本資料のうち、枠囲みの内容は、	柏崎刈羽原子力発電所第7号機 工事計画審査資料				
機密事項に属しますので公開で	資料番号	KK7添-2-040-21 改2			
きません。	提出年月日	2020年7月9日			

V-2-9-4-1 真空破壊弁の耐震性についての計算書

2020年7月

東京電力ホールディングス株式会社

V-2-9-4-1 真空破壊弁の耐震性についての計算書

1. 概要 ······	1
2. 一般事項 ······	1
2.1 構造計画	1
2.2 評価方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.3 適用規格・基準等 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.4 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3. 評価部位	5
4. 固有周期 ······	7
5. 構造強度評価 ······	7
5.1 構造強度評価方法	7
5.2 荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
5.2.1 荷重の組合せ及び許容応力状態	7
5.2.2 許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
5.2.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
5.2.4 設計荷重 ······	12
5.3 設計用地震力	13
5.4 計算方法 ·····	14
5.4.1 最高使用圧力(内圧)による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
5.4.2 最高使用圧力(外圧)による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
5.4.3 真空破壊弁に作用する荷重による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・	15
5.5 計算条件	19
5.6 応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
6. 機能維持評価	20
6.1 動的機能維持評価方法	20
7. 評価結果	21
7.1 設計基準対象施設としての評価結果	21
7.2 重大事故等対処設備としての評価結果	24

1. 概要

本計算書は、V-1-8-1「原子炉格納施設の設計条件に関する説明書」及びV-2-1-9「機能維持の基本方針」にて設定している構造強度の設計方針に基づき、真空破壊弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

真空破壊弁は設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては 常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下,設計基準対象 施設及び重大事故等対処設備としての構造強度及び動的機能評価を示す。

- 2. 一般事項
- 2.1 構造計画

真空破壊弁の構造計画を表 2-1 に示す。

表 2-1 構造計画

 \sim

2.2 評価方針

真空破壊弁の応力評価は、V-1-8-1「原子炉格納施設の設計条件に関する説明書」及び V-2-1-9「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づ き、「3. 評価部位」にて設定する箇所に作用する設計用地震力による応力等が許容限界内に 収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。また、機能 維持評価は、V-2-1-9「機能維持の機能方針」にて設定した動的機能維持の方針に基づき、 地震時の応答加速度が動的機能確認済加速度以下であることを、「6. 機能維持評価」にて示 す方法にて確認することで実施する。確認結果を「7. 評価結果」に示す。

真空破壊弁の耐震評価フローを図 2-1 に示す。

図 2-1 真空破壊弁の耐震評価フロー

2.3 適用規格·基準等

適用規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984 ((社) 日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987 ((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1991 追補版 ((社)日本電気協会)
- ・発電用原子力設備規格(設計・建設規格(2005 年版(2007 年追補版含む。)) J S M E
 S N C 1-2005/2007)(以下「設計・建設規格」という。)

2.4 記号の説明

記号	記号の説明	単位
А	面積	mm^2
Сн	水平方向設計震度	—
Сv	鉛直方向設計震度	—
D	死荷重	—
D i *	直径 (i=0, 1)	mm
ℓ 1	長さ	mm
Mc	モーメント	N•mm
Md	機械的荷重	—
ML	モーメント	N•mm
Msad	機械的荷重(SA時)	—
Ν	軸力	Ν
Р	最高使用圧力 (内圧)	MPa, kPa
РD	圧力	—
P e	最高使用圧力 (外圧)	MPa, kPa
PSAD	圧力 (SA時)	
Q	せん断力	Ν
S	許容引張応力	MPa
S d	弾性設計用地震動Sdにより定まる地震力	
S d *	弾性設計用地震動Sdにより定まる地震力又は静的地震力	—
Sm	設計応力強さ	MPa
S s	基準地震動Ssにより定まる地震力	
S u	設計引張強さ	MPa
S y	設計降伏点	MPa
S _y (RT)	40℃における設計降伏点	MPa
tı	厚さ	mm
W 1	死荷重	Ν
Z	断面係数	mm^3
σℓ	軸方向応力	MPa
σt	円周方向応力	MPa
τ	せん断応力	MPa

