できる値を設定するとしている。

また,地震動S。に対する耐震評価が必要な場合の許容限界としては、これ以下の地震動が発 生しても原子炉を停止することなく運転を継続してゆくこととなるので、告示で規定された運 転状態Ⅰ、Ⅱに対する許容応力を限度とすることを原則としている。

本資料は、この地震動Soについての考え方をまとめたものであり、その大きさを適切な大き さに決めることにより、地震動Soと他の厳しい運転状態の荷重の組合わさった事象が、実際に 発生した場合のみに限り評価を行うことをあらかじめ決めておけば、設計段階においての地震 動Soに対する評価は原則として不要であることを述べている。 次の2項以降にその詳細を示す。

### 地震動S。に対する耐震評価の考え方

地震動S₀については図IV-1に示すとおりその大きさが次のように決められる場合には設計 段階においては耐震評価は原則として不要となる。

171



(1) 地震動Soの大きさ

地震動S₀の加速度値は,建築基準法施行令(昭和34年政令第344号)に示された水平震度 (水平震度 C_Hと略記する)に相当する基準地震動の加速度値と設計に用いる同一地点におけ る複数の基準地震動S₁のうち最も大きい最大加速度の1/nの値の小さい方の値とする。 n は今後とも検討が必要であるが, 3.に示すように現在の耐震設件上の余裕から考えて, n = 3とする。

- 206 -

- (2) 理由
  - a、地震動Soの加速度値を水平震度CHに相当する基準地震動の加速度値以下と決めれば従 属事象として外部電源喪失,負荷喪失等は一応起りえないと考えられる。 (添付1参照)
  - b. 地震動Soを上記の値より大きい値に決めても水平震度Cn相当の地震の発生時には、プラントの安全機能の確認を要求される可能性が大きい。
  - c.また、地震動S₀の加速度値を基準地震動S₁の最大加速度値の1/n以下としなければ、地 震動S₀による応力が最高使用圧力と運転状態(圧力上昇の激しい運転状態を除く)の圧力 による応力状態の差の裕度の中に入り、かつ疲労についても余裕があるという3.の説明が 成り立たない。
- (3) 実際の地震動Soの加速度値の決め方に関する考え方 サイトにおける水平震度C_H相当の基準地震動は、50~60gal 程度と考えられる。 また、 最大加速度値が比較的小さいサイトでは基準地震動S₁として180galとなるが、n=3の場 合でもS₀ = 180/3=60galとなる。 これから地震動S₀の加速度値として全国一律に基

#### 3. 耐震A、及びAクラス機器の地震動S。に対する強度の検討

準地震動として60gal 等を決めておくことが望ましい。

(1) 序

本章では、耐震A。及びAクラス機器に地震動S。による荷重が加わる場合に発生する応 力を基準地震動S1、S2による荷重が加わった場合のものと比較検討することにより、地震動 S。を基準地震動S1の何分の1かのある程度以下に適切に設定すれば、基準地震動S1、S2 に対し耐震設計を行っている機器では地震動S。については設計段階における評価は不要で あることを示している。

- (2) 1次応力について
  - a. 耐圧部の場合

地震動S。は、基準地震動S:若しくは基準地震動S。と異なり、 プラント寿命中に、獲 度か生じると考えられる地震動であり、したがって、通常運転時に地震動S。が生じた場合 の応力は、設計条件の許容応力以下であることが望ましいわけであるが、それでも、地震 動S。による応力が常に加わっているわけではない。

一方,最高使用圧力は,耐圧部材にとって,まず第一に考慮しなければならない荷重で あり,これによって生じる応力は設計条件の許容応力以下であることが要求される。しか しながら,最高使用圧力が生ずるのは短時間の過渡状態などのごく一時期のみであり,通 常運転時の圧力は,最高使用圧力より低い値となっているのがふつうである。

