本資料のうち,枠囲みの内容	柏崎刈羽原子力発電所第7号機 工事計画審査資料			
は、機密事項に属しますので	資料番号	KK7添-2-059-4 改3		
公開できません。	提出年月日	2020年 7月13日		

V-2-別添 1-4 ボンベラックの耐震計算書

2020年 7月 東京電力ホールディングス株式会社

1. 椤	て要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2. —	-般事項	1
2.1	構造計画 ••••••	1
3. 構	青造強度評価 ••••••	10
3.1	荷重の組合せ及び許容応力 ・・・・・	10
3.]	1.1 荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
3. 1	1.2 許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
3. 1	1.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
3.2	解析モデル及び諸元 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
3.3	固有周期 ••••••	<mark>23</mark>
3.4	設計用地震力 ••••••	<mark>25</mark>
3.5	計算条件	27
4. 容	系器弁の機能維持評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
4.1	機能維持評価方法 ••••••	27
5. 評	P価結果 ·····	<mark>28</mark>
5.1	ボンベラックの評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<mark>28</mark>
5.2	容器弁の評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28

次

目

1. 概要

本計算書は、V-2-別添 1-1「火災防護設備の耐震計算の方針」(以下「V-2-別添 1-1」という。)にて設定している構造強度及び機能維持の設計方針に基づき、ボンベラック及び容器弁が 設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

- 2. 一般事項
- 2.1 構造計画

ボンベラック及び容器弁の構造計画を表 2-1 から表 2-7 に示す。

表 2-1 ボンベラック(二酸化炭素消火設備)の構造計画

 \sim

計画の概要					
基礎·支持構造	主体構造	燃略構道凶			
容器弁は、ガスボンべに	ガスボンベ	1335			
ねじ込み固定する。ガス	及び容器弁				
ボンベは、ボンベラック	(直立形)				
に固定し、ボンベラック					
は、基礎ボルトにより基					
礎部である床に固定す					
る。					
		ン ボンベラック平面図			
		基礎ボルト (ケミカルアンカ) 容器弁外観図			
		6802 列 8 本用ボンベラック外観図 (単位:mm)			

表 2-2 ボンベラック(小空間固定式消火設備)の構造計画(1/2)

表 2-2 ボンベラック(小空間固定式消火設備)の構造計画(2/2)

計画の概要		把政捷 注回				
基礎·支持構造	主体構造	燃略構造凶				
基礎・支持構造 容器弁は、ガスボンベに ねじ込み固定する。ガス ボンベは、ボンベラック に固定し、ボンベラック は、基礎ボルトにより基 礎部である床に固定す る。	 主体構造 ガスボンベ 及び容器弁 (直立形) 					
		基礎ボルト (ケミカルアンカ) 容器弁外観図 7004本用ボンベラック外観図 (単位:mm)				

表 2-3 ボンベラック(SLC ポンプ・CRD ポンプ局所消火設備)の構造計画

表 2-4 ボンベラック(電源盤・制御盤消火設備)の構造計画

表 2-5 ボンベラック(ケーブルトレイ消火設備)の構造計画

-7

表 2-6 ボンベラック(中央制御室床下フリーアクセスフロア消火設備)の構造計画

表 2-7 ボンベラック(5号機原子炉建屋内緊急時対策所消火設備)の構造計画

3. 構造強度評価

- 3.1 荷重の組合せ及び許容応力
 - 3.1.1 荷重の組合せ及び許容応力状態 ボンベラックの荷重の組合せ及び許容応力状態を表 3-1 に示す。
 - 3.1.2 許容応力

ボンベラックの許容応力は、V-2-別添 1-1 に基づき表 3-2 に示す。

3.1.3 使用材料の許容応力評価条件

ボンベラックの使用材料の許容応力評価条件を表 3-3 から表 3-9 に示す。

表 3-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

施設	区分	機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
その他発電用原 子炉の附属施設	火災防護設備	ボンベラック	С	*	$D + P_D + M_D + S_S$	IV A S

注記*:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

表 3-2 許容応力(その他支持構造物)

	許容限界 ^{*1,*2} (部材)	許容限界 ^{*1,*2} (基礎ボルト)			
許容応力状態	一次応力	一次	応力		
	組合せ	引張り	せん断		
IV A S	1.5 • f t*	1.5 • f t*	1.5 • f s*		

注記*1 : 応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2 : 当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3-3 ボンベラック(二酸化炭素消火設備)の使用材料の許容応力評価条件(設計基準対象施設)

評価部材	材料	温度条件 (℃)		Sy (MPa)	Su (MPa)	Sy(RT) (MPa)
ボンベラック	SS400 (厚さ≦16mm)	周囲環境温度	40	245	400	_
基礎ボルト	SS400 (径≦16mm)	周囲環境温度	40	245	400	

表 3-4	ボンベラック	(小空間固定式消火設備)	の使用材料の許容応力評価条件	(設計基準対象施設)

評価部材	材料	温度条件 (℃)		Sу (MPa)	Su (MPa)	Sy(RT) (MPa)
ボンベラック	SS400 (厚さ≦16mm)	周囲環境温度	40	245	400	_
基礎ボルト	SS400 (径≦16mm)	周囲環境温度	40	245	400	—

表 3-5 ボンベラック(SLC ポンプ・CRD ポンプ局所消火設備)の使用材料の許容応力評価条件(設計基準対象施設)

評価部材	材料	温度条件 (℃)		Sу (MPa)	Su (MPa)	S _y (RT) (MPa)
ボンベラック	STKR400	周囲環境温度	40	245	400	
	SS400 (厚さ≦16mm)	周囲環境温度	40	245	400	_
基礎ボルト	SS400 (径≦16mm)	周囲環境温度	40	245	400	

表 3-6 ボンベラック(電源盤・制御盤消火設備)の使用材料の許容応力評価条件(設計基準対象施設)

評価部材	材料	温度条件 (℃)		Sу (MPa)	Su (MPa)	Sy(RT) (MPa)
ボンベラック	STKR400	周囲環境温度	40	245	400	_
	SS400 (厚さ≦16mm)	周囲環境温度	40	245	400	
基礎ボルト	SS400 (径≦16mm)	周囲環境温度	40	245	400	_

評価部材	材料	温度条件 (℃)		Sу (MPa)	S u (MPa)	Sy(RT) (MPa)
ボンベラック	STKR400	周囲環境温度	40	245	400	
	SS400 (厚さ≦16mm)	周囲環境温度	40	245	400	_
基礎ボルト	SS400 (径≦16mm)	周囲環境温度	40	245	400	

表 3-7 ボンベラック(ケーブルトレイ消火設備)の使用材料の許容応力評価条件(設計基準対象施設)

表 3-8 ボンベラック(中央制御室床下フリーアクセスフロア消火設備)の許容応力評価条件(設計基準対象施設)

評価部材	材料	温度条((℃)	+	Sу (MPa)	Su (MPa)	S _y (RT) (MPa)
ギンベラック	STKR400	周囲環境温度	40	245	400	_
	SS400 (厚さ≦16mm)	周囲環境温度	40	245	400	
基礎ボルト	SS400 (径≦16mm)	周囲環境温度	40	245	400	

表 3-9 ボンベラック(5号機原子炉建屋内緊急時対策所消火設備)の使用材料の許容応力評価条件(設計基準対象施設)

評価部材	材料	温度条((℃)	+	Sу (MPa)	Su (MPa)	Sy(RT) (MPa)
ボンベラック	SS400 (厚さ≦16mm)	周囲環境温度	40	245	400	
基礎ボルト	SS400 (径≦16mm)	周囲環境温度	40	245	400	

3.2 解析モデル及び諸元

ボンベラックの解析モデルを図 3-1 から図 3-8 に,解析モデルの概要を以下に示す。また,機器の諸元を本計算書の【ボンベラックの耐震性についての計算結果】の機器要目に示す。

- (1) 評価対象部位をはり要素又は、はり・シェル要素でモデル化したFEMモデル **る**。
- (2) 拘束条件は、基礎ボルト部を並進3方向固定又は、並進3方向回転3方向固定とする。
- (3) 解析コードは、「MSC NASTRAN」又は「NAPF」を使用し、固有値と各 要素に発生する荷重及びモーメントを求める。

なお,評価に用いる解析コードの検証及び妥当性確認等の概要については,別紙「計算 機プログラム(解析コード)の概要」に示す。

図 3-2 ボンベラック(小空間固定式消火設備)の解析モデル(6802 列 8 本用)

図 3-3 ボンベラック(小空間固定式消火設備)の解析モデル(6801 列2本用)

図 3-5 ボンベラック(電源盤・制御盤消火設備)の解析モデル

図 3-7 ボンベラック(中央制御室床下フリーアクセスフロア消火設備)の解析モデル

図 3-8 ボンベラック(5号機原子炉建屋内緊急時対策所消火設備)の解析モデル

3.3 固有周期

固有値解析の結果を表 3-10 から表 3-17 に示す。固有周期は、0.05 秒以下であり、剛で あることを確認した。

1			口风术们八队佣		
		田右国期		刺激係数	
モード	卓越方向		水平	方向	公 古 七 向
		(5)	短辺方向	長辺方向	如巨刀円
1次	水平	0.046			