注記*:Diの添字iの意味は、以下のとおりとする。

i =0:パイプ外径 i =1:パイプ内径

3. 評価部位

真空破壊弁の配置図を図 3-1 に,形状及び主要寸法を図 3-2 に,使用材料及び使用部位を 表 3-1 に示す。

図 3-1 真空破壊弁の配置図

注記*1:W₁(死荷重)の作用点を示す。 *2:ℓ₁寸法は最大長さを示す。

図 3-2 真空破壊弁の形状及び主要寸法(単位:mm)

表 3-1 使用材料表

使用部位	使用材料	備考
パイプ	SGV49	SGV480 相当

4. 固有周期

真空破壊弁は、パイプが原子炉本体の基礎に埋め込まれた構造であり、原子炉本体の基礎からの突出し長さに対して断面剛性が高いため、固有周期は十分に小さく剛構造となる。 よって、固有周期の計算は省略する。

- 5. 構造強度評価
- 5.1 構造強度評価方法
 - (1) 真空破壊弁は、パイプが原子炉本体の基礎に埋め込まれた構造であり、地震荷重は原子 炉本体の基礎を介して原子炉建屋に伝達される。 真空破壊弁の耐震評価として、V-2-2-4「原子炉本体の基礎の地震応答計算書」におい

て計算された荷重を用いて構造強度評価を行う。また,重大事故等対処設備としての評価 においては,没水時における真空破壊弁内部の水重量を考慮する。

- (2) 構造強度評価に用いる寸法は、公称値を用いる。
- (3) 概略構造図を表 2-1 に示す。
- 5.2 荷重の組合せ及び許容応力
 - 5.2.1 荷重の組合せ及び許容応力状態

真空破壊弁の荷重の組合せ及び許容応力状態のうち,設計基準対象施設の評価に用いるものを表 5-1 に、重大事故等対処設備の評価に用いるものを表 5-2 に示す。

- 詳細な荷重の組合せは,対象機器の設置位置等を考慮し決定する。なお,考慮する荷 重の組合せは,組み合わせる荷重の大きさを踏まえ,評価上厳しくなる組合せを選定す る。
- 5.2.2 許容応力

真空破壊弁の許容応力はV-2-1-9「機能維持の基本方針」に基づき表 5-3 に示すとおりとする。

5.2.3 使用材料の許容応力評価条件

真空破壊弁の使用材料の許容応力評価条件のうち,設計基準対象施設の評価に用いる ものを表 5-4 に,重大事故等対処設備の評価に用いるものを表 5-5 に示す。

施設	施設区分		耐震重要度 分類	機器等 の区分	荷重の組合せ	許容応力状態
原子炉格納	圧力低減設備	* orbit A			$D + P_D + M_D + S d^*$	III ∧ S
施設	その他の安全 真空破壊弁 S 設備	S	^*	$D + P_D + M_D + S_s$	IV A S	

表5-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

注記*:クラス2容器の荷重の組合せ及び許容応力状態で評価する。

施設区分		機器名称	設備分類*1	機器等 の区分	荷重の組合せ	許容応力状態				
原子炉格納 施設	圧力低減設備 その他の安全 設備	真空破壊弁	常設耐震/防止 常設/緩和	*2	$D + P_{SAD} + M_{SAD} + S s^{*3}$	$V{}_{A}S{}^{*4}$				

表5-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備、「常設/緩和」は常設重大事故緩和設備を示す。

*2:重大事故等クラス2容器の荷重の組合せ及び許容応力状態で評価する。

*3:重大事故等後の最高内圧(差圧),最高温度との組合せを考慮する。

*4: VASとしてIVASの許容限界を用いる。

応力分類 許容 応力状態	一次一般膜応力	一次膜応力+ 一次曲げ応力	一次+二次応力	一次+二次+ピーク応力
IIIAS	Syと0.6・Suの小さい方。 ただし,オーステナイト系ステンレス鋼及 び高ニッケル合金については1.2・Sとし てもよい。	左欄の 1.5倍の値	Sd又はSs地震動のみによる疲	*1 反労解析を行い,疲労累積係数が
IV A S V A S *2	0.6 • S u	左欄の 1.5倍の値	1.0以下であること。ただし,地 変動値が2・Sy以下であれば疲労	≣動のみによる一次+二次応力の β解析は不要。

