参考資料

- 1. 構内一斉放送設備の機器の選定について
- 2. 構内一斉放送設備の非常用発電機の容量について

1. 構内一斉放送設備の機器の選定について

1. 概 要

構内一斉放送設備の機器の選定について示す。

2. 機器の選定

全天候型長距離放送用スピーカーから最遠地点となる敷地境界で放送が聞き取れることについて、音響メーカーの経験則に基づく以下の算定式で確認する。

なお、音響メーカーの経験則に基づき、放送が聞き取れることの目安を 60dB 以上とする。

(1) スピーカーの出力音圧レベル

スピーカーの出力音圧レベル[SPL 0]は、スピーカーに 1W の電力を与えた場合に 1m 離れた地点での音圧レベルを表したものである。このスピーカーに入力電力[P]を加えた場合の出力音圧レベル [SPL P]は、以下のとおりとなる。

なお、選定した機器の当該スピーカーの出力音圧レベル[SPL 0]を 110dB(1W, 1m)とし、スピーカー入力電力[P]を 60W とする。

基準電力を 1W として、スピーカー入力電力を加えたとき、出力音圧レベルからの増加分 [Δ Lp]は次の式で表される。

 $\Delta \text{Lp} = 10 \log (P/P_1)$

記 号			数 値
スピーカー入力電力	Р	(W)	60
基準電力	P_1	(W)	1
出力音圧レベルからの増加分	$\Delta\mathrm{Lp}$	(dB)	17. 7

スピーカーの出力音圧レベル[SPL 0]に、出力音圧レベルからの増加分[Δ Lp]を加えた出力音圧レベル[SPL P]は次の式で表される。

SPL P=SPL $0 + \Delta Lp$

記 号	数 値		
出力音圧レベル	SPL 0	(dB(1W, 1m))	110
出力音圧レベルからの増加分	$\Delta\mathrm{Lp}$	(dB)	17. 7
入力電力を加えた出力音圧レベル	SPL P	(dB)	127. 7

(2) 距離による音圧レベルの減衰

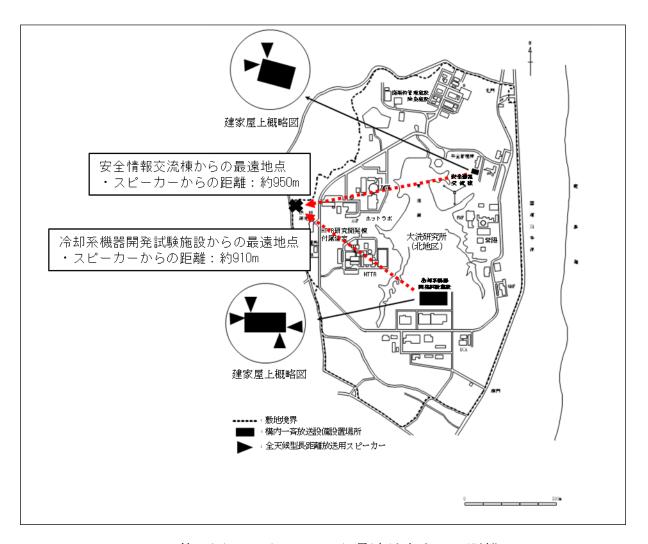
スピーカーから 1m離れた地点[r_1]の音圧レベルを基準とし、[r_1]m離れた地点での音圧レベルの減衰 [Δ L r_1]は次の式で表される。

なお、当該スピーカーからの距離 [r] は、第1図より、安全情報交流棟からの最遠地点 950m、冷却系機器開発試験施設からの最遠地点 910m とする。

 $\Delta L r = 20\log(r/r_1)$

			数 値	
記 号		安全情報交流棟	冷却系機器	
			開発試験施設	
スピーカーからの距離	r	(m)	950	910
スピーカーからの基準距離	r 1	(m)	1	
音圧レベルの減衰	ΔLr	(dB)	59. 6	59. 2

(3) スピーカーから敷地境界での最遠地点における音圧レベル


スピーカーから 1m離れた地点での音圧レベルと、[r]m離れた地点での音圧レベルの減衰の差から、スピーカーから敷地境界での最遠地点における音圧レベルは 68.1dB となる。

[最遠地点となる敷地境界での音圧レベル(dB)] = SPL P $-\Delta$ Lr

		数值	
記 号	安全情報交流棟	冷却系機器 開発試験施設	
入力電力を加えた出力音圧レベル	SPL P (dB)	127. 7	
2点間での音圧レベルの減衰	$\Delta L r$ (dB)	59. 6	59. 2
最遠地点となる敷地境界地点での音	68. 1	68. 5	

3. 選定した機器による詳細確認について

上記 2. の算定式によって確認した機器で、音響メーカーで更に音圧分布シミュレーション等による 詳細な確認を行い、構内一斉放送設備の機器を決定している。

第1図 スピーカーから最遠地点までの距離

2. 構内一斉放送設備の非常用発電機の容量について

1. 概 要

構内一斉放送設備の非常用発電機の容量について示す。

2. 構内一斉放送設備の負荷

構内一斉放送設備は、主装置、全天候型長距離放送用スピーカーから構成される。構内一斉放送設備の負荷を以下に示す。

なお、全天候型長距離放送用スピーカーは、主装置からスピーカー入力電力が供給される。

主装置

消費電力 (最大消費電力) : 4.3 kVA (6.3 kVA)

3. 非常用発電機の容量

上記2. のとおり、主装置の最大消費電力が6.3kVAとなるため、非常用発電機の容量を以下に示す値に設定する。

なお、非常用発電機の容量は以下の容量以上のものとする。

非常用発電機の容量 : 8 kVA