したがって、地震動S。による応力、 最高使用圧力による応力、及び通常運転圧力によ る応力について、次のような二つの組合せを検討すればよいと考えられる。

(ケース1) 最高使用圧力による応力 ≦ 設計条件の許容応力

-207-

(ケース2) 通常運転圧力による応力

+ 地震動S。による応力 ≦ 設計条件の許容応力

したがって、次式が満されるならば、地震動Soは考慮しなくてもよいということができる。

最高使用圧力による応力 ≥ 通常運転圧力による応力

+地震動S。による応力 ……… ①

以下の検討においては、1次一般膜応力によって1次応力を代表させ、また、板厚方向 の応力は無視し、円周方向応力σ_t、軸方向応力σ_lのみを考え、以下の記号を用いる。

 $P_{D} =$ 最高使用圧力(kg/md)
 R = 容器の半径(mm)

  $P^* =$ 通常運転時圧力(kg/md)
 t = 容器の板厚(mm)

  $\sigma_{t1} = P_{D}$ による円周方向応力(kg/md)
  $\sigma_{t2} = P^*$ による円周方向応力(kg/md)

  $\sigma_{t2} = P^*$ による軸方向応力(kg/md)
  $\sigma_{l2} = P^*$ による軸方向応力(kg/md)

  $\sigma_{l3} =$ 地震動Soによる軸方向応力(kg/md)
 (a) 円筒形の耐圧部

 ①式を②の記号を用いて書き直すと,
  $\sigma_{t1} \ge \sigma_{l2} + \sigma_{l3}$ 

当該容器の1次一般膜応力について③式が満されていれば地震動S。の考慮は不要と なる。

さらに、 $P_D = P^*$ と仮定しても③式において $\sigma_{l\,2} = 0.5 \sigma_{11}$ となるので、③式は  $\sigma_{11} \ge 2 \sigma_{l3}$  ④

④式を図IV-2に示す。

図IV-2 円筒形の耐圧部について地震動S。考慮の要否を検討する図



-208 -

図Ⅳ-2には、実際の原子力発電用機器のいくつかの例が示されている。

この例から明らかなように実際には、④式は、十分な余裕をもって満されている。また、薄肉の(t/Rの小さな)機器ほど④式に対する制限が厳しい傾向がある。

したがって、あるプラントの耐震A。及びAクラス機器について地震動S。を設計上考 慮しなくてもよいことを示すには、そのプラントの耐震A。及びAクラス機器のうち、 t/Rの小さな順に2,3の機器について、図W-2の斜線部にあることを確認すれば十 分であると考えられる。

(b) 球形の耐圧部

①式を②の記号を用いて書き直すと,

原子力発電所において,球形の耐圧部に大きな地震荷重が加わる場合は極めてまれで ある。したがって,球形の耐圧部に大きな地震荷重が加わる場合には,その機器につい て,⑥式の成立をチェックすればよい。

b. 非耐圧部の場合

非耐圧部においては耐震設計によって板厚が決定される場合が多い。この場合には、IA と IIASの1次応力の許容値の比率を考えてみる必要がある。 表IV-1はいくつかの機器 の代表的な材料について、この比率を検討したものである。

表Ⅳ-1 地震動S。に対する許容値(設計条件・IA)と 基準地震動S1に対する許容値(ⅢAS)の比較

	材 質	Ⅰ _▲ の1次応力の 許容値 ①	■ _A Sの1次応力の許容値 ②	比率 ⑧/①	
第1種容器	SQV2A	Pm:Sm = 18.8	$Pm: Min (Sy, \frac{2}{3}Su) = 35.0$	1.86	
第2種容器	S G V 49	Pm:S = 13.4	Pm:Min(Sy, 0.6Su)=27.0	2.01	
第3種容器	STPL 39	Pm:S = 9.8	Pm:Min(Sy. 0.6 Su)=21.0	2.14	
第1種支持 構 造 物	-	ft	1.5 ft	1.5	

表Ⅳ-1から明らかなように、基準地震動S,に対する1次応力の許容値は、地震動S。 に対する許容値のせいぜい2倍強であるため、基準地震動S」の大きさが地震動S。の大き さの3倍以上であるとすると基準地震動S,が設計に対して支配的である。