表5-3 クラス2容器の許容応力

注記*1:2・Syを超える場合は弾塑性解析を行う。この場合,設計・建設規格 PVB-3300 (PVB-3313 を除く。Smは2/3・Syと読み替える。) の簡易弾塑性解析を用いる。

*2: VASとしてWASの許容限界を用いる。

表5-4 使用材料の許容応力評価条件(設計基準対象施設)

評価部材	材料	温度条件 (℃)		S (MPa)	Sy (MPa)	Su (MPa)	Sy(RT) (MPa)
真空破壊弁パイプ	SGV49*	周囲環境 温度	171		229	423	

注記*:SGV480相当

表5-5 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件 (℃)		S (MPa)	Sу (MPa)	Su (MPa)	Sy(RT) (MPa)
真空破壊弁パイプ	SGV49*	周囲環境 温度	200		226	422	

注記*:SGV480相当

- 5.2.4 設計荷重
 - (1) 設計基準対象施設としての設計圧力及び設計温度
 設計基準対象施設としての設計圧力及び設計温度は、V-1-8-1「原子炉格納施設の設計条件に関する説明書」に基づき設定する。

内圧(差圧)	173kPa
外圧(差圧)	14kPa
温度	171°C

- (2) 重大事故等対処設備としての評価圧力及び評価温度
 重大事故等対処設備としての評価圧力及び評価温度は、以下のとおりとする。
 内圧(差圧) 173kPa
 温度 200℃
- (3) 死荷重

真空破壊弁の自重を死荷重とする。

なお、重大事故等対処設備においては、没水による内包水を考慮する。

設計基準対象施設

重大事故等対処設備

N N

5.3 設計用地震力

評価に用いる設計用地震力を表 5-6 及び表 5-7 に示す。

「弾性設計用地震動Sd又は静的地震力」及び「基準地震動Ss」による地震力は, V-2-1-7「設計用床応答曲線の作成方針」に基づき設定する。

云。。 於时/1/2版/2 (於田本中/13///////////////////////////////////							
据付場所及び	固有周期 (s)		弾性設計用 又は静	地震動Sd 的震度	基準地震動 S s		
設置高さ (m)	水平 方向	鉛直 方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	
原子炉本体の 基礎 T.M.S.L. 6.15	*	*	Сн=0.68	Cv=0.68	Сн=1.37	Cv=1.36	

表 5-6 設計用地震力(設計基準対象施設)

注記*:固有周期は十分に小さく、計算を省略する。

据付場所 及び	固有周期 (s)		弾性設計用	地震動Sd	基準地震動S s	
設置高さ (m)	水平 方向	鉛直 方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度
原子炉本体の 基礎 T.M.S.L. 6.15	*	*	Сн=0.68	Cv = 0.68	Сн=1.37	Cv=1.36

表 5-7 設計用地震力 (重大事故等対処設備)

注記*:固有周期は十分に小さく、計算を省略する。

5.4 計算方法

真空破壊弁の応力評価点は,真空破壊弁を構成する部材の形状及び荷重伝達経路を考慮し, 発生応力が大きくなる部位を選定する。選定した応力評価点を表 5-8 及び図 5-1 に示す。

応力評価点番号	応力評価点
P 1	真空破壊弁パイプ (P1-A~P1-C)

表 5-8 応力評価点

図 5-1 真空破壊弁の応力評価点

5.4.1 最高使用圧力(内圧)による応力

円周方向 $\sigma_{t} = \frac{P \cdot D_{1}}{2 \cdot t_{1}}$ 軸方向 $\sigma_{\ell} = \frac{P \cdot D_{1}}{4 \cdot t_{1}}$