表 3-10 ボンベラック(二酸化炭素消火設備)の固有値解析結果

表 3-11 ;	ボンベラック	(小空間固定式消	i 火設備)の固 ^に	有値解析結果	(6802列8本用)
		田右国期		刺激係数	
モード	卓越方向	回有 问 旁	水平	方向	公古七向
		(5)	短辺方向	長辺方向	如直刀的
1次	水平	0.048			_

111	表 3-12 💈	ボンベラック	(小空間固定式消	の固確	与値解析結果	(6801列2本用)
			田右国期		刺激係数	
	モード	卓越方向	回有问别	水平	方向	公古士向
			(5)	短辺方向	長辺方向	亚电刀内
	1次	水平	0.044	_		

表 3-13 ボンベラック(SLC ポンプ・CRD ポンプ局所消火設備)の固有値解析結果

E		田右国期	刺激係数		
モード	卓越方向	回有问别	水平	方向	欲声士向
		(5)	短辺方向	長辺方向	如但刀内
1次	水平	0.042			

表 3-14 ボンベラック(電源盤・制御盤消火設備)の固有値解析結果

	田右周期				
モード	卓越方向	回有问知 (a)	水平	方向	扒 古士白
		(8)	短辺方向	長辺方向	亚电刀问
1次	水平	0.026			

表 3-15 ボンベラック(ケーブルトレイ消火設備)の固有値解析結果

		田右国期		刺激係数	
モード	卓越方向	回有问别	水平	方向	約古士白
		(S)	短辺方向	長辺方向	站但 万円
1次	水平	0.021	_	_	_

表 3-16 ボンベラック(中央制御室床下フリーアクセスフロア消火設備)の固有値解析結果

ſ			田右国期		刺激係数	
	モード	卓越方向	回有向旁 (s)	水平	方向	鉛直方向
				短辺方向	長辺方向	
ſ	1次	水平	0.008			

表 3-17 ボンベラック(5 号機原子炉建屋内緊急時対策所消火設備)の固有値解析結果

		田右国期		刺激係数	
モード	卓越方向	回有问别	水平	方向	秋声士向
		(8)	短辺方向	長辺方向	如但刀凹
1次	水平	0.033		—	

3.4 設計用地震力

評価に用いる設計用地震力を表 3-18 から表 3-24 に示す。

	表 3-18	ボンベラ	ック (二	1酸化炭素消火設備)	の設計用地震力	(設計基準対象施調
--	--------	------	-------	------------	---------	-----------

据付場所	付場所 固有周期(朝(s) 基準地震動	
及び 床面高さ(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度
原子炉建屋 T.M.S.L.18.1 (T.M.S.L.23.5*)	0.046	<mark>0.05以下</mark>	$C_{H} = 1.21$	$C_{v} = 1.12$

注記*:基準床レベルを示す。

表 3-19 ボンベラック(小空間固定式消火設備)の設計用地震力(設計基準対象施設)

据付場所	固有盾]期(s)	基準地震動S s		
及び 床面高さ(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	
廃棄物処理建屋 T.M.S.L6.1* (6802列8本)	0.048	<mark>0. 05 以下</mark>	С _н =1.30	$C_{V} = 1.08$	
原子炉建屋 T.M.S.L.4.8* (6801列2本)	0.044	<mark>0. 05 以下</mark>	С _н =1.65	C _V =1.16	

注記*:基準床レベルを示す。

表 3-20 ボンベラック (SLC ポンプ・CRD ポンプ局所消火設備)の

設計用地震力(設計基準対象施設)

据付場所	固有周期(s)		基準地震動S s	
及び 床面高さ(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度
原子炉建屋 T.M.S.L. — 8.2*	0.042	<mark>0.05 以下</mark>	$C_{H} = 1.22$	$C_{v} = 1.13$

注記*:基準床レベルを示す。

表 3-21 ボンベラック(電源盤・制御盤消火設備)の設計用地震力(設計基準対象施設)

据付場所	固有周期(s)		基準地震動S s		
及び 床面高さ(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	
原子炉建屋 T.M.S.L.18.1*	0.026	<mark>0. 05 以下</mark>	$C_{H}=2.15$	$C_{v} = 1.89$	

注記*:基準床レベルを示す。

固有周期(s) 基準地震動S s 据付場所 及び 水平方向 鉛直方向 水平方向 鉛直方向 床面高さ(m) 設計震度 設計震度 原子炉建屋 0.021 <mark>0. 05 以下</mark> $C_{\rm H} = 2.15$ $C_{\rm V} = 1.89$ T. M. S. L. 18. 1*

表 3-22 ボンベラック(ケーブルトレイ消火設備)の設計用地震力(設計基準対象施設)

注記*:基準床レベルを示す。

表 3-23 ボンベラック(中央制御室床下フリーアクセスフロア消火設備)の

	· · · · · · · · · · · · · · · · · · ·
迎针田柳電力	(恐計甘淮計角協恐)
取 司 用 地 辰 刀	「取可苯毕剂豕肥取」

据付場所	固有周期(s)		基準地震動S s		
及び 床面高さ(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	
コントロール建屋 T. M. S. L. 12. 3 (T. M. S. L. 17. 3*)	0.008	<mark>0.05以下</mark>	C _H =1.65	$C_{v} = 1.12$	

注記*:基準床レベルを示す。

表 3-24 ボンベラック(5号機原子炉建屋内緊急時対策所消火設備)の

設計用地震力	(設計基準対象施設)
	(医日金干内豹////////////////////////////////////

据付場所	固有周期(s)		基準地震動S s	
及び 床面高さ(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度
緊急時対策所 T.M.S.L.27.8*	0.033	<mark>0.05以下</mark>	C _H =1.30	$C_{v} = 1.13$

注記*:基準床レベルを示す。

3.5 計算条件

応力解析に用いる自重及び荷重(地震荷重)は,本計算書の【ボンベラックの耐震性につい ての計算結果】の設計条件及び機器要目に示す。

- 4. 容器弁の機能維持評価
- 4.1 機能維持評価方法

容器弁の機能維持評価方法は、V-2-別添 1-1 に記載の評価方法に基づき行う。

容器弁の機能確認済加速度は、V-2-別添 1-1 に基づき、正弦波加振試験及びサインビート 波加振試験において動的機能の健全性を確認した加速度を適用する。

機能確認済加速度を表 4-1 から表 4-7 に示す。

表 4-1 ボンベラック(二酸化炭素消火設備)の機能確認済加速度(×9.8m/s²)

評価部位	方向	機能確認済加速度
	水平	4.0
谷奋开	鉛直	3. 0

	表 4-2 ボンベラック(小空間固定式消火語	2備)の機能確	認済加速度(×9.8m/s²)
	評価部位	方向	機能確認済加速度
应用力		水平	10.0
	谷奋开	鉛直	10.0

表 4-3 ボンベラック (SLC ポンプ・CRD ポンプ局所消火設備)の機能確認済加速度(×9.8m/s²)

評価部位	方向	機能確認済加速度
公理会	水平	10.0
谷奋力	鉛直	10.0

表 4-4 ボンベラック(電源盤・制御盤消火設備)の機能確認済加速度(×9.8m/s²)

評価部位	方向	機能確認済加速度
	水平	3.10
谷奋开	鉛直	2.30

表 4-5 ボンベラック (ケーブルトレイ消火設備)の機能確認済加速度(×9.8m/s²)

評価部位	方向	機能確認済加速度
分明会	水平	3. 10
谷奋力	鉛直	2.30

表 4-6 ボンベラック(中央制御室床下フリーアクセスフロア消火設備)の

評価部位	方向	機能確認済加速度
<u> </u>	水平	3.10
4奋开	鉛直	2. 30

機能確認済加速度(×9.8m/s²)

表 4-7 ボンベラック(5号機原子炉建屋内緊急時対策所消火設備)の

機能確認済加速度(×9.8m/s²)

評価部位	方向	機能確認済加速度
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	水平	3
谷益井	鉛直	2

5. 評価結果

5.1 ボンベラックの評価結果

ボンベラックの耐震評価結果を以下に示す。発生値は許容限界を満足しており,設計用地震 力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

5.2 容器弁の評価結果

容器弁の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であ

- り、設計用地震力に対して動的機能が維持されていることを確認した。
- (1) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

【ボンベラックの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

			固有周期(s)		基準地震動 S s		
機器名称 耐震重要度 分類		据付場所及び床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)
ボンベラック (二酸化炭素消火設備)	С	原子炉建屋 T.M.S.L.18.1 (T.M.S.L.23.5*)	0.046	<mark>0. 05 以下</mark>	C _H =1.21	$C_{v}=1.12$	40