(3) 疲労について

a. 疲労については、応力値の違いによる許容繰り返し回数の差と共に、地震動そのものの 回数の差も考えなければならない。

表W-2は、告示の設計疲労線図をもとに作成したものであるが、地震動 $S_0$ が、基準 地震動 $S_1$ の $\frac{1}{2}$ 程度であれば、基準地震動 $S_1$ による応力(これは、1次+2次+ビーク応

- 209 -

力値で片振幅40kg/mlにも達するのは極めてまれなケースである。)に対する許容繰り返し 回数は、地震動Soに対する許容繰り返し回数に対し、はるかに支配的なことがわかる。

基準	基準地震動S ₁ 地		動 So	
応 力 (kg/mal)	許容繰返し 回数, N ₁	応力 (kg/md)	許容繰返し 回数, N ₀	N ₀ N ₁
1 100	$2 \times 10^2$	33.3	$5 \times 10^3$	25
2 80	$4  imes 10^2$	36,7	$9  imes 10^3$	23
3 60	$9 \times 10^2$	20	$2.8 \times 10^4$	31
4 40	$2.5 \times 10^{3}$	13.3	105	40
5 100	$4 \times 10^2$	33.3	$2.8  imes 10^4$	70
6 80	$8.5 \times 10^{2}$	26.7	$8 \times 10^4$	94
7 60	$2.2  imes 10^3$	20	$5 \times 10^{5}$	227
8 40	$1.3  imes 10^4$	13.3	00	00
	基準:           応:力(kg/ml)           1           100           2           80           3           60           4           40           5           100           6           80           7           60           8	基準地震動S1           応力 (kg/ml)         許容繰返し 回数、N1           1         100         2×10 ² 2         80         4×10 ³ 3         60         9×10 ² 4         40         2.5×10 ³ 5         100         4×10 ² 6         80         8.5×10 ² 7         60         2.2×10 ³ 8         40         1.3×10 ⁴	基準地震動S1         地震           応力 (kg/ml)         許容繰返し 回数,N1         応力 (kg/ml)           1         100         2×10 ² 33.3           2         80         4×10 ³ 36.7           3         60         9×10 ² 20           4         40         2.5×10 ³ 13.3           5         100         4×10 ² 33.3           6         80         8.5×10 ² 26.7           7         60         2.2×10 ³ 20           8         40         1.3×10 ⁴ 13.3 <td>基準地震動S₁         地震動S₀           応力 (kg/ml)         許容繰返し 回数,N₁         応力 (kg/ml)         許容繰返し 回数,N₀           1         100         2×10²         33.3         5×10³           2         80         4×10³         36.7         9×10³           3         60         9×10²         20         2.8×10⁴           4         40         2.5×10³         13.3         10⁵           5         100         4×10²         33.3         2.8×10⁴           6         80         8.5×10²         26.7         8×10⁴           7         60         2.2×10³         20         5×10⁵           8         40         1.3×10⁴         13.3         ∞</td>	基準地震動S₁         地震動S₀           応力 (kg/ml)         許容繰返し 回数,N₁         応力 (kg/ml)         許容繰返し 回数,N₀           1         100         2×10 ² 33.3         5×10 ³ 2         80         4×10 ³ 36.7         9×10 ³ 3         60         9×10 ² 20         2.8×10 ⁴ 4         40         2.5×10 ³ 13.3         10 ⁵ 5         100         4×10 ² 33.3         2.8×10 ⁴ 6         80         8.5×10 ² 26.7         8×10 ⁴ 7         60         2.2×10 ³ 20         5×10 ⁵ 8         40         1.3×10 ⁴ 13.3         ∞

表Ⅳ-2 基準地震動S₁地震動S₀による応力の許容繰り返し回数の比較 (基準地震動S₁:地震動S₀=3:1のとき)

参考(基準地震動S₁:地震動S₀=5:1のとき)