5.4.2 最高使用圧力(外圧)による応力

円周方向

$$\sigma_{t} = -\frac{P_{e} \cdot (D_{1} + 2 \cdot t_{1})}{2 \cdot t_{1}}$$

軸方向
$$\sigma_{\ell} = -\frac{P_{e} \cdot (D_{1} + 2 \cdot t_{1})}{2 \cdot t_{1}}$$

$$\ell = - \frac{4 \cdot t_1}{4 \cdot t_1}$$

5.4.3 真空破壊弁に作用する荷重による応力

真空破壊弁に作用する荷重として鉛直方向荷重及び水平方向荷重を考慮する。

ここで,荷重の作用位置はすべての場合に対して安全側に真空破壊弁パイプの 外側端(フランジ面)とする。

また、地震荷重の作用方向を図 5-2 のように定める。

図5-2 地震荷重の作用方向

(1) 鉛直方向荷重

鉛直方向荷重としては,真空破壊弁の死荷重(W1)がある。この荷重と地震荷重を 加え合わせて,応力計算を行う。

- a. 死荷重による鉛直方向荷重
 - (a) 死荷重

モーメント $M_{L} = W_{1} \cdot \ell_{1}$

せん断力

 $Q\!=\!W_1$

(b) 地震荷重作用時

モーメント $M_L = \pm C_V \cdot W_1 \cdot \ell_1$ せん断力 $Q = \pm C_V \cdot W_1$

ここに, Cv: 鉛直方向設計震度

(2) 水平方向荷重

水平方向荷重としては、真空破壊弁の死荷重による水平地震荷重がある。

- a. 死荷重による水平地震荷重
 - (a) 地震荷重作用時
 軸力
 N=±CH・W1
 モーメント
 Mc=±CH・W1・ℓ1
 せん断力
 Q=±CH・W1
 ここに、CH:水平方向設計震度

(3) 各荷重による応力

(1)項及び(2)項で得られた軸力,モーメント及びせん断力により真空破壊弁パイプに 生じる応力は以下の式により計算する。

a. 軸力による応力

$$\sigma \ell = \frac{N}{A}$$

ここに,
 $A : 真空破壊弁パイプの断面積$
 $= \frac{\pi}{4} \cdot (D_0^2 - D_1^2)$
 $D_0 = D_1 + 2 \cdot t_1$
b. モーメントによる応力
 $\sigma \ell = \frac{Mc}{Z} \left(\chi t \frac{ML}{Z} \right)$
ここに,
 $Z : 真空破壊弁パイプの断面係数$
 $= \frac{\pi}{32} \cdot \frac{(D_0^4 - D_1^4)}{D_0}$
c. せん断力による応力
 $\tau = \frac{Q}{A}$

5.5 計算条件

応力解析に用いる荷重を、「5.2 荷重の組合せ及び許容応力」及び「5.3 設計用地震力」 に示す。

5.6 応力の評価

「5.4 計算方法」で求めた応力が許容応力以下であること。ただし、一次+二次応力が許容値を満足しない場合は、設計・建設規格 PVB-3300 に基づいて疲労評価を行い、疲労累積係数が 1.0 以下であること。

- 6. 機能維持評価
- 6.1 動的機能維持評価方法

真空破壊弁の地震時又は地震後の動的機能維持評価について以下に示す。

なお,評価用加速度はV-2-1-7「設計用床応答曲線の作成方針」に基づき基準地震動Ss により定まる応答加速度を設定する。

真空破壊弁は地震時動的機能維持が確認された逆止弁と類似の構造であるため、V-2-1-9 「機能維持の基本方針」に記載の機能確認済加速度を適用する。

評価用加速度は表 5-6及び表 5-7に示すものを用いる。

機能確認済加速度を表 6-1 に示す。

評価部位	形式	方向	機能確認済加速度
		水平	6.0
具空破壊弁	· · · · · · · · · · · · · · · · · · ·	鉛直	6.0

表 6-1 機能確認済加速度

- 7. 評価結果
- 7.1 設計基準対象施設としての評価結果

真空破壊弁の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を 満足しており,設計用地震力に対して十分な構造強度及び動的機能を有していることを確認 した。