注記*:基準床レベルを示す。

1.2 機器要目

1.2.1 ボンベラック

E	Sy	Su	F*
(MPa)	(MPa)	(MPa)	(MPa)
201667	245 (厚さ≦16mm)	400 (厚さ≦16mm)	

1.2.2 基礎ボルト (M16)

Еь	Sy	Su	F*	d	${ m A}~{ m b}$ (mm ²)	Fs	F t
(MPa)	(MPa)	(MPa)	(MPa)	(mm)		(N)	(N)
201667	245 (径≦16mm)	400 (径≦16mm)	280	16 (M16)	201. 1	2. 644×10^3	1.387×10^{3}

29

1.2.3 基礎ボルト (M12)

Еь	Sy	Su	F*	d	${ m A}~{ m b}$ (mm ²)	Fs	Ft
(MPa)	(MPa)	(MPa)	(MPa)	(mm)		(N)	(N)
201667	245 (径≦16mm)	400 (径≦16mm)	280	12 (M12)	113. 1	1.353×10^{3}	2.699 $ imes$ 10 ³

1.3 構造強度評価結果

(単位:MPa)

機器名称	評価部位		材料	応力分類	発生応力	許容応力
	ボンベラック部材		SS400	組合せ応力	$\sigma = 166$	$f_{\rm t} = 244$
	基礎ボルト	M16	SS400 -	引張応力	$\sigma_{\rm b t} = 7$	$f_{\rm t\ s} = 210^*$
ボンベラック (二酸化炭素消火設備)				せん断応力	$\tau_{\rm b} = 14$	$f_{\rm s\ b} = 161$
		M12	SS400	引張応力	$\sigma_{bt} = 24$	$f_{\rm t\ s} = 210^*$
				せん断応力	$\tau_{\rm b} = 12$	$f_{\rm s\ b} = 161$
マクリート シート シート キャー・ション・ション・ション・ション・ション・ション・ション・ション・ション・ション	` <u>`</u> , ⇒¬	. ſ		1 0 1 7		

発生応力はすべて許容応力以下である。 注記*: $f_{ts} = Min[1.4 \cdot f_{to} - 1.6 \cdot \tau_b, f_{to}]$ より算出

1.4 動的機能維持の評価結果

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度
分昭令	水平方向	1.01	4.0
谷奋力	鉛直方向	0. 93	3. 0

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

1.5 その他の機器要目

項目	記号	単位	入力値
要素数	—	個	
節点数	—	個	

部材	材質	密度 (kg/mm ³)	単位質量 (kg/mm)	温度条件 (周囲環境温度) (℃)	縦弾性係数 (MPa)	ポアソン比 (—)
$L-65\times65\times6.0$	SS400	7.850 $ imes$ 10 ⁻⁶	5.910 $\times 10^{-3}$	40	201667	0.3
$C-125 \times 65 \times 6.0$	SS400	7.850 $ imes$ 10 ⁻⁶	1.340×10^{-2}	40	201667	0.3
$L-50\times50\times6.0$	SS400	7.850 $ imes$ 10 ⁻⁶	4. 430×10^{-3}	40	201667	0.3
P−270.0×7.0	SMn433	1.464×10^{-5}	8. 467×10^{-2}	40	200667	0.3
$C-125\times63\times6\times6$	SS400	7.850 $ imes$ 10 ⁻⁶	1.126×10^{-2}	40	201667	0.3
$C-125\times45\times6\times6$	SS400	7.850 $ imes$ 10 ⁻⁶	9. 570×10^{-3}	40	201667	0.3
R-130×6	SS400	7.850 $ imes$ 10 ⁻⁶	6. 130×10^{-3}	40	201667	0.3
$C-125\times53\times6\times6$	SS400	7.850×10^{-6}	1.032×10^{-2}	40	201667	0.3

【ボンベラックの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

			固有周期(s)		基準地震動 S s		
機器名称 耐震重要度 分類		据付場所及び床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)
ボンベラック (小空間固定式消火設備) (6802 列8本用)	С	廃棄物処理建屋 T.M.S.L. — 6.1*	0.048	<mark>0. 05 以下</mark>	С _н =1.30	$C_{v} = 1.08$	40

注記*:基準床レベルを示す。

1.2 機器要目

1.2.1 ボンベラック

E	Sy	Su	F
(MPa)	(MPa)	(MPa)	(MPď)
202000	245 (厚さ≦16mm)	400 (厚さ≦16mm)	

1.2.2 基礎ボルト

Еь	Sy	Su	F*	d	${ m A}~{ m b}$ (mm ²)	Fs	F t
(MPa)	(MPa)	(MPa)	(MPa)	(mm)		(N)	(N)
202000	245 (径≦16mm)	400 (径≦16mm)	280	16 (M16)	201.1	7. 222×10^3	1.389×10^{4}

32

1.3 構造強度評価結果

(単位:MPa)

機器名称	評価部位	材料	応力分類	発生応力	許容応力
ボンベラック	ボンベラック部材	SS400	組合せ応力	$\sigma = 150$	$f_{\rm t} = 280$
(小空間固定式消火設備)	基礎ボルト	55400	引張応力 σ _{bt} =69	$f_{\rm t\ s} = 210^*$	
(6812列8本用)		55400 -	せん断応力	$\tau_{\rm b} = 36$	$f_{\rm s\ b}$ =161
					J S D 101

発生応力はすべて許容応力以下である。 注記*: f_{ts}=Min[1.4・f_{to}-1.6・τ_b, f_{to}]より算出

1.4 動的機能維持の評価結果

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度
分吧会	水平方向	0.89	10.0
谷奋力	鉛直方向	0.87	10.0

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

1.5 その他の機器要目

項目	記号	単位	入力値
要素数		個	
節点数		個	

部材	材質	密度 (kg/mm ³)	単位質量* (kg/mm)	温度条件 (周囲環境温度) (℃)	縦弾性係数 (MPa)	ポアソン比 (—)
鋼板 t4.5	SS400	7.850 $\times 10^{-6}$	3.533×10^{-5}	40	202000	0.3
鋼板 t9.0	SS400	7.850 $\times 10^{-6}$	7.065 $\times 10^{-5}$	40	202000	0.3
鋼板 t6.0	SS400	7.850 $\times 10^{-6}$	4. 710×10^{-5}	40	202000	0.3
$\Box 75 \times t4.5$	STKR400	7.850 $\times 10^{-6}$	9. 553×10^{-3}	40	202000	0.3
$\Box 75 \times t6.0$	SS400	7.850 $\times 10^{-6}$	1.300×10^{-2}	40	202000	0.3
$L75 \times 75 \times 9$	SS400	7.850 $\times 10^{-6}$	9.970 $\times 10^{-3}$	40	202000	0.3
$L50 \times 50 \times 6$	SS400	7.850 $\times 10^{-6}$	4. 427×10^{-3}	40	202000	0.3
C100×50	SS400	7.850 $\times 10^{-6}$	9. 342×10^{-3}	40	202000	0.3
$C75 \times 30 \times 6$	SS400	7.850 $\times 10^{-6}$	5.793 $\times 10^{-3}$	40	202000	0.3
$C75 \times 26 \times 6$	SS400	7.850 $\times 10^{-6}$	5. 417×10^{-3}	40	202000	0.3
PL110× t 6	SS400	7.850 $\times 10^{-6}$	5. 181×10^{-3}	40	202000	0.3
PL400× t 9	SS400	7.850 $\times 10^{-6}$	2.826 $\times 10^{-2}$	40	202000	0.3
M16(φ13.835)	SS400	7.850 $\times 10^{-6}$	1.180×10^{-3}	40	202000	0.3
ϕ 267. 4×t6	STH12	1.735×10^{-5}	8.548×10^{-2}	40	201000	0.3

注記*:鋼板の単位質量は kg/mm²
1. 設計基準対象施設

1.1 設計条件

			固有周	哥期(s)	基準地創	震動Ss	
機器名称	耐震重要度 分類	据付場所及び床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)
ボンベラック (小空間固定式消火設備) (6801 列2本用)	С	原子炉建屋 T.M.S.L.4.8*	0.044	<mark>0. 05 以下</mark>	С _н =1.65	$C_{v} = 1.16$	40

注記*:基準床レベルを示す。

1.2 機器要目

1.2.1 ボンベラック

E	Sy	Su	F
(MPa)	(MPa)	(MPa)	(MP <i>å</i>)
202000	245 (厚さ≦16mm)	400 (厚さ≦16mm)	

1.2.2 基礎ボルト

Еь	Sy	Su	F*	d	${ m A}~{ m b}$ (mm ²)	Fs	F t
(MPa)	(MPa)	(MPa)	(MPa)	(mm)		(N)	(N)
202000	245 (径≦16mm)	400 (径≦16mm)	280	16 (M16)	201.1	8. 413×10^3	1.259×10^4

(単位:MPa)