		基準地	a 震動 S ₁	地震	NT.	
5 - 3	t.	応 力 (kg/ma1)	許容繰返し 回数, N ₁	応力 (kg/mal)	許容繰返し 回数,N。	<u>N₀</u> N ₁
	1	100	$2 \times 10^2$	20	$2.8 \times 10^4$	140
炭素鋼	2	80	$4 \times 10^2$	16	$7 \times 10^4$	175
低合金鋼	3	60	$9 \times 10^{2}$	12	$2  imes 10^{5}$	222
	4	40	$2.5  imes 10^3$	8	106	400
	5	100	$4  imes 10^2$	20	$5 \times 10^5$	1250
オーステナイト系	6	80	$8.5  imes 10^2$	16	00	00
ステンレス 鋼	7	60	$2.2 \times 10^3$	12	00	00
	8	40	$1.3 \times 10^{4}$	8	00	00

注: "∞"は、告示の設計疲労線図では算定できないことを示す。

b. 地震動Soによる荷重と過渡状態の応力との重ね合わせの影響

aにおいては、地震動 S。を単独に考慮した場合について述べたが、 ここでは過激状態 と組合せる場合について述べる。

代表例として,原子炉圧力容器スカート部を考える。

-210-

図Ⅳ-3にスカート部の図を,図Ⅳ-4に考慮した過渡状態を示す。



図IV-3 支持スカート及び下鏡

図IV-4 熱サイクル(T1,T2:熱応力計算をする時間)



- 211 -

表W-3に応力計算結果を示す。ただし、表W-3の中の③項は、基準地震動 $S_1$ による応力である。表W-3から、過渡状態における応力は、熱応力が支配的であることがわかる。

今,表Ⅳ-3を参考にして,次のようなケースを考える。

(a) 地震を除いた応力変動値………0~30kg/md………120回

(b) (a)に地震動 S₀を加えた応力変動値 …… 0~31 kg/dd …… 120 回

ケース(a)に対する許容くり返し回数とケース(b)に対する許容くり返し回数にはほとんど 差はなく、共に5×10⁴回程度である。

したがって、過渡状態と地震動 S₀を重ね合わせた場合にも、一般には地震動 S₀の影響 は小さいと考えられる。

1				機械的荷重による応力					重に 応力	(1次+2次応力) 合計		
/	1	1	Р	w	м	合 하	平均	Т	T2	$C_1 = T_1$ + P+W+M	$\begin{array}{c} \mathrm{C}_2 = \mathrm{T}_2 \\ + \mathrm{W} + \mathrm{M} \end{array}$	
応力 評価点 四		Æ	۲	•	۲	•	۲	۲	٢	(i) - (i) + (i)	@-@+@+@	
	内側	o,	4.0	-0.2	-0.6	3,2	$\sigma_t = 4.5$ $\sigma_I = -3.9$ $\sigma_r = 0.0$	-0.8	-3.8	- 2.4	- 4.6	
		$\sigma_{I}$	-4.3	-0.8	-5.0	- 10.1		-28.0	11.0	- 38.1	5.2	
-		a,	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	
(A)		σι	6.0	-0.2	0.6	6,4		17.0	-9.8	23.4	- 9,4	
	91	$\sigma_l$	4.3	-0.9	-1.0	2.4		28.0	-11.0	30.4	- 12.9	
	倒	a,	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	
		d ₁	12.1	-0.1	-0.2	11.8	$\sigma_t = 11.8$ $\sigma_t = 11.2$ $\sigma_r = -0.5$	-2.0	2.0	9.8	1.7	
	内	σ,	12.1	-0.4	-0.5	11.2		-2.0	2.0	9.2	1.1	
	側	a,	-0.9	0.0	0.0	- 0.9		0.0	0.0	- 0.9	0.0	
B		a	12.0	-0.1	-0.2	11.7		2.0	-2.0	13.7	- 2.3	
	*	σι	12.0	-0.4	-0.5	11.1		$\sigma_r = -0.5$	2.0	-2.0	13.1	- 2.9
	側	a,	0.0	0.0	0.0	0.0		0.0	0.0	0.1	0.0	

表IV-3 応力計算結果

(単位:kg/mf)

注: σ_t:円周方向応力

σ₁:軸方向応力

 $a_r$ : 半径方向応力

- 212 -