- (1) 構造強度評価結果構造強度評価の結果を表 7-1 及び表 7-2 に示す。
- (2) 機能維持評価結果動的機能維持評価の結果を表 7-3 に示す。

				III A S			
評価対象設備		評価部位	応力分類	算出応力	許容応力	判定	備考
			MPa	MPa			
			一次一般膜応力	9	229	0	
	P1-A	A 真空破壊弁パイプ	一次膜応力+一次曲げ応力	9	344	0	
			一次+二次応力	10	458	0	
真空破壞弁 P1-			一次一般膜応力	9	229	0	
	P1-B	真空破壊弁パイプ	一次膜応力+一次曲げ応力	9	344	0	
			一次+二次応力	10	458	0	
	P1-C	真空破壊弁パイプ	一次一般膜応力	7	229	0	
			一次膜応力+一次曲げ応力	7	344	0	
			一次+二次応力	10	458	0	

表 7-1 許容応力状態ⅢASに対する評価結果(D+PD+MD+Sd*)

				IV A S			
評価対象設備		評価部位	応力分類	算出応力	許容応力	判定	備考
				MPa	MPa		
			一次一般膜応力	10	253	0	
	P1-A	A 真空破壊弁パイプ	一次膜応力+一次曲げ応力	10	380	0	
			一次+二次応力	14	458	0	
真空破壞弁 P1-			一次一般膜応力	10	253	0	
	P1-B	真空破壊弁パイプ	一次膜応力+一次曲げ応力	10	380	0	
			一次+二次応力	14	458	0	
	P1-C	こ 真空破壊弁パイプ	一次一般膜応力	8	253	0	
			一次膜応力+一次曲げ応力	8	380	0	
			一次+二次応力	14	458	0	

表 7-2 許容応力状態IVASに対する評価結果(D+PD+MD+Ss)

表 7-3 動的機能の評価結果

		機能維持評価用加速度		機能確認済加速度		
	要求機能	水平	鉛直	水平	鉛直	
真空破壊弁	β (Ss) *	1.37	1.36	6.0	6.0	

注記*:基準地震動Ss,弾性設計用地震動Sd後に動的機能が要求されることを表す

機能維持評価用加速度(1.2ZPA)は全て機能確認済加速度以下である。

6.2 重大事故等対処設備としての評価結果

真空破壊弁の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は 許容限界を満足しており,設計用地震力に対して十分な構造強度及び動的機能を有している ことを確認した。

- (1) 構造強度評価結果
 構造強度評価結果を表 7-4 に示す。
- (2) 機能維持評価結果動的機能維持評価の結果を表 7-5 に示す。

				V A S			
評価対象設備		評価部位	応力分類	算出応力	許容応力	判定	備考
				MPa	MPa		
			一次一般膜応力	14	253	0	
P1-A 真空破壊弁 P1-B P1-C	P1-A	A 真空破壊弁パイプ	一次膜応力+一次曲げ応力	14	379	0	
			一次+二次応力	16	452	0	
		P1-B 真空破壊弁パイプ	一次一般膜応力	13	253	0	
	P1-B		一次膜応力+一次曲げ応力	13	379	0	
			一次+二次応力	16	452	0	
	P1-C	C 真空破壊弁パイプ	一次一般膜応力	10	253	0	
			一次膜応力+一次曲げ応力	10	379	0	
			一次+二次応力	16	452	0	

表 7-4 許容応力状態 VAS に対する評価結果 (D+P sAD+M sAD+Ss)

表 7-5 動的機能の評価結果

		機能維持評価用加速度		機能確認済加速度		
	要求機能	水平	鉛直	水平	鉛直	
真空破壊弁	β (Ss) *	1. 37	1. 36	6.0	6. 0	

注記*:基準地震動Ss,弾性設計用地震動Sd後に動的機能が要求されることを表す

機能維持評価用加速度(1.2ZPA)は全て機能確認済加速度以下である。