機器名称	評価部位	材料	応力分類	発生応力	許容応力
ボンベラック	ボンベラック部材	SS400	組合せ応力	$\sigma = 187$	$f_{t} = 280$
(小空間固定式消火設備)	甘7株-22 1	SS400	引張応力	$\sigma_{bt} = 63$	$f_{\rm t\ s} = 210^*$
(6801 列 2 本用)	差碇小ルト		せん断応力	$\tau_{\rm b} = 42$	$f_{\rm s\ b} = 161$

発生応力はすべて許容応力以下である。 注記*: f_{ts}=Min[1.4・f_{to}-1.6・τ_b, f_{to}]より算出

1.4 動的機能維持の評価結果

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度
容器弁	水平方向	0. 83	10.0
	鉛直方向	0. 84	10.0

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

1.5 その他の機器要目

項目	記号	単位	入力値
要素数		個	
節点数		個	

部材	材質	密度 (kg/mm ³)	単位質量* (kg/mm)	温度条件 (周囲環境温度) (℃)	縦弾性係数 (MPa)	ポアソン比 (—)
鋼板 t4.5	SS400	7.850 $\times 10^{-6}$	3.533×10^{-5}	40	202000	0.3
鋼板 t9.0	SS400	7.850 $\times 10^{-6}$	7.065 $\times 10^{-5}$	40	202000	0.3
鋼板 t6.0	SS400	7.850 $\times 10^{-6}$	4. 710×10^{-5}	40	202000	0.3
$\Box 75 \times t4.5$	STKR400	7.850 $\times 10^{-6}$	9. 553×10^{-3}	40	202000	0.3
$\Box 75 \times t6.0$	SS400	7.850 $\times 10^{-6}$	1.300×10^{-2}	40	202000	0.3
$L75 \times 75 \times 9$	SS400	7.850 $\times 10^{-6}$	9.970 $\times 10^{-3}$	40	202000	0.3
$L50 \times 50 \times 6$	SS400	7.850 $\times 10^{-6}$	4. 427×10^{-3}	40	202000	0.3
C100×50	SS400	7.850 $ imes$ 10 ⁻⁶	9. 342×10^{-3}	40	202000	0.3
$C75 \times 30 \times 6$	SS400	7.850 $\times 10^{-6}$	5.793 $ imes$ 10 ⁻³	40	202000	0.3
$C75 \times 26 \times 6$	SS400	7.850 $ imes$ 10 ⁻⁶	5. 417×10^{-3}	40	202000	0.3
PL110× t 6	SS400	7.850 $\times 10^{-6}$	5. 181×10^{-3}	40	202000	0.3
PL400× t 9	SS400	7.850 $\times 10^{-6}$	2.826 $\times 10^{-2}$	40	202000	0.3
M16(φ13.835)	SS400	7.850 $ imes$ 10 ⁻⁶	1.180×10^{-3}	40	202000	0.3
ϕ 267. 4×t6	STH12	1.735×10^{-5}	8.548 $\times 10^{-2}$	40	201000	0.3

注記*:鋼板の単位質量は kg/mm²

1. 設計基準対象施設

1.1 設計条件

			固有厝	哥期(s)	基準地創	震動Ss	
機器名称	耐震重要度 分類	据付場所及び床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)
ボンベラック (SLC ポンプ・CRD ポンプ局所消火 設備)	С	原子炉建屋 T.M.S.L. — 8.2*	0.042	<mark>0. 05 以下</mark>	С _н =1.22	C _v =1.13	40

注記*:基準床レベルを示す。

1.2 機器要目

1.2.1 ボンベラック

E	Sy	Su	F*
(MPa)	(MPa)	(MPa)	(MPa)
202000	245 (厚さ≦16mm)	400 (厚さ≦16mm)	

1.2.2 基礎ボルト

Еь	Sy	Su	F	d	${ m A}~{ m b}$ (mm ²)	Fs	F t
(MPa)	(MPa)	(MPa)	(MPaٌ)	(mm)		(N)	(N)
202000	245 (径≦16mm)	400 (径≦16mm)	280	16 (M16)	201.1	4. 806×10^3	1.267×10^4

(単位:MPa)

機器名称	評価部位	材料	応力分類	発生応力	許容応力
	ボンベラック部材	SS400	組合せ応力	$\sigma = 181$	$f_{\rm t} = 280$
ボンベラック (SLC ポンプ・CRD ポンプ局所消火設備)	甘邓本子九人	SS400	引張応力	$\sigma_{bt} = 63$	$f_{\rm t\ s} = 210^*$
	基礎ホルト		せん断応力	$\tau_{\rm b} = 24$	$f_{\rm s\ b}$ =161
			c ¬	a a data a c	

発生応力はすべて許容応力以下である。 注記*: f_{ts}=Min[1.4・f_{to}-1.6・τ_b, f_{to}]より算出

1.4 動的機能維持の評価結果

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度
<u> </u>	水平方向	0. 74	10.0
全 奋力	鉛直方向	0. 84	10.0

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

1.5 その他の機器要目

項目	記号	単位	入力値
要素数		個	
節点数		個	

部材	材質	密度 (kg/mm ³)	単位質量* (kg/nm)	温度条件 (周囲環境温度) (℃)	縦弾性係数 (MPa)	ポアソン比 (—)
鋼板 t4.5	SS400	7.850 $\times 10^{-6}$	3.533 $ imes$ 10 ⁻⁵	40	202000	0.3
鋼板 t9.0	SS400	7.850 $\times 10^{-6}$	7.065 $\times 10^{-5}$	40	202000	0.3
鋼板 t6.0	SS400	7.850 $\times 10^{-6}$	4. 710×10^{-5}	40	202000	0.3
\Box 75×t4.5	STKR400	7.850 $\times 10^{-6}$	9. 553×10^{-3}	40	202000	0.3
$L75 \times 75 \times 9$	SS400	7.850 $\times 10^{-6}$	9.970 $\times 10^{-3}$	40	202000	0.3
C100×50	SS400	7.850 $\times 10^{-6}$	9. 342×10^{-3}	40	202000	0.3
PL110× t6	SS400	7.850 $\times 10^{-6}$	5. 181×10^{-3}	40	202000	0.3
M16(φ13.835)	SS400	7.850 $\times 10^{-6}$	1.180×10^{-3}	40	202000	0.3
φ267.4×t6.17	SM520B	1.969×10^{-5}	9.971×10^{-2}	40	202000	0.3

注記*:鋼板の単位質量は kg/mm²

1. 設計基準対象施設

1.1 設計条件

			固有周期(s)		基準地震動 S s		
機器名称耐震重要度がががががが 		据付場所及び床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)
ボンベラック (電源盤・制御盤消火設備)	С	原子炉建屋 T.M.S.L.18.1*	0.026	<mark>0. 05 以下</mark>	С _н =2.15	C _v =1.89	40

注記*:基準床レベルを示す。

1.2 機器要目

1.2.1 ボンベラック

E	Sy	Su	F*
(MPa)	(MPa)	(MPa)	(MPa)
202000	245 (厚さ≦16mm)	400 (厚さ≦16mm)	

1.2.2 基礎ボルト

Еь	Sy	Su	F	d	${ m A}~{ m b}$ (mm ²)	Fs	F t
(MPa)	(MPa)	(MPa)	(MPå)	(mm)		(N)	(N)
202000	245 (径≦16mm)	400 (径≦16mm)	280	16 (M16)	201.1	1.534×10^{3}	1.174×10^{4}

(単位:MPa)

機器名称	評価部位	材料	応力分類	発生応力	許容応力
	ボンベラック部材	SS400	組合せ応力	$\sigma = 107$	$f_{\rm t} = 280$
ボンベラック (電源盤・制御盤消火設備)	#**#*.12.0.1	55400	引張応力	$\sigma_{bt} = 59$	$f_{\rm t\ s} = 210^*$
	基礎ハルト	55400	せん断応力	$\tau_{b} = 8$	$f_{\rm s\ b} = 161$

発生応力はすべて許容応力以下である。 注記*: f_{ts}=Min[1.4・f_{to}-1.6・τ_b, f_{to}]より算出

1.4 動的機能維持の評価結果

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度
分唱会	水平方向	0.94	3.10
谷器并	鉛直方向	0.90	2.30

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

1.5 その他の機器要目

項目	記号	単位	入力値
要素数	—	個	
節点数	—	個	

部材	材質	密度 (kg/mm ³)	単位質量 (kg/mm)	温度条件 (周囲環境温度) (℃)	縦弾性係数 (MPa)	ポアソン比 (—)
L75×75×4.5t	SS400	7.850 $\times 10^{-6}$	5. 140×10^{-3}	40	202000	0.3
$L75 \times 50 \times 4.5t$	SS400	7.850 $\times 10^{-6}$	4. 257×10^{-3}	40	202000	0.3
$L50 \times 35 \times 4.5t$	SS400	7.850 $\times 10^{-6}$	2.844 $\times 10^{-3}$	40	202000	0.3
$L25 \times 25 \times 3.2t$	SS400	7.850 $\times 10^{-6}$	1.176×10^{-3}	40	202000	0.3
$L50 \times 50 \times 4.5t$	SS400	7.850 $\times 10^{-6}$	3.374×10^{-3}	40	202000	0.3
$C75 \times 75 \times 4.5t$	SS400	7.850 $\times 10^{-6}$	7.630 $\times 10^{-3}$	40	202000	0.3
$PL44 \times 4.5$	SS400	7.850 $\times 10^{-6}$	1.554×10^{-3}	40	202000	0.3
$PL75 \times 4.5$	SS400	7.850 $\times 10^{-6}$	2.649 $\times 10^{-3}$	40	202000	0.3
PL38×9.0	SS400	7.850 $\times 10^{-6}$	2.685 $\times 10^{-3}$	40	202000	0.3
PL50×9.0	SS400	7.850 $\times 10^{-6}$	3.533×10^{-3}	40	202000	0.3
$C100 \times 50 \times 5 \times 7.5$	SS400	7.850 $\times 10^{-6}$	9. 342×10^{-3}	40	202000	0.3
$PL53 \times 6.0$	SS400	7.850 $\times 10^{-6}$	2. 496×10^{-3}	40	202000	0.3
φ21.7×2.8t	SGP	7.850 $\times 10^{-6}$	1.305×10^{-3}	40	202000	0.3
M12	SS400	7.850 $\times 10^{-6}$	8.878×10^{-4}	40	202000	0.3
$PL50 \times 6$	SS400	7.850 $\times 10^{-6}$	2. 355×10^{-3}	40	202000	0.3
ϕ 165. 2×t3. 6	STH12	2. 196×10^{-5}	4. 014×10^{-2}	40	201000	0.3
φ140.0×t3.1	STH12	2. 237×10^{-5}	2.982×10^{-2}	40	201000	0.3

1. 設計基準対象施設

1.1 設計条件

			固有周期(s)		基準地震動 S s		
機器名称 耐震重要度 据付場所及て 分類 (m)		据付場所及び床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)
ボンベラック (ケーブルトレイ消火設備)	С	原子炉建屋 T.M.S.L.18.1*	0.021	<mark>0. 05 以下</mark>	С _н =2.15	C _v =1.89	40

注記*:基準床レベルを示す。

1.2 機器要目

1.2.1 ボンベラック

E	Sy	Su	F [*]
(MPa)	(MPa)	(MPa)	(MPa)
202000	245 (厚さ≦16mm)	400 (厚さ≦16mm)	

1.2.2 基礎ボルト

Еь	Sy	Su	F*	d	${ m A}~{ m b}$ (mm ²)	Fs	F t
(MPa)	(MPa)	(MPa)	(MPa)	(mm)		(N)	(N)
202000	245 (径≦16mm)	400 (径≦16mm)	280	12 (M12)	113. 1	439. 1	1.481×10^{3}

(単位:MPa)

機器名称	評価部位	材料	応力分類	発生応力	許容応力
	ボンベラック部材	SS400	組合せ応力	$\sigma = 36$	$f_{t} = 280$
ボンベラック (ケーブルトレイ消火設備)	ック 消火設備) 基礎ボルト SS400 引 せん	66400	引張応力	$\sigma_{b t} = 15$	$f_{\rm t\ s} = 210^*$
		せん断応力	$\tau_{\rm b} = 5$	$f_{s\ b}$ =161	

発生応力はすべて許容応力以下である。 注記*: f_{ts}=Min[1.4・f_{to}-1.6・τ_b, f_{to}]より算出

1.4 動的機能維持の評価結果

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度
~	水平方向	0.94	3.10
谷奋力	鉛直方向	0.90	2.30

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

1.5 その他の機器要目

項目	記号	単位	入力値
要素数	—	個	
節点数	—	個	

部材	材質	密度 (kg/mm ³)	単位質量 (kg/mm)	温度条件 (周囲環境温度) (℃)	縦弾性係数 (MPa)	ポアソン比 (—)
$\Box 75 \times 75 \times 4.5$	STKR400	7.850 $\times 10^{-6}$	9. 553×10^{-3}	40	202000	0.3
$L75 \times 75 \times 9$	SS400	7.850 $\times 10^{-6}$	9.970 $\times 10^{-3}$	40	202000	0.3
$PL50 \times 6$	SS400	7.850 $\times 10^{-6}$	2. 355×10^{-3}	40	202000	0.3
ϕ 165. 2×t3. 6	STH12	2. 196×10^{-5}	4. 014×10^{-2}	40	201000	0.3

1. 設計基準対象施設

1.1 設計条件

			固有周	引期(s)	基準地震	§動Ss	
機器名称	耐震重要度 分類	据付場所及び床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)
ボンベラック (中央制御室床下フリーアク セスフロア消火設備)	С	コントロール建屋 T. M. S. L. 12. 3 (T. M. S. L. 17. 3*)	0.008	<mark>0.05以下</mark>	C _H =1.65	$C_{v}=1.12$	40

注記*:基準床レベルを示す。

1.2 機器要目

1.2.1 ボンベラック

E	Sy	Su	F*
(MPa)	(MPa)	(MPa)	(MPa)
201667	245 (厚さ≦16mm)	400 (厚さ≦16mm)	

1.2.2 基礎ボルト

Еь	Sy	Su	F*	d	${ m A}~{ m b}$ (mm ²)	Fs	F t
(MPa)	(MPa)	(MPa)	(MPa)	(mm)		(N)	(N)
201667	245 (径≦16mm)	400 (径≦16mm)	280	16 (M16)	201.1	4. 111×10^3	3.246×10^3

(単位:MPa)

機器名称	評価部位	材料	応力分類	発生応力	許容応力
ボンベラック	ボンベラック部材	SS400	組合せ応力	$\sigma = 246$	$f_{\rm t} = 279$
(中央制御室床下フリーアクセス		SS400 -	引張応力	$\sigma_{bt} = 17$	$f_{\rm t\ s} = 210^*$
フロア消火設備)	本碇小//ト		せん断応力	$\tau_{\rm b}=21$	$f_{\rm s\ b} = 160$

発生応力はすべて許容応力以下である。 注記*: f_{ts}=Min[1.4・f_{to}-1.6・τ_b, f_{to}]より算出

1.4 動的機能維持の評価結果

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度
<u> </u>	水平方向	1. 37	3.10
谷硷开	鉛直方向	0. 93	2.30

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

1.5 その他の機器要目

項目	記号	単位	入力値
質量	m	kg	118
要素数	—	個	
節点数	—	個	

部材	材質	密度 (kg/mm³)	単位質量 (kg/mm)	温度条件 (周囲環境温度) (℃)	縦弾性係数 (MPa)	ポアソン比 (—)
鋼板 t9.0	SS400	7.94 $\times 10^{-6}$	_	40	201667	0.3
鋼板 t6.0	SS400	7.94 $ imes$ 10 ⁻⁶	—	40	201667	0.3
$C125\!\times\!65\!\times\!6\!\times\!8$	SS400	7.94 $\times 10^{-6}$	—	40	201667	0.3
$\Box 100 \times 100 \times t6$	STKR400	7.94×10^{-6}		40	201667	0.3

1. 設計基準対象施設

1.1 設計条件

			固有厝	ਗ期(s)	基準地創	震動Ss	
機器名称 耐震重要度 分類		据付場所及び床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)
ボンベラック (5 号機原子炉建屋内緊急時対策所 消火設備)	С	緊急時対策所 T.M.S.L.27.8*	0. 033	<mark>0. 05 以下</mark>	С _н =1.30	C _v =1.13	40

注記*:基準床レベルを示す。

1.2 機器要目

1.2.1 ボンベラック

E	Sy	Su	F*
(MPa)	(MPa)	(MPa)	(MPa)
202000	245 (厚さ≦16mm)	400 (厚さ≦16mm)	

1.2.2 基礎ボルト

Еь	Sy	Su	F*	d	$egin{array}{c} A \ b \ (mm^2) \end{array}$	Fs	F t
(MPa)	(MPa)	(MPa)	(MPa)	(mm)		(N)	(N)
202000	245 (径≦16mm)	400 (径≦16mm)	280	16 (M16)	201.1	4. 958×10^3	5. 715×10^3

(単位:MPa)

機器名称	評価部位	材料	応力分類	発生応力	許容応力
ボンベラック	ボンベラック部材	SS400	組合せ応力	0.165	1*1
(5号機原子炉建屋内緊急時対策所消火	基礎ボルト	SS400 -	引張応力	$\sigma_{bt} = 29$	$f_{\rm t\ s} = 210^{*2}$
設加			せん断応力	$\tau_{\rm b} = 25$	$f_{\rm s\ b} = 161$

発生応力はすべて許容応力以下である。

注記*1:発生応力を裕度表記にしたため、許容応力を「1」として記載

*2 : f_{ts}=Min[1.4・f_{to}-1.6・_{てb}, f_{to}]より算出

1.4 動的機能維持の評価結果

51

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度
公理会	水平方向	1.08	3
谷裕开	鉛直方向	0.94	機能確認済加速度 3 2

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

1.5 その他の機器要目

項目	記号	単位	入力値
要素数	—	個	
節点数	—	個	

部材	材質	密度 (kg/mm ³)	単位質量* (kg/mm)	温度条件 (周囲環境温度) (℃)	縦弾性係数 (MPa)	ポアソン比 (—)
鋼板 t7.0	SS400	7.850 $ imes$ 10 ⁻⁶	5. 495×10^{-5}	40	202000	0.3
鋼板 t10.0	SS400	7.850 $\times 10^{-6}$	7.850 $\times 10^{-5}$	40	202000	0.3
鋼板 t6.0	SS400	7.850 $\times 10^{-6}$	4. 710×10^{-5}	40	202000	0.3
鋼板 t5.0	SS400	7.850 $\times 10^{-6}$	3.925×10^{-5}	40	202000	0.3
鋼板 t7.5	SS400	7.850 $\times 10^{-6}$	5.888 $\times 10^{-5}$	40	202000	0.3
$\mathrm{H150}\!\times\!150\!\times\!7\!\times\!10$	SS400	7.850 $ imes$ 10 ⁻⁶	3. 109×10^{-2}	40	202000	0.3
$L65 \times 65 \times 6$	SS400	7.850 $\times 10^{-6}$	5.911 \times 10 ⁻³	40	202000	0.3
$C125\!\times\!65\!\times\!6\!\times\!8$	SS400	7.850 $\times 10^{-6}$	1.342×10^{-2}	40	202000	0.3
$FB50 \times 6$	SS400	7.850 $\times 10^{-6}$	2. 355×10^{-3}	40	202000	0.3
M12	S45C	7.850×10^{-6}	6.296×10^{-4}	40	201000	0.3
ϕ 265×t5.5	SMn433	1.785×10^{-5}	8.004×10^{-2}	40	201000	0.3

注記*:鋼板の単位質量は kg/mm²

計算機プログラム(解析コード)の概要

別紙13 MSC NASTRAN

1. 使用状況一覧

使用添付書類	バージョン
火災防護設備の耐震性に関する計算書	Ver.2005r2
火災防護設備の耐震性に関する計算書	Ver. 2008. 0. 4
	使用添付書類 火災防護設備の耐震性に関する計算書 火災防護設備の耐震性に関する計算書

- 2. 解析コードの概要
- 2.1 MSC NASTRAN Ver. 2005r2

コード名 項目	MSC NASTRAN
使用目的	3次元有限要素法(はりモデル)による固有値解析,応力 解析
開発機関	MSC.Software Corporation
開発時期	1971年(一般商業用リリース)
使用したバージョン	Ver.2005r2
コードの概要	本解析コードは,航空機の機体強度解析を目的として開発 された,有限要素法による構造解析用の汎用計算機プログラ ムである。適用モデル(主にはり要素,シェル要素,ソリッ ド要素)に対して,静的解析(線形,非線形),動的解析(過 渡応答解析,周波数応答解析),固有値解析,伝熱解析(温 度分布解析),熱応力解析,線形座屈解析等の機能を有して いる。数多くの研究機関や企業において,航空宇宙,自動車, 造船,機械,建築,土木等様々な分野の構造解析に使用され ている。
検証 (Verification) 及び 妥当性確認 (Validation)	【検証(Verification)】 本解析コードの検証内容は以下のとおりである。 ・構造力学分野における一般的知見により解を求めるこ とができる体系について、本解析コードを用いた3次 元有限要素法(はりモデル)による応力解析結果と理 論モデルによる理論解の比較を行い,解析解が理論解 と一致することを確認されている。 ・本解析コードの運用環境について,開発機関から提示さ れた要件を満足していることが確認されている。 【妥当性確認(Validation)】 本解析コードの妥当性確認内容は以下のとおりである。 ・本解析コードは,航空宇宙,自動車,造船,機械,建 築,土木等様々な分野における使用実績を有してお り,妥当性は十分確認されている。

解析コードが適用できることを確認している。
・検証した機能・範囲と今回の工事計画認可申請で使用す
る機能・範囲が同等であることから,検証結果をもって,
解析機能の妥当性も確認できる。今回の工事計画認可申
請における用途及び適用範囲が上述の妥当性確認の範
囲内であることを確認している。
・今回の工事計画認可申請における用途及び適用範囲が
上述の妥当性確認の範囲内であることを確認している。

2.2 MSC NASTRAN Ver. 2008.0.4

コード名 項目	MSC NASTRAN
使用目的	3次元有限要素法(はりモデル)による固有値解析,応力 解析
開発機関	MSC.Software Corporation
開発時期	1971年(一般商業用リリース)
使用したバージョン	Ver. 2008. 0. 4
コードの概要	本解析コードは,航空機の機体強度解析を目的として開発 された,有限要素法による構造解析用の汎用計算機プログラ ムである。適用モデル(主にはり要素,シェル要素,ソリッ ド要素)に対して,静的解析(線形,非線形),動的解析(過 渡応答解析,周波数応答解析),固有値解析,伝熱解析(温 度分布解析),熱応力解析,線形座屈解析等の機能を有して いる。数多くの研究機関や企業において,航空宇宙,自動車, 造船,機械,建築,土木等様々な分野の構造解析に使用され ている。
検証 (Verification) 及び 妥当性確認 (Validation)	【検証(Verification)】 本解析コードの検証内容は以下のとおりである。 ・構造力学分野における一般的知見により解を求めるこ とができる体系について、本解析コードを用いた3次 元有限要素法(はりモデル)による応力解析結果と理 論モデルによる理論解の比較を行い、解析解が理論解 と一致することを確認されている。 ・本解析コードの運用環境について、開発機関から提示さ れた要件を満足していることが確認されている。 【妥当性確認(Validation)】 本解析コードの妥当性確認内容は以下のとおりである。 ・本解析コードは、航空宇宙、自動車、造船、機械、建 築、土木等様々な分野における使用実績を有してお り、妥当性は十分確認されている。 ・開発機関が提示する使用マニュアルより、今回の工事計 画認可申請で使用する有限要素法による応力解析に、本 解析コードが適用できることを確認している。

・検証した機能・範囲と今回の工事計画認可申請で使用す
る機能・範囲が同等であることから,検証結果をもって,
解析機能の妥当性も確認できる。今回の工事計画認可申
請における用途及び適用範囲が上述の妥当性確認の範
囲内であることを確認している。
・今回の工事計画認可申請における用途及び適用範囲が
上述の妥当性確認の範囲内であることを確認している。

別紙 39 NAPF

1. 使用状況一覧

	使用添付書類	バージョン
V-2-別添 1	火災防護設備の耐震性に関する計算書	Ver. NAPFS-2019-A-01

2. 解析コードの概要			
コード名	N A P F		
使用目的	配管支持構造物の強度評価 3次元有限要素法(はりモデル)による固有値解析及び応力解析		
開発機関	日本発条株式会社		
開発時期	1980 年		
使用したバージョン	ver.NAPFS-2019-A-01		
コードの概要	本解析コードは, 骨組構造の静的構造解析を行うことを目的とし て, 配管系等の支持構造物の設計用に開発された計算機プログラム である。		
検証 (Verification) 及び 妥当性確認 (Validation)	【検証(Verification)】 本解析コードの検証内容は以下のとおりである。 ・材料力学の数式を用いた結果と本解析コードの結果を比較した。 なお、モデルは材料力学上の計算結果と容易に比較可能なものと して片持ちはりに自重による分布荷重が作用するものとした。 この結果、本解析コードの結果が良好に一致していることを確認 した。 他の解析コード(__及びMSC NASTRA N)の解析結果と本解析コードの解析結果を比較し、良好に一致 していることを確認している。 【妥当性確認(Validation)】 本解析コードの妥当性確認内容は以下のとおりである。 ・原子力の分野における使用実績を有しており、妥当性は十分に 確認されている。 ・検証の内容により、今回の工事計画認可申請で行う固有値解析 及び応力解析の使用目的に照らして今回の解析に使用すること が妥当であることを確認している。		

- 3. 解析手法
- 3.1 一般事項

本解析コードは骨組構造の静的構造解析を行うためのものであり,配管系等の支持構造物の 設計用として 日本発条株式会社で開発し,保守・運用している。変形 は線形かつ微小変形であり,部材についてはフックの法則が成り立っていること,及び荷重に 対しては重ね合わせの原理が成り立つことを前提としている。

3.3 解析手法

3.3.1 静的解析

図 3-1 に示す骨組構造の元となる要素の i, j 端に加わる荷重(材端力)とそれに伴う 変位(たわみ)の関係は,

と表す事ができる。

図 3-1 要素座標系における定義

材端力の成分 $(f_i^*, f_j^*)^{\mathsf{T}}$ は釣り合い条件より,

 ${f_i^*} = -[H] \cdot {f_j^*}$ ・・・・・・・・・・・・・・・・・・・・・・・・(3. 2) と表される。

ここで, [H]は釣り合いマトリクスで, 要素 x 軸を要素の両端を結ぶ線に一致する様に座 標系をとると,

[H] =	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ \lambda \end{array} $	$\begin{array}{c} 1\\ 0\\ -\lambda\\ 0\end{array}$	$1 \\ 0 \\ 0$	0 1 0	1	•••••(3. 3	3)
	L ₀	λ	0	0	0	1		

となる。ここで、 λは i, j間の要素長である。

i 端の変形による影響を除外した j 端の変位を $\{u_j\}$ とし、この要素単体の剛性マトリクスを[K]とすると材端力 $\{f_j^*\}$ は、

 $\{u_{j}\} = -[H]^{T} \cdot \{u_{i}^{*}\} + \{u_{j}^{*}\}$ $\{f_{i}^{*}\} = [K] \cdot \{u_{i}\}$ (3. 4)

となる。

ここで, [K]の各成分は下記のとおりである。

EA

$$[K] = \begin{bmatrix} \frac{EA}{\lambda} & & \\ 0 & \frac{12EI_z}{\lambda^3(1+\phi_y)} & & \\ 0 & 0 & \frac{12EI_y}{\lambda^3(1+\phi_z)} & \\ 0 & 0 & 0 & \frac{GJ}{\lambda} & \\ 0 & 0 & \frac{6EI_y}{\lambda^2(1+\phi_z)} & 0 & \frac{(4+\phi_z)EI_y}{\lambda(1+\phi_z)} & \\ 0 & \frac{-6EI_z}{\lambda^2(1+\phi_y)} & 0 & 0 & 0 & \frac{(4+\phi_y)EI_z}{\lambda(1+\phi_y)} \end{bmatrix}$$

(3.4), (3.5)式を(3.2)式に, (3.4)式を(3.5)式にそれぞれ代入し,整理すると材 端力と変位の関係式は,

とする。

[K*]の各成分を図 3-2 に示す。

[K*]は要素座標系における要素剛性マトリクスであるが、全体座標系から要素座標系への座標変換マトリクスを[T]とすると、全体座標系における要素剛性マトリクス[k*]は次のとおりになる。

よって、外力ベクトル{f}が与えられるとき、変位{u}は次式により求められる。

図 3-2 要素剛性マトリクス[K*]

(3.8)式を効率的に解くために変形コレスキー法を用いる。

全体剛性マトリクス[k]を上部三角行列[k´]と,下部三角行列[k´]^Tに分解して,

また、[k]の上部三角行列[k²]内の各数値は、以下のとおりとなる。

ר

$$k_{1b} = k_{1b}$$

$$k_{ab} = k_{ab} \sum_{\gamma=1}^{a-1} \frac{k_{\gamma a} \cdot k_{\gamma b}}{k_{\gamma \gamma}}$$

$$\begin{pmatrix} a = 2, 3, \dots, n \\ b = a, a+1, \dots, n \end{pmatrix}$$

(3. 10) 式を(3. 8) 式に代入すると,

 $\{\mathbf{f}\} = [\mathbf{k}^{\mathsf{T}}]^{\mathsf{T}} \cdot [\mathbf{D}] \cdot [\mathbf{k}^{\mathsf{T}}] \cdot \{\mathbf{u}\}$

となる。ここで,

 $\{f'\} = [k'] \cdot \{u\} \cdots (3. 13)$ $\forall \forall \forall \forall b \in [k'] \cdot \{u\}$

 ${f} = [k]^{T} \cdot [D] \cdot {f}$

となり、変形すると、

 ${f^{f}} = [D]^{-1}([k^{T}]^{T})^{-1}{f}$

となる。ここで、 $[D]^{-1}([k^{2}]^{T})^{-1}$ は下部三角行列である。

つづいて,前進消去過程により {f[^]}を求めることができる。 {f[^]} 内の各数値は,以下の とおりとなる。

(a = 2, 3,, n)

得られた{f[^]}を(3.13)式に代入し、後進代入過程を行えば{u}を求めることができる。

これは全体座標系における変位を示し、これと剛性マトリクスから、任意の要素の要素 座標系における材端力(内力) {f_i*}、{f_j*}を求めることができる。

各方向の応力は, (3. 15)式によって得られた{f_i*}, {f_j*}を用いて i 端, j 端ごとに (3. 16)式にて求める。

軸応力:
$$\sigma_x = F_x/A$$

せん断応力: $\tau_y = F_y/A_{sy}$, $\tau_z = F_z/A_{sz}$
ねじり応力: $\tau_x = Mx/Z_x$
曲げ応力: $\sigma_y = My/Z_y$, $\sigma_z = Mz/Z_z$
ここで,

F_x : 軸力

F_y, F_z : せん断力

M_x :ねじりモーメント

My, Mz : 曲げモーメント である。 次に拘束点の反力を求める。

ある拘束点の反力 {R} は, その点に隣接されている要素 n 個分の反力の合計となる。 m 番目の隣接要素の反力 {R_m} は (3. 1) 式より,

i 端が固定端の場合: $\{R_m\} = -([K_{ii}]\{u_i^*\}+[K_{ij}]\{u_j^*\})$ j 端が固定端の場合: $\{R_m\} = -([K_{ji}]\{u_i^*\}+[K_{jj}]\{u_j^*\})$

3.3.2 固有值解析

骨組構造物をばね-質量要素からなる多質点系振動モデルとして取り扱い,固有値解析 を行う。

各要素の質量m,変位uとすると,自由振動の方程式は,

 $\begin{array}{c} m_{1} \cdot \ddot{u}_{1} + k_{11} \cdot u_{1} + k_{12} \cdot u_{2} + \cdots + k_{1n} \cdot u_{n} = 0 \\ m_{2} \cdot \ddot{u}_{2} + k_{21} \cdot u_{1} + k_{22} \cdot u_{2} + \cdots + k_{2n} \cdot u_{n} = 0 \\ \cdots \\ \end{array}$

 $\mathbf{m}_{n} \cdot \ddot{\mathbf{u}}_{n} + \mathbf{k}_{n1} \cdot \mathbf{u}_{1} + \mathbf{k}_{n2} \cdot \mathbf{u}_{2} + \cdots + \mathbf{k}_{nn} \cdot \mathbf{u}_{n} = \mathbf{0}$

と表現される。

(3. 18)式の解を

 $u_1 = \phi_1 \cdot e^{i\omega t}, u_2 = \phi_2 \cdot e^{i\omega t} \dots$ とする。ここで、 ϕ は固有ベクトル、 ω は固有角振動数である。

 $\ddot{\mathbf{u}}_1 = -\omega^2 \phi_1 \cdot e^{i\,\omega\,t}$, $\ddot{\mathbf{u}}_2 = -\omega^2 \phi_2 \cdot e^{i\,\omega\,t}$

となり、これらを(3.18)式に代入して整理し、マトリクス表現すると、

[k]は3.3.1 項と同様の方法で作成する。次に,各要素の質量 m_iを各節点に集中させて [M]を作成する。[k],[M]を(3.19)式に代入し,サブスペース法による固有値解析により (3.19)式を満足する固有値ω²と固有ベクトル{φ}を求める。

- {f_i*}:要素 i 端の材端力
- {f_j*}:要素 j 端の材端力
- {u_i*}: 要素 i 端の変位ベクトル
- {u_j*}: 要素 j 端の変位ベクトル
- {u_j}:要素 j 端の変位ベクトル(i 端の変形による影響を除去したもの)
- [H] : 釣り合いマトリクス
- [K] :部分剛性マトリクス
- λ : i, j間の要素長
- [T]:全体座標系から要素座標系への変換マトリクス
- [K*]:要素座標系における要素剛性マトリクス
- [k*]:全体座標系における要素剛性マトリクス
- {f}:全体座標系における外力ベクトル
- [k] : 全体剛性マトリクス
- [k[´]]:上部三角行列
- {u}:全体座標系における変位ベクトル
- k_{ij}:全体剛性マトリクスの各成分
- {R}: 拘束点反力
- E : 縦弾性係数
- A : 軸方向断面積
- I_y, I_z : 断面二次モーメント
 - G : 横弹性係数
 - J : ねじり定数
- *ϕy*, *ϕz*: せん断変形に関するパラメータ

$$\phi_y = \frac{12 \text{EI}_z}{\text{GA}_{sy} \lambda^2}$$
 , $\phi_z = \frac{12 \text{EI}_y}{\text{GA}_{sz} \lambda^2}$

Asy:y方向変位に対する有効せん断断面積

- Asz: z 方向変位に対する有効せん断断面積
- Z_y, Z_z:断面係数
 - Z_x:ねじり断面係数
 - [M] : 全体質量マトリクス

3.4 解析フローチャート 解析フローチャートを図 3-3 に示す。

マトリクス構造解析の流れ

- 3.5 検証 (Verification) と妥当性確認 (Validation)
 - 3.5.1 材料力学上の計算値との比較による検証
 - (1) 方法:材料力学の数式を用いた結果と本解析コードの結果を比較し、その正当性を検証した。なお、モデルは材料力学上の計算結果と容易に比較可能なものとして片持ちはりに自重による分布荷重が作用するものとした。
 - (2) 判定基準:
 - (3) 比較結果

材料力学の数式を用いた結果とNAPFの解析結果を比較した。

a. 解析モデルの形状

下図のような片持ちはりとする。

b. 断面定数及び物性値

縦弾性係数:E	$0.1995\!\times\!10^6\mathrm{MPa}$
断面2次モーメント:I	$0.498 \times 10^8 \text{mm}^4$
単位長さ当たりの重量:w	0.6659N/mm
長さ:λ	1000mm

c. 解析条件

wによる分布荷重がかかった時の自由端のたわみU,固定端の反力R及びモーメントMを比較する。

なお,材料力学上の計算式と合わせるため,せん断によるたわみは考慮しないことと した。

d. 材料力学による解析結果

RO
U = w $\lambda^{4}/(8 \cdot E \cdot I)$ = 0.00838mm R = w λ = 665.9N M = w $\lambda^{2}/2$ = 332.95N·m

e. 材料力学による解析結果とNAPFによる解析結果の比較

	材料力学によ る解析結果	NAPFによ る解析結果	差分	比率 (%)	判定
	1	2	3(1-2)	3/1)×100	
たわみ(mm)	0.008380				合格
反力(N)	665.9				合格
モーメント(N・m)	332.95				合格

以上の結果より, 判定基準を満足した。

3.5.2 他の解析コードとの比較による検証

(1)	方法:3種類のモデル(片持ち,門型,門型斜め部材付)を本解析コード及び2種類の
	汎用プログラム (*1及びMSC NASTRAN ^{*2})で解析
	し、これらの結果と本解析コードの解析結果を比較することにより本解析コート
	の妥当性を確認した。
	注記*1:
	*2: MSC NASTRAN (ver. 2018)
(2)	判定基準:下記のいずれかを満足した場合に合格する。

(3) 比較結果

3 種類のモデルについてそれぞれMSC NASTRAN及び の解 析結果とNAPFの解析結果を比較し妥当性を確認した。

- a. 解析モデルの形状
 - (a) モデル No.: KTMC-A形状:片持ち固定端:節点1

(c) モデル No. BRC-A
形状:門型に斜軸ブレースを追加したもの
固定端:節点1,13,17,21

b. 断面定数及び物性値

材質		STKR400		
縦弾性係数:E		$0.1995 \times 10^6 \mathrm{MPa}$		
単位長さ当たりの重量	1 : W	0.1667N/mm		
総断面積:Ax	2163mm ²			
有効せん断断面積	Y 軸方向:Ay	1080 mm ²		
	Z 軸方向:Az	1080mm ²		
断面2次モーメント	X 軸周り:Ixねじり	0. $498 \times 10^7 \text{mm}^4$		
	Y 軸周り:Iy	$0.311 \times 10^7 \mathrm{mm}^4$		
	$0.311 \times 10^{7} \text{mm}^{4}$			
長さ:λ		1000mm		

c. 解析条件

モ	デル No.	静解析	要素数
		固有値解析	
1	KTMC-A	静解析	10
		固有値解析	
2	RYOTN-A	静解析	12
		固有値解析	
3	BRC-A	静解析	20
		固有値解析	

d. 解析結果の比較

(a)	モデル No	KTMC-A
(a)	\sim $1 / 1 / 10$.	NTMU-A

	節	方		各プログラム別解析結果									
	点	向	1	2	3	④差分	⑤差分	⑥比率	⑦比率	判定			
	No.		ΝΑΡ		MSC	1-2	1-3	(4) /(1)	5/1	結果			
			F		N A S			%	%				
					TRA								
					Ν								
反力	1	Fx								合格			
(N)		F_{Y}								合格			
		F_{Z}								合格			
モーメ		$M_{\rm X}$								合格			
ント		$M_{\rm Y}$								合格			
(N • m)		$M_{\rm Z}$								合格			
変位	11	Х								合格			
(mm)		Y								合格			
		Ζ								合格			
角度		$\theta_{\rm X}$								合格			
(rad)		$\theta_{\rm Y}$								合格			
		$\theta_{\rm Z}$								合格			
固有	1次									合格			
振動数	2次									合格			
(H_Z)	3次									合格			

Ν	節	方		各プログラム別解析結果								
	点	向	1	2	3	④差分	⑤差分	⑥比率	⑦比率	判定		
	No.		ΝΑΡ		MSC	11-2	11-3	(4) /(1)	5/1	結果		
			F		N A S			%	%			
					TRA							
					Ν							
反力	1	Fx								合格		
(N)		F_{Y}								合格		
		F_Z								合格		
モーメ		$M_{\rm X}$								合格		
ント		$M_{\rm Y}$								合格		
$(N \cdot m)$		M_Z								合格		
反力	13	F_X								合格		
(N)		Fy								合格		
		F_Z								合格		
モーメ		Mx								合格		
ント		$M_{\rm Y}$								合格		
(N • m)		Mz								合格		
変位	5	Х								合格		
(mm)		Y								合格		
		Ζ								合格		
角度		$\theta_{\rm X}$								合格		
(rad)		$\theta_{\rm Y}$								合格		
		$\theta_{\rm Z}$								合格		
変位	7	Х								合格		
(mm)		Y								合格		
		Z								合格		
角度		θ x								合格		
(rad)		θ γ								合格		
		$\theta_{\rm Z}$								合格		

(b) モデル No. RYOTN-A

	節	方		各プログラム別解析結果								
	点	向	1	2	3	④差分	⑤差分	⑥比率	⑦比率	判定		
	No.		ΝΑΡ		MSC	11-2	1-3	(4) / (1)	5/1	結果		
			F		N A S			%	%			
					TRA							
					Ν							
変位	9	Х								合格		
(mm)		Y								合格		
		Ζ								合格		
角度		θx								合格		
(rad)		θ γ								合格		
		$\theta_{\rm Z}$								合格		
固有	1次									合格		
振動数	2次									合格		
(Hz)	3次									合格		

(c) モデル No. BRC	-A
-----------------	----

	節	方			各フ	゜ログラム別	刂解析結果			
	点	向	1	2	3	④差分	⑤差分	⑥比率	⑦比率	判定
	No.		ΝΑΡ		MSC	1-2	11-3	(4) /(1)	5/1	結果
			F		N A S			%	%	
					ΤRΑ					
					Ν					
反力	1	F_X								合格
(N)		Fy								合格
		F_{Z}								合格
モーメ		$M_{\rm X}$								合格
ント		$M_{\rm Y}$								合格
(N • m)		M_Z								合格
反力	13	F_X								合格
(N)		F_{Y}								合格
		F_Z								合格

\backslash	節	方		各プログラム別解析結果								
	点	向	1	2	3	④差分	⑤差分	⑥比率	⑦比率	判定		
	No.		ΝΑΡ		MSC	11-2	1-3	(4) / (1)	5/1	結果		
			F		N A S			%	%			
					TRA							
					Ν							
モーメ	13	M _X		-	-					合格		
ント		$M_{\rm Y}$								合格		
(N • m)		$M_{\rm Z}$								合格		
反力	17	Fx								合格		
(N)		F_{Y}								合格		
		F_Z								合格		
モーメ		$M_{\rm X}$								合格		
ント		M_{Y}								合格		
(N • m)		$M_{\rm Z}$								合格		
反力	21	F_X								合格		
(N)		F_{Y}								合格		
		F_{Z}								合格		
モーメ		$M_{\rm X}$								合格		
ント		$M_{\rm Y}$								合格		
(N • m)		$M_{\rm Z}$								合格		
変位	5	Х								合格		
(mm)		Y								合格		
		Ζ								合格		
角度		$\theta_{\rm X}$								合格		
(rad)		$\theta_{\rm Y}$								合格		
		$\theta_{\rm Z}$								合格		
変位	7	Х								合格		
(mm)		Y								合格		
		Ζ								合格		
角度		θx								合格		
(rad)		θ γ								合格		
		$\theta_{\rm Z}$								合格		

	節	方		各プログラム別解析結果								
	点	向	1	2	3	④差分	⑤差分	⑥比率	⑦比率	判定		
	No.		ΝΑΡ		MSC	11-21	11-3	(4) / (1)	5/1	結果		
			F		N A S			%	%			
					ΤΖΑ							
					Ν							
変位	9	Х								合格		
(mm)		Y								合格		
		Z								合格		
角度		θx								合格		
(rad)		θ_{Y}								合格		
		heta z								合格		
固有	1次									合格		
振動数	2次									合格		
(H_Z)	3次									合格		
	4次									合格		
	5次									合格		
	6次									合格		
	7次									合格		
	8次									合格		

以上の結果より, 判定基準を満足した。

3.5.3 使用内容に対する妥当性

本解析コードによる計算結果は,材料力学上の計算値及び他の解析コードによる計算結 果と比較してよく合致していることから,妥当であることを確